Sample records for camillea xylariaceae ascomycota

  1. Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field

    Microsoft Academic Search

    Izumi Okane; Prasert Srikitikulchai; Kyoko Toyama; Thomas Læssøe; Somsak Sivichai; Nigel Hywel-Jones; Akira Nakagiri; Wanchern Potacharoen; Ken-ichiro Suzuki

    2008-01-01

    A study of the diversity, taxonomy, and ecology of endophytic Xylariaceae (Ascomycota) was carried out. In this study, we\\u000a obtained isolates of Xylariaceae from healthy, attached leaves and teleomorphic stromata on decayed plant materials in a permanent\\u000a plot at Khao Yai National Park (Thailand). In addition, strains deposited beforehand were selected in which both endophytic\\u000a strains isolated from living plant

  2. Ascomycota 1 Lecanoromycetes

    E-print Network

    California at Berkeley, University of

    Lecanoromycetes Lecanorales Hypogymniaceae Hypogymnia imshaugii #12;Division Class Order Family Notes Division Ascomycota 1 6 Lichens Lecanoromycetes Lecanorales Hypogymniaceae Hypogymnia enteromorpha Ascomycota 1 7 Lichens Lecanoromycetes Lecanorales Hypogymniaceae Hypogymnia heterophylla Ascomycota 1 8 Lichens

  3. A polyphasic taxonomy of Daldinia (Xylariaceae)1

    PubMed Central

    Stadler, Marc; Læssøe, Thomas; Fournier, Jacques; Decock, Cony; Schmieschek, Beata; Tichy, Hans-Volker; Peršoh, Derek

    2014-01-01

    For a monograph based on a polythetic concept, several thousands of herbarium specimens, and several hundreds of freshly collected and cultured specimens of Daldinia and allied Xylariaceae, originating from around the world, were studied for morphological traits, including by SEM, and chemically by HPLC profiles using UV-visible and mass spectrometric detection. Emphasis was given to tropical material, and importantly, ancient specimens, including as many types as possible, were tracked and studied to review earlier taxonomic concepts. An epitype of D. eschscholtzii was selected as representative of the morphochemotype that is most widely distributed in the tropics. Six new species of Daldinia from the tropics and the southern Hemisphere are described. Daldinia asphalatum is resurrected, and D. cudonia is regarded as its synonym. In addition, the following binomials are epi-, iso-, neo- and/or lectotypified: Daldinia asphalatum, D. caldariorum, D. clavata, D. cuprea, D. durissima, D. eschscholtzii, D. grandis, D. loculata, and D. vernicosa. Annellosporium and Versiomyces are regarded as synonyms of Daldinia. Many new synonymies in Daldinia are proposed, and some previously published names are rejected. In total, 47 taxa in Daldinia are recognised and a key is provided. Their biogeography, chorology, and ecology, as well as the importance of their secondary metabolites, are also discussed. The previous definition of the genus is emended. The species concept is based mainly on morphological and other phenotype-derived characters because, despite diligent search, no molecular data or cultures of several of the accepted species could be obtained. Daldinia is segregated into five major groups, based on phenotypic characteristics. Some unnamed but aberrant specimens were not found in good condition and are therefore not formally described as new species. However, they are illustrated in detail in a hope that this will facilitate the discovery of fresh material in future. A preliminary molecular phylogeny based on 5.8S/ITS nrDNA including numerous representatives of all hitherto described taxa for which cultures are extant, was found basically in agreement with the above mentioned segregation of the genus, based on morphological and chemotaxonomic evidence. In the rDNA based phylogenetic tree, Daldinia appears clearly distinct from members of the genera Annulohypoxylon and Hypoxylon; nevertheless, representatives of small genera of predominantly tropical origin (Entonaema, Phylacia, Ruwenzoria, Rhopalostroma, Thamnomyces) appear to have evolved from daldinioid ancestors and are nested inside the Daldinia clade. Interestingly, these findings correlate with chemotaxonomic characters to a great extent, especially regarding the distribution of marker metabolites in their mycelial cultures. Hence, the current study revealed for the first time that fungal secondary metabolite profiles can have taxonomic value beyond the species rank and even coincide with phylogenetic data. Taxonomic novelties: Daldinia andina sp. nov., D. australis sp. nov., D. hausknechtii sp. nov., D. rehmii sp. nov., D. starbaeckii sp. nov., D. theissenii sp. nov., D. cahuchosa comb. nov., D. nemorosa comb. nov. PMID:24790283

  4. Polyketides from a Marine-Derived Fungus Xylariaceae sp.

    PubMed Central

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-01-01

    Eighteen polyketides (1–18) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported. PMID:23697953

  5. Polyketides from a marine-derived fungus Xylariaceae sp.

    PubMed

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-05-01

    Eighteen polyketides (1-18) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported. PMID:23697953

  6. The complete mitochondrial genome of Paecilomyces hepiali (Ascomycota, Eurotiomycetes).

    PubMed

    Wang, Linping; Xu, Jiayue; Li, Huchen; Song, Lipu; Yu, Yi; Zhang, Wensheng; Liu, Guiming; Feng, Chengqiang

    2014-06-25

    Abtract Paecilomyces hepiali, belonging to the Eurotiales order Ascomycota, is an endoparasitic fungus that commonly exists in the natural Cordyceps sinensis anamorph stage. Here, we report the complete mitochondrial DNA sequences of P. hepiali for the first time. The genome is 24,245?bp in length, encoding 15 protein-coding genes (PCGs), 2 rRNA genes, 25 tRNA genes and 3 homing endonucleases. The overall AT composition is 73.37% and the average AT content of PCG, rRNA, tRNA and non-coding region are 74.21%, 66.07%, 62.83% and 75.96%, respectively. Phylogenetic analysis with eight Ascomycota species and thirteen Basidiomycota species revealed that P. hepiali is was more closely related to Cordyceps bassiana, Cordycep smilitaris and Cordyceps brongniartii. It is confirmed that P. hepiali is a derivative of Cordyceps sinensis. This study provided valuable information on the gene contents of the mitochondrial genome and would facilitate the study of function and evolution of P. hepiali. PMID:24963769

  7. Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia

    E-print Network

    Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia of Tasmania, GPO Box 252-54, Hobart, Tas. 7001, Australia. C Forest Science Centre, Industry & Investment NSW, PO Box 100, Beecroft, NSW 2119, Australia. D Agric-Science Queensland, Ecosciences Precinct, 41 Boggo

  8. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    NASA Astrophysics Data System (ADS)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of ?-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel— Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom— Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle— Cantharellus cibarius Fr., as well as oyster mushroom— Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  9. Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum (Hemiptera: Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypocreales)

    Microsoft Academic Search

    Weimin Liu; Yingping Xie; Jiaoliang Xue; Yanfeng Zhang; Xiaomin Zhang

    2011-01-01

    The ultrastructural and cytochemical characterization of the brown soft scale, Coccus hesperidum L. (Hemiptera: Coccidae) infected by the hyphomycete Lecanicillium lecanii (Zimmermann) Gams & Zare, belonging to the phylum Ascomycota and order Hypocreales, was investigated by light, scanning and transmission electron microscopy. Gold cytochemistry was used to label chitin in the cuticle of the scale insect. The results revealed that

  10. Kodamaea ohmeri (Ascomycota: Saccharomycotina) presence in commercial Bombus impatiens Cresson and feral Bombus pensylvanicus DeGeer (Hymenoptera: Apidae) colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, eight commercial and three feral bumble bee (Bombus impatiens Cresson and Bombus pensylvanicus DeGeer respectively, Hymenoptera: Apidae) colonies were tested for the presence of Kodamaea ohmeri (Ascomycota: Saccharomycotina), a yeast known to attract small hive beetles (SHB) (Aethina ...

  11. Molecular analysis reveals two new dimorphic species of Hesperomyces (Ascomycota, Laboulbeniomycetes) parasitic on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae).

    PubMed

    Goldmann, Lauren; Weir, Alex; Rossi, Walter

    2013-01-01

    Four morphotypes of Hesperomyces (Ascomycota, Laboulbeniomycetes) were found on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae) from Costa Rica and Ecuador. Partial SSU and ITS rDNA sequence analysis revealed that these belong to two phylogenetic species, each with a pair of morphotypes displaying position specificity. Confirmation of dimorphism in Laboulbeniales highlights the need for a thorough systematic revision of species concepts within the order. The theory of 'position specificity' also needs to be revisited. PMID:24295919

  12. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota)

    Microsoft Academic Search

    Valérie Hofstetter; Jolanta Miadlikowska; Frank Kauff; François Lutzoni

    2007-01-01

    The resolving power and statistical support provided by two protein-coding (RPB1 and RPB2) and three ribosomal RNA-coding (nucSSU, nucLSU, and mitSSU) genes individually and in various combinations were investigated based on maximum likelihood bootstrap analyses on lichen-forming fungi from the class Lecanoromycetes (Ascomycota). Our results indicate that the optimal loci (single and combined) to use for molecular systematics of lichen-forming

  13. Functional Operons in Secondary Metabolic Gene Clusters in Glarea lozoyensis (Fungi, Ascomycota, Leotiomycetes)

    PubMed Central

    Yue, Qun; Chen, Li; Li, Yan; Bills, Gerald F.; Zhang, Xinyu; Xiang, Meichun; Li, Shaojie; Che, Yongsheng; Wang, Chengshu; Niu, Xuemei

    2015-01-01

    ABSTRACT Operons are multigene transcriptional units which occur mostly in prokaryotes but rarely in eukaryotes. Protein-coding operons have not been reported in the Fungi even though they represent a very diverse kingdom of organisms. Here, we report a functional operon involved in the secondary metabolism of the fungus Glarea lozoyensis belonging to Leotiomycetes (Ascomycota). Two contiguous genes, glpks3 and glnrps7, encoding polyketide synthase and nonribosomal peptide synthetase, respectively, are cotranscribed into one dicistronic mRNA under the control of the same promoter, and the mRNA is then translated into two individual proteins, GLPKS3 and GLNRPS7. Heterologous expression in Aspergillus nidulans shows that the GLPKS3-GLNRPS7 enzyme complex catalyzes the biosynthesis of a novel pyrrolidinedione-containing compound, xenolozoyenone (compound 1), which indicates the operon is functional. Although it is structurally similar to prokaryotic operons, the glpks3-glnrps7 operon locus has a monophylogenic origin from fungi rather than having been horizontally transferred from prokaryotes. Moreover, two additional operons, glpks28-glnrps8 and glpks29-glnrps9, were verified at the transcriptional level in the same fungus. This is the first report of protein-coding operons in a member of the Fungi. PMID:26081635

  14. Potentially pathogenic and biocontrol Ascomycota associated with green wall structures of basket willow ( Salix viminalis L.) revealed by phenotypic characters and ITS phylogeny

    Microsoft Academic Search

    Vladimir Vujanovic; Michel Labrecque

    2008-01-01

    Ascomycota are among the fungi that cause serious willow diseases in all natural habitats worldwide. This study was conducted\\u000a to determine if basket willow used in green wall structures (GWS) built of willow stems were infected by potentially important\\u000a fungal diseases or their antagonists in urban areas of eastern Canada. In total, 13 different phenotypic genera belonging\\u000a to eight families

  15. The role of native vegetation on infection rates of Calacarus heveae (Acari: Eriophyidae) by Hirsutella thompsonii (Ascomycota: Ophiocordycipitaceae).

    PubMed

    Nuvoloni, Felipe Micali; de Castro, Elizeu Barbosa; Feres, Reinaldo José Fazzio

    2014-06-01

    Hirsutella thompsonii (Fischer) (Ascomycota: Ophiocordycipitaceae), a fungal pathogen, often causes high mortality in populations of Calacarus heveae Feres (Acari: Eriophyidae), an important pest mite in rubber tree plantations (Hevea brasiliensis Muell. Arg., Euphorbiaceae). However, the ecological and climatic factors regulating this host-pathogen system are poorly known. We compared fungal infections in agroforestry and traditional rubber plantations to evaluate the role of native vegetation and climatic factors on infection rates of C. heveae by H. thompsonii. While the prevalence of H. thompsonii was higher in managed rubber tree plantations, the abundance of C. heveae was about three times higher in traditional plantations. Abundance of C. heveae, agroecosystem management type and microclimatic variables were responsible for driving the infection rates of H. thompsonii. Native vegetation was a source for H. thompsonii and also modified the crop's microclimate, which contributed to its maintenance in the crop fields. Therefore, appropriate management practices may enhance the effects of entomopathogens on conservative biological control of pest mites in agroforestry systems. PMID:24509786

  16. First Detection of the Larval Chalkbrood Disease Pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in Adult Bumble Bees.

    PubMed

    Maxfield-Taylor, Sarah A; Mujic, Alija B; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen. PMID:25885679

  17. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach.

    PubMed

    Sung, Gi-Ho; Sung, Jae-Mo; Hywel-Jones, Nigel L; Spatafora, Joseph W

    2007-09-01

    Multi-gene phylogenetic analyses were conducted to address the evolution of Clavicipitaceae (Ascomycota). Data are presented here for approximately 5900 base pairs from portions of seven loci: the nuclear ribosomal small and large subunit DNA (nrSSU and nrLSU), beta-tubulin, elongation factor 1alpha (EF-1alpha), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2), and mitochondrial ATP Synthase subunit 6 (mtATP6). These data were analyzed in a complete 66-taxon matrix and 91-taxon supermatrix that included some missing data. Separate phylogenetic analyses, with data partitioned according to genes, produced some conflicting results. The results of separate analyses from RPB1 and RPB2 are in agreement with the combined analyses that resolve a paraphyletic Clavicipitaceae comprising three well-supported clades (i.e., Clavicipitaceae clade A, B, and C), whereas the tree obtained from mtATP6 is in strong conflict with the monophyly of Clavicipitaceae clade B and the sister-group relationship of Hypocreaceae and Clavicipitaceae clade C. The distribution of relative contribution of nodal support for each gene partition was assessed using both partitioned Bremer support (PBS) values and combinational bootstrap (CB) analyses, the latter of which analyzed bootstrap proportions from all possible combinations of the seven gene partitions. These results suggest that CB analyses provide a more consistent estimate of nodal support than PBS and that combining heterogeneous gene partitions, which individually support a limited number of nodes, results in increased support for overall tree topology. Analyses of the 91-taxa supermatrix data sets revealed that some nodes were more strongly supported by increased taxon sampling. Identifying the localized incongruence of mtATP6 and analyses of complete and supermatrix data sets strengthen the evidence for rejecting the monophyly of Clavicipitaceae and much of the current subfamilial classification of the family. Although the monophyly of the grass-associated subfamily Clavicipitoideae (e.g., Claviceps, Balansia, and Epichloë) is strongly supported, the subfamily Cordycipitoideae (e.g., Cordyceps and Torrubiella) is not monophyletic. In particular, species of the genus Cordyceps, which are pathogens of arthropods and truffles, are found in all three clavicipitaceous clades. These results imply that most characters used in the current familial classification of Clavicipitaceae are not diagnostic of monophyly. PMID:17555990

  18. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales).

    PubMed

    Quesada-Moraga, E; Muñoz-Ledesma, F J; Santiago-Alvarez, C

    2009-06-01

    The poppy stem gall wasp, Iraella luteipes (Thompson) (Hymenoptera: Cynipidae), is one of the main pests of the opium poppy, Papaver somniferum L., an economically important pharmaceutical crop cultivated worldwide. In a previous study, we obtained from I. luteipes larvae a strain of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales) that can become established endophytically in opium poppy plants. A field experiment was conducted to study the ability of this B. bassiana strain to provide systemic protection against damage by I. luteipes in opium poppy in southern Spain for three seasons. Conidial suspensions were applied as seed dressings, leaf sprays, or soil sprays. The effect of the treatment was studied by harvesting fully ripened plants and dissecting I. luteipes larvae from the stem. The effect of treatment on growth and yield was also evaluated. Emergence of I. luteipes adults was not uniform over the 3 yr, with important differences exhibited in the duration of the emergence period, although the flight peaks tended to occur in mid-late April. B. bassiana seed dressings, leaf sprays at the fourth true-leaf stage, and soil sprays were not significantly different in their ability to reduce the number of larvae per plant compared with the controls, with percentage reductions of 36.5-58.5, 64.4-73.4, and 51.9-57.2% in 2005, 2006, and 2007, respectively. Even though the population level of I. luteipes increased over the 3 yr, the efficacy of the fungal inoculation in reducing the larval population was maintained throughout the study period. No significant differences between inoculation methods were detected in the percentage of leaf pieces showing fungal growth when placed on B. bassiana selective medium, with mean values in the range of 10-15% for the three seasons. Leaf pieces from controls did not exhibit any sign of B. bassiana growth when placed on B. bassiana-selective medium. Neither adverse effects on growth and yield nor symptomatic tissues were observed in B. bassiana-treated plants compared with controls in any of the three seasons. PMID:19508781

  19. Who's getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus Montanelia (Parmeliaceae, Ascomycota).

    PubMed

    Leavitt, Steven D; Divakar, Pradeep K; Ohmura, Yoshihito; Wang, Li-Song; Esslinger, Theodore L; Lumbsch, H Thorsten

    2015-09-01

    Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this study we assess species diversity, biogeography and diversification of the genus Montanelia, which includes alpine to temperate saxicolous species. We sampled each of the five known species, four of which are known from broad, intercontinental distributions. In order to identify potential biogeographical patterns, each broadly distributed species was represented by individuals collected across their intercontinental distributions. Molecular sequence data were generated for six loci, including three nuclear protein-coding markers (MCM7, RPB1, and RPB2), two nuclear ribosomal markers (ITS and nrLSU), and a fragment of the mitochondrial small subunit. We used three sequence-based species delimitations methods to validate traditional, phenotype-based species and circumscribe previously unrecognized species-level lineages in Montanelia. Relationships among putative lineages and divergence times were estimated within a coalescent-based multi-locus species tree framework. Based on the results of the species delimitation analyses, we propose that the genus Montanelia is likely comprised of six to nine species-level lineages, including previously unrecognized species-level diversity in the nominal taxa M. panniformis and M. tominii. In contrast, molecular sequence data suggest that M. predisjuncta may be conspecific with the widespread taxon M. disjuncta in spite of distinct morphological differences. The rate-based age estimation of the most recent common ancestor of Montanelia (ca. 23.1Ma) was similar to previous estimates based on the fossil record. Furthermore, our data suggest that diversification in Montanelia occurred largely during the Neogene. At least three Montanelia species are broadly distributed throughout Asia, Europe, and North America with no evidence of phylogeographic substructure. In contrast to broadly distributed Montanelia species, our study suggests Pleistocene-dominated diversification and complex biogeographic history in the M. tominii group. Our analyses provide additional insight for understanding diversification and uncovering cryptic diversity in cosmopolitan species of lichen-forming fungi. PMID:25987532

  20. Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae).

    PubMed

    Silva, R J; Alencar, J R D C C; Silva, K P; Cividanes, F J; Duarte, R T; Agostini, L T; Polanczyk, R A

    2014-06-01

    The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were significantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions. PMID:25026650

  1. Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaceae).

    PubMed

    Bahl, J; Jeewon, R; Hyde, K D

    2005-01-01

    A new Rosellinia species, R. capetribulensis isolated from Calamus sp. in Australia is described. R. capetribulensis is characterized by perithecia immersed within a carbonaceous stroma surrounded by subiculum-like hyphae, asci with large, barrel-shaped amyloid apical apparatus and large dark brown spores. Morphologically, R. capetribulensis appears to be similar to R. bunodes, R. markhamiae and R. megalospora. To gain further insights into the phylogeny of this new taxon we analyzed the ITS-5.8S rDNA using maximum parsimony and likelihood methods. In addition, a morphological dataset also was analyzed phylogenetically to investigate possible affinities. ITS rDNA based phylogenies reveal that R. capetribulensis is closely related to other Rosellinia species showing closest affinity to R. arcuata, RL necatrix and R. pepo. However, analysis of R. capetribulensis forms an unsupported branch sister to these taxa. Results from the morphological matrix indicate a close morphological affinity to members of Rosellinia subgenus Rosellinia. Despite that ITS rDNA and morphological analyses present difficulties in constructing a proper phylogenetic framework among Rosellinia and allied genera, there is sufficient evidence to support the establishment of the new taxon in the genus Rosellinia. The morphological similarities and differences between R. capetribulensis and allied genera such as Astrocystis and Entoleuca are also briefly discussed. PMID:16596960

  2. New Elaphomyces species (Elaphomycetaceae, Eurotiales, Ascomycota) from Guyana

    E-print Network

    Henkel, Terry

    : Dicymbe, Guiana Shield, hypogeous fungi, sequestrate fungi INTRODUCTION The hypogeous false truffle genus; Smith et al. 2011). Recent molecular studies of ECM fungal communities in these forests have detected

  3. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota)

    PubMed Central

    2008-01-01

    Background The rate of nucleotide substitutions is not constant across the Tree of Life, and departures from a molecular clock have been commonly reported. Within parmelioid lichens, the largest group of macrolichens, large discrepancies in branch lengths between clades were found in previous studies. Using an extended taxon sampling, we test for presence of significant rate discrepancies within and between these clades and test our a priori hypothesis that such rate discrepancies may be explained by shifts in moisture regime or other environmental conditions. Results In this paper, the first statistical evidence for accelerated evolutionary rate in lichenized ascomycetes is presented. Our results give clear evidence for a faster rate of evolution in two Hypotrachyna clades that includes species occurring in tropical and oceanic habitats in comparison with clades consisting of species occurring in semi-arid and temperate habitats. Further we explore potential links between evolutionary rates and shifts in habitat by comparing alternative Ornstein-Uhlenbeck models. Conclusion Although there was only weak support for a shift at the base of a second tropical clade, where the observed nucleotide substitution rate is high, overall support for a shift in environmental conditions at cladogenesis is very strong. This suggests that speciation in some lichen clades has proceeded by dispersal into a novel environment, followed by radiation within that environment. We found moderate support for a shift in moisture regime at the base of one tropical clade and a clade occurring in semi-arid regions and a shift in minimum temperature at the base of a boreal-temperate clade. PMID:18808710

  4. The Genus Letrouitia (Letrouitiaceae: Lichenized Ascomycota) New to Cambodia

    PubMed Central

    Shi, Haixia; Qian, Zigang; Wang, Xinyu; Liu, Dong; Zhang, Yanyun; Ye, Xin; Harada, Hiroshi

    2015-01-01

    The genus Letrouitia is newly recorded for Cambodia, including the four species as L. domingensis, L. leprolytoides, L. sayeri, and L. subvulpina. A brief description and illustrations are provided. PMID:26190924

  5. A phylogenetic study of the Lecanora rupicola group (Lecanoraceae, Ascomycota).

    PubMed

    Grube, Martin; Baloch, Elisabeth; Arup, Ulf

    2004-05-01

    A molecular phylogeny of the Lecanora rupicola group is presented, based on ITS sequence analyses. The study includes saxicolous and corticolous members of the Lecanora rupicola group as well as other Lecanora species with pruinose apothecia. A phylogenetic hypothesis for species in Lecanora s. lat. and various other genera in Lecanoraceae, based on an alignment-free distance estimation technique, shows that the Lecanora rupicola group forms a monophyletic clade within Lecanoraceae. Affinities to the core group of Lecanora are not well supported, likewise the monophyly of Lecanora s. str. with other species groups in Lecanora, such as the lobate taxa (and Rhizoplaca) is not supported. A more detailed analysis involving Lecanora species with pruinose apothecial discs was carried out with model-based Bayesian Markov chain Monte Carlo (B/MCMC) tree sampling. The results suggest the monophyly of the Lecanora species that are characterized by the presence of chromones. Corticolous as well as saxicolous species are included. Lepraria flavescens is closely related to the Lecanora swartzii subgroup, and the new name Lecanora rouxii nom. nov. is introduced for that species. Other Lecanora species with pruinose discs are not closely related to the Lecanora rupicola group. PMID:15230003

  6. Taxonomic Study of Peltigera (Peltigeraceae, Ascomycota) in Korea

    PubMed Central

    Wei, Xin Li; Wang, Xin Yu; Koh, Young Jin

    2009-01-01

    A taxonomic study of Peltigera in South Korea was performed. The phylogenetic analysis based on nr DNA internal transcribed spacer sequences suggests that Peltigera is a well-supported monophyletic group. Important characteristics are the phycobiont type of thallus and the vein type at the lower cortex (wide and flat, or narrow and ridged). The vertical or horizontal arrangement of the apothecia is also important in distinguishing species in this genus. Eleven species of Peltigera were revealed and confirmed, which included one new record, P. elisabethae. A description of each species is presented with morphological, anatomic, and chemical characteristics, and comparisons between similar species are made. A key to the species is also presented. PMID:23983531

  7. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota).

    PubMed

    Johnston, Peter R; Seifert, Keith A; Stone, Jeffrey K; Rossman, Amy Y; Marvanová, Ludmila

    2014-06-01

    In advancing to one scientific name for fungi, this paper treats genera competing for use in the phylogenetically defined class Leotiomycetes except for genera of Erysiphales. Two groups traditionally included in the so-called "inoperculate discomycetes" have been excluded from this class and are also not included here, specifically Geoglossomycetes and Orbiliomycetes. A recommendation is made about the generic name to use in cases in which two or more generic names are synonyms or taxonomically congruent along with the rationale for the recommendation. In some cases the recommended generic name does not have priority or is based on an asexual type species, thus needs to be protected and ultimately approved according to Art. 57.2 of the International Code of Nomenclature for algae, fungi and plants (ICN). A table is presented listing all competing generic names and their type species noting the recommended generic name. New combinations are introduced for the oldest epithet in the recommended genus including Ascocalyx berenice, Ascoconidium purpurascens, Ascocoryne albida, A. trichophora, Blumeriella filipendulae, B. ceanothi, Botrytis arachidis, B. fritillariae-pallidoflori, Calloria urticae, Calycellina aspera, Dematioscypha delicata, Dermea abietinum, D. boycei, D. stellata, Diplocarpon alpestre, D. fragariae, Godroniopsis peckii, Grovesinia moricola, Heterosphaera sublineolata, Hyphodiscus brachyconium, H. brevicollaris, H. luxurians, Leptotrochila campanulae, Monilinia polystroma, Neofabraea actinidae, N. citricarpa, N. vagabunda, Oculimacula aestiva, O. anguioides, Pezicula brunnea, P. californiae, P. cornina, P. diversispora, P. ericae, P. melanogena, P. querciphila, P. radicicola, P. rhizophila, Phialocephala piceae, Pilidium lythri, Rhabdocline laricis, Streptotinia streptothrix, Symphyosirinia parasitica, S. rosea, Unguiculariopsis caespitosa, and Vibrissea laxa. PMID:25083411

  8. Cladonia peziziformis (Lichenized Ascomycota, Cladoniaceae) New to Korea

    PubMed Central

    Wang, Xin Yu; Hur, Hyun; Lee, You Mi; Bae, Funny; Koh, Young Jin

    2008-01-01

    Cladonia peziziformis (With.) J.R. Laundon was collected from Baega mountain, Jeonnam Province, Korea in 2008. It is characterized by short and slender podetia with verruculose surface, split along the sides. Apothecia large, pale brown, always growing on the top of the podetia. Primary squamules shell-like, thick, and convex. Fumarprotocetraric acid contained in thallus. This is the first record of this species in Korea. PMID:23997624

  9. Understanding Phenotypical Character Evolution in Parmelioid Lichenized Fungi (Parmeliaceae, Ascomycota)

    PubMed Central

    Divakar, Pradeep K.; Kauff, Frank; Crespo, Ana; Leavitt, Steven D.; Lumbsch, H. Thorsten

    2013-01-01

    Parmelioid lichens form a species-rich group of predominantly foliose and fruticose lichenized fungi encompassing a broad range of morphological and chemical diversity. Using a multilocus approach, we reconstructed a phylogeny including 323 OTUs of parmelioid lichens and employed ancestral character reconstruction methods to understand the phenotypical evolution within this speciose group of lichen-forming fungi. Specifically, we were interested in the evolution of growth form, epicortex structure, and cortical chemistry. Since previous studies have shown that results may differ depending on the reconstruction method used, here we employed both maximum-parsimony and maximum-likelihood approaches to reconstruct ancestral character states. We have also implemented binary and multistate coding of characters and performed parallel analyses with both coding types to assess for potential coding-based biases. We reconstructed the ancestral states for nine well-supported major clades in the parmelioid group, two higher-level sister groups and the ancestral character state for all parmelioid lichens. We found that different methods for coding phenotypical characters and different ancestral character state reconstruction methods mostly resulted in identical reconstructions but yield conflicting inferences of ancestral states, in some cases. However, we found support for the ancestor of parmelioid lichens having been a foliose lichen with a non-pored epicortex and pseudocyphellae. Our data suggest that some traits exhibit patterns of evolution consistent with adaptive radiation. PMID:24312438

  10. ORIGINAL PAPER Weed seeds as nutritional resources for soil Ascomycota

    E-print Network

    Sims, Gerald K.

    -borne microorganisms. In this study, we investigated seeds of four common broadleaf weeds, velvetleaf (Abutilon theophrasti), woolly cupgrass (Eriochloa villosa), Pennsyl- vania smartweed (Polygonum pensylvanicum

  11. Phylogenetic study of Fulgensia and allied Caloplaca and Xanthoria species (Teloschistaceae, lichen-forming ascomycota)

    Microsoft Academic Search

    ESTER GAYA; F. Lutzoni; STEFAN ZOLLER; P. Navarro-Rosines

    2003-01-01

    Fulgensia Massal. & De Not. is a widespread genus with considerable morphological and ecological heterogeneity across species. For this reason, the taxonomic delimitation of this genus has been controversial. Relationships among species of Fulgensia, Caloplaca Th. Fr., and Xanthoria (Fr.) Th. Fr. (Lecanorales) were investigated based on a comprehensive phylogenetic analysis of 62 DNA sequences from the nuclear ribosomal internal

  12. Phylogenetic study of Fulgensia and allied Caloplaca and Xanthoria species (Teloschistaceae, lichen-forming ascomycota).

    PubMed

    Gaya, Ester; Lutzoni, François; Zoller, Stefan; Navarro-Rosinés, Pere

    2003-07-01

    Fulgensia Massal. & De Not. is a widespread genus with considerable morphological and ecological heterogeneity across species. For this reason, the taxonomic delimitation of this genus has been controversial. Relationships among species of Fulgensia, Caloplaca Th. Fr., and Xanthoria (Fr.) Th. Fr. (Lecanorales) were investigated based on a comprehensive phylogenetic analysis of 62 DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) region using maximum parsimony (MP) and likelihood (ML). Ambiguously aligned (INAASE coded characters) and unambiguous regions were analyzed separately and combined when using MP as the optimization criterion. All our analyses confirm the polyphyly of this genus as three distinct lineages: Fulgensia sensu stricto, F. australis, and F. schistidii. We report here that Caloplaca, Fulgensia, and Xanthoria together form two main sister lineages. One lineage includes Fulgensia schistidii (part of the C. saxicola group), Xanthoria, and most of the lobed Caloplaca species belonging to the Gasparrinia group. A second main lineage comprises the remaining Caloplaca species, Fulgensia sensu stricto, and F. australis. Therefore, the traditional generic level classification schemes for the family Teloschistaceae appear to be highly artificial. All three genera were found to be nonmonophyletic. We demonstrate here that the ITS is appropriate to resolve relationships across the Teloschistaceae. However, a combination of an MP analysis, in which ambiguously aligned regions are accommodated using INAASE, with an ML analysis, in which phylogenetic confidence is estimated using a Bayesian approach, is needed. PMID:21659209

  13. A Note on the Lichen Genus Ramalina (Ramalinaceae, Ascomycota) in the Hengduan Mountains in China

    PubMed Central

    Oh, Soon-Ok; Wang, Xin Yu; Wang, Li Song; Liu, Pei Gui

    2014-01-01

    On the basis of extensive field investigation and a series of herbarium specimen identifications, we present and discuss the descriptions and distribution of 22 species of Ramalina found in the Hengduan Mountains of southwestern China. In this revisionary study, representatives of the Ramalina genus, including R. americana, R. confirmata, R. dendriscoides, R. obtusata, R. pacifica, R. pentecostii, R. peruviana, R. shinanoana, and R. subcomplanata are found for the first time in this area. In addition, R. holstii is reported for the first time China. Finally, a newly described species identified as Ramalina hengduanshanensis S. O. Oh & L. S. Wang is reported. It is characterized as growing from a narrow holdfast, solid, sparsely or richly and irregularly dichotomously branched, palmate and flattened lobes with distinctly dorsiventral appearance, surface rugose to reticulate, surface rugosely cracked, dense chondroid tissue, helmet shaped soralia at the tip. The species grows on rock and tree at the highest elevations in this area. Although very few lichen species belonging to the genus Ramalina have been collected above 4,000 m, this new species is found at this elevation. We present detailed morphological, anatomical, and chemical descriptions of this species along with molecular phylogenetic analysis of the internal transcribed spacer rDNA sequences. PMID:25346599

  14. Proposal to conserve the name Diaporthe eres against all other competing names (Ascomycota, Diaporthales, Diaporthaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the change to one scientific name for pleomorphic fungi based on relative priority, Diaporthe represents the generic name that is older than the synonym Phomopsis. At present Diaporthe includes over 800 names while the number of names described in Phomopsis exceeds 1,000, thus merging these two...

  15. Distribution of the lichen genus Flavocetraria (Parmeliaceae, Ascomycota) in the Southern Hemisphere

    Microsoft Academic Search

    Jarle W. Bjerke; Arve Elvebakk

    2004-01-01

    The known distribution of the lichens Flavocetraria cucullata and F. nivalis in the Southern Hemisphere is discussed. Flavocetraria cucullata occurs at high altitudes in Peru and Bolivia, whereas F. nivalis ssp. nivalis has a disjunct distribution in South America, being known from one locality in Peru and from a restricted area in southernmost Chile and Argentina. These are the first

  16. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota)

    PubMed Central

    Hawksworth, David L.; Crespo, Ana

    2015-01-01

    The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-? were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species. PMID:25961726

  17. Two species of bryoria (lichenized ascomycota, parmeliaceae) from the sino-himalayas.

    PubMed

    Wang, Li-Song; Harada, Hiroshi; Koh, Young Jin; Hur, Jae-Seoun

    2005-12-01

    We performed a taxonomic study on two species of the genus Bryoria from the Sino-Himalayas, SW-China. B. nadvornikiana is new to China and B. furcellata is new to Yunnan and Sichuan provinces in the Sino-Himalayas. Morphology, habitat, distributions and chemistry of the two species are discussed. PMID:24049496

  18. Two Species of Bryoria (Lichenized Ascomycota, Parmeliaceae) from the Sino-Himalayas

    PubMed Central

    Wang, Li-song; Harada, Hiroshi; Koh, Young Jin

    2005-01-01

    We performed a taxonomic study on two species of the genus Bryoria from the Sino-Himalayas, SW-China. B. nadvornikiana is new to China and B. furcellata is new to Yunnan and Sichuan provinces in the Sino-Himalayas. Morphology, habitat, distributions and chemistry of the two species are discussed. PMID:24049496

  19. Notes on the lichen genus leptogium (collemataceae, ascomycota) in South Korea.

    PubMed

    Jayalal, Udeni; Jang, Seol Hwa; Yu, Nan Hee; Oh, Soon Ok; Hur, Jae-Seoun

    2014-06-01

    Leptogium (Ach.) Gray is distributed throughout South Korea; however, for nearly two decades no detailed taxonomic or revisionary research on this lichen genus has been conducted. This study examined the specimens deposited in the lichen herbarium at the Korean Lichen Research Institute, and samples were identified using descriptions recently published in the scientific literature. In this revisionary study, a total of fourteen species of Leptogium were documented, including new records of Leptogium delavayi Hue, Leptogium denticulatum Nyl., and Leptogium trichophoroides P. M. Jørg. & A. K. Wallace. Detailed descriptions of each species are given, including their morphological, anatomical, and chemical characteristics. A key to all Leptogium species known to occur in South Korea is also presented. PMID:25071380

  20. Molecular phylogeny of Acarosporaceae ( Ascomycota) with focus on the proposed genus Polysporinopsis

    Microsoft Academic Search

    Anna T. Crewe; O. William Purvis; Mats Wedin

    2006-01-01

    The molecular phylogeny of Acarosporaceae with a focus on the recently proposed genus Polysporinopsis was investigated using maximum parsimony and Bayesian analyses, using nuITS-LSU and mtSSU rDNA sequence datasets. A well-supported monophyletic clade corresponding to Acarospora (including the type species A. schleicheri, A. fuscata, A. nitrophila, A. rugulosa, A. bullata, A. sinopica, A molybdina and A. peliscypha) was present in

  1. Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis.

    PubMed

    Crewe, Anna T; Purvis, O William; Wedin, Mats

    2006-05-01

    The molecular phylogeny of Acarosporaceae with a focus on the recently proposed genus Polysporinopsis was investigated using maximum parsimony and Bayesian analyses, using nuITS-LSU and mtSSU rDNA sequence datasets. A well-supported monophyletic clade corresponding to Acarospora (including the type species A. schleicheri, A. fuscata, A. nitrophila, A. rugulosa, A. bullata, A. sinopica, A molybdina and A. peliscypha) was present in all analyses. Acarospora as currently delimited is not monophyletic; neither A. smaragdula nor A. badiofusca belongs to the genus in the restricted sense. Polysporinopsis, which comprises three species previously classified in Acarospora (P. sinopica-type species, P. smaragdula, and P. rugulosa) is not a monophyletic group separate from Acarospora s. str. Acarospora sinopica and A. smaragdula are not closely related; A. sinopica belongs to Acarospora s. str., but A. smaragdula is one of the most basal taxa currently known in Acarosporaceae. PMID:16616841

  2. The phylogenetic relationship between Anisogramma virgultorum and A. anomala within the Diaporthales (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two diaporthalean fungi Anisogramma virgultorum and A. anomala are biotrophic parasites. Anisogramma virgultorum causes stromatal cankers on young shoots of birch and A. anomala infects young branches of Corylus avellana. Although previous classifications, based on morphological characteristics,...

  3. Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences

    Microsoft Academic Search

    Heidi L. Andersen; Stefan Ekman

    2005-01-01

    The phylogeny of the family Micareaceae and the genus Micarea was studied using mitochondrial small subunit ribosomal DNA sequences. Phylogenetic reconstructions were performed using Bayesian MCMC tree sampling and a maximum likelihood approach. The Micareaceae in its current sense is highly heterogeneous, and Helocarpon, Psilolechia, and Scutula, all thought to be close relatives of Micarea, are shown to be only

  4. Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota)

    Microsoft Academic Search

    Lucia Muggia; Martin Grube; Mauro Tretiach

    2008-01-01

    Mycobiont and photobiont genetic diversity was investigated in four taxa of the Tephromela atra complex, which differ in ecology and substratum preference (from siliceous rocks, limestone to bark), and are differently\\u000a interpreted by taxonomists. Phylogenetic analyses were performed using mycobiont nuclear ITS, beta tubulin and homologous\\u000a polyketide synthase gene (PKS) sequences obtained from freshly collected material sampled from the Mediterranean

  5. Biocontrol of pigeon tick Argas reflexus (Acari: Argasidae) by entomopathogenic fungus Metarhizium Anisopliae (Ascomycota: Hypocreales)

    PubMed Central

    Tavassoli, Mosa; Pourseyed, Seyed Hassan; Ownagh, Abdulghaffar; Bernousi, Iraj; Mardani, Karim

    2011-01-01

    The pigeon tick Argas reflexus is a pathogen-transmitting soft tick that typically feeds on pigeons, but can also attack humans causing local and systemic reactions. Chemical control is made difficult due to environmental contamination and resistance development. As a result, there is much interest in increasing the role of other strategies like biological control. In this study, the efficacy of three strains (V245, 685 and 715C) of entomopathogenic fungus Metarhizium anisopliae for biological control of three life stages of pigeon tick A. reflexus including eggs, larvae, engorged and unfed adults was investigated under laboratory conditions. Five concentrations of different strains of M. anisopliae ranging from 103 to 107 conidia/ml were used. All fungal strains significantly decreased hatchability of A. reflexus eggs. Strain V245 was the most effective strain on the mortality of larval stage with nearly 100% mortality at the lowest concentration (103 conidia/ml) at 10 days post-inoculation. The mortality rate of both engorged and unfed adult ticks were also increased significantly exposed to different conidial concentrations compared to the control groups (P < 0.05) making this fungus a potential biological control agent of pigeon tick reducing the use of chemical acaricides. PMID:24031777

  6. ISOLATION AND CHARACTERIZATION OF MICROSATELLITE LOCI FOR THE ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is a cosmopolitan, soil-borne entomopathogenic fungus used for the biological control of insects. Recent molecular phylogenetic data indicate that B. bassiana is a complex of morphologically cryptic species. In order to study the population genetics of B. bassiana , detail speci...

  7. Assessment of ectomycorrhizal fungal communities in the natural habitats of Tuber magnatum (Ascomycota, Pezizales).

    PubMed

    Leonardi, M; Iotti, M; Oddis, M; Lalli, G; Pacioni, G; Leonardi, P; Maccherini, S; Perini, C; Salerni, E; Zambonelli, A

    2013-07-01

    The ectomycorrhizal (ECM) fungal communities of four natural Tuber magnatum truffle grounds, located in different Italian regions (Abruzzo, Emilia-Romagna, Molise, and Tuscany), were studied. The main objective of this study was to characterize and compare the ECM fungal communities in the different regions and in productive (where T. magnatum ascomata were found) and nonproductive points. More than 8,000 (8,100) colonized root tips were counted in 73 soil cores, and 129 operational taxonomic units were identified using morphological and molecular methods. Although the composition of the ECM fungal communities studied varied, we were able to highlight some common characteristics. The most plentiful ECM fungal taxa belong to the Thelephoraceae and Sebacinaceae families followed by Inocybaceae and Russulaceae. Although several ectomycorrhizas belonging to Tuber genus were identified, no T. magnatum ectomycorrhizas were found. The putative ecological significance of some species is discussed. PMID:23299664

  8. Notes on the Lichen Genus Leptogium (Collemataceae, Ascomycota) in South Korea

    PubMed Central

    Jayalal, Udeni; Jang, Seol Hwa; Yu, Nan Hee; Oh, Soon Ok

    2014-01-01

    Leptogium (Ach.) Gray is distributed throughout South Korea; however, for nearly two decades no detailed taxonomic or revisionary research on this lichen genus has been conducted. This study examined the specimens deposited in the lichen herbarium at the Korean Lichen Research Institute, and samples were identified using descriptions recently published in the scientific literature. In this revisionary study, a total of fourteen species of Leptogium were documented, including new records of Leptogium delavayi Hue, Leptogium denticulatum Nyl., and Leptogium trichophoroides P. M. Jørg. & A. K. Wallace. Detailed descriptions of each species are given, including their morphological, anatomical, and chemical characteristics. A key to all Leptogium species known to occur in South Korea is also presented. PMID:25071380

  9. Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    PubMed Central

    de Paz, Guillermo Amo; Cubas, Paloma; Crespo, Ana; Elix, John A.; Lumbsch, H. Thorsten

    2012-01-01

    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation. PMID:22745810

  10. Intraspecific variation in the viability of soredia in Hypogymnia physodes (L.) Nyl. (Ascomycota: Lecanorales)

    Microsoft Academic Search

    M. S. Buldakov

    2010-01-01

    The contribution of morphological features of parent thalli, substrate and climatic factors, and their seasonal fluctuations\\u000a to variation in the viability of vegetative diaspores has been studied on the model of epiphytic lichen Hypogymnia physodes. Seasonal trends in viability have been revealed only in certain types of biotopes. Hygrothermal conditions and substrate\\u000a properties in the biotope have proved to have

  11. Identification and taxonomy of some entomopathogenic Paecilomyces spp. (Ascomycota) isolates using rDNA-ITS Sequences

    Microsoft Academic Search

    Peter W. Inglis; Myrian S. Tigano

    2006-01-01

    A phylogenetic analysis of the 5.8S rDNA and internal transcribed spacer (ITS1 and ITS2) sequences from some entomogenous Paecilomyces species supports the polyphyly of the genus and showed the existence of cryptic spe- cies. In the Eurotiales, anamorphs Paecilomyces variotii and Paecilomyces leycettanus were related to the teleomorphs Talaromyces and Thermoascus. In the Hypocreales, three major ITS subgroups were found,

  12. Taxonomic Study on the Lichen Genus Cetrelia (Lecanorales, Ascomycota) in South Korea

    PubMed Central

    Luo, Heng; Wei, Xin Li; Han, Keon Seon; Koh, Young Jin

    2007-01-01

    Seventy-two lichen specimens of Cetrelia collected in South Korea since 2003 were examined by both phenotypic and phylogenetic analyses. The phenotypic analysis was based on morphological and chemical characters, and the phylogenetic analysis was based on nrDNA ITS sequences. The result suggested that the presence and absence of isidia, soredia, lobules and medullar reaction C+ or C- are the important characters in the taxonomy of this genus. Four species of Cetrelia, C. chicitae, C. braunsiana, C. japonica, and C. pseudolivetorum have been identified in this study. Description of each species is presented with morphological and chemical characters. A key to the Cetrelia species is also presented. PMID:24015081

  13. Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification?

    PubMed Central

    Pérez-Ortega, Sergio; Fernández-Mendoza, Fernando; Raggio, José; Vivas, Mercedes; Ascaso, Carmen; Sancho, Leopoldo G.; Printzen, Christian; de los Ríos, Asunción

    2012-01-01

    Background and Aims Phenotypic variability is a successful strategy in lichens for colonizing different habitats. Vagrancy has been reported as a specific adaptation for lichens living in steppe habitats around the world. Among the facultatively vagrant species, the cosmopolitan Cetraria aculeata apparently forms extremely modified vagrant thalli in steppe habitats of Central Spain. The aim of this study was to investigate whether these changes are phenotypic plasticity (a single genotype producing different phenotypes), by characterizing the anatomical and ultrastructural changes observed in vagrant morphs, and measuring differences in ecophysiological performance. Methods Specimens of vagrant and attached populations of C. aculeata were collected on the steppes of Central Spain. The fungal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GPD) and the large sub-unit of the mitochondrial ribosomal DNA (mtLSUm), and the algal ITS and actin were studied within a population genetics framework. Semi-thin and ultrathin sections were analysed by means of optical, scanning electron and transmission electron microscopy. Gas exchange and chlorophyll fluorescence were used to compare the physiological performance of both morphs. Key Results and Conclusions Vagrant and attached morphs share multilocus haplotypes which may indicate that they belong to the same species in spite of their completely different anatomy. However, differentiation tests suggested that vagrant specimens do not represent a random sub-set of the surrounding population. The morphological differences were related to anatomical and ultrastructural differences. Large intercalary growth rates of thalli after the loss of the basal–apical thallus polarity may be the cause of the increased growth shown by vagrant specimens. The anatomical and morphological changes lead to greater duration of ecophysiological activity in vagrant specimens. Although the anatomical and physiological changes could be chance effects, the genetic differentiation between vagrant and attached sub-populations and the higher biomass of the former show fitness effects and adaptation to dry environmental conditions in steppe habitats. PMID:22451601

  14. Artificially Colored Ascospores of the Saprobic Microfungus Aliquandostipite khaoyaiensis (Loculoascomycetes, Ascomycota).

    NSDL National Science Digital Library

    Mohamed A. Abdel-Wahab (City University of Hong Kong, Department of Biology and Chemistry ADR; POSTAL)

    2004-03-09

    in this issue; and Bidartondo et al.: High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea(Ericaceae): a cheater that stimulates its victims?, 87/12/1783"">pp. 1783?1788 in this issue. Photo credit: Dirk Redecker.

  15. ISOLATION AND CHARACTERIZATION OF MICROSATELLITE LOCI FOR THE ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs...

  16. New molecular markers for fungal phylogenetics: Two genes for species level systematics in the Sordariomycetes (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although significant progress has been made resolving deep branches of the fungal tree of life in recent works, many fungal systematists are interested in species-level questions to both define species and to assess fungal biodiversity. Fungal genome sequences are a useful resource to systematic bio...

  17. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  18. Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequence data

    Microsoft Academic Search

    Martin Westberg; Ulf Arup; Ingvar Kärnefelt

    2007-01-01

    The phylogeny of the lichen family Candelariaceae was investigated using nucleotide sequences from the ITS region of the nu-rDNA. Twenty-three species of Candelariella, six species of Candelaria, two species of Candelina and two species of Placomaronea were included in the study. Acarospora cervina and Pleopsidium chlorophanum were used as outgroup species. The phylogenetic analyses were performed using MP and Bayesian

  19. Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequence data.

    PubMed

    Westberg, Martin; Arup, Ulf; Kärnefelt, Ingvar

    2007-11-01

    The phylogeny of the lichen family Candelariaceae was investigated using nucleotide sequences from the ITS region of the nu-rDNA. Twenty-three species of Candelariella, six species of Candelaria, two species of Candelina and two species of Placomaronea were included in the study. Acarospora cervina and Pleopsidium chlorophanum were used as outgroup species. The phylogenetic analyses were performed using MP and Bayesian MCMC inference. The resulting trees were poorly resolved and strong support was only found for terminal clades. However, the results indicate that polyspored asci have evolved a limited number of times within the family and appear within four clades. One of these clades comprises the core group of Candelariella, including the type species C. vitellina. Placomaronea and Candelina both form strongly supported monophyletic clades, but neither genera are distinctly morphologically separated from Candelariella, and their positions in the tree are uncertain. The genus Candelaria is probably polyphyletic and should possibly be restricted to comprise only polyspored species with a lower cortex. PMID:18006290

  20. A Brief Chronicle of the Genus Cordyceps Fr., the Oldest Valid Genus in Cordycipitaceae (Hypocreales, Ascomycota)

    PubMed Central

    Tanaka, Eiji; Han, Jae-Gu; Oh, Junsang; Han, Sang-Kuk; Lee, Kang-Hyo

    2014-01-01

    The earliest pre-Linnaean fungal genera are briefly discussed here with special emphasis on the nomenclatural connection with the genus Cordyceps Fr. Since its valid publication under the basidiomycetous genus Clavaria Vaill. ex L. (Clavaria militaris L. Sp. Pl. 2:1182, 1753), the genus Cordyceps has undergone nomenclatural changes in the post-Linnaean era, but has stood firmly for approximately 200 years. Synonyms of Cordyceps were collected from different literature sources and analyzed based on the species they represent. True synonyms of Cordyceps Fr. were defined as genera that represented species of Cordyceps Fr. emend. G. H. Sung, J. M. Sung, Hywel-Jones & Spatafora. The most common synonyms of Cordyceps observed were Clavaria and Sphaeria Hall, reported in the 18th and in the first half of the 19th century, respectively. Cordyceps, the oldest genus in the Cordyceps s. s. clade of Cordycipitaceae, is the most preferred name under the "One Fungus = One Name" principle on priority bases. PMID:25071376

  1. (2049-2050) Proposals to conserve the name Wickerhamomyces against Hansenula and to reject the name Saccharomyces sphaericus (Ascomycota: Saccharomycotina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Rules of Botanical Nomenclature, under which fungi are also classified, require a preserved specimen, the type specimen, for all described species. The yeast Wickerhamomyces anomalus, which is common in nature and widely used for the biocontrol of spoilage fungi that contaminate en...

  2. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae).

    PubMed

    Søchting, Ulrik; Lutzoni, François

    2003-11-01

    A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results. PMID:15000229

  3. The sister-group relationships of the largest family of lichenized fungi, Parmeliaceae (Lecanorales, Ascomycota).

    PubMed

    Singh, Garima; Divakar, Pradeep K; Dal Grande, Francesco; Otte, Jürgen; Parnmen, Sittiporn; Wedin, Mats; Crespo, Ana; Lumbsch, H Thorsten; Schmitt, Imke

    2013-10-01

    Parmeliaceae is the largest family of lichen-forming fungi. In spite of its importance for fungal diversity, its relationships with other families in Lecanorales remain poorly known. To better understand the evolutionary history of the diversification of lineages and species richness in Parmeliaceae it is important to know the phylogenetic relationships of the closest relatives of the family. A recent study based on two molecular loci suggested that either Protoparmelia s. str. or a group consisting of Gypsoplaca and Protoparmelia s. str. were the possible sister-group candidates of Parmeliaceae, but that study could not distinguish between these two alternatives. Here, we used a four-locus phylogeny (nuLSU, ITS, RPB1, MCM7) to reveal relationships of Parmeliaceae with other potential relatives in Lecanorales. Maximum likelihood and Bayesian analyses showed that Protoparmelia is polyphyletic, with Protoparmelia s. str. (including Protoparmelia badia and Protoparmelia picea) being most closely related to Parmeliaceae s. str., while the Protoparmelia atriseda-group formed the sister-group to Miriquidica. Gypsoplaca formed the sister-group to the Parmeliaceae s. str. + Protoparmelia s. str. clade. Monophyly of Protoparmelia as currently circumscribed, and Gypsoplaca as sister-group to Parmeliaceae s. str. were both significantly rejected by alternative hypothesis testing. PMID:24119410

  4. Position specificity in Chitonomyces (Ascomycota, Laboulbeniomycetes) on Laccophilus (Coleoptera, Dytiscidae): a molecular approach resolves a century-old debate.

    PubMed

    Goldmann, Lauren; Weir, Alex

    2012-01-01

    The occurrence of Laboulbeniomycete species consistently on a precise portion of beetle integument was investigated in 13 species of Chitonomyces ectoparasitic on the aquatic diving beetle Laccophilus maculosus (Coleoptera, Dytiscidae). The phenomenon was called "position specificity" by Roland Thaxter in 1896, yet the mechanism has remained unknown. By using molecular analysis of the nucSSU rRNA gene and the 5.8S and partial ITS1 rRNA regions, 13 species of Chitonomyces reported to exhibit position specificity on Laccophilus maculosus were placed neatly into pairs of morphotypes, resulting in synonomies and recognition of six phylogenetic species (one species is a triplet). Each phylogenetic species was located at corresponding positions on male and female beetles that make contact during mating. In addition, ecological data and video footage of the mating behaviors of Laccophilus confirmed that sexual transmission is the mechanism behind this enigmatic phenomenon. PMID:22684291

  5. Gyalectoid Pertusaria species form a sister-clade to Coccotrema (Ostropomycetidae, Ascomycota) and comprise the new lichen genus Gyalectaria

    Microsoft Academic Search

    Imke Schmitt; Johnathon D. Fankhauser; Katarina Sweeney; Toby Spribille; Klaus Kalb; H. Thorsten Lumbsch

    2010-01-01

    The phylogeny and taxonomic placement of three species currently placed in the genus Pertusaria with gyalectoid ascomata were studied using maximum likelihood and Bayesian analysis of four molecular loci (mitochondrial SSU, nuclear LSU rDNA and the protein-coding, nuclear RPB1 and MCM7 genes). A total of 40 new sequences were generated for this study and aligned with 84 sequences retrieved from

  6. Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth CM, Cydia pomonella, (L.), a serious pest of pome fruit, is a threat to exportation of apples because of the possibility of shipping infested fruit. Broad spectrum fumigants have been used as the principle method for the protection of exported fruit from insect infestations. Some of th...

  7. Gene Genealogies, Cryptic Species, and Molecular Evolution in the Human Pathogen Coccidioides immitis and Relatives (Ascomycota, Onygenales)

    Microsoft Academic Search

    Vassiliki Koufopanou; Austin Burt; Timothy Szaro; John W. Taylor

    Previous genealogical analyses of population structure in Coccidioides immitis revealed the presence of two cryptic and sexual species in this pathogenic fungus but did not clarify their origin and relationships with respect to other taxa. By combining the C. immitis data with those of two of its closest relatives, the free-living saprophytes Auxarthron zuffianumand Uncinocarpus reesii, we show that the

  8. INOCULATION AND COLONIZATION OF COFFEE SEEDLINGS (COFFEA ARABICA L.) WITH THE FUNGAL ENTOMOPATHOGEN BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal entomopathogen Beauveria bassiana became established as an endophyte in in vitro grown coffee seedlings inoculated with B. bassiana suspensions in the radicle. The fungus was recovered as an endophyte 30 and 60 days post-inoculation, from stems, leaves and roots, and at 60 days post-inocu...

  9. Phylogenetic utility of protein (RPB2, ?-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi)

    Microsoft Academic Search

    Alvin M. C. Tang; Rajesh Jeewon; Kevin D. Hyde

    2007-01-01

    The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently\\u000a no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study,\\u000a phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene\\u000a regions (LSU rDNA, SSU rDNA, ?-tubulin and

  10. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota)

    PubMed Central

    2014-01-01

    Background Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as a lichen in the arid regions. Results 454 and Illumina technologies were used to sequence the genome of E. pusillum. A total of 9,285 genes were annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic partner and their contact time were found to be important for the interaction between these two symbionts. Conclusions The present study lays a genomic analysis of the lichen-forming fungus E. pusillum for demonstrating its general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii, and will provide research basis for investigating the nature of its drought resistance and symbiosis. PMID:24438332

  11. Susceptibility of two hymenopteran parasitoids of Agrilus planipennis (Coleoptera: Buprestidae) to the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales).

    PubMed

    Dean, Kimberly M; Vandenberg, John D; Griggs, Michael H; Bauer, Leah S; Fierke, Melissa K

    2012-03-01

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire, native to Asia, is killing ash trees (Fraxinus spp.) across 15 states and southeastern Canada. Integrated pest management using biological control is the only viable long-term approach for controlling the spread of EAB outside of host resistance. Three hymenopteran parasitoids, Spathius agrili Yang, Tetrastichus planipennisi Yang, and Oobius agrili Zhang and Huang were discovered attacking EAB in China and were approved for release in the United States in 2007. The objective of this study was to assess susceptibility of the larval parasitoid species S. agrili and T. planipennisi, relative to that of EAB, to Beauveria bassiana, an entomopathogenic fungus that infects and kills EAB adults when sprayed on ash bark or foliage. Adult EAB and parasitoids were exposed to B. bassiana inoculated ash twigs for 2 h and then monitored daily for death and signs of infection for up to 10 days. All EAB adults exposed to B. bassiana were fatally infected while mean survival for control EAB was 77%. Average survival in the treatment groups for T. planipennisi and S. agrili were 99% and 83%, respectively, indicating these parasitoids are relatively unaffected by exposure to B. bassiana. This research elucidates interactions between a fungal pathogen and two parasitoids of EAB, and provides data necessary to developing a successful multi-stage integrated management approach to control of EAB. PMID:22245471

  12. Susceptibility of two hymenopteran parasitoids of Agrilus planipennis (Coleoptera: Buprestidae) to the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire, native to Asia, is killing ash trees (Fraxinus spp.) in eastern North America. Integrated pest management using biological control is the only viable long-term approach for controlling the spread of EAB outside of host resistance. Three hymen...

  13. Using Phylogenetic and Coalescent Methods to Understand the Species Diversity in the Cladia aggregata Complex (Ascomycota, Lecanorales)

    PubMed Central

    Parnmen, Sittiporn; Rangsiruji, Achariya; Mongkolsuk, Pachara; Boonpragob, Kansri; Nutakki, Aparna; Lumbsch, H. Thorsten

    2012-01-01

    The Cladia aggregata complex is one of the phenotypically most variable groups in lichenized fungi, making species determination difficult and resulting in different classifications accepting between one to eight species. Multi-locus DNA sequence data provide an avenue to test species delimitation scenarios using genealogical and coalescent methods, employing gene and species trees. Here we tested species delimitation in the complex using molecular data of four loci (nuITS and IGS rDNA, protein-coding GAPDH and Mcm-7), including 474 newly generated sequences. Using a combination of ML and Bayesian gene tree topologies, species tree inferences, coalescent-based species delimitation, and examination of phenotypic variation we assessed the circumscription of lineages. We propose that results from our analyses support a 12 species delimitation scenario, suggesting that there is a high level of species diversity in the complex. Morphological and chemical characters often do not characterize lineages but show some degree of plasticity within at least some of the clades. However, clades can often be characterized by a combination of several phenotypical characters. In contrast to the amount of homoplasy in the morphological characters, the data set exhibits some geographical patterns with putative species having distribution patterns, such as austral, Australasian or being endemic to Australia, New Zealand or Tasmania. PMID:23272229

  14. A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles

    PubMed Central

    Spribille, Toby; Klug, Barbara; Mayrhofer, Helmut

    2011-01-01

    Lichens are a prominent feature of northern conifer forests and a large number of species are thought to be circumboreal. Whether or not circumboreal lichen species really constitute monophyletic groups has seldom been tested. We investigated molecular phylogenetic patterns in the mycobiont of Mycoblastus sanguinarius, a well known epiphytic lichen species of the boreal forest, based on material collected from across the high latitude northern hemisphere. A three-locus dataset of internal transcribed spacer rDNA, translation elongation factor 1-? and replication licensing factor Mcm7 DNA sequences revealed that material treated until now as belonging to M. sanguinarius does indeed form a monophyletic group within the genus and is distinct from a strongly supported Mycoblastus affinis. The M. sanguinarius complex appears closely related to the rare Mycoblastus glabrescens, which is currently known only from the Pacific Northwest and was rediscovered during the present study. However, within M. sanguinarius s.lat. in the northern hemisphere, two deeply divergent and morphologically coherent species can be recovered, one of which matches the southern hemisphere species Mycoblastus sanguinarioides and turns out to be widespread in North America and Asia, and one of which corresponds to M. sanguinarius s.str. Both M. sanguinarius and M. sanguinarioides exhibit additional low-level genetic differentiation into geographically structured clades, the most prominent of which are distributed in East Asia/eastern North America and western North America/Europe, respectively. Individuals from these lowest-level clades are morphologically indistinguishable but chemical analyses by thin layer chromatography revealed that each clade possesses its own fatty acid profile, suggesting that chemical differentiation precedes morphological differentiation and may be a precursor to speciation. PMID:21443957

  15. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease

    PubMed Central

    McKinney, L V; Nielsen, L R; Hansen, J K; Kjær, E D

    2011-01-01

    Fraxinus excelsior, common ash native to Europe, is threatened by a recently identified pathogenic fungus Chalara fraxinea, which causes extensive damage on ash trees across Europe. In Denmark, most stands are severely affected leaving many trees with dead crowns. However, single trees show notably fewer symptoms. In this study, the impact of the emerging infectious disease on native Danish ash trees is assessed by estimating presence of inherent resistance in natural populations. Disease symptoms were assessed from 2007 to 2009 at two different sites with grafted ramets of 39 selected clones representing native F. excelsior trees. A strong genetic variation in susceptibility to C. fraxinea infections was observed. No genetic or geographic structure can explain the differences, but strong genetic correlations to leaf senescence were observed. The results suggest that a small fraction of trees in the Danish population of ash possess substantial resistance against the damage. Though this fraction is probably too low to avoid population collapse in most natural or managed ash forests, the observed presence of putative resistance against the emerging infectious disease in natural stands is likely to be of evolutionary importance. This provides prospects of future maintenance of the species through natural or artificial selection in favour of remaining healthy individuals. PMID:20823903

  16. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota).

    PubMed

    Schmull, Michaela; Miadlikowska, Jolanta; Pelzer, Monika; Stocker-Wörgötter, Elfie; Hofstetter, Valerie; Fraker, Emily; Hodkinson, Brendan P; Reeb, Valerie; Kukwa, Martin; Lumbsch, H Thorsten; Kauff, Frank; Lutzoni, François

    2011-01-01

    The genus Lecidea Ach. sensu lato (sensu Zahlbruckner) includes almost 1200 species, out of which only 100 species represent Lecidea sensu stricto (sensu Hertel). The systematic position of the remaining species is mostly unsettled but anticipated to represent several unrelated lineages within Lecanoromycetes. This study attempts to elucidate the phylogenetic placement of members of this heterogeneous group of lichen-forming fungi and to improve the classification and phylogeny of Lecanoromycetes. Twenty-five taxa of Lecidea sensu lato and 22 putatively allied species were studied in a broad selection of 268 taxa, representing 48 families of Lecanoromycetes. Six loci, including four ribosomal and two protein-coding genes for 315- and 209-OTU datasets were subjected to maximum likelihood and Bayesian analyses. The resulting well supported phylogenetic relationships within Lecanoromycetes are in agreement with published phylogenies, but the addition of new taxa revealed putative rearrangements of several families (e.g. Catillariaceae, Lecanoraceae, Lecideaceae, Megalariaceae, Pilocarpaceae and Ramalinaceae). As expected, species of Lecidea sensu lato and putatively related taxa are scattered within Lecanoromycetidae and beyond, with several species nested in Lecanoraceae and Pilocarpaceae and others placed outside currently recognized families in Lecanorales and orders in Lecanoromycetidae. The phylogenetic affiliations of Schaereria and Strangospora are outside Lecanoromycetidae, probably with Ostropomycetidae. All species referred to as Lecidea sensu stricto based on morphology (including the type species, Lecidea fuscoatra [L.] Ach.) form, with Porpidia species, a monophyletic group with high posterior probability outside Lecanorales, Peltigerales and Teloschistales, in Lecanoromycetidae, supporting the recognition of order Lecideales Vain. in this subclass. The genus name Lecidea must be redefined to apply only to Lecidea sensu stricto and to include at least some members of the genus Porpidia. Based on morphological and chemical similarities, as well as the phylogenetic relationship of Lecidea pullata sister to Frutidella caesioatra, the new combination Frutidella pullata is proposed here. PMID:21642348

  17. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota)

    E-print Network

    Lutzoni, François M.

    on morphology (including the type species, Lecidea fuscoatra [L.] Ach.) form, with Porpidia speciesPhylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea of Biology, Duke University, Durham, North Carolina 27708-0338 Abstract: The genus Lecidea Ach. sensu lato

  18. When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests

    Microsoft Academic Search

    Eimy Rivas Plata; Robert Lücking; H. Thorsten Lumbsch

    2008-01-01

    We analysed patterns of habitat and microhabitat preferences of 19 families (comprising 135 genera and 950 species) of crustose,\\u000a corticolous lichens in Costa Rica (Arthoniaceae, Arthopyreniaceae, Coenogoniaceae, Graphidaceae, Lecanoraceae, Letrouitiaceae,\\u000a Monoblastiaceae, Pertusariaceae, Physciaceae, Pilocarpaceae, Porinaceae, Pyrenulaceae, Ramalinaceae, Roccellaceae, Strigulaceae,\\u000a Teloschistaceae, Thelenellaceae, Thelotremataceae, Trypetheliaceae), in order to test whether Thelotremataceae are suitable\\u000a predictors of undisturbed tropical rain forest and can be

  19. Proposal to conserve the name Phomopsis citri H.S. Fawc. (Diaporthe citri), with a conserved type, against Phomopsis citri (Sacc.) Traverso & Spessa (Ascomycota, Diaporthales, Diaporthaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Diaporthe citri applies to a fungus that causes a disease on Citrus known as melanose or stem end rot of mature fruit after harvest and occurs widely in North America and Asia. Initially described as the illegitimate Phomopsis citri H.S. Fawc. 1912, non P. citri (Sacc.) Traverso & Spessa 19...

  20. Assessing deposition and persistence of Beauveria bassiana GHA (Ascomycota: Hypocreales) applied for control of emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in a commercial tree nursery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the deposition and field persistence of mycoinsecticides is essential in the development of effective and economical application strategies, including specifically the timing and frequency of spray applications. In this study we used three methods to evaluate the persistence of Beauveri...

  1. Virulence of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) commercial strains against adult Xylosandrus germanus (Coleoptera: Scolytidae) and impact on brood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ambrosia beetle Xylosandrus germanus is an invasive pest with a wide host range and is a serious pest of orchards and nurseries in the eastern US. In this study we evaluated the potential of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as control agents against this beet...

  2. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits.

    PubMed

    Hansen, Karen; Perry, Brian A; Dranginis, Andrew W; Pfister, Donald H

    2013-05-01

    Pyronemataceae is the largest and most heterogeneous family of Pezizomycetes. It is morphologically and ecologically highly diverse, comprising saprobic, ectomycorrhizal, bryosymbiotic and parasitic species, occurring in a broad range of habitats (on soil, burnt ground, debris, wood, dung and inside living bryophytes, plants and lichens). To assess the monophyly of Pyronemataceae and provide a phylogenetic hypothesis of the group, we compiled a four-gene dataset including one nuclear ribosomal and three protein-coding genes for 132 distinct Pezizomycetes species (4437 nucleotides with all markers available for 80% of the total 142 included taxa). This is the most comprehensive molecular phylogeny of Pyronemataceae, and Pezizomycetes, to date. Three hundred ninety-four new sequences were generated during this project, with the following numbers for each gene: RPB1 (124), RPB2 (99), EF-1? (120) and LSU rDNA (51). The dataset includes 93 unique species from 40 genera of Pyronemataceae, and 34 species from 25 genera representing an additional 12 families of the class. Parsimony, maximum likelihood and Bayesian analyses suggest that Pyronemataceae is paraphyletic due to the nesting of both Ascodesmidaceae and Glaziellaceae within the family. Four lineages with taxa currently classified in the family, the Boubovia, Geopyxis, Pseudombrophila and Pulvinula lineages, form a monophyletic group with Ascodesmidaceae and Glaziellaceae. We advocate the exclusion of these four lineages in order to recognize a monophyletic Pyronemataceae. The genus Coprotus (Thelebolales, Leotiomycetes) is shown to belong to Pezizomycetes, forming a strongly supported monophyletic group with Boubovia. Ten strongly supported lineages are identified within Pyronemataceae s. str. Of these, the Pyropyxis and Otidea lineages are identified as successive sister lineages to the rest of Pyronemataceae s. str. The highly reduced (gymnohymenial) Monascella is shown to belong to Pezizomycetes and is for the first time suggested to be closely related to the cleistothecial Warcupia, as a sister group to the primarily apothecial Otidea. None of the lineages of pyronemataceous taxa identified here correspond to previous families or subfamily classifications. Ancestral character state reconstructions (ASR) using a Bayesian approach support that the ancestors of Pezizomycetes and Pyronemataceae were soil inhabiting and saprobic. Ectomycorrhizae have arisen within both lineages A, B and C of Pezizomycetes and are suggested to have evolved independently seven to eight times within Pyronemataceae s. l., whereas an obligate bryosymbiotic lifestyle has arisen only twice. No reversals to a free-living, saprobic lifestyle have happened from symbiotic or parasitic Pyronemataceae. Specializations to various substrates (e.g. burnt ground and dung) are suggested to have occurred several times in mainly saprobic lineages. Although carotenoids in the apothecia are shown to have arisen at least four times in Pezizomycetes, the ancestor of Pyronemataceae s. str., excluding the Pyropyxis and Otidea lineages, most likely produced carotenoids, which were then subsequently lost in some clades (- and possibly gained again). Excipular hairs were found with a high probability to be absent from apothecia in the deepest nodes of Pezizomycetes and in the ancestor of Pyronemataceae s. str. True hairs are restricted to the core group of Pyronemataceae s. str., but are also found in Lasiobolus (Ascodesmidaceae), the Pseudombrophila lineage and the clade of Chorioactidaceae, Sarcoscyphaceae and Sarcosomataceae. The number of gains and losses of true hairs within Pyronemataceae s. str., however, remains uncertain. The ASR of ascospore guttulation under binary coding (present or absent) indicates that this character is fast evolving and prone to shifts. PMID:23403226

  3. Quantitative detection of Beauveria bassiana GHA (Ascomycota: Hypocreales), a potential microbial control agent of the emerald ash borer, by use of real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate monitoring of an introduced, mass-released microbial control agent is essential in evaluating its persistence and in designing application strategies for insect pest control. As part of our multi-year study on the development and use of the entomopathogenic fungus Beauveria bassiana agains...

  4. Assessing deposition and persistence of Beauveria bassiana GHA (Ascomycota: Hypocreales) applied for control of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in a commercial tree nursery

    Microsoft Academic Search

    Louela A. Castrillo; Michael H. Griggs; Houping Liu; Leah S. Bauer; John D. Vandenberg

    2010-01-01

    Determining the deposition and field persistence of mycoinsecticides is essential in the development of effective and economical application strategies, including specifically the timing and frequency of spray applications. In this study we used three methods to evaluate the persistence of Beauveria bassiana strain GHA applied for control of the emerald ash borer (EAB), Agrilus planipennis, an invasive pest attacking ash

  5. Quantitative detection of Beauveria bassiana GHA (Ascomycota: Hypocreales), a potential microbial control agent of the emerald ash borer, by use of real-time PCR

    Microsoft Academic Search

    Louela A. Castrillo; Michael H. Griggs; John D. Vandenberg

    2008-01-01

    Accurate monitoring of an introduced, mass-released microbial control agent is essential in evaluating its persistence and in designing application strategies for insect pest control. As part of our multi-year study on the development and use of the entomopathogenic fungus Beauveria bassiana against the emerald ash borer, a major invasive pest of ash trees, we are determining persistence of the fungus

  6. Phylogenetic utility of protein (RPB2, beta-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi).

    PubMed

    Tang, Alvin M C; Jeewon, Rajesh; Hyde, Kevin D

    2007-05-01

    The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study, phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene regions (LSU rDNA, SSU rDNA, beta-tubulin and RPB2) for inferring evolutionary relationships at different taxonomic ranks. Single and multi-gene genealogies inferred from Bayesian and Maximum Parsimony analyses were compared in individual and combined datasets. At the subclass level, SSU rDNA phylogenies demonstrate their utility as a marker to infer phylogenetic relationships at higher levels. All analyses with SSU rDNA alone, combined LSU rDNA and SSU rDNA, and the combined 28 S rDNA, SSU rDNA and RPB2 datasets resulted in three subclasses: Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which correspond well to established morphological classification schemes. At the ordinal level, the best resolved phylogeny was obtained from the combined LSU rDNA and SSU rDNA datasets. Individually, the RPB2 gene dataset resulted in significantly higher number of parsimony informative characters. Our results supported the recent separation of Boliniaceae, Chaetosphaeriaceae and Coniochaetaceae from Sordariales and placement of Coronophorales in Hypocreomycetidae. Microascales was found to be paraphyletic and Ceratocystis is phylogenetically associated to Faurelina, while Microascus and Petriella formed another clade and basal to other members of Halosphaeriales. In addition, the order Lulworthiales does not appear to fit in any of the three subclasses. Congruence between morphological and molecular classification schemes is discussed. PMID:17072532

  7. Not as ubiquitous as we thought: taxonomic crypsis, hidden diversity and cryptic speciation in the cosmopolitan fungus Thelonectria discophora (Nectriaceae, Hypocreales, Ascomycota).

    PubMed

    Salgado-Salazar, Catalina; Rossman, Amy Y; Chaverri, Priscila

    2013-01-01

    The distribution of microbial species, including fungi, has long been considered cosmopolitan. Recently, this perception has been challenged by molecular studies in historical biogeography, phylogeny and population genetics. Here we explore this issue using the fungal morphological species Thelonectria discophora, one of the most common species of fungi in the family Nectriaceae, encountered in almost all geographic regions and considered as a cosmopolitan taxon. In order to determine if T. discophora is a single cosmopolitan species or an assemblage of sibling species, we conducted various phylogenetic analyses, including standard gene concatenation, Bayesian concordance methods, and coalescent-based species tree reconstruction on isolates collected from a wide geographic range. Results show that diversity among isolates referred as T. discophora is greatly underestimated and that it represents a species complex. Within this complex, sixteen distinct highly supported lineages were recovered, each of which has a restricted geographic distribution and ecology. The taxonomic status of isolates regarded as T. discophora is reconsidered, and the assumed cosmopolitan distribution of this species is rejected. We discuss how assumptions about geographically widespread species have implications regarding their taxonomy, true diversity, biological diversity conservation, and ecological functions. PMID:24204665

  8. Not as ubiquitous as we thought: taxonomic crypsis, hidden diversity and cryptic speciation in the cosmopolitan fungus Thelonectria discophora (Nectriaceae, Hypocreales, Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of microbial species, including fungi, has long been considered cosmopolitan. Recently, this perception has been challenged by molecular studies in historical biogeography, phylogeny and population genetics. Here we explore this issue using the fungal morphological species Thelonect...

  9. Isolation and characterisation of the fungus Spiromastix asexualis sp. nov. from discospondylitis in a German Shepherd dog, and review of Spiromastix with the proposal of the new order Spiromastixales (Ascomycota).

    PubMed

    Rizzo, L; Sutton, D A; Wiederhold, N P; Thompson, E H; Friedman, R; Wickes, B L; Cano-Lira, J F; Stchigel, A M; Guarro, J

    2014-07-01

    The genus Spiromastix consists of several fungal species that have been isolated from soil and animal dung in various parts of the world. However, these species are considered to be of low pathogenic potential, as no cases of infections caused by these fungi have been reported. Here, we describe the clinical course of discospondylitis in a dog from which a fungus was cultured from a biopsy and identified as a Spiromastix species by morphologic characteristics and sequencing. Phylogenetic analysis determined this to be a new species, Spiromastix asexualis, which is described, and a new order, Spiromastixales, is proposed. PMID:24621407

  10. Catalogue of the Lichenized and Lichenicolous Fungi of Bosnia and Herzegovina

    PubMed Central

    Bilovitz, Peter O.; Mayrhofer, Helmut

    2011-01-01

    Summary The catalogue is based on a comprehensive evaluation of 152 published sources. It includes 624 species (with 4 subspecies and 13 varieties) of lichenized and 17 species of lichenicolous Ascomycota, as well as 9 non-lichenized Ascomycota traditionally included in lichenological literature. PMID:22121302

  11. Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study on the compatibility of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) with neem was conducted against sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on eggplant. Initially, three concentrations of B. bassiana (106, 1...

  12. Izzo et al. New Phytologist 2005 Supplemental figures Figure S1. Schematic diagram of sample design. a. Plot distribution across the 4-ha

    E-print Network

    Silver, Whendee

    . a. Plot distribution across the 4-ha compartment. Each point represents a plot located in an Abies. Bjelland 61 (AY011014) 86%/151 90 AY702739 Ascomycota8 206 Otidea grandis (AF072096) 94%/35 43 AY702740

  13. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution

    Microsoft Academic Search

    Bonnie H. OwnleyKimberly; Kimberly D. Gwinn; Fernando E. Vega

    \\u000a Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi.\\u000a Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens

  14. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution

    Microsoft Academic Search

    Bonnie H. OwnleyKimberly; Kimberly D. Gwinn; Fernando E. Vega

    2010-01-01

    Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi.\\u000a Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens

  15. Phylogenetic relationships of Nemania plumbea sp. nov. and related taxa based on ribosomal ITS and RPB2 sequences.

    PubMed

    Tang, Alvin M C; Jeewon, Rajesh; Hyde, Kevin D

    2007-04-01

    During a survey fungal diversity of xylariaceous fungi in Thailand, a new Nemania species, N. plumbea, was identified. Nemania plumbea is characterized by soft-textured grey stromata on a persistent mat of white hyphae, pale brown ascospores with a short germ-slit on the more convex side. It also produces a Geniculosporium-like anamorph in culture. In order to evaluate its phylogenetic relationships among related species and genera, ITS-5.8S rDNA and RPB2 were analysed separately and simultaneously. Results from the phylogenetic analyses indicate that there is close phylogenetic association between N. plumbea and N. aenea. A preliminary account into the natural grouping of Xylariaceae based on ITS-5.8S rDNA and RPB2 sequences is also discussed. PMID:17512179

  16. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits ?-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g?1) or beech wood (up to 80 mU g?1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg?1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative ?-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., ?-l-rhamnopyranoside and ?-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  17. RESEARCH ARTICLE Multilocus phylogenetic and coalescent analyses identify

    E-print Network

    California at Berkeley, University of

    . (2005) is that of limited variability detected within the prized truffles T. melanosporum and T in the Italian bianchetto truffle, Tuber borchii Vittad. Enrico Bonuso Æ Alessandra Zambonelli Æ Sarah E Science+Business Media B.V. 2009 Abstract Tuber borchii (Ascomycota, Pezizales) is a highly valued truffle

  18. Microsatellite loci for the fungus, Ascosphaera apis, cause of honey bee chalkbrood disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Ascosphaera apis (Ascomycota:Ascosphaeriaceae) is a worldwide fungal pathogen of honey bees. To provide tools for understanding the dispersal history of this pathogen, strain differences in virulence, and host-pathogen interactions, we developed and tested microsatellite loci for this sp...

  19. Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses

    Microsoft Academic Search

    Keith Clay; Christopher Schardl

    2002-01-01

    Over the past 20 yr much has been learned about a unique symbiotic interaction between fungal endophytes and grasses. The fungi (Clavicipitaceae, Ascomycota) grow intercellularly and sys- temically in aboveground plant parts. Vertically transmitted asexual endophytes forming asymptomatic infections of cool-season grasses have been repeatedly derived from sexual species that abort host inflorescences. The phylogenetic distribution of seed-transmitted en- dophytes

  20. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages

    Microsoft Academic Search

    K. Lindsay Higgins; A. Elizabeth Arnold; Jolanta Miadlikowska; Snehal D. Sarvate; François Lutzoni

    2007-01-01

    Although associated with all plants, fungal endophytes (microfungi that live within healthy plant tissues) represent an unknown proportion of fungal diversity. While there is a growing appreciation of their ecological importance and human uses, little is known about their host specificity, geographic structure, or phylogenetic relationships. We surveyed endophytic Ascomycota from healthy photosynthetic tissues of three plant species (Huperzia selago,

  1. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of seed-borne Epichloë/Neotyphodium (Ascomycota: Clavicipitaceae) fungal endophytes in temperate grasses can influence the outcome of grass–insect interactions. For example, the expression of endophyte-mediated resistance to insects depends on the insect species involved. The behavior...

  2. Cyberlindnera xylolytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the la...

  3. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morel mushrooms (Morchella, phylum Ascomycota) are arguably the most widely recognized and highly prized of the estimated 1.5 million fungi that inhabit our planet. Although field guides treat these epicurean macrofungi as though the species have cosmopolitan distributions, this assumption has not b...

  4. AN OVERVIEW OF MOLECULAR PHYLOGENY OF THE SORDARIOMYCETES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sordariomycetes is one of the largest classes in Ascomycota and the majority of its species are characterized by perithecial ascomata and unitunicate asci. It includes more than xxx genera with over 3,000 species and represents a wide of range of ecologies including pathogens and endophytes of p...

  5. Taxonomy of the lichen Cladonia rei and its status in Poland

    Microsoft Academic Search

    Magdalena Syrek; Martin Kukwa

    2008-01-01

    Cladonia rei (Cladoniaceae, lichenized Ascomycota), a species recently synonymised with C. subulata, deserves to be treated as a separate taxon. Since C. rei was very much neglected in Poland and most previous records referred to C. glauca and C. subulata, its distribution and habitat requirements in the country are reviewed. It is commoner in the eastern part of Poland, becoming

  6. Pathogen profile update: Fusarium oxysporum

    Microsoft Academic Search

    CAROLINE B. MICHIELSE; MARTIJN REP

    2009-01-01

    Taxonomy: Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; genus Fusarium. Host range: Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Disease symptoms: Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting,

  7. Glucosylation and other biotransformations of T-2 toxin by yeasts of the Trichomonascus clade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-five yeasts assigned to the Trichomonascus clade (Saccharomycotina, Ascomycota), including three Trichomonascus species and 22 anamorphic species presently classified in Blastobotrys, were tested for their ability to convert T-2 toxin, a Fusarium trichothecene mycotoxin, to less toxic product...

  8. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes

    Microsoft Academic Search

    Yajuan J Liu; Matthew C Hodson; Benjamin D Hall

    2006-01-01

    BACKGROUND: At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a

  9. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control

    Microsoft Academic Search

    Nicolai V. Meyling; Jørgen Eilenberg

    2007-01-01

    It is increasingly recognized that the biodiversity in agroecosystems deliver significant ecosystem services to agricultural production such as biological control of pests. Entomopathogenic fungi, specifically the anamorphic taxa Beauveria bassiana and Metarhizium anisopliae, Hypocreales (Ascomycota), are among the natural enemies of pests in agroecosystems and the fungi are candidates for future conservation biological control in temperate regions. Conservation biological control

  10. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages

    Microsoft Academic Search

    Irina S Druzhinina; Christian P Kubicek; Monika Komo?-Zelazowska; Temesgen Belayneh Mulaw; John Bissett

    2010-01-01

    BACKGROUND: The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an

  11. Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity

    Microsoft Academic Search

    E. Quesada-Moraga; E. A. A. Maranhao; P. Valverde-García; C. Santiago-Álvarez

    2006-01-01

    As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and

  12. Recommendations of generic names in Diaporthales competing for protection or use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In advancing to one name for fungi, this paper treats generic names competing for use in the order Diaporthales (Ascomycota, Sordariomycetes) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexua...

  13. Molecular Systematics of Entomopathogenic Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect parasitism has multiple and diverse origins within the Kingdom Fungi, with shifts to trophic specialization on insects having evolved one or more times in each of the four traditionally recognized phyla of fungi, the Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The rich legacy ...

  14. Fungal endophyte diversity in Sarracenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  15. Biosynthesis of terpenoid natural products in fungi.

    PubMed

    Schmidt-Dannert, Claudia

    2015-01-01

    : Tens of thousands of terpenoid natural products have been isolated from plants and microbial sources. Higher fungi (Ascomycota and Basidiomycota) are known to produce an array of well-known terpenoid natural products, including mycotoxins, antibiotics, antitumor compounds, and phytohormones. Except for a few well-studied fungal biosynthetic pathways, the majority of genes and biosynthetic pathways responsible for the biosynthesis of a small number of these secondary metabolites have only been discovered and characterized in the past 5-10 years. This chapter provides a comprehensive overview of the current knowledge on fungal terpenoid biosynthesis from biochemical, genetic, and genomic viewpoints. Enzymes involved in synthesizing, transferring, and cyclizing the prenyl chains that form the hydrocarbon scaffolds of fungal terpenoid natural products are systematically discussed. Genomic information and functional evidence suggest differences between the terpenome of the two major fungal phyla-the Ascomycota and Basidiomycota-which will be illustrated for each group of terpenoid natural products. PMID:25414054

  16. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?

    PubMed

    Arnold, A Elizabeth; Miadlikowska, Jolanta; Higgins, K Lindsay; Sarvate, Snehal D; Gugger, Paul; Way, Amanda; Hofstetter, Valérie; Kauff, Frank; Lutzoni, François

    2009-06-01

    Fungi associated with photosynthetic organisms are major determinants of terrestrial biomass, nutrient cycling, and ecosystem productivity from the poles to the equator. Whereas most fungi are known because of their fruit bodies (e.g., saprotrophs), symptoms (e.g., pathogens), or emergent properties as symbionts (e.g., lichens), the majority of fungal diversity is thought to occur among species that rarely manifest their presence with visual cues on their substrate (e.g., the apparently hyperdiverse fungal endophytes associated with foliage of plants). Fungal endophytes are ubiquitous among all lineages of land plants and live within overtly healthy tissues without causing disease, but the evolutionary origins of these highly diverse symbionts have not been explored. Here, we show that a key to understanding both the evolution of endophytism and the diversification of the most species-rich phylum of Fungi (Ascomycota) lies in endophyte-like fungi that can be isolated from the interior of apparently healthy lichens. These "endolichenic" fungi are distinct from lichen mycobionts or any other previously recognized fungal associates of lichens, represent the same major lineages of Ascomycota as do endophytes, largely parallel the high diversity of endophytes from the arctic to the tropics, and preferentially associate with green algal photobionts in lichen thalli. Using phylogenetic analyses that incorporate these newly recovered fungi and ancestral state reconstructions that take into account phylogenetic uncertainty, we show that endolichenism is an incubator for the evolution of endophytism. In turn, endophytism is evolutionarily transient, with endophytic lineages frequently transitioning to and from pathogenicity. Although symbiotrophic lineages frequently give rise to free-living saprotrophs, reversions to symbiosis are rare. Together, these results provide the basis for estimating trophic transition networks in the Ascomycota and provide a first set of hypotheses regarding the evolution of symbiotrophy and saprotrophy in the most species-rich fungal phylum. [Ancestral state reconstruction; Ascomycota; Bayesian analysis; endolichenic fungi; fungal endophytes; lichens; pathogens; phylogeny; saprotrophy; symbiotrophy; trophic transition network.]. PMID:20525584

  17. The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi

    Microsoft Academic Search

    Levi Yafetto; Loran Carroll; Yunluan Cui; Diana J. Davis; Mark W. F. Fischer; Andrew C. Henterly; Jordan D. Kessler; Hayley A. Kilroy; Jacob B. Shidler; Jessica L. Stolze-Rybczynski; Zachary Sugawara; Nicholas P. Money; Amy S. Gladfelter

    2008-01-01

    BackgroundA variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include “squirt guns” that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores

  18. Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad

    Microsoft Academic Search

    Enrico Bonuso; Alessandra Zambonelli; Sarah E. Bergemann; Mirco Iotti; Matteo Garbelotto

    2010-01-01

    Tuber borchii (Ascomycota, Pezizales) is a highly valued truffle sold in local markets in Italy. Despite its economic importance, knowledge\\u000a on its distribution and genetic structure is scarce. The objective of this work was to investigate the factors shaping the\\u000a genetic structure of T. borchii using 61 representative specimens with a broad distribution throughout Italy. In spite of the lack

  19. Characterization of beech ectomycorrhizae formed by species of the Pachyphloeus–Amylascus lineage

    Microsoft Academic Search

    Zsolt Er?s-Honti; Erzsébet Jakucs

    2009-01-01

    The hypogeous genus Pachyphloeus forms a common phylogenetic lineage with the epigeous Scabropezia and the hypogeous Amylascus, within the Pezizaceae (Ascomycota). Though the ectomycorrhiza- (EM) forming ability of this group was proposed previously,\\u000a no detailed description has been published up to now, except for the characterization of EM related to P. virecens. During our several-year-long survey on the EM community

  20. Effects of the fungus Lecanicillium lecanii on survival and reproduction of the aphid Schizaphis graminum

    Microsoft Academic Search

    Sonia Ganassi; Pasqualina Grazioso; Antonio Moretti; Maria Agnese Sabatini

    2010-01-01

    This study investigated the effects of a strain of the fungus Lecanicillium lecanii (Zimm.) Zare and Gams (Hypocreales: Ascomycota) on the aphid Schizaphis graminum (Rondani) (Hemiptera: Aphididae). The fungus was administered to fourth instar nymphs and to alate and apterous adult morphs\\u000a as a ground rice-kernel formulation. This study showed that L. lecanii formulation affected the survival of the aphids

  1. Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE1 Retrotransposons

    Microsoft Academic Search

    Soledad Sacristán; Marielle Vigouroux; Carsten Pedersen; Pari Skamnioti; Hans Thordal-Christensen; Cristina Micali; James K. M. Brown; Christopher J. Ridout

    2009-01-01

    Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVRk1 powdery mildew-specific gene family encoding effectors

  2. The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions

    Microsoft Academic Search

    Hermann Voglmayr; Veronika Mayer; Ulrich Maschwitz; Joachim Moog; Champlain Djieto-Lordon; Rumsaïs Blatrix

    2011-01-01

    Based on pure culture studies and DNA phylogenetic analyses, black yeasts (Chaetothyriales, Ascomycota) are shown to be widely distributed and important components of numerous plant–ant–fungus networks, independently acquired by several ant lineages in the Old and New World. Data from ITS and LSU nu rDNA demonstrate that a high biodiversity of fungal species is involved. There are two common ant–fungus

  3. Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments

    PubMed Central

    Rittenour, William R.; Ciaccio, Christina E.; Barnes, Charles S.; Kashon, Michael L.; Lemons, Angela R.; Beezhold, Donald H.; Green, Brett J.

    2014-01-01

    Compared to traditional methods of fungal exposure assessment, molecular methods have provided new insight into the richness of fungal communities present in both indoor and outdoor environments. In this study, we describe the diversity of fungi in the homes of asthmatic children located in Kansas City. Fungal diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA derived from fungi collected in air and dust samples from 31 homes participating in the Kansas City Safe and Healthy Homes Program (KCSHHP). Sequencing results were then compared to data obtained using viable and non-viable fungal exposure assessment methods. ITS clone libraries were predominantly derived from the phylum Ascomycota in both air (68%) and dust (92%) samples and followed by the Basidiomycota and Zygomycota. The majority of Ascomycota clones belonged to four orders including the Pleosporales, Eurotiales, Capnodiales, and Dothideales. ITS sequencing revealed the presence of a number of rarely documented fungal species placed in the Pleosporales. Several species placed in the Basidiomycota were detected in ITS clone libraries but not by viable or non-viable methods. The prevalence of organizational taxonomic units (OTUs) was significantly higher in air than in dust samples (p < 0.0001); however, no differences between OTUs in air samples collected in the subjects’ room and basement were observed. These sequencing results demonstrate a much broader diversity of Ascomycota and Basidiomycota communities in KCSHHP indoor environments than previously estimated using traditional methods of assessment. PMID:24258337

  4. Diversity and Taxonomy of Endophytic Xylariaceous Fungi from Medicinal Plants of Dendrobium (Orchidaceae)

    PubMed Central

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery. PMID:23472167

  5. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits.

    PubMed

    Lutzoni, François; Kauff, Frank; Cox, Cymon J; McLaughlin, David; Celio, Gail; Dentinger, Bryn; Padamsee, Mahajabeen; Hibbett, David; James, Timothy Y; Baloch, Elisabeth; Grube, Martin; Reeb, Valérie; Hofstetter, Valérie; Schoch, Conrad; Arnold, A Elizabeth; Miadlikowska, Jolanta; Spatafora, Joseph; Johnson, Desiree; Hambleton, Sarah; Crockett, Michael; Shoemaker, Robert; Sung, Gi-Ho; Lücking, Robert; Lumbsch, Thorsten; O'Donnell, Kerry; Binder, Manfred; Diederich, Paul; Ertz, Damien; Gueidan, Cécile; Hansen, Karen; Harris, Richard C; Hosaka, Kentaro; Lim, Young-Woon; Matheny, Brandon; Nishida, Hiromi; Pfister, Don; Rogers, Jack; Rossman, Amy; Schmitt, Imke; Sipman, Harrie; Stone, Jeffrey; Sugiyama, Junta; Yahr, Rebecca; Vilgalys, Rytas

    2004-10-01

    Based on an overview of progress in molecular systematics of the true fungi (Fungi/Eumycota) since 1990, little overlap was found among single-locus data matrices, which explains why no large-scale multilocus phylogenetic analysis had been undertaken to reveal deep relationships among fungi. As part of the project "Assembling the Fungal Tree of Life" (AFTOL), results of four Bayesian analyses are reported with complementary bootstrap assessment of phylogenetic confidence based on (1) a combined two-locus data set (nucSSU and nucLSU rDNA) with 558 species representing all traditionally recognized fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Zygomycota) and the Glomeromycota, (2) a combined three-locus data set (nucSSU, nucLSU, and mitSSU rDNA) with 236 species, (3) a combined three-locus data set (nucSSU, nucLSU rDNA, and RPB2) with 157 species, and (4) a combined four-locus data set (nucSSU, nucLSU, mitSSU rDNA, and RPB2) with 103 species. Because of the lack of complementarity among single-locus data sets, the last three analyses included only members of the Ascomycota and Basidiomycota. The four-locus analysis resolved multiple deep relationships within the Ascomycota and Basidiomycota that were not revealed previously or that received only weak support in previous studies. The impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed. Based on these results and reanalysis of subcellular data, current knowledge of the evolution of septal features of fungal hyphae is synthesized, and a preliminary reassessment of ascomal evolution is presented. Based on previously unpublished data and sequences from GenBank, this study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi. PMID:21652303

  6. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes

    PubMed Central

    Liu, Yajuan J; Hodson, Matthew C; Hall, Benjamin D

    2006-01-01

    Background At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Results Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1) Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4) Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups. Conclusion In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the widely accepted morphology-based classification of Fungi. We find that, contrary to what has been published elsewhere, the four morphologically defined phyla (Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota) do not overlap with one another. Microsporidia are not included within kingdom Fungi; rather they are a sister-group to the Fungi. Our study demonstrates the applicability of protein sequences from large, slowly-evolving genes to the derivation of well-resolved and highly supported phylogenies across long evolutionary distances. PMID:17010206

  7. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2013-31 March 2013.

    PubMed

    Arias, M C; Atteke, Christiane; Augusto, S C; Bailey, J; Bazaga, Pilar; Beheregaray, Luciano B; Benoit, Laure; Blatrix, Rumsaïs; Born, Céline; Brito, R M; Chen, Hai-kui; Covarrubias, Sara; de Vega, Clara; Djiéto-Lordon, Champlain; Dubois, Marie-Pierre; Francisco, F O; García, Cristina; Gonçalves, P H P; González, Clementina; Gutiérrez-Rodríguez, Carla; Hammer, Michael P; Herrera, Carlos M; Itoh, H; Kamimura, S; Karaoglu, H; Kojima, S; Li, Shou-Li; Ling, Hannah J; Matos-Maraví, Pável F; McKey, Doyle; Mezui-M'Eko, Judicaël; Ornelas, Juan Francisco; Park, R F; Pozo, María I; Ramula, Satu; Rigueiro, Cristina; Sandoval-Castillo, Jonathan; Santiago, L R; Seino, Miyuki M; Song, Chang-Bing; Takeshima, H; Vasemägi, Anti; Wellings, C R; Yan, Ji; Yu-Zhou, Du; Zhang, Chang-Rong; Zhang, Tian-Yun

    2013-07-01

    This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii. PMID:23693143

  8. Identification of fungal ene-reductase activity by means of a functional screening.

    PubMed

    Romagnolo, Alice; Spina, Federica; Brenna, Elisabetta; Crotti, Michele; Parmeggiani, Fabio; Varese, Giovanna Cristina

    2015-06-01

    Bioeconomy stresses the need of green processes promoting the development of new methods for biocatalyzed alkene reductions. A functional screening of 28 fungi belonging to Ascomycota, Basidiomycota, and Zygomycota isolated from different habitats was performed to analyze their capability to reduce CC double bonds towards three substrates (cyclohexenone, ?-methylnitrostyrene, and ?-methylcinnamaldehyde) with different electron-withdrawing groups, i.e., ketone, nitro, and aldehyde, respectively. Almost all the fungi showed this reducing activity. Noteworthy Gliomastix masseei, Mucor circinelloides, and Mucor plumbeus resulted versatile and effective, being able to reduce all the model substrates quickly and with high yields. PMID:25986545

  9. Fungal diversity, biogeography, and new species of ice nucleating fungi in air

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Pöschl, Ulrich

    2013-05-01

    Fungal spores account for a substantial portion of air particulate matter. So far, however, the abundance, diversity, sources, properties, and effects of fungi in the atmosphere have not been well characterized. Here we summarize the results of a series of studies combining DNA-sequence analyses, cultivation and freezing experiments. A one-year study in central Europe showed high species richness and pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter. Investigations of continental and marine air samples revealed global biogeographic patterns in the species richness of Basidiomycota and Ascomycota and new species of ice nucleation active fungi were found.

  10. Waol A, trans-dihydrowaol A, and cis-dihydrowaol A: polyketide-derived ?-lactones from a Volutella species.

    PubMed

    El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Adcock, Audrey F; Kroll, David J; Swanson, Steven M; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2013-08-01

    An organic extract of a filamentous fungus (MSX 58801), identified as a Volutella sp. (Hypocreales, Ascomycota), displayed moderate cytotoxic activity against NCI-H460 human large cell lung carcinoma. Bioactivity-directed fractionation led to the isolation of three ?-lactones having the furo[3,4-b]pyran-5-one bicyclic ring system [waol A (1), trans-dihydrowaol A (2), and cis-dihydrowaol A (3)]. The structures were elucidated using a set of spectroscopic and spectrometric techniques; the absolute configuration of 2 was established via a modified Mosher's ester method. Compounds 1 and 2 were evaluated for cytotoxicity against a human cancer cell panel. PMID:23956472

  11. Anti-Candida metabolites from endophytic fungi.

    PubMed

    Weber, Roland W S; Kappe, Reinhard; Paululat, Thomas; Mösker, Eva; Anke, Heidrun

    2007-03-01

    Submerged cultures of some 1500 Ascomycota and Basidiomycota isolated from their fruit-bodies or as soil-borne, coprophilous or endophytic fungi were screened for activity against Candida albicans and a range of other pathogenic and saprotrophic fungi. Considerably more Ascomycota (11-16%) than Basidiomycota (3.5%) produced metabolites with activity against C. albicans. From five species of endophytes, six bioactive compounds were isolated and identified, viz. cerulenin (1), arundifungin (2), sphaeropsidin A (3), 5-(1,3-butadiene-1-yl)-3-(propene-1-yl)-2-(5H)-furanone (4), ascosteroside A (formerly called ascosteroside; 5) and a derivative of 5, ascosteroside B (6). 1, 3 and 5 were isolated from fungi belonging to different orders than previously described producers. Antifungal activities of 2 and 4-6 in the agar diffusion test were comparable with those of amphotericin B. Compound 6 exhibited a similar antifungal activity as 5 but its cytotoxicity towards Hep G2 cells was considerably lower. This study points to endophytic fungi related to hemibiotrophic or latent plant pathogens as an important source of bio- and chemodiversity. PMID:17286994

  12. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect

    Jasrotia, Puja [Florida State University, Tallahassee] [Florida State University, Tallahassee; Green, Stefan [University of Illinois, Chicago] [University of Illinois, Chicago; Canion, Andy [Florida State University, Tallahassee] [Florida State University, Tallahassee; Overholt, Will [Florida State University, Tallahassee] [Florida State University, Tallahassee; Prakash, Om [Florida State University, Tallahassee] [Florida State University, Tallahassee; Wafula, Dennis [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Hubbard, Daniela [Florida State University, Tallahassee] [Florida State University, Tallahassee; Watson, David B [ORNL] [ORNL; Schadt, Christopher Warren [ORNL] [ORNL; Brooks, Scott C [ORNL] [ORNL; Kostka, [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  13. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    PubMed

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas. PMID:26020967

  14. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    PubMed Central

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Håvard

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ?9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (?3–5% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions. PMID:23789083

  15. Fungal communities in soils along a vegetative ecotone.

    PubMed

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities. PMID:22802393

  16. Molecular analysis of fungal diversity associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica.

    PubMed

    Zhang, Tao; Xiang, Hai-Bo; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Zhao, Li-Xun; Yu, Li-Yan

    2013-09-01

    The fungal communities associated with three bryophytes species (the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata) in the Fildes Region, King George Island, maritime Antarctica, were studied using clone library analysis. Fungal communities showed low diversity; the 680 clones belonged to 93 OTUs. Of these, 78 belonged to the phylum Ascomycota, 13 to the phylum Basidiomycota, 1 to the phylum Zygomycota, and 1 to an unknown phylum. Among the OTUs, the most common orders in the Ascomycota were Helotiales (42 OTUs) and Chaetothyriales (14 OTUs) and the most common orders in the Basidiomycota were Sebacinales (3 OTUs) and Platygloeales (3 OTUs). Most OTUs clustered within clades that contained phylotypes identified from samples in Antarctic or Arctic ecosystems or from bryophytes in other ecosystems. In addition, we found that host-related factor may shape the fungal communities associated with bryophytes in this region. This is the first systematic study of the fungal community in Antarctic bryophytes to be performed using culture-independent method and the results may improve understanding of the endophytic fungal evolution and ecology in the Antarctic ecosystem. PMID:23818107

  17. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean.

    PubMed

    Xu, Wei; Pang, Ka-Lai; Luo, Zhu-Hua

    2014-11-01

    Knowledge about the presence and ecological significance of bacteria and archaea in the deep-sea environments has been well recognized, but the eukaryotic microorganisms, such as fungi, have rarely been reported. The present study investigated the composition and abundance of fungal community in the deep-sea sediments of the Pacific Ocean. In this study, a total of 1,947 internal transcribed spacer (ITS) regions of fungal rRNA gene clones were recovered from five sediment samples at the Pacific Ocean (water depths ranging from 5,017 to 6,986 m) using three different PCR primer sets. There were 16, 17, and 15 different operational taxonomic units (OTUs) identified from fungal-universal, Ascomycota-, and Basidiomycota-specific clone libraries, respectively. Majority of the recovered sequences belonged to diverse phylotypes of Ascomycota (25 phylotypes) and Basidiomycota (18 phylotypes). The multiple primer approach totally recovered 27 phylotypes which showed low similarities (?97 %) with available fungal sequences in the GenBank, suggesting possible new fungal taxa occurring in the deep-sea environments or belonging to taxa not represented in the GenBank. Our results also recovered high fungal LSU rRNA gene copy numbers (3.52?×?10(6) to 5.23?×?10(7)copies/g wet sediment) from the Pacific Ocean sediment samples, suggesting that the fungi might be involved in important ecological functions in the deep-sea environments. PMID:25004994

  18. Activity of the novel fungicide SYP-Z048 against plant pathogens

    PubMed Central

    Chen, Fengping; Han, Ping; Liu, Pengfei; Si, Naiguo; Liu, Junli; Liu, Xili

    2014-01-01

    In in vitro tests with 18 plant pathogens, the fungicide 3-[5-(4-chlorophenyl)-2,3-dimethyl-3-isoxazolidinyl] pyridine (SYP-Z048) was highly effective on inhibiting mycelial growth of various ascomycota and basidiomycota, with EC50 values ranging from 0.008 to 1.140??g/ml. SYP-Z048 had much weaker activity against growth of oomycota with EC50 values > 100??g/ml. In a second in vitro test with Monilinia fructicola isolates, SYP-Z048 inhibited mycelial growth (EC50 = 0.013??g/ml), germ tube elongation (EC50 = 0.007??g/ml), and sporulation but did not affect spore germination. In a detached pear fruit assay inoculated with M. fructicola isolates, SYP-Z048 showed protective and curative activity. Field tests indicated that SYP-Z048 was an efficacious fungicide for control of brown rot disease in two peach orchards. When applied to a single spot on a tomato leaflet in a compound leaf, SYP-Z048 suppressed the growth of Botrytis cinerea isolates on the rest 4 leaflets, indicating that the fungicide has systemic movement in plant tissues. These results indicate that SYP-Z048 has potential for management of brown rot causing by M. fructicola and other diseases caused by ascomycota and basidiomycota. PMID:25253681

  19. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominant new branch to the fungal tree of life

    SciTech Connect

    Porter, Terri M. [University of Toronto; Schadt, Christopher Warren [ORNL; Rizvi, L [Royal Ontario Museum; Martin, Andrew P. [University of Colorado; Schmidt, Steven K. [University of Colorado; Scott-Denton, Laura [University of Colorado; Vilgalys, Rytas [Duke University; Moncalvo, Jean-Marc [University of Toronto

    2008-01-01

    Fungi are one of the most diverse groups of Eukarya and play essential roles in terrestrial ecosystems as decomposers, pathogens and mutualists. This study unifies disparate reports of unclassified fungal sequences from soils of diverse origins and anchors many of them in a well-supported clade of the Ascomycota equivalent to a subphylum. We refer to this clade as Soil Clone Group I (SCGI). We expand the breadth of environments surveyed and develop a taxon-specific primer to amplify 2.4 kbp rDNA fragments directly from soil. Our results also expand the known range of this group from North America to Europe and Australia. The ancient origin of SCGI implies that it may represent an important transitional form among the basal Ascomycota groups. SCGI is unusual because it currently represents the only major fungal lineage known only from sequence data. This is an important contribution towards building a more complete fungal phylogeny and highlights the need for further work to determine the function and biology of SCGI taxa.

  20. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  1. Survival of anopheline eggs and their susceptibility to infection with Metarhizium anisopliae and Beauveria bassiana under laboratory conditions.

    PubMed

    Luz, Christian; Mnyone, Ladslaus L; Russell, Tanya L

    2011-09-01

    The viability of Anopheles gambiae sensu stricto and Anopheles arabiensis (Diptera: Culicidae) eggs over time and the ovicidal activity of Beauveria bassiana (Ascomycota: Cordycipitaceae) and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were investigated. Eggs were incubated in soil or leaf litter for up to 12 weeks at 26°C and 75%, 86% or >98% relative humidity (RH). Eggs were treated topically with M. anisopliae ICIPE-30 or B. bassiana I93-825 conidia in either water or oil-in-water formulations. Survival of eggs whether treated or not with fungus was similar, and untreated eggs generally did not survive longer than 2 weeks regardless of the substrate or humidity tested. After a minimal 5-day exposure, M. anisopliae at 5?×?10(6) conidia/cm(2) clearly reduced the number of larvae. The efficacy of the fungus increased when it was oil-in-water formulated, and eclosion was completely prevented regardless of the conidial concentration (10(5)-10(7) conidia/cm(2)) after a 10-day exposure in soils at >98% RH. Treatment of eggs with B. bassiana, however, failed to reduce the number of eclosing larvae. This is the first demonstration of the ovicidal activity by M. anisopliae against either A. gambiae s. s. or A. arabiensis and the results underline the potential of this fungus against anopheline mosquitoes. PMID:21424402

  2. Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau.

    PubMed

    Kaasalainen, Ulla; Heinrichs, Jochen; Krings, Michael; Myllys, Leena; Grabenhorst, Heinrich; Rikkinen, Jouko; Schmidt, Alexander R

    2015-01-01

    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon. PMID:26053106

  3. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing

    PubMed Central

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas. PMID:26020967

  4. Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau

    PubMed Central

    Kaasalainen, Ulla; Heinrichs, Jochen; Krings, Michael; Myllys, Leena; Grabenhorst, Heinrich; Rikkinen, Jouko; Schmidt, Alexander R.

    2015-01-01

    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon. PMID:26053106

  5. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  6. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    PubMed Central

    2011-01-01

    Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. Results Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes) had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota). It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina). Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. Conclusions We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal gene transfer event from beta-, gamma-, or related species of proteobacteria. The event took place before the divergence of the subphyla Pezizomycotina and Saccharomycotina but after the divergence of the subphylum Taphrinomycotina. Urea carboxylase genes currently found in fungi and other limited organisms were also likely derived from another ancestral gene in bacteria. Our study presented another important example showing plastic and opportunistic genome evolution in bacteria and fungi and their evolutionary interplay. PMID:21447149

  7. Evolutionary principles of modular gene regulation in yeasts

    PubMed Central

    Thompson, Dawn A; Roy, Sushmita; Chan, Michelle; Styczynsky, Mark P; Pfiffner, Jenna; French, Courtney; Socha, Amanda; Thielke, Anne; Napolitano, Sara; Muller, Paul; Kellis, Manolis; Konieczka, Jay H; Wapinski, Ilan; Regev, Aviv

    2013-01-01

    Divergence in gene regulation can play a major role in evolution. Here, we used a phylogenetic framework to measure mRNA profiles in 15 yeast species from the phylum Ascomycota and reconstruct the evolution of their modular regulatory programs along a time course of growth on glucose over 300 million years. We found that modules have diverged proportionally to phylogenetic distance, with prominent changes in gene regulation accompanying changes in lifestyle and ploidy, especially in carbon metabolism. Paralogs have significantly contributed to regulatory divergence, typically within a very short window from their duplication. Paralogs from a whole genome duplication (WGD) event have a uniquely substantial contribution that extends over a longer span. Similar patterns occur when considering the evolution of the heat shock regulatory program measured in eight of the species, suggesting that these are general evolutionary principles. DOI: http://dx.doi.org/10.7554/eLife.00603.001 PMID:23795289

  8. Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641.

    PubMed

    Semba, Yasuyuki; Ishida, Manabu; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    2015-07-01

    Stabilizing enzymes from mesophiles of industrial interest is one of the greatest challenges of protein engineering. The ancestral mutation method, which introduces inferred ancestral residues into a target enzyme, has previously been developed and used to improve the thermostability of thermophilic enzymes. In this report, we studied the ancestral mutation method to improve the chemical and thermal stabilities of Phanerochaete chrysosporium lignin peroxidase (LiP), a mesophilic fungal enzyme. A fungal ancestral LiP sequence was inferred using a phylogenetic tree comprising Basidiomycota and Ascomycota fungal peroxidase sequences. Eleven mutant enzymes containing ancestral residues were designed, heterologously expressed in Escherichia coli and purified. Several of these ancestral mutants showed higher thermal stabilities and increased specific activities and/or kcat/KM than those of wild-type LiP. PMID:25858964

  9. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety

    PubMed Central

    De Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2013-01-01

    Fungal community composition in composts of lignocellulosic wastes was assessed via 454-pyrosequencing of ITS1 libraries derived from the three major composting phases. Ascomycota represented most (93%) of the 27,987 fungal sequences. A total of 102 genera, 120 species, and 222 operational taxonomic units (OTUs; >97% similarity) were identified. Thirty genera predominated (ca. 94% of the sequences), and at the species level, sequences matching Chaetomium funicola and Fusarium oxysporum were the most abundant (26 and 12%, respectively). In all composts, fungal diversity in the mature phase exceeded that of the mesophilic phase, but there was no consistent pattern in diversity changes occurring in the thermophilic phase. Fifteen species of human pathogens were identified, eight of which have not been previously identified in composts. This study demonstrated that deep sequencing can elucidate fungal community diversity in composts, and that this information can have important implications for compost use and human health. PMID:23785368

  10. Distribution and diversity of planktonic fungi in the West Pacific Warm Pool.

    PubMed

    Wang, Xin; Singh, Purnima; Gao, Zheng; Zhang, Xiaobo; Johnson, Zackary I; Wang, Guangyi

    2014-01-01

    Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models. PMID:24992154

  11. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wüthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  12. Relationship between Climatic Factors and the Distribution of Higher Fungi in Byeonsanbando National Park, Korea.

    PubMed

    Jang, Seog-Ki; Hur, Tae-Chul

    2014-03-01

    From April 2009 to October 2011, we surveyed the higher fungi in the Byeonsanbando National Park, Korea. In total, we identified 2 kingdoms, 3 divisions, 7 classes, 22 orders, 63 families, 149 genera, and 313 species (including 6 undocumented taxa: 2 families, 2 genera, and 2 species). Seventeen 17 orders, 49 families, 128 genera, and 286 species belonged to Basidiomycota; 7 orders, 9 families, 15 genera, and 21 species were of Ascomycota; and 4 orders, 5 families, 6 genera, and 6 species of primordial fungi. Among the Basidiomycota, Agaricomycetes were represented by 47 families, 126 genera, and 282 species. The most common fungi were Boletaceae (33 species), followed by Russulaceae (30), Agaricaceae (27), and Amanitaceae (24). Various species of most of the higher fungi occurred during periods with average temperatures of 23~24.9?, maximum temperatures of 28~31.9?, minimum temperatures of 22~23.9?, > 82% relative humidity, and > 200 mm precipitation. PMID:24808731

  13. Relationship between Climatic Factors and the Distribution of Higher Fungi in Byeonsanbando National Park, Korea

    PubMed Central

    Jang, Seog-Ki

    2014-01-01

    From April 2009 to October 2011, we surveyed the higher fungi in the Byeonsanbando National Park, Korea. In total, we identified 2 kingdoms, 3 divisions, 7 classes, 22 orders, 63 families, 149 genera, and 313 species (including 6 undocumented taxa: 2 families, 2 genera, and 2 species). Seventeen 17 orders, 49 families, 128 genera, and 286 species belonged to Basidiomycota; 7 orders, 9 families, 15 genera, and 21 species were of Ascomycota; and 4 orders, 5 families, 6 genera, and 6 species of primordial fungi. Among the Basidiomycota, Agaricomycetes were represented by 47 families, 126 genera, and 282 species. The most common fungi were Boletaceae (33 species), followed by Russulaceae (30), Agaricaceae (27), and Amanitaceae (24). Various species of most of the higher fungi occurred during periods with average temperatures of 23~24.9?, maximum temperatures of 28~31.9?, minimum temperatures of 22~23.9?, > 82% relative humidity, and > 200 mm precipitation. PMID:24808731

  14. Fungal Endophyte Diversity in Sarracenia

    PubMed Central

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  15. Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil

    PubMed Central

    Tonouchi, Akio

    2009-01-01

    A novel filamentous fungus strain designated RB-1 was isolated into pure culture from Japanese rice field soil through an anaerobic role tube technique. The strain is a mitosporic fungus that grows in both aerobic and strict anaerobic conditions using various mono-, di-, tri-, and polysaccharides with acetate and ethanol productions. The amount of acetate produced was higher than that of ethanol in both aerobic and anaerobic cultures. The characteristic verrucose or punctuate conidia of RB-1 closely resembled those of some strains of the genus Thermomyces, a thermophilic or mesophilic anamorphic ascomycete. However, based on phylogenetic analysis with the small subunit (SSU) and large subunit (LSU) rDNA sequences, RB-1 was characterized as a member of the class Lecanoromycetes of the phylum Ascomycota. Currently, RB-1 is designated as an anamorphic ascomycete and is phylogenetically considered an incertae sedis within the class Lecanoromycetes. PMID:20148171

  16. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate

    PubMed Central

    Celestino, Jessyca dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Érica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335?UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385?IU/g) in solid state fermentation (SSF). PMID:24724017

  17. Fungi on the skin: dermatophytes and Malassezia.

    PubMed

    White, Theodore C; Findley, Keisha; Dawson, Thomas L; Scheynius, Annika; Boekhout, Teun; Cuomo, Christina A; Xu, Jun; Saunders, Charles W

    2014-08-01

    Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms. PMID:25085959

  18. Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases.

    PubMed

    Lackner, Gerald; Misiek, Mathias; Braesel, Jana; Hoffmeister, Dirk

    2012-12-01

    Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides. PMID:23078836

  19. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  20. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  1. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  2. Molecular study of Dermatocarpon miniatum (Verrucariales) and allied taxa.

    PubMed

    Heidmarsson, Starri

    2003-04-01

    The phylogeny of the Dermatocarpon miniatum-complex (Verrucariales, lichenized Ascomycota) was studied using nuclear ITS sequence data by both parsimony and Bayesian inference of phylogeny. The ITS region contains a substantial amount of variation which resolves the relationships of terminal groups, while the more basal clades have low support in the analyses. D. miniatum var. miniatum and var. complicatum are polyphyletic, while var. cirsodes is monophyletic but located within the complex, as are both D. leptophyllum and D. linkolae. The variation within the D. miniatum-complex is significantly greater than that between some transatlantic species such as D. luridum and D. meiophyllizum. The new names D. taminium sp. nov. from the Greater Sonoran area, and D. tenue comb. nov. (syn. D. muehlenbergii var. tenue) are introduced. PMID:12825519

  3. What is Scirrhia?

    PubMed

    Crous, Pedro W; Minnis, Andrew M; Pereira, Olinto L; Alfenas, Acelino C; Alfenas, Rafael F; Rossman, Amy Y; Groenewald, Johannes Z

    2011-12-01

    The ascomycetous genus Scirrhia is presently treated as a member of Dothideomycetidae, though uncertainty remains as to which family it belongs in Capnodiales, Ascomycota. Recent collections on stems of a fern, Pteridium aquilinum (Dennstaedtiaceae) in Brazil, led to the discovery of a new species of Scirrhia, described here as S.brasiliensis. Based on DNA sequence data of the nuclear ribosomal DNA (LSU), Scirrhia is revealed to represent a member of Dothideomycetes, Capnodiales, Mycosphaerellaceae. Scirrhia is the first confirmed genus in Mycosphaerellaceae to have well developed pseudoparaphyses and a prominent hypostroma in which ascomata are arranged in parallel rows. Given the extremely slow growth rate and difficulty in obtaining cultures of S. brasiliensis on various growth media, it appears that Scirrhia represents a genus of potentially obligate plant pathogens within Mycosphaerellaceae. PMID:22679597

  4. Exploiting composting biodiversity: study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting.

    PubMed

    Jurado, Macarena; López, María J; Suárez-Estrella, Francisca; Vargas-García, María C; López-González, Juan A; Moreno, Joaquín

    2014-06-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. This work analyzes the identity of microbial community that persists throughout lignocellulose-based composting, evaluates their metabolic activities and studies the capability of selected isolates for composting bioaugmentation. Bacterial species of the phyla Firmicutes, Actinobacteria and Proteobacteria and fungi of the phylum Ascomycota were ubiquitous throughout the composting. The species Arthrobacter russicus, Microbacterium gubbeenense, Ochrocladosporium frigidarii and Cladosporium lignicola are detected for the first time in this ecosystem. In addition, several bacterial and fungal isolates exhibited a wide range of metabolic capabilities such as polymers (lignocellulose, protein, lipids, pectin and starch) breakdown and phosphate-solubilization that may find many biotechnological applications. In particular, Streptomyces albus BM292, Gibellulopsis nigrescens FM1397 and FM1411, Bacillus licheniformis BT575, Bacillus smithii AT907 and Alternaria tenuissima FM1385 exhibited a great potential as inoculants for composting bioaugmentation. PMID:24759645

  5. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  6. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  7. The diversity of fungal genome.

    PubMed

    Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus. PMID:25866485

  8. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  9. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland

    PubMed Central

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  10. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages.

    PubMed

    Higgins, K Lindsay; Arnold, A Elizabeth; Miadlikowska, Jolanta; Sarvate, Snehal D; Lutzoni, François

    2007-02-01

    Although associated with all plants, fungal endophytes (microfungi that live within healthy plant tissues) represent an unknown proportion of fungal diversity. While there is a growing appreciation of their ecological importance and human uses, little is known about their host specificity, geographic structure, or phylogenetic relationships. We surveyed endophytic Ascomycota from healthy photosynthetic tissues of three plant species (Huperzia selago, Picea mariana, and Dryas integrifolia, representing lycophytes, conifers, and angiosperms, respectively) in northern and southern boreal forest (Québec, Canada) and arctic tundra (Nunavut, Canada). Endophytes were recovered from all plant species surveyed, and were present in <1-41% of 2 mm2 tissue segments examined per host species. Sequence data from the nuclear ribosomal internal transcribed spacer region (ITS) were obtained for 280 of 558 isolates. Species-accumulation curves based on ITS genotypes remained non-asymptotic, and bootstrap analyses indicated that a large number of genotypes remain to be found. The majority of genotypes were recovered from only a single host species, and only 6% of genotypes were shared between boreal and arctic communities. Two independent Bayesian analyses and a neighbor-joining bootstrapping analysis of combined data from the nuclear large and small ribosomal subunits (LSUrDNA, SSUrDNA; 2.4 kb) showed that boreal and arctic endophytes represent Dothideomycetes, Sordariomycetes, Chaetothyriomycetidae, Leotiomycetes, and Pezizomycetes. Many well-supported phylotypes contained only endophytes despite exhaustive sampling of available sequences of Ascomycota. Together, these data demonstrate greater than expected diversity of endophytes at high-latitude sites and provide a framework for assessing the evolution of these poorly known but ubiquitous symbionts of living plants. PMID:17005421

  11. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

    PubMed

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community. PMID:26106376

  12. [Differences of fungal diversity and structure in rhizosphere of Fritillaria thunbergii from different provenances].

    PubMed

    Yuan, Xiao-feng; Peng, San-mei; Wang, Bo-lin; Ding, Zhi-shan

    2014-11-01

    To explore the mechanism of soil microbial ecology, the differences of fungal diversities in rhizosphere of different provenances of Fritillaria thunbergii were analyzed. The diversities and compositions of rhizo-fungi of the samples were analyzed by using DGGE and 454 pyrosequencing. DGGE results showed the Shannon index of Ninbo provenance planted in Ninbo was the highest one. And its dominant fungi were Ascomycota, Deuteromycota and Zygomycota. Except the same fungi, every provenance planted in Ninbo had its own special ones. From the 454 pyrosequencing, the fungal diversity in Panan producing was the highest which was similar with DGGE result. Among the ten phylum detected in its rhizosoil, Fungi_incertae_sedis, Ascomycota, Mucoromycotina, Basidiomycota and Chytridiomycota almost amounted to 90% of the whole community. The fungal types and amounts in Panan were more than those in Ninbo indicating the differences between producing areas and the advantage of macro genome sequencing. There were 10 phyla, 29 families, 28 genus and 159 species of fungi in Panan provenance, 6 phyla, 20 families, 19 genus, 136 species in Ninbo provenance, 8 phyla, 37 families, 47 genus, 289 species in Nantong provenance and 7 phyla, 25 families, 24 genus, 102 species in the bulk soil. Some genus such as Dothidea, Capnobotryella and Conidiobolus were only existed in Nantong provenance, while Pyrenochae- ta, Glomus and Pseudonectria were only in Panan provenance, which implied these species could grew because F. thunbergii influenced the existence of fungi. Experiments of provenance and producing area of F. thunbergii showed that the fungal diversity of indigenous provenance was higher than that of exotic provenance and each provenance had unique fungal species in the rhizosphere, which indicated that the diversity and structure was shaped cooperatively by the species and soil type. These fungal species are interacted with the soil-rhizhosphere-microbe microecological system, which in turn influence the growth of F. thunbergii. PMID:25850257

  13. Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin

    PubMed Central

    Chen, Wanping; Lee, Mi-Kyung; Jefcoate, Colin; Kim, Sun-Chang; Chen, Fusheng; Yu, Jae-Hyuk

    2014-01-01

    Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi. PMID:24966179

  14. Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites.

    PubMed

    Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong; An, Zhiqiang; Bills, Gerald F

    2015-07-01

    The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901

  15. Distribution and evolution of het gene homologs in the basidiomycota.

    PubMed

    Van der Nest, M A; Olson, A; Lind, M; Vélëz, H; Dalman, K; Brandström Durling, M; Karlsson, M; Stenlid, J

    2014-03-01

    In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi. PMID:24380733

  16. Diverse Bacteria Inhabit Living Hyphae of Phylogenetically Diverse Fungal Endophytes? †

    PubMed Central

    Hoffman, Michele T.; Arnold, A. Elizabeth

    2010-01-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  17. Illumina sequencing of fungi associated with manganese oxide deposits in cave systems

    NASA Astrophysics Data System (ADS)

    Zorn, B. T.; Santelli, C. M.; Carmichael, S. K.; Pepe-Ranney, C. P.; Roble, L.; Carmichael, M.; Bräuer, S.

    2013-12-01

    The environmental cycling of manganese (Mn) remains relatively poorly characterized when compared with other metals such as iron. However, fungi have been observed to produce Mn(III/IV) oxides resembling buserite, birnessite, and todorokite on the periphery of vegetative hyphae, hyphal branching points and at the base of fruiting bodies. Recent studies indicate that some of these oxides may be generated by a two-stage reaction with soluble Mn(II) and biogenic reactive oxygen species for some groups of fungi, in particular the Ascomycota. These oxides can provide a versatile protective barrier or aid in the capture of trace metals in the environment, although the exact evolutionary function and trigger is unclear. In this study, two caves in the southern Appalachians, a pristine cave and an anthropogenically impacted cave, were compared by analyzing fungal community assemblages in manganese oxide rich deposits. Quantitative PCR data indicated that fungi are present in a low abundance (<1%) in all locations sampled within the caves. Among amplified DNA sequences retrieved in an 18S rDNA clone library, over 88% were representative of the phylum Basidiomycota (predominantly Agaricomycetes), 2.74% of Ascomycota, 2.28% of Blastocladiomycota and Chytridiomycota, 0.46% of Zygomycota, and 3.65% of Eukarya or Fungi incertae sedis. Using Illumina's MiSeq to sequence amplicons of the fungal ITS1 gene has yielded roughly 100,000-200,000 paired-end reads per sample. These data are currently being analyzed to compare fungal communities before and after induced Mn oxidation in the field. In addition, sites within the pristine cave are being compared with analogous sites in the impacted cave. Culturing efforts have thus far yielded Mn oxide producing members of the orders Glomerales and Pleosporales as well as two Genus incertae sedis (Fungal sp. YECT1, and Fungal sp. YECT3, growing on discarded electrical tape) that do not appear to be closely related to any other known Mn oxidizing fungi.

  18. Assessment of epiphytic yeast diversity in rice (Oryza sativa) phyllosphere in Thailand by a culture-independent approach.

    PubMed

    Nasanit, Rujikan; Krataithong, Kultara; Tantirungkij, Manee; Limtong, Savitree

    2015-06-01

    The epiphytic yeast diversity in rice phyllosphere in Thailand was investigated by a culture-independent technique based on the RFLP pattern and the sequence of the D1/D2 domain of the large subunit rRNA gene. Forty-four samples of rice leaf were collected randomly from six provinces. The DNA was extracted from leaf washing samples and the D1/D2 domain was amplified using PCR technique. The PCR products were cloned and then screened by colony PCR. Of total 1121 clones, 451 clones (40.2 %) revealed the D1/D2 domain sequences closely related to sequences of yeasts in GenBank, and they were clustered into 45 operational taxonomic units (OTUs) at 99 % homology. Of total yeast related clones, 329 clones (72.9 %) were identified as nine known yeast species, which consisted of 314 clones (8 OTUs) in the phylum Basidiomycota including Bullera japonica, Pseudozyma antarctica, Pseudozyma aphidis, Sporobolomyces blumeae, Sporobolomyces carnicolor and Sporobolomyces oryzicola and 15 clones (6 OTUs) in the phylum Ascomycota including Metschnikowia koreensis, Meyerozyma guilliermondii and Wickerhamomyces anomalus. The D1/D2 sequences (122 clones) that could not be identified as known yeast species were closest to 3 and 14 species in Ascomycota and Basidiomycota, respectively, some of which may be new yeast species. The most predominant species detected was P. antarctica (42.6 %) followed by B. japonica (25.9 %) with 63.6 and 22.7 % frequency of occurrence, respectively. The results of OTU richness of each sampling location revealed that climate condition and sampling location could affect epiphytic yeast diversity in rice phyllosphere. PMID:25842038

  19. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to approximately 10 types at 1500 Ma and 50 cell types at approximately 1000 Ma. CONCLUSIONS: The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2-3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity.

  20. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ? Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of fungal spores in mixed-phase clouds can decrease the surface annual mean mixing ratios of fungal spores over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.

  1. Ice nucleation and its effect on the atmospheric transport of fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-02-01

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.

  2. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-08-01

    We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ? Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from -20 °C to -25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in the atmosphere. Simulations suggest that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions, and decrease annual mean concentrations in the upper troposphere.

  3. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    DOE PAGESBeta

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.; Yurkov, Andrey M

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more »monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  4. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  5. Expanding genomics of mycorrhizal symbiosis.

    PubMed

    Kuo, Alan; Kohler, Annegret; Martin, Francis M; Grigoriev, Igor V

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  6. A higher-level phylogenetic classification of the Fungi.

    PubMed

    Hibbett, David S; Binder, Manfred; Bischoff, Joseph F; Blackwell, Meredith; Cannon, Paul F; Eriksson, Ove E; Huhndorf, Sabine; James, Timothy; Kirk, Paul M; Lücking, Robert; Thorsten Lumbsch, H; Lutzoni, François; Matheny, P Brandon; McLaughlin, David J; Powell, Martha J; Redhead, Scott; Schoch, Conrad L; Spatafora, Joseph W; Stalpers, Joost A; Vilgalys, Rytas; Aime, M Catherine; Aptroot, André; Bauer, Robert; Begerow, Dominik; Benny, Gerald L; Castlebury, Lisa A; Crous, Pedro W; Dai, Yu-Cheng; Gams, Walter; Geiser, David M; Griffith, Gareth W; Gueidan, Cécile; Hawksworth, David L; Hestmark, Geir; Hosaka, Kentaro; Humber, Richard A; Hyde, Kevin D; Ironside, Joseph E; Kõljalg, Urmas; Kurtzman, Cletus P; Larsson, Karl-Henrik; Lichtwardt, Robert; Longcore, Joyce; Miadlikowska, Jolanta; Miller, Andrew; Moncalvo, Jean-Marc; Mozley-Standridge, Sharon; Oberwinkler, Franz; Parmasto, Erast; Reeb, Valérie; Rogers, Jack D; Roux, Claude; Ryvarden, Leif; Sampaio, José Paulo; Schüssler, Arthur; Sugiyama, Junta; Thorn, R Greg; Tibell, Leif; Untereiner, Wendy A; Walker, Christopher; Wang, Zheng; Weir, Alex; Weiss, Michael; White, Merlin M; Winka, Katarina; Yao, Yi-Jian; Zhang, Ning

    2007-05-01

    A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella. PMID:17572334

  7. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    PubMed

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis. PMID:22571668

  8. Morphological and Molecular Characterization of a Fungus, Hirsutella sp., Isolated from Planthoppers and Psocids in Argentina

    PubMed Central

    Toledo, Andrea V.; Simurro, María E.; Balatti, Pedro A.

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  9. Endophytic Fungi from Lycium chinense Mill and Characterization of Two New Korean Records of Colletotrichum

    PubMed Central

    Paul, Narayan Chandra; Lee, Hyang Burm; Lee, Ji Hye; Shin, Kyu Seop; Ryu, Tae Hee; Kwon, Hye Ri; Kim, Yeong Kuk; Youn, Young Nam; Yu, Seung Hun

    2014-01-01

    Chinese boxthorn or matrimony vine (Lycium chinense Mill) is found primarily in southeastern Europe and Asia, including Korea. The dried ripe fruits are commonly used as oriental medicinal purposes. Endophytic fungi were isolated from surface sterilized tissues and fruits of the medicinal plant in 2013 to identify the new or unreported species in Korea. Among 14 isolates, 10 morphospecies were selected for molecular identification with the internal transcribed spacer (ITS) gene. Phylogenetic analysis revealed that all isolates belonged to Ascomycota including the genera Acremonium, Colletotrichum, Cochliobolus, Fusarium, Hypocrea and Nemania. Two Colletotrichum species were identified at the species level, using three genes including internal transcribed spacer (ITS), glycerol-3-phosphate dehydrogenase (GAPDH) and Actin (ACT) for PCR and molecular data analysis along with morphological observations. The fungal isolates, CNU122031 and CNU122032 were identified as Colletotrichum fructicola and C. brevisporum, respectively. Morphological observations also well supported the molecular identification. C. brevisporum is represented unrecorded species in Korea and C. fructicola is the first record from the host plant. PMID:25170812

  10. Microbial hitchhikers on intercontinental dust: catching a lift in Chad

    PubMed Central

    Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G; Brown, Christopher T; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H; Kirchner, Timothy; de Quadros, Patricia Dorr; Triplett, Eric W; Broughton, William J; Gorbushina, Anna A

    2013-01-01

    Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. PMID:23254516

  11. A Five-Year Survey of Dematiaceous Fungi in a Tropical Hospital Reveals Potential Opportunistic Species

    PubMed Central

    Yew, Su Mei; Chan, Chai Ling; Lee, Kok Wei; Na, Shiang Ling; Tan, Ruixin; Hoh, Chee-Choong; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-01-01

    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ?1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance. PMID:25098697

  12. Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China.

    PubMed

    Hu, Weigang; Zhang, Qi; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2014-12-01

    While a vast number of studies have addressed the prokaryotic diversity in permafrost, characterized by subzero temperatures, low water activity, and extremely low rates of nutrient and metabolite transfer, fungal patterns have received surprisingly limited attention. Here, the fungal diversity and community structure were investigated by culture-dependent technique combined with cloning-restriction fragment length polymorphism (RFLP) analysis of sediments in a 10-m-long permafrost core from the Qinghai-Tibet Plateau of China. A total of 62 fungal phylotypes related to 10 distinct classes representing three phyla were recovered from 5031 clones generated in 13 environmental gene libraries. A large proportion of the phylotypes (25/62) that were distantly related to described fungal species appeared to be novel diversity. Ascomycota was the predominant group of fungi, with respect to both clone and phylotype number. Our results suggested there was the existence of cosmopolitan psychrophilic or psychrotolerant fungi in permafrost sediments, the community composition of fungi varied with increasing depth, while these communities largely distributed according to core layers. PMID:24920339

  13. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Sitepu, Irnayuli R; Shi, Shuang; Simmons, Blake A; Singer, Steven W; Boundy-Mills, Kyria; Simmons, Christopher W

    2014-12-01

    Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wickerhamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products. PMID:25348480

  14. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species.

    PubMed

    Menkis, Audrius; Urbina, Hector; James, Timothy Y; Rosling, Anna

    2014-12-01

    The class Archaeorhizomycetes (Taphrinomycotina, Ascomycota) was introduced to accommodate an ancient lineage of soil-inhabiting fungi found in association with plant roots. Based on environmental sequencing data Archaeorhizomycetes may comprise a significant proportion of the total fungal community in soils. Yet the only species described and cultivated in this class is Archaeorhizomyces finlayi. In this paper, we describe a second species from a pure culture, Archaeorhizomyces borealis NS99-600(T) (=CBS138755(ExT)) based on morphological, physiological, and multi-locus molecular characterization. Archaeorhizomyces borealis was isolated from a root tip of a Pinus sylvestris seedling grown in a forest nursery in Lithuania. Analysis of Archaeorhizomycete species from environmental samples shows that it has a Eurasian distribution and is the most commonly observed species. Archaeorhizomyces borealis shows slow growth in culture and forms yellowish creamy colonies, characteristics that distinguish A. borealis from its closest relative A. finlayi. Here we also propose a sequence-based taxonomic classification of Archaeorhizomycetes and predict that approximately 500 species in this class remain to be isolated and described. PMID:25457942

  15. Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum.

    PubMed

    Passarini, Michel R Z; Miqueletto, Paula B; de Oliveira, Valéria M; Sette, Lara D

    2015-02-01

    The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples. PMID:25213208

  16. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica.

    PubMed

    Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Li, Hai-Long; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

    2013-04-01

    Endophytic fungi associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica, that is, the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata, were studied by culture-dependent method. A total of 128 endophytic fungi were isolated from 1329 tissue segments of 14 samples. The colonization rate of endophytic fungi in three bryophytes species were 12.3%, 12.1%, and 8.7%, respectively. These isolates were identified to 21 taxa, with 15 Ascomycota, 5 Basidiomycota, and 1 unidentified fungus, based on morphological characteristics and sequence analyses of ITS region and D1/D2 domain. The dominant fungal endophyte was Hyaloscyphaceae sp. in B. hatcheri, Rhizoscyphus sp. in C. aciphyllum, and one unidentified fungus in S. uncinata; and their relative frequencies were 33.3%, 32.1%, and 80.0%, respectively. Furthermore, different Shannon-Weiner diversity indices (0.91-1.99) for endophytic fungi and low endophytic fungal composition similarities (0.19-0.40) were found in three bryophyte species. Growth temperature tests indicated that 21 taxa belong to psychrophiles (9), psychrotrophs (11), and mesophile (1). The results herein demonstrate that the Antarctic bryophytes are an interesting source of fungal endophytes and the endophytic fungal composition is different among the bryophyte species, and suggest that these fungal endophytes are adapted to cold stress in Antarctica. PMID:23350605

  17. Potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana as a biological control agent against the Red Palm Weevil, Rhynchophorus ferrugineus.

    PubMed

    Dembilio, Oscar; Quesada-Moraga, Enrique; Santiago-Alvarez, Cándido; Jacas, Josep A

    2010-07-01

    The potential of a strain of Beauveria bassiana (Ascomycota: Clavicipitaceae) obtained from a naturally infected Rhynchophorus ferrugineus (Coleoptera: Curculionidae) pupa as a biological control agent against this weevil was evaluated both in the laboratory and in semi-field assays. Laboratory results indicate that this strain of B. bassiana can infect eggs, larvae and adults of R. ferrugineus (LC(50) from 6.3 x 10(7) to 3.0 x 10(9) conidia per ml). However, mortality was not the only indicator of treatment efficacy because adults of either sex inoculated with the fungus efficiently transmitted the disease to untreated adults of the opposite sex, with male-to-female and female-to-male rates of transmission of 55% and 60%, respectively. In addition, treatment with B. bassiana significantly reduced fecundity (up to 62.6%) and egg hatching (32.8%) in pairing combinations with fungus-challenged males, females or both sexes. Likewise, 30-35% increase in larval mortality was observed in larvae obtained from eggs from fungus-challenged females or from untreated females coupled with inoculated males, resulting in an overall 78% progeny reduction. Semi-field preventive assays on potted 5-year old Phoenix canariensis palms, with efficacies up to 85.7%, confirmed the potential of this strain as a biological control agent against R. ferrugineus. PMID:20398670

  18. Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines.

    PubMed

    Stuart, Rodrigo Makowiecky; Romão, Aline Silva; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio; Araújo, Welington Luiz

    2010-04-01

    The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community. PMID:20191263

  19. A Search for the Phylogenetic Relationship of the Ascomycete Rhizoctonia leguminicola Using Genetic Analysis.

    PubMed

    Alhawatema, Mohammad S; Sanogo, Soum; Baucom, Deana L; Creamer, Rebecca

    2015-06-01

    Rhizoctonia leguminicola, which causes fungal blackpatch disease of legumes and other plants, produces slaframine and swainsonine that are largely responsible for causing salivation, lacrimation, frequent urination, and diarrhea in grazing animals including cattle, sheep, and horses. The original identification of R. leguminicola was based only on morphological characters of the fungal mycelia in cultures because of the lack of fungal genetic markers. Recent investigations suggested that R. leguminicola does not belong to genus Rhizoctonia and is instead a member of the ascomycetes, necessitating an accurate reclassification. The objective of this study was to use both genetic and morphological characters of R. leguminicola to find taxonomic placement of this pathogen within ascomycetes. Internal transcribed spacer region (ITS) and glyceraldehyde-3-phosphate dehydrogenase (gpd) encoding gene were amplified from R. leguminicola isolates by PCR using universal primers and sequencing. Rhizoctonia leguminicola ITS and gpd sequences were aligned with other fungal sequences of close relatives, and phylogenetic trees were constructed using neighbor-joining and parsimony analyses. Rhizoctonia leguminicola isolates were clustered within a clade that contains several genera of ascomycetes belonging to the class dothideomycetes. We suggest that the fungus is misidentified in the genus Rhizoctonia and propose its reclassification in a new genus within the phylum Ascomycota. PMID:25585493

  20. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.

    PubMed

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-yeasts split concomitant with the yeasts' genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  1. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma

    PubMed Central

    Jaklitsch, Walter M.; Stadler, Marc; Voglmayr, Hermann

    2012-01-01

    Three new species of Hypocrea/Trichoderma sect. Trichoderma (Hypocreaceae, Hypocreales, Ascomycota, Fungi) are described from recent collections in southern Europe and the Canary Islands. They have been characterized by morphological and molecular methods, including microscopic examination of the teleomorph in thin sections, the anamorph, growth rate experiments and phylogenetic analyses based on a part of the translation elongation factor 1-alpha encoding gene (tef1) containing the two last introns and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Analyses involving tef1 did not unequivocally resolve the sister clade relationship of Hypocrea caerulescens relative to the Koningii and Viride clades, while analyses based on rpb2 clearly suggest a close relationship with the former, although the phenotype of H. caerulescens is similar to H. viridescens, particularly by its warted conidia and a coconut-like odor in CMD culture. Hypocrea hispanica and T. samuelsii however are clearly related to the Viride clade by both phylogenetic markers, despite their morphological similarity to H. koningii and its relatives. An apparently specific blue pigment is formed in CMD cultures by Hypocrea caerulescens but could not be obtained by extraction with organic solvents. PMID:22453122

  2. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    PubMed

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests. PMID:17503580

  3. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Pöschl, U.

    2015-02-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in southeast Wyoming, we found ice-nucleation-active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). To our knowledge this is the first report of ice nucleation activity in a zygomycotic fungi because the few known INA fungi all belong to the phyla Ascomycota and Basidiomycota. M. alpina is known to be saprobic and widespread in soil, and Mortierella spores are present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, < 300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  4. Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA.

    PubMed

    Cappitelli, Francesca; Salvadori, Ornella; Albanese, Domenico; Villa, Federica; Sorlini, Claudia

    2012-01-01

    Microbial deterioration of stone is a widely recognised problem affecting monuments and buildings all over the world. In this paper, dark-coloured staining, putatively attributed to microorganisms, on areas of the National Museum of the American Indian Building, Washington, DC, USA, were studied. Observations by optical and electron microscopy of surfaces and cross sections of limestone indicated that biofilms, which penetrated up to a maximum depth of about 1 mm, were mainly composed of cyanobacteria, with the predominance of Gloeocapsa and Lyngbya. Denaturing gradient gel electrophoresis analysis revealed that the microbial community also included eukaryotic algae (Trebouxiophyceae) and fungi (Ascomycota), along with a consortium of bacteria. Energy-dispersive X-ray spectroscopy analysis showed the same elemental composition in stained and unstained areas of the samples, indicating that the discolouration was not due to abiotic chemical changes within the stone. The dark pigmentation of the stone was correlated with the high content of scytonemin, which was found in all samples. PMID:22435895

  5. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  6. Diversity and saline resistance of endophytic fungi associated with Pinus thunbergii in coastal shelterbelts of Korea.

    PubMed

    Min, Young Ju; Park, Myung Soo; Fong, Jonathan J; Quan, Ying; Jung, Sungcheol; Lim, Young Woon

    2014-03-28

    The Black Pine, Pinus thunbergii, is widely distributed along the eastern coast of Korea and its importance as a shelterbelt was highlighted after tsunamis in Indonesia and Japan. The root endophytic diversity of P. thunbergii was investigated in three coastal regions; Goseong, Uljin, and Busan. Fungi were isolated from the root tips, and growth rates of pure cultures were measured and compared between PDA with and without 3% NaCl to determine their saline resistance. A total of 259 isolates were divided into 136 morphotypes, of which internal transcribed spacer region sequences identified 58 species. Representatives of each major fungi phylum were present: 44 Ascomycota, 8 Zygomycota, and 6 Basidiomycota. Eighteen species exhibited saline resistance, many of which were Penicillium and Trichoderma species. Shoreline habitats harbored higher saline-tolerant endophytic diversity compared with inland sites. This investigation indicates that endophytes of P. thunbergii living closer to the coast may have higher resistance to salinity and potentially have specific relationships with P. thunbergii. PMID:24317482

  7. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales

    PubMed Central

    Luo, Jing; Qiu, Huan; Cai, Guohong; Wagner, Nicole E.; Bhattacharya, Debashish; Zhang, Ning

    2015-01-01

    The order Magnaporthales (Ascomycota, Fungi) includes devastating pathogens of cereals, such as the rice blast fungus Pyricularia (Magnaporthe) oryzae, which is a model in host-pathogen interaction studies. Magnaporthales also includes saprotrophic species associated with grass roots and submerged wood. Despite its scientific and economic importance, the phylogenetic position of Magnaporthales within Sordariomycetes and the interrelationships of its constituent taxa, remain controversial. In this study, we generated novel transcriptome data from 21 taxa that represent key Magnaporthales lineages of different infection and nutrition modes and phenotypes. Phylogenomic analysis of >200 conserved genes allowed the reconstruction of a robust Sordariomycetes tree of life that placed the monophyletic group of Magnaporthales sister to Ophiostomatales. Among Magnaporthales, three major clades were recognized: 1) an early diverging clade A comprised of saprotrophs associated with submerged woods; 2) clade B that includes the rice blast fungus and other pathogens that cause blast diseases of monocot plants. These species infect the above-ground tissues of host plants using the penetration structure, appressorium; and 3) clade C comprised primarily of root-associated species that penetrate the root tissue with hyphopodia. The well-supported phylogenies provide a robust framework for elucidating evolution of pathogenesis, nutrition modes, and phenotypic characters in Magnaporthales. PMID:25819715

  8. Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest

    PubMed Central

    Trogisch, Stefan; Both, Sabine; Scholten, Thomas; Bruelheide, Helge; Buscot, François

    2013-01-01

    Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ?80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition. PMID:23826151

  9. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales.

    PubMed

    Luo, Jing; Qiu, Huan; Cai, Guohong; Wagner, Nicole E; Bhattacharya, Debashish; Zhang, Ning

    2015-01-01

    The order Magnaporthales (Ascomycota, Fungi) includes devastating pathogens of cereals, such as the rice blast fungus Pyricularia (Magnaporthe) oryzae, which is a model in host-pathogen interaction studies. Magnaporthales also includes saprotrophic species associated with grass roots and submerged wood. Despite its scientific and economic importance, the phylogenetic position of Magnaporthales within Sordariomycetes and the interrelationships of its constituent taxa, remain controversial. In this study, we generated novel transcriptome data from 21 taxa that represent key Magnaporthales lineages of different infection and nutrition modes and phenotypes. Phylogenomic analysis of >200 conserved genes allowed the reconstruction of a robust Sordariomycetes tree of life that placed the monophyletic group of Magnaporthales sister to Ophiostomatales. Among Magnaporthales, three major clades were recognized: 1) an early diverging clade A comprised of saprotrophs associated with submerged woods; 2) clade B that includes the rice blast fungus and other pathogens that cause blast diseases of monocot plants. These species infect the above-ground tissues of host plants using the penetration structure, appressorium; and 3) clade C comprised primarily of root-associated species that penetrate the root tissue with hyphopodia. The well-supported phylogenies provide a robust framework for elucidating evolution of pathogenesis, nutrition modes, and phenotypic characters in Magnaporthales. PMID:25819715

  10. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing.

    PubMed

    Vargas-Gastélum, Lluvia; Romero-Olivares, Adriana L; Escalante, Ana E; Rocha-Olivares, Axayácatl; Brizuela, Carlos; Riquelme, Meritxell

    2015-05-01

    Fungi play fundamental ecological roles in terrestrial ecosystems. However, their distribution and diversity remain poorly described in natural communities, particularly in arid and semi-arid ecosystems. In order to identify environmental factors determining fungal community structure in these systems, we assessed their diversity in conjunction with soil physicochemical characteristics in a semi-arid ecosystem in Baja California, Mexico, endemic for Coccidioidomycosis (Valley Fever). Two different microhabitats, burrows (influenced by rodent activity) and topsoil, were compared in winter and summer. Using a metagenomic approach, the ITS1 region of nuclear ribosomal DNA was used as barcode. A total of 1940 Operational Taxonomic Units (OTUs) were identified from 362 332 ITS1 sequences obtained by 454 pyrosequencing. Differences in fungal composition between seasons were clearly identified. Moreover, differences in composition between microhabitats were mainly correlated to significant differences in environmental factors, such as moisture and clay content in topsoil samples, and temperature and electrical conductivity in burrow samples. Overall, the fungal community structure (dominated by Ascomycota and Basidiomycota) was less variable between seasons in burrow than in topsoil samples. Coccidioides spp. went undetected by pyrosequencing. However, a nested PCR approach revealed its higher prevalence in burrows. PMID:25877341

  11. Gene fusion, fission, lateral transfer, and loss: Not-so-rare events in the evolution of eukaryotic ATP citrate lyase.

    PubMed

    Gawryluk, Ryan M R; Eme, Laura; Roger, Andrew J

    2015-10-01

    ATP citrate lyase (ACL) is an enzyme critical to the generation of cytosolic acetyl-CoA in eukaryotes. In most studied organisms, ACL activity is conferred in combination by two proteins, ACLA and ACLB (dsACL); however, animals encode a single-subunit ACL (ssACL) - the result of a gene fusion event. Through phylogenetic analyses, we investigated the evolution of ACL in a broad range of eukaryotes, including numerous microbes (protists). We show that the fused form is not restricted to animals, and is instead widely distributed among eukaryotes. Furthermore, ssACL and dsACL are patchily distributed and appear to be mutually exclusive; both types arose early in eukaryotic evolution. Finally, we present several compelling hypotheses of lateral gene transfer and gene loss, along with the secondary gene fission of ssACL in Ascomycota. Collectively, our in-depth analyses suggest that a complex suite of evolutionary events, usually considered rare, has shaped the evolution of ACL in eukaryotes. PMID:26025427

  12. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    PubMed Central

    Dreesens, Lisa L.; Lee, Charles K.; Cary, S. Craig

    2014-01-01

    Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important) heterotrophic component of the ecosystem. PMID:25079129

  13. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress

    PubMed Central

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  14. A quality control mechanism linking meiotic success to release of ascospores.

    PubMed

    Guo, Haiyan; King, Megan C

    2013-01-01

    Eukaryotic organisms employ a variety of mechanisms during meiosis to assess and ensure the quality of their gametes. Defects or delays in successful meiotic recombination activate conserved mechanisms to delay the meiotic divisions, but many multicellular eukaryotes also induce cell death programs to eliminate gametes deemed to have failed during meiosis. It is generally thought that yeasts lack such mechanisms. Here, we show that in the fission yeast Schizosaccharomyces pombe, defects in meiotic recombination lead to the activation of a checkpoint that is linked to ascus wall endolysis--the process by which spores are released in response to nutritional cues for subsequent germination. Defects in meiotic recombination are sensed as unrepaired DNA damage through the canonical ATM and ATR DNA damage response kinases, and this information is communicated to the machinery that stimulates ascus wall breakdown. Viability of spores that undergo endolysis spontaneously is significantly higher than that seen upon chemical endolysis, demonstrating that this checkpoint contributes to a selective mechanism for the germination of high quality progeny. These results provide the first evidence for the existence of a checkpoint linking germination to meiosis and suggest that analysis solely based on artificial, enzymatic endolysis bypasses an important quality control mechanism in this organism and potentially other ascomycota, which are models widely used to study meiosis. PMID:24312672

  15. Microbial hitchhikers on intercontinental dust: catching a lift in Chad.

    PubMed

    Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G; Brown, Christopher T; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H; Kirchner, Timothy; de Quadros, Patricia Dorr; Triplett, Eric W; Broughton, William J; Gorbushina, Anna A

    2013-04-01

    Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes-Bacillaceae, (b) Actinobacteria-Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria-Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes-Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. PMID:23254516

  16. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys.

    PubMed

    Dreesens, Lisa L; Lee, Charles K; Cary, S Craig

    2014-01-01

    Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important) heterotrophic component of the ecosystem. PMID:25079129

  17. Molecular identification and characterization of the edible and medicinal Morchellaceae germplasm collection of "mulch morels".

    PubMed

    Ondrej, Vladan; Havránek, Pavel; Kitner, Miloslav; Nemcová, Pavla

    2011-01-01

    The accessions of the morel (Morchellaceae, Ascomycota) germplasm collection were genetically analyzed, in order to determine both their inter- and intraspecific relationships. This was done as a starting point for cultivation experiments, as well as to provide a genetic description of invasive morel populations linked to mulched garden patches, as compared with outdoor morels. The phylogenetic data, which was based on the internal transcribed spacer (ITS) sequences and supported by amplified fragment length polymorphism (AFLP) analyses, divided the germplasm isolates and accessions from the sequence database into three groups of yellow morels, and three groups of black morels, involving a remarkable monotypic genus of half-free morels (Mitrophora semilibera), the groups Morchella conica and M. angusticeps. Both Morchella groups include morel samples that use mulch bark as a vector for their spread across gardens in various locations in the Czech Republic. The AFLP analysis supported the ITS-based phylogenetic data and determined the intraspecific genetic profile of these, as a rule, almost entirely unstudied isolates. PMID:22164767

  18. Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina.

    PubMed

    Toledo, Andrea V; Simurro, María E; Balatti, Pedro A

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  19. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts

    PubMed Central

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R.; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi–yeasts split concomitant with the yeasts’ genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  20. A Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae. PMID:21984921

  1. Fungal life in the dead sea.

    PubMed

    Oren, Aharon; Gunde-Cimerman, Nina

    2012-01-01

    The waters of the Dead Sea currently contain about 348 g/l salts (2 M Mg(2+), 0.5 M Ca(2+), 1.5 M Na(+), 0.2 M K(+), 6.5 M Cl(-), 0.1 M Br(-)). The pH is about 6.0. After rainy winters the surface waters become diluted, triggering development of microbial blooms. The 1980 and 1992 blooms were dominated by the unicellular green alga Dunaliella and red Archaea. At least 70 species (in 26 genera) of Oomycota (Chromista), Mucoromycotina, Ascomycota, and Basidiomycota (Fungi) were isolated from near-shore localities and offshore stations, including from deep waters. Aspergillus and Eurotium were most often recovered. Aspergillus terreus, A. sydowii, A. versicolor, Eurotium herbariorum, Penicillium westlingii, Cladosporium cladosporioides, C. sphaerospermum, C. ramnotellum, and C. halotolerans probably form the stable core of the community. The species Gymnascella marismortui may be endemic. Mycelia of Dead Sea isolates of A. versicolor and Chaetomium globosum remained viable for up to 8 weeks in Dead Sea water; mycelia of other species survived for many weeks in 50% Dead Sea water. Many isolates showed a very high tolerance to magnesium salts. There is no direct proof that fungi contribute to the heterotrophic activity in the Dead Sea, but fungi may be present at least locally and temporarily, and their enzymatic activities such as amylase, protease, and cellulase may play a role in the lake's ecosystem. PMID:22222829

  2. Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes

    PubMed Central

    Wu, Yuan; Yang, Jian; Yang, Fan; Liu, Tao; Leng, Wenchuan; Chu, Yonglie; Jin, Qi

    2009-01-01

    Background Dermatophytes are fungi that cause superficial infections of the skin, hair, and nails. They are the most common agents of fungal infections worldwide. Dermatophytic fungi constitute three genera, Trichophyton, Epidermophyton, and Microsporum, and the evolutionary relationships between these genera are epidemiologically important. Mitochondria are considered to be of monophyletic origin and mitochondrial sequences offer many advantages for phylogenetic studies. However, only one complete dermatophyte mitochondrial genome (E. floccosum) has previously been determined. Results The complete mitochondrial DNA sequences of five dermatophyte species, T. rubrum (26,985 bp), T. mentagrophytes (24,297 bp), T. ajelloi (28,530 bp), M. canis (23,943 bp) and M. nanum (24,105 bp) were determined. These were compared to the E. floccosum sequence. Mitochondrial genomes of all 6 species were found to harbor the same set of genes arranged identical order indicating that these dermatophytes are closely related. Genome size differences were largely due to variable lengths of non-coding intergenic regions and the presence/absence of introns. Phylogenetic analyses based on complete mitochondrial genomes reveals that the divergence of the dermatophyte clade was later than of other groups of pathogenic fungi. Conclusion This is the first systematic comparative genomic study on dermatophytes, a highly conserved and recently-diverged lineage of ascomycota fungi. The data reported here provide a basis for further exploration of interrelationships between dermatophytes and will contribute to the study of mitochondrial evolution in higher fungi. PMID:19457268

  3. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress.

    PubMed

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community's shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities' changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  4. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  5. Independent Expansion of Zincin Metalloproteinases in Onygenales Fungi May Be Associated with Their Pathogenicity

    PubMed Central

    Li, Juan; Zhang, Ke-Qin

    2014-01-01

    To get a comprehensive view of fungal M35 family (deuterolysin) and M36 family (fungalysin) genes, we conducted genome-wide investigations and phylogenetic analyses of genes in these two families from 50 sequenced Ascomycota fungi with different life styles. Large variations in the number of M35 family and M36 family genes were found among different fungal genomes, indicating that these two gene families have been highly dynamic through fungal evolution. Moreover, we found obvious expansions of Meps in two families of Onygenales: Onygenaceae and Arthodermataceae, whereas species in family Ajellomycetace did not show expansion of these genes. The strikingly different gene duplication and loss patterns in Onygenales may be associated with the different pathogenicity of these species. Interestingly, likelihood ratio tests (LRT) of both M35 family and M36 family genes suggested that several branches leading to the duplicated genes in dermatophytic and Coccidioides fungi had signatures of positive selection, indicating that the duplicated Mep genes have likely diverged functionally to play important roles during the evolution of pathogenicity of dermatophytic and Coccidioides fungi. The potentially positively selected residues discovered by our analysis may have contributed to the development of new physiological functions of the duplicated Mep genes in dermatophytic fungi and Coccidioides species. Our study adds to the current knowledge of the evolution of Meps in fungi and also establishes a theoretical foundation for future experimental investigations. PMID:24587291

  6. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  7. Taxonomic revision of the Lecania cyrtella group based on molecular and morphological evidence.

    PubMed

    Naesborg, Rikke Reese

    2008-01-01

    This investigation elucidates relationships within the Lecania cyrtella group (Ramalinaceae, lichenized Ascomycota) by employing morphological, anatomical and molecular methods. The morphological studies included eleven species of Lecania, L. cyrtella, L. cyrtellina, L. dubitans, L. erysibe, L. hutchinsiae, L. leprosa, L. madida, L. prasinoides, L. sambucina, L. sordida and L. sylvestris, and a key to the species plus species descriptions are provided. Lecania madida, a new species from the Pacific Northwest of North America, L. leprosa, a new species from eastern Europe, and L. sordida, a new species from Europe, are described here. The known range of L. prasinoides is greatly extended to include the Baltic countries, Nordic countries and western Canada. Lectotypes are designated for L. cyrtella and L. sambucina. Molecular relationships within the group were examined with haplotype network estimations and phylogenetic reconstructions. Part of the IGS region as well as the complete ITS region were sequenced and analyzed. Both the haplotype network and the phylogenetic analyses indicate that the included species, as conceived in the morphological examinations, all are monophyletic. PMID:18751548

  8. Organization and Evolutionary Trajectory of the Mating Type (MAT) Locus in Dermatophyte and Dimorphic Fungal Pathogens? †

    PubMed Central

    Li, Wenjun; Metin, Banu; White, Theodore C.; Heitman, Joseph

    2010-01-01

    Sexual reproduction in fungi is governed by a specialized genomic region, the mating type (MAT) locus, whose gene identity, organization, and complexity are diverse. We identified the MAT locus of five dermatophyte fungal pathogens (Microsporum gypseum, Microsporum canis, Trichophyton equinum, Trichophyton rubrum, and Trichophyton tonsurans) and a dimorphic fungus, Paracoccidioides brasiliensis, and performed phylogenetic analyses. The identified MAT locus idiomorphs of M. gypseum control cell type identity in mating assays, and recombinant progeny were produced. Virulence tests in Galleria mellonella larvae suggest the two mating types of M. gypseum may have equivalent virulence. Synteny analysis revealed common features of the MAT locus shared among these five dermatophytes: namely, a small size (?3 kb) and a novel gene arrangement. The SLA2, COX13, and APN2 genes, which flank the MAT locus in other Ascomycota are instead linked on one side of the dermatophyte MAT locus. In addition, the transcriptional orientations of the APN2 and COX13 genes are reversed compared to the dimorphic fungi Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. A putative transposable element, pogo, was found to have inserted in the MAT1-2 idiomorph of one P. brasiliensis strain but not others. In conclusion, the evolution of the MAT locus of the dermatophytes and dimorphic fungi from the last common ancestor has been punctuated by both gene acquisition and expansion, and asymmetric gene loss. These studies further support a foundation to develop molecular and genetic tools for dermatophyte and dimorphic human fungal pathogens. PMID:19880755

  9. Ophiocordyceps unilateralis

    PubMed Central

    Elliot, Simon L; Hughes, David P

    2011-01-01

    Ophiocordyceps unilateralis (Ascomycota: Hypocreales) is a specialized parasite that infects, manipulates and kills formicine ants, predominantly in tropical forest ecosystems. We have reported previously, based on a preliminary study in remnant Atlantic Forest in Minas Gerais (Brazil), that O. unilateralis represents a species complex. On each of the four species of infected carpenter ant (Camponotus) collected, the fungus—characterized macroscopically by a single stalk arising from the dorsal neck region on which the sexual structures (stromatal plates) are borne laterally—can readily be distinguished both microscopically and functionally. Here, we describe and discuss the biology, life cycle and infection strategies of O. unilateralis s.l. and hypothesize that there may be hundreds of species within the complex parasitizing formicine ants worldwide. We then address the diversity within related hypocrealean fungi, with particular reference to symbionts (mutualists through to parasites), and argue that the widely-quoted total of extant fungi (1.5 million species) may be grossly underestimated. PMID:22046474

  10. ?12-Fatty Acid Desaturase from Candida parapsilosis Is a Multifunctional Desaturase Producing a Range of Polyunsaturated and Hydroxylated Fatty Acids

    PubMed Central

    Bu?ek, Aleš; Matoušková, Petra; Sychrová, Hana; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2014-01-01

    Numerous ?12-, ?15- and multifunctional membrane fatty acid desaturases (FADs) have been identified in fungi, revealing great variability in the enzymatic specificities of FADs involved in biosynthesis of polyunsaturated fatty acids (PUFAs). Here, we report gene isolation and characterization of novel ?12/?15- and ?15-FADs named CpFad2 and CpFad3, respectively, from the opportunistic pathogenic yeast Candida parapsilosis. Overexpression of CpFad3 in Saccharomyces cerevisiae strains supplemented with linoleic acid (?9,?12-18:2) and hexadecadienoic acid (?9,?12-16:2) leads to accumulation of ?15-PUFAs, i.e., ?-linolenic acid (?9,?12,?15-18:3) and hexadecatrienoic acid with an unusual terminal double bond (?9,?12,?15-16:3). CpFad2 produces a range of ?12- and ?15-PUFAs. The major products of CpFad2 are linoleic and hexadecadienoic acid (?9,?12-16:2), accompanied by ?-linolenic acid and hexadecatrienoic acid (?9,?12,?15-16:3). Using GC/MS analysis of trimethylsilyl derivatives, we identified ricinoleic acid (12-hydroxy-9-octadecenoic acid) as an additional product of CpFad2. These results demonstrate that CpFAD2 is a multifunctional FAD and indicate that detailed analysis of fatty acid derivatives might uncover a range of enzymatic selectivities in other ?12-FADs from budding yeasts (Ascomycota: Saccharomycotina). PMID:24681902

  11. Genetics, genomics and evolution of ergot alkaloid diversity.

    PubMed

    Young, Carolyn A; Schardl, Christopher L; Panaccione, Daniel G; Florea, Simona; Takach, Johanna E; Charlton, Nikki D; Moore, Neil; Webb, Jennifer S; Jaromczyk, Jolanta

    2015-04-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  12. Three European species of Hypocrea with reddish brown stromata and green ascospores

    PubMed Central

    Jaklitsch, Walter M.; Kubicek, Christian P.; Druzhinina, Irina S.

    2011-01-01

    The European species Hypocrea epimyces (Hypocreales, Ascomycota, Fungi) is redescribed based on the holotype including the drawing on its envelope by Saccardo and freshly collected material. The holomorphs of two closely related species, H. alni and H. brunneoviridis, are described as new species of the genus. They are characterized with morphological and molecular methods, including culture studies and phylogenetic analyses with internal transcribed spacers 1 and 2 as a part of the ribosomal RNA gene cluster, calmodulin, endochitinase, intron 4 of the translation elongation factor 1-alpha gene, and a part of the RNA polymerase II subunit B gene as phylogenetic markers. All species described here have green ascospores. Although phylogenetically closely related to H. lixii, they form reddish brown instead of green to black stromata. Except for H. brunneoviridis, forming nearly gliocladium-like conidiophores, the anamorphs of these species are similar to each other but vary in the angles of conidiophore branches and phialides, in phenotypic arrangement of conidiation on growth plates and in growth rates of cultures. PMID:18959165

  13. Phylogenetic Relationships Matter: Antifungal Susceptibility among Clinically Relevant Yeasts

    PubMed Central

    Schmalreck, A. F.; Becker, K.; Fegeler, W.; Czaika, V.; Ulmer, H.; Lass-Flörl, C.

    2014-01-01

    The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1?, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n = 13; Basidiomycota, n = 4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management. PMID:24366735

  14. Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared Geochemical Drivers Observed in Natural Analogues.

    PubMed

    Santini, Talitha C; Warren, Lesley A; Kendra, Kathryn E

    2015-08-01

    Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers. PMID:25979895

  15. Marine Drugs from Sponge-Microbe Association—A Review

    PubMed Central

    Thomas, Tresa Remya A.; Kavlekar, Devanand P.; LokaBharathi, Ponnapakkam A.

    2010-01-01

    The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php. PMID:20479984

  16. Predation success by a plant-ant indirectly favours the growth and fitness of its host myrmecophyte.

    PubMed

    Dejean, Alain; Orivel, Jérôme; Rossi, Vivien; Roux, Olivier; Lauth, Jérémie; Malé, Pierre-Jean G; Céréghino, Régis; Leroy, Céline

    2013-01-01

    Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to "byproduct benefits" stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher ?(15)N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms. PMID:23516632

  17. Digestive tract mycobiota: a source of infection.

    PubMed

    Gouba, N; Drancourt, M

    2015-01-01

    The human mycobiome includes 390 fungal species detected on the skin, in the vagina, in the oral cavity, and in the digestive tract that includes 335 species and 158 genera. Among these, 221 species are found only in the digestive tract, 88 only in the oral cavity, and 26 in both. These species belong to 126 genera of yeast and filamentous fungi, of the Ascomycota, Basidiomycota, and Zygomycota phyla. Forty species were identified only by culture, 188 species by molecular techniques, and 19 species with both techniques. Fungal diversity does not differ significantly according to sex but Basidiobolus ranarum is significantly more prevalent in male individuals and Paecilomyces fumosoroseus in female individuals. Fungal diversity is significantly higher in adults than in infants. Only 42 species are identified in the course of inflammatory bowel disease, with 27 species specific to IBD. Twenty-nine are identified in HBV infected patients including 17 specific species, and 11 in HIV-infected patients with the specific Histoplasma capsulatum. Genotyping proved that the gut mycobiome was a source of fungal infection caused by Candida albicans and Candida glabrata. The authors suggest updating the repertoire of the human digestive tract in healthy individuals and patients. Fungal culturomics must be intensified to complete this repertoire. PMID:25684583

  18. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans.

    PubMed

    Kim, Hanhae; Jung, Kwang-Woo; Maeng, Shinae; Chen, Ying-Lien; Shin, Junha; Shim, Jung Eun; Hwang, Sohyun; Janbon, Guilhem; Kim, Taeyup; Heitman, Joseph; Bahn, Yong-Sun; Lee, Insuk

    2015-01-01

    Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans. PMID:25739925

  19. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps.

    PubMed

    Park, Hee Kuk; Ha, Myung-Ho; Park, Sang-Gue; Kim, Myeung Nam; Kim, Beom Joon; Kim, Wonyong

    2012-01-01

    The human scalp harbors a vast community of microbial mutualists, the composition of which is difficult to elucidate as many of the microorganisms are not culturable using current culture techniques. Dandruff, a common scalp disorder, is known as a causative factor of a mild seborrheic dermatitis as well as pityriasis versicolor, seborrheic dermatitis, and atopic dermatitis. Lipophilic yeast Malassezia is widely accepted to play a role in dandruff, but relatively few comprehensive studies have been reported. In order to investigate fungal biota and genetic resources of dandruff, we amplified the 26S rRNA gene from samples of healthy scalps and dandruff-afflicted scalps. The sequences were analyzed by a high throughput method using a GS-FLX 454 pyrosequencer. Of the 74,811 total sequence reads, Basidiomycota (Filobasidium spp.) was the most common phylum associated with dandruff. In contrast, Ascomycota (Acremonium spp.) was common in the healthy scalps. Our results elucidate the distribution of fungal communities associated with dandruff and provide new avenues for the potential prevention and treatment of dandruff. PMID:22393454

  20. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  1. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species.

    PubMed

    López-Quintero, Carlos A; Atanasova, Lea; Franco-Molano, A Esperanza; Gams, Walter; Komon-Zelazowska, Monika; Theelen, Bart; Müller, Wally H; Boekhout, Teun; Druzhinina, Irina

    2013-11-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution. PMID:23884864

  2. Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts

    PubMed Central

    Eisen, Jonathan A.; Kopp, Artyom

    2012-01-01

    The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach. PMID:22885750

  3. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata.

    PubMed

    Pöppel, Anne-Kathrin; Koch, Aline; Kogel, Karl-Heinz; Vogel, Heiko; Kollewe, Christian; Wiesner, Jochen; Vilcinskas, Andreas

    2014-06-01

    We report the identification, cloning, heterologous expression and functional characterization of a novel antifungal peptide named lucimycin from the common green bottle fly Lucilia sericata. The lucimycin cDNA was isolated from a library of genes induced during the innate immune response in L. sericata larvae, which are used as therapeutic maggots. The peptide comprises 77 amino acid residues with a molecular mass of 8.2 kDa and a pI of 6.6. It is predicted to contain a zinc-binding motif and to form a random coil, lacking ?-sheets or other secondary structures. Lucimycin was active against fungi from the phyla Ascomycota, Basidiomycota and Zygomycota, in addition to the oomycete Phytophtora parasitica, but it was inactive against bacteria. A mutant version of lucimycin, lacking the four C-terminal amino acid residues, displayed 40-fold lower activity. The activity of lucimycin against a number of highly-destructive plant pathogens could be exploited to produce transgenic crops that are resistant against fungal diseases. PMID:24622788

  4. ?12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids.

    PubMed

    Bu?ek, Aleš; Matoušková, Petra; Sychrová, Hana; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2014-01-01

    Numerous ?12-, ?15- and multifunctional membrane fatty acid desaturases (FADs) have been identified in fungi, revealing great variability in the enzymatic specificities of FADs involved in biosynthesis of polyunsaturated fatty acids (PUFAs). Here, we report gene isolation and characterization of novel ?12/?15- and ?15-FADs named CpFad2 and CpFad3, respectively, from the opportunistic pathogenic yeast Candida parapsilosis. Overexpression of CpFad3 in Saccharomyces cerevisiae strains supplemented with linoleic acid (?9,?12-18:2) and hexadecadienoic acid (?9,?12-16:2) leads to accumulation of ?15-PUFAs, i.e., ?-linolenic acid (?9,?12,?15-18:3) and hexadecatrienoic acid with an unusual terminal double bond (?9,?12,?15-16:3). CpFad2 produces a range of ?12- and ?15-PUFAs. The major products of CpFad2 are linoleic and hexadecadienoic acid (?9,?12-16:2), accompanied by ?-linolenic acid and hexadecatrienoic acid (?9,?12,?15-16:3). Using GC/MS analysis of trimethylsilyl derivatives, we identified ricinoleic acid (12-hydroxy-9-octadecenoic acid) as an additional product of CpFad2. These results demonstrate that CpFAD2 is a multifunctional FAD and indicate that detailed analysis of fatty acid derivatives might uncover a range of enzymatic selectivities in other ?12-FADs from budding yeasts (Ascomycota: Saccharomycotina). PMID:24681902

  5. Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression.

    PubMed

    Hiraishi, Hiroyuki; Oatman, Jamie; Haller, Sherry L; Blunk, Logan; McGivern, Benton; Morris, Jacob; Papadopoulos, Evangelos; Gutierrez, Wade; Gordon, Michelle; Bokhari, Wahaj; Ikeda, Yuka; Miles, David; Fellers, John; Asano, Masayo; Wagner, Gerhard; Tazi, Loubna; Rothenburg, Stefan; Brown, Susan J; Asano, Katsura

    2014-01-01

    Translational control of transcription factor ATF4 through paired upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While it is typically induced by phosphorylation of eIF2?, ATF4 translation can be also induced by expression of a translational inhibitor protein, eIF5-mimic protein 1 (5MP1, also known as BZW2) in mammals. Here we show that the 5MP gene is maintained in eukaryotes under strong purifying selection, but is uniquely missing in two major phyla, nematoda and ascomycota. The common function of 5MP from protozoa, plants, fungi and insects is to control translation by inhibiting eIF2. The affinity of human 5MP1 to eIF2? was measured as being equivalent to the published value of human eIF5 to eIF2?, in agreement with effective competition of 5MP with eIF5 for the main substrate, eIF2. In the red flour beetle, Tribolium castaneum, RNA interference studies indicate that 5MP facilitates expression of GADD34, a downstream target of ATF4. Furthermore, both 5MP and ATF4 are essential for larval development. Finally, 5MP and the paired uORFs allowing ATF4 control are conserved in the entire metazoa except nematoda. Based on these findings, we discuss the phylogenetic and functional linkage between ATF4 regulation and 5MP expression in this group of eukaryotes. PMID:25147208

  6. The Gut Microbiota of Workers of the Litter-Feeding Termite Syntermes wheeleri (Termitidae: Syntermitinae): Archaeal, Bacterial, and Fungal Communities.

    PubMed

    Santana, Renata Henrique; Catão, Elisa Caldeira Pires; Lopes, Fabyano Alvares Cardoso; Constantino, Reginaldo; Barreto, Cristine Chaves; Krüger, Ricardo Henrique

    2015-08-01

    The gut microbiota of termites allows them to thrive on a variety of different materials such as wood, litter, and soil. For that reason, they play important roles in the decomposition of biomass in diverse biomes. This function is essential in the savanna, where litter-feeding termites are one of the few invertebrates active during the dry season. In this study, we describe the gut microbiota of workers (third and fourth instars) of the species Syntermes wheeleri, a litter-feeding termite from the Brazilian savanna. Results of 16S and 18S ribosomal RNA (rRNA) gene-targeted pyrosequencing using primers sets specific to each domain have revealed its bacterial, archaeal, and fungal diversities. Firmicutes accounted for more than half of the operational taxonomic units of the Bacteria domain. The most abundant fungal species were from the class Dothideomycetes of the phylum Ascomycota. The methanogenic orders Methanobacteriales, Methanosarcinales, and Methanomicrobiales of the phylum Euryarchaeota accounted for the greatest part of the Archaea detected in this termite. A comparison of the gut microbiota of the two instars revealed a difference in operational taxonomic unit (OTU) abundance but not in species richness. This description of the whole gut microbiota represents the first study to evaluate relationships among bacteria, archaea, fungi, and host in S. wheeleri. PMID:25749937

  7. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes.

    PubMed

    Wallwey, Christiane; Li, Shu-Ming

    2011-03-01

    Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. They have been identi?ed in two orders of fungi and three families of higher plants. The most important producers are fungi of the genera Claviceps, Penicillium and Aspergillus (all belonging to the Ascomycota). Chemically, ergot alkaloids are characterised by the presence of a tetracyclic ergoline ring, and can be divided into three classes according to their structural features, i.e. amide- or peptide-like amide derivatives of D-lysergic acid and the clavine alkaloids. Signi?cant progress has been achieved on the molecular biological and biochemical investigations of ergot alkaloid biosynthesis in the last decade. By gene cloning and genome mining, gene clusters for ergot alkaloid biosynthesis have been identi?ed in at least 8 different ascomycete species. Functions of most structure genes have been assigned to reaction steps in the biosynthesis of ergot alkaloids by gene inactivation experiments or biochemical characterisation of the overproduced proteins. PMID:21186384

  8. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    PubMed

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  9. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Fröhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  10. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    NASA Astrophysics Data System (ADS)

    Urbano, R.; Palenik, B.; Gaston, C. J.; Prather, K. A.

    2010-08-01

    Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms in the atmosphere have great potential to impact chemical and physical processes that influence global climateby participating in both ice nucleation and cloud droplet formation. The role of microorganisms in atmospheric processes is thought to be species-specific and, potentially, dependent on the viability of the cell; however, few simultaneous measurements of both parameters exist. Using a coastal pier monitoring site as a sampling platform to investigate the exchange of airborne microorganisms at the air-sea interface, culture independent (i.e. DNA clone libraries from filters) and culture dependent approaches (i.e. agar plates) were combined with 18S rRNA and 16S rRNA gene targeting to determine the microbial diversity. The results indicate that in these coastal air samples two fungal phyla, Basidiomycota and Ascomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture dependent study verifies the viability of microbes from all four phyla detected through our culture independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not abundantly found in our air samples indicating the potential importance of bioaerosols derived from beaches and/or coastal erosion processes.

  11. High Diversity of Fungi in Air Particulate Matter

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Despres, V. R.; Pöschl, U.

    2009-04-01

    Fungal spores account for large proportions of air particulate matter, and they influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, hardly known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse and more human pathogens and allergens in the respirable fine particle fraction (< 3 µm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere. References: Després, V.R., J.F. Nowoisky, M. Klose, R. Conrad, M.O. Andreae, U. Pöschl, Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes, Biogeosciences, 4, 1127-1141, 2007. Elbert, W., P. E. Taylor, M. O. Andreae, U. Pöschl, Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmospheric Chemistry and Physics, 7, 4569-4588, 2007. Fröhlich-Nowoisky, J. Despres, V.R., Pöschl, U.: High diversity of fungi in air particulate matter, Proceedings of the National Academy of Sciences, submitted, 2008.

  12. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments. PMID:25688692

  13. Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoa haddoni in the South China Sea.

    PubMed

    Qin, Xiao-Yan; Yang, Kai-Lin; Li, Jing; Wang, Chang-Yun; Shao, Chang-Lun

    2015-02-01

    Investigation on diversity of culturable fungi mainly focused on sponges and corals, yet little attention had been paid to the fungal communities associated with zoanthid corals. In this study, a total of 193 culturable fungal strains were isolated from the zoanthid Palythoa haddoni collected in the South China Sea, of which 49 independent isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analyses. Thirty-five strains were selected for phylogenetic analysis based on fungal ITS sequences. The results indicated that 18 genera within eight taxonomic orders of two phyla (seven orders of the phylum Ascomycota and one order of the phylum Basidiomycota) together with one unidentified fungal strain have been achieved, and Cladosporium sp. represented the dominant culturable genus. Particularly, 14 genera were isolated from a zoanthid for the first time. The antibacterial activities of organic extracts of mycelia and fermentation broth of 49 identified fungi were evaluated, and 29 (59.2 %) of the isolates displayed broad-spectrum or selective antibacterial activity. More interestingly, more than 60 % of the active fungal strains showed strong activity against two aquatic pathogenic bacteria Nocardia brasiliensis and Vibrio parahaemolyticus, compared with other pathogenic bacteria, indicating that zoanthid-derived fungi may protect its host against pathogens. This is the first report of systematically phylogenetic diversity and extensively antibacterial activity of zoanthid-derived fungi. PMID:25117478

  14. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans

    PubMed Central

    Kim, Hanhae; Jung, Kwang-Woo; Maeng, Shinae; Chen, Ying-Lien; Shin, Junha; Shim, Jung Eun; Hwang, Sohyun; Janbon, Guilhem; Kim, Taeyup; Heitman, Joseph; Bahn, Yong-Sun; Lee, Insuk

    2015-01-01

    Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans. PMID:25739925

  15. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas.

    PubMed

    Luan, Chunguang; Xie, Lingling; Yang, Xi; Miao, Huifang; Lv, Na; Zhang, Ruifen; Xiao, Xue; Hu, Yongfei; Liu, Yulan; Wu, Na; Zhu, Yuanmin; Zhu, Baoli

    2015-01-01

    The fungal microbiota is an important component of the human gut microbiome and may be linked to gastrointestinal disease. In this study, the fungal microbiota of biopsy samples from adenomas and adjacent tissues was characterized by deep sequencing. Ascomycota, Glomeromycota and Basidiomycota were identified as the dominant phyla in both adenomas and adjacent tissues from all subjects. Among the 60 genera identified, the opportunist pathogens Phoma and Candida represented an average of 45% of the fungal microbiota. When analyzed at the operational taxonomic unit (OTU) level, however, a decreased diversity in adenomas was observed, and three OTUs differed significantly from the adjacent tissues. Principal Component Analysis (PCA) revealed that the core OTUs formed separate clusters for advanced and non-advanced adenomas for which the abundance of four OTUs differed significantly. Moreover, the size of adenomas and the disease stage were closely related to changes in the fungal microbiota in subjects with adenomas. This study characterized the fungal microbiota profile of subjects with adenomas and identified potential diagnostic biomarkers closely related to different stages of adenomas. PMID:25613490

  16. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  17. Profiling microbial communities in manganese remediation systems treating coal mine drainage.

    PubMed

    Chaput, Dominique L; Hansel, Colleen M; Burgos, William D; Santelli, Cara M

    2015-03-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  18. Hybrid histidine kinases in pathogenic fungi.

    PubMed

    Defosse, Tatiana A; Sharma, Anupam; Mondal, Alok K; Dugé de Bernonville, Thomas; Latgé, Jean-Paul; Calderone, Richard; Giglioli-Guivarc'h, Nathalie; Courdavault, Vincent; Clastre, Marc; Papon, Nicolas

    2015-03-01

    Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs. PMID:25560420

  19. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    PubMed

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  20. Glucosylation and Other Biotransformations of T-2 Toxin by Yeasts of the Trichomonascus Clade

    PubMed Central

    Price, Neil P. J.; Kurtzman, Cletus P.

    2012-01-01

    Trichothecenes are sesquiterpenoid toxins produced by Fusarium species. Since these mycotoxins are very stable, there is interest in microbial transformations that can remove toxins from contaminated grain or cereal products. Twenty-three yeast species assigned to the Trichomonascus clade (Saccharomycotina, Ascomycota), including four Trichomonascus species and 19 anamorphic species presently classified in Blastobotrys, were tested for their ability to convert the trichothecene T-2 toxin to less-toxic products. These species gave three types of biotransformations: acetylation to 3-acetyl T-2 toxin, glycosylation to T-2 toxin 3-glucoside, and removal of the isovaleryl group to form neosolaniol. Some species gave more than one type of biotransformation. Three Blastobotrys species converted T-2 toxin into T-2 toxin 3-glucoside, a compound that has been identified as a masked mycotoxin in Fusarium-infected grain. This is the first report of a microbial whole-cell method for producing trichothecene glycosides, and the potential large-scale availability of T-2 toxin 3-glucoside will facilitate toxicity testing and development of methods for detection of this compound in agricultural and other products. PMID:23042183

  1. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].

    PubMed

    Chaparro, Deisy Fernanda; Rosas, Diana Carolina; Varela, Amanda

    2009-12-31

    White rot fungi (Ascomycota and Basidiomycota) were collected on fallen trunks with different decay stages, in a subandean forest (La Montaña del Ocaso nature reserve), and it was evaluated their ligninolitic activity. They were cultured on malt extract agar. Then it was performed semiquantitative tests for laccase and cellobiose dehydrogenase (CDH) activity using ABTS and DCPIP as enzymatic inducers. Based on the results of these tests, the fungi with higher activities from trunks with different decay stages were selected: Cookeina sulcipes (for stage 1), a fungus from the family Corticiaceae (for stage 2), Xylaria polymorpha (for stage 3) and Earliella sp. (for stage 4). A fermentation was performed at 28 degrees C, during 11 days, in a rotatory shaker at 150 rpm. Biomass, glucose, proteins and enzyme activities measurements were performed daily. The fungi that were in the trunks with decay states from 1 to 3, showed higher laccase activity as the state of decay increased. A higher DCH activity was also associated with a higher. Also, there was a positive relationship between both enzymes' activities. Erliella was the fungus which presented the highest biomass production (1140,19 g/l), laccase activity (157 UL(-1)) and CDH activity (43,50 UL(-1)). This work is the first report of laccase and CDH activity for Cookeina sulcipes and Earliella sp. Moreover, it gives basis for the use of these native fungi in biotechnological applications and the acknowledgment of their function in the wood decay process in native forest. PMID:19796977

  2. Nonrandom genotype distribution among floral hosts contributes to local and regional genetic diversity in the nectar-living yeast Metschnikowia reukaufii.

    PubMed

    Herrera, Carlos M; Pozo, María I; Bazaga, Pilar

    2014-03-01

    Environmental heterogeneity has been often suggested as a major driving force preserving genetic variation in clonal microorganisms. This study examines this hypothesis for the specialized nectar-dwelling, clonal yeast Metschnikowia reukaufii (Ascomycota, Saccharomycetales). We examined whether M. reukaufii subpopulations associated with flowers of different host plant species, and different individuals of the same host species, differed in genetic characteristics. Amplified fragment length polymorphisms (AFLP) fingerprints of M. reukaufii strains isolated from floral nectar of different host species and individuals sampled at different spatial scales revealed a strong host-mediated component of genetic and genotypic diversity at all scales considered. Genotypes were nonrandomly distributed among flowers of different species and, in the case of the single host species studied in detail (Helleborus foetidus), also among flowers of conspecific individuals coexisting locally. These host-mediated patterns of genetic structuring are compatible with those expected under the diversifying selection hypothesis for the maintenance of local and regional genetic diversity in clonal organisms. It is proposed that a combination of intrafloral selection and biased pollinator-mediated migration may ultimately account for observed host-mediated genetic structuring in populations of M. reukaufii. PMID:24283468

  3. Peptaibols from two unidentified fungi of the order Hypocreales with cytotoxic, antibiotic, and anthelmintic activities.

    PubMed

    Ayers, Sloan; Ehrmann, Brandie M; Adcock, Audrey F; Kroll, David J; Carcache de Blanco, Esperanza J; Shen, Qi; Swanson, Steven M; Falkinham, Joseph O; Wani, Mansukh C; Mitchell, Sheila M; Pearce, Cedric J; Oberlies, Nicholas H

    2012-08-01

    As part of an ongoing investigation of filamentous fungi for anticancer leads, an active culture was identified from the Mycosynthetix library (MSX 70741, of the order Hypocreales, Ascomycota). The fungal extract exhibited cytotoxic activity against the H460 (human nonsmall cell lung carcinoma) cell line, and bioactivity-directed fractionation yielded peptaibols 1-12 and harzianums A (13) and B (14). Structure elucidation of 1-12 was facilitated by high-resolution MS/MS using higher-energy collisional dissociation and by high field NMR (950 MHz). The absolute configuration was determined by Marfey's analysis of the individual amino acids; the time required for such analysis was decreased via the development of a 10-min ultra performance liquid chromatography method. The isolated peptaibols (1-12), along with three other peptaibols isolated and elucidated from a different fungus (MSX 57715) of the same order (15-17), were examined for activity in a suite of biological assays, including those for cytotoxic, antibacterial, and anthelmintic activities. PMID:22744757

  4. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes.

    PubMed

    Wang, Hao; Fewer, David P; Holm, Liisa; Rouhiainen, Leo; Sivonen, Kaarina

    2014-06-24

    Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites. PMID:24927540

  5. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns

    PubMed Central

    Crous, Pedro W.; de Wit, Pierre J. G. M.; van der Burgt, Ate

    2015-01-01

    Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom. PMID:26046656

  6. Species richness and adaptation of marine fungi from deep-subseafloor sediments.

    PubMed

    Rédou, Vanessa; Navarri, Marion; Meslet-Cladière, Laurence; Barbier, Georges; Burgaud, Gaëtan

    2015-05-15

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  7. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  8. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    NASA Astrophysics Data System (ADS)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups was recorded. Our results confirm Apennine beech forests as important repositories of saproxylic fungal diversity. We identified species of high scientific concern, in both National Parks. The most represented genus is Mycena with six and five species in the sampling units of "Gran Sasso and Monti della Laga" and "Cilento,Vallo di Diano and Alburni" national Parks respectively. Within the "Gran Sasso and Monti della Laga National Park" the area of Incodara is of special interest due to the occurrence of the species Ossicaulis lignatilis, which is among the 21 identified indicator species for assessing conservation value of beech forests in Europe. A consistent group of Ascomycota species, including Biscogniauxia nummularia, Bisporella citrina, Diatrype disciformis, Kretzschmaria deusta, Nemania serpens, and Xylaria hypoxylon, was tightly associated with coarse woody debris in "Gran Sasso and Monti della Laga National Park" plots. The decay stage seemed to exert a major influence on both species richness and their spatial patterns, with coarse woody debris in the intermediate to late stages of decay being the richest in species. (471 words)

  9. Align or not to align? Resolving species complexes within the Caloplaca saxicola group as a case study.

    PubMed

    Gaya, Ester; Redelings, Benjamin D; Navarro-Rosinés, Pere; Llimona, Xavier; De Cáceres, Miquel; Lutzoni, François

    2011-01-01

    The Caloplaca saxicola group is the main group of saxicolous, lobed-effigurate species within genus Caloplaca (Teloschistaceae, lichen-forming Ascomycota). A recent monographic revision by the first author detected a wide range of morphological variation. To confront the phenotypically based circumscription of these taxa and to resolve their relationships morphological and ITS rDNA data were obtained for 56 individuals representing eight Caloplaca species belonging to the C. saxicola group. We tested the monophyly of these eight morphospecies by performing maximum parsimony, maximum likelihood and two different types of Bayesian analyses (with and without a priori alignments). Restricting phylogenetic analyses to unambiguously aligned portions of ITS was sufficient to resolve, with high bootstrap support, five of the eight previously recognized species within the C. saxicola group. However, phylogenetic resolution of all or most of the eight species currently included as two distinct subgroups within the C. saxicola group was possible only by combining morphological characters and signal from ambiguously aligned regions with the unambiguously aligned ITS sites or when the entire ITS1 and 2 regions were not aligned a priori and included as an integral component of a Bayesian analysis (BAli-Phy). The C. arnoldii subgroup includes C. arnoldii, comprising four subspecies, and the C. saxicola subgroup encompasses seven species. Contrary to the C. saxicola subgroup, monophyly of taxa included within the C. arnoldii subgroup and their relationships could not be resolved with combined ITS and morphological data. Unequivocal morphological synapomorphies for all species except C. arnoldii and C. pusilla are recognized and presented. PMID:21139031

  10. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. PMID:24231030

  11. PCR Primers to Study the Diversity of Expressed Fungal Genes Encoding Lignocellulolytic Enzymes in Soils Using High-Throughput Sequencing

    PubMed Central

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-?-1,4-glucanases and endo-?-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the discovery of complex patterns in gene expression of soil fungal communities. PMID:25545363

  12. Genome Characterization of the Oleaginous Fungus Mortierella alpina

    PubMed Central

    Feng, Yun; Ren, Yan; Gu, Zhennan; Chen, Haiqin; Wang, Hongchao; Thomas, Michael J.; Zhang, Baixi; Berquin, Isabelle M.; Li, Yang; Wu, Jiansheng; Zhang, Huanxin; Song, Yuanda; Liu, Xiang; Norris, James S.; Wang, Suriguga; Du, Peng; Shen, Junguo; Wang, Na; Yang, Yanlin; Wang, Wei; Feng, Lu; Ratledge, Colin; Zhang, Hao; Chen, Yong Q.

    2011-01-01

    Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids. PMID:22174787

  13. The Mitochondrial Genome of the Glomeromycete Rhizophagus sp. DAOM 213198 Reveals an Unusual Organization Consisting of Two Circular Chromosomes

    PubMed Central

    Nadimi, Maryam; Stefani, Franck O.P.; Hijri, Mohamed

    2015-01-01

    Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom. PMID:25527840

  14. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Yordanova, Petya; Franc, Gary D.; Pöschl, Ulrich

    2015-04-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nucleators (IN). However, the sources and characteristics of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA, i.e., inducing ice formation in the probed range of temperature and concentration) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. For example, in harvested and ploughed sugar beet and potato fields, and in the organic horizon beneath Lodgepole pine forest, their relative abundances and concentrations among the cultivable fungi were 25% (8 x 103 CFU g-1), 17% (4.8 x 103 CFU g-1) and 17% (4 x 103 CFU g-1), respectively. Across all investigated soils, 8% (2.9 x 103 CFU g-1) of fungal isolates were INA. All INA isolates initiated freezing at -5° C to -6° C and all belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. Mortierella alpina is known to be saprobic (utilizing non-living organic matter), widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be extracellular proteins of 100-300 kDa in size which are not anchored in the fungal cell wall. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, these small cell-free IN might contribute to the as yet uncharacterized pool of atmospheric IN released by soils as dusts.

  15. Interspecific variability of class II hydrophobin GEO1 in the genus Geosmithia.

    PubMed

    Frascella, Arcangela; Bettini, Priscilla P; Kola?ík, Miroslav; Comparini, Cecilia; Pazzagli, Luigia; Luti, Simone; Scala, Felice; Scala, Aniello

    2014-11-01

    The genus Geosmithia Pitt (Ascomycota: Hypocreales) comprises cosmopolite fungi living in the galleries built by phloeophagous insects. Following the characterization in Geosmithia species 5 of the class II hydrophobin GEO1 and of the corresponding gene, the presence of the geo1 gene was investigated in 26 strains derived from different host plants and geographic locations and representing the whole phylogenetic diversity of the genus. The geo1 gene was detected in all the species tested where it maintained the general organization shown in Geosmithia species 5, comprising three exons and two introns. Size variations were found in both introns and in the first exon, the latter being due to the presence of an intragenic tandem repeat sequence corresponding to a stretch of glycine residues in the deduced proteins. At the amino acid level the deduced proteins had 44.6 % identity and no major differences in the biochemical parameters (pI, GRAVY index, hydropathy plots) were found. GEO1 release in the fungal culture medium was also assessed by turbidimetric assay and SDS-PAGE, and showed high variability between species. The phylogeny based on the geo1 sequences did not correspond to that generated from a neutral marker (ITS rDNA), suggesting that sequence similarities could be influenced by other factors than phylogenetic relatedness, such as the intimacy of the symbiosis with insect vectors. The hypothesis of a strong selection pressure on the geo1 gene was sustained by the low values (<1) of non synonymous to synonymous nucleotide substitutions ratios (Ka/Ks), which suggest that purifying selection might act on this gene. These results are compatible with either a birth-and-death evolution scenario or horizontal transfer of the gene between Geosmithia species. PMID:25442290

  16. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the Fungus causing white-nose syndrome of bats.

    PubMed

    Palmer, Jonathan M; Kubatova, Alena; Novakova, Alena; Minnis, Andrew M; Kolarik, Miroslav; Lindner, Daniel L

    2014-09-01

    White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved ?-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen. PMID:25053709

  17. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

    PubMed

    Winder, Richard S; Lamarche, Josyanne; Constabel, C Peter; Hamelin, Richard C

    2013-01-01

    The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and ?-Proteobacteria significantly increased. ?-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a ?-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels. PMID:24133486

  18. Sloth Hair as a Novel Source of Fungi with Potent Anti-Parasitic, Anti-Cancer and Anti-Bacterial Bioactivity

    PubMed Central

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G.; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A. Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths – arboreal mammals commonly found in the lowland forests of Panama – carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair. PMID:24454729

  19. Characterization of a New Clinical Yeast Species, Candida tunisiensis sp. nov., Isolated from a Strain Collection from Tunisian Hospitals

    PubMed Central

    Eddouzi, Jamel; Hofstetter, Valérie; Groenewald, Marizeth; Manai, Mohamed

    2013-01-01

    From a collection of yeast isolates isolated from patients in Tunisian hospitals between September 2006 and July 2010, the yeast strain JEY63 (CBS 12513), isolated from a 50-year-old male that suffered from oral thrush, could not be identified to the species level using conventional methods used in clinical laboratories. These methods include matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), germ tube formation, and the use of CHROMagar Candida and metabolic galleries. Sequence analysis of the nuclear rRNA (18S rRNA, 5.8S rRNA, and 26S rRNA) and internal transcribed spacer regions (ITS1 and ITS2) indicated that the ribosomal DNA sequences of this species were not yet reported. Multiple gene phylogenic analyses suggested that this isolate clustered at the base of the Dipodascaceae (Saccharomycetales, Saccharomycetes, and Ascomycota). JEY63 was named Candida tunisiensis sp. nov. according to several phenotypic criteria and its geographical origin. C. tunisiensis was able to grow at 42°C and does not form chlamydospores and hyphae but could grow as yeast and pseudohyphal forms. C. tunisiensis exhibited most probably a haploid genome with an estimated size of 10 Mb on at least three chromosomes. Using European Committee for Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Candida albicans susceptibility breakpoints as a reference, C. tunisiensis was resistant to fluconazole (MIC = 8 ?g/ml), voriconazole (MIC = 0.5 ?g/ml), itraconazole (MIC = 16 ?g/ml), and amphotericin B (MIC = 4 ?g/ml) but still susceptible to posaconazole (MIC = 0.008 ?g/ml) and caspofungin (MIC = 0.5 ?g/ml). In conclusion, MALDI-TOF MS permitted the early selection of an unusual isolate, which was still unreported in molecular databases but could not be unambiguously classified based on phylogenetic approaches. PMID:23077122

  20. Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil.

    PubMed

    Gomes, Eliane A; Oliveira, Christiane A; Lana, Ubiraci G P; Noda, Roberto W; Marriel, Ivanildo E; de Souza, Francisco A

    2015-07-28

    Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study. PMID:25674805

  1. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects. PMID:24146861

  2. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance.

    PubMed

    Clement, Stephen L; Hu, Jinguo; Stewart, Alan V; Wang, Bingrui; Elberson, Leslie R

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass-endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass-endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass- Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory. PMID:21867443

  3. The Complex Evolutionary Dynamics of Hsp70s: A Genomic and Functional Perspective

    PubMed Central

    Neuvéglise, Cécile; Craig, Elizabeth A.; Williams, Barry L.

    2013-01-01

    Hsp70 molecular chaperones are ubiquitous. By preventing aggregation, promoting folding, and regulating degradation, Hsp70s are major factors in the ability of cells to maintain proteostasis. Despite a wealth of functional information, little is understood about the evolutionary dynamics of Hsp70s. We undertook an analysis of Hsp70s in the fungal clade Ascomycota. Using the well-characterized 14 Hsp70s of Saccharomyces cerevisiae, we identified 491 orthologs from 53 genomes. Saccharomyces cerevisiae Hsp70s fall into seven subfamilies: four canonical-type Hsp70 chaperones (SSA, SSB, KAR, and SSC) and three atypical Hsp70s (SSE, SSZ, and LHS) that play regulatory roles, modulating the activity of canonical Hsp70 partners. Each of the 53 surveyed genomes harbored at least one member of each subfamily, and thus establishing these seven Hsp70s as units of function and evolution. Genomes of some species contained only one member of each subfamily that is only seven Hsp70s. Overall, members of each subfamily formed a monophyletic group, suggesting that each diversified from their corresponding ancestral gene present in the common ancestor of all surveyed species. However, the pattern of evolution varied across subfamilies. At one extreme, members of the SSB subfamily evolved under concerted evolution. At the other extreme, SSA and SSC subfamilies exhibited a high degree of copy number dynamics, consistent with a birth–death mode of evolution. KAR, SSE, SSZ, and LHS subfamilies evolved in a simple divergent mode with little copy number dynamics. Together, our data revealed that the evolutionary history of this highly conserved and ubiquitous protein family was surprising complex and dynamic. PMID:24277689

  4. Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species.

    PubMed

    Stchigel, A M; Sutton, D A; Cano-Lira, J F; Cabañes, F J; Abarca, L; Tintelnot, K; Wickes, B L; García, D; Guarro, J

    2013-12-01

    We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including representatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study results, based on ribosomal ITS region, actin and ?-tubulin sequences, demonstrated that some of the fungi included in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C. Nannizziopsis draconii is able to grow on bromocresol purple-milk solids-glucose (BCP-MS-G) agar alkalinizing the medium, is resistant to 0.2 % cycloheximide but does not grow on Sabouraud dextrose agar (SDA) with 3 % NaCl. Nannizziopsis arthrosporioides is characterised by the production of very long arthroconidia. Nannizziopsis pluriseptata produces 1- to 5-celled sessile conidia, alkalinizes the BCP-MS-G agar and grows on SDA supplemented with 5 % NaCl. Chrysosporium longisporum shows long sessile conidia (up to 13 ?m) and does not produce lipase. PMID:24761037

  5. Evolutionary Dynamics of hAT DNA Transposon Families in Saccharomycetaceae

    PubMed Central

    Sarilar, Véronique; Bleykasten-Grosshans, Claudine; Neuvéglise, Cécile

    2015-01-01

    Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences. PMID:25532815

  6. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data.

    PubMed

    Jumpponen, Ari

    2007-02-01

    Soil fungal communities underneath willow canopies that had established on the forefront of a receding glacier were analyzed by cloning the polymerase chain reaction (PCR)-amplified partial small subunit (18S) of the ribosomal (rRNA) genes. Congruence between two sets of fungus-specific primers targeting the same gene region was analyzed by comparisons of inferred neighbor-joining topologies. The importance of chimeric sequences was evaluated by Chimera Check (Ribosomal Database Project) and by data reanalyses after omission of potentially chimeric regions at the 5'- and 3'-ends of the cloned amplicons. Diverse communities of fungi representing Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota were detected. Ectomycorrhizal fungi comprised a major component in the early plant communities in primary successional ecosystems, as both primer sets frequently detected basidiomycetes (Russulaceae and Thelephoraceae) forming mycorrhizal symbioses. Various ascomycetes (Ophiostomatales, Pezizales, and Sordariales) of uncertain function dominated the clone libraries amplified from the willow canopy soil with one set of primers, whereas the clone libraries of the amplicons generated with the second primer set were dominated by basidiomycetes. Accordingly, primer bias is an important factor in fungal community analyses using DNA extracted from environmental samples. A large proportion (>30%) of the cloned sequences were concluded to be chimeric based on their changing positions in inferred phylogenies after omission of possibly chimeric data. Many chimeric sequences were positioned basal to existing classes of fungi, suggesting that PCR artifacts may cause frequent discovery of new, higher level taxa (order, class) in direct PCR analyses. Longer extension times during the PCR amplification and a smaller number of PCR cycles are necessary precautions to allow collection of reliable environmental sequence data. PMID:17106807

  7. Evolutionary dynamics of hAT DNA transposon families in Saccharomycetaceae.

    PubMed

    Sarilar, Véronique; Bleykasten-Grosshans, Claudine; Neuvéglise, Cécile

    2015-01-01

    Transposable elements (TEs) are widespread in eukaryotes but uncommon in yeasts of the Saccharomycotina subphylum, in terms of both host species and genome fraction. The class II elements are especially scarce, but the hAT element Rover is a noteworthy exception that deserves further investigation. Here, we conducted a genome-wide analysis of hAT elements in 40 ascomycota. A novel family, Roamer, was found in three species, whereas Rover was detected in 15 preduplicated species from Kluyveromyces, Eremothecium, and Lachancea genera, with up to 41 copies per genome. Rover acquisition seems to have occurred by horizontal transfer in a common ancestor of these genera. The detection of remote Rover copies in Naumovozyma dairenensis and in the sole Saccharomyces cerevisiae strain AWRI1631, without synteny, suggests that two additional independent horizontal transfers took place toward these genomes. Such patchy distribution of elements prevents any anticipation of TE presence in incoming sequenced genomes, even closely related ones. The presence of both putative autonomous and defective Rover copies, as well as their diversification into five families, indicate particular dynamics of Rover elements in the Lachancea genus. Especially, we discovered the first miniature inverted-repeat transposable elements (MITEs) to be described in yeasts, together with their parental autonomous copies. Evidence of MITE insertion polymorphism among Lachancea waltii strains suggests their recent activity. Moreover, 40% of Rover copies appeared to be involved in chromosome rearrangements, showing the large structural impact of TEs on yeast genome and opening the door to further investigations to understand their functional and evolutionary consequences. PMID:25532815

  8. MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2014-01-01

    We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the ?myt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the ?myt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the ?myt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the ?myt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum. PMID:24722578

  9. Development of a high-efficiency gene knockout system for Pochonia chlamydosporia.

    PubMed

    Shen, Baoming; Xiao, Jiling; Dai, Liangying; Huang, Yonghong; Mao, Zhenchuan; Lin, Runmao; Yao, Yurong; Xie, Bingyan

    2015-01-01

    The nematophagous fungus Pochonia chlamydosporia, which belongs to the family Clavicipitaceae (Ascomycota: Pezizomycotina: Sordariomycetes: Hypocreales), is a promising biological control agent for root-knot and cyst nematodes. Its biocontrol effect has been confirmed by pot and field trials. The genome sequence of the fungus was completed recently; therefore, genome-wide functional analyses will identify its infection-associated genes. Gene knockout techniques are useful molecular tools to study gene functions. However, cultures of P. chlamydosporia are resistant to high levels of a range of fungal inhibitors, which makes the gene knockout technique difficult in this fungus. Fortunately, we found that the wild P. chlamydosporia strain PC-170 could not grow on medium containing 150?gml(-1) G418 sulfate, representing a new selectable marker for P. chlamydosporia. The neomycin-resistance gene (neo), which was amplified from the plasmid pKOV21, conferred G418-resistance on the fungus; therefore, it was chosen as the marker gene. We subsequently developed a gene knockout system for P. chlamydosporia using split-marker homologous recombination cassettes with resistance selection and protoplast transformation. The split-marker cassettes were developed using fusion PCR, and involved only two rounds of PCR. The final products comprised two linear constructs. Each construct contained a flanking region of the target gene and two thirds of the neo gene. Alkaline serine protease and chitinase were confirmed to be produced by P. chlamydosporia during infection of nematode eggs and could participate in lysis of the eggshell of nematode eggs. Here, we knocked out one chitinase gene, VFPPC_01099, and two protease genes (VFPPC_10088, VFPPC_06535). We obtained approximately 100 suspected mutants after each transformation. After screening by PCR, the average rate of gene knockout was 13%: 11% (VFPPC_01099), 13% (VFPPC_10088) and 15% (VFPPC_06535). This efficient and convenient technique will accelerate functional genomic studies in P. chlamydosporia. PMID:25458554

  10. Yet More “Weeds” in the Garden: Fungal Novelties from Nests of Leaf-Cutting Ants

    PubMed Central

    Augustin, Juliana O.; Groenewald, Johannes Z.; Nascimento, Robson J.; Mizubuti, Eduardo S. G.; Barreto, Robert W.; Elliot, Simon L.; Evans, Harry C.

    2013-01-01

    Background Symbiotic relationships modulate the evolution of living organisms in all levels of biological organization. A notable example of symbiosis is that of attine ants (Attini; Formicidae: Hymenoptera) and their fungal cultivars (Lepiotaceae and Pterulaceae; Agaricales: Basidiomycota). In recent years, this mutualism has emerged as a model system for studying coevolution, speciation, and multitrophic interactions. Ubiquitous in this ant-fungal symbiosis is the “weedy” fungus Escovopsis (Hypocreales: Ascomycota), known only as a mycoparasite of attine fungal gardens. Despite interest in its biology, ecology and molecular phylogeny—noting, especially, the high genetic diversity encountered—which has led to a steady flow of publications over the past decade, only two species of Escovopsis have formally been described. Methods and Results We sampled from fungal gardens and garden waste (middens) of nests of the leaf-cutting ant genus Acromyrmex in a remnant of subtropical Atlantic rainforest in Minas Gerais, Brazil. In culture, distinct morphotypes of Escovopsis sensu lato were recognized. Using both morphological and molecular analyses, three new species of Escovopsis were identified. These are described and illustrated herein—E. lentecrescens, E. microspora, and E. moelleri—together with a re-description of the genus and the type species, E. weberi. The new genus Escovopsioides is erected for a fourth morphotype. We identify, for the first time, a mechanism for horizontal transmission via middens. Conclusions The present study makes a start at assigning names and formal descriptions to these specific fungal parasites of attine nests. Based on the results of this exploratory and geographically-restricted survey, we expect there to be many more species of the genus Escovopsis and its relatives associated with nests of both the lower and higher Attini throughout their neotropical range, as suggested in previous studies. PMID:24376525

  11. Prevalence of Beauveria pseudobassiana among entomopathogenic fungi isolated from the hard tick, Ixodes ricinus.

    PubMed

    Munteanu, Natalia V; Mitkovets, Polina V; Mitina, Galina V; Movila, Alexandru; Tokarev, Yuri S; Leclerque, Andreas

    2014-10-01

    Human and animal disease-transmitting hard ticks (Acari: Ixodidae) are of great concern for public health and animal farming. Alternatives to tick control by chemical acaricides are urgently needed, and one intensively evaluated biocontrol strategy is based on the use of tick-pathogenic filamentous fungi. An indispensable prerequisite for the development of tick-derived fungal isolates into registered myco-acaricides is their sound taxonomic characterisation. A set of fungal strains isolated from ixodid ticks in the Republic of Moldova was genetically characterised at the genus and species level together with further tick-derived fungal isolates from different geographic locations in Europe and North America. In a previous study, the same isolates had been assigned to the species Beauveria bassiana. Using a recent molecular taxonomic approach based on phylogenetic reconstruction from both internal transcribed spacer (ITS) and protein-encoding gene sequences, all fungi investigated were conclusively assigned to one of the two "hyphomycete" genera, Beauveria or Isaria (Ascomycota; Hypocreales; Cordycipitaceae). Within the genus Isaria, two species, Isaria farinosa and Isaria fumosorosea, were equally represented. Within the genus Beauveria, the comparatively rare species Beauveria pseudobassiana was found to strongly prevail among the isolates from Moldova, and one of the two tick-derived Beauveria strains from North America could be assigned to this species as well. In particular, the previous classification as B. bassiana could not be confirmed for any of the characterised tick pathogens from Europe and North America. The data presented here lend support to the hypothesis that within the genus Beauveria specific adaptation to ticks might have occurred within the species B. pseudobassiana. To test this hypothesis, a more extensive molecular taxonomic survey carefully reconsidering previous taxonomic assignments of tick-derived fungal isolates is needed. PMID:25065606

  12. Diversity and Antioxidant Activity of Culturable Endophytic Fungi from Alpine Plants of Rhodiola crenulata, R. angusta, and R. sachalinensis

    PubMed Central

    Cui, Jin-Long; Guo, Ting-Ting; Ren, Zhen-Xing; Zhang, Na-Sha; Wang, Meng-Liang

    2015-01-01

    Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%), all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%), Basidiomycota (2.78%), Zygomycota (1.11%), and Glomeromycota (0.56%), which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33%) were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57) were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2?•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products. PMID:25768014

  13. Host identity impacts rhizosphere fungal communities associated with three alpine plant species.

    PubMed

    Becklin, Katie M; Hertweck, Kate L; Jumpponen, Ari

    2012-04-01

    Fungal diversity and composition are still relatively unknown in many ecosystems; however, host identity and environmental conditions are hypothesized to influence fungal community assembly. To test these hypotheses, we characterized the richness, diversity, and composition of rhizosphere fungi colonizing three alpine plant species, Taraxacum ceratophorum, Taraxacum officinale, and Polemonium viscosum. Roots were collected from open meadow and willow understory habitats at treeline on Pennsylvania Mountain, Colorado, USA. Fungal small subunit ribosomal DNA was sequenced using fungal-specific primers, sample-specific DNA tags, and 454 pyrosequencing. We classified operational taxonomic units (OTUs) as arbuscular mycorrhizal (AMF) or non-arbuscular mycorrhizal (non-AMF) fungi and then tested whether habitat or host identity influenced these fungal communities. Approximately 14% of the sequences represented AMF taxa (44 OTUs) with the majority belonging to Glomus groups A and B. Non-AMF sequences represented 186 OTUs belonging to Ascomycota (58%), Basidiomycota (26%), Zygomycota (14%), and Chytridiomycota (2%) phyla. Total AMF and non-AMF richness were similar between habitats but varied among host species. AMF richness and diversity per root sample also varied among host species and were highest in T. ceratophorum compared with T. officinale and P. viscosum. In contrast, non-AMF richness and diversity per root sample were similar among host species except in the willow understory where diversity was reduced in T. officinale. Fungal community composition was influenced by host identity but not habitat. Specifically, T. officinale hosted a different AMF community than T. ceratophorum and P. viscosum while P. viscosum hosted a different non-AMF community than T. ceratophorum and T. officinale. Our results suggest that host identity has a stronger effect on rhizosphere fungi than habitat. Furthermore, although host identity influenced both AMF and non-AMF, this effect was stronger for the mutualistic AMF community. PMID:22038036

  14. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

    PubMed Central

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions. PMID:26132745

  15. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  16. Role of the Zinc Finger Transcription Factor SltA in Morphogenesis and Sterigmatocystin Biosynthesis in the Fungus Aspergillus nidulans

    PubMed Central

    Shantappa, Sourabha; Dhingra, Sourabh; Hernández-Ortiz, Patricia; Espeso, Eduardo A.; Calvo, Ana M.

    2013-01-01

    Potassium, a widely accepted macronutrient, is vital for many physiological processes such as regulation of cell volume, maintenance of intracellular pH, synthesis of proteins and activation of enzymes in filamentous fungi. Another cation, calcium, plays an essential role in many signaling processes from lower to higher eukaryotes. Imbalance in the intracellular ionic levels of potassium or calcium causes adverse effects on cell growth, morphology and development, and eventually death. Previous studies on the adaptation of Aspergillus nidulans to salt and osmotic stress conditions have revealed the role of SltA, a C2H2 zinc finger transcription factor in cation homeostasis. SltA is highly conserved in the Ascomycota phylum with no identifiable homolog in S. cerevisiae and other yeast-like fungi, and prevents toxicity by the cations Na+, K+, Li+, Cs+ and Mg2+, but not by Ca2+. However its role in morphology and biosynthesis of natural products such as mycotoxins remained unknown. This study shows the first characterization of the role of calcium and SltA fungal homologs in morphogenesis using the model system A. nidulans. Addition of potassium to sltA deletion mutants resulted in decreased levels of sterigmatocystin production. A similar phenotype was observed for both types of mutants in veA1 and veA+ genetic background. Expression of the sterigmatocystin genes aflR and stcU was strongly reduced in sltA deletion mutant when K+ was added. Additionally, increased concentrations of K+ drastically reduced sexual and asexual development, as well as radial growth in deletion sltA colonies. This reduction was accompanied by lower expression of the morphology related genes nsdD, steA and brlA. Interestingly, addition of calcium was able to stimulate asexual and sexual development and remediate the deletion sltA phenotype, including defects in morphology and toxin production. PMID:23840895

  17. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes.

    PubMed

    Nadimi, Maryam; Stefani, Franck O P; Hijri, Mohamed

    2015-01-01

    Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom. PMID:25527840

  18. Fungal community on decomposing leaf litter undergoes rapid successional changes.

    PubMed

    Vo?íšková, Jana; Baldrian, Petr

    2013-03-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  19. Microbial Diversity of a Mediterranean Soil and Its Changes after Biotransformed Dry Olive Residue Amendment

    PubMed Central

    Siles, José A.; Rachid, Caio T. C. C.; Sampedro, Inmaculada; García-Romera, Inmaculada; Tiedje, James M.

    2014-01-01

    The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR) and C. floccosa-transformed DOR (CORDOR) on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR. PMID:25058610

  20. Genetic evidence for reproductive isolation among sympatric epichloë endophytes as inferred from newly developed microsatellite markers.

    PubMed

    Schirrmann, Melanie K; Zoller, Stefan; Fior, Simone; Leuchtmann, Adrian

    2015-07-01

    Reproductive isolation is central to the maintenance of species, and especially in sympatry, effective barriers to prevent interspecific crosses are expected. Host specificity is thought to constitute an effective mechanism for the formation of barriers in different genera of Fungi, but evidence for endophytes is so far lacking. Sexual Epichloë species (Ascomycota, Clavicipitaceae) represent an ideal study system to investigate the mechanisms underlying speciation as mediated by host specificity because they include species complexes with several host-specific taxa. Here, we studied genetic differentiation of three host-specific Epichloë species using microsatellite markers that were newly in silico identified on the genome of Epichloë poae. Among these, 15 were experimentally tested and applied to study an extensive sampling of isolates representing Epichloë typhina infecting Dactylis glomerata and Epichloë clarkii infecting Holcus lanatus from a site with sympatric populations in Switzerland, as well as a reduced sampling of E. poae infecting Poa nemoralis to create a three-taxon dataset. Both principal coordinate analysis and Bayesian clustering algorithm showed three genetically distinct groups representing the three host-specific species. High pairwise F ST values among the three species, as well as sequencing data of the tefA gene revealing diagnostic single nucleotide polymorphisms (SNPs), further support the hypothesis of genetic discontinuities among the taxa. These results provide genotypic evidence of the maintenance of reproductive isolation of the species in a context of sympatry. In silico testing of 885 discovered microsatellites on the genome of Epichloë festucae extend their applicability to a wider taxonomic range of Epichloë. PMID:25542204

  1. Antimicrobial activity of o-carboranylalanine.

    PubMed

    Oros, G; Ujváry, I; Nachman, R J

    1999-01-01

    Functionalized polyhedral carboranes, including amino acid analogs, have unique physicochemical properties and are used as experimental anticancer agents. However, our current knowledge on their effect in nonmammalian biological systems is limited. We investigated the activity spectrum in vitro of o-carboranylalanine (o-Cba), considered to be a highly lipophilic analog of phenylalanine, against representative plant pathogenic bacteria and fungi of various taxonomic position. The antibacterial effect of o-Cba against some species was comparable to that of the widely used agricultural antibiotic, streptomycin. The sensitivity of individual bacterial species to o-Cba within the same genus varied to a greater extent than the average sensitivity of various genera. In general, this carborane-containing amino acid was more toxic to Gram positive bacteria (Bacillus, Corynebacterium, Curtobacterium, Micrococcus, Rhodococcus, and Staphylococcus) than to Gram negative ones (Agrobacterium, Erwinia, Escherichia, Pseudomonas, Rhizobium, and Xanthomonas). Compared to the commercial fungicide, prochloraz, o-Cba was weakly toxic against various fungi (Zygo- and Ascomycota). It was also inferior to the commercial fungicide metalaxyl in inhibiting the vegetative growth of oomyceteous plant pathogens (Pythium irregulare, Phytophthora cryptogea and Plasmopara halstedii). Against the asexual spores of P. halstedii, o-Cba, however, was over a thousandfold more active than tridemorph, a selective zoospore inhibitor fungicide. For all taxonomic groups, the observed antimicrobial effect of o-Cba could be diminished with histidine, but not with phenylalanine. In studies on healthy and mildew-infected sunflower and tobacco plants o-Cba showed neither fungicidal nor phytotoxic effects at 500 ppm. This is the first report on the biological activity spectrum of a carborane-containing amino acid. PMID:10707765

  2. Extensive Intra-Kingdom Horizontal Gene Transfer Converging on a Fungal Fructose Transporter Gene

    PubMed Central

    Coelho, Marco A.; Gonçalves, Carla; Sampaio, José Paulo; Gonçalves, Paula

    2013-01-01

    Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed. PMID:23818872

  3. Biologically active compounds from Aphyllophorales (polypore) fungi.

    PubMed

    Zjawiony, Jordan K

    2004-02-01

    This review describes biologically active natural products isolated from Aphyllophorales, many of which are known as polypores. Polypores are a large group of terrestrial fungi of the phylum Basdiomycota (basidiomycetes), and they along with certain Ascomycota are a major source of pharmacologically active substances. There are about 25 000 species of basidiomycetes, of which about 500 are members of the Aphyllophorales, a polyphyletic group that contains the polypores. Many of these fungi have circumboreal distributions in North America, Europe, and Asia and broad distributions on all inhabited continents and Africa; only a small number of the most common species with the most obvious fruiting bodies (basidiocarps) have been evaluated for biological activity. An estimated 75% of polypore fungi that have been tested show strong antimicrobial activity, and these may constitute a good source for developing new antibiotics. Numerous compounds from these fungi also display antiviral, cytotoxic, and/or antineoplastic activities. Additional important components of this vast arsenal of compounds are polysaccharides derived from the fungal cell walls. These compounds have attracted significant attention in recent years because of their immunomodulatory activities, resulting in antitumor effects. These high molecular weight compounds, often called biological response modifiers (BRM), or immunopotentiators, prevent carcinogenesis, show direct anticancer effects, and prevent tumor metastasis. Some of the protein-bound polysaccharides from polypores and other basidiomycetes have found their way to the market in Japan as anticancer drugs. Finally, numerous compounds with cardiovascular, phytotoxic, immunomodulatory, analgesic, antidiabetic, antioxidant, insecticidal, and nematocidal activities, isolated from polypores, are also presented. In fact many of the fungi mentioned in this paper have long been used in herbal medicine, including polypores such as Ganoderma lucidum (Reishi or Ling Zhi), Laetiporus sulphureus (Chicken-of-the-Woods), Trametes versicolor (Yun Zhi), Grifola umbellata (Zhu Lin), Inonotus obliquus (Chaga), and Wolfiporia cocos (Hoelen). PMID:14987072

  4. Functional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation

    PubMed Central

    Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis

    2013-01-01

    In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the functional diversity and to a lesser extent the taxonomic diversity of the bacterial communities. PMID:23418476

  5. Identification and Functional Analysis of the erh1+ Gene Encoding Enhancer of Rudimentary Homolog from the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Krzyzanowski, Marek K.; Kozlowska, Ewa; Kozlowski, Piotr

    2012-01-01

    The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S. japonicus), but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol), inhibiting DNA replication (hydroxyurea), and destabilizing the plasma membrane (SDS); this hypersensitivity can be abolished by expression of S. pombe erh1+ and, to a lesser extent, S. japonicus erh1+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation. PMID:23145069

  6. The Putative Protein Methyltransferase LAE1 of Trichoderma atroviride Is a Key Regulator of Asexual Development and Mycoparasitism

    PubMed Central

    Aghcheh, Razieh Karimi; Druzhinina, Irina S.; Kubicek, Christian P.

    2013-01-01

    In Ascomycota the protein methyltransferase LaeA is a global regulator that affects the expression of secondary metabolite gene clusters, and controls sexual and asexual development. The common mycoparasitic fungus Trichoderma atroviride is one of the most widely studied agents of biological control of plant-pathogenic fungi that also serves as a model for the research on regulation of asexual sporulation (conidiation) by environmental stimuli such as light and/or mechanical injury. In order to learn the possible involvement of LAE1 in these two traits, we assessed the effect of deletion and overexpression of lae1 gene on conidiation and mycoparasitic interaction. In the presence of light, conidiation was 50% decreased in a ?lae1 and 30–50% increased in lae1-overexpressing (OElae1) strains. In darkness, ?lae1 strains did not sporulate, and the OElae1 strains produced as much spores as the parent strain. Loss-of-function of lae1 also abolished sporulation triggered by mechanical injury of the mycelia. Deletion of lae1 also increased the sensitivity of T. atroviride to oxidative stress, abolished its ability to defend against other fungi and led to a loss of mycoparasitic behaviour, whereas the OElae1 strains displayed enhanced mycoparasitic vigor. The loss of mycoparasitic activity in the ?lae1 strain correlated with a significant underexpressionn of several genes normally upregulated during mycoparasitic interaction (proteases, GH16 ß-glucanases, polyketide synthases and small cystein-rich secreted proteins), which in turn was reflected in the partial reduction of formation of fungicidal water soluble metabolites and volatile compounds. Our study shows T. atroviride LAE1 is essential for asexual reproduction in the dark and for defense and parasitism on other fungi. PMID:23826217

  7. Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii.

    PubMed

    Fraser, James A; Stajich, Jason E; Tarcha, Eric J; Cole, Garry T; Inglis, Diane O; Sil, Anita; Heitman, Joseph

    2007-04-01

    Sexual reproduction of fungi is governed by the mating type (MAT) locus, a specialized region of the genome encoding key transcriptional regulators that direct regulatory networks to specify cell identity and fate. Knowledge of MAT locus structure and evolution has been considerably advanced in recent years as a result of genomic analyses that enable the definition of MAT locus sequences in many species as well as provide an understanding of the evolutionary plasticity of this unique region of the genome. Here, we extend this analysis to define the mating type locus of three dimorphic primary human fungal pathogens, Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii, using genomic analysis, direct sequencing, and bioinformatics. These studies provide evidence that all three species possess heterothallic bipolar mating type systems, with isolates encoding either a high-mobility-group (HMG) domain or an alpha-box transcriptional regulator. These genes are intact in all loci examined and have not been subject to loss or decay, providing evidence that the loss of fertility upon passage in H. capsulatum is not attributable to mutations at the MAT locus. These findings also suggest that an extant sexual cycle remains to be defined in both Coccidioides species, in accord with population genetic evidence. Based on these MAT sequences, a facile PCR test was developed that allows the mating type to be rapidly ascertained. Finally, these studies highlight the evolutionary forces shaping the MAT locus, revealing examples in which flanking genes have been inverted or subsumed and incorporated into an expanding MAT locus, allowing us to propose an expanded model for the evolution of the MAT locus in the phylum Ascomycota. PMID:17337636

  8. Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; de Souza, Robson F.; Pukkila, Patricia J.; Rao, Anjana; Aravind, L.

    2014-01-01

    TET/JBP dioxygenases oxidize methylpyrimidines in nucleic acids and are implicated in generation of epigenetic marks and potential intermediates for DNA demethylation. We show that TET/JBP genes are lineage-specifically expanded in all major clades of basidiomycete fungi, with the majority of copies predicted to encode catalytically active proteins. This pattern differs starkly from the situation in most other organisms that possess just a single or a few copies of the TET/JBP family. In most basidiomycetes, TET/JBP genes are frequently linked to a unique class of transposons, KDZ (Kyakuja, Dileera, and Zisupton) and appear to have dispersed across chromosomes along with them. Several of these elements typically encode additional proteins, including a divergent version of the HMG domain. Analysis of their transposases shows that they contain a previously uncharacterized version of the RNase H fold with multiple distinctive Zn-chelating motifs and a unique insert, which are predicted to play roles in structural stabilization and target sequence recognition, respectively. We reconstruct the complex evolutionary history of TET/JBPs and associated transposons as involving multiple rounds of expansion with concomitant lineage sorting and loss, along with several capture events of TET/JBP genes by different transposon clades. On a few occasions, these TET/JBP genes were also laterally transferred to certain Ascomycota, Glomeromycota, Viridiplantae, and Amoebozoa. One such is an inactive version, calnexin-independence factor 1 (Cif1), from Schizosaccharomyces pombe, which has been implicated in inducing an epigenetically transmitted prion state. We argue that this unique transposon-TET/JBP association is likely to play important roles in speciation during evolution and epigenetic regulation. PMID:24398522

  9. Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana).

    PubMed

    Qadri, Masroor; Rajput, Roopali; Abdin, Malik Z; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2014-05-01

    In this study, we investigated the diversity of fungal endophytes associated with Pinus wallichiana from the Western Himalayas, with emphasis on comparison of endophytic communities harbored by the stem and needle tissues of the host and their antimicrobial potential. A total number of 130 isolates, comprising of 38 different genera, were recovered from 210 fragments of the plant. Among the isolated fungi, only a single isolate, Tritirachium oryzae, belonged to the Phylum Basidiomycota whereas the rest belonged to Ascomycota. Dothideomycetes was the dominant class with the highest isolation frequency of 49.2 %. The most frequent colonizers of the host were Alternaria spp., Pestalotiopsis spp., Preussia spp., and Sclerostagonospora spp. The diversity and species richness were higher in needle tissues than in the stems. Antimicrobial activities were displayed by extracts from a total number of 22 endophytes against one or more pathogens. Endophytes designated as P1N13 (Coniothyrium carteri), P2N8 (Thielavia subthermophila), P4S6b (Truncatella betulae), P7N10 (Cochliobolus australiensis), and P8S4 (Tritirachium oryzae) were highly active against Candida albicans. Broad spectrum antimicrobial activities were obtained with the extracts of P8-S4 (Tritirachium oryzae) and P5-N26 (Coniochaeta gigantospora) that were potentially active against the Gram-positive and Gram-negative bacteria as well as the fungal pathogen, Candida albicans. The most prominent antagonistic activity against fungal pathogens was shown by P8-S4 (Tritirachium oryzae), P5-N31a (Truncatella spadicea), and P5-N20 (Fusarium larvarum). Our findings indicate that Pinus wallichiana harbors a rich endophytic fungal community with potential antimicrobial activities. Further studies are needed to understand the ecology and evolutionary context of the associations between the Himalayan pine and its endophytes. PMID:24563192

  10. Molecular Detection of Fungal Communities in the Hawaiian Marine Sponges Suberites zeteki and Mycale armata?

    PubMed Central

    Gao, Zheng; Li, Binglin; Zheng, Chengchao; Wang, Guangyi

    2008-01-01

    Symbiotic microbes play a variety of fundamental roles in the health and habitat ranges of their hosts. While prokaryotes in marine sponges have been broadly characterized, the diversity of sponge-inhabiting fungi has barely been explored using molecular approaches. Fungi are an important component of many marine and terrestrial ecosystems, and they may be an ecologically significant group in sponge-microbe interactions. This study tested the feasibility of using existing fungal primers for molecular analysis of sponge-associated fungal communities. None of the eight selected primer pairs yielded satisfactory results in fungal rRNA gene or internal transcribed spacer (ITS) clone library constructions. However, 3 of 10 denaturing gradient gel electrophoresis (DGGE) primer sets, which were designed to preferentially amplify fungal rRNA gene or ITS regions from terrestrial environmental samples, were successfully amplified from fungal targets in marine sponges. DGGE analysis indicated that fungal communities differ among different sponge species (Suberites zeteki and Mycale armata) and also vary between sponges and seawater. Sequence analysis of DGGE bands identified 23 and 21 fungal species from each of the two sponge species S. zeteki and M. armata, respectively. These species were representatives of 11 taxonomic orders and belonged to the phyla of Ascomycota (seven orders) and Basidiomycota (four orders). Five of these taxonomic orders (Malasseziales, Corticiales, Polyporales, Agaricales, and Dothideomycetes et Chaetothyriomcetes incertae sedis) have now been identified for the first time in marine sponges. Seven and six fungal species from S. zeteki and M. armata, respectively, are potentially new species because of their low sequence identity (?98%) with their references in GenBank. Phylogenetic analysis indicated sponge-derived sequences were clustered into “marine fungus clades” with those from other marine habitats. This is the first report of molecular analysis of fungal communities in marine sponges, adding depth and dimension to our understanding of sponge-associated microbial communities. PMID:18676706

  11. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation. PMID:21765911

  12. Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species

    PubMed Central

    2014-01-01

    Background The disaccharide trehalose is a major component of fungal spores and is released upon germination. Moreover, the sugar is well known for is protective functions, e.g. against thermal stress and dehydration. The properties and synthesis of trehalose have been well investigated in the bakers’ yeast Saccharomyces cerevisiae. In filamentous fungi, such knowledge is limited, although several gene products have been identified. Results Using Aspergillus niger as a model fungus, the aim of this study was to provide an overview of all genes involved in trehalose synthesis. This fungus has three potential trehalose-6-phosphate synthase encoding genes, tpsA-C, and three putative trehalose phosphate phosphatase encoding genes, tppA-C, of which two have not previously been identified. Expression of all six genes was confirmed using real-time PCR, and conserved orthologs could be identified in related Aspergilli. Using a two-hybrid approach, there is a strong indication that four of the proteins physically interact, as has previously been shown in S. cerevisiae. When creating null mutants of all the six genes, three of them, ?tpsA, ?tppA and ?tppB, had lower internal trehalose contents. The only mutant with a pronounced morphological difference was ?tppA, in which sporulation was severely reduced with abnormal conidiophores. This was also the only mutant with accumulated levels of trehalose-6-phosphate, indicating that the encoded protein is the main phosphatase under normal conditions. Besides ?tppA, the most studied deletion mutant in this work was ?tppB. This gene encodes a protein conserved in filamentous Ascomycota. The ?tppB mutant displayed a low, but not depleted, internal trehalose content, and conidia were more susceptible to thermal stress. Conclusion A. niger contains at least 6 genes putatively involved in trehalose synthesis. Gene expressions related to germination have been quantified and deletion mutants characterized: Mutants lacking tpsA, tppA or tppB have reduced internal trehalose contents. Furthermore, tppA, under normal conditions, encodes the functional trehalose-6-phosphate-phosphatase. PMID:24725382

  13. An Assessment of Fungal Diversity Using Oligonucleotide Fingerprinting of rRNA Genes, A Macroarray-based Technique

    NASA Astrophysics Data System (ADS)

    Hanson, C. A.; Borneman, J.; Lansing, J. L.; Hughes, J. B.; Mack, M. C.; Treseder, K. K.

    2004-12-01

    Environmental controls over the diversity and community composition of microbial decomposers are poorly understood. In this experiment, we examined the effects of litter quality and competitive exclusion on fungal diversity. Specifically, we expected to see greater fungal diversity in litter containing higher nitrogen concentrations in that this high quality substrate would be able to support fungal groups with a range of nutrient requirements. Additionally, to test the competitive exclusion principle that a limited number of decomposer groups can be supported by a given substrate, we excluded from the litter one phylum of decomposer fungi, the Ascomycota. An increase in diversity within the remaining fungal phyla would indicate a release from competitive exclusion. To test these hypotheses, we performed a decomposition experiment in a boreal forest near Delta Junction, Alaska. Senescent leaves of Populus tremuloides (quaking aspen) from two sites that varied in soil fertility were collected in fall 2002. Leaves from the more fertile site had nitrogen concentrations of 2.26%, and those from the less fertile site had nitrogen concentrations of 1.59%. Leaves were placed into 1-mm mesh bags and incubated in a third site from September 2002 to July 2003. The fungicide Benomyl, which eliminates Ascomycetes, was applied to a subset of the bags at the onset of decomposition. Directly following collection, active fungal DNA was isolated using a nucleotide analog probe. Fungal communities were characterized by oligonucleotide fingerprinting of rRNA genes, a macroarray-based technique. Cluster analyses of fingerprints identified fungal groups representing taxonomic levels ranging from genus to class. The number of fungal groups in each treatment was approximated using the Chao1 estimator. A total of 524 ± 10 fungal groups were estimated to occur across all treatments, with less than 60 of these groups previously identified in Genbank. We found that litter quality did not strongly affect fungal diversity, since the number of fungal groups did not differ significantly between site of litter origin (P = 0.0691). However, the overall fungal diversity in the fungicide treatment was significantly reduced compared to the control (P = 0.0358). This indicates that the remaining fungal groups did not completely radiate to fill all available niches following the elimination of competitors. Thus, we did not find strong evidence for competitive exclusion as an important control over the microbial community composition in this system. An additional analysis of the diversity of non-Ascomycetes across treatments will be conducted to further elucidate any potential role of competitive exclusion.

  14. Sex, drugs and recombination: the wild life of Aspergillus.

    PubMed

    Fisher, Matthew C; Henk, Daniel A

    2012-03-01

    Throughout the eukaryotes, sexual reproduction is an almost universal phenomenon. However, within the Kingdom Fungi, this relationship is not so clear-cut. Fungi exhibit a spectrum of reproductive modes and life-cycles; amongst the better known species, sexual reproduction is often facultative, can be rare, and in over half of the known Ascomycota (the moulds) is unknown (Taylor et al. 1999). However, over the last decade, it has become apparent that many of these asexual mitosporic taxa undergo cryptic recombination via unobserved mechanisms and that wholly asexual fungi are, in fact, a rarity (Taylor et al. 1999, 2001; Heitman 2010). This revolution in our understanding of fungal sexuality has come about in two ways: Firstly, sexual reproduction leaves an imprint on fungal genomes by maintaining genes required for mating and by generating patterns of mutation and recombination restricted to meiotic processes. Secondly, scientists have become better at catching fungi in flagrante delicto. The genus Aspergillus is one such fungus where a combination of population genetics, genomics and taxonomy has been able to intuit the existence of sex, then to catch the fungus in the act and formally describe their sexual stages. So, why are sexy moulds exciting? One species in particular, Aspergillus flavus, is notorious for its ability to produce a diverse array of secondary metabolites, of which the polyketide aflatoxins (AF) are carcinogenic and others (such as cyclopiazonic acid) are toxigenic. Because of the predilection of A. flavus to grow on crops, such as peanuts, corn and cotton, biocontrol is widely used to mitigate infection by pre-applying nonaflatoxigenic (AF-) strains to competitively exclude the wild-type AF+ strains. However, the eventual fate in nature of these biocontrol strains is not known. In this issue of Molecular Ecology, Olarte et al. (2012) make an important contribution by using laboratory crosses of A. flavus to show that not only is AF highly heritable, but AF- strains can become AF+ via crossing over during meiosis. This observation has raised the spectre of cross-breeding and non-mendelian inheritance of AF between native and biocontrol strains of the fungus, leading to an increase in the natural diversity of the fungus with perhaps unanticipated consequences. PMID:22393930

  15. Succession of fungi colonizing porous and compact limestone exposed to subtropical environments.

    PubMed

    Gómez-Cornelio, Sergio; Mendoza-Vega, Jorge; Gaylarde, Christine C; Reyes-Estebanez, Manuela; Morón-Ríos, Alejandro; De la Rosa-García, Susana Del Carmen; Ortega-Morales, Benjamín Otto

    2012-10-01

    Little is known about the dynamics of succession of fungi on limestone exposed in subtropical environments. In this study, the colonization of experimental blocks of compact and porous limestone by a fungal community derived from natural biofilms occurring on Structure X from the archaeological site of Becán (México), was studied using a cultivation-dependent approach after short-term (9 m) exposure in order to provide a preliminary insight of the colonization process under seminatural conditions. Microbial growth seen as the change of colour of stone surfaces to black/dark green was more abundant on the porous limestone. There was a fairly clear difference in microbial colonization between the onset of the experiment and the 6th month for both limestone types, but no significant increase in the colonization of coupons occurred between months 6 and 9. This could be related to the low rainfall expected for this period, corresponding to the dry season. A total of 977 isolates were obtained. From these, 138 sterile fungi were unidentified, 380 could only be assigned to the order Sphaeropsidales; the remaining isolates (459) were grouped into 27 genera and 99 different species. Nearly all detected fungal species belonged to the Ascomycota (90 %). Rare taxa (species represented by one to three isolates) included the recently described genus Elasticomyces, several species of genera Hyalodendron, Monodyctis, Papulospora, Curvularia, and Septoria. Other taxa were Minimedusa and Gliomastix luzulae, which have not been previously described for stone environments. Abundant fungi included several species of the common genera Cladosporium, Alternaria, and Taeniolella typical for a range of habitats. Succession of populations was observed for certain taxa, this shift in the composition of fungal communities was more evident in porous limestone. After 6 m of exposure, species of the genera Scolecobasidium, Hyalodendron, and Taeniolella were predominant, while after 9 m, the predominant species belonged to the genera Curvularia and Alternaria, particularly on porous stone. These results suggest that Curvularia and Alternaria replaced other fungi, due to a higher tolerance towards low levels of available water during the dry season. Higher levels of water within the porous stone, keep longer periods of microbial activity, minimizing the impact of desiccation. This study contributes to understand the diversity of fungal communities in stone surfaces in subtropical settings and the dynamics of colonization on limestone. PMID:23063185

  16. Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high-alpine air

    NASA Astrophysics Data System (ADS)

    Després, V.; Nowoisky, J.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-02-01

    This study explores the applicability of molecular methods for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter aliquots loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~105 haploid human genomes). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycetes (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched with about 40% of the 19 T-RF peaks (58 to 494 base pair length) found in the investigated PM2.5 samples. The results demonstrate that the T-RFLP analysis covered more of the bacterial diversity than the sequence analysis. Shannon-Weaver indices calculated from both sequence and T-RFLP data indicate that the bacterial diversity in the rural samples was higher than in the urban and alpine samples. Two of the bacterial sequences (Gammaproteobacteria) and five of the T-RF peaks were found at all sampling locations.

  17. A new approach to species delimitation in Septoria

    PubMed Central

    Verkley, G.J.M.; Quaedvlieg, W.; Shin, H.-D.; Crous, P.W.

    2013-01-01

    Septoria is a large genus of asexual morphs of Ascomycota causing leaf spot diseases of many cultivated and wild plants. Host specificity has long been a decisive criterium in species delimitation in Septoria, mainly because of the paucity of useful morphological characters and the high level of variation therein. This study aimed at improving the species delimitation of Septoria by adopting a polyphasic approach, including multilocus DNA sequencing and morphological analyses on the natural substrate and in culture. To this end 365 cultures preserved in CBS, Utrecht, The Netherlands, among which many new isolates obtained from fresh field specimens were sequenced. Herbarium material including many types was also studied. Full descriptions of the morphology in planta and in vitro are provided for 57 species. DNA sequences were generated for seven loci, viz. nuclear ITS and (partial) LSU ribosomal RNA genes, RPB2, actin, calmodulin, Btub, and EF. The robust phylogeny inferred showed that the septoria-like fungi are distributed over three main clades, establishing the genera Septoria s. str., Sphaerulina, and Caryophylloseptoria gen. nov. Nine new combinations and one species, Sphaerulina tirolensis sp. nov. were proposed. It is demonstrated that some species have wider host ranges than expected, including hosts from more than one family. Septoria protearum, previously only associated with Proteaceae was found to be also associated with host plants from six additional families of phanerogams and cryptogams. To our knowledge this is the first study to provide DNA-based evidence that multiple family-associations occur for a single species in Septoria. The distribution of host families over the phylogenetic tree showed a highly dispersed pattern for 10 host plant families, providing new insight into the evolution of these fungi. It is concluded that trans-family host jumping is a major force driving the evolution of Septoria and Sphaerulina. Taxonomic novelties: New genus - Caryophylloseptoria Verkley, Quaedvlieg & Crous; New species - Sphaerulina tirolensis Verkley, Quaedvlieg & Crous; New combinations - Caryophylloseptoria lychnidis (Desm.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria silenes (Westend.) Verkley, Quaedvlieg & Crous, Caryophylloseptoria spergulae (Westend.) Verkley, Quaedvlieg & Crous, Sphaerulina aceris (Lib.) Verkley, Quaedvlieg & Crous, Sphaerulina cornicola (DC.: Fr.) Verkley, Quaedvlieg & Crous, Sphaerulina gei (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina hyperici (Roberge ex Desm.) Verkley, Quaedvlieg & Crous, Sphaerulina frondicola (Fr.) Verkley, Quaedvlieg & Crous, Sphaerulina socia (Pass.) Quaedvlieg, Verkley & Crous; Epitypifications (basionyms) - Ascochyta lysimachiae Lib., Septoria astragali Roberge ex Desm., Septoria cerastii Roberge ex Desm., Septoria clematidis Roberge ex Desm., Septoria cruciatae Roberge ex Desm., Septoria spergulae Westend., Septoria epilobii Westend., Septoria galeopsidis Westend., Septoria gei Roberge ex Desm., Septoria hyperici Roberge ex Desm., Septoria rubi Westend., Septoria senecionis Westend., Septoria urticae Roberge ex Desm. PMID:24014901

  18. Optimizing modes of inoculation of Rhipicephalus ticks (Acari: Ixodidae) with a mitosporic entomopathogenic fungus in the laboratory.

    PubMed

    Nchu, Felix; Maniania, Nguya Kalemba; Hassanali, Ahmed; Eloff, Kobus N

    2010-08-01

    The process of strain selection is an important step in the development of insect pathogens for biological control. Bioassays were conducted in the laboratory to evaluate the efficacy of different methods of inoculation using Rhipicephalus pulchellus Gerstäcker (Acari: Ixodidae) as a model. Initially, an oil-based formulation of Metarhizium anisopliae (Metsch.) Sorok. (Ascomycota: Hypocreales) titred at 10(9) conidia ml(-1) was applied to R. pulchellus adults using a Burgerjon spray tower or a microapplicator. Inoculation by microapplicator yielded poor results (25.0% tick mortality) compared to Burgerjon's spray tower (52.3% tick mortality), although the mean number of fungal conidia on R. pulchellus adults was lower (1.5 x 10(4) +/- 1.1 x 10(3) conidia ml(-1)) after spraying by Burgerjon's spray tower compared to 1 x 10(6) conidia ml(-1) obtained with the microapplicator. Thus, inoculation by Burgerjon's spray tower was selected for further investigations. Different modes of inoculation were tested and included direct spray of inoculum on the tick and substrate (SS), direct spray on the substrate and tick followed by transfer of the tick to clean uncontaminated Petri dish (SP) or indirect inoculation of ticks through substrate (SW). The LC(50) values following contamination of nymphs (LC(50) = 1.4 x 10(7) conidia ml(-1)) and adults (LC(50) = 6.7 x 10(7) conidia ml(-1)) in SS were significantly lower compared to SP; nymphs (LC(50) = 5.7 x 10(8) conidia ml(-1)) and adults (LC(50) = 5.3 x 10(9) conidia ml(-1)) and SW; nymphs (LC(50) = 5 x 10(8) conidia ml(-1)). Although the LC(50) value in SS was the lowest, it recorded the highest tick mortality among control ticks (24.2% at 2 weeks post-treatment) and (23.3% at 3 weeks post-treatment) in nymphs and adults respectively compared to SP (2.5 and 5.8%, respectively) and SW (0.0 and 0.0). Results show that among the modes of inoculation tested, SP was the most appropriate for inoculating R. pulchellus adults. SW and SP were identified as appropriate techniques for infecting the R. pulchellus nymphs with conidia formulated in oil. PMID:20082120

  19. Analysis of Fungal Diversity in the Wheat Rhizosphere by Sequencing of Cloned PCR-Amplified Genes Encoding 18S rRNA and Temperature Gradient Gel Electrophoresis

    PubMed Central

    Smit, Eric; Leeflang, Paula; Glandorf, Boet; Dirk van Elsas, Jan; Wernars, Karel

    1999-01-01

    Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere. PMID:10347051

  20. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the PCR reaction volumes containing template DNA of ice nucleation active microorganisms from atmospheric samples in thousands of identical droplets. Each droplet encapsulates the reagents necessary for DNA amplification. With template DNA concentrations low enough, the droplets will statistically contain either no template molecules or one molecule. A molecule of template DNA corresponds to exactly one cell of an ice nucleation active microorganism in the original sample provided the genetic marker on the template is present in a single copy. Successful amplification in the presence of template DNA is coupled to a measurable fluorescence signal. The original template DNA concentration is automatically derived from the fraction of fluorescence positive droplets to total droplet number. This far, molecular probes against single-copy genetic markers for ice nucleation active fungi Mortierella alpina, Acremonium implicatum, Isaria farinosa and the ice nucleation active bacterium Pseudomonas syringae have been successfully designed and tested by our group.

  1. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    PubMed

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; ?-tubulin; 60S ribosomal protein L29; ?-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; ?-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable genes for fruiting body developmental stages. PMID:25778998

  2. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

    PubMed Central

    Hane, James K.; Anderson, Jonathan P.; Williams, Angela H.; Sperschneider, Jana; Singh, Karam B.

    2014-01-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens. PMID:24810276

  3. The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions.

    PubMed

    Voglmayr, Hermann; Mayer, Veronika; Maschwitz, Ulrich; Moog, Joachim; Djieto-Lordon, Champlain; Blatrix, Rumsaïs

    2011-10-01

    Based on pure culture studies and DNA phylogenetic analyses, black yeasts (Chaetothyriales, Ascomycota) are shown to be widely distributed and important components of numerous plant-ant-fungus networks, independently acquired by several ant lineages in the Old and New World. Data from ITS and LSU nu rDNA demonstrate that a high biodiversity of fungal species is involved. There are two common ant-fungus symbioses involving black yeasts: (1) on the carton walls of ant nests and galleries, and (2) the fungal mats growing within non-pathogenic naturally hollow structures (so-called domatia) provided by myrmecophytic plants as nesting space for ants (ant-plant symbiosis). Most carton- and domatia-inhabiting fungi stem from different phylogenetic lineages within Chaetothyriales, and almost all of the fungi isolated are still undescribed. Despite being closely related, carton and domatia fungi are shown to differ markedly in their morphology and ecology, indicating that they play different roles in these associations. The carton fungi appear to improve the stability of the carton, and several species are commonly observed to co-occur on the same carton. Carton fungi commonly have dark-walled monilioid hyphae, colouring the carton blackish and apparently preventing other fungi from invading the carton. Despite the simultaneous presence of usually several species of fungi, forming complex associations on the carton, little overlap is observed between carton fungi from different ant species, even those that co-occur in nature, indicating at least some host specificity of fungi. Most fungi present on carton belong to Chaetothyriales, but in a few samples, Capnodiales are also an important component. Carton fungi are difficult to assign to anamorph genera, as most lack conidiation. The domatia fungi are more specific. In domatia, usually only one or two fungal species co-occur, producing a dense layer on living host plant tissue in domatia. They have hyaline or light brown thin-walled hyphae, and are commonly sporulating. In both carton and domatia, the fungal species seem to be specific to each ant-plant symbiosis. Representative examples of carton and domatia ant-fungus symbioses are illustrated. We discuss hypotheses on the ecological significance of the Chaetothyriales associated with ants. PMID:21944219

  4. Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed

    PubMed Central

    2011-01-01

    Background Fungal endophyte communities are often comprised of many species colonizing the same host. However, little is known about the causes of this diversity. On the one hand, the apparent coexistence of closely related species may be explained by the traditional niche differentiation hypothesis, which suggests that abiotic and/or biotic factors mediate partitioning. For endophytes, such factors are difficult to identify, and are therefore in most cases unknown. On the other hand, there is the neutral hypothesis, which suggests that stochastic factors may explain high species diversity. There is a need to investigate to what extent each of these hypotheses may apply to endophytes. Results The niche partitioning of two closely related fungal endophytes, Microdochium bolleyi and M. phragmitis, colonizing Phragmites australis, was investigated. The occurrences of each species were assessed using specific nested-PCR assays for 251 field samples of common reed from Lake Constance, Germany. These analyses revealed niche preferences for both fungi. From three niche factors assessed, i.e. host habitat, host organ and season, host habitat significantly differentiated the two species. M. bolleyi preferred dry habitats, whereas M. phragmitis prevailed in flooded habitats. In contrast, both species exhibited a significant preference for the same host organ, i.e. roots. Likewise the third factor, season, did not significantly distinguish the two species. Differences in carbon utilization and growth temperature could not conclusively explain the niches. The inclusion of three unrelated species of Ascomycota, which also colonize P. australis at the same locations, indicated spatio-temporal niche partitioning between all fungi. None of the species exhibited the same preferences for all three factors, i.e. host habitat, host organ, and time of the season. Conclusions The fungal species colonizing common reed investigated in this study seem to exploit niche differences leading to a separation in space and time, which may allow for their coexistence on the same host. A purely neutral model is unlikely to explain the coexistence of closely related endophytes on common reed. PMID:22032611

  5. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    NASA Astrophysics Data System (ADS)

    Després, V. R.; Nowoisky, J. F.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-12-01

    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycota (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM2.5 samples, but only 40% of the T-RF peaks did correspond to one of the detected bacterial sequences. The results demonstrate that the T-RFLP analysis covered more of the bacterial diversity than the sequence analysis. Shannon-Weaver indices calculated from both sequence and T-RFLP data indicate that the bacterial diversity in the rural samples was higher than in the urban and alpine samples. Two of the bacterial sequences (Gammaproteobacteria) and five of the T-RF peaks were found at all sampling locations.

  6. Contribution of fungi to primary biogenic aerosols in the atmosphere: active discharge of spores, carbohydrates, and inorganic ions by Asco- and Basidiomycota

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pöschl, U.

    2006-11-01

    Spores and related chemical compounds from actively spore-discharging Ascomycota (AAM) and actively spore-discharging Basidiomycota (ABM) are primary biogenic components of air particulate matter (characteristic size range 1-10 ?m). Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the forcible discharge of fungal spores may account for a large proportion of coarse air particulate matter in tropical rainforest regions during the wet season. For the particle diameter range of 1-10 ?m, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol, mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively discharged basidiospores (ABS), and that the literature-derived emission ratio of about 5 pg per ABS may be taken as a representative average. ABM emissions may account for most of the atmospheric abundance of mannitol, and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter, but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season, and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol in particulate matter, which is consistent with the above emission ratio and the observed abundance of ABS, we have also calculated a value of ~17 Tg yr-1 as a first estimate for the global average emission rate of ABS over land surfaces. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr-1 of anthropogenic primary organic aerosol; 12-70 Tg yr-1 of secondary organic aerosol) indicate that emissions from actively spore-discharging fungi should be taken into account as a significant source of organic aerosol. Their effects might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.

  7. [Structure and evolution of the eukaryotic FANCJ-like proteins].

    PubMed

    Wuhe, Jike; Zefeng, Wu; Sanhong, Fan; Xuguang, Xi

    2015-02-01

    The FANCJ-like protein family is a class of ATP-dependent helicases that can catalytically unwind duplex DNA along the 5'-3' direction. It is involved in the processes of DNA damage repair, homologous recombination and G-quadruplex DNA unwinding, and plays a critical role in maintaining genome integrity. In this study, we systemically analyzed FNACJ-like proteins from 47 eukaryotic species and discussed their sequences diversity, origin and evolution, motif organization patterns and spatial structure differences. Four members of FNACJ-like proteins, including XPD, CHL1, RTEL1 and FANCJ, were found in eukaryotes, but some of them were seriously deficient in most fungi and some insects. For example, the Zygomycota fungi lost RTEL1, Basidiomycota and Ascomycota fungi lost RTEL1 and FANCJ, and Diptera insect lost FANCJ. FANCJ-like proteins contain canonical motor domains HD1 and HD2, and the HD1 domain further integrates with three unique domains Fe-S, Arch and Extra-D. Fe-S and Arch domains are relatively conservative in all members of the family, but the Extra-D domain is lost in XPD and differs from one another in rest members. There are 7, 10 and 2 specific motifs found from the three unique domains respectively, while 5 and 12 specific motifs are found from HD1 and HD2 domains except the conserved motifs reported previously. By analyzing the arrangement pattern of these specific motifs, we found that RTEL1 and FANCJ are more closer and share two specific motifs Vb2 and Vc in HD2 domain, which are likely related with their G-quadruplex DNA unwinding activity. The evidence of evolution showed that FACNJ-like proteins were originated from a helicase, which has a HD1 domain inserted by extra Fe-S domain and Arch domain. By three continuous gene duplication events and followed specialization, eukaryotes finally possessed the current four members of FANCJ-like proteins. PMID:25665647

  8. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  9. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and -8°C. The IN seem not be bound to cells because they can be easily washed off the mycelium. They pass through a 0.1 µm filter and can be inactivated by 60°C treatment. Ongoing investigations of various soil and air samples indicate that diverse ice nucleation active fungi from more than one phylum are not only present in air and soil but can also be abundant components of the cultivable community. A recently discovered group of IN fungi in soil was also found to possess easily suspendable IN smaller than 300 kDa. Ice nucleating fungal mycelium may ramify topsoils and release cell-free IN into it. If some of these IN survive decomposition or are adsorbed onto mineral surfaces this contribution will accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties. Thanks for collaboration and support to M.O. Andreae, B. Baumgartner, I. Germann-Müller, T. Godwill, L.E. Hanson, A.T. Kunert, J. Meeks, T. Pooya, S. Lelieveld, J. Odhiambo Obuya, C. Ruzene-Nespoli, and D. Sebazungu. The Max Planck Society (MPG), Ice Nuclei research UnIT (INUIT), the German Research Foundation (PO1013/5-1), and the National Science Foundation (NSF, grant 0841542) are acknowledged for financial support. 1. Fröhlich-Nowoisky, J., et al. (2009) Proc. Natl Acad. Sci., 106, 12814-12819 2. Després, V. R., et al. (2012) Tellus B, 64, 15598 3. Georgakopoulos, D.G., et al. (2009) Biogeosciences, 6, 721-737 4. Pouleur, S., et al. (1992) Appl. Environ. Microbiol. 58, 2960-2964 5. Burrows, S.M., et al. (2009a) Atmos. Chem. Phys., 9, (23), 9281-9297 6. Burrows, S.M., et al. (2009b) Atmos. Chem. Phys., 9, (23), 9263-9280 7. Fröhlich-Nowoisky, J., et al. (2012) Biogeosciences, 9, 1125-1136 8. Huffman A. J. et al. (2013) Atmos. Chem. Phys., 13, 6151-6164

  10. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    Biogenic aerosols are ubiquitous in the Earth’s atmosphere, influencing atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms, and they can cause or enhance human, animal, and plant diseases. Moreover, they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei (CCN, IN). Primary biogenic aerosol particles (PBAP) such as pollen, fungal spores, and bacteria are emitted directly from the biosphere to the atmosphere. Microscopic investigations have shown that PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in rural and rain forest air, and the estimates of PBA emissions range from ~60 Tg a-1 of fine particles up to ~1000 Tg a-1 of total particulate matter. Fungal spores account for a large proportion of PBA with typical number and mass concentrations of ~104 m-3 and ~1 ?g m-3 in continental boundary layer air and estimated global emissions of the order of ~50 Tg a-1 and 200 m-2 s-1, respectively [1]. The actual abundance, variability and diversity of PBAP are still poorly understood and quantified, however. By measuring fluorescence at excitation and emission wavelengths specific to viable cells, online techniques with time resolution of minutes are able to detect fluorescent biological aerosol particles (FBAP), which represent a lower limit for the actual abundance of coarse (> 1 ?m) PBAP [2]. Continuous sampling (1 - 4 months) was performed at various locations including pristine rain forest, rural and polluted urban sites. Each study exhibited a similar average particle number distribution dominated by a peak at ~3 ?m, with coarse FBAP concentrations of the order of ~5x104 m-3 and ~1 ?g m-3. Recent advances in the DNA analysis and molecular genetic characterization of aerosol filter samples yield new information about the sources and composition of PBA and provide new insight into regional and global biodiversity [3,4]. Filters collected at a semi-urban site in Germany for approximately one year determined that ~34% of the airborne fungal species were Ascomycota (sac fungi), 64% were Basidiomycota (club fungi), and that their relative proportions changed seasonally. Numerical simulations with state-of-the-art atmospheric chemistry and climate models are helping to unravel the regional and global distribution and transport of PBA [5]. The atmospheric abundance and environmental effects of PBA are particularly pronounced in tropical regions, where both the biological activity at the Earth’s surface and the physicochemical processes in the atmosphere are particularly intense and important for the Earth system and global climate. If climate change and human activities lead to changes in the abundance and properties of PBA, this might influence the hydrological cycle and provide a feedback to climate change [1]. [1] Elbert et al. (2007) Atmos. Chem. Phys., 7, 4569 - 4588. [2] Huffman et al. (2009) Atmos. Chem. Phys. Discuss., 9, 17705 - 17751. [3] Després et al. (2007) Biogeosciences, 4, 1127-1141. [4] Fröhlich-Nowoisky et al. (2009) Proc. Nat. Acad. Sci., 106, 12814 - 12819. [5] Burrows et al. (2009) Atmos. Chem. Phys. Discuss., 9, 10829 - 10881.

  11. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    NASA Astrophysics Data System (ADS)

    Elbert, W.; Taylor, P. E.; Andreae, M. O.; Pöschl, U.

    2007-09-01

    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7-2.3 ?g m-3). For the particle diameter range of 1-10 ?m, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10-68 ng m-3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7-49 ng m-3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17-43 ng m-3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m-3), we have also calculated a value of ~17 Tg yr-1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³-104 m-3; ~0.1-1 ?g m-3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 ?g m-3 and ~50 Tg yr-1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr-1 of anthropogenic primary organic aerosol; 12-70 Tg yr-1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions.