Science.gov

Sample records for camillea xylariaceae ascomycota

  1. A polyphasic taxonomy of Daldinia (Xylariaceae)1

    PubMed Central

    Stadler, Marc; Læssøe, Thomas; Fournier, Jacques; Decock, Cony; Schmieschek, Beata; Tichy, Hans-Volker; Peršoh, Derek

    2014-01-01

    For a monograph based on a polythetic concept, several thousands of herbarium specimens, and several hundreds of freshly collected and cultured specimens of Daldinia and allied Xylariaceae, originating from around the world, were studied for morphological traits, including by SEM, and chemically by HPLC profiles using UV-visible and mass spectrometric detection. Emphasis was given to tropical material, and importantly, ancient specimens, including as many types as possible, were tracked and studied to review earlier taxonomic concepts. An epitype of D. eschscholtzii was selected as representative of the morphochemotype that is most widely distributed in the tropics. Six new species of Daldinia from the tropics and the southern Hemisphere are described. Daldinia asphalatum is resurrected, and D. cudonia is regarded as its synonym. In addition, the following binomials are epi-, iso-, neo- and/or lectotypified: Daldinia asphalatum, D. caldariorum, D. clavata, D. cuprea, D. durissima, D. eschscholtzii, D. grandis, D. loculata, and D. vernicosa. Annellosporium and Versiomyces are regarded as synonyms of Daldinia. Many new synonymies in Daldinia are proposed, and some previously published names are rejected. In total, 47 taxa in Daldinia are recognised and a key is provided. Their biogeography, chorology, and ecology, as well as the importance of their secondary metabolites, are also discussed. The previous definition of the genus is emended. The species concept is based mainly on morphological and other phenotype-derived characters because, despite diligent search, no molecular data or cultures of several of the accepted species could be obtained. Daldinia is segregated into five major groups, based on phenotypic characteristics. Some unnamed but aberrant specimens were not found in good condition and are therefore not formally described as new species. However, they are illustrated in detail in a hope that this will facilitate the discovery of fresh material in future. A preliminary molecular phylogeny based on 5.8S/ITS nrDNA including numerous representatives of all hitherto described taxa for which cultures are extant, was found basically in agreement with the above mentioned segregation of the genus, based on morphological and chemotaxonomic evidence. In the rDNA based phylogenetic tree, Daldinia appears clearly distinct from members of the genera Annulohypoxylon and Hypoxylon; nevertheless, representatives of small genera of predominantly tropical origin (Entonaema, Phylacia, Ruwenzoria, Rhopalostroma, Thamnomyces) appear to have evolved from daldinioid ancestors and are nested inside the Daldinia clade. Interestingly, these findings correlate with chemotaxonomic characters to a great extent, especially regarding the distribution of marker metabolites in their mycelial cultures. Hence, the current study revealed for the first time that fungal secondary metabolite profiles can have taxonomic value beyond the species rank and even coincide with phylogenetic data. Taxonomic novelties: Daldinia andina sp. nov., D. australis sp. nov., D. hausknechtii sp. nov., D. rehmii sp. nov., D. starbaeckii sp. nov., D. theissenii sp. nov., D. cahuchosa comb. nov., D. nemorosa comb. nov. PMID:24790283

  2. Polyketides from a marine-derived fungus Xylariaceae sp.

    PubMed

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-05-01

    Eighteen polyketides (1-18) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported. PMID:23697953

  3. New α-pyrone and phthalide from the Xylariaceae fungus.

    PubMed

    Zou, Jian; Li, Jun; Wu, Zu-Yan; Zhao, Qin; Wang, Gao-Qian; Zhao, Huan; Chen, Guo-Dong; Sun, Xiang; Guo, Liang-Dong; Gao, Hao

    2015-01-01

    A new α-pyrone xylaripyrone A (1) and a new phthalide xylariphthalide A (2) were isolated from the Xylariaceae fungus (no. 63-19-7-3), along with four related known phthalides (3-6): 4-[(acetyloxy)methyl]-7-methoxy-6-methyl-1(3H)-isobenzofuranone (3), convolvulol (4), 7-methoxy-4,6-dimethyl-3H-isobenzofuran-1-one (5), and convolvulanic acid B (6). Their structures were determined on the basis of IR, MS, and NMR spectroscopic analyses. PMID:26123347

  4. Polyketides from a Marine-Derived Fungus Xylariaceae sp.

    PubMed Central

    Nong, Xu-Hua; Zheng, Zhi-Hui; Zhang, Xiao-Yong; Lu, Xin-Hua; Qi, Shu-Hua

    2013-01-01

    Eighteen polyketides (118) including six citrinin derivatives, two phenol derivatives, one cyclopentenone, two naphthol derivatives, and seven tetralone derivatives were isolated from the culture broth of a marine-derived fungal strain Xylariaceae sp. SCSGAF0086. Five of these compounds (1, 2, 8, 9, and 10) were new, and their structures were determined by spectroscopic methods. Compounds 4, 6, 7, and 17 showed enzyme-inhibitory activities towards several tested enzymes, and 6 and 7 showed strong antifouling activity against Bugula neritina larvae settlement. This is the first time that the antifouling and enzyme-inhibitory activities of these compounds has been reported. PMID:23697953

  5. Cytotoxic Cytochalasins and Other Metabolites from Xylariaceae sp. FL0390, a Fungal Endophyte of Spanish Moss.

    PubMed

    Xu, Ya-Ming; Bashyal, Bharat P; Liu, Mangping X; Espinosa-Artiles, Patricia; U'Ren, Jana M; Arnold, A Elizabeth; Gunatilaka, A A Leslie

    2015-10-01

    Two new metabolites, 6-oxo-12-norcytochalasin D (1) and 4,5-di-isobutyl-2(1H)-pyrimidinone (2), together with seven known metabolites, cytochalasins D (3), Q (4), and N (5), 12-hydroxyzygosporin G (6), heptelidic acid chlorohydrin (7), (+)-heptelidic acid (8), and trichoderonic acid A (9), were isolated from Xylariaceae sp. FL0390, a fungal endophyte inhabiting Spanish moss, Tillandsia usneoides. Metabolite 1 is the first example of a 12-norcytochalasin. All metabolites, except 2 and 9, showed cytotoxic activity in a panel of five human tumor cell lines with IC50S of 0.2-5.0 ?M. PMID:26669096

  6. Dating the Diversification of the Major Lineages of Ascomycota (Fungi)

    PubMed Central

    Prieto, Mara; Wedin, Mats

    2013-01-01

    Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various relaxed clock scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichenforming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and nonlichenized Ascomycota, many of which had not been previously dated. PMID:23799026

  7. The complete mitochondrial genome of Paecilomyces hepiali (Ascomycota, Eurotiomycetes).

    PubMed

    Wang, Linping; Xu, Jiayue; Li, Huchen; Song, Lipu; Yu, Yi; Zhang, Wensheng; Liu, Guiming; Feng, Chengqiang

    2016-03-01

    Abtract Paecilomyces hepiali, belonging to the Eurotiales order Ascomycota, is an endoparasitic fungus that commonly exists in the natural Cordyceps sinensis anamorph stage. Here, we report the complete mitochondrial DNA sequences of P. hepiali for the first time. The genome is 24,245?bp in length, encoding 15 protein-coding genes (PCGs), 2 rRNA genes, 25 tRNA genes and 3 homing endonucleases. The overall AT composition is 73.37% and the average AT content of PCG, rRNA, tRNA and non-coding region are 74.21%, 66.07%, 62.83% and 75.96%, respectively. Phylogenetic analysis with eight Ascomycota species and thirteen Basidiomycota species revealed that P. hepiali is was more closely related to Cordyceps bassiana, Cordycep smilitaris and Cordyceps brongniartii. It is confirmed that P. hepiali is a derivative of Cordyceps sinensis. This study provided valuable information on the gene contents of the mitochondrial genome and would facilitate the study of function and evolution of P. hepiali. PMID:24963769

  8. Saccharomycotina and Taphrinomycotina: the yeasts and yeast-like fungi of the Ascomycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylum Ascomycota has been resolved into three major phylogenetic lineages: the subphyla Saccharomycotina (e.g., Saccharomyces, Pichia, Candida), Taphrinomycotina (e.g., Protomyces, Taphrina, Pneumocystis), and the Pezizomycotina (e.g., Aspergillus, Neurospora, Peziza). We discuss the ecology, ...

  9. Origin and evolution of carnivorism in the Ascomycota (fungi)

    PubMed Central

    Yang, Ence; Xu, Lingling; Yang, Ying; Zhang, Xinyu; Xiang, Meichun; Wang, Chengshu; An, Zhiqiang; Liu, Xingzhong

    2012-01-01

    Carnivorism is one of the basic life strategies of fungi. Carnivorous fungi possess the ability to trap and digest their preys by sophisticated trapping devices. However, the origin and development of fungal carnivorism remains a gap in evolution biology. In this study, five protein-encoding genes were used to construct the phylogeny of the carnivorous fungi in the phylum Ascomycota; these fungi prey on nematodes by means of specialized trapping structures such as constricting rings and adhesive traps. Our analysis revealed a definitive pattern of evolutionary development for these trapping structures. Molecular clock calibration based on two fossil records revealed that fungal carnivorism diverged from saprophytism about 419 Mya, which was after the origin of nematodes about 550600 Mya. Active carnivorism (fungi with constricting rings) and passive carnivorism (fungi with adhesive traps) diverged from each other around 246 Mya, shortly after the occurrence of the PermianTriassic extinction event about 251.4 Mya. The major adhesive traps evolved around 198208 Mya, which was within the time frame of the TriassicJurassic extinction event about 201.4 Mya. However, no major carnivorous ascomycetes divergence was correlated to the CretaceousTertiary extinction event, which occurred more recently (about 65.5 Mya). Therefore, a causal relationship between mass extinction events and fungal carnivorism evolution is not validated in this study. More evidence including additional fossil records is needed to establish if fungal carnivorism evolution was a response to mass extinction events. PMID:22715289

  10. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylogenetic relatedness among ascomycetous yeast genera (subphylum Saccharomycotina, phylum Ascomycota) has been uncertain. In the present study, type species of 70 currently recognized genera are compared from divergence in the nearly entire nuclear gene sequences for large subunit rRNA, small sub...

  11. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data.

    PubMed

    Beimforde, Christina; Feldberg, Kathrin; Nylinder, Stephan; Rikkinen, Jouko; Tuovila, Hanna; Drfelt, Heinrich; Gube, Matthias; Jackson, Daniel J; Reitner, Joachim; Seyfullah, Leyla J; Schmidt, Alexander R

    2014-09-01

    The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualistic associations such as mycorrhizae and lichens have evolved in this group, which are regarded as key innovations that supported the evolution of land plants. Only a few attempts have been made to date the origin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack of satisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycete fossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils represent five major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 and RPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibration points solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with a Bayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician, followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuous diversification was unaffected by mass extinctions. We suggest that the ecological diversity within each lineage ensured that at least some taxa of each group were able to survive global crises and rapidly recovered. PMID:24792086

  12. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    PubMed

    Osi?ska-Jaroszuk, Monika; Jarosz-Wilko?azka, Anna; Jaroszuk-?cise?, Jolanta; Sza?apata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Ma?gorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (?-(1 ? 3), ?-(1 ? 6), and ?-(1 ? 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs in different branches of industry, agriculture, and medicine. PMID:26340934

  13. Interkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota

    PubMed Central

    Lawrence, Daniel P.; Kroken, Scott; Pryor, Barry M.; Arnold, A. Elizabeth

    2011-01-01

    Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota. PMID:22140558

  14. Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota.

    PubMed

    Lawrence, Daniel P; Kroken, Scott; Pryor, Barry M; Arnold, A Elizabeth

    2011-01-01

    Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota. PMID:22140558

  15. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria

    PubMed Central

    Santamaria, Monica; Vicario, Saverio; Pappad, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-01-01

    Background A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. Methods The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. Results After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. Conclusion The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans. PMID:19534740

  16. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    NASA Astrophysics Data System (ADS)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of ?-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle Cantharellus cibarius Fr., as well as oyster mushroom Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  17. A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Nectria is the type genus of Nectriaceae (Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota), the systematics of the teleomorphic and anamorphic state of Nectria sensu Rossman has not been studied in detail. The objectives of this study were to 1) provide a phylogenetic overview to d...

  18. Kodamaea ohmeri (Ascomycota: Saccharomycotina) presence in commercial Bombus impatiens Cresson and feral Bombus pensylvanicus DeGeer (Hymenoptera: Apidae) colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, eight commercial and three feral bumble bee (Bombus impatiens Cresson and Bombus pensylvanicus DeGeer respectively, Hymenoptera: Apidae) colonies were tested for the presence of Kodamaea ohmeri (Ascomycota: Saccharomycotina), a yeast known to attract small hive beetles (SHB) (Aethina ...

  19. Complete mitochondrial genome of the entomopathogenic fungus Beauveria pseudobassiana (Ascomycota, Cordycipitaceae).

    PubMed

    Oh, Junsang; Kong, Won-Sik; Sung, Gi-Ho

    2015-01-01

    The complete mitochondrial genome of the entomopathogenic fungus Beauveria pseudobassiana (Ascomycota, Cordycipitaceae) was determined and found to be 28,006 bp in length. It encodes genes for 14 proteins, 2 ribosomal RNA subunits, 25 transfer RNAs with the synteny identical to those of B. bassiana and B. brongniartii. The overall base composition is 36.7% A, 35.8% T, 15.3% C and 12.2% G with an AT content of 72.5%. Group-? introns were found in large rRNA gene (rnl) and cox2 gene that include rps3 gene and putative GIY-YIG homing endonuclease, respectively. The mitochondrial genome of B. pseudobassiana will contribute to the investigation of the phylogenetic relationship, taxonomic resolution and biogeography of Beauveria. PMID:24320567

  20. Molecular analysis reveals two new dimorphic species of Hesperomyces (Ascomycota, Laboulbeniomycetes) parasitic on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae).

    PubMed

    Goldmann, Lauren; Weir, Alex; Rossi, Walter

    2013-01-01

    Four morphotypes of Hesperomyces (Ascomycota, Laboulbeniomycetes) were found on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae) from Costa Rica and Ecuador. Partial SSU and ITS rDNA sequence analysis revealed that these belong to two phylogenetic species, each with a pair of morphotypes displaying position specificity. Confirmation of dimorphism in Laboulbeniales highlights the need for a thorough systematic revision of species concepts within the order. The theory of 'position specificity' also needs to be revisited. PMID:24295919

  1. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species.

    PubMed

    Kurtzman, Cletus P; Robnett, Christie J

    2013-02-01

    Relationships among ascomycetous yeast genera (subphylum Saccharomycotina, phylum Ascomycota) have been uncertain. In the present study, type species of 70 currently recognized genera are compared from divergence in the nearly entire nuclear gene sequences for large subunit rRNA, small subunit (SSU) rRNA, translation elongation factor-1α, and RNA polymerase II, subunits 1 (RPB1) and 2 (RPB2). The analysis substantiates earlier proposals that all known ascomycetous yeast genera now assigned to the Saccharomycotina represent a single clade. Maximum likelihood analysis resolved the taxa into eight large multigenus clades and four-one- and two-genus clades. Maximum parsimony and neighbor-joining analyses gave similar results. Genera of the family Saccharomycetaceae remain as one large clade as previously demonstrated, to which the genus Cyniclomyces is now assigned. Pichia, Saturnispora, Kregervanrija, Dekkera, Ogataea and Ambrosiozyma are members of a single large clade, which is separate from the clade that includes Barnettozyma, Cyberlindnera, Phaffomyces, Starmera and Wickerhamomyces. Other clades include Kodamaea, Metschnikowia, Debaryomyces, Cephaloascus and related genera, which are separate from the clade that includes Zygoascus, Trichomonascus, Yarrowia and others. This study once again demonstrates that there is limited congruence between a system of classification based on phenotype and a system determined from DNA sequences. PMID:22978764

  2. Functional Operons in Secondary Metabolic Gene Clusters in Glarea lozoyensis (Fungi, Ascomycota, Leotiomycetes)

    PubMed Central

    Yue, Qun; Chen, Li; Li, Yan; Bills, Gerald F.; Zhang, Xinyu; Xiang, Meichun; Li, Shaojie; Che, Yongsheng; Wang, Chengshu; Niu, Xuemei

    2015-01-01

    ABSTRACT Operons are multigene transcriptional units which occur mostly in prokaryotes but rarely in eukaryotes. Protein-coding operons have not been reported in the Fungi even though they represent a very diverse kingdom of organisms. Here, we report a functional operon involved in the secondary metabolism of the fungus Glarea lozoyensis belonging to Leotiomycetes (Ascomycota). Two contiguous genes, glpks3 and glnrps7, encoding polyketide synthase and nonribosomal peptide synthetase, respectively, are cotranscribed into one dicistronic mRNA under the control of the same promoter, and the mRNA is then translated into two individual proteins, GLPKS3 and GLNRPS7. Heterologous expression in Aspergillus nidulans shows that the GLPKS3-GLNRPS7 enzyme complex catalyzes the biosynthesis of a novel pyrrolidinedione-containing compound, xenolozoyenone (compound 1), which indicates the operon is functional. Although it is structurally similar to prokaryotic operons, the glpks3-glnrps7 operon locus has a monophylogenic origin from fungi rather than having been horizontally transferred from prokaryotes. Moreover, two additional operons, glpks28-glnrps8 and glpks29-glnrps9, were verified at the transcriptional level in the same fungus. This is the first report of protein-coding operons in a member of the Fungi. PMID:26081635

  3. Ascomycota Members Dominate Fungal Communities during Straw Residue Decomposition in Arable Soil

    PubMed Central

    Ma, Anzhou; Zhuang, Xuliang; Wu, Junmei; Cui, Mengmeng; Lv, Di; Liu, Chunzhao; Zhuang, Guoqiang

    2013-01-01

    This study investigated the development of fungal community composition in arable soil during the degradation of straw residue. We explored the short-term responses of the fungal community over 28 days of decomposition in soil using culture-independent polymerase chain reaction in combination with a clone library and denaturing gradient gel electrophoresis (DGGE). Fungal cellobiohydrolase I (cbhI) genes in the soil were also characterized, and their diversity suggested the existence of a different cellulose decomposer. The DGGE profiles based on fungal internal transcribed spacer analysis showed different successions of fungal populations during residue decomposition. Members of Lecythophora and Sordariales were dominant in the early succession, while Hypocrea and Engyodontium were better adapted in the late succession. The succession of fungal communities might be related to changes of residue quality during decomposition. Collectively, sequences assigned to Ascomycota members were dominant at different stages of the fungal succession during decomposition, revealing that they were key drivers responsible for residue degradation in the arable soil tested. PMID:23840414

  4. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota).

    PubMed

    Hofstetter, Valrie; Miadlikowska, Jolanta; Kauff, Frank; Lutzoni, Franois

    2007-07-01

    The resolving power and statistical support provided by two protein-coding (RPB1 and RPB2) and three ribosomal RNA-coding (nucSSU, nucLSU, and mitSSU) genes individually and in various combinations were investigated based on maximum likelihood bootstrap analyses on lichen-forming fungi from the class Lecanoromycetes (Ascomycota). Our results indicate that the optimal loci (single and combined) to use for molecular systematics of lichen-forming Ascomycota are protein-coding genes (RPB1 and RPB2). RPB1 and RPB2 genes individually were phylogenetically more efficient than all two- and three-locus combinations of ribosomal loci. The 3rd codon position of each of these two loci provided the most characters in support of phylogenetic relationships within the Lecanoromycetes. Of the three ribosomal loci we used in this study, mitSSU contributed the most to phylogenetic analyses when combined with RPB1 and RPB2. Except for the mitSSU, ribosomal genes were the most difficult to recover because they often contain many introns, resulting in PCR bias toward numerous and intronless co-extracted contaminant fungi (mainly Dothideomycetes, Chaetothyriomycetes, and Sordariomycetes in the Ascomycota, and members of the Basidiomycota), which inhabit lichen thalli. Maximum likelihood analysis on the combined five-locus data set for 82 members of the Lecanoromycetes provided a well resolved and well supported tree compared to existing phylogenies. We confirmed the monophyly of three recognized subclasses in the Lecanoromycetes, the Acarosporomycetidae, Ostropomycetidae, and Lecanoromycetideae; the latter delimited as monophyletic for the first time, with the exclusion of the family Umbilicariaceae and Hypocenomyce scalaris. The genus Candelariella (formerly in the Candelariaceae, currently a member of the Lecanoraceae) represents the first evolutionary split within the Lecanoromycetes, before the divergence of the Acarosporomycetidae. This study provides a foundation necessary to guide the selection of loci for future multilocus phylogenetic studies on lichen-forming and allied ascomycetes. PMID:17207641

  5. Beauveria bassiana (Ascomycota: Hypocreales) wound dressing for the control of Euzophera pinguis (Lepidoptera: Pyralidae).

    PubMed

    Quesada-Moraga, E; Yousef, M; Ortiz, A; Ruz-Torres, M; Garrido-Jurado, I; Estvez, A

    2013-08-01

    Injury to olive tree trunks and branches because of biotic and abiotic factors, such as pruning and mechanical harvesting, attracts the olive pyralid moth Euzophera pinguis Haworth (Lepidoptera: Pyralidae). This moth has become increasingly important in the Mediterranean region during recent years. The use of an entomopathogenic fungus for wound dressing for pest control is reported for the first time in this study. Beauveria bassiana (Ascomycota: Hypocreales) strain EABb 08/04-Ep was originally obtained from a diseased E. pinguis larva and has shown effective E. pinguis control in an olive crop in Jan, Andalusia, Spain, under field conditions during the spring and fall of 2008 and 2009 and the spring of 2011. Experimental artificial 30 by 30-mm square wound cages were large enough to allow the E. pinguis females to oviposit. Approximately 80 and 40-60% of the control wounds contained live larvae in the experiments that occurred during the spring and fall, respectively. The B. hassiana wound dressing gave similar results as the chlorpyrifos wound dressing throughout the experiment, with efficacies reaching 80-85% in the spring and 90-95% in the autumn. The B. bassiana fungus was recovered from 60-90% of the wounds at the completion of the experiments and after 60 d of treatment. These data indicate that strain EABb 08/04-Ep applied to the pruning wounds can be an effective tool for the microbial control of E. pinguis in olive crops. Moreover, B. bassiana may be used within integrated pest management strategies to minimize chemicals, depending on the population density of the pyralid moth. PMID:24020271

  6. Molecular characterization and comparative virulence of Beauveria bassiana isolates (Ascomycota: Hypocreales) associated with the greenhouse shore fly, Scatella tenuicosta (Diptera: Ephydridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports of natural infections of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuill. (Ascomycota: Hypocreales) in greenhouses and laboratory colonies of Scatella tenuicosta Collin (Diptera: Ephydridae), a nuisance pest and vector of plant pathogens, suggest the potential for using B. bass...

  7. Draft Genome Sequence of Phaeomoniella chlamydospora Strain RR-HG1, a Grapevine Trunk Disease (Esca)-Related Member of the Ascomycota

    PubMed Central

    Antonielli, Livio; Compant, Stphane; Strauss, Joseph; Sessitsch, Angela

    2014-01-01

    The Ascomycota species Phaeomoniella chlamydospora, in concert with other fungi, is a causal agent for grapevine trunk diseases. Here, we present the first draft of the P.chlamydospora genome sequence, which comprises 355 scaffolds, with a total length of 26.59Mb and 7,279 predicted protein-coding genes. PMID:24723699

  8. Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes in Ascomycota

    PubMed Central

    Diao, Li-Ting; Xiao, Zhen-Dong; Leng, Xiao-Min; Li, Bin; Li, Jun-Hao; Luo, Yu-Ping; Li, Si-Guang; Yu, Chuan-He; Zhou, Hui

    2014-01-01

    Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood. Here, by combining experimental and computational approaches, we systematically identified box C/D snoRNAs in four fission yeasts and found that the expression of box C/D snoRNA and ribosomal protein (RP) genes were orchestrated by a common Homol-D box, thereby ensuring a constant balance of these two genetic components. Interestingly, such transcriptional coregulations could be observed in most Ascomycota species and were mediated by different cis-regulatory elements. Via the reservation of cis elements, changes in spatial configuration, the substitution of cis elements, and gain or loss of cis elements, the regulatory networks of box C/D snoRNAs evolved to correspond with those of the RP genes, maintaining transcriptional coregulation between box C/D snoRNAs and RP genes. Our results indicate that coregulation via common cis elements is an important mechanism to coordinate expression of the RP and snoRNA genes, which ensures a constant balance of these two components. PMID:25002674

  9. Histopathological effects of Aspergillus clavatus (Ascomycota: Trichocomaceae) on larvae of the southern house mosquito, Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Bawin, Thomas; Seye, Fawrou; Boukraa, Slimane; Zimmer, Jean-Yves; Raharimalala, Fara Nantenaina; Ndiaye, Mady; Compere, Philippe; Delvigne, Frank; Francis, Frédéric

    2016-04-01

    Aspergillus clavatus (Ascomycota: Trichocomaceae) was previously found to be an opportunistic pathogen of mosquitoes (Diptera: Culicidae). In the present study, the mechanism leading to its insecticidal activity was investigated regarding histological damages on Culex quinquefasciatus larvae exposed to A. clavatus spores. Multiple concentration assays using spore suspensions (0.5-2.5 × 10(8) spores ml(-1)) revealed 17.0-74.3 % corrected mortalities after 48 h exposure. Heat-deactivated spores induced a lower mortality compared to nonheated spores suggesting that insecticidal effects are actively exerted. Spore-treated and untreated larvae were prepared for light microscopy as well as for scanning and transmission electron microscopy. Spores failed to adhere to the external body surface (except the mouth parts) of these aquatic immature stages but progressively filled the digestive tract where their metabolism seemed to activate. In parallel, the internal tissues of the larvae, i.e. the midgut wall, the skeletal muscles, and the cuticle-secreting epidermis, were progressively destroyed between 8 and 24 h of exposure. These observations suggest that toxins secreted by active germinating spores of A. clavatus in the digestive tract altered the larval tissues, leading to their necrosis and causing larval death. Fungal proliferation and sporulation then occurred during a saprophytic phase. A. clavatus enzymes or toxins responsible for these pathogenic effects need to be identified in further studies before any use of this fungus in mosquito control. PMID:27020151

  10. What an rRNA Secondary Structure Tells about Phylogeny of Fungi in Ascomycota with Emphasis on Evolution of Major Types of Ascus

    PubMed Central

    Zhuang, Wen-Ying; Liu, Chao-Yang

    2012-01-01

    Background RNA secondary structure is highly conserved throughout evolution. The higher order structure is fundamental in establishing important structure-function relationships. Nucleotide sequences from ribosomal RNA (rRNA) genes have made a great contribution to our understanding of Ascomycota phylogeny. However, filling the gaps between molecular phylogeny and morphological assumptions based on ascus dehiscence modes and type of fruitbodies at the higher level classification of the phylum remains an unfulfilled task faced by mycologists. Methodology/Principal Findings We selected some major groups of Ascomycota to view their phylogenetic relationships based on analyses of rRNA secondary structure. Using rRNA secondary structural information, here, we converted nucleotide sequences into the structure ones over a 20-symbol code. Our structural analyses together with ancestral character state reconstruction produced reasonable phylogenetic position for the class Geoglossomycetes as opposed to the classic nucleotide analyses. Judging from the secondary structure analyses with consideration of mode of ascus dehiscence and the ability of forming fruitbodies, we draw a clear picture of a possible evolutionary route for fungal asci and some major groups of fungi in Ascomycota. The secondary structure trees show a more reasonable phylogenetic position for the class Geoglossomycetes. Conclusions Our results illustrate that asci lacking of any dehiscence mechanism represent the most primitive type. Passing through the operculate and Orbilia-type asci, bitunicate asci occurred. The evolution came to the most advanced inoperculate type. The ascus-producing fungi might be derived from groups lacking of the capacity to form fruitbodies, and then evolved multiple times. The apothecial type of fruitbodies represents the ancestral state, and the ostiolar type is advanced. The class Geoglossomycetes is closely related to Leotiomycetes and Sordariomycetes having a similar ascus type other than it was originally placed based on nucleotide sequence analyses. PMID:23110078

  11. Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions.

    PubMed

    Lacey, L A; Horton, D R; Jones, D C; Headrick, H L; Neven, L G

    2009-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a serious pest of pome fruit, is a threat to exportation of apples (Malus spp.) because of the possibility of shipping infested fruit. The need for alternatives to fumigants such as methyl bromide for quarantine security of exported fruit has encouraged the development of effective fumigants with reduced side effects. The endophytic fungus Muscodor albus Worapong, Strobel and Hess (Ascomycota: Xylariales) produces volatile compounds that are biocidal for several pest organisms, including plant pathogens and insect pests. The objectives of our research were to determine the effects of M. albus volatile organic compounds (VOCs) on codling moth adults, neonate larvae, larvae in infested apples, and diapausing cocooned larvae in simulated storage conditions. Fumigation of adult codling moth with VOCs produced by M. albus for 3 d and incubating in fresh air for 24 h at 25 degrees C resulted in 81% corrected mortality. Four- and 5-d exposures resulted in higher mortality (84 and 100%, respectively), but control mortality was also high due to the short life span of the moths. Exposure of neonate larvae to VOCs for 3 d on apples and incubating for 7 d resulted in 86% corrected mortality. Treated larvae were predominantly first instars, whereas 85% of control larvae developed to second and third instars. Exposure of apples that had been infested for 5 d, fumigated with M. albus VOCs for 3 d, and incubated as described above resulted in 71% corrected larval mortality. Exposure of diapausing cocooned codling moth larvae to VOCs for 7 or 14 d resulted in 31 and 100% mortality, respectively, with negligible control mortality. Our data on treatment of several stages of codling moth with M. albus VOCs indicate that the fungus could provide an alternative to broad spectrum chemical fumigants for codling moth control in storage and contribute to the systems approach to achieve quarantine security of exported apples. PMID:19253616

  12. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees.

    PubMed

    Maxfield-Taylor, Sarah A; Mujic, Alija B; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen. PMID:25885679

  13. Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota)

    PubMed Central

    Ge, Zai-Wei; Yang, Zhu L.; Pfister, Donald H.; Carbone, Matteo; Bau, Tolgor; Smith, Matthew E.

    2014-01-01

    The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the “earth tongue fungi” in the genera Cudonia and Spathularia. There have been no recent taxonomic studies of these genera, and the evolutionary relationships within and among these fungi are largely unknown. Here we explore the molecular phylogenetic relationships within Cudonia and Spathularia using maximum likelihood and Bayesian inference analyses based on 111 collections from across the Northern Hemisphere. Phylogenies based on the combined data from ITS, nrLSU, rpb2 and tef-1α sequences support the monophyly of three main clades, the /flavida, /velutipes, and /cudonia clades. The genus Cudonia and the family Cudoniaceae are supported as monophyletic groups, while the genus Spathularia is not monophyletic. Although Cudoniaceae is monophyletic, our analyses agree with previous studies that this family is nested within the Rhytismataceae. Our phylogenetic analyses circumscribes 32 species-level clades, including the putative recognition of 23 undescribed phylogenetic species. Our molecular phylogeny also revealed an unexpectedly high species diversity of Cudonia and Spathularia in eastern Asia, with 16 (out of 21) species-level clades of Cudonia and 8 (out of 11) species-level clades of Spathularia. We estimate that the divergence time of the Cudoniaceae was in the Paleogene approximately 28 Million years ago (Mya) and that the ancestral area for this group of fungi was in Eastern Asia based on the current data. We hypothesize that the large-scale geological and climatic events in Oligocene (e.g. the global cooling and the uplift of the Tibetan plateau) may have triggered evolutionary radiations in this group of fungi in East Asia. This work provides a foundation for future studies on the phylogeny, diversity, and evolution of Cudonia and Spathularia and highlights the need for more molecular studies on collections from Europe and North America. PMID:25084276

  14. Origin and Diversification of Major Clades in Parmelioid Lichens (Parmeliaceae, Ascomycota) during the Paleogene Inferred by Bayesian Analysis

    PubMed Central

    Amo de Paz, Guillermo; Cubas, Paloma; Divakar, Pradeep K.; Lumbsch, H. Thorsten; Crespo, Ana

    2011-01-01

    There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes, Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject vicariance to explain South America-Australia disjunctions. PMID:22174775

  15. First Detection of the Larval Chalkbrood Disease Pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in Adult Bumble Bees

    PubMed Central

    Maxfield-Taylor, Sarah A.; Mujic, Alija B.; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen. PMID:25885679

  16. The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales).

    PubMed

    Nchu, F; Maniania, N K; Tour, A; Hassanali, A; Eloff, J N

    2009-03-23

    Experiments were conducted to explore the use of a semiochemical bait to enhance exposure of Amblyomma variegatum Fabricius (Acari: Ixodidae) to different formulations of the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorok. (Ascomycota: Hypocreales). Initially, the relative efficacies of attraction-aggregation-attachment pheromone (AAAP), made up of o-nitrophenol, methyl salicylate and nonanoic acid in the ratio 2:1:8, 1-octen-3-ol and butyric acid, were evaluated in an olfactometer. Only AAAP and 1-octen-3-ol were found to elicit attractive responses to the tick. Simultaneous release of 1-octen-3-ol and AAAP together with CO(2) from a trap in semifield plots attracted up to 94.0+/-6% of adult ticks from a distance of 6m, and up to 24.0+/-5.1% from 8m. Formulations of M. anisopliae (dry powder, oil, and emulsifiable) applied within the trap baited with AAAP, 1-octen-3-ol and CO(2) resulted in high levels of contamination of the ticks attracted to the traps. However, 48h after autoinoculation, 89.1 and 33.3% of conidia were lost in dry powder and oil formulations, respectively. Emulsifiable formulation showed least loss of propagules (17.1%). Samples of ticks attracted to the baited traps were transferred to plastic basins containing grass and maintained for 5 weeks. The experiment was conducted in rainy and dry seasons. Emulsifiable formulation gave the highest relative tick reduction in both seasons: 54.7 and 46.5% in rainy and dry seasons, respectively, followed by oil formulation (32.0 and 23.8%) and powder formulation (38.0 and 24.4%). PMID:19091474

  17. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions

    PubMed Central

    2012-01-01

    Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. Conclusions Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic. PMID:22963132

  18. Who's getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus Montanelia (Parmeliaceae, Ascomycota).

    PubMed

    Leavitt, Steven D; Divakar, Pradeep K; Ohmura, Yoshihito; Wang, Li-Song; Esslinger, Theodore L; Lumbsch, H Thorsten

    2015-09-01

    Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this study we assess species diversity, biogeography and diversification of the genus Montanelia, which includes alpine to temperate saxicolous species. We sampled each of the five known species, four of which are known from broad, intercontinental distributions. In order to identify potential biogeographical patterns, each broadly distributed species was represented by individuals collected across their intercontinental distributions. Molecular sequence data were generated for six loci, including three nuclear protein-coding markers (MCM7, RPB1, and RPB2), two nuclear ribosomal markers (ITS and nrLSU), and a fragment of the mitochondrial small subunit. We used three sequence-based species delimitations methods to validate traditional, phenotype-based species and circumscribe previously unrecognized species-level lineages in Montanelia. Relationships among putative lineages and divergence times were estimated within a coalescent-based multi-locus species tree framework. Based on the results of the species delimitation analyses, we propose that the genus Montanelia is likely comprised of six to nine species-level lineages, including previously unrecognized species-level diversity in the nominal taxa M. panniformis and M. tominii. In contrast, molecular sequence data suggest that M. predisjuncta may be conspecific with the widespread taxon M. disjuncta in spite of distinct morphological differences. The rate-based age estimation of the most recent common ancestor of Montanelia (ca. 23.1Ma) was similar to previous estimates based on the fossil record. Furthermore, our data suggest that diversification in Montanelia occurred largely during the Neogene. At least three Montanelia species are broadly distributed throughout Asia, Europe, and North America with no evidence of phylogeographic substructure. In contrast to broadly distributed Montanelia species, our study suggests Pleistocene-dominated diversification and complex biogeographic history in the M. tominii group. Our analyses provide additional insight for understanding diversification and uncovering cryptic diversity in cosmopolitan species of lichen-forming fungi. PMID:25987532

  19. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales).

    PubMed

    Quesada-Moraga, E; Muñoz-Ledesma, F J; Santiago-Alvarez, C

    2009-06-01

    The poppy stem gall wasp, Iraella luteipes (Thompson) (Hymenoptera: Cynipidae), is one of the main pests of the opium poppy, Papaver somniferum L., an economically important pharmaceutical crop cultivated worldwide. In a previous study, we obtained from I. luteipes larvae a strain of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales) that can become established endophytically in opium poppy plants. A field experiment was conducted to study the ability of this B. bassiana strain to provide systemic protection against damage by I. luteipes in opium poppy in southern Spain for three seasons. Conidial suspensions were applied as seed dressings, leaf sprays, or soil sprays. The effect of the treatment was studied by harvesting fully ripened plants and dissecting I. luteipes larvae from the stem. The effect of treatment on growth and yield was also evaluated. Emergence of I. luteipes adults was not uniform over the 3 yr, with important differences exhibited in the duration of the emergence period, although the flight peaks tended to occur in mid-late April. B. bassiana seed dressings, leaf sprays at the fourth true-leaf stage, and soil sprays were not significantly different in their ability to reduce the number of larvae per plant compared with the controls, with percentage reductions of 36.5-58.5, 64.4-73.4, and 51.9-57.2% in 2005, 2006, and 2007, respectively. Even though the population level of I. luteipes increased over the 3 yr, the efficacy of the fungal inoculation in reducing the larval population was maintained throughout the study period. No significant differences between inoculation methods were detected in the percentage of leaf pieces showing fungal growth when placed on B. bassiana selective medium, with mean values in the range of 10-15% for the three seasons. Leaf pieces from controls did not exhibit any sign of B. bassiana growth when placed on B. bassiana-selective medium. Neither adverse effects on growth and yield nor symptomatic tissues were observed in B. bassiana-treated plants compared with controls in any of the three seasons. PMID:19508781

  20. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarre, J

    1998-10-01

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division. PMID:9767103

  1. A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs

    PubMed Central

    Hirooka, Y.; Rossman, A.Y.; Samuels, G.J.; Lechat, C.; Chaverri, P.

    2012-01-01

    Although Nectria is the type genus of Nectriaceae (Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota), the systematics of the teleomorphic and anamorphic state of Nectria sensu Rossman has not been studied in detail. The objectives of this study are to 1) provide a phylogenetic overview to determine if species of Nectria with Gyrostroma, Tubercularia, and Zythiostroma anamorphs form a monophyletic group; 2) define Nectria, segregate genera, and their species using morphologically informative characters of teleomorphic and anamorphic states; and 3) provide descriptions and illustrations of these genera and species. To accomplish these objectives, results of phylogenetic analyses of DNA sequence data from six loci (act, ITS, LSU, rpb1, tef1 and tub), were integrated with morphological characterisations of anamorphs and teleomorphs. Results from the phylogenetic analyses demonstrate that species previously regarded as the genus Nectria having Gyrostroma, Tubercularia, and Zythiostroma anamorphs belong in two major paraphyletic clades. The first major clade regarded as the genus Pleonectria contains 26 species with ascoconidia produced by ascospores in asci, perithecial walls having bright yellow scurf, and immersed or superficial pycnidial anamorphs (Zythiostroma = Gyrostroma). A lineage basal to the Pleonectria clade includes Nectria miltina having very small, aseptate ascospores, and trichoderma-like conidiophores and occurring on monocotyledonous plants. These characteristics are unusual in Pleonectria, thus we recognise the monotypic genus Allantonectria with Allantonectria miltina. The second major clade comprises the genus Nectria sensu stricto including the type species, N. cinnabarina, and 28 additional species. Within the genus Nectria, four subclades exist. One subclade includes species with sporodochial anamorphs and another with synnematous anamorphs. The other two paraphyletic subclades include species that produce abundant stromata in which the large perithecia are immersed, large ascospores, and peculiar anamorphs that form pycnidia or sporodochia either on their natural substrate or in culture. In this study the evolution of species, morphology, and ecology of the three genera, Allantonectria, Nectria, and Pleonectria, are discussed based on the phylogenetic analyses. In addition, descriptions, illustrations, and keys for identification are presented for the 56 species in Allantonectria, Nectria, and Pleonectria. Taxonomic novelties: New species: Nectria argentinensis Hirooka, Rossman & P. Chaverri, Nectria berberidicola Hirooka, Lechat, Rossman, & P. Chaverri, Nectria himalayensis Hirooka, Rossman, & P. Chaverri, Nectria magnispora Hirooka, Rossman, & P. Chaverri, Nectria mariae Hirooka, Fournier, Lechat, Rossman, & P. Chaverri, Nectria pyriformis Hirooka, Rossman & P. Chaverri, Pleonectria boothii Hirooka, Rossman & Chaverri, Pleonectria clavatispora Hirooka, Rossman & P. Chaverri, Pleonectria ilicicola Hirooka, Rossman & P. Chaverri, Pleonectria okinawensis Hirooka, Rossman & P. Chaverri, Pleonectria pseudomissouriensis Hirooka, Rossman & P. Chaverri, Pleonectria quercicola Hirooka, Checa, Areual, Rossman & P. Chaverri, Pleonectria strobi Hirooka, Rossman & P. Chaverri. New combinations: Cosmospora proteae (Marinc., M.J. Wingf. & Crous) Hirooka, Rossman & P. Chaverri, Nectricladiella viticola (Berk. & M.A. Curtis) Hirooka, Rossman & P. Chaverri, Neocosmospora guarapiensis (Speg.) Hirooka, Samuels, Rossman & P. Chaverri, Neocosmospora rehmiana (Kirschstein) Hirooka, Samuels, Rossman & P. Chaverri, Pleonectria aquifolii (Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria aurigera (Berk. & Rav.) Hirooka, Rossman & P. Chaverri, Pleonectria chlorinella (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria coryli (Fuckel) Hirooka, Rossman & P. Chaverri, Pleonectria cucurbitula (Tode: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria lonicerae (Seeler) Hirooka, Rossman & P. Chaverri, Pleonectria rosellinii (Carestia) Hirooka, Rossman & P. Chaverri, Pleonectria rubicarpa (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria sinopica (Fr.: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria sphaerospora (Ellis & Everh) Hirooka, Rossman & P. Chaverri, Pleonectria virens (Harkn.) Hirooka, Rossman & P. Chaverri, Pleonectria zanthoxyli (Peck) Hirooka, Rossman & P. Chaverri. PMID:22685364

  2. Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia.

    PubMed

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Waite, T David; Collins, Richard N; Neilan, Brett A

    2014-01-01

    Seven acidophilic/acidotolerant fungal strains were characterized from samples of process waters (raffinate) at one of Australia's largest uranium mines, the Ranger Mine in Northern Territory. They were isolated from raffinate, which typically were very acidic (pH 1.7-1.8) and contained high concentrations of total dissolved/colloidal salts (> 100 g/L). Five of the isolates correspond to two new acidotolerant Ascomycota fungi. The first is a member of a new genus, here described as Fodinomyces (Teratosphaeriaceae, Capnodiales, Dothideomycetes) and does not show clear close affiliation with any other described fungus in the scientific literature. The second belongs to the genus Coniochaeta (Coniochaetaceae, Coniochaetales, Sordariomycetes) and is closely related to Coniochaeta hansenii. PMID:25143478

  3. Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia.

    TOXLINE Toxicology Bibliographic Information

    Vzquez-Campos X; Kinsela AS; Waite TD; Collins RN; Neilan BA

    2014-11-01

    Seven acidophilic/acidotolerant fungal strains were characterized from samples of process waters (raffinate) at one of Australia's largest uranium mines, the Ranger Mine in Northern Territory. They were isolated from raffinate, which typically were very acidic (pH 1.7-1.8) and contained high concentrations of total dissolved/colloidal salts (> 100 g/L). Five of the isolates correspond to two new acidotolerant Ascomycota fungi. The first is a member of a new genus, here described as Fodinomyces (Teratosphaeriaceae, Capnodiales, Dothideomycetes) and does not show clear close affiliation with any other described fungus in the scientific literature. The second belongs to the genus Coniochaeta (Coniochaetaceae, Coniochaetales, Sordariomycetes) and is closely related to Coniochaeta hansenii.

  4. Interactions between the entomopathogenic fungi Beauveria bassiana (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) on Myzus persicae (Hemiptera: Aphididae).

    PubMed

    Silva, R J; Alencar, J R D C C; Silva, K P; Cividanes, F J; Duarte, R T; Agostini, L T; Polanczyk, R A

    2014-06-01

    The interactions between the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomycota: Hypocreales) and the aphid parasitoid Diaeretiella rapae McIntoch (Hymenoptera: Braconidae) were evaluated under laboratory conditions. Nymphs of Myzus persicae Sulzer (Hemiptera: Aphididae) were first exposed to parasitoid females for 24 h and then 0, 24, and 48 h afterwards sprayed with a solution of B. bassiana. Likewise, aphids were also sprayed with B. bassiana and then exposed to parasitoids at 0, 24, and 48 h afterwards. Parasitism rate varied from 13 to 66.5%, and were significantly lower in treatments where the two agents were exposed within a 0-24 h time interval compared with the control (without B. bassiana). Parasitoid emergence was negatively affected in treatments with B. bassiana spraying and subsequent exposure to D. rapae. Decreases in longevity of adult females of the D. rapae F1 generation were observed in treatments with B. bassiana spraying. The application of these two biological control agents can be used in combination on the control of M. persicae, wherein this use requires effective time management to avoid antagonistic interactions. PMID:25026650

  5. A re-evaluation of the genus Myceliophthora (Sordariales, Ascomycota): its segregation into four genera and description of Corynascus fumimontanus sp. nov.

    PubMed

    Marin-Felix, Yasmina; Stchigel, Alberto M; Miller, Andrew N; Guarro, Josep; Cano-Lira, Jos F

    2015-01-01

    Based on a number of isolates of Myceliophthora (Chaetomiaceae, Sordariales, Ascomycota) recently isolated from soil samples collected in USA, the taxonomy of the genus was re-evaluated through phylogenetic analyses of sequences from the nuc rDNA internal transcribed spacer region and genes for the second largest subunit of RNA polymerase II and translation elongation factor 1?. Members of Myceliophthora were split into four monophyletic clades strongly supported by molecular and phenotypic data. Such clades correspond with Myceliophthora, now restricted only to the type species of the genus Corynascus, which is re-established with five species, the new monotypic genus Crassicarpon and also the new genus Thermothelomyces (comprising four species). Myceliophthora lutea is mesophilic and a permanently asexual morph compared to the members of the other three mentioned genera, which also are able to sexually reproduce morphs with experimentally proven links to their asexual morphs. The asexual morph of M. lutea is characterized by broadly ellipsoidal, smooth-walled conidia with a wide, truncate base. Crassicarpon thermophilum is thermophilic and heterothallic and produces spherical to cuneiform, smooth-walled conidia and cleistothecial ascomata of smooth-walled, angular cells and ascospores with a germ pore at each end. Corynascus spp. are homothallic and mesophilic and produce spherical, mostly ornamented conidia and cleistothecial ascomata with textura epidermoidea composed of ornamented wall cells, and ascospores with one germ pore at each end. Thermothelomyces spp. are thermophilic, heterothallic and characterized by similar ascomata and conidia as Corynascus spp., but its ascospores exhibit only a single germ pore. A dichotomous key to distinguish Myceliophthora from the other mentioned genera are provided, as well as dichotomous keys to identify the species of Corynascus and Thermothelomyces. A new species, namely Corynascus fumimontanus, characterized by verrucose ascomatal wall cells and irregularly shaped ascospores, is described and illustrated. PMID:25661719

  6. Molecular phylogenetic analyses based on the nuclear rRNA genes and the intron-exon structures of the nuSSU rRNA gene in Dictyocatenulata alba (anamorphic Ascomycota).

    PubMed

    An, Kwang-Deuk; Degawa, Yousuke; Fujihara, Eriko; Mikawa, Takashi; Ohkuma, Moriya; Okada, Gen

    2012-11-01

    Molecular phylogenies inferred from the nuclear small subunit rRNA gene (nuSSU), nuclear large subunit rRNA gene D1/D2 region (nuLSU), and ITS-5.8S rRNA gene (ITS) indicated that five cultures of the lichenized hyphomycete Dictyocatenulata alba isolated from Japan form a monophyletic clade with high bootstrap support, and a close relationship to the Ostropomycetidae (Lecanoromycetes, Pezizomycotina, Ascomycota). Insertion sequences were found in the nuSSU of all isolates [e.g., nine insertions in the strain JCM 5358 (Japan Collection of Microorganisms)], some of which were group I introns. Five new insertion positions were found among the D. alba isolates. Using BLAST, none of the insertion sequences of D. alba were closely related to those of fungi or other organisms deposited in public DNA databases. Insertion positions were similar in some isolates, and two positions were common to all isolates. Although all phylogenetic analyses based on nuSSU, nuLSU, and ITS revealed the monophyly of D. alba, the isolates were divided into two (in the nuSSU tree) or three (in the nuLSU and ITS trees) groups. Based on the phylogenetic analyses and the intron-exon structures, the five isolates identified as D. alba belong to three cryptic species and therefore D. alba should be considered a species complex. The very slow-growing, tough agar colonies of the isolates, the occurrence of the species on both slightly lichenized and nonlichenized surfaces of trees, or pebbles (rarely on soil), suggest that the members of the D. alba complex may be lichenized. The photobiont was not clearly identified in this study. PMID:23153804

  7. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota).

    PubMed

    Luo, Jing; Zhang, Ning

    2013-01-01

    The phylogenetic relationships among taxa in the Magnaporthaceae are investigated based on DNA sequences of multiple genes including SSU, ITS, LSU, MCM7, RPB1 and TEF1. The genera Magnaporthe and Gaeumannomyces are shown to be polyphyletic and their members are divided into four major groups based on the phylogenetic analyses. Considering morphological, biological and molecular data, we establish a new genus, Magnaporthiopsis. It is characterized by black and globose perithecia with a cylindrical neck, two-layered perithecial wall, clavate asci with a refractive apical ring, fusiform to fusoid and septate ascospores, simple hyphopodia, and Phialophora-like anamorph. Species in this genus are necrotrophic parasites infecting roots of grasses. Three new combinations, Magnaporthiopsis poae, M. rhizophila and M. incrustans, are proposed accordingly. Pyricularia is suggested as the generic name for the rice blast fungus over Magnaporthe, following Article 59.1 of the International Code of Nomenclature for algae, fungi and plants. A new combination, Nakataea oryzae, is proposed for the rice stem rot fungus. PMID:23449077

  8. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood.

    PubMed

    Fukasawa, Yu; Osono, Takashi; Takeda, Hiroshi

    2011-01-01

    We tested the decay abilities of 28 isolates from 28 lignicolous fungal species (Basidiomycota, Ascomycota and Zygomycota) with the pure culture test. We used beech wood powder in varying moisture conditions and decay stages (nondecayed, intermediately decayed and well decayed) as substrates. The weight loss in wood powder was -0.2-17.8%. Five isolates of Basidiomycota (Bjerkandera adusta, Mycena haematopus, Omphalotus guepiniformis, Trametes hirsuta, Trametes versicolor) caused high weight losses in nondecayed wood. We detected significant effects of decay stage on weight loss in wood in most isolates tested, whereas moisture content rarely had an effect on weight loss. Among Basidiomycota and Xylariaceae in Ascomycota weight loss was greater for nondecayed wood than for intermediately and well decayed wood. In contrast four isolates in Ascomycota (Scytalidium lignicola, Trichoderma hamatum, T. harzianum, T. koningii) caused substantial weight loss in intermediately and well decayed wood, although they rarely caused weight loss in nondecayed wood. Zygomycota caused low weight loss in wood. Wood decay stages also affected decomposition of wood chemical components. Acid-unhydrolyzable residue (AUR) decomposition was reduced, whereas holocellulose decomposition was stimulated by some strains of Basidiomycota and Ascomycota in well decayed wood. T. harzianum in particular caused significant weight loss of holocellulose in well decayed wood, although this fungus caused negligible weight loss of both AUR and holocellulose in nondecayed wood. We discuss these changes in the decay patterns of AUR and holocellulose with varying wood decay stages in relation to the role of fungal decomposition of woody debris in forests. PMID:21262989

  9. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    PubMed

    Wu, Weihua; Tran, William; Taatjes, Craig A; Alonso-Gutierrez, Jorge; Lee, Taek Soon; Gladden, John M

    2016-01-01

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity. PMID:26885833

  10. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae

    PubMed Central

    Wu, Weihua; Tran, William; Taatjes, Craig A.; Alonso-Gutierrez, Jorge; Lee, Taek Soon; Gladden, John M.

    2016-01-01

    Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS’s profiled, 12 TPS’s were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity. PMID:26885833

  11. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota).

    PubMed

    Johnston, Peter R; Seifert, Keith A; Stone, Jeffrey K; Rossman, Amy Y; Marvanová, Ludmila

    2014-06-01

    In advancing to one scientific name for fungi, this paper treats genera competing for use in the phylogenetically defined class Leotiomycetes except for genera of Erysiphales. Two groups traditionally included in the so-called "inoperculate discomycetes" have been excluded from this class and are also not included here, specifically Geoglossomycetes and Orbiliomycetes. A recommendation is made about the generic name to use in cases in which two or more generic names are synonyms or taxonomically congruent along with the rationale for the recommendation. In some cases the recommended generic name does not have priority or is based on an asexual type species, thus needs to be protected and ultimately approved according to Art. 57.2 of the International Code of Nomenclature for algae, fungi and plants (ICN). A table is presented listing all competing generic names and their type species noting the recommended generic name. New combinations are introduced for the oldest epithet in the recommended genus including Ascocalyx berenice, Ascoconidium purpurascens, Ascocoryne albida, A. trichophora, Blumeriella filipendulae, B. ceanothi, Botrytis arachidis, B. fritillariae-pallidoflori, Calloria urticae, Calycellina aspera, Dematioscypha delicata, Dermea abietinum, D. boycei, D. stellata, Diplocarpon alpestre, D. fragariae, Godroniopsis peckii, Grovesinia moricola, Heterosphaera sublineolata, Hyphodiscus brachyconium, H. brevicollaris, H. luxurians, Leptotrochila campanulae, Monilinia polystroma, Neofabraea actinidae, N. citricarpa, N. vagabunda, Oculimacula aestiva, O. anguioides, Pezicula brunnea, P. californiae, P. cornina, P. diversispora, P. ericae, P. melanogena, P. querciphila, P. radicicola, P. rhizophila, Phialocephala piceae, Pilidium lythri, Rhabdocline laricis, Streptotinia streptothrix, Symphyosirinia parasitica, S. rosea, Unguiculariopsis caespitosa, and Vibrissea laxa. PMID:25083411

  12. Phylogenetic placement of the anamorphic tribe Ustilaginoideae (Hypocreales, Ascomycota).

    PubMed

    Bischoff, J F; Sullivan, R F; Kjer, K M; White, J F

    2004-01-01

    Tribe Ustilaginoideae (Hypocreales, Ascomycetes) is made up of three anamorph genera, Munkia, Neomunkia and Ustilaginoidea. Species of Munkia and Neomunkia develop on the culms of bamboo (Chusquea spp.) and have a neotropical distribution while species of Ustilaginoidea infect the florets of various grasses and are pantropical in distribution. In this study we evaluated the phylogeny of the tribe and assessed hypotheses regarding its affinity to clavicipitalean teleomorphic groups. To support phylogenetic analyses, morphology of representatives of several key species of Ustilaginoideae was examined also. Phylogenetic analyses using sequences of the large subunit of the ribosomal RNA gene suggest that members of Ustilaginoideae are distinct from teleomorphic genera of Clavicipitaceae and that Ustilaginoideae should be recognized as a monophyletic group within Hypocreales. However, phylogenetic analyses did not resolve the placement of Ustilaginoideae in Clavicipitaceae or Hypocreaceae, suggesting that it might be a distinct lineage within Hypocreales. This evaluation supported the monophyly of tribes Balansieae and Clavicipeae in the family Clavicipitaceae. PMID:21148928

  13. The rise and fall of Sarawakus (Hypocreaceae, Ascomycota)

    PubMed Central

    Jaklitsch, Walter M.; Lechat, Christian; Voglmayr, Hermann

    2014-01-01

    Species of Sarawakus are rarely encountered. Their teleomorphs resemble sexual stages of Trichoderma, formerly called Hypocrea, but differ from that genus by unicellular ascospores. The two greenspored species S. britannicus and the type species of Sarawakus, S. lycogaloides, recently were collected, compared with their types and cultured. We redescribe and illustrate these species and transfer them to Trichoderma, based on phylogenetic analysis of the translation elongation factor 1-alpha encoding gene (tef1), containing the two last introns and exon, and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Trichoderma lycogaloides, was found to cluster with Hypocrea sulawesensis, an unusual species of Trichoderma, while T. britannicum is closely related to T. aerugineum of the Spinulosa clade. The anamorphs of the two examined species are characterized by (odd) verticillium-like conidiophores, large cylindrical phialides and conidia, which belong to the largest of those species forming green conidia, oval to subglobose in T. lycogaloides and oblong in T. britannicum. All species currently recognized in Sarawakus are transferred to Trichoderma, introducing the new combinations T. fragile, T. hexasporum, T. izawae, T. sordidum, T. subtrachycarpum, T. succisum and T. trachycarpum and the new name T. rosellum. Trichoderma trachycarpum is redescribed and illustrated from an isotype. PMID:24603837

  14. The interaction apparatus of Asteridiella callista (Meliolaceae, Ascomycota).

    PubMed

    Justavino, Délfida Rodríguez; Velásquez, Julieta Carranza; Morales Sánchez, Carlos O; Rincón, Rafael; Oberwinkler, Franz; Bauer, Robert

    2014-01-01

    We document here for the first time ultrastructural details of the cellular interaction of Asteridiella callista and its host Stachytarpheta mutabilis var. violacea from Costa Rica. A. callista attaches to the host with appressoria, invades the epidermal cell wall and forms an apoplastic complex cisternal net, presumably for nutrient uptake from its host. This unique structure, called an interaction apparatus (Ia), consists of cisternae surrounded by a membrane continuous with the fungal cytoplasmic membrane. Subsequently the apoplastic trunk of the Ia extends into the host epidermal cell wall and contacts the host cytoplasmic membrane. Electron-opaque material, probably of fungal origin appears at the host cytoplasmic membrane. Finally these electron-opaque deposits are encased by host material. Functional and systematical aspects of this interaction scenario are discussed. PMID:24782491

  15. The interaction apparatus of Asteridiella callista (Meliolaceae, Ascomycota).

    PubMed

    Rodríguez Justavino, Délfida; Carranza Velásquez, Julieta; Morales Sánchez, Carlos Oldemar; Rincón, Rafael; Oberwinkler, Franz; Bauer, Robert

    2014-01-23

    We document here for the first time ultrastructural details of the cellular interaction of Asteridiella callista and its host Stachytarpheta mutabilis var. violate from Costa Rica. A. callista attaches to the host with appressoria, invades the epidermal cell wall and forms an apoplastic complex cisternal net, presumably for nutrient uptake from its host. This unique structure, called an interaction apparatus (Ia), consists of cisternae surrounded by a membrane continuous with the fungal cytoplasmic membrane. Subsequently the apoplastic trunk of the Ia extends into the host epidermal cell wall and contacts the host cytoplasmic membrane. Electron-opaque material, probably of fungal origin appears at the host cytoplasmic membrane. Finally these electron-opaque deposits are encased by host material. Functional and systematical aspects of this interaction scenario are discussed. PMID:24459127

  16. Pupal Mortality and Adult Emergence of Western Cherry Fruit Fly (Diptera: Tephritidae) Exposed to the Fungus Muscodor albus (Xylariales: Xylariaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western cherry fruit fly, Rhagoletis indifferens Curran, is a major pest of sweet cherry, Prunus avium (L.) L., that is conventionally controlled using insecticides. One alternative to the use of insecticides for fly control could be fumigation of the flys overwintering habitat using the fungus Mus...

  17. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily.

    PubMed

    Hsieh, Huei-Mei; Lin, Chun-Ru; Fang, Mei-Jane; Rogers, Jack D; Fournier, Jacques; Lechat, Christian; Ju, Yu-Ming

    2010-03-01

    To infer the phylogenetic relationships of Xylaria species associated with termite nests within the genus Xylaria and among genera of the subfamily Xylarioideae, beta-tubulin, RPB2, and alpha-actin sequences of 131 cultures of 114 species from Xylaria and 11 other genera of the subfamily were analyzed. These 11 genera included Astrocystis, Amphirosellinia, Discoxylaria, Entoleuca, Euepixylon, Kretzschmaria, Nemania, Podosordaria, Poronia, Rosellinia, and Stilbohypoxylon. We showed that Xylaria species were distributed among three major clades, TE, HY, and PO, with clade TE-an equivalent of the subgenus Pseudoxylaria-encompassing exclusively those species associated with termite nests and the other two clades containing those associated with substrates other than termite nests. Xylaria appears to be a paraphyletic genus, with most of the 11 genera submerged within it. Podosordaria and Poronia, which formed a distinct clade, apparently diverged from Xylaria and the other genera early. Species of Entoleuca, Euepixylon, Nemania, and Rosellinia constituted clade NR, a major clade sister to clade PO, while those of Kretzschmaria were inserted within clade HY and those of Astrocystis, Amphirosellinia, Discoxylaria, and Stilbohypoxylon were within clade PO. PMID:20035889

  18. Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae).

    PubMed

    Yuan, Zhi-lin; Su, Zhen-zhu; Mao, Li-juan; Peng, Yang-qing; Yang, Guan-mei; Lin, Fu-cheng; Zhang, Chu-long

    2011-02-01

    Ecological niches in the rhizosphere and phyllosphere of grasses capable of sustaining endophytes have been extensively studied. In contrast, little information regarding the identity and functions of endophytic fungi in stems is available. In this study, we investigated the taxonomic affinities, diversity, and host specificities of culturable endophytes in stems of wild rice (Oryza granulata) in China. Seventy-four isolates were recovered. Low recovery rate (11.7%) indicated that there were relatively few sites for fungal infection. Identification using morphology, morphospecies sorting, and molecular techniques resulted in classification into 50 taxa, 36 of which were recovered only once. Nucleotide sequence similarity analysis indicated that 30% of the total taxa recovered were highly divergent from known species and thus may represent lineages new to science. Most of the taxa were classified as members of the classes Sordariomycetes or Dothideomycetes (mainly in Pleosporales). The presence of Arthrinium and Magnaporthaceae species, most often associated with poaceous plants, suggested a degree of host specificity. A polyphasic approach was employed to identify two Muscodor taxa based on (i) ITS and RPB2 phylogenies, (ii) volatile compounds produced, and (iii) an in vitro bioassay of antifungal activity. This to our knowledge is only the second report regarding the isolation of Muscodor spp. in China. Therefore, we hypothesize that wild plants represent a huge reservoir of unknown fungi. The prevalence, novelty, and species-specificity of unique isolates necessitate a reevaluation of their contribution to ecosystem function and fungal biodiversity. PMID:21369974

  19. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity.

    PubMed

    Blanco, Oscar; Crespo, Ana; Ree, Richard H; Lumbsch, H Thorsten

    2006-04-01

    Parmelioid lichens comprise about 1500 species and have a worldwide distribution. Numerous species are widely distributed and well known, including important bioindicators for atmospheric pollution. The phylogeny and classification of parmelioid lichens has been a matter of debate for several decades. Previous studies using molecular data have helped to establish hypotheses of the phylogeny of certain clades within this group. In this study, we infer the phylogeny of major clades of parmelioid lichens using DNA sequence data from two nuclear loci and one mitochondrial locus from 145 specimens (117 species) that represent the morphological and chemical diversity in these taxa. Parmelioid lichens are not monophyletic; however, a core group is strongly supported as monophyletic, excluding Arctoparmelia and Melanelia s. str., and including Parmeliopsis and Parmelaria. Within this group, seven well-supported clades are found, but the relationships among them remain unresolved. Stochastic mapping on a MC/MCMC tree sampling was employed to infer the evolution of two morphological and two chemical traits believed to be important for the evolutionary success of these lichens, and have also been used as major characters for classification. The results suggest that these characters have been gained and lost multiple times during the diversification of parmelioid lichens. PMID:16481204

  20. Proposal to conserve the name Bipolaris against Cochliobolus (Ascomycota: Pleosporales: Pleosporaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal genera Bipolaris Shoemaker and Cochliobolus Drechsler have been applied to economically important plant pathogens causing diseases of cereal crops worldwide, especially southern corn leaf blight. There are major accounts of these genera including those incorporating molecular phylogenetic...

  1. WEED SEEDS AS NUTRITIONAL CARBON SOURCES FOR SOIL ASCOMYCOTA WITH EVIDENCE OF PREFERENTIAL ASSOCIATIONS BETWEEN SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in biological-based management of weed seedbanks in agriculture furthers the need to understand how microorganisms affect seed fate in soil. Many annual weeds produce seeds in high abundance; their dispersal presenting ready opportunity for interactions with soil microorganisms. In...

  2. Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification?

    PubMed Central

    Pérez-Ortega, Sergio; Fernández-Mendoza, Fernando; Raggio, José; Vivas, Mercedes; Ascaso, Carmen; Sancho, Leopoldo G.; Printzen, Christian; de los Ríos, Asunción

    2012-01-01

    Background and Aims Phenotypic variability is a successful strategy in lichens for colonizing different habitats. Vagrancy has been reported as a specific adaptation for lichens living in steppe habitats around the world. Among the facultatively vagrant species, the cosmopolitan Cetraria aculeata apparently forms extremely modified vagrant thalli in steppe habitats of Central Spain. The aim of this study was to investigate whether these changes are phenotypic plasticity (a single genotype producing different phenotypes), by characterizing the anatomical and ultrastructural changes observed in vagrant morphs, and measuring differences in ecophysiological performance. Methods Specimens of vagrant and attached populations of C. aculeata were collected on the steppes of Central Spain. The fungal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GPD) and the large sub-unit of the mitochondrial ribosomal DNA (mtLSUm), and the algal ITS and actin were studied within a population genetics framework. Semi-thin and ultrathin sections were analysed by means of optical, scanning electron and transmission electron microscopy. Gas exchange and chlorophyll fluorescence were used to compare the physiological performance of both morphs. Key Results and Conclusions Vagrant and attached morphs share multilocus haplotypes which may indicate that they belong to the same species in spite of their completely different anatomy. However, differentiation tests suggested that vagrant specimens do not represent a random sub-set of the surrounding population. The morphological differences were related to anatomical and ultrastructural differences. Large intercalary growth rates of thalli after the loss of the basal–apical thallus polarity may be the cause of the increased growth shown by vagrant specimens. The anatomical and morphological changes lead to greater duration of ecophysiological activity in vagrant specimens. Although the anatomical and physiological changes could be chance effects, the genetic differentiation between vagrant and attached sub-populations and the higher biomass of the former show fitness effects and adaptation to dry environmental conditions in steppe habitats. PMID:22451601

  3. Sublethal Effects of Beauveria bassiana (Ascomycota: Hypocreales) on Life Table Parameters of Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Zhang, Tao; Reitz, Stuart R; Wang, Haihong; Lei, Zhongren

    2015-06-01

    We assessed effects of parental exposure to Beauveria bassiana on life history traits of subsequent generations of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Progeny from individuals that survived fungal exposure as second instars had significantly shorter egg stages, but longer prepupal development times than corresponding untreated controls. However, survivorship to adulthood of these progeny groups did not differ. Although fecundities of the parental types did not differ, the sex ratio of progeny from fungal-treated parents was male-biased, whereas sex ratio of progeny from untreated control parents was even. We calculated life table parameters for the progeny and found that all parameters, except for generation time, were significantly less for the progeny of fungal-treated parents than for progeny of untreated parents. The intrinsic rate of increase, finite rate of increase, net reproductive rate, mean generation time, and gross reproductive rate were 0.199 d(-1), 1.229 d(-1), 21.84, 15.48 d, and 27.273, respectively, for progeny of treated thrips, and 0.266 d(-1), 1.316 d(-1), 52.540, 14.92 d, and 70.64, respectively, for progeny of control thrips. Consequently, population projections demonstrated that offspring of parents exposed to B. bassiana would increase their population more slowly than those from untreated parents. These results demonstrate that B. bassiana has sublethal effects that reduce the reproductive success of F. occidentalis and these effects should be taken into account when evaluating its use in management programs for F. occidentalis. PMID:26470219

  4. ISOLATION AND CHARACTERIZATION OF MICROSATELLITE LOCI FOR THE ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is a cosmopolitan, soil-borne entomopathogenic fungus used for the biological control of insects. Recent molecular phylogenetic data indicate that B. bassiana is a complex of morphologically cryptic species. In order to study the population genetics of B. bassiana , detail speci...

  5. A Note on the Lichen Genus Ramalina (Ramalinaceae, Ascomycota) in the Hengduan Mountains in China

    PubMed Central

    Oh, Soon-Ok; Wang, Xin Yu; Wang, Li Song; Liu, Pei Gui

    2014-01-01

    On the basis of extensive field investigation and a series of herbarium specimen identifications, we present and discuss the descriptions and distribution of 22 species of Ramalina found in the Hengduan Mountains of southwestern China. In this revisionary study, representatives of the Ramalina genus, including R. americana, R. confirmata, R. dendriscoides, R. obtusata, R. pacifica, R. pentecostii, R. peruviana, R. shinanoana, and R. subcomplanata are found for the first time in this area. In addition, R. holstii is reported for the first time China. Finally, a newly described species identified as Ramalina hengduanshanensis S. O. Oh & L. S. Wang is reported. It is characterized as growing from a narrow holdfast, solid, sparsely or richly and irregularly dichotomously branched, palmate and flattened lobes with distinctly dorsiventral appearance, surface rugose to reticulate, surface rugosely cracked, dense chondroid tissue, helmet shaped soralia at the tip. The species grows on rock and tree at the highest elevations in this area. Although very few lichen species belonging to the genus Ramalina have been collected above 4,000 m, this new species is found at this elevation. We present detailed morphological, anatomical, and chemical descriptions of this species along with molecular phylogenetic analysis of the internal transcribed spacer rDNA sequences. PMID:25346599

  6. Biogeography and Genetic Structure in Populations of a Widespread Lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota)

    PubMed Central

    Hawksworth, David L.; Crespo, Ana

    2015-01-01

    The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-? were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species. PMID:25961726

  7. New molecular markers for fungal phylogenetics: Two genes for species level systematics in the Sordariomycetes (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although significant progress has been made resolving deep branches of the fungal tree of life in recent works, many fungal systematists are interested in species-level questions to both define species and to assess fungal biodiversity. Fungal genome sequences are a useful resource to systematic bio...

  8. Physiological effects upon Amblyomma americanum (Acari: Ixodidae) infected with Beauveria bassiana (Ascomycota: Hypocreales).

    PubMed

    Cradock, K; Needham, G

    2011-04-01

    Unfed adult Amblyomma americanum were exposed to the entomopathogenic fungus Beauveria bassiana. Ticks exposed to the fungus exhibited reduced survival and increased water loss as indicated by change in weight. Treated ticks survived 7.2 0.22 days (mean SE) and controls survived 17.9 0.73 days (P = 0.01; df = 57). At death, ticks exposed to the fungus had lost 25.2 0.84% of their starting weight; control ticks had lost 14.1 0.85% of their starting weight (P = 0.01; df = 96). Water loss was highest immediately following inoculation, although losses continued to be higher than in uninoculated ticks. This suggests that fungal penetration causes sufficient cuticle damage to cause desiccation, although other water-loss avenues exist, including increased time of spiracular opening. Additionally this study did not eliminate the possibility of a negative impact on water vapor uptake. This is the first study to investigate the effect of an entomopathogenic fungus on the water balance of a tick. PMID:20957415

  9. Biocontrol of pigeon tick Argas reflexus (Acari: Argasidae) by entomopathogenic fungus Metarhizium Anisopliae (Ascomycota: Hypocreales)

    PubMed Central

    Tavassoli, Mosa; Pourseyed, Seyed Hassan; Ownagh, Abdulghaffar; Bernousi, Iraj; Mardani, Karim

    2011-01-01

    The pigeon tick Argas reflexus is a pathogen-transmitting soft tick that typically feeds on pigeons, but can also attack humans causing local and systemic reactions. Chemical control is made difficult due to environmental contamination and resistance development. As a result, there is much interest in increasing the role of other strategies like biological control. In this study, the efficacy of three strains (V245, 685 and 715C) of entomopathogenic fungus Metarhizium anisopliae for biological control of three life stages of pigeon tick A. reflexus including eggs, larvae, engorged and unfed adults was investigated under laboratory conditions. Five concentrations of different strains of M. anisopliae ranging from 103 to 107 conidia/ml were used. All fungal strains significantly decreased hatchability of A. reflexus eggs. Strain V245 was the most effective strain on the mortality of larval stage with nearly 100% mortality at the lowest concentration (103 conidia/ml) at 10 days post-inoculation. The mortality rate of both engorged and unfed adult ticks were also increased significantly exposed to different conidial concentrations compared to the control groups (P < 0.05) making this fungus a potential biological control agent of pigeon tick reducing the use of chemical acaricides. PMID:24031777

  10. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a Pantropical Insecticide-Producing Endophyte

    PubMed Central

    Bills, Gerald F.; González-Menéndez, Victor; Martín, Jesús; Platas, Gonzalo; Fournier, Jacques; Peršoh, Derek; Stadler, Marc

    2012-01-01

    Background Nodulisporic acids (NAs) are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. Methods and Results Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. Conclusions and Significance Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a fungal organism, whether from environmental sequences, vegetative mycelia or field specimens, resulting in holistic species concepts critical to the assessment of the dimensions of fungal diversity. PMID:23056404

  11. Novel aspects in the life cycle and biotrophic interactions in Pezizomycetes (Ascomycota, Fungi).

    PubMed

    Tedersoo, Leho; Arnold, A Elizabeth; Hansen, Karen

    2013-03-01

    The ascomycete class Pezizomycetes (single order Pezizales)is known for its cup-shaped fruit bodies and the evolution of edible truffles and morels, but little is known about the ontogeny and ecology of this large and ecologically diverse fungal group. In this issue of Molecular Ecology, Healy et al. (2013) make a great leap forward by describing and identifying asexual, anamorphic structures that produce mitotic spores in many ectomycorrhiza-forming truffle and nontruffle species on soil surfaces worldwide(Fig. 1). Although such anamorphic forms have been reported sporadically from certain ectomycorrhizal and saprotrophic Pezizomycetes (e.g. Warcup 1990), Healy et al. (2013) demonstrate that these terricolous asexual forms are both taxonomically and geographically more widespread and, in fact, much more common than previously understood. We anticipate that deeper insight into other substrates, provided by molecular analyses of materials such as dead wood and seeds, is likely to reveal numerous anamorphs of saprotrophic and pathogenic Pezizomycetes as well (see Marek et al. 2009). PMID:23599958

  12. Common Microfungi of Costa Rica and Other Tropical Regions: An Illustrated Guide (Ascomycota, Pezizomycotina, Sordariomycetes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred and sixteen common tropical pyrenomycete fungi are described and illustrated in a bilingual (Spanish/English) guide. The pyrenomycete fungi include some of the most important plant and human pathogens and also are highly significant in nutrient cycling in tropical forest ecosystems. The...

  13. Study on the ice nucleation activity of fungal spores (Ascomycota and Basidiomycota)

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2012-04-01

    Biogenic ice nucleation (IN) in the atmosphere is a topic of growing interest, as, according to IPCC, the impact of IN on global climate is crucial to perform reliable climate model calculations. About 20 years ago IN activity of a few lichen and Fusarium species [1,2] was reported, while all other investigated fungi were IN-negative. However, as the fungal kingdom is vast, many abundant species, especially the Basidiomycota (most mushrooms), were not tested before. Furthermore, the focus of the past studies was on the IN activity of the mycelium as a cryoprotective mechanism, and not on the airborne spores. We carried out oil immersion measurements [3] with spores from 17 different fungal species of ecological, economical or sanitary importance. Most of these species have not been investigated before, like exponents of Aspergillus, Trichoderma and Agaricales (most mushrooms). Apart from F. avenaceum, spores of all measured species showed moderate or no IN activity, supporting the hypothesis that significant IN activity is a rather exclusive property of only a few species within the fungal kingdom. [1] Kieft TL and Ruscetti T: J. Bacteriol. 172, 3519-3523, 1990. [2] Pouleur S et al.: Appl. Environ. Microbiol., 58, 2960-2964, 1992. [3] Marcolli C et al.: Atmos. Chem. Phys. 7, 5081-5091, 2007.

  14. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales).

    PubMed

    Chen, Chunmei; Tong, Qingyi; Zhu, Hucheng; Tan, Dongdong; Zhang, Jinwen; Xue, Yongbo; Yao, Guangmin; Luo, Zengwei; Wang, Jianping; Wang, Yanyan; Zhang, Yonghui

    2016-01-01

    Chemical investigation on the methanol extract of Chaetomium globosum TW1-1, a fungus isolated from the common pillbug (Armadillidium vulgare), has resulted in the isolation of nine new highly oxygenated cytochalasan alkaloids, armochaetoglobins S-Z (1 and 3-9) and 7-O-acetylarmochaetoglobin S (2), together with eight structurally related known analogues (10-17). Their structures and absolute configurations were elucidated by spectroscopic analyses. Among them, compound 2 presents to be the first member of chaetoglobosin family with an acetyl group, and compounds 3 represents the first chaetoglobosin characterized by an 2',3'-epoxy-indole moiety. The discovery of these new compounds revealed the largely untapped chemical diversity of cytochalasans and enriched their chemical research. Compounds 1-9 were evaluated for their cytotoxic activities against five human cancer cell lines, and compounds 8 and 9 exhibited significant cytotoxic activities with IC50 values ranging from 10.45 to 30.42 μM. PMID:26739896

  15. The phylogenetic relationship between Anisogramma virgultorum and A. anomala within the Diaporthales (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two diaporthalean fungi Anisogramma virgultorum and A. anomala are biotrophic parasites. Anisogramma virgultorum causes stromatal cankers on young shoots of birch and A. anomala infects young branches of Corylus avellana. Although previous classifications, based on morphological characteristics,...

  16. Proposal to conserve the name Diaporthe eres against all other competing names (Ascomycota, Diaporthales, Diaporthaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the change to one scientific name for pleomorphic fungi based on relative priority, Diaporthe represents the generic name that is older than the synonym Phomopsis. At present Diaporthe includes over 800 names while the number of names described in Phomopsis exceeds 1,000, thus merging these two...

  17. Taxonomic Study on the Lichen Genus Coccocarpia (Lecanorales, Ascomycota) in South Korea

    PubMed Central

    Wang, Xin Yu; Wei, Xin Li; Han, Keon Seon; Koh, Young Jin

    2007-01-01

    Three species of Coccocarpia have been reported from Korean Peninsular. However, there was no revisional study on this genus before. After careful examination of the specimens deposited in the Korean Lichen Research Institute (KoLRI) and collected from main mountain areas of Korea, two species of Coccocarpia, C. palmicola and C. erythroxyli, have been revealed to occur and confirmed in South Korea. The presence and absence of isidia and apothecia are the most important characters for the South Korean species. We provide the detailed description and illustration of the available two species. A key to the species is also provided. PMID:24015093

  18. Taxonomic Study on the Lichen Genus Cetrelia (Lecanorales, Ascomycota) in South Korea

    PubMed Central

    Luo, Heng; Wei, Xin Li; Han, Keon Seon; Koh, Young Jin

    2007-01-01

    Seventy-two lichen specimens of Cetrelia collected in South Korea since 2003 were examined by both phenotypic and phylogenetic analyses. The phenotypic analysis was based on morphological and chemical characters, and the phylogenetic analysis was based on nrDNA ITS sequences. The result suggested that the presence and absence of isidia, soredia, lobules and medullar reaction C+ or C- are the important characters in the taxonomy of this genus. Four species of Cetrelia, C. chicitae, C. braunsiana, C. japonica, and C. pseudolivetorum have been identified in this study. Description of each species is presented with morphological and chemical characters. A key to the Cetrelia species is also presented. PMID:24015081

  19. Saitoella coloradoensis sp. nov., a new species of the Ascomycota, subphylum Taphrinomycotina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saitoella coloradoensis sp. nov. (NRRL YB-2330, CBS 12360, type strain) is described. This new member of the phylum Ascomycotina, subphylum Taphrinomycotina was isolated from insect frass occurring in an Engelmann spruce (Picea engelmannii) that was growing in Colorado, USA. Multigene sequence analy...

  20. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales)

    PubMed Central

    Chen, Chunmei; Tong, Qingyi; Zhu, Hucheng; Tan, Dongdong; Zhang, Jinwen; Xue, Yongbo; Yao, Guangmin; Luo, Zengwei; Wang, Jianping; Wang, Yanyan; Zhang, Yonghui

    2016-01-01

    Chemical investigation on the methanol extract of Chaetomium globosum TW1-1, a fungus isolated from the common pillbug (Armadillidium vulgare), has resulted in the isolation of nine new highly oxygenated cytochalasan alkaloids, armochaetoglobins S–Z (1 and 3–9) and 7-O-acetylarmochaetoglobin S (2), together with eight structurally related known analogues (10–17). Their structures and absolute configurations were elucidated by spectroscopic analyses. Among them, compound 2 presents to be the first member of chaetoglobosin family with an acetyl group, and compounds 3 represents the first chaetoglobosin characterized by an 2′,3′-epoxy-indole moiety. The discovery of these new compounds revealed the largely untapped chemical diversity of cytochalasans and enriched their chemical research. Compounds 1–9 were evaluated for their cytotoxic activities against five human cancer cell lines, and compounds 8 and 9 exhibited significant cytotoxic activities with IC50 values ranging from 10.45 to 30.42 μM. PMID:26739896

  1. ISOLATION AND CHARACTERIZATION OF MICROSATELLITE LOCI FOR THE ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA (ASCOMYCOTA: HYPOCREALES)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs...

  2. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genus Cylindrocarpon. Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Forty years ago Booth divided Cylindrocarpon into four groups defined by p...

  3. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Beauveria bassiana was established in coffee seedlings after fungal spore suspensions were applied as foliar sprays, stem injections, or soil drenches. Direct injection yielded the highest post-inoculation recovery of endophytic B. bassiana. Establishment, based on per...

  4. An Integrative Approach for Understanding Diversity in the Punctelia rudecta Species Complex (Parmeliaceae, Ascomycota)

    PubMed Central

    Alors, David; Lumbsch, H. Thorsten; Divakar, Pradeep K.; Leavitt, Steven D.; Crespo, Ana

    2016-01-01

    High levels of cryptic diversity have been documented in lichenized fungi, especially in Parmeliaceae, and integrating various lines of evidence, including coalescent-based species delimitation approaches, help establish more robust species circumscriptions. In this study, we used an integrative taxonomic approach to delimit species in the lichen-forming fungal genus Punctelia (Parmeliaceae), with a particular focus on the cosmopolitan species P. rudecta. Nuclear, mitochondrial ribosomal DNA and protein-coding DNA sequences were analyzed in phylogenetic and coalescence-based frameworks. Additionally, morphological, ecological and geographical features of the sampled specimens were evaluated. Five major strongly supported monophyletic clades were recognized in the genus Punctelia, and each clade could be characterized by distinct patterns in medullary chemistry. Punctelia rudecta as currently circumscribed was shown to be polyphyletic. A variety of empirical species delimitation methods provide evidence for a minimum of four geographically isolated species within the nominal taxon Punctelia rudecta, including a newly described saxicolous species, P. guanchica, and three corticolous species. In order to facilitate reliable sample identification for biodiversity, conservation, and air quality bio-monitoring research, these three species have been epitypified, in addition to the description of a new species. PMID:26863231

  5. On the evolution of the Hysteriaceae and Mytilinidiaceae (Pleosporomycetidae, Dothideomycetes, Ascomycota) using four nuclear genes.

    PubMed

    Boehm, Eric W A; Schoch, Conrad L; Spatafora, Joseph W

    2009-04-01

    We present a molecular phylogenetic analysis for two families within the Pleosporomycetidae (Dothideomycetes), the Hysteriaceae, and the Mytilinidiaceae, using four nuclear genes, the ribosomal LSU and SSU, transcription elongation factor 1 alpha and the second largest RNA polymerase II subunit. Multigene phylogenies provide strong support for the monophyly of the Hysteriaceae and of the Mytilinidiaceae, both within the Pleosporomycetidae. However, sequence data also indicate that both families are not closely related within the subclass. Although core groups for many of the genera in the Hysteriaceae have been defined, Hysterium, Gloniopsis, and Hysterographium are polyphyletic, with affinities not premised on spore septation and pigmentation. Glonium is also polyphyletic, but along two highly divergent lines. The genus lies outside of the Hysteriaceae, and finds close affinities instead with the family Mytilinidiaceae, for which we propose Gloniaceae fam. nov. to accommodate the type, G. stellatum and related forms. The genus Psiloglonium is reinstated within the Hysteriaceae, with P. lineare, as type, to accommodate non-subiculate species, with apically obtuse didymospores. Farlowiella is removed from the Hysteriaceae, but remains within the Pleosporomycetidae. In contrast, despite divergent spore morphologies, the genera Mytilinidion and Lophium form a strongly supported clade, thus defining a highly monophyletic Mytilinidiaceae, adjacent to the Gloniaceae, for which we propose the Mytilinidiales ord. nov. The genus Ostreichnion, previously in the Mytilinidiaceae, is here transferred to the Hysteriaceae. It is concluded that the evolution of the hysterothecium occurred multiple times within the Pleosporomycetidae, and alone it is not a synapomorphic character state for the Hysteriaceae. PMID:19422072

  6. A Brief Chronicle of the Genus Cordyceps Fr., the Oldest Valid Genus in Cordycipitaceae (Hypocreales, Ascomycota)

    PubMed Central

    Tanaka, Eiji; Han, Jae-Gu; Oh, Junsang; Han, Sang-Kuk; Lee, Kang-Hyo

    2014-01-01

    The earliest pre-Linnaean fungal genera are briefly discussed here with special emphasis on the nomenclatural connection with the genus Cordyceps Fr. Since its valid publication under the basidiomycetous genus Clavaria Vaill. ex L. (Clavaria militaris L. Sp. Pl. 2:1182, 1753), the genus Cordyceps has undergone nomenclatural changes in the post-Linnaean era, but has stood firmly for approximately 200 years. Synonyms of Cordyceps were collected from different literature sources and analyzed based on the species they represent. True synonyms of Cordyceps Fr. were defined as genera that represented species of Cordyceps Fr. emend. G. H. Sung, J. M. Sung, Hywel-Jones & Spatafora. The most common synonyms of Cordyceps observed were Clavaria and Sphaeria Hall, reported in the 18th and in the first half of the 19th century, respectively. Cordyceps, the oldest genus in the Cordyceps s. s. clade of Cordycipitaceae, is the most preferred name under the "One Fungus = One Name" principle on priority bases. PMID:25071376

  7. Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota).

    PubMed

    Mugambi, G K; Huhndorf, S M

    2009-01-01

    The classification of Pleosporales has posed major challenges due to the lack of clear understanding of the importance of the morphological characters used to distinguish between different groups in the order. This has resulted in varied taxonomic treatments of many families in the group including Melanommataceae and Lophiostomataceae. In this study we employ two nuclear DNA gene markers, nuclear ribosomal large subunit DNA and translation elongation factor 1-alpha in order to examine the molecular phylogenetics of Pleosporales with strong emphasis on the families Melanommataceae and Lophiostomataceae. Phylogenetic analyses recovered Melanommataceae, Lophiostomataceae, Hypsostromataceae, and a few others as strongly supported clades within the Pleosporales. Melanommataceae as currently circumscribed was found to be polyphyletic. The genera Byssosphaeria, Melanomma, and Pseudotrichia were recovered within the family, while others such as Ostropella and Xenolophium nested outside in a weakly supported group along with Platystomum compressum and Pseudotrichia guatopoensis that may correspond to the family Platystomaceae. The genus Byssosphaeria was recovered as a strongly supported group within the Melanommataceae while Melanomma was weakly supported with unclear relationships among the species. The genera Herpotrichia and Bertiella were also found to belong in the Melanommataceae. Lophiostomataceae occurs as a strongly supported group but its concept is here expanded to include a new genus Misturatosphaeria that bears morphology traditionally not known to occur in the family. The strongly supported clade of Misturatosphaeria contains nine species that have gregarious, papillate ascomata with lighter coloured apices and plugged ostioles and that vary in ascospore morphology from 1- to 3-septate to muriform. Along with a strongly supported Lophiostoma clade, also within the family are Thyridaria macrostomoides based on new sequences from Kenyan collections and Massariosphaeria triseptata, M. grandispora, Westerdykella cylindrica and Preussia terricola based on GenBank sequences. The family Hypsostromataceae was recovered as a strongly supported monophyletic group nested within the Pleosporales. PMID:20169025

  8. Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota)

    PubMed Central

    Mugambi, G.K.; Huhndorf, S.M.

    2009-01-01

    The classification of Pleosporales has posed major challenges due to the lack of clear understanding of the importance of the morphological characters used to distinguish between different groups in the order. This has resulted in varied taxonomic treatments of many families in the group including Melanommataceae and Lophiostomataceae. In this study we employ two nuclear DNA gene markers, nuclear ribosomal large subunit DNA and translation elongation factor 1-alpha in order to examine the molecular phylogenetics of Pleosporales with strong emphasis on the families Melanommataceae and Lophiostomataceae. Phylogenetic analyses recovered Melanommataceae, Lophiostomataceae, Hypsostromataceae, and a few others as strongly supported clades within the Pleosporales. Melanommataceae as currently circumscribed was found to be polyphyletic. The genera Byssosphaeria, Melanomma, and Pseudotrichia were recovered within the family, while others such as Ostropella and Xenolophium nested outside in a weakly supported group along with Platystomum compressum and Pseudotrichia guatopoensis that may correspond to the family Platystomaceae. The genus Byssosphaeria was recovered as a strongly supported group within the Melanommataceae while Melanomma was weakly supported with unclear relationships among the species. The genera Herpotrichia and Bertiella were also found to belong in the Melanommataceae. Lophiostomataceae occurs as a strongly supported group but its concept is here expanded to include a new genus Misturatosphaeria that bears morphology traditionally not known to occur in the family. The strongly supported clade of Misturatosphaeria contains nine species that have gregarious, papillate ascomata with lighter coloured apices and plugged ostioles and that vary in ascospore morphology from 1- to 3-septate to muriform. Along with a strongly supported Lophiostoma clade, also within the family are Thyridaria macrostomoides based on new sequences from Kenyan collections and Massariosphaeria triseptata, M. grandispora, Westerdykella cylindrica and Preussia terricola based on GenBank sequences. The family Hypsostromataceae was recovered as a strongly supported monophyletic group nested within the Pleosporales. PMID:20169025

  9. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus.

    PubMed

    Guesmi-Jouini, J; Garrido-Jurado, I; López-Díaz, C; Ben Halima-Kamel, M; Quesada-Moraga, E

    2014-06-01

    Entomopathogenic fungi (EPF) are commonly found in diverse habitats and are known to cause mycoses in many different taxa of arthropods. Various unexpected roles have been recently reported for fungal entomopathogens, including their presence as fungal endophytes, plant disease antagonists, rhizosphere colonizers and plant growth promoting fungi. In Tunisia, a wide range of indigenous EPF isolates from different species, such as Beauveria bassiana and Bionectria ochroleuca, were found to occur in the soil, and to be pathogenic against the artichoke aphid Capitophorus elaeagni (Hemiptera: Aphididae). Since endophytic fungi are recently regarded as plant-defending mutualists and their presence in internal plant tissue has been discussed as an adaptive protection against insects, we were interested on elucidating the possible endophytic behavior of B. bassiana and B. ochroleuca on artichoke, Cynara scolymus, after foliar spraying tehcnique. The leaf spray inoculation method was effective in introducing the inoculated fungi into the plant tissues and showed, then, an endophytic activity on artichoke even 10 days later. According S-N-K test, there was significant differences between the two fungal treatments, B. ochroleuca (84% a) and B. bassiana (78% a), and controls (0% b). Likewise, the inoculated entomopathogenic fungi were also isolated from new leaves even though with significant differences respectively between controls (0% c), B. bassiana (56% b) and B. ochroleuca (78% a). These results reveals significant new data on the interaction of inoculated fungi with artichoke plant as ecological roles that can be exploited for the protection of plants. PMID:24681358

  10. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families

    PubMed Central

    Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C.; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A.G.; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis; Sipman, Harrie J.M.; Burgaz, Ana Rosa; Thell, Arne; Passo, Alfredo; Myllys, Leena; Goward, Trevor; Fernández-Brime, Samantha; Hestmark, Geir; Lendemer, James; Lumbsch, H. Thorsten; Schmull, Michaela; Schoch, Conrad; Sérusiaux, Emmanuël; Maddison, David R.; Arnold, A. Elizabeth; Lutzoni, François; Stenroos, Soili

    2014-01-01

    The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, ‘Candelariomycetidae’). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module (“Hypha”) of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach. PMID:24747130

  11. Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Codling moth CM, Cydia pomonella, (L.), a serious pest of pome fruit, is a threat to exportation of apples because of the possibility of shipping infested fruit. Broad spectrum fumigants have been used as the principle method for the protection of exported fruit from insect infestations. Some of th...

  12. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota)

    PubMed Central

    2014-01-01

    Background Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as a lichen in the arid regions. Results 454 and Illumina technologies were used to sequence the genome of E. pusillum. A total of 9,285 genes were annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic partner and their contact time were found to be important for the interaction between these two symbionts. Conclusions The present study lays a genomic analysis of the lichen-forming fungus E. pusillum for demonstrating its general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii, and will provide research basis for investigating the nature of its drought resistance and symbiosis. PMID:24438332

  13. Position specificity in Chitonomyces (Ascomycota, Laboulbeniomycetes) on Laccophilus (Coleoptera, Dytiscidae): a molecular approach resolves a century-old debate.

    PubMed

    Goldmann, Lauren; Weir, Alex

    2012-01-01

    The occurrence of Laboulbeniomycete species consistently on a precise portion of beetle integument was investigated in 13 species of Chitonomyces ectoparasitic on the aquatic diving beetle Laccophilus maculosus (Coleoptera, Dytiscidae). The phenomenon was called "position specificity" by Roland Thaxter in 1896, yet the mechanism has remained unknown. By using molecular analysis of the nucSSU rRNA gene and the 5.8S and partial ITS1 rRNA regions, 13 species of Chitonomyces reported to exhibit position specificity on Laccophilus maculosus were placed neatly into pairs of morphotypes, resulting in synonomies and recognition of six phylogenetic species (one species is a triplet). Each phylogenetic species was located at corresponding positions on male and female beetles that make contact during mating. In addition, ecological data and video footage of the mating behaviors of Laccophilus confirmed that sexual transmission is the mechanism behind this enigmatic phenomenon. PMID:22684291

  14. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales).

    PubMed

    Gutierrez, Alejandra C; Go??biowski, Marek; Pennisi, Mariana; Peterson, Graciela; Garca, Juan J; Manfrino, Romina G; Lpez Lastra, Claudia C

    2015-04-01

    Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, ?-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia. PMID:26470187

  15. (2049-2050) Proposals to conserve the name Wickerhamomyces against Hansenula and to reject the name Saccharomyces sphaericus (Ascomycota: Saccharomycotina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International Rules of Botanical Nomenclature, under which fungi are also classified, require a preserved specimen, the type specimen, for all described species. The yeast Wickerhamomyces anomalus, which is common in nature and widely used for the biocontrol of spoilage fungi that contaminate en...

  16. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease

    PubMed Central

    McKinney, L V; Nielsen, L R; Hansen, J K; Kjær, E D

    2011-01-01

    Fraxinus excelsior, common ash native to Europe, is threatened by a recently identified pathogenic fungus Chalara fraxinea, which causes extensive damage on ash trees across Europe. In Denmark, most stands are severely affected leaving many trees with dead crowns. However, single trees show notably fewer symptoms. In this study, the impact of the emerging infectious disease on native Danish ash trees is assessed by estimating presence of inherent resistance in natural populations. Disease symptoms were assessed from 2007 to 2009 at two different sites with grafted ramets of 39 selected clones representing native F. excelsior trees. A strong genetic variation in susceptibility to C. fraxinea infections was observed. No genetic or geographic structure can explain the differences, but strong genetic correlations to leaf senescence were observed. The results suggest that a small fraction of trees in the Danish population of ash possess substantial resistance against the damage. Though this fraction is probably too low to avoid population collapse in most natural or managed ash forests, the observed presence of putative resistance against the emerging infectious disease in natural stands is likely to be of evolutionary importance. This provides prospects of future maintenance of the species through natural or artificial selection in favour of remaining healthy individuals. PMID:20823903

  17. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families.

    PubMed

    Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A G; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis; Sipman, Harrie J M; Burgaz, Ana Rosa; Thell, Arne; Passo, Alfredo; Myllys, Leena; Goward, Trevor; Fernández-Brime, Samantha; Hestmark, Geir; Lendemer, James; Lumbsch, H Thorsten; Schmull, Michaela; Schoch, Conrad L; Sérusiaux, Emmanuël; Maddison, David R; Arnold, A Elizabeth; Lutzoni, François; Stenroos, Soili

    2014-10-01

    The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach. PMID:24747130

  18. Weed seeds as nutritional resources for soil Ascomycota and characterization of specific associations between plant and fungal species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current interest in biological-based management of weed seed banks in agriculture furthers the need to understand how microorganisms affect seed fate in soil. Many annual weeds produce seeds in high abundance; their dispersal presenting ready opportunity for interactions with soil-borne microorganis...

  19. Susceptibility of two hymenopteran parasitoids of Agrilus planipennis (Coleoptera: Buprestidae) to the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire, native to Asia, is killing ash trees (Fraxinus spp.) in eastern North America. Integrated pest management using biological control is the only viable long-term approach for controlling the spread of EAB outside of host resistance. Three hymen...

  20. Using Phylogenetic and Coalescent Methods to Understand the Species Diversity in the Cladia aggregata Complex (Ascomycota, Lecanorales)

    PubMed Central

    Parnmen, Sittiporn; Rangsiruji, Achariya; Mongkolsuk, Pachara; Boonpragob, Kansri; Nutakki, Aparna; Lumbsch, H. Thorsten

    2012-01-01

    The Cladia aggregata complex is one of the phenotypically most variable groups in lichenized fungi, making species determination difficult and resulting in different classifications accepting between one to eight species. Multi-locus DNA sequence data provide an avenue to test species delimitation scenarios using genealogical and coalescent methods, employing gene and species trees. Here we tested species delimitation in the complex using molecular data of four loci (nuITS and IGS rDNA, protein-coding GAPDH and Mcm-7), including 474 newly generated sequences. Using a combination of ML and Bayesian gene tree topologies, species tree inferences, coalescent-based species delimitation, and examination of phenotypic variation we assessed the circumscription of lineages. We propose that results from our analyses support a 12 species delimitation scenario, suggesting that there is a high level of species diversity in the complex. Morphological and chemical characters often do not characterize lineages but show some degree of plasticity within at least some of the clades. However, clades can often be characterized by a combination of several phenotypical characters. In contrast to the amount of homoplasy in the morphological characters, the data set exhibits some geographical patterns with putative species having distribution patterns, such as austral, Australasian or being endemic to Australia, New Zealand or Tasmania. PMID:23272229

  1. Paecilomyces niveus Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of Nasonovia ribisnigri (Mosley, 1841) (Hemiptera, Aphididae) in Brazil.

    PubMed

    Zawadneak, M A C; Pimentel, I C; Robl, D; Dalzoto, P; Vicente, V; Sosa-Gómez, D R; Porsani, M; Cuquel, F L

    2015-11-01

    Nasonovia ribisnigri is a key pest of lettuce (Lactuca sativa L.) in Brazil that requires alternative control methods to synthetic pesticides. We report, for the first time, the occurrence of Paecilomyces niveus as an entomopathogen of the aphid Nasonovia ribisnigri in Pinhais, Paraná, Brazil. Samples of mummified aphids were collected from lettuce crops. The fungus P. niveus (PaePR) was isolated from the insect bodies and identified by macro and micromorphology. The species was confirmed by sequencing Internal Transcribed Spacer (ITS) rDNA. We obtained a sequence of 528 bp (accession number HQ441751), which aligned with Byssochlamys nivea strains (100% identities). In a bioassay, 120 h after inoculation of N. ribisnigri with pathogenic P. niveus had an average mortality of 74%. The presence of P. niveus as a natural pathogen of N. ribisnigri in Brazil suggests that it may be possible to employ P. niveus to minimize the use of chemical insecticides. PMID:26602345

  2. Morphological and ultrastructural characterization of Carposina sasakii larvae (Lepidoptera: Carposinidae) infected by Beauveria bassiana (Ascomycota: Hypocreales: Clavicipitaceae).

    PubMed

    Xiong, Qi; Xie, Yingping; Zhu, Yougmin; Xue, Jiaoliang; Li, Jie; Fan, Renjun

    2013-01-01

    The aim of this study was to better understand the pathogenesis of the entomopathogenic fungus Beauveria bassiana (Balsamo) strain TST05 observed on the peach fruit moth (Carposina sasakii (Matsumura)), an important orchard pest. The morphological and ultrastructural characterization of the mature larvae of C. sasakii infected by B. bassiana was investigated by using light, scanning and transmission electron microscopy. The results of the study show that B. bassiana TST05 infected the host larvae mainly by penetrating the integument. The conidia of the fungus adhere easily to the area around the mouthparts and to the basal area around the acanthae on the thorax and abdomen. Observations of the host's defensive response to the fungal attack indicated that dark spots appeared on the cuticle and that melanization appeared in the hemocoel. After overcoming the host's defense system, the pathogen grew and reproduced primarily in the hemocoel. The infection spread sequentially to the internal tissues, e.g., fat body, muscle, Malpighian tubules, gut and even the silk gland. Ultimately, the larval internal organs and tissues were damaged very extensively. Finally, the fungus emerged through the cuticle of the dead insect and released conidiophores that could act as new pathogens to infect other larvae. PMID:22940571

  3. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao).

    PubMed

    Posada, Francisco; Vega, Fernando E

    2005-01-01

    The fungal entomopathogen Beauveria bassiana became established as an endophyte in in vitro-grown cocoa seedlings tested for up to 2 mo after inoculation to the radicle with B. bassiana suspensions. The fungus was recovered in culture from stems, leaves and roots. B. bassiana also was detected as an epiphyte 1 and 2 mo postinoculation. Penicillium oxalicum and five bacterial morphospecies also were detected, indicating that these were present as endophytes in the seed. PMID:16722213

  4. A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles

    PubMed Central

    Spribille, Toby; Klug, Barbara; Mayrhofer, Helmut

    2011-01-01

    Lichens are a prominent feature of northern conifer forests and a large number of species are thought to be circumboreal. Whether or not circumboreal lichen species really constitute monophyletic groups has seldom been tested. We investigated molecular phylogenetic patterns in the mycobiont of Mycoblastus sanguinarius, a well known epiphytic lichen species of the boreal forest, based on material collected from across the high latitude northern hemisphere. A three-locus dataset of internal transcribed spacer rDNA, translation elongation factor 1-? and replication licensing factor Mcm7 DNA sequences revealed that material treated until now as belonging to M. sanguinarius does indeed form a monophyletic group within the genus and is distinct from a strongly supported Mycoblastus affinis. The M. sanguinarius complex appears closely related to the rare Mycoblastus glabrescens, which is currently known only from the Pacific Northwest and was rediscovered during the present study. However, within M. sanguinarius s.lat. in the northern hemisphere, two deeply divergent and morphologically coherent species can be recovered, one of which matches the southern hemisphere species Mycoblastus sanguinarioides and turns out to be widespread in North America and Asia, and one of which corresponds to M. sanguinarius s.str. Both M. sanguinarius and M. sanguinarioides exhibit additional low-level genetic differentiation into geographically structured clades, the most prominent of which are distributed in East Asia/eastern North America and western North America/Europe, respectively. Individuals from these lowest-level clades are morphologically indistinguishable but chemical analyses by thin layer chromatography revealed that each clade possesses its own fatty acid profile, suggesting that chemical differentiation precedes morphological differentiation and may be a precursor to speciation. PMID:21443957

  5. (2289) Proposal to conserve the name Morchella semilibera against Phallus crassipes, P. gigas and P. undosus (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True morels (Morchella) are among the most highly prized and easily recognized edible mushrooms collected during spring throughout the Northern Hemisphere. To help ensure that commercial harvests are sustainable and species diversity is preserved, management practices and conservation policies need...

  6. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position.

    PubMed

    Kruys, Asa; Eriksson, Ove E; Wedin, Mats

    2006-05-01

    The purpose of this study was to investigate the natural relationships within the large bitunicate order Pleosporales, with special focus on the coprophilous families Delitschiaceae, Phaeotrichaceae and Sporormiaceae. Parsimony and Bayesian analyses were performed using nSSU, nLSU and mtSSU rDNA sequence data. We also investigated the placement of a number of taxa with uncertain position. Our results showed that Pleosporales, including Delitschiaceae, Sporormiaceae, Zopfiaceae and Testudinaceae, form a monophyletic group with strong support. Although Delitschiaceae has been considered a synonym of Sporormiaceae, the two families do not form one monophyletic group. Similarly, Zopfiaceae and Testudinaceae should be retained as separate families as they did not group together or with Phaeotrichaceae or Sporormiaceae. Zopfiaceae and Delitchiaceae did group together, but without significant support. Eremodothis angulata (currently in Testudinaceae) is closely related to Westerdykella in Sporormiaceae. Phaeotrichaceae and Venturiaceae formed a group with strong BS support on a branch outside Pleosporales, but an alternative topology including Phaeotrichaceae and Venturiaceae within Pleosporales could not be rejected. All taxa in the present study that were placed with uncertain position in Dothideomycetes/Chaetothyriomycetes in the current classification by Eriksson, grouped within the monophyletic Dothideomycetes. PMID:16769507

  7. Virulence of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) commercial strains against adult Xylosandrus germanus (Coleoptera: Scolytidae) and impact on brood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ambrosia beetle Xylosandrus germanus is an invasive pest with a wide host range and is a serious pest of orchards and nurseries in the eastern US. In this study we evaluated the potential of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as control agents against this beet...

  8. Assessing deposition and persistence of Beauveria bassiana GHA (Ascomycota: Hypocreales) applied for control of emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in a commercial tree nursery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the deposition and field persistence of mycoinsecticides is essential in the development of effective and economical application strategies, including specifically the timing and frequency of spray applications. In this study we used three methods to evaluate the persistence of Beauveri...

  9. Proposal to conserve the name Helminthosporium maydis Y. Nisik. & C. Miyake (Bipolaris maydis) against H. maydis Brond. and Ophiobolus heterostrophus (Ascomycota: Pleosporales: Pleosporaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Bipolaris maydis (Y. Nisik. & C. Miyake) Shoemaker is the type of the genus Bipolaris Shoemaker, while Cochliobolus heterostrophus (Drechsler) Drechsler is the type of the genus Cochliobolus Drechsler. Initially described as Helminthosporium maydis Y. Nisik. & C. Miyake, Bipolaris maydis is...

  10. Isolation of Paecilomyces lilacinus (Thom) Samson (Ascomycota: Hypocreales) from the Chagas disease vector, Triatoma infestans Klug (Hemiptera: Reduviidae) in an endemic area in Argentina.

    PubMed

    Marti, Gerardo A; Lastra, Claudia C Lpez; Pelizza, Sebastian A; Garca, Juan J

    2006-11-01

    A survey for entomopathogenic fungi of the Chagas disease vector Triatoma infestans was conducted in two provinces of Argentina from March-December 2003. Field-collected insects that died in the laboratory were individually maintained in moist chamber and incubated at 22 degrees C. Triatominae adults infected with the fungus Paecilomyces lilacinus were found at El Quebracho (27 degrees 34'S-64 degrees 31'W), Santiago del Estero province, Argentina, in December 2003. Paecilomyces lilacinus was cultured and isolated from infected insects in SDAY, PYG and MEA media. Pathogenicity tests were conducted and positive results were recorded. The median survival time (MST) of T. infestans exposed to a P. lilacinus conidial suspension was 12.8 days, and 100% mortality occurred at 30 days post-treatment. This is the first record of natural infection caused by P. lilacinus in T. infestans in the world. PMID:17123036

  11. Characterization and phylogeny of Isaria spp. strains (Ascomycota: Hypocreales) using ITS1-5.8S-ITS2 and elongation factor 1-alpha sequences.

    PubMed

    D'Alessandro, Celeste P; Jones, Leandro R; Humber, Richard A; Lpez Lastra, Claudia C; Sosa-Gomez, Daniel R

    2014-07-01

    The elongation factor 1-alpha (EF1-?) and the internal transcribed spacer (ITS) regions ITS1 and ITS2 (ITS1-5.8S-ITS2) sequences were used to characterize and to identify Isaria isolates from Argentina, Mexico, and Brazil, as well as to study the phylogenetic relationships among these isolates and other related fungi from the order Hypocreales. The molecular characterization, which was performed by PCR-RFLP of EF1-? and ITS1-5.8-ITS2 genes, was useful for resolving representative isolates of Isaria fumosorosea, Isaria farinosa, and Isaria tenuipes and to confirm the taxonomic identity of fungi from Argentina, Mexico, and Brazil. The phylogenetic analyses showed three clades corresponding to three families of Hypocreales. The genus Isaria was confirmed as polyphyletic and in family Cordycipitaceae, Isaria species were related to anamorphic species of Beauveria, Lecanicillium, and Simplicillium and to teleomorphic Cordyceps and Torrubiella. Therefore, EF1-? and ITS1-5.8S-ITS2 genes were found to be powerful tools for improving the characterization, identification, and phylogenetic relationship of the Isaria species and other entomopathogenic fungi. PMID:24222441

  12. Not as ubiquitous as we thought: taxonomic crypsis, hidden diversity and cryptic speciation in the cosmopolitan fungus Thelonectria discophora (Nectriaceae, Hypocreales, Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of microbial species, including fungi, has long been considered cosmopolitan. Recently, this perception has been challenged by molecular studies in historical biogeography, phylogeny and population genetics. Here we explore this issue using the fungal morphological species Thelonect...

  13. Metarhizium anisopliae (Ascomycota: Hypocreales): an effective alternative to chemical acaricides against different developmental stages of fowl tick Argas persicus (Acari: Argasidae).

    PubMed

    Pourseyed, S H; Tavassoli, M; Bernousi, I; Mardani, K

    2010-09-20

    The fowl bloodsucking tick Argas persicus is of great medical and veterinary importance in tropical and subtropical regions because of its role as vector of certain parasitic, bacterial and viral pathogens. A variety of acaricides are used for the control of tick infestation in poultry, resulting in environmental contamination and the development of resistance. In order to develop an alternative control method, the efficacy of three strains (V245, 685 and 715C) of entomopathogenic fungus Metarhizium anisopliae against different life stages of A. persicus including eggs, larvae, unfed and engorged adult females was evaluated under laboratory conditions. Five concentrations of different strains of M. anisopliae ranging from 10(3) to 10(7)conidia/ml were utilized. The effects of fungal strains on egg hatchability and larva and adult female mortality were significant and dose-dependent compared to the control groups (P<0.05). The mortality rates of larvae ranged from 92% to 100% for two different concentrations (10(3) and 10(4)conidia/ml) of M. anisopliae strains. Treated engorged females were more susceptible than the unfed females reaching mortality rate of 100% at the highest concentration (10(7)conidia/ml) at 18 days post-inoculation. Among strains used in this study, V245 was the most virulent strain regarding the LC(50) values for adult females exposed to fungal conidia. The results demonstrate that the application of M. anisopliae as a biocontrol agent is a promising option in reducing the use of chemical acaricides, resulting in benefits to poultry and the environment. PMID:20541868

  14. Quantitative detection of Beauveria bassiana GHA (Ascomycota: Hypocreales), a potential microbial control agent of the emerald ash borer, by use of real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate monitoring of an introduced, mass-released microbial control agent is essential in evaluating its persistence and in designing application strategies for insect pest control. As part of our multi-year study on the development and use of the entomopathogenic fungus Beauveria bassiana agains...

  15. Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome.

    PubMed

    Quandt, C Alisha; Kohler, Annegret; Hesse, Cedar N; Sharpton, Thomas J; Martin, Francis; Spatafora, Joseph W

    2015-08-01

    Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association. PMID:25753751

  16. Phylogenetic Classification at Generic Level in the Absence of Distinct Phylogenetic Patterns of Phenotypical Variation: A Case Study in Graphidaceae (Ascomycota)

    PubMed Central

    Parnmen, Sittiporn; Lcking, Robert; Lumbsch, H. Thorsten

    2012-01-01

    Molecular phylogenies often reveal that taxa circumscribed by phenotypical characters are not monophyletic. While re-examination of phenotypical characters often identifies the presence of characters characterizing clades, there is a growing number of studies that fail to identify diagnostic characters, especially in organismal groups lacking complex morphologies. Taxonomists then can either merge the groups or split taxa into smaller entities. Due to the nature of binomial nomenclature, this decision is of special importance at the generic level. Here we propose a new approach to choose among classification alternatives using a combination of morphology-based phylogenetic binning and a multiresponse permutation procedure to test for morphological differences among clades. We illustrate the use of this method in the tribe Thelotremateae focusing on the genus Chapsa, a group of lichenized fungi in which our phylogenetic estimate is in conflict with traditional classification and the morphological and chemical characters do not show a clear phylogenetic pattern. We generated 75 new DNA sequences of mitochondrial SSU rDNA, nuclear LSU rDNA and the protein-coding RPB2. This data set was used to infer phylogenetic estimates using maximum likelihood and Bayesian approaches. The genus Chapsa was found to be polyphyletic, forming four well-supported clades, three of which clustering into one unsupported clade, and the other, supported clade forming two supported subclades. While these clades cannot be readily separated morphologically, the combined binning/multiresponse permutation procedure showed that accepting the four clades as different genera each reflects the phenotypical pattern significantly better than accepting two genera (or five genera if splitting the first clade). Another species within the Thelotremateae, Thelotrema petractoides, a unique taxon with carbonized excipulum resembling Schizotrema, was shown to fall outside Thelotrema. Consequently, the new genera Astrochapsa, Crutarndina, Pseudochapsa, and Pseudotopeliopsis are described here and 39 new combinations are proposed. PMID:23251515

  17. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota).

    PubMed

    Leavitt, Steven D; Kraichak, Ekaphan; Nelsen, Matthew P; Altermann, Susanne; Divakar, Pradeep K; Alors, David; Esslinger, Theodore L; Crespo, Ana; Lumbsch, Thorsten

    2015-07-01

    Microbial symbionts are instrumental to the ecological and long-term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species-rich lichen-forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date. We analysed a total of 2356 algal internal transcribed spacer (ITS) region sequences collected from lichens representing ten mycobiont genera in Parmeliaceae, two genera in Lecanoraceae and 26 cultured Trebouxia strains. Algal ITS sequences were grouped into operational taxonomic units (OTUs); we attempted to validate the evolutionary independence of a subset of the inferred OTUs using chloroplast and mitochondrial loci. We explored the patterns of symbiont interactions in these lichens based on ecogeographic distributions and mycobiont taxonomy. We found high levels of undescribed diversity in Trebouxia, broad distributions across distinct ecoregions for many photobiont OTUs and varying levels of mycobiont selectivity and specificity towards the photobiont. Based on these results, we conclude that fungal specificity and selectivity for algal partners play a major role in determining lichen partnerships, potentially superseding ecology, at least at the ecogeographic scale investigated here. To facilitate effective communication and consistency across future studies, we propose a provisional naming system for Trebouxia photobionts and provide representative sequences for each OTU circumscribed in this study. PMID:26073165

  18. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals.

    PubMed

    Rodrigues, Anderson Messias; Cruz Choappa, Rodrigo; Fernandes, Geisa Ferreira; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2016-02-01

    A combination of phylogeny, evolution, morphologies and ecologies has enabled major advances in understanding the taxonomy of Sporothrix species, including members exhibiting distinct lifestyles such as saprobes, human/animal pathogens, and insect symbionts. Phylogenetic analyses of ITS1/2+5.8s sequences split Sporothrix genus in two well-defined groups with dissimilar ecologies. Species embedded in the Sporothrix schenckii complex are frequently agents of human and animal sporotrichosis, and some of these are responsible for large sapronoses and zoonoses around the warmer temperate regions of the world. At the other extreme, basal saprophytic species evolved in association with decaying wood and soil, and are rarely found to cause human disease. We propose to create a new taxa, Sporothrix chilensis sp. nov., to accommodate strains collected from a clinical case of onychomycosis as well as from environmental origins in Chile. Multigene analyses based on ITS1/2+5.8s region, beta-tubulin, calmodulin and translation elongation factor 1? revealed that S. chilensis is a member of the Sporothrix pallida complex, and the nearest taxon is Sporothrix mexicana, a rare soil-borne species, non-pathogenic to humans. The ITS region serves as a primary barcode marker, while each one of the protein-coding loci easily recognized species boundaries providing sufficient information for species identification. A disseminated model of murine sporotrichosis revealed a mild-pathogenic potential, with lung invasion. Although S. chilensis is not a primary pathogen, accidental infection may have an impact in the immunosuppressed population. With the introduction of distinct species with similar routes of transmission but different virulence, identification of Sporothrix agents at the species level is mandatory. PMID:26781380

  19. Proposal to conserve the name Phomopsis citri H.S. Fawc. (Diaporthe citri), with a conserved type, against Phomopsis citri (Sacc.) Traverso & Spessa (Ascomycota, Diaporthales, Diaporthaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The name Diaporthe citri applies to a fungus that causes a disease on Citrus known as melanose or stem end rot of mature fruit after harvest and occurs widely in North America and Asia. Initially described as the illegitimate Phomopsis citri H.S. Fawc. 1912, non P. citri (Sacc.) Traverso & Spessa 19...

  20. Coalescent-Based Species Delimitation Approach Uncovers High Cryptic Diversity in the Cosmopolitan Lichen-Forming Fungal Genus Protoparmelia (Lecanorales, Ascomycota)

    PubMed Central

    Singh, Garima; Dal Grande, Francesco; Divakar, Pradeep K.; Otte, Jürgen; Leavitt, Steven D.; Szczepanska, Katarzyna; Crespo, Ana; Rico, Víctor J.; Aptroot, André; Cáceres, Marcela Eugenia da Silva; Lumbsch, H. Thorsten; Schmitt, Imke

    2015-01-01

    Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal -arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods – BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence. PMID:25932996

  1. Alloascoidea hylecoeti gen. nov., comb. nov., Alloascoidea africana comb. nov., Ascoidea tarda sp. nov. and Nadsonia starkeyi-henricii comb. nov., new members of the Saccharomycotina (Ascomycota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylogenetic analysis of concatenated nuclear gene sequences for large and small subunit rRNAs, translation elongation factor 1-a and the two large subunits of RNA polymerase II (RPB1, RPB2) demonstrated that species assigned to the yeast genus Ascoidea represent two separate and distantly related c...

  2. Not as Ubiquitous as We Thought: Taxonomic Crypsis, Hidden Diversity and Cryptic Speciation in the Cosmopolitan Fungus Thelonectria discophora (Nectriaceae, Hypocreales, Ascomycota)

    PubMed Central

    Salgado-Salazar, Catalina; Rossman, Amy Y.; Chaverri, Priscila

    2013-01-01

    The distribution of microbial species, including fungi, has long been considered cosmopolitan. Recently, this perception has been challenged by molecular studies in historical biogeography, phylogeny and population genetics. Here we explore this issue using the fungal morphological species Thelonectria discophora, one of the most common species of fungi in the family Nectriaceae, encountered in almost all geographic regions and considered as a cosmopolitan taxon. In order to determine if T. discophora is a single cosmopolitan species or an assemblage of sibling species, we conducted various phylogenetic analyses, including standard gene concatenation, Bayesian concordance methods, and coalescent-based species tree reconstruction on isolates collected from a wide geographic range. Results show that diversity among isolates referred as T. discophora is greatly underestimated and that it represents a species complex. Within this complex, sixteen distinct highly supported lineages were recovered, each of which has a restricted geographic distribution and ecology. The taxonomic status of isolates regarded as T. discophora is reconsidered, and the assumed cosmopolitan distribution of this species is rejected. We discuss how assumptions about geographically widespread species have implications regarding their taxonomy, true diversity, biological diversity conservation, and ecological functions. PMID:24204665

  3. Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA.

    PubMed

    Raja, Huzefa A; El-Elimat, Tamam; Oberlies, Nicholas H; Shearer, Carol A; Miller, Andrew N; Tanaka, Kazuaki; Hashimoto, Akira; Fournier, Jacques

    2015-01-01

    Minutisphaera is a recently established genus of freshwater Dothideomycetes characterized by small, globose to subglobose or apothecioid, erumpent to superficial, brown ascomata; fissitunicate, eight-spored, ovoid to obclavate asci; and 1-2-septate, clavate to broadly fusiform, hyaline to pale brown ascospores with or without a gelatinous sheath and filamentous appendages. The genus currently contains two species: M. fimbriatispora, the type species, and M. japonica. The higher-level phylogenetic relationship of Minutisphaera within the Dothideomycetes currently is unresolved. To establish the phylogenetic position of Minutisphaera within the Dothideomycetes and evaluate the phylogenetic affinities of newly collected Minutisphaera-like taxa, we sequenced three rDNA regions-18S, ITS1-5.8SITS2 (ITS) and 28S nuc rDNA, and a protein-coding gene, MCM7, for newly collected strains of Minutisphaera. Based on maximum likelihood and Bayesian analyses of a combined dataset (18S and 28S) composed of 167 taxa, a more refined dataset (28S and MCM7) comprising 52 taxa and a separate ITS dataset, and an examination of morphology, we describe and illustrate two new species of Minutisphaera. The Minutisphaera clade was strongly supported within the Dothideomycetes with likelihood and Bayesian statistics but did not share phylogenetic affinities with any existing taxonomic group within the Dothideomycetes. We therefore establish a new order, Minutisphaerales, and new family, Minutisphaeraceae, for this monophyletic clade of freshwater ascomycetes. Chemical analysis of the organic extract M. aspera (G427) resulted in isolation and characterization of five known secondary metabolites, of which four were dipeptides (1-4) and one an aromatic polyketide (5). Conversely, two aromatic polyketides (5, 6) were isolated and identified from the organic extract of M. parafimbriatispora (G156-4). The isolated compounds were tested for their antimicrobial activity against an array of bacteria and fungi. Compound 6 showed promising activity against Staphylococcus aureus and Mycobacterium smegmatis with minimal inhibitory concentration values of 30 and 60 μg/mL, respectively. PMID:26315030

  4. A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics

    PubMed Central

    Chaverri, P.; Liu, M.; Hodge, K.T.

    2008-01-01

    The present taxonomic revision deals with Neotropical species of three entomopathogenic genera that were once included in Hypocrella s. l.: Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia gen. nov (anamorph aschersonia-like). Species of Hypocrella, Moelleriella, and Samuelsia are pathogens of scale insects (Coccidae and Lecaniidae, Homoptera) and whiteflies (Aleyrodidae, Homoptera) and are common in tropical regions. Phylogenetic analyses of DNA sequences from nuclear ribosomal large subunit (28S), translation elongation factor 1-α (TEF 1-α), and RNA polymerase II subunit 1 (RPB1) and analyses of multiple morphological characters demonstrate that the three segregated genera can be distinguished by the disarticulation of the ascospores and shape and size of conidia. Moelleriella has filiform multi-septate ascospores that disarticulate at the septa within the ascus and aschersonia-like anamorphs with fusoid conidia. Hypocrella s. str. has filiform to long-fusiform ascospores that do not disarticulate and Aschersonia s. str. anamorphs with fusoid conidia. The new genus proposed here, Samuelsia, has filiform to long-fusiform ascospores that do not disarticulate and aschersonia-like anamorphs with small allantoid conidia. In addition, the present study presents and discusses the evolution of species, morphology, and ecology in Hypocrella, Moelleriella, and Samuelsia based on multigene phylogenetic analyses. PMID:18490956

  5. Catalogue of the Lichenized and Lichenicolous Fungi of Bosnia and Herzegovina

    PubMed Central

    Bilovitz, Peter O.; Mayrhofer, Helmut

    2011-01-01

    Summary The catalogue is based on a comprehensive evaluation of 152 published sources. It includes 624 species (with 4 subspecies and 13 varieties) of lichenized and 17 species of lichenicolous Ascomycota, as well as 9 non-lichenized Ascomycota traditionally included in lichenological literature. PMID:22121302

  6. Limited transmission of the ectoparasitic fungus Hesperomyces virescens between lady beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ectoparasitic fungus Hesperomyces virescens Thaxter (Ascomycota: Laboulbeniales) commonly infects the invasive lady beetle Harmonia axyridis (Pallas) and several other aphidophagous lady beetles in North America and Europe. We tested the hypothesis that bodily contact between adults of differen...

  7. PHYLOGENETICS OF SACCHAROMYCETALES, THE ASCOMYCETE YEASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts (Phylum Ascomycota: Subphylum Saccharomycotina: Class Saccharomycetes: Order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals, and their interfaces. A few s...

  8. Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study on the compatibility of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) with neem was conducted against sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on eggplant. Initially, three concentrations of B. bassiana (106, 1...

  9. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum.

    PubMed

    Landum, Miguel C; Félix, Maria do Rosário; Alho, Joana; Garcia, Raquel; Cabrita, Maria João; Rei, Fernando; Varanda, Carla M R

    2016-02-01

    Fungi naturally present in olive trees were identified and tested for their antagonistic potential against Colletotrichum acutatum. A total of 14 isolates were identified, 12 belonged to genera Alternaria, Epicoccum, Fusarium, Aspergillus, Anthrinium, Chaetomium, Diaporthe, Nigrospora, one to family Xylariaceae and one was unclassified. All fungal isolates showed some inhibitory action over the growth of C. acutatum during dual culture growth, however, when agar-diffusible tests were performed only five fungal isolates caused C. acutatum growth inhibition: Alternaria sp. isolate 2 (26.8%), the fungus from Xylariaceae family (14.3%), Alternaria sp. isolate 1 (10.7%); Diaporthe sp. (10.7%), Nigrospora oryzae (3.5%). Volatile substances produced by these isolates were identified through gas-chromatography techniques, as phenylethyl alcohol, 4-methylquinazoline, benzothiazole, benzyl alcohol, lilial, galaxolide, among others. These inhibitory volatiles could play a significant role in reduction of C. acutatum expansion in olive and their study as potential biocontrol agents should be further explored. PMID:26805623

  10. Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum.

    PubMed

    Surup, Frank; Kuhnert, Eric; Lehmann, Erik; Heitkmper, Simone; Hyde, Kevin D; Fournier, Jacques; Stadler, Marc

    2014-07-01

    During the course of a screening for novel anti-infective agents from cultures of tropical Xylariaceae originating from French Guiana and Thailand, pronounced antifungal activity was noted in extracts of cultures of Hypoxylon monticulosum. A bioassay-guided fractionation led to the known metabolite sporothriolide as active principle. In addition, three new derivatives of sporothriolide were isolated, for which we propose the trivial names sporothric acid, isosporothric acid and dihydroisosporothric acid. Their chemical structures were elucidated by high-resolution electrospray mass spectrometry in conjunction with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. From earlier studies on the biogenesis of the chemically similar canadensolides, we postulate that the new compounds were shunt products, rather than biogenetic precursors of sporothriolide. Interestingly, this compound class, as well as strong antifungal activities, was only observed in multiple cultures of H. monticulosum, but not in several hundreds of Hypoxylon cultures studied previously or concurrently. Therefore, sporothriolide production may constitute a species-specific feature with respect to Hypoxylon and the Xylariaceae, although the compound was previously reported from non-related fungal taxa. PMID:25379335

  11. Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum

    PubMed Central

    Surup, Frank; Kuhnert, Eric; Lehmann, Erik; Heitkmper, Simone; Hyde, Kevin D.; Fournier, Jacques; Stadler, Marc

    2014-01-01

    During the course of a screening for novel anti-infective agents from cultures of tropical Xylariaceae originating from French Guiana and Thailand, pronounced antifungal activity was noted in extracts of cultures of Hypoxylon monticulosum. A bioassay-guided fractionation led to the known metabolite sporothriolide as active principle. In addition, three new derivatives of sporothriolide were isolated, for which we propose the trivial names sporothric acid, isosporothric acid and dihydroisosporothric acid. Their chemical structures were elucidated by high-resolution electrospray mass spectrometry in conjunction with two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. From earlier studies on the biogenesis of the chemically similar canadensolides, we postulate that the new compounds were shunt products, rather than biogenetic precursors of sporothriolide. Interestingly, this compound class, as well as strong antifungal activities, was only observed in multiple cultures of H. monticulosum, but not in several hundreds of Hypoxylon cultures studied previously or concurrently. Therefore, sporothriolide production may constitute a species-specific feature with respect to Hypoxylon and the Xylariaceae, although the compound was previously reported from non-related fungal taxa. PMID:25379335

  12. Hypoxyvermelhotins A-C, new pigments from Hypoxylon lechatii sp. nov.

    PubMed

    Kuhnert, Eric; Heitkmper, Simone; Fournier, Jacques; Surup, Frank; Stadler, Marc

    2014-02-01

    A new species of Hypoxylon was discovered, based on material collected in French Guiana and recognised on the basis of new combination of morpholological characters in comparison with type and authentic material of macroscopically similar taxa. These findings were corroborated by the rather isolated positions of its ITS-nrDNA and beta-tubulin DNA sequences in molecular phylogenies. However, the most salient feature of this fungus only became evident by a comparison of its stromatal HPLC profile, revealing several secondary metabolites that were hitherto not observed in stromata of any other member of the Xylariaceae. Part of the stromata were subsequently extracted to isolate these apparently specific components, using preparative chromatography. Five metabolites were obtained in pure state, and their chemical structures were elucidated by means of high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. They turned out to be tetramic acid derivatives of the so-called vermelhotin type. Aside from vermelhotin, previously isolated from cultures of endophytic fungi, we identified three novel congeners, for which the trivial names hypoxyvermelhotins A-C were proposed. Like vermelhotin, they constitute orange-red pigments and a preliminary biological characterisation revealed them to have rather strong cytotoxic and moderate to weak antimicrobial effects. These results further illustrate the high diversity of unique secondary metabolites in stromata of the hypoxyloid Xylariaceae, a family in which biological diversity seems to parallel the chemical diversity of their bioactive principles to a great extent. PMID:24528645

  13. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Gran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  14. A survey of Daldinia species with large ascospores.

    PubMed

    Stadler, Marc; Laesse, Thomas; Simpson, Jack A; Wollweber, Hartmund

    2004-09-01

    Specimens of Daldinia (Xylariaceae) from around the world possessing large ascospores were studied for teleomorphic and anamorphic morphological characters and compared with authentic material of D. grandis. A culture made from a specimen of D. grandis collected from Ecuador produced stromatic structures, but no conidiogenous structures referable to known xylariaceous anamorphs were observed. D. grandis is reconsidered and viewed as a species of warmer climates in the Americas. Three new species are recognised from new combinations of anamorphic and teleomorphic characters: (1) D. novaezelandiae sp. nov. from New Zealand, a fungus obviously related to D. bakeri, which is also reported from that country; (2) D. dennisii sp. nov., from Australia and New Zealand, of which two varieties are erected; and (3) D. loculatoides sp. nov., from the UK and Canada with affinities to D. loculata. The type of Sphaeria durissima was identified as D. loculata. Notes on further Daldinia spp. are included. PMID:15506015

  15. Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest

    PubMed Central

    Sato, Hirotoshi; Tanabe, Akifumi S.; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  16. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  17. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disea...

  18. Saccharomycotina and Taphrinomycotina progress in circumscription of genera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much progress has been made in understanding relationships among the yeasts. DNA barcoding (D1/D2, ITS) has provided a rapid means for species identification and phylogenetic analysis of gene sequences has shown that the Ascomycota is comprised of three major lineages, i.e, Saccharomycotina (buddin...

  19. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Morel mushrooms (Morchella, phylum Ascomycota) are arguably the most widely recognized and highly prized of the estimated 1.5 million fungi that inhabit our planet. Although field guides treat these epicurean macrofungi as though the species have cosmopolitan distributions, this assumption has not b...

  20. Molecular Systematics of Entomopathogenic Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect parasitism has multiple and diverse origins within the Kingdom Fungi, with shifts to trophic specialization on insects having evolved one or more times in each of the four traditionally recognized phyla of fungi, the Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The rich legacy ...

  1. AN OVERVIEW OF MOLECULAR PHYLOGENY OF THE SORDARIOMYCETES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sordariomycetes is one of the largest classes in Ascomycota and the majority of its species are characterized by perithecial ascomata and unitunicate asci. It includes more than xxx genera with over 3,000 species and represents a wide of range of ecologies including pathogens and endophytes of p...

  2. What is Scirrhia?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ascomycete genus Scirrhia is presently treated as a member of the Dothideomycetidae, though uncertainty remains to which family it belongs in the Capnodiales within the Ascomycota. Recent collections on stems of a fern, Pteridium aquilinum (Dennstaedtiaceae) in Brazil, led to the discovery of a ...

  3. Draft Genome Sequence of the Fungus Penicillium brasilianum MG11

    PubMed Central

    Linde, Jörg; Mattern, Derek J.; Walther, Grit; Guthke, Reinhard; Brakhage, Axel A.

    2015-01-01

    The genus Penicillium belongs to the phylum Ascomycota and includes a variety of fungal species important for food and drug production. We report the draft genome sequence of Penicillium brasilianum MG11. This strain was isolated from soil, and it was reported to produce different secondary metabolites. PMID:26337871

  4. Revision of the Genus Corallomycetella with Corallonectria gen. nov. for C. jatrophae (Nectriaceae, Hypocreales)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Corallomycetella (Ascomycota, Sordariomycetes, Hypocreales, Nectriaceae) has been defined to include red nectrioid fungi associated with rhizomorphs in nature and culture. With the recent collection of an unusual specimen having striated ascospores, the genus was re-examined using this and...

  5. Cyberlindnera xylolytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the la...

  6. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  7. Glucosylation and other biotransformations of T-2 toxin by yeasts of the Trichomonascus clade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-five yeasts assigned to the Trichomonascus clade (Saccharomycotina, Ascomycota), including three Trichomonascus species and 22 anamorphic species presently classified in Blastobotrys, were tested for their ability to convert T-2 toxin, a Fusarium trichothecene mycotoxin, to less toxic product...

  8. CONSERVED REQUIREMENT FOR A PLANT HOST CELL PROTEIN IN POWDERY MILDEW PATHOGENESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the fungal phylum Ascomycota, the ability to cause disease in plants and animals was gained and lost repeatedly during phylogenesis. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete, Blumeria graminis f. sp. hordei, the causal agent of t...

  9. Full Genome of Phialocephala scopiformis DAOMC 229536, a Fungal Endophyte of Spruce Producing the Potent Anti-Insectan Compound Rugulosin.

    PubMed

    Walker, Allison K; Frasz, Samantha L; Seifert, Keith A; Miller, J David; Mondo, Stephen J; LaButti, Kurt; Lipzen, Anna; Dockter, Rhyan B; Kennedy, Megan C; Grigoriev, Igor V; Spatafora, Joseph W

    2016-01-01

    We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees. PMID:26950333

  10. Full Genome of Phialocephala scopiformis DAOMC 229536, a Fungal Endophyte of Spruce Producing the Potent Anti-Insectan Compound Rugulosin

    PubMed Central

    Frasz, Samantha L.; Seifert, Keith A.; Miller, J. David; Mondo, Stephen J.; LaButti, Kurt; Lipzen, Anna; Dockter, Rhyan B.; Kennedy, Megan C.; Grigoriev, Igor V.; Spatafora, Joseph W.

    2016-01-01

    We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees. PMID:26950333

  11. Draft Genome Sequence of the Fungus Penicillium brasilianum MG11.

    PubMed

    Horn, Fabian; Linde, Jrg; Mattern, Derek J; Walther, Grit; Guthke, Reinhard; Brakhage, Axel A; Valiante, Vito

    2015-01-01

    The genus Penicillium belongs to the phylum Ascomycota and includes a variety of fungal species important for food and drug production. We report the draft genome sequence of Penicillium brasilianum MG11. This strain was isolated from soil, and it was reported to produce different secondary metabolites. PMID:26337871

  12. Microsatellite loci for the fungus, Ascosphaera apis, cause of honey bee chalkbrood disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Ascosphaera apis (Ascomycota:Ascosphaeriaceae) is a worldwide fungal pathogen of honey bees. To provide tools for understanding the dispersal history of this pathogen, strain differences in virulence, and host-pathogen interactions, we developed and tested microsatellite loci for this sp...

  13. THE FUNGI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An up-to-date synthesis of molecular evolutionary relationships within the kingdom Fungi is presented. Key characteristics and life histories of the four phyla of Fungi are covered at an introductory level. Generalized life cycles and key morphological characters are illustrated for the Ascomycota...

  14. HYPOCREA RUFA/TRICHODERMA VIRIDE: A REASSESSMENT, AND DESCRIPTION OF THREE CLOSELY RELATED SPECIES WITH AND WITHOUT WARTED CONIDIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1' g...

  15. Fungal endophyte diversity in Sarracenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  16. Trypsin-like Proteins of the Fungi as Possible Markers of Phytopathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequences of peptidases with conserved motifs around the active site residues that are characteristic of trypsins (similar to trypsin peptidases, STP) were obtained from publicly available fungal genomes and related databases. Among the 74 fungal genomes, 30 species of parasitic Ascomycota contained...

  17. Recommendations of generic names in Diaporthales competing for protection or use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In advancing to one name for fungi, this paper treats generic names competing for use in the order Diaporthales (Ascomycota, Sordariomycetes) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexua...

  18. Tubakia seoraksanensis sp. nov., a new species from Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An unknown species of Tubakia (Diaporthales, Ascomycota) was collected recently from Quercus mongolica on Seoraksan Mountain, GangWon province in Korea. It was characterized with cultural, ITS region sequence, and morphologial data. After comparison with known species of Tubakia, this species is des...

  19. Population genetics of Eutypa lata in the major grape-growing regions of the world and historical patterns of viticulture.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The causal agent of Eutypa dieback of grape, Eutypa lata (Ascomycota), is a destructive disease worldwide. The pathogen has a broad host range, but causes severe symptoms on only a few cultivated hosts (e.g., apricot & grape). To decipher its cosmopolitan distribution, we examined the population gen...

  20. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of Trichoderma (teleomorph Hypocrea, Ascomycota, Sordariomycetes, Hypocreales, Hypocreaceae), T. amazonicum, endophytic on the living sapwood and leaves of Hevea spp. trees is described. Trichoderma amazonicum is distinguished from closely related species in the Harzianum clade (e.g. ...

  1. Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal phylum Ascomycota comprises a large proportion of species with no known sexual stage, despite high genetic variability in field populations. One such asexual species, Aspergillus parasiticus, is a potent producer of carcinogenic and hepatotoxic aflatoxins, polyketide-derived secondary me...

  2. Fungi associated with rocks of the Atacama Desert: Taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed the diversity of fungi living in rocks from different altitudes in the Atacama Desert, Chile. Eighty-one fungal isolates obtained were identified as 21 species of 12 genera from Ascomycota using molecular techniques. Cladosporium halotolerans, Penicillium chrysogenum and Penicill...

  3. Causes and Consequences of Genome Expansion in Fungi

    PubMed Central

    Kelkar, Yogeshwar D.; Ochman, Howard

    2012-01-01

    Fungi display a large diversity in genome size and complexity, variation that is often considered to be adaptive. But because nonadaptive processes can also have important consequences on the features of genomes, we investigated the relationship of genetic drift and genome size in the phylum Ascomycota using multiple indicators of genetic drift. We detected a complex relationship between genetic drift and genome size in fungi: genetic drift is associated with genome expansion on broad evolutionary timescales, as hypothesized for other eukaryotes; but within subphyla over smaller timescales, the opposite trend is observed. Moreover, fungi and bacteria display similar patterns of genome degradation that are associated with initial effects of genetic drift. We conclude that changes in genome size within Ascomycota have occurred using two different routes: large-scale genome expansions are catalyzed by increasing drift as predicted by the mutation-hazard model of genome evolution and small-scale modifications in genome size are independent of drift. PMID:22117086

  4. Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes).

    PubMed

    Spatafora, Joseph W; Owensby, C Alisha; Douhan, Greg W; Boehm, Eric W A; Schoch, Conrad L

    2012-01-01

    Cenococcum is a genus of ectomycorrhizal Ascomycota that has a broad host range and geographic distribution. It is not known to produce either meiotic or mitotic spores and is known to exist only in the form of hyphae, sclerotia and host-colonized ectomycorrhizal root tips. Due to its lack of sexual and asexual spores and reproductive structures, it has proven difficult to incorporate into traditional classification within Ascomycota. Molecular phylogenetic studies of ribosomal RNA placed Cenococcum in Dothideomycetes, but the definitive identification of closely related taxa remained elusive. Here we report a phylogenetic analysis of five nuclear loci (SSU, LSU, TEF1, RPB1, RPB2) of Dothideomycetes that placed Cenococcum as a close relative of the genus Glonium of Gloniaceae (Pleosporomycetidae incertae sedis) with strong statistical support. Glonium is a genus of saprobic Dothideomycetes that produces darkly pigmented, carbonaceous, hysteriate apothecia and is not known to be biotrophic. Evolution of ectomycorhizae, Cenococcum and Dothideomycetes is discussed. PMID:22453119

  5. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi.

    PubMed

    Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B

    2016-04-01

    Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. PMID:26899925

  6. Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments

    PubMed Central

    Rittenour, William R.; Ciaccio, Christina E.; Barnes, Charles S.; Kashon, Michael L.; Lemons, Angela R.; Beezhold, Donald H.; Green, Brett J.

    2014-01-01

    Compared to traditional methods of fungal exposure assessment, molecular methods have provided new insight into the richness of fungal communities present in both indoor and outdoor environments. In this study, we describe the diversity of fungi in the homes of asthmatic children located in Kansas City. Fungal diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA derived from fungi collected in air and dust samples from 31 homes participating in the Kansas City Safe and Healthy Homes Program (KCSHHP). Sequencing results were then compared to data obtained using viable and non-viable fungal exposure assessment methods. ITS clone libraries were predominantly derived from the phylum Ascomycota in both air (68%) and dust (92%) samples and followed by the Basidiomycota and Zygomycota. The majority of Ascomycota clones belonged to four orders including the Pleosporales, Eurotiales, Capnodiales, and Dothideales. ITS sequencing revealed the presence of a number of rarely documented fungal species placed in the Pleosporales. Several species placed in the Basidiomycota were detected in ITS clone libraries but not by viable or non-viable methods. The prevalence of organizational taxonomic units (OTUs) was significantly higher in air than in dust samples (p < 0.0001); however, no differences between OTUs in air samples collected in the subjects’ room and basement were observed. These sequencing results demonstrate a much broader diversity of Ascomycota and Basidiomycota communities in KCSHHP indoor environments than previously estimated using traditional methods of assessment. PMID:24258337

  7. A cerato-platanin-like protein HaCPL2 from Heterobasidion annosum sensu stricto induces cell death in Nicotiana tabacum and Pinus sylvestris.

    PubMed

    Chen, Hongxin; Quintana, Julia; Kovalchuk, Andriy; Ubhayasekera, Wimal; Asiegbu, Fred O

    2015-11-01

    The cerato-platanin family is a group of small secreted cysteine-rich proteins exclusive for filamentous fungi. They have been shown to be involved in the interactions between fungi and plants. Functional characterization of members from this family has been performed mainly in Ascomycota, except Moniliophthora perniciosa. Our previous phylogenetic analysis revealed that recent gene duplication of cerato-platanins has occurred in Basidiomycota but not in Ascomycota, suggesting higher functional diversification of this protein family in Basidiomycota than in Ascomycota. In this study, we identified three cerato-platanin homologues from the basidiomycete conifer pathogen Heterobasidion annosum sensu stricto. Expression of the homologues under various conditions as well as their roles in the H. annosum s.s.-Pinus sylvestris (Scots pine) pathosystem was investigated. Results showed that HaCPL2 (cerato-platanin-like protein 2) had the highest sequence similarity to cerato-platanin from Ceratocystis platani and hacpl2 was significantly induced during nutrient starvation and necrotrophic growth. The treatment with recombinant HaCPL2 induced cell death, phytoalexin production and defense gene expression in Nicotiana tabacum. Eliciting and cell death-inducing ability accompanied by retardation of apical root growth was also demonstrated in Scots pine seedlings. Our results suggest that HaCPL2 might contribute to the virulence of H. annosum s.s. by promoting plant cell death. PMID:26385823

  8. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    PubMed Central

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  9. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases.

    PubMed

    Shaw, Jeffrey J; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J; Dunican, Brian F; Portero, Carolina E; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-03-27

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  10. Diversity and Taxonomy of Endophytic Xylariaceous Fungi from Medicinal Plants of Dendrobium (Orchidaceae)

    PubMed Central

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery. PMID:23472167

  11. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation.

    PubMed

    Huang, Xinqi; Liu, Liangliang; Wen, Teng; Zhu, Rui; Zhang, Jinbo; Cai, Zucong

    2015-12-01

    Although reductive soil disinfestation (RSD) is increasingly used for the control of soil-borne diseases, its impact on the soil microbial community during and after RSD remains poorly understood. MiSeq pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis were performed to investigate the changes of microbial community in the Fusarium oxysporum f. sp. cubense (FOC) infected soil during RSD and at the simulative banana cultivation after RSD. The results showed that RSD significantly increased soil microbial populations and a different microbial community with the pathogenic soil was established after RSD. Specifically, the number of Firmicutes mainly containing Ruminococcus and Coprococcus followed by a small part of Clostridium which were the dominant bacterial genera significantly increased during RSD. In contrast, Symbiobacterium and Flavisolibacter were the dominant genera in the flooding soil. When the soils were recovered under aerobic condition, the relative abundances of the bacteria belonging to the phylum Bacteroidetes, Acidobacteria, Planctomycetes increased as alternatives to the reducing Firmicutes. For fungi, the population of F. oxysporum significantly decreased during RSD accompanied with the pH decline, which resulted in the significant decrease of relative abundance in the phylum Ascomycota. Alternatively, the relative abundances of some other fungal species increased, such as Chaetomium spp. and Penicillium spp. belonging to Ascomycota and the family Clavulinaceae belonging to Basidiomycota. Then, the relative abundance of Ascomycota re-increased after RSD with Podospora and Zopfiella as dominant genera, whereas the relative abundance of Fusarium further decreased. Overall, the microbial populations and community re-established by RSD made the soil more disease-suppressive and beneficial to the soil nutrient cycling and plant growth compared with the previous pathogenic soil. PMID:26640050

  12. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits.

    PubMed

    Lutzoni, Franois; Kauff, Frank; Cox, Cymon J; McLaughlin, David; Celio, Gail; Dentinger, Bryn; Padamsee, Mahajabeen; Hibbett, David; James, Timothy Y; Baloch, Elisabeth; Grube, Martin; Reeb, Valrie; Hofstetter, Valrie; Schoch, Conrad; Arnold, A Elizabeth; Miadlikowska, Jolanta; Spatafora, Joseph; Johnson, Desiree; Hambleton, Sarah; Crockett, Michael; Shoemaker, Robert; Sung, Gi-Ho; Lcking, Robert; Lumbsch, Thorsten; O'Donnell, Kerry; Binder, Manfred; Diederich, Paul; Ertz, Damien; Gueidan, Ccile; Hansen, Karen; Harris, Richard C; Hosaka, Kentaro; Lim, Young-Woon; Matheny, Brandon; Nishida, Hiromi; Pfister, Don; Rogers, Jack; Rossman, Amy; Schmitt, Imke; Sipman, Harrie; Stone, Jeffrey; Sugiyama, Junta; Yahr, Rebecca; Vilgalys, Rytas

    2004-10-01

    Based on an overview of progress in molecular systematics of the true fungi (Fungi/Eumycota) since 1990, little overlap was found among single-locus data matrices, which explains why no large-scale multilocus phylogenetic analysis had been undertaken to reveal deep relationships among fungi. As part of the project "Assembling the Fungal Tree of Life" (AFTOL), results of four Bayesian analyses are reported with complementary bootstrap assessment of phylogenetic confidence based on (1) a combined two-locus data set (nucSSU and nucLSU rDNA) with 558 species representing all traditionally recognized fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Zygomycota) and the Glomeromycota, (2) a combined three-locus data set (nucSSU, nucLSU, and mitSSU rDNA) with 236 species, (3) a combined three-locus data set (nucSSU, nucLSU rDNA, and RPB2) with 157 species, and (4) a combined four-locus data set (nucSSU, nucLSU, mitSSU rDNA, and RPB2) with 103 species. Because of the lack of complementarity among single-locus data sets, the last three analyses included only members of the Ascomycota and Basidiomycota. The four-locus analysis resolved multiple deep relationships within the Ascomycota and Basidiomycota that were not revealed previously or that received only weak support in previous studies. The impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed. Based on these results and reanalysis of subcellular data, current knowledge of the evolution of septal features of fungal hyphae is synthesized, and a preliminary reassessment of ascomal evolution is presented. Based on previously unpublished data and sequences from GenBank, this study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi. PMID:21652303

  13. Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi

    PubMed Central

    Shine, Alaina M; Shakya, Viplendra PS; Idnurm, Alexander

    2015-01-01

    Background Phytochelatin synthase (PCS) is an enzyme that catalyzes the biosynthesis of phytochelatin from glutathione. Phytochelatins protect cells against the toxic effects of non-essential heavy metals, such as cadmium, and hence growth is restricted in the presence of these metals in mutants in PCS-encoding genes. PCS genes from fungi have been characterized in only two species in the Ascomycota, and these genes are considered sparsely distributed in the fungal kingdom. Results A gene encoding a putative PCS was identified in Sporobolomyces sp. strain IAM 13481, a fungus that is a member of the Pucciniomycotina subphylum of the Basidiomycota. The function of this PCS1 gene was assessed by heterologous expression in the Ascomycota yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and by mutating the gene in Sporobolomyces. The gene is required for tolerance to toxic concentrations of non-essential cadmium as well as the essential metal copper. Pcs1 homologs in fungi and other eukaryotes have putative targeting sequences for mitochondrial localization: the S. pombe homolog was fused to green fluorescent protein and it co-localized with a mitochondrial dye. Evaluation of the presence or absence of PCS and PCS-like homologs in the genome sequences of fungi indicates that they have a wide distribution, and the absence in most Ascomycota and Basidiomycota (the Dikarya) species can be explained by a small number of gene losses. Conclusions The ecology of the species within the fungi carrying putative PCS genes, the phenotypes of phytochelatin synthase mutants in two major fungal lineages, and the presence of homologs in many non-Dikarya lineages parallel what is seen in the plant and animal kingdoms. That is, PCS is a protein present early during the evolution of the fungi and whose role is not solely dedicated to combating toxic concentrations of non-essential metals. PMID:25926993

  14. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens.

    PubMed

    Posada, Francisco J; Vega, Fernando E

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  15. The fungal microbiota of de-novo paediatric inflammatory bowel disease.

    PubMed

    Mukhopadhya, I; Hansen, R; Meharg, C; Thomson, J M; Russell, R K; Berry, S H; El-Omar, E M; Hold, G L

    2015-04-01

    Inflammatory bowel disease (IBD) is characterised by an inappropriate chronic immune response against resident gut microbes. This may be on account of distinct changes in the gut microbiota termed as dysbiosis. The role of fungi in this altered luminal environment has been scarcely reported. We studied the fungal microbiome in de-novo paediatric IBD patients utilising next generation sequencing and compared with adult disease and normal controls. We report a distinct difference in fungal species with Ascomycota predominating in control subjects compared to Basidiomycota dominance in children with IBD, which could be as a result of altered tolerance in these patients. PMID:25522934

  16. Glomalean fungi from the Ordovician.

    PubMed

    Redecker, D; Kodner, R; Graham, L E

    2000-09-15

    Fossilized fungal hyphae and spores from the Ordovician of Wisconsin (with an age of about 460 million years) strongly resemble modern arbuscular mycorrhizal fungi (Glomales, Zygomycetes). These fossils indicate that Glomales-like fungi were present at a time when the land flora most likely only consisted of plants on the bryophytic level. Thus, these fungi may have played a crucial role in facilitating the colonization of land by plants, and the fossils support molecular estimates of fungal phylogeny that place the origin of the major groups of terrestrial fungi (Ascomycota, Basidiomycota, and Glomales) around 600 million years ago. PMID:10988069

  17. A new method to evaluate the biocontrol potential of single spore isolates of fungal entomopathogens

    PubMed Central

    Posada, Francisco J.; Vega, Fernando E.

    2005-01-01

    Fifty Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains isolated from the coffee berry borer were used to develop a novel screening method aimed at selecting strains with the highest biocontrol potential. The screening method is based on percent insect mortality, average survival time, mortality distribution, percent spore germination, fungal life cycle duration, and spore production on the insect. Based on these parameters, only 11 strains merited further study. The use of a sound scientific protocol for the selection of promising fungal entomopathogens should lead to more efficient use of time, labor, and financial resources in biological control programs. PMID:17119619

  18. Laboulbeniales on millipedes: the genera Diplopodomyces and Troglomyces.

    PubMed

    Santamaria, Sergi; Enghoff, Henrik; Reboleira, Ana Sofia P S

    2014-01-01

    The genera Diplopodomyces and Troglomyces (Laboulbeniales, Ascomycota) parasitizing millipedes (Diplopoda) are reviewed. We describe four new species: D. lusitanipodos parasitic on Lusitanipus from Portugal and on Cyphocallipus from Spain, D. veneris on Lusitanipus from Portugal, T. botryandrus on Leptoiulus from Italy and T. rossii on Ophyiulus, Leptoiulus and Typhloiulus from Italy. Diplopodomyces veneris is a dimorphic species, with different morphotypes growing on the male copulatory organs and on the surroundings of the female gonopore respectively. The type species of both genera also have been studied, their descriptions are revised and a neotype for T. manfrediae is designated. New records from Italy are given for D. callipodos and T. manfrediae. PMID:24987128

  19. The fungal microbiota of de-novo paediatric inflammatory bowel disease

    PubMed Central

    Mukhopadhya, I.; Hansen, R.; Meharg, C.; Thomson, J.M.; Russell, R.K.; Berry, S.H.; El-Omar, E.M.; Hold, G.L.

    2015-01-01

    Inflammatory bowel disease (IBD) is characterised by an inappropriate chronic immune response against resident gut microbes. This may be on account of distinct changes in the gut microbiota termed as dysbiosis. The role of fungi in this altered luminal environment has been scarcely reported. We studied the fungal microbiome in de-novo paediatric IBD patients utilising next generation sequencing and compared with adult disease and normal controls. We report a distinct difference in fungal species with Ascomycota predominating in control subjects compared to Basidiomycota dominance in children with IBD, which could be as a result of altered tolerance in these patients. PMID:25522934

  20. Fungal diversity, biogeography, and new species of ice nucleating fungi in air

    NASA Astrophysics Data System (ADS)

    Frhlich-Nowoisky, Janine; Pschl, Ulrich

    2013-05-01

    Fungal spores account for a substantial portion of air particulate matter. So far, however, the abundance, diversity, sources, properties, and effects of fungi in the atmosphere have not been well characterized. Here we summarize the results of a series of studies combining DNA-sequence analyses, cultivation and freezing experiments. A one-year study in central Europe showed high species richness and pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter. Investigations of continental and marine air samples revealed global biogeographic patterns in the species richness of Basidiomycota and Ascomycota and new species of ice nucleation active fungi were found.

  1. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes

    PubMed Central

    Liu, Yajuan J; Hodson, Matthew C; Hall, Benjamin D

    2006-01-01

    Background At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Results Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1) Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4) Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups. Conclusion In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the widely accepted morphology-based classification of Fungi. We find that, contrary to what has been published elsewhere, the four morphologically defined phyla (Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota) do not overlap with one another. Microsporidia are not included within kingdom Fungi; rather they are a sister-group to the Fungi. Our study demonstrates the applicability of protein sequences from large, slowly-evolving genes to the derivation of well-resolved and highly supported phylogenies across long evolutionary distances. PMID:17010206

  2. Fluid mechanical responses to nutrient depletion in fungi and biofilmsa)

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.

    2014-10-01

    In both fungi and bacterial biofilms, when nutrients are depleted, the organisms cannot physically migrate to find a new source, but instead must develop adaptations that allow them to survive. This paper reviews our work attempting to discover design principles for these adaptations. We develop fluid mechanical models, and aim to understand whether these suggest organizing principles for the observed morphological diversity. Determining whether a proposed organizing principle explains extant biological designs is fraught with difficulty: simply because a design principle predicts characteristics similar to an organism's morphology could just as well be accidental as revealing. In each of the two sets of examples, we adopt different strategies to develop understanding in spite of this difficulty. Within the fungal phylum Ascomycota, we use the large observed diversity of different morphological solutions to the fundamental fluid mechanical problem to measure how far each solution is from a design optimum, thereby measuring how far the extant designs deviate from the hypothesized optimum. This allows comparing different design principles to each other. For biofilms, we use engineering principles to make qualitative predictions of what types of adaptations might exist given the physicochemical properties of the repertoire of proteins that bacteria can create, and then find evidence for these adaptations in experiments. While on the surface this paper addresses the particular adaptations used by the fungal phylum Ascomycota and bacterial biofilms, we also aim to motivate discussion of different approaches to using design principles, fluid mechanical or otherwise, to rationalize observed engineering solutions in biology.

  3. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Womack, A. M.; Artaxo, P. E.; Ishida, F. Y.; Mueller, R. C.; Saleska, S. R.; Wiedemann, K. T.; Bohannan, B. J. M.; Green, J. L.

    2015-11-01

    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughput DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  4. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    PubMed Central

    Lindner, Daniel L; Carlsen, Tor; Henrik Nilsson, R; Davey, Marie; Schumacher, Trond; Kauserud, Hvard

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular investigations of environmental samples. In this study 454 amplicon pyrosequencing of the ITS1 region was applied to 99 phylogenetically diverse axenic single-spore cultures of fungi (Dikarya: Ascomycota and Basidiomycota) to investigate levels of intragenomic variation. Three species (one Basidiomycota and two Ascomycota), in addition to a positive control species known to contain ITS paralogs, displayed levels of molecular variation indicative of intragenomic variation; taxon inflation due to presumed intragenomic variation was ?9%. Intragenomic variability in the ITS region appears to be widespread but relatively rare in fungi (?35% of species investigated in this study), suggesting this problem may have minor impacts on species richness estimates relative to PCR and/or pyrosequencing errors. Our results indicate that 454 amplicon pyrosequencing represents a powerful tool for investigating levels of ITS intragenomic variability across taxa, which may be valuable for better understanding the fundamental mechanisms underlying concerted evolution of repetitive DNA regions. PMID:23789083

  5. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  6. Human Fungal Pathogens of Mucorales and Entomophthorales.

    PubMed

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2015-04-01

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. PMID:25377138

  7. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    PubMed

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas. PMID:26020967

  8. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. PMID:24463013

  9. Activity of the novel fungicide SYP-Z048 against plant pathogens

    PubMed Central

    Chen, Fengping; Han, Ping; Liu, Pengfei; Si, Naiguo; Liu, Junli; Liu, Xili

    2014-01-01

    In in vitro tests with 18 plant pathogens, the fungicide 3-[5-(4-chlorophenyl)-2,3-dimethyl-3-isoxazolidinyl] pyridine (SYP-Z048) was highly effective on inhibiting mycelial growth of various ascomycota and basidiomycota, with EC50 values ranging from 0.008 to 1.140 μg/ml. SYP-Z048 had much weaker activity against growth of oomycota with EC50 values > 100 μg/ml. In a second in vitro test with Monilinia fructicola isolates, SYP-Z048 inhibited mycelial growth (EC50 = 0.013 μg/ml), germ tube elongation (EC50 = 0.007 μg/ml), and sporulation but did not affect spore germination. In a detached pear fruit assay inoculated with M. fructicola isolates, SYP-Z048 showed protective and curative activity. Field tests indicated that SYP-Z048 was an efficacious fungicide for control of brown rot disease in two peach orchards. When applied to a single spot on a tomato leaflet in a compound leaf, SYP-Z048 suppressed the growth of Botrytis cinerea isolates on the rest 4 leaflets, indicating that the fungicide has systemic movement in plant tissues. These results indicate that SYP-Z048 has potential for management of brown rot causing by M. fructicola and other diseases caused by ascomycota and basidiomycota. PMID:25253681

  10. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    PubMed

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. PMID:25433564

  11. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic) : Aquatic Fungi in the Arctic.

    PubMed

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem. PMID:26492897

  12. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  13. Traversing the fungal terpenome

    PubMed Central

    Quin, Maureen B.; Flynn, Christopher M.; Schmidt-Dannert, Claudia

    2014-01-01

    Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids. PMID:25171145

  14. Expanding the cyanuric acid hydrolase protein family to the fungal kingdom.

    PubMed

    Dodge, Anthony G; Preiner, Chelsea S; Wackett, Lawrence P

    2013-12-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by (13)C nuclear magnetic resonance ((13)C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  15. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominant new branch to the fungal tree of life

    SciTech Connect

    Porter, Terri M.; Schadt, Christopher Warren; Rizvi, L; Martin, Andrew P.; Schmidt, Steven K.; Scott-Denton, Laura; Vilgalys, Rytas; Moncalvo, Jean-Marc

    2008-01-01

    Fungi are one of the most diverse groups of Eukarya and play essential roles in terrestrial ecosystems as decomposers, pathogens and mutualists. This study unifies disparate reports of unclassified fungal sequences from soils of diverse origins and anchors many of them in a well-supported clade of the Ascomycota equivalent to a subphylum. We refer to this clade as Soil Clone Group I (SCGI). We expand the breadth of environments surveyed and develop a taxon-specific primer to amplify 2.4 kbp rDNA fragments directly from soil. Our results also expand the known range of this group from North America to Europe and Australia. The ancient origin of SCGI implies that it may represent an important transitional form among the basal Ascomycota groups. SCGI is unusual because it currently represents the only major fungal lineage known only from sequence data. This is an important contribution towards building a more complete fungal phylogeny and highlights the need for further work to determine the function and biology of SCGI taxa.

  16. Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf.

    PubMed

    Kuramae, Eiko E; Hillekens, Remy H E; de Hollander, Mattias; van der Heijden, Marcel G A; van den Berg, Marlies; van Straalen, Nico M; Kowalchuk, George A

    2013-06-01

    Soil fungi are key players in the degradation of recalcitrant organic matter in terrestrial ecosystems. To examine the organisms and genes responsible for complex organic matter degradation in soil, we tracked changes in fungal community composition and expressed genes in soil adjacent to mesh bags containing maize leaves undergoing decomposition. Using high-throughput sequencing approaches, changes in fungal community composition were determined by targeting 18S rRNA gene sequences, whereas community gene expression was examined via a metatranscriptomic approach. The majority of the 93000 partial 18S rRNA gene sequences generated, were affiliated with the Ascomycota and Basidiomycota. Fungal diversity was at least 224 operational taxonomic units at the 97% similarity cutoff level. During litter degradation, the relative proportion of Basidiomycota increased, with a decrease in Ascomycota:Basidiomycota ratios over time. The most commonly detected decomposition-associated fungi included Agaricomycetes and Tremellales as well as unclassified Mucoromycotina. The majority of protein families found in the metatranscriptomic data were affiliated to fungal groups described to degrade plant-derived cellulose, such as Mucoraceae, Chaetomiaceae, Sordariaceae, Sebacinaceae, Tremellaceae, Psathyrellaceae and Schizophyllaceae. The combination of high-throughput rRNA gene-based and metatranscriptomic approaches provided perspectives into the organisms and genes involved in complex organic matter in soil. PMID:23360493

  17. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing

    PubMed Central

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas. PMID:26020967

  18. Watershed-Scale Fungal Community Characterization along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate

    PubMed Central

    Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927

  19. Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau

    PubMed Central

    Kaasalainen, Ulla; Heinrichs, Jochen; Krings, Michael; Myllys, Leena; Grabenhorst, Heinrich; Rikkinen, Jouko; Schmidt, Alexander R.

    2015-01-01

    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon. PMID:26053106

  20. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis.

    PubMed

    Hirose, Dai; Matsuoka, Shunsuke; Osono, Takashi

    2013-01-01

    Fungal assemblages in live, newly shed and partly decomposed leaves of Camellia japonica were investigated with a clone library analysis to assess the fungal diversity and succession in a subtropical forest in southern Japan. Partly decomposed leaves were divided into bleached and adjacent nonbleached portions to estimate the fungi functionally associated with lignin decomposition in the bleached portions, with an emphasis on Coccomyces sinensis (Rhytismataceae, Ascomycota). From 144 cloned 28S ribosomal DNA (rDNA) sequences, 48 operational taxonomic units (OTUs) were defined based on a sequence similarity threshold of 98%. Forty-one (85%) of the 48 OTUs belonged to the Ascomycota and seven OTUs (15%) to the Basidiomycota. Twenty-six OTUs (54%) were detected only once (singletons). The number of OTUs and the diversity indices of the fungal assemblages in the different leaves were in this order: live leaves > newly shed leaves > bleached portions > nonbleached portions of partly decomposed leaves. The fungal assemblages were similar in newly shed leaves and the bleached portions of partly decomposed leaves. Ligninolytic fungi of the genera Coccomyces, Lophodermium and Xylaria were frequently detected in the bleached portions. OTU3, identified as Coccomyces sinensis, was detected in live and newly shed leaves and the bleached portions of partly decomposed leaves, suggesting that this fungus latently infects live leaves, persists after leaf fall and takes part in lignin decomposition. PMID:23709486

  1. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  2. Phylogenetic relationships and convergence of helicosporous fungi inferred from ribosomal DNA sequences.

    PubMed

    Tsui, C K M; Berbee, M L

    2006-06-01

    Helicosporous fungi form elegant, coiled, and multicellular mitotic spores (conidia). In this paper, we investigate the phylogenetic relationships among helicosporous fungi in the asexual genera Helicoma, Helicomyces, Helicosporium, Helicodendron, Helicoon, and in the sexual genus Tubeufia (Tubeufiaceae, Dothideomycetes, and Ascomycota). We generated ribosomal small subunit and partial large subunit sequences from 39 fungal cultures. These and related sequences from GenBank were analyzed using parsimony, likelihood, and Bayesian analysis. Results showed that helicosporous species arose convergently from six lineages of fungi in the Ascomycota. The Tubeufiaceae s. str. formed a strongly supported monophyletic lineage comprising most species from Helicoma, Helicomyces, and Helicosporium. However, within the Tubeufiaceae, none of the asexual genera were monophyletic. Traditional generic characters, such as whether conidiophores were conspicuous or reduced, the thickness of the conidial filament, and whether or not conidia were hygroscopic, were more useful for species delimitation than for predicting higher level relationships. In spite of their distinctive, barrel-shaped spores, Helicoon species were polyphyletic and had evolved in different ascomycete orders. Helicodendron appeared to be polyphyletic although most representatives occurred within Leotiomycetes. We speculate that some of the convergent spore forms may represent adaptation to dispersal in aquatic environments. PMID:16529956

  3. Fungal communities in soils along a vegetative ecotone.

    PubMed

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities. PMID:22802393

  4. Fungal diversity from various marine habitats deduced through culture-independent studies.

    PubMed

    Manohar, Cathrine Sumathi; Raghukumar, Chandralata

    2013-04-01

    Studies on the molecular diversity of the micro-eukaryotic community have shown that fungi occupy a central position in a large number of marine habitats. Environmental surveys using molecular tools have shown the presence of fungi from a large number of marine habitats such as deep-sea habitats, pelagic waters, coastal regions, hydrothermal vent ecosystem, anoxic habitats, and ice-cold regions. This is of interest to a variety of research disciplines like ecology, evolution, biogeochemistry, and biotechnology. In this review, we have summarized how molecular tools have helped to broaden our understanding of the fungal diversity in various marine habitats. Majority of the environmental phylotypes could be grouped as novel clades within Ascomycota, Basidiomycota, and Chytridiomycota or as basal fungal lineages. Deep-branching novel environmental clusters could be grouped within Ascomycota as the Pezizomycotina clone group, deep-sea fungal group-I, and soil clone group-I, within Basidiomycota as the hydrothermal and/or anaerobic fungal group, and within Chytridiomycota as Cryptomycota or the Rozella clade. However, a basal true marine environmental cluster is still to be identified as most of the clusters include representatives from terrestrial regions. The challenge for future research is to explore the true marine fungi using molecular techniques. PMID:23363246

  5. Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato.

    PubMed

    Corcuff, Ronan; Mercier, Julien; Tweddell, Russell; Arul, Joseph

    2011-03-01

    Muscodor albus (Xylariaceae, Ascomycetes) isolate CZ-620 produces antimicrobial volatile organiccompounds (VOC), which appear to have potential for the control of various postharvest diseases. The effect of water activity (Aw) on the production of VOC by M. albus culture, and their inhibitory effects on the growth of three pathogens of potato tuber (Fusarium sambucinum, Helminthosporium solani, and Pectobacterium atrosepticum) and the development of diseases caused by the three pathogens (dry rot, silver scurf, and bacterial soft rot, respectively)were investigated. Rye grain culture of the fungus produced six alcohols, three aldehydes, five acids or esters, and two terpenoids. The most abundant VOC were: isobutyric acid; bulnesene, a sesquiterpene; an unidentified terpene; 2 and 3-methyl-1-butanol; and ethanol. However, the level of each of those VOC varied with Aw of the culture. Emission activityoccurred mainly at Aw above 0.75 and high emission of most VOC occurred only at Aw above 0.90. The aldehydes (2-methyl-propanal and 3-methyl-butanal) were the only VOC produced in quantities below an Aw of 0.90. An Aw value of 0.96 favored maximum emission of acids, esters, and terpenoids. There was a higher production of alcohols and a decrease in aldehydes with increase in Aw. Isobutyric acid, which has been the main M.albus VOC monitored in previous studies as an indicator of antifungal activity, had a rather narrow optimum, peaking at Aw of 0.96 and declining sharply above 0.98. Results showed that substrate Aw affects the production dynamics of each group of VOC by the fungus, and suggest that VOC production can be prolonged by maintaining M. albus culture at a constant optimum Aw. The VOC was inhibitory to F. sambucinum, H. solani, and P. atrosepticum; and biofumigation with M. albus significantly reduced dry rot and soft rot development, and completely controlled silver scurf in inoculated tubers incubated at both 8C and 22C. The results show that Aw of grain culture affects the production of VOC by M.albus; and that the VOC inhibit the growth of the tested pathogens and the diseases caused by them in potatotubers. PMID:21354528

  6. Recommendations of generic names in Diaporthales competing for protection or use.

    PubMed

    Rossman, Amy Y; Adams, Gerard C; Cannon, Paul F; Castlebury, Lisa A; Crous, Pedro W; Gryzenhout, Marieka; Jaklitsch, Walter M; Mejia, Luis C; Stoykov, Dmitar; Udayanga, Dhanushka; Voglmayr, Hermann; Walker, Donald M

    2015-06-01

    In advancing to one name for fungi, this paper treats generic names competing for use in the order Diaporthales (Ascomycota, Sordariomycetes) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexually or asexually typified. A table is presented that summarizes these recommendations. Among the genera most commonly encountered in this order, Cytospora is recommended over Valsa and Diaporthe over Phomopsis. New combinations are introduced for the oldest epithet of important species in the recommended genus. These include Amphiporthe tiliae, Coryneum lanciforme, Cytospora brevispora, C. ceratosperma, C. cinereostroma, C. eugeniae, C. fallax, C. myrtagena, Diaporthe amaranthophila, D. annonacearum, D. bougainvilleicola, D. caricae-papayae, D. cocoina, D. cucurbitae, D. juniperivora, D. leptostromiformis, D. pterophila, D. theae, D. vitimegaspora, Mastigosporella georgiana, Pilidiella angustispora, P. calamicola, P. pseudogranati, P. stromatica, and P. terminaliae. PMID:26203420

  7. Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641.

    PubMed

    Semba, Yasuyuki; Ishida, Manabu; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2015-07-01

    Stabilizing enzymes from mesophiles of industrial interest is one of the greatest challenges of protein engineering. The ancestral mutation method, which introduces inferred ancestral residues into a target enzyme, has previously been developed and used to improve the thermostability of thermophilic enzymes. In this report, we studied the ancestral mutation method to improve the chemical and thermal stabilities of Phanerochaete chrysosporium lignin peroxidase (LiP), a mesophilic fungal enzyme. A fungal ancestral LiP sequence was inferred using a phylogenetic tree comprising Basidiomycota and Ascomycota fungal peroxidase sequences. Eleven mutant enzymes containing ancestral residues were designed, heterologously expressed in Escherichia coli and purified. Several of these ancestral mutants showed higher thermal stabilities and increased specific activities and/or kcat/KM than those of wild-type LiP. PMID:25858964

  8. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica.

    PubMed

    Santiago, Iara F; Soares, Marco Aurlio; Rosa, Carlos A; Rosa, Luiz H

    2015-11-01

    We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica. PMID:26400492

  9. Zombie bugs? The fungus Purpureocillium cf. lilacinum may manipulate the behavior of its host bug Edessa rufomarginata.

    PubMed

    Eberhard, William; Pacheco-Esquivel, Jessica; Carrasco-Rueda, Farah; Christopher, Yuliana; Gonzalez, Cely; Ramos, Daniel; Urbina, Hector; Blackwell, Meredith

    2014-01-01

    Just before dying, Edessa rufomarginata (Hemiptera, Pentotomidae) individuals that are infected with the fungus Purpureocillium cf. lilacinum (Ascomycota: Ophiocordycipitaceae) move from the leaves onto the stems of their Solanum sp. host and firmly grasp the stems in ways seldom employed by uninfected bugs. These alterations in host behavior probably improve the chances that the subsequently produced fungal spores will be dispersed aerially. Purpureocillium cf. lilacinum is a member of the Ophiocordycipitaceae, a group in which other species also modify the behavior of their hosts. As in the case of newly distinguished relatives of Ophiocordyceps unilateralis associated with "zombie ants" the discovery of P. cf. lilacinum infecting bugs reveals that P. lilacinum may be more diverse than previously appreciated. PMID:25143477

  10. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety

    PubMed Central

    De Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.

    2013-01-01

    Fungal community composition in composts of lignocellulosic wastes was assessed via 454-pyrosequencing of ITS1 libraries derived from the three major composting phases. Ascomycota represented most (93%) of the 27,987 fungal sequences. A total of 102 genera, 120 species, and 222 operational taxonomic units (OTUs; >97% similarity) were identified. Thirty genera predominated (ca. 94% of the sequences), and at the species level, sequences matching Chaetomium funicola and Fusarium oxysporum were the most abundant (26 and 12%, respectively). In all composts, fungal diversity in the mature phase exceeded that of the mesophilic phase, but there was no consistent pattern in diversity changes occurring in the thermophilic phase. Fifteen species of human pathogens were identified, eight of which have not been previously identified in composts. This study demonstrated that deep sequencing can elucidate fungal community diversity in composts, and that this information can have important implications for compost use and human health. PMID:23785368

  11. Comparison of Dyes for Easy Detection of Extracellular Cellulases in Fungi

    PubMed Central

    Yoon, Ji Hwan; Park, Ji Eun; Suh, Dong Yeon; Hong, Seung Beom; Ko, Seung Ju

    2007-01-01

    To evaluate which dye is effective in a plate assay for detecting extracellular cellulase activity produced by fungi, four chromogenic dyes including remazol brilliant blue, phenol red, congo red, and tryphan blue, were compared using chromagenic media. For the comparison, 19 fungal species belonging to three phyla, ascomycota, basidiomycota, and zygomycota were inoculated onto yeast nitrogen-based media containing different carbon substrates such as cellulose (carboxylmethyl and avicel types) and cellobiose labeled with each of the four dyes. Overall, the formation of clear zone on agar media resulting from the degradation of the substrates by the enzymes secreted from the test fungi was most apparent with media containing congo red. The detection frequency of cellulase activity was also most high on congo red-supplemented media. The results of this study showed that congo red is better dye than other three dyes in a plate assay for fungal enzyme detection. PMID:24015063

  12. Halotolerant laccases from Chaetomium sp., Xylogone sphaerospora, and Coprinopsis sp. isolated from a Mediterranean coastal area.

    PubMed

    Qasemian, Leila; Billette, Christophe; Guiral, Daniel; Alazard, Emilie; Moinard, Magalie; Farnet, Anne-Marie

    2012-10-01

    Laccases (EC 1.10.3.2) are phenoloxidases involved in the transformation of the recalcitrant fraction of organic matter in soil. These enzymes are also able to transform certain aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and are known to be inhibited by chloride ions. This study aims to test the potential of some fungal strains newly isolated from natural environments subjected to high osmotic pressure such as coastal ecosystems, to produce chloride tolerant laccases. Three strains were identified as Chaetomium sp., Xylogone sphaerospora (two Ascomycota), and Coprinopsis sp. (a Basidiomycota) and the laccases produced by these fungi were weakly inhibited by chloride ions compared with previous data from literature. Moreover, we tested their reactivity towards various PAHs which are widespread anthropic pollutants. They were able to transform anthracene to 9,10-anthraquinone and we determine 7.5eV as the threshold of ionization potential for PAH oxidation by these laccases. PMID:23063188

  13. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  14. A comprehensive model to predict mitotic division in budding yeasts

    PubMed Central

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-01-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  15. Thermomyces lanuginosus is the dominant fungus in maize straw composts.

    PubMed

    Zhang, Lili; Ma, Haixia; Zhang, Huaiqiang; Xun, Luying; Chen, Guanjun; Wang, Lushan

    2015-12-01

    The microbial community composition and function of three self-heating maize straw composts were compared by integrated meta-omics. The results revealed that the fungal communities were primarily dominated by the phylum Ascomycota (>90%) regardless of different nitrogen sources, which were exclusively composed of the Thermomyces, a genus of hemicellulose degraders. The bacterial community composition was affected by the addition of nitrogen sources, as the abundance of the Actinobacteria increased, while the Proteobacteria and Bacteroidetes decreased. Various hemicellulases and cellulases were detected in the composts, and the major xylanase secreted by Thermomyces lanuginosus was always present, revealing that it was the dominant fungus in hemicellulose hydrolysis and that bacteria and fungi might synergistically degrade lignocellulose. Thus, microbial communities in composts may develop a simple and stable structure of a dominant fungal species and limited numbers of bacterial species under the selective pressure of high temperature and maize straw as starting materials. PMID:26342338

  16. Diversification of Transcription Factor Paralogs via Noncanonical Modularity in C2H2 Zinc Finger DNA Binding

    PubMed Central

    Siggers, Trevor; Reddy, Jessica; Barron, Brian; Bulyk, Martha L.

    2014-01-01

    Summary A major challenge in obtaining a full molecular description of evolutionary adaptation is to characterize how transcription factor (TF) DNA binding specificity can change. To identify mechanisms of TF diversification, we performed detailed comparisons of yeast C2H2 ZF proteins with identical canonical recognition residues that are expected to bind the same DNA sequences. Unexpectedly, we found that ZF proteins can adapt to recognize new binding sites in a modular fashion whereby binding to common core sites remains unaffected. We identified two distinct mechanisms, conserved across multiple Ascomycota species, by which this molecular adaptation occurred. Our results suggest a route for TF evolution that alleviates negative pleiotropic effects by modularly gaining new binding sites. These findings expand our current understanding of ZF DNA binding and provide evidence for paralogous ZFs utilizing alternate modes of DNA binding to recognize unique sets of noncanonical binding sites. PMID:25042805

  17. Microbial specialists in below-grade foundation walls in Scandinavia.

    PubMed

    Nunez, M; Hammer, H

    2014-10-01

    Below-grade foundation walls are often exposed to excessive moisture by water infiltration, condensation, leakage, or lack of ventilation. Microbial growth in these structures depends largely on environmental factors, elapsed time, and the type of building materials and construction setup. The ecological preferences of Actinomycetes (Actinobacteria) and the molds Ascotricha chartarum, Myxotrichum chartarum (Ascomycota), Geomyces pannorum, and Monocillium sp. (Hyphomycetes) have been addressed based on analyses of 1764 samples collected in below-grade spaces during the period of 2001-2012. Our results show a significant correlation between these taxa and moist foundation walls as ecological niches. Substrate preference was the strongest predictor of taxa distribution within the wall, but the taxa's physiological needs, together with gradients of abiotic factors within the wall structure, also played a role. Our study describes for the first time how the wall environment affects microbial growth. PMID:24527795

  18. Distribution and diversity of planktonic fungi in the West Pacific Warm Pool.

    PubMed

    Wang, Xin; Singh, Purnima; Gao, Zheng; Zhang, Xiaobo; Johnson, Zackary I; Wang, Guangyi

    2014-01-01

    Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models. PMID:24992154

  19. Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding.

    PubMed

    Siggers, Trevor; Reddy, Jessica; Barron, Brian; Bulyk, Martha L

    2014-08-21

    A major challenge in obtaining a full molecular description of evolutionary adaptation is to characterize how transcription factor (TF) DNA-binding specificity can change. To identify mechanisms of TF diversification, we performed detailed comparisons of yeast C2H2 ZF proteins with identical canonical recognition residues that are expected to bind the same DNA sequences. Unexpectedly, we found that ZF proteins can adapt to recognize new binding sites in a modular fashion whereby binding to common core sites remains unaffected. We identified two distinct mechanisms, conserved across multiple Ascomycota species, by which this molecular adaptation occurred. Our results suggest a route for TF evolution that alleviates negative pleiotropic effects by modularly gaining new binding sites. These findings expand our current understanding of ZF DNA binding and provide evidence for paralogous ZFs utilizing alternate modes of DNA binding to recognize unique sets of noncanonical binding sites. PMID:25042805

  20. Fungal Endophyte Diversity in Sarracenia

    PubMed Central

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  1. Description and phylogenetic placement of Beauveria hoplocheli sp. nov. used in the biological control of the sugarcane white grub, Hoplochelus marginalis, on Reunion Island.

    PubMed

    Robène-Soustrade, Isabelle; Jouen, Emmanuel; Pastou, Didier; Payet-Hoarau, Magali; Goble, Tarryn; Linderme, Daphné; Lefeuvre, Pierre; Calmès, Cédric; Reynaud, Bernard; Nibouche, Samuel; Costet, Laurent

    2015-01-01

    On Reunion Island successful biological control of the sugarcane white grub Hoplochelus marginalis Fairmaire (Coleoptera: Melolonthidae) has been conducted for decades with strains from the entomopathogenic fungal genus Beauveria (Ascomycota: Hypocreales). A study based on morphological characters combined with a multisequence phylogenetic analysis of genes that encode the translation elongation factor 1-alpha (TEF1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2) and the Bloc nuc intergenic region was carried out on Beauveria strains isolated on Reunion and Madagascar from H. marginalis. This study revealed that these strains, previously identified as Beauveria brongniartii, did not match that species and are closely related to but still distinct from B. malawiensis strains. Therefore we describe the Reunion Island fungus as the new species B. hoplocheli. PMID:26297783

  2. Aspergillus 6V4, a Strain Isolated from Manipueira, Produces High Amylases Levels by Using Wheat Bran as a Substrate

    PubMed Central

    Celestino, Jessyca dos Reis; Duarte, Ana Caroline; Silva, Cláudia Maria de Melo; Sena, Hellen Holanda; Ferreira, Maria do Perpétuo Socorro Borges Carriço; Mallmann, Neila Hiraishi; Lima, Natacha Pinheiro Costa; Tavares, Chanderlei de Castro; de Souza, Rodrigo Otávio Silva; Souza, Érica Simplício; Souza, João Vicente Braga

    2014-01-01

    The aim of this study was screening fungi strains, isolated from manipueira (a liquid subproduct obtained from the flour production of Manihot esculenta), for amylases production and investigating production of these enzymes by the strain Aspergillus 6V4. The fungi isolated from manipueira belonged to Ascomycota phylum. The strain Aspergillus 6V4 was the best amylase producer in the screening assay of starch hydrolysis in petri dishes (ASHPD) and in the assay in submerged fermentation (ASbF). The strain Aspergillus 6V4 produced high amylase levels (335 UI/L) using wheat bran infusion as the exclusive substrate and the supplementation of this substrate with peptone decreased the production of this enzyme. The moisture content of 70% was the best condition for the production of Aspergillus 6V4 amylases (385 IU/g) in solid state fermentation (SSF). PMID:24724017

  3. Morphological and molecular characterisation of a new anamorphic genus Cheirosporium, from freshwater in China.

    PubMed

    Cai, L; Guo, X Y; Hyde, K D

    2008-06-01

    Cheirosporium gen. nov. is characterised by the production of sporodochial conidiomata, semi-macronematous to macronematous conidiophores that possess several distinct sterile branches, and cheiroid, smooth-walled conidia with rhexolytic secession. The 28S rDNA and ITS rDNA operon of this taxon were amplified and sequenced. A BLAST search revealed low homology between Cheirosporium triseriale and existing sequences in public databases, supporting the hypothesis that the species is new to science. Phylogenetic analysis showed that C. triseriale groups with Dictyosporium and allied species, and nests within the Pleosporales (Dothideomycetes, Ascomycota). Cheirosporium is morphologically distinct from the cheirosporous genera Cheiromyces, Cheiromycina, Dictyosporium, Digitomyces, Digitodesmium and Pseudodictyosporium and these differences are discussed. PMID:20467486

  4. Fungal endophyte diversity in Sarracenia.

    PubMed

    Glenn, Anthony; Bodri, Michael S

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  5. Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses).

    PubMed

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2015-06-01

    The third part of a series of monographic treatments of cercosporoid fungi (formerly Cercospora s. lat., Mycosphaerellaceae, Ascomycota) continues with a treatment of taxa on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), covering asexual and holomorph species with mycosphaerella-like sexual morphs on true grasses (Poaceae), which were excluded from the second part. The species concerned are keyed out, alphabetically listed, described, illustrated and supplemented by references to previously published descriptions, illustrations, and exsiccatae. A key to the recognised genera and a discussion of taxonomically relevant characters was published in the first part of this series. Several species are lecto- or neotypified. The following taxonomic novelties are introduced: Cercospora barretoana comb. nov., C. cymbopogonicola nom. nov., Cladosporium elymi comb. nov., Passalora agrostidicola sp. nov., P. brachyelytri comb. nov., and P. dichanthii-annulati comb. nov. PMID:26203414

  6. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus: Where Do We Go from Here?

    PubMed Central

    Juvvadi, Praveen R; Steinbach, William J

    2015-01-01

    Studies on fungal pathogens belonging to the ascomycota phylum are critical given the ubiquity and frequency with which these fungi cause infections in humans. Among these species, Aspergillus fumigatus causes invasive aspergillosis, a leading cause of death in immunocompromised patients. Fundamental to A. fumigatus pathogenesis is hyphal growth. However, the precise mechanisms underlying hyphal growth and virulence are poorly understood. Over the past 10 years, our research towards the identification of molecular targets responsible for hyphal growth, drug resistance and virulence led to the elucidation of calcineurin as a key signaling molecule governing these processes. In this review, we summarize our salient findings on the significance of calcineurin for hyphal growth and septation in A. fumigatus and propose future perspectives on exploiting this pathway for designing new fungal-specific therapeutics. PMID:26694470

  7. Fungi on the skin: dermatophytes and Malassezia.

    PubMed

    White, Theodore C; Findley, Keisha; Dawson, Thomas L; Scheynius, Annika; Boekhout, Teun; Cuomo, Christina A; Xu, Jun; Saunders, Charles W

    2014-08-01

    Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms. PMID:25085959

  8. Evolutionary principles of modular gene regulation in yeasts

    PubMed Central

    Thompson, Dawn A; Roy, Sushmita; Chan, Michelle; Styczynsky, Mark P; Pfiffner, Jenna; French, Courtney; Socha, Amanda; Thielke, Anne; Napolitano, Sara; Muller, Paul; Kellis, Manolis; Konieczka, Jay H; Wapinski, Ilan; Regev, Aviv

    2013-01-01

    Divergence in gene regulation can play a major role in evolution. Here, we used a phylogenetic framework to measure mRNA profiles in 15 yeast species from the phylum Ascomycota and reconstruct the evolution of their modular regulatory programs along a time course of growth on glucose over 300 million years. We found that modules have diverged proportionally to phylogenetic distance, with prominent changes in gene regulation accompanying changes in lifestyle and ploidy, especially in carbon metabolism. Paralogs have significantly contributed to regulatory divergence, typically within a very short window from their duplication. Paralogs from a whole genome duplication (WGD) event have a uniquely substantial contribution that extends over a longer span. Similar patterns occur when considering the evolution of the heat shock regulatory program measured in eight of the species, suggesting that these are general evolutionary principles. DOI: http://dx.doi.org/10.7554/eLife.00603.001 PMID:23795289

  9. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States.

    PubMed

    Bates, Scott T; Nash, Thomas H; Garcia-Pichel, Ferran

    2012-01-01

    Molecular methodologies were used to investigate fungal assemblages of biological soil crusts (BSCs) from arid lands in the southwestern United States. Fungal diversity of BSCs was assessed in a broad survey that included the Chihuahuan and Sonoran deserts as well as the Colorado Plateau. At selected sites samples were collected along kilometer-scale transects, and fungal community diversity and composition were assessed based on community rRNA gene fingerprinting using PCR-denaturing gradient gel electrophoresis (DGGE). Individual phylotypes were characterized through band sequencing. The results indicate that a considerable diversity of fungi is present within crusted soils, with higher diversity being recovered from more successionally mature BSCs. The overwhelming majority of crust fungi belong to the Ascomycota, with the Pleosporales being widespread and frequently dominant. Beta diversity patterns of phylotypes putatively representing dominant members of BSC fungal communities suggest that these assemblages are specific to their respective geographic regions of origin. PMID:22123652

  10. Evolution of Reproductive Morphology in Leaf Endophytes

    PubMed Central

    Wang, Zheng; Johnston, Peter R.; Yang, Zhu L.; Townsend, Jeffrey P.

    2009-01-01

    The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi. PMID:19158947

  11. Relationship between Climatic Factors and the Distribution of Higher Fungi in Byeonsanbando National Park, Korea.

    PubMed

    Jang, Seog-Ki; Hur, Tae-Chul

    2014-03-01

    From April 2009 to October 2011, we surveyed the higher fungi in the Byeonsanbando National Park, Korea. In total, we identified 2 kingdoms, 3 divisions, 7 classes, 22 orders, 63 families, 149 genera, and 313 species (including 6 undocumented taxa: 2 families, 2 genera, and 2 species). Seventeen 17 orders, 49 families, 128 genera, and 286 species belonged to Basidiomycota; 7 orders, 9 families, 15 genera, and 21 species were of Ascomycota; and 4 orders, 5 families, 6 genera, and 6 species of primordial fungi. Among the Basidiomycota, Agaricomycetes were represented by 47 families, 126 genera, and 282 species. The most common fungi were Boletaceae (33 species), followed by Russulaceae (30), Agaricaceae (27), and Amanitaceae (24). Various species of most of the higher fungi occurred during periods with average temperatures of 23~24.9?, maximum temperatures of 28~31.9?, minimum temperatures of 22~23.9?, > 82% relative humidity, and > 200 mm precipitation. PMID:24808731

  12. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora.

    PubMed

    Marek, S M; Hansen, K; Romanish, M; Thorn, R G

    2009-06-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia resembling those of Botrytis. Although the corticoid basidiomycetes Phanerochaete omnivora (Polyporales) and Sistotrema brinkmannii (Cantharellales; both Agaricomycetes) have been suggested as teleomorphs of Phymatotrichopsis omnivora, phylogenetic analyses of nuclear small- and large-subunit ribosomal DNA and subunit 2 of RNA polymerase II from multiple isolates indicate that it is neither a basidiomycete nor closely related to other species of Botrytis (Sclerotiniaceae, Leotiomycetes). Phymatotrichopsis omnivora is a member of the family Rhizinaceae, Pezizales (Ascomycota: Pezizomycetes) allied to Psilopezia and Rhizina. PMID:20198139

  13. The social network: deciphering fungal language.

    PubMed

    Leeder, Abigail C; Palma-Guerrero, Javier; Glass, N Louise

    2011-06-01

    It has been estimated that up to one quarter of the world's biomass is of fungal origin, comprising approximately 1.5 million species. In order to interact with one another and respond to environmental cues, fungi communicate with their own chemical languages using a sophisticated series of extracellular signals and cellular responses. A new appreciation for the linkage between these chemical languages and developmental processes in fungi has renewed interest in these signalling molecules, which can now be studied using post-genomic resources. In this Review, we focus on the molecules that are secreted by the largest phylum of fungi, the Ascomycota, and the quest to understand their biological function. PMID:21572459

  14. Distribution and Diversity of Planktonic Fungi in the West Pacific Warm Pool

    PubMed Central

    Wang, Xin; Singh, Purnima; Gao, Zheng; Zhang, Xiaobo; Johnson, Zackary I.; Wang, Guangyi

    2014-01-01

    Fungi contribute substantially to biogeochemical cycles of terrestrial and marine habitats by decomposing matter and recycling nutrients. Yet, the diversity of their planktonic forms in the open ocean is poorly described. In this study, culture-independent and molecular approaches were applied to investigate fungal diversity and abundance derived from samples collected from a broad swath of the Pacific Warm Pool across major environmental gradients Our results revealed that planktonic fungi were molecularly diverse and their diversity patterns were related to major phytoplankton taxa and various nutrients including nitrate, nitrite, orthophosphate and silicic acid. Over 400 fungal phylotypes were recovered across this region and nearly half of them grouped into two major fungal lineages of Ascomycota and Basidiomycota, whose abundance varied among stations. These results suggest that planktonic fungi are a diverse and integral component of the marine microbial community and should be included in future marine microbial ecosystem models. PMID:24992154

  15. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Frhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Desprs, V. R.; Pschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  16. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Frhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Desprs, V. R.; Pschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  17. A comprehensive model to predict mitotic division in budding yeasts.

    PubMed

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-11-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  18. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons.

    PubMed

    Marco-Urrea, Ernest; García-Romera, Inmaculada; Aranda, Elisabet

    2015-12-25

    In previous decades, white-rot fungi as bioremediation agents have been the subjects of scientific research due to the potential use of their unspecific oxidative enzymes. However, some non-white-rot fungi, mainly belonging to the Ascomycota and Zygomycota phylum, have demonstrated their potential in the enzymatic transformation of environmental pollutants, thus overcoming some of the limitations observed in white-rot fungi with respect to growth in neutral pH, resistance to adverse conditions and the capacity to surpass autochthonous microorganisms. Despite their presence in so many soil and water environments, little information exists on the enzymatic mechanisms and degradation pathways involved in the transformation of hydrocarbons by these fungi. This review describes the bioremediation potential of non-ligninolytic fungi with respect to chlorinated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) and also shows known conversion pathways and the prospects for future research. PMID:25681797

  19. Diversity and biochemical features of culturable fungi from the coastal waters of Southern China

    PubMed Central

    2014-01-01

    Fungi play a major role in various biogeochemical cycles of terrestrial and marine ecosystems. However, fungi in marine environments remain to be one of the most under-studied microbial groups. This study investigates the diversity of planktonic fungi from the coastal habitat off Pearl River Delta (China) using culture-dependent approach. A total of 22 fungi and 9 yeast isolates were recovered from 30 seawater and 2 sediment samples. Microscopic and ITS rRNA gene sequence analyses revealed that most of the fungi belonged to the phylum Ascomycota and Basidiomycota with a very small percentage (3%) of the subphylum Mucoromycotina of the Phylum Zygomycota. Most of these fungal isolates exhibited considerable production of extracellular enzymes, cellulase, lipase and laccase. Fungal isolates of two genera Mucor and Aspergillus sp. demonstrated pelletization capability over a wide range of pH, suggesting them as potential agents towards algae harvesting and wastewater treatment. PMID:25401065

  20. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    PubMed

    Wthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  1. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  2. Epichlo festucae and related mutualistic symbionts of grasses.

    PubMed

    Schardl, C L

    2001-07-01

    Epichlo and Neotyphodium species (Ascomycota) are mutualistic symbionts (endophytes) of temperate grasses, to which they impart numerous and profound fitness benefits. Epichlo festucae, a common symbiont of Festuca, Lolium,and Koeleria spp., is a model for endophyte research that is amenable to Mendelian and molecular genetic analysis. Characteristics of E. festucae include: (i) production of the anti-insect alkaloids peramine and lolines, (ii) production of the anti-vertebrate alkaloids lolitrem B and ergovaline, (iii) efficient vertical transmission via host seeds, (iv) a mildly pathogenic state associated with the E. festucae sexual cycle, and (v) a clear role in enhancing survival of host plants. Genetic analysis of alkaloid production has recently begun. Also, physiological and ultrastructural studies suggest that signals communicated between E. festucae and host plants ensure an exquisitely balanced interaction to the mutual benefit of both partners. Several mutualistic Neotyphodium species are hybrids between E. festucae and other endophyte species. PMID:11456460

  3. Vector affinity and diversity of Geosmithia fungi living on subcortical insects inhabiting Pinaceae species in central and northeastern Europe.

    PubMed

    Kolařík, Miroslav; Jankowiak, Robert

    2013-10-01

    Fungi from the genus Geosmithia (Ascomycota: Hypocreales) are associated with bark beetles (Coleoptera: Scolytinae), though little is known about ecology, diversity, and distribution of these fungi across beetle and its host tree species. This study surveyed the diversity, distribution and vector affinity of Geosmithia isolated from subcortical insects that colonized trees from the family Pinaceae in Central and Northeastern Europe. Twelve Geosmithia species were isolated from 85 plant samples associated with 23 subcortical insect species (including 14 bark beetle species). Geosmithia community composition was similar across different localities and vector species; although the fungal communities associated with insects that colonized Pinus differed from that colonizing other tree species (Abies, Larix, and Picea). Ten Geosmithia species from four independent phylogenetic lineages were not reported previously from vectors feeding on other plant families and seem to be restricted to the vectors from Pinaceae only. We conclude that presence of such substrate specificity suggests a long and stable association between Geosmithia and bark beetles. PMID:23624540

  4. Phylogenetic Diversity and Antifungal Activity of Endophytic Fungi Associated with Tephrosia purpurea

    PubMed Central

    Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang

    2015-01-01

    Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds. PMID:26839503

  5. Phylogenetic Diversity and Antifungal Activity of Endophytic Fungi Associated with Tephrosia purpurea.

    PubMed

    Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang; Li, You-Zhi

    2015-12-01

    Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds. PMID:26839503

  6. Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin

    PubMed Central

    Chen, Wanping; Lee, Mi-Kyung; Jefcoate, Colin; Kim, Sun-Chang; Chen, Fusheng; Yu, Jae-Hyuk

    2014-01-01

    Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi. PMID:24966179

  7. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China.

    PubMed

    Wang, Ya; Lai, Zheng; Li, Xi-Xi; Yan, Ri-Ming; Zhang, Zhi-Bin; Yang, Hui-Lin; Zhu, Du

    2016-02-01

    Huperzia serrata has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its endophytic fungi. To test this hypothesis, in the present study, we provided a first insights into evaluating the species composition and acetylcholinesterase (AChE) inhibitory activity of the culturable endophytic fungi of H. serrata from the regional at Jinggang Mountain in southeastern China. A total number of 885 fungal isolates distributed across 44 genera and 118 putative species were obtained from 1422 fragments of fine H. serrata roots, stems and leaves base on ITS-rDNA sequences BLAST analysis. The endophytic fungi were phylogenetically diverse and species-rich, with high rate of colonization and isolation. The assemble of endophytic fungi consisted mainly of Ascomycota (97.15%), followed by Basidiomycota (1.92%) and unknown fungal species (0.90%). Colletotrichum (64.29%), Phyllosticta (3.39%), Hypoxylon (2.81%), Xylaria (2.25%) and Nigrospora (2.04%) were the most abundant genera, whereas the remaining genera were infrequent groups. Although, roots yielded low abundance strains, the diverse and species-rich were both higher than that of stems and leaves. In addition, out of the 247 endophytic fungi strains determinated, 221 fungal extracts showed AChE inhibition activities in vitro. Among them, 22 endophytic fungi strains achieved high inhibitory activity (?50%) on AChE which belongs to 13 genera and five incertae sedis strains. Four endophytic fungi designated as JS4 (Colletotrichum spp.), FL14 (Ascomycota spp.), FL9 (Sarcosomataceae spp.) and FL7 (Dothideomycetes spp.) were displayed highly active (?80%) against AChE, which the inhibition effects were even more intense than the positive control. Our findings highlight that H. serrata grown in Jinggang Mountain harbors a rich and fascinating endophytic fungus community with potential AChE inhibitory activity, which could further broaden the natural acetylcholinesterase inhibitors resources used for Alzheimer's disease treatment. PMID:26745980

  8. Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites.

    PubMed

    Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong; An, Zhiqiang; Bills, Gerald F

    2015-07-01

    The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901

  9. PRP8 inteins in species of the genus Botrytis and other ascomycetes.

    PubMed

    Bokor, Annika A M; Kohn, Linda M; Poulter, Russell T M; van Kan, Jan A L

    2012-03-01

    The mobile elements termed inteins have a sporadic distribution in microorganisms. It is unclear how these elements are maintained. Inteins are intervening protein sequences that autocatalytically excise themselves from a precursor. Excision is a post-translational process referred to as 'protein splicing' in which the sequences flanking the intein are ligated, reforming the mature host protein. Some inteins contain a homing endonuclease domain (HEG) that is proposed to facilitate propagation of the intein element within a gene pool. We have previously demonstrated that the HEG of the PRP8 intein is highly active during meiosis in Botrytis cinerea. Here we analysed the Prp8 gene status in 21 additional Botrytis species to obtain insight into the mode of intein inheritance within the Botrytis lineage. Of the 21 species, 15 contained a PRP8 intein whereas six did not. The analysis was extended to closely related (Sclerotiniaceae) and distantly related (Ascomycota) taxa, focussing on evolutionary diversification of the PRP8 intein, including their possible acquisition by horizontal transfer and loss by deletion. Evidence was obtained for the occurrence of genetic footprints of previous intein occupation. There is no compelling evidence of horizontal transfer among species. Three distinct states of the Prp8 allele were identified, distributed over different orders within the Ascomycota: an occupied allele; an empty allele that was never occupied; an empty allele that was presumably previously occupied, from which the intein was precisely deleted. The presence of the genetic footprint identifies 20 species (including Neurospora crassa, Magnaporthe oryzae and Fusarium oxysporum) that previously contained the intein but have lost it entirely, while only 18 species (including Podospora anserina and Fusarium graminearum) appear never to have contained a PRP8 intein. The analysis indicates that inteins may be maintained in an equilibrium state. PMID:22285471

  10. Morphological characteristics of bioaerosols from contrasting locations in southern tropical India - A case study

    NASA Astrophysics Data System (ADS)

    Valsan, Aswathy E.; Priyamvada, Hema; Ravikrishna, R.; Després, Viviane R.; Biju, C. V.; Sahu, Lokesh K.; Kumar, Ashwini; Verma, R. S.; Philip, L.; Gunthe, Sachin S.

    2015-12-01

    Bioaerosols, which are ubiquitous in the earth's atmosphere, are poorly characterized in terms of their physical and chemical properties. Improved knowledge of their physical and chemical properties is essential to have a better understanding of their dispersion and long-range transport in the atmosphere and at the same time to assess their role as potential Ice Nuclei (IN). In the present work, possibly for the first time we report the morphological characteristics of bioaerosols from marine urban and high altitude continental regions in Southern India. The samples were collected using polycarbonate filter paper and analyzed using Scanning Electron Microscope (SEM) coupled with Energy-dispersive Spectra Detector (EDX/EDS). The observed bioaerosols exhibited great variability in their morphological features over this region of the world. At these contrasting environments, we found that fungal spores constituted the major fraction of the total observed bioaerosols. Pollen grains, plant and insect fragments, and lot of other non-identified bio-particles were also observed constituting the remaining fraction. Further, the classification of fungal spores exhibited strong variability over this region. For example, fungal spores of both Ascomycota and Basidiomycota class were seen in abundance in marine environment, while Ascomycota especially Cladosporium were seen in abundance in high altitude continental environment. Our findings also suggest that increase in diversity of bioaerosol particles at marine site appeared to coincide with precipitation. It appears that vast diversity in the morphological features of bioaerosols exists over this region, which should further be studied using advanced online techniques for better quantification under contrasting environments. However, the diversity observed in morphological characteristics of bioaerosols at these two contrasting locations is limited and restricted to these two sites and season of the year, and should therefore not be generalized over a large spatio-temporal scale; emphasizing the need for more similar studies covering larger geographical area.

  11. Assessment of epiphytic yeast diversity in rice (Oryza sativa) phyllosphere in Thailand by a culture-independent approach.

    PubMed

    Nasanit, Rujikan; Krataithong, Kultara; Tantirungkij, Manee; Limtong, Savitree

    2015-06-01

    The epiphytic yeast diversity in rice phyllosphere in Thailand was investigated by a culture-independent technique based on the RFLP pattern and the sequence of the D1/D2 domain of the large subunit rRNA gene. Forty-four samples of rice leaf were collected randomly from six provinces. The DNA was extracted from leaf washing samples and the D1/D2 domain was amplified using PCR technique. The PCR products were cloned and then screened by colony PCR. Of total 1121 clones, 451 clones (40.2%) revealed the D1/D2 domain sequences closely related to sequences of yeasts in GenBank, and they were clustered into 45 operational taxonomic units (OTUs) at 99% homology. Of total yeast related clones, 329 clones (72.9%) were identified as nine known yeast species, which consisted of 314 clones (8 OTUs) in the phylum Basidiomycota including Bullera japonica, Pseudozyma antarctica, Pseudozyma aphidis, Sporobolomyces blumeae, Sporobolomyces carnicolor and Sporobolomyces oryzicola and 15 clones (6 OTUs) in the phylum Ascomycota including Metschnikowia koreensis, Meyerozyma guilliermondii and Wickerhamomyces anomalus. The D1/D2 sequences (122 clones) that could not be identified as known yeast species were closest to 3 and 14 species in Ascomycota and Basidiomycota, respectively, some of which may be new yeast species. The most predominant species detected was P. antarctica (42.6%) followed by B. japonica (25.9%) with 63.6 and 22.7% frequency of occurrence, respectively. The results of OTU richness of each sampling location revealed that climate condition and sampling location could affect epiphytic yeast diversity in rice phyllosphere. PMID:25842038

  12. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland

    PubMed Central

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community. PMID:26106376

  13. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. PMID:26969053

  14. Illumina sequencing of fungi associated with manganese oxide deposits in cave systems

    NASA Astrophysics Data System (ADS)

    Zorn, B. T.; Santelli, C. M.; Carmichael, S. K.; Pepe-Ranney, C. P.; Roble, L.; Carmichael, M.; Bräuer, S.

    2013-12-01

    The environmental cycling of manganese (Mn) remains relatively poorly characterized when compared with other metals such as iron. However, fungi have been observed to produce Mn(III/IV) oxides resembling buserite, birnessite, and todorokite on the periphery of vegetative hyphae, hyphal branching points and at the base of fruiting bodies. Recent studies indicate that some of these oxides may be generated by a two-stage reaction with soluble Mn(II) and biogenic reactive oxygen species for some groups of fungi, in particular the Ascomycota. These oxides can provide a versatile protective barrier or aid in the capture of trace metals in the environment, although the exact evolutionary function and trigger is unclear. In this study, two caves in the southern Appalachians, a pristine cave and an anthropogenically impacted cave, were compared by analyzing fungal community assemblages in manganese oxide rich deposits. Quantitative PCR data indicated that fungi are present in a low abundance (<1%) in all locations sampled within the caves. Among amplified DNA sequences retrieved in an 18S rDNA clone library, over 88% were representative of the phylum Basidiomycota (predominantly Agaricomycetes), 2.74% of Ascomycota, 2.28% of Blastocladiomycota and Chytridiomycota, 0.46% of Zygomycota, and 3.65% of Eukarya or Fungi incertae sedis. Using Illumina's MiSeq to sequence amplicons of the fungal ITS1 gene has yielded roughly 100,000-200,000 paired-end reads per sample. These data are currently being analyzed to compare fungal communities before and after induced Mn oxidation in the field. In addition, sites within the pristine cave are being compared with analogous sites in the impacted cave. Culturing efforts have thus far yielded Mn oxide producing members of the orders Glomerales and Pleosporales as well as two Genus incertae sedis (Fungal sp. YECT1, and Fungal sp. YECT3, growing on discarded electrical tape) that do not appear to be closely related to any other known Mn oxidizing fungi.

  15. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides.

    PubMed

    Jiang, Ziqing; Kullberg, Bart Jan; van der Lee, Hein; Vasil, Adriana I; Hale, John D; Mant, Colin T; Hancock, Robert E W; Vasil, Michael L; Netea, Mihai G; Hodges, Robert S

    2008-12-01

    We utilized a series of analogs of D-V13K (a 26-residue amphipathic alpha-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was sixfold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was fivefold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for zygomycota fungi and ascomycota fungi, respectively, compared with peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the non-polar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared with D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the non-polar face of D5. PMID:19090916

  16. Distribution and evolution of het gene homologs in the basidiomycota.

    PubMed

    Van der Nest, M A; Olson, A; Lind, M; Vlz, H; Dalman, K; Brandstrm Durling, M; Karlsson, M; Stenlid, J

    2014-03-01

    In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi. PMID:24380733

  17. Metaproteome analysis of the microbial community during leaf litter decomposition - the impact of stoichiometry and temperature perturbations

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Leitner, S.; Hmmerle, I.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-04-01

    Leaf litter decomposition is the breakdown of dead plant material, a terrestrial ecosystem process of paramount importance. Nutrients released during decomposition play a key role for microbial growth and plant productivity. These processes are controlled by abiotic factors, such as climate, and by biotic factors, such as litter nutrient concentration and stoichiometry (carbon:nutrient ratio) and activity of soil organisms. Future climate change scenarios predict temperature perturbations, therefore following changes of microbial community composition and possible feedbacks on ecosystem processes are of key interest; especially as our knowledge about the microbial regulation of these processes is still scarce. Our aim was to elucidate how temperature perturbations and leaf litter stoichiometry affect the composition of the microbial decomposer community. To this end a terrestrial microcosm experiment using beech (Fagus sylvatica) litter with different stoichiometry was conducted. In a semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) we used the intrinsic metabolic function of proteins to relate specific microbial activities to their phylogenetic origin in multispecies communities. Decomposer communities varied on litter with different stoichiometry so that microbial decomposers (fungi and bacteria) were favoured in litter with narrow C:nutrient ratios. The fungal community was dominated by Ascomycota (Eurotiomycetes, Sordariomycetes) and Basidiomycota (Agaricomycetes) and the bacterial community was dominated by Proteobacteria, Actinobacteria and Firmicutes. The extracellular enzymes we detected belonged mainly to classes of xylanases, pectinases, cellulases and proteases and were almost exclusively of fungal origin (particularly Ascomycota). Temperature stress (heat and frost) evoked strong changes in community composition, enzyme activities, dissolved organic nitrogen and litter pH. Freeze treatments resulted in increased fungal abundance and a decline in residual plant litter material, indicating slightly accelerated decomposition. Extracellular enzyme activities were especially blocked by heat treatment. Using metaproteomics enabled us to link the composition of the microbial community to its ecosystem function.

  18. Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites

    PubMed Central

    Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong

    2015-01-01

    The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901

  19. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes.

    PubMed

    Hoffman, Michele T; Arnold, A Elizabeth

    2010-06-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  20. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages.

    PubMed

    Higgins, K Lindsay; Arnold, A Elizabeth; Miadlikowska, Jolanta; Sarvate, Snehal D; Lutzoni, Franois

    2007-02-01

    Although associated with all plants, fungal endophytes (microfungi that live within healthy plant tissues) represent an unknown proportion of fungal diversity. While there is a growing appreciation of their ecological importance and human uses, little is known about their host specificity, geographic structure, or phylogenetic relationships. We surveyed endophytic Ascomycota from healthy photosynthetic tissues of three plant species (Huperzia selago, Picea mariana, and Dryas integrifolia, representing lycophytes, conifers, and angiosperms, respectively) in northern and southern boreal forest (Qubec, Canada) and arctic tundra (Nunavut, Canada). Endophytes were recovered from all plant species surveyed, and were present in <1-41% of 2 mm2 tissue segments examined per host species. Sequence data from the nuclear ribosomal internal transcribed spacer region (ITS) were obtained for 280 of 558 isolates. Species-accumulation curves based on ITS genotypes remained non-asymptotic, and bootstrap analyses indicated that a large number of genotypes remain to be found. The majority of genotypes were recovered from only a single host species, and only 6% of genotypes were shared between boreal and arctic communities. Two independent Bayesian analyses and a neighbor-joining bootstrapping analysis of combined data from the nuclear large and small ribosomal subunits (LSUrDNA, SSUrDNA; 2.4 kb) showed that boreal and arctic endophytes represent Dothideomycetes, Sordariomycetes, Chaetothyriomycetidae, Leotiomycetes, and Pezizomycetes. Many well-supported phylotypes contained only endophytes despite exhaustive sampling of available sequences of Ascomycota. Together, these data demonstrate greater than expected diversity of endophytes at high-latitude sites and provide a framework for assessing the evolution of these poorly known but ubiquitous symbionts of living plants. PMID:17005421

  1. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees.

    PubMed

    Hoffman, Michele T; Arnold, A Elizabeth

    2008-03-01

    Understanding how fungal endophyte communities differ in abundance, diversity, taxonomic composition, and host affinity over the geographic ranges of their hosts is key to understanding the ecology and evolutionary context of endophyte-plant associations. We examined endophytes associated with healthy photosynthetic tissues of three closely related tree species in the Cupressaceae (Coniferales): two native species within their natural ranges [Juniperus virginiana in a mesic semideciduous forest, North Carolina (NC); Cupressus arizonica, under xeric conditions, Arizona (AZ)], and a non-native species planted in each site (Platycladus orientalis). Endophytes were recovered from 229 of 960 tissue segments and represented at least 35 species of Ascomycota. Isolation frequency was more than threefold greater for plants in NC than in AZ, and was 2.5 (AZ) to four (NC) times greater for non-native Platycladus than for Cupressus or Juniperus. Analyses of ITS rDNA for 109 representative isolates showed that endophyte diversity was more than twofold greater in NC than in AZ, and that endophytes recovered in AZ were more likely to be host-generalists relative to those in NC. Different endophyte genera dominated the assemblages of each host species/locality combination, but in both localities, Platycladus harboured less diverse and more cosmopolitan endophytes than did either native host. Parsimony and Bayesian analyses for four classes of Ascomycota (Dothideomycetes, Sordariomycetes, Pezizomycetes, Eurotiomycetes) based on LSU rDNA data (ca 1.2 kb) showed that well-supported clades of endophytes frequently contained representatives of a single locality or host species, underscoring the importance of both geography and host identity in shaping a given plant's endophyte community. Together, our data show that not only do the abundance, diversity, and taxonomic composition of endophyte communities differ as a function of host identity and locality, but that host affinities of those communities are variable as well. PMID:18308531

  2. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

    PubMed

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community. PMID:26106376

  3. Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica.

    PubMed

    Hutchinson, Miriam I; Powell, Amy J; Tsang, Adrian; O'Toole, Nicholas; Berka, Randy M; Barry, Kerrie; Grigoriev, Igor V; Natvig, Donald O

    2016-01-01

    Members of the Chaetomiaceae are among the most studied fungi in industry and among the most reported in investigations of biomass degradation in both natural and laboratory settings. The family is recognized for production of carbohydrate-active enzymes and antibiotics. Thermophilic species are of special interest for their abilities to produce thermally stable enzymes and to be grown under conditions that are unsuitable for potential contaminant microorganisms. Such interests led to the recent acquisition of genome sequences from several members of the family, including thermophilic species, several of which are reported here for the first time. To date, however, thermophilic fungi in industry have served primarily as parts reservoirs and there has been no good genetic model for species in the family Chaetomiaceae or for thermophiles in general. We report here on the reproductive biology of the thermophile Myceliophthora heterothallica, which is heterothallic, unlike most described species in the family. We confirmed heterothallism genetically by following the segregation of mating type idiomorphs and other markers. We have expanded the number of known sexually-compatible individuals from the original isolates from Indiana and Germany to include several isolates from New Mexico. An interesting aspect of development in M. heterothallica is that ascocarp formation is optimal at approximately 30C, whereas vegetative growth is optimal at 45C. Genome sequences obtained from several strains, including isolates of each mating type, revealed mating-type regions whose genes are organized similarly to those of other members of the Sordariales, except for the presence of a truncated version of the mat A-1 (MAT1-1-1) gene in mating-type a (MAT1-2) strains. In M. heterothallica and other Chaetomiaceae, mating-type A (MAT1-1) strains have the full-length version of mat A-1 that is typical of mating-type A strains of diverse Ascomycota, whereas a strains have only the truncated version. This truncated mat A-1 has an intact open reading frame and a derived start codon that is not present in mat A-1 from A strains. The predicted protein contains a region that is conserved across diverse mat A-1 genes, but it lacks the major alpha1 domain, which characterizes proteins in this family and is known to be required for fertility in A strains from other Ascomycota. Finally, we have used genes from M. heterothallica to probe for mating genes in other homothallic and heterothallic members of the Chaetomiaceae. The majority of homothallic species examined have a typical mat A-1,2,3 (MAT1-1-1,2,3) region in addition to an unlinked mat a-1 (MAT1-2-1) gene, reflecting one type of homothallism commonly observed in diverse Ascomycota. PMID:26608618

  4. Unequal Recombination and Evolution of the Mating-Type (MAT) Loci in the Pathogenic Fungus Grosmannia clavigera and Relatives

    PubMed Central

    Tsui, Clement K.-M.; DiGuistini, Scott; Wang, Ye; Feau, Nicolas; Dhillon, Braham; Bohlmann, Jrg; Hamelin, Richard C.

    2013-01-01

    Sexual reproduction in fungi is regulated by the mating-type (MAT) locus where recombination is suppressed. We investigated the evolution of MAT loci in eight fungal species belonging to Grosmannia and Ophiostoma (Sordariomycetes, Ascomycota) that include conifer pathogens and beetle symbionts. The MAT1-2 idiomorph/allele was identified from the assembled and annotated Grosmannia clavigera genome, and the MAT locus is flanked by genes coding for cytoskeleton protein (SLA) and DNA lyase. The synteny of these genes is conserved and consistent with other members in Ascomycota. Using sequences from SLA and flanking regions, we characterized the MAT1-1 idiomorph from other isolates of G. clavigera and performed dotplot analysis between the two idiomorphs. Unexpectedly, the MAT1-2 idiomorph contains a truncated MAT1-1-1 gene upstream of the MAT1-2-1 gene that bears the high-mobility-group domain. The nucleotide and amino acid sequence of the truncated MAT1-1-1 gene is similar to its homologous copy in the MAT1-1 idiomorph in the opposite mating-type isolate, except that positive selection is acting on the truncated gene and the alpha(?)-box that encodes the transcription factor has been deleted. The MAT idiomorphs sharing identical gene organization were present in seven additional species in the Ophiostomatales, suggesting that the presence of truncated MAT1-1-1 gene is a general pattern in this order. We propose that an ancient unequal recombination event resulted in the ancestral MAT1-1-1 gene integrated into the MAT1-2 idiomorph and surviving as the truncated MAT1-1-1 genes. The ?-box domain of MAT1-1-1 gene, located at the same MAT locus adjacent to the MAT1-2-1 gene, could have been removed by deletion after recombination due to mating signal interference. Our data confirmed a 1:1 MAT/sex ratio in two pathogen populations, and showed that all members of the Ophiostomatales studied here including those that were previously deemed asexual have the potential to reproduce sexually. This ability can potentially increase genetic variability and can enhance fitness in new, ecological niches. PMID:23450093

  5. Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada

    PubMed Central

    Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Sterflinger, Katja; Piñar, Guadalupe

    2015-01-01

    Background Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability. Methodology/Principal Findings Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively. Conclusions The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure. PMID:26222040

  6. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    SciTech Connect

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of fungal spores in mixed-phase clouds can decrease the surface annual mean mixing ratios of fungal spores over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.

  7. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to approximately 10 types at 1500 Ma and 50 cell types at approximately 1000 Ma. CONCLUSIONS: The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2-3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity.

  8. Ice nucleation and its effect on the atmospheric transport of fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Pschl, U.; Bertram, A. K.

    2014-02-01

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 C and -29 C, 0.01 between -25.5 C and -31 C, and 0.1 between -26 C and -36 C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. We show that at temperatures below -20 C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and global distributions of these spores in the atmosphere. Simulations show that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions and decrease annual mean mixing ratios in the upper troposphere.

  9. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

    NASA Astrophysics Data System (ADS)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Pschl, U.; Bertram, A. K.

    2014-08-01

    We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 C and -29 C, 0.01 between -25.5 C and -31 C, and 0.1 between -26 C and -31.5 C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ? Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from -20 C to -25 C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in the atmosphere. Simulations suggest that inclusion of ice nucleation scavenging of these fungal spores in mixed-phase clouds can decrease the annual mean concentrations of fungal spores in near-surface air over the oceans and polar regions, and decrease annual mean concentrations in the upper troposphere.

  10. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    PubMed Central

    Parrent, Jeri Lynn; James, Timothy Y; Vasaitis, Rimvydas; Taylor, Andrew FS

    2009-01-01

    Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi exhibit a wide range of ability to access plant-synthesized sucrose. Endophytic fungi are more similar to plant pathogens in their possession of GH32 genes, whereas most genomes of mycorrhizal taxa lack GH32 genes. Reliance on plant GH32 enzyme activity for C acquisition in these symbionts supports earlier predictions of possible plant control over C allocation in the mycorrhizal symbiosis. PMID:19566942

  11. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    PubMed Central

    Hedges, S Blair; Blair, Jaime E; Venturi, Maria L; Shoe, Jason L

    2004-01-01

    Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma. Conclusions The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 23 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity. PMID:15005799

  12. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata.

    PubMed

    Pöppel, Anne-Kathrin; Koch, Aline; Kogel, Karl-Heinz; Vogel, Heiko; Kollewe, Christian; Wiesner, Jochen; Vilcinskas, Andreas

    2014-06-01

    We report the identification, cloning, heterologous expression and functional characterization of a novel antifungal peptide named lucimycin from the common green bottle fly Lucilia sericata. The lucimycin cDNA was isolated from a library of genes induced during the innate immune response in L. sericata larvae, which are used as therapeutic maggots. The peptide comprises 77 amino acid residues with a molecular mass of 8.2 kDa and a pI of 6.6. It is predicted to contain a zinc-binding motif and to form a random coil, lacking β-sheets or other secondary structures. Lucimycin was active against fungi from the phyla Ascomycota, Basidiomycota and Zygomycota, in addition to the oomycete Phytophtora parasitica, but it was inactive against bacteria. A mutant version of lucimycin, lacking the four C-terminal amino acid residues, displayed 40-fold lower activity. The activity of lucimycin against a number of highly-destructive plant pathogens could be exploited to produce transgenic crops that are resistant against fungal diseases. PMID:24622788

  13. Gene fusion, fission, lateral transfer, and loss: Not-so-rare events in the evolution of eukaryotic ATP citrate lyase.

    PubMed

    Gawryluk, Ryan M R; Eme, Laura; Roger, Andrew J

    2015-10-01

    ATP citrate lyase (ACL) is an enzyme critical to the generation of cytosolic acetyl-CoA in eukaryotes. In most studied organisms, ACL activity is conferred in combination by two proteins, ACLA and ACLB (dsACL); however, animals encode a single-subunit ACL (ssACL) - the result of a gene fusion event. Through phylogenetic analyses, we investigated the evolution of ACL in a broad range of eukaryotes, including numerous microbes (protists). We show that the fused form is not restricted to animals, and is instead widely distributed among eukaryotes. Furthermore, ssACL and dsACL are patchily distributed and appear to be mutually exclusive; both types arose early in eukaryotic evolution. Finally, we present several compelling hypotheses of lateral gene transfer and gene loss, along with the secondary gene fission of ssACL in Ascomycota. Collectively, our in-depth analyses suggest that a complex suite of evolutionary events, usually considered rare, has shaped the evolution of ACL in eukaryotes. PMID:26025427

  14. Expanding genomics of mycorrhizal symbiosis

    SciTech Connect

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.

  15. Expanding genomics of mycorrhizal symbiosis

    DOE PAGESBeta

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-11-04

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolvemore » through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.« less

  16. Expanding genomics of mycorrhizal symbiosis

    PubMed Central

    Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  17. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls

    PubMed Central

    Bendall, Matthew L.; Pérez-Losada, Marcos; Sabuncyan, Sarven; Severance, Emily G.; Dickerson, Faith B.; Schroeder, Jennifer R.; Yolken, Robert H.; Crandall, Keith A.

    2015-01-01

    The role of the human microbiome in schizophrenia remains largely unexplored. The microbiome has been shown to alter brain development and modulate behavior and cognition in animals through gut-brain connections, and research in humans suggests that it may be a modulating factor in many disorders. This study reports findings from a shotgun metagenomic analysis of the oropharyngeal microbiome in 16 individuals with schizophrenia and 16 controls. High-level differences were evident at both the phylum and genus levels, with Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria dominating both schizophrenia patients and controls, and Ascomycota being more abundant in schizophrenia patients than controls. Controls were richer in species but less even in their distributions, i.e., dominated by fewer species, as opposed to schizophrenia patients. Lactic acid bacteria were relatively more abundant in schizophrenia, including species of Lactobacilli and Bifidobacterium, which have been shown to modulate chronic inflammation. We also found Eubacterium halii, a lactate-utilizing species. Functionally, the microbiome of schizophrenia patients was characterized by an increased number of metabolic pathways related to metabolite transport systems including siderophores, glutamate, and vitamin B12. In contrast, carbohydrate and lipid pathways and energy metabolism were abundant in controls. These findings suggest that the oropharyngeal microbiome in individuals with schizophrenia is significantly different compared to controls, and that particular microbial species and metabolic pathways differentiate both groups. Confirmation of these findings in larger and more diverse samples, e.g., gut microbiome, will contribute to elucidating potential links between schizophrenia and the human microbiota. PMID:26336637

  18. Spores of many common airborne fungi reveal no ice nucleation activity in oil immersion freezing experiments

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Frhlich-Nowoisky, J.; Grothe, H.

    2013-12-01

    Fungal spores are ubiquitous biological aerosols, which are considered to act as ice nuclei. In this study the ice nucleation (IN) activity of spores harvested from 29 fungal strains belonging to 21 different species was tested in the immersion freezing mode by microscopic observation of water-in-oil emulsions. Spores of 8 of these strains were also investigated in a microdroplet freezing array instrument. The focus was laid on species of economical, ecological or sanitary significance. Besides common molds (Ascomycota), some representatives of the widespread group of mushrooms (Basidiomycota) were also investigated. Fusarium avenaceum was the only sample showing IN activity at relatively high temperatures (about 264 K), while the other investigated fungal spores showed no freezing above 248 K. Many of the samples indeed froze at homogeneous ice nucleation temperatures (about 237 K). In combination with other studies, this suggests that only a limited number of species may act as atmospheric ice nuclei. This would be analogous to what is already known for the bacterial ice nuclei. Apart from that, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during their cultivation. This was in order to test if the exposure to a cold environment encourages the expression of ice nuclei during growth as a way of adaptation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  19. Peptaibols from Two Unidentified Fungi of the Order Hypocreales with Cytotoxic, Antibiotic, and Anthelmintic Activities

    PubMed Central

    Ayers, Sloan; Ehrmann, Brandie M.; Adcock, Audrey F.; Kroll, David J.; Carcache de Blanco, Esperanza J.; Shen, Qi; Swanson, Steven M.; Falkinham, Joseph O.; Wani, Mansukh C.; Mitchell, Sheila M.; Pearce, Cedric J.; Oberlies, Nicholas H.

    2012-01-01

    As part of an ongoing investigation of filamentous fungi for anticancer leads, an active culture was identified from the Mycosynthetix library (MSX 70741, of the order Hypocreales, Ascomycota). The fungal extract exhibited cytotoxic activity against the H460 (human non-small cell lung carcinoma) cell line, and bioactivity-directed fractionation yielded peptaibols 112 and harzianums A (13) and B (14). Structure elucidation of 112 was facilitated by high-resolution MS/MS obtained on a Thermo LTQ Orbitrap XL using Higher-Energy Collisional Dissociation (HCD) and by high field NMR (950 MHz). The absolute configuration was determined by Marfeys analysis of the individual amino acids; the time required for such analysis was decreased via the development of a 10 min UPLC method. The isolated peptaibols (112), along with three other peptaibols isolated and elucidated from a different fungus (MSX 57715) of the same Order (1517), were examined for activity in a suite of biological assays, including those for cytotoxic, antibacterial, and anthelmintic activities. PMID:22744757

  20. Communities of Cultivable Root Mycobionts of the Seagrass Posidonia oceanica in the Northwest Mediterranean Sea Are Dominated by a Hitherto Undescribed Pleosporalean Dark Septate Endophyte.

    PubMed

    Vohnk, Martin; Borovec, Ond?ej; Kola?k, Miroslav

    2016-02-01

    Seagrasses, a small group of submerged marine macrophytes, were reported to lack mycorrhizae, i.e., the root-fungus symbioses most terrestrial plants use for nutrient uptake. On the other hand, several authors detected fungal endophytes in seagrass leaves, shoots, rhizomes, and roots, and an anatomically and morphologically unique dark septate endophytic (DSE) association has been recently described in the roots of the Mediterranean seagrass Posidonia oceanica. Nevertheless, the global diversity of seagrass mycobionts is not well understood, and it remains unclear what fungus forms the DSE association in P. oceanica roots. We isolated and determined P. oceanica root mycobionts from 11 localities in the northwest Mediterranean Sea with documented presence of the DSE association and compared our results with recent literature. The mycobiont communities were low in diversity (only three species), were dominated by a single yet unreported marine fungal species (ca. 90% of the total 177 isolates), and lacked common terrestrial and freshwater root mycobionts. Our phylogenetic analysis suggests that the dominating species represents a new monotypic lineage within the recently described Aigialaceae family (Pleosporales, Ascomycota), probably representing a new genus. Most of its examined colonies developed from intracellular microsclerotia occupying host hypodermis and resembling microsclerotia of terrestrial DSE fungi. Biological significance of this hitherto overlooked seagrass root mycobiont remains obscure, but its presence across the NW Mediterranean Sea and apparent root intracellular lifestyle indicate an intriguing symbiotic relationship with the dominant Mediterranean seagrass. Our microscopic observations suggest that it may form the DSE association recently described in P. oceanica roots. PMID:26093964

  1. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    PubMed

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure. PMID:26194722

  2. Fungal Diversity in Deep-Sea Hydrothermal Ecosystems?

    PubMed Central

    Le Calvez, Thomas; Burgaud, Gatan; Mah, Stphane; Barbier, Georges; Vandenkoornhuyse, Philippe

    2009-01-01

    Deep-sea hydrothermal ecosystems are considered oases of life in oceans. Since the discovery of these ecosystems in the late 1970s, many endemic species of Bacteria, Archaea, and other organisms, such as annelids and crabs, have been described. Considerable knowledge has been acquired about the diversity of (micro)organisms in these ecosystems, but the diversity of fungi has not been studied to date. These organisms are considered key organisms in terrestrial ecosystems because of their ecological functions and especially their ability to degrade organic matter. The lack of knowledge about them in the sea reflects the widely held belief that fungi are terrestrial organisms. The first inventory of such organisms in deep-sea hydrothermal environments was obtained in this study. Fungal diversity was investigated by analyzing the small-subunit rRNA gene sequences amplified by culture-independent PCR using DNA extracts from hydrothermal samples and from a culture collection that was established. Our work revealed an unsuspected diversity of species in three of the five fungal phyla. We found a new branch of Chytridiomycota forming an ancient evolutionary lineage. Many of the species identified are unknown, even at higher taxonomic levels in the Chytridiomycota, Ascomycota, and Basidiomycota. This work opens the way to new studies of the diversity, ecology, and physiology of fungi in oceans and might stimulate new prospecting for biomolecules. From an evolutionary point of view, the diversification of fungi in the oceans can no longer be ignored. PMID:19633124

  3. Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study

    PubMed Central

    Slot, Jason C.; Hibbett, David S.

    2007-01-01

    High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the selfish operon hypothesis for maintenance of gene clusters. PMID:17971860

  4. Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens

    PubMed Central

    Rahnamaeian, Mohammad; Langen, Gregor; Imani, Jafargholi; Khalifa, Walaa; Altincicek, Boran; von Wettstein, Diter; Kogel, Karl-Heinz; Vilcinskas, Andreas

    2009-01-01

    The potential of metchnikowin, a 26-amino acid residue proline-rich antimicrobial peptide synthesized in the fat body of Drosophila melanogaster was explored to engineer disease resistance in barley against devastating fungal plant pathogens. The synthetic peptide caused strong in vitro growth inhibition (IC50 value ?1 ?M) of the pathogenic fungus Fusarium graminearum. Transgenic barley expressing the metchnikowin gene in its 52-amino acid pre-pro-peptide form under the control of the inducible mannopine synthase (mas) gene promoter from the Ti plasmid of Agrobacterium tumefaciens displayed enhanced resistance to powdery mildew as well as Fusarium head blight and root rot. In response to these pathogens, metchnikowin accumulated in plant apoplastic space, specifying that the insect signal peptide is functional in monocotyledons. In vitro and in vivo tests revealed that the peptide is markedly effective against fungal pathogens of the phylum Ascomycota but, clearly, less active against Basidiomycota fungi. Importantly, germination of the mutualistic basidiomycete mycorrhizal fungus Piriformospora indica was affected only at concentrations beyond 50 ?M. These results suggest that antifungal peptides from insects are a valuable source for crop plant improvements and their differential activities toward different phyla of fungi denote a capacity for insect peptides to be used as selective measures on specific plant diseases. PMID:19734262

  5. Fungal life in the dead sea.

    PubMed

    Oren, Aharon; Gunde-Cimerman, Nina

    2012-01-01

    The waters of the Dead Sea currently contain about 348 g/l salts (2 M Mg(2+), 0.5 M Ca(2+), 1.5 M Na(+), 0.2 M K(+), 6.5 M Cl(-), 0.1 M Br(-)). The pH is about 6.0. After rainy winters the surface waters become diluted, triggering development of microbial blooms. The 1980 and 1992 blooms were dominated by the unicellular green alga Dunaliella and red Archaea. At least 70 species (in 26 genera) of Oomycota (Chromista), Mucoromycotina, Ascomycota, and Basidiomycota (Fungi) were isolated from near-shore localities and offshore stations, including from deep waters. Aspergillus and Eurotium were most often recovered. Aspergillus terreus, A. sydowii, A. versicolor, Eurotium herbariorum, Penicillium westlingii, Cladosporium cladosporioides, C. sphaerospermum, C. ramnotellum, and C. halotolerans probably form the stable core of the community. The species Gymnascella marismortui may be endemic. Mycelia of Dead Sea isolates of A. versicolor and Chaetomium globosum remained viable for up to 8 weeks in Dead Sea water; mycelia of other species survived for many weeks in 50% Dead Sea water. Many isolates showed a very high tolerance to magnesium salts. There is no direct proof that fungi contribute to the heterotrophic activity in the Dead Sea, but fungi may be present at least locally and temporarily, and their enzymatic activities such as amylase, protease, and cellulase may play a role in the lake's ecosystem. PMID:22222829

  6. Unravelling the diversity of grapevine microbiome.

    PubMed

    Pinto, Ctia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceio; Gomes, Ana C

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines. PMID:24454903

  7. Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils

    PubMed Central

    Pereira de Castro, Alinne; Sartori da Silva, Maria Regina Silveira; Quirino, Betania Ferraz; da Cunha Bustamante, Mercedes Maria; Krüger, Ricardo Henrique

    2016-01-01

    The Cerrado, the largest savanna region in South America, is located in central Brazil. Cerrado physiognomies, which range from savanna grasslands to forest formations, combined with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study, high-throughput sequencing of ribosomal RNA genes was combined with shotgun metagenomic analysis to explore the taxonomic composition and potential functions of soil microbial communities in four different vegetation physiognomies during both dry and rainy seasons. Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils strongly correlated with seasonal patterns of soil water uptake. The relative abundance of AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased in the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota increased. In addition, analysis of shotgun metagenomic data revealed a significant increase in the relative abundance of genes associated with iron acquisition and metabolism, dormancy, and sporulation during the dry season, and an increase in the relative abundance of genes related to respiration and DNA and protein metabolism during the rainy season. These gene functional categories are associated with adaptation to water stress. Our results further the understanding of how tropical savanna soil microbial communities may be influenced by vegetation covering and temporal variations in soil moisture. PMID:26849674

  8. Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan

    PubMed Central

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  9. Profiling Microbial Communities in Manganese Remediation Systems Treating Coal Mine Drainage

    PubMed Central

    Hansel, Colleen M.; Burgos, William D.

    2015-01-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  10. 454-Pyrosequencing Reveals Variable Fungal Diversity Across Farming Systems

    PubMed Central

    Kazeeroni, Elham A.; Al-Sadi, Abdullah M.

    2016-01-01

    Oasis farming system is common in some parts of the world, especially in the Arabian Peninsula and several African countries. In Oman, the farming system in the majority of farms follows a semi-oasis farming (SOF) system, which is characterized by growing multiple crops mainly for home consumption, but also for local market. This study was conducted to investigate fungal diversity using pyrosequencing approach in soils from a farm utilizing a SOF system which is cultivated with date palms, acid limes and cucumbers. Fungal diversity from this farm was compared to that from an organic farm (OR) growing cucumbers and tomatoes. Fungal diversity was found to be variable among different crops in the same farm. The observed OTUs, Chao1 richness estimates and Shannon diversity values indicated that soils from date palms and acid limes have higher fungal diversity compared to soil from cucumbers (SOF). In addition, they also indicated that the level of fungal diversity is higher in the rhizosphere of cucumbers grown in OR compared to SOF. Ascomycota was the most dominant phylum in most of the samples from the OR and SOF farms. Other dominant phyla are Microsporidia, Chytridiomycota, and Basidiomycota. The differential level of fungal diversity within the SOF could be related to the variation in the cultural practices employed for each crop. PMID:27014331

  11. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    PubMed

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  12. Culturable endophytic microbial communities in the circumpolar grass, Deschampsia flexuosa in a sub-Arctic inland primary succession are habitat and growth stage specific.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2015-02-01

    Little is known about endophytic microbes in cold climate plants and how their communities are formed.We compared culturable putative endophytic bacteria and fungi in the ecologically important circumpolargrass, Deschampsia flexuosa growing in two successional stages of subarctic sand dune (68°29′N).Sequence analyses of partial 16S rRNA and internal transcribed spacer (ITS) sequences of culturable endophytes showed that diverse bacteria and fungi inhabit different tissues of D. flexuosa. A total of 178 bacterial isolates representing seven taxonomic divisions, Alpha, Beta and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria, and 30 fungal isolates representing the phylum Ascomycota were identified. Several endophytes were affiliated with specific plant tissues or successional stages. This first report of bacterial endophytes in D. flexuosa revealed that the genus Pseudomonas is tightly associated with D. flexuosa, and encompassed 39% of the bacterial isolates, and 58% of seed isolates. Based on 16S rRNA and ITS sequence data, most of the D. flexuosa endophytes were closely related to microbes from other cold environments. The majority of seed endophytic bacterial isolates were able to solubilize organic form of phosphate suggesting that these endophytes could play a role in resource mobilization in germinating seeds in nutrient-poor habitat. PMID:25721603

  13. A novel sponge disease caused by a consortium of micro-organisms

    NASA Astrophysics Data System (ADS)

    Sweet, Michael; Bulling, Mark; Cerrano, Carlo

    2015-09-01

    In healthy sponges, microbes have been shown to account for up to 40 % of tissues. The majority of these are thought to originate from survivors evading digestion and immune responses of the sponge and growing and residing in the microenvironments of the mesophyll. Although a large percentage of these microbes are likely commensals, they may also include potentially pathogenic agents, which under specific conditions, such as temperature stress, may cause disease. Here we report a novel disease (sponge necrosis syndrome) that is severely affecting populations of the sponge Callyspongia ( Euplacella) aff biru. Both ITS fungal and 16S rDNA bacterial diversities were assessed in healthy and diseased individuals, highlighting six potential primary causal agents for this new disease: two bacteria, a Rhodobacteraceae sp. and a cyanobacterium, Hormoscilla spongeliae (formally identified as Oscillatoria spongeliae), and four fungi, a Ascomycota sp., a Pleosporales sp., a Rhabdocline sp., and a Clasosporium sp. Furthermore, histological analysis showed the dominance of fungal hyphae rather than bacteria throughout the disease lesion, which was absent or rare in healthy tissues. Inoculation trails showed that only a combination of one bacterium and one fungus could replicate the disease, fulfilling Henle-Koch's postulates and showing that this sponge disease is caused by a poly-microbial consortium.

  14. Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoa haddoni in the South China Sea.

    PubMed

    Qin, Xiao-Yan; Yang, Kai-Lin; Li, Jing; Wang, Chang-Yun; Shao, Chang-Lun

    2015-02-01

    Investigation on diversity of culturable fungi mainly focused on sponges and corals, yet little attention had been paid to the fungal communities associated with zoanthid corals. In this study, a total of 193 culturable fungal strains were isolated from the zoanthid Palythoa haddoni collected in the South China Sea, of which 49 independent isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analyses. Thirty-five strains were selected for phylogenetic analysis based on fungal ITS sequences. The results indicated that 18 genera within eight taxonomic orders of two phyla (seven orders of the phylum Ascomycota and one order of the phylum Basidiomycota) together with one unidentified fungal strain have been achieved, and Cladosporium sp. represented the dominant culturable genus. Particularly, 14 genera were isolated from a zoanthid for the first time. The antibacterial activities of organic extracts of mycelia and fermentation broth of 49 identified fungi were evaluated, and 29 (59.2 %) of the isolates displayed broad-spectrum or selective antibacterial activity. More interestingly, more than 60 % of the active fungal strains showed strong activity against two aquatic pathogenic bacteria Nocardia brasiliensis and Vibrio parahaemolyticus, compared with other pathogenic bacteria, indicating that zoanthid-derived fungi may protect its host against pathogens. This is the first report of systematically phylogenetic diversity and extensively antibacterial activity of zoanthid-derived fungi. PMID:25117478

  15. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea.

    PubMed

    Ding, Bo; Yin, Ying; Zhang, Fengli; Li, Zhiyong

    2011-08-01

    Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge-fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production. PMID:21088979

  16. Systematic Search for Cultivatable Fungi That Best Deconstruct Cell Walls of Miscanthus and Sugarcane in the Field ?

    PubMed Central

    Shrestha, Prachand; Szaro, Timothy M.; Bruns, Thomas D.; Taylor, John W.

    2011-01-01

    The goals of our project were to document the diversity and distributions of cultivable fungi associated with decaying Miscanthus and sugarcane plants in nature and to further assess biodegradation of host plant cell walls by these fungi in pure cultures. Late in 2008 and early in 2009 we collected decaying Miscanthus and Saccharum from 8 sites in Illinois and 11 sites in Louisiana, respectively. To recover fungi that truly decay plants and to recover slow-growing fungi, we washed the plant material repeatedly to remove spores and cultivated fungi from plant fragments small enough to harbor at most one mycelium. We randomly selected 950 fungal colonies out of 4,560 microwell colonies and used molecular identification to discover that the most frequently recovered fungal species resided in Hypocreales (Sordariomycetes), Pleosporales (Dothideomycetes), and Chaetothryiales (Eurotiomycetes) and that only a few weedy species were recovered. We were particularly interested in Pleosporales and Chaetothyriales, groups that have not been mined for plant decay fungi. To confirm that we had truly recovered fungi that deconstruct plant cell walls, we assayed the capacity of the fungi to consume whole, alkali-pretreated, ground Miscanthus. Solid substrate cultures of the nine most commonly encountered Ascomycota resulted in Miscanthus weight loss of 8 to 13% over 4 weeks. This is the first systematic, high-throughput, isolation and biodegradation assessment of fungi isolated from decaying bioenergy grasses. PMID:21685162

  17. The genome of Xylona heveae provides a window into fungal endophytism.

    PubMed

    Gazis, Romina; Kuo, Alan; Riley, Robert; LaButti, Kurt; Lipzen, Anna; Lin, Junyan; Amirebrahimi, Mojgan; Hesse, Cedar N; Spatafora, Joseph W; Henrissat, Bernard; Hainaut, Matthieu; Grigoriev, Igor V; Hibbett, David S

    2016-01-01

    Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to understand the genetic basis of endophytism, we compared the genome contents of X. heveae and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on genes that are known to be important in the host-fungus interaction interface and that presumably have a role in determining the lifestyle of a fungus. We used phylogenomic data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS sequences to explore its taxonomic and ecological diversity. The X. heveae genome contains a low number of enzymes needed for plant cell wall degradation, suggesting that Xylona is a highly adapted specialist and likely dependent on its host for survival. The reduced repertoire of carbohydrate active enzymes could reflect an adaptation to intercellulary growth and to the avoidance of the host's immune system, suggesting that Xylona has a strictly endophytic lifestyle. Phylogenomic data resolved the position of Xylonomycetes as sister to Lecanoromycetes and Eurotiomycetes and placed the beetle-endosymbiont Symbiotaphrina as a member of this class. ITS data revealed that Trinosporium is also part of the Xylonomycetes, extending the taxonomic and ecological diversity of this group. PMID:26693682

  18. Molecular characterization of microbial communities in bioaerosols of a coal mine by 454 pyrosequencing and real-time PCR.

    PubMed

    Wei, Min; Yu, Zhisheng; Zhang, Hongxun

    2015-04-01

    Microbial diversity and abundance in bioaerosols of a coal mine were analyzed based on 454 pyrosequencing and real-time polymerase chain reaction (PCR). A total of 37,191 high quality sequences were obtained and could be classified into 531, 1730 and 448 operational taxonomic units respectively for archaea, bacteria and fungi at 97% sequence similarity. The Shannon diversity index for archaea, bacteria and fungi was respectively 4.71, 6.29 and 3.86, indicating a high diversity in coal mine bioaerosols. Crenarchaeota, Proteobacteria and Ascomycota were the dominant phyla for archaea, bacteria and fungi, respectively. The concentrations of total archaea, bacteria and fungi were 1.4410(8), 1.0210(8) and 9.6010(4) cells/m3, respectively. Methanotrophs observed in bioaerosols suggested possible methane oxidation in the coal mine. The identified potential pathogens to coal miners, such as Acinetobacter schindleri, Aeromonas cavernicola, Alternaria alternata, Aspergillus penicillioides, Cladosporium cladosporioides, and Penicillium brevicompactum were also observed. This was the first investigation of microbial diversity and abundance in coal mine bioaerosols. The investigation of microbial communities would be favorable in promoting the progress of methane control based on microbial technique and concern on coal miners' health. PMID:25872733

  19. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    PubMed Central

    Eichorst, Stephanie A.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the 13C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or 12C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the 13C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  20. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  1. Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis

    PubMed Central

    2014-01-01

    Background Changes in respiratory tract microbiota have been associated with diseases such as tuberculosis, a global public health problem that affects millions of people each year. This pilot study was carried out using sputum, oropharynx, and nasal respiratory tract samples collected from patients with pulmonary tuberculosis and healthy control individuals, in order to compare sample types and their usefulness in assessing changes in bacterial and fungal communities. Findings Most V1-V2 16S rRNA gene sequences belonged to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria, with differences in relative abundances and in specific taxa associated with each sample type. Most fungal ITS1 sequences were classified as Ascomycota and Basidiomycota, but abundances differed for the different samples. Bacterial and fungal community structures in oropharynx and sputum samples were similar to one another, as indicated by several beta diversity analyses, and both differed from nasal samples. The only difference between patient and control microbiota was found in oropharynx samples for both bacteria and fungi. Bacterial diversity was greater in sputum samples, while fungal diversity was greater in nasal samples. Conclusions Respiratory tract microbial communities were similar in terms of the major phyla identified, yet they varied in terms of relative abundances and diversity indexes. Oropharynx communities varied with respect to health status and resembled those in sputum samples, which are collected from tuberculosis patients only due to the difficulty in obtaining sputum from healthy individuals, suggesting that oropharynx samples can be used to analyze community structure alterations associated with tuberculosis. PMID:25225609

  2. Tasting Soil Fungal Diversity with Earth Tongues: Phylogenetic Test of SAT Alignments for Environmental ITS Data

    PubMed Central

    Wang, Zheng; Nilsson, R. Henrik; Lopez-Giraldez, Francesc; Zhuang, Wen-ying; Dai, Yu-cheng; Johnston, Peter R.; Townsend, Jeffrey P.

    2011-01-01

    An abundance of novel fungal lineages have been indicated by DNA sequencing of the nuclear ribosomal ITS region from environmental samples such as soil and wood. Although phylogenetic analysis of these novel lineages is a key component of unveiling the structure and diversity of complex communities, such analyses are rare for environmental ITS data due to the difficulties of aligning this locus across significantly divergent taxa. One potential approach to this issue is simultaneous alignment and tree estimation. We targeted divergent ITS sequences of the earth tongue fungi (Geoglossomycetes), a basal class in the Ascomycota, to assess the performance of SAT, recent software that combines progressive alignment and tree building. We found that SAT performed well in generating high-quality alignments and in accurately estimating the phylogeny of earth tongue fungi. Drawing from a data set of 300 sequences of earth tongues and progressively more distant fungal lineages, 30 insufficiently identified ITS sequences from the public sequence databases were assigned to the Geoglossomycetes. The association between earth tongues and plants has been hypothesized for a long time, but hard evidence is yet to be collected. The ITS phylogeny showed that four ectomycorrhizal isolates shared a clade with Geoglossum but not with Trichoglossum earth tongues, pointing to the significant potential inherent to ecological data mining of environmental samples. Environmental sampling holds the key to many focal questions in mycology, and simultaneous alignment and tree estimation, as performed by SAT, can be a highly efficient companion in that pursuit. PMID:21533038

  3. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages

    PubMed Central

    2010-01-01

    Background The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an agent of the biological control in the field, we investigated the phylogenetic structure of the species. Results Using DNA sequence data from three unlinked loci for each of 93 strains collected worldwide, we detected a complex speciation process revealing overlapping reproductively isolated biological species, recent agamospecies and numerous relict lineages with unresolved phylogenetic positions. Genealogical concordance and recombination analyses confirm the existence of two genetically isolated agamospecies including T. harzianum sensu stricto and two hypothetical holomorphic species related to but different from H. lixii. The exact phylogenetic position of the majority of strains was not resolved and therefore attributed to a diverse network of recombining strains conventionally called 'pseudoharzianum matrix'. Since H. lixii and T. harzianum are evidently genetically isolated, the anamorph - teleomorph combination comprising H. lixii/T. harzianum in one holomorph must be rejected in favor of two separate species. Conclusions Our data illustrate a complex speciation within H. lixii - T. harzianum species group, which is based on coexistence and interaction of organisms with different evolutionary histories and on the absence of strict genetic borders between them. PMID:20359347

  4. A higher-level phylogenetic classification of the Fungi.

    PubMed

    Hibbett, David S; Binder, Manfred; Bischoff, Joseph F; Blackwell, Meredith; Cannon, Paul F; Eriksson, Ove E; Huhndorf, Sabine; James, Timothy; Kirk, Paul M; Lcking, Robert; Thorsten Lumbsch, H; Lutzoni, Franois; Matheny, P Brandon; McLaughlin, David J; Powell, Martha J; Redhead, Scott; Schoch, Conrad L; Spatafora, Joseph W; Stalpers, Joost A; Vilgalys, Rytas; Aime, M Catherine; Aptroot, Andr; Bauer, Robert; Begerow, Dominik; Benny, Gerald L; Castlebury, Lisa A; Crous, Pedro W; Dai, Yu-Cheng; Gams, Walter; Geiser, David M; Griffith, Gareth W; Gueidan, Ccile; Hawksworth, David L; Hestmark, Geir; Hosaka, Kentaro; Humber, Richard A; Hyde, Kevin D; Ironside, Joseph E; Kljalg, Urmas; Kurtzman, Cletus P; Larsson, Karl-Henrik; Lichtwardt, Robert; Longcore, Joyce; Miadlikowska, Jolanta; Miller, Andrew; Moncalvo, Jean-Marc; Mozley-Standridge, Sharon; Oberwinkler, Franz; Parmasto, Erast; Reeb, Valrie; Rogers, Jack D; Roux, Claude; Ryvarden, Leif; Sampaio, Jos Paulo; Schssler, Arthur; Sugiyama, Junta; Thorn, R Greg; Tibell, Leif; Untereiner, Wendy A; Walker, Christopher; Wang, Zheng; Weir, Alex; Weiss, Michael; White, Merlin M; Winka, Katarina; Yao, Yi-Jian; Zhang, Ning

    2007-05-01

    A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae. The most dramatic shifts in the classification relative to previous works concern the groups that have traditionally been included in the Chytridiomycota and Zygomycota. The Chytridiomycota is retained in a restricted sense, with Blastocladiomycota and Neocallimastigomycota representing segregate phyla of flagellated Fungi. Taxa traditionally placed in Zygomycota are distributed among Glomeromycota and several subphyla incertae sedis, including Mucoromycotina, Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. Microsporidia are included in the Fungi, but no further subdivision of the group is proposed. Several genera of 'basal' Fungi of uncertain position are not placed in any higher taxa, including Basidiobolus, Caulochytrium, Olpidium, and Rozella. PMID:17572334

  5. A five-year survey of dematiaceous fungi in a tropical hospital reveals potential opportunistic species.

    PubMed

    Yew, Su Mei; Chan, Chai Ling; Lee, Kok Wei; Na, Shiang Ling; Tan, Ruixin; Hoh, Chee-Choong; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-01-01

    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ? 1 g/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 g/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance. PMID:25098697

  6. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens.

    PubMed

    Soltani, Jalal; Hosseyni Moghaddam, Mahdieh S

    2015-04-01

    Fungal endophytes were isolated from the Mediterranean cypress Cupressus sempervirens. Eleven taxa of fungi, all within the Ascomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. The endophytic fungi included Alternaria multiformis, Didymella sp., Phoma sp., Phoma herbarum, Pyrenochaeta sp. (Dothideomycetes), Penicillium brevicompactum, Talaromyces sp. (Eurotiomycetes), Ascorhizoctonia sp. (Pezizomycetes), Thielavia microspora, and Thielavia spp. (Sordariomycetes). Considering the former findings in US, this indicates that similar ascomycetous classes of fungi, all from Pezizomycotina, associate with the healthy Cupressaceous trees in Iran. The recovered endophytes produced antifungal and antiproliferative metabolites which may contribute to the protection and survival of the host. We speculate that endophyte-infected C. sempervirens may benefit from their fungal associates by their influence on the ecology and biotic stress tolerance of the host plant. Moreover, a novel niche for the identified fungal species is being introduced. PMID:25527365

  7. Marine Drugs from Sponge-Microbe Association—A Review

    PubMed Central

    Thomas, Tresa Remya A.; Kavlekar, Devanand P.; LokaBharathi, Ponnapakkam A.

    2010-01-01

    The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php. PMID:20479984

  8. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing

    PubMed Central

    Zhang, Tao; Wei, Xin-Li; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2015-01-01

    This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic. PMID:26463847

  9. Effects of natural hybrid and non-hybrid Epichlo endophytes on the response of Hordelymus europaeus to drought stress.

    PubMed

    Oberhofer, Martina; Gsewell, Sabine; Leuchtmann, Adrian

    2014-01-01

    Interspecific hybrid endophytes of the genus Epichlo (Ascomycota, Clavicipitaceae) are prevalent in wild grass populations, possibly because of their larger gene variation, resulting in increased fitness benefits for host plants; however, the reasons are not yet known. We tested hypotheses regarding niche expansion mediated by hybrid endophytes, population-dependent interactions and local co-adaptation in the woodland grass Hordelymus europaeus, which naturally hosts both hybrid and non-hybrid endophyte taxa. Seedlings derived from seeds of four grass populations made endophyte free were re-inoculated with hybrid or non-hybrid endophyte strains, or left endophyte free. Plants were grown in the glasshouse with or without drought treatment. Endophyte infection increased plant biomass and tiller production by 10-15% in both treatments. Endophyte types had similar effects on growth, but opposite effects on reproduction: non-hybrid endophytes increased seed production, whereas hybrid endophytes reduced or prevented it completely. The results are consistent with the observation that non-hybrid endophytes in H. europaeus prevail at dry sites, but cannot explain the prevalence of hybrid endophytes. Thus, our results do not support the hypothesis of niche expansion of hybrid-infected plants. Moreover, plants inoculated with native relative to foreign endophytes yielded higher infections, but both showed similar growth and survival, suggesting weak co-adaptation. PMID:24102453

  10. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

    PubMed Central

    Linnakoski, Riikka; de Beer, Z. Wilhelm; Niemelä, Pekka; Wingfield, Michael J.

    2012-01-01

    Bark beetles (Coleoptera, Scolytinae) have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota) that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them. PMID:26467956

  11. Phylogenetic analysis of DNA and RNA polymerases from a Moniliophthora perniciosa mitochondrial plasmid reveals probable lateral gene transfer.

    PubMed

    Andrade, B S; Ges-Neto, A

    2015-01-01

    The filamentous fungus Moniliophthora perniciosa is a hemibiotrophic basidiomycete that causes witches' broom disease of cacao (Theobroma cacao L.). Many fungal mitochondrial plasmids are DNA and RNA polymerase-encoding invertrons with terminal inverted repeats and 5'-linked proteins. The aim of this study was to carry out comparative and phylogenetic analyses of DNA and RNA polymerases for all known linear mitochondrial plasmids in fungi. We performed these analyses at both gene and protein levels and assessed differences between fungal and viral polymerases in order to test the lateral gene transfer (LGT) hypothesis. We analyzed all mitochondrial plasmids of the invertron type within the fungal clade, including five from Ascomycota, seven from Basidiomycota, and one from Chytridiomycota. All phylogenetic analyses generated similar tree topologies regardless of the methods and datasets used. It is likely that DNA and RNA polymerase genes were inserted into the mitochondrial genomes of the 13 fungal species examined in our study as a result of different LGT events. These findings are important for a better understanding of the evolutionary relationships between fungal mitochondrial plasmids. PMID:26535725

  12. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales

    PubMed Central

    Luo, Jing; Qiu, Huan; Cai, Guohong; Wagner, Nicole E.; Bhattacharya, Debashish; Zhang, Ning

    2015-01-01

    The order Magnaporthales (Ascomycota, Fungi) includes devastating pathogens of cereals, such as the rice blast fungus Pyricularia (Magnaporthe) oryzae, which is a model in host-pathogen interaction studies. Magnaporthales also includes saprotrophic species associated with grass roots and submerged wood. Despite its scientific and economic importance, the phylogenetic position of Magnaporthales within Sordariomycetes and the interrelationships of its constituent taxa, remain controversial. In this study, we generated novel transcriptome data from 21 taxa that represent key Magnaporthales lineages of different infection and nutrition modes and phenotypes. Phylogenomic analysis of >200 conserved genes allowed the reconstruction of a robust Sordariomycetes tree of life that placed the monophyletic group of Magnaporthales sister to Ophiostomatales. Among Magnaporthales, three major clades were recognized: 1) an early diverging clade A comprised of saprotrophs associated with submerged woods; 2) clade B that includes the rice blast fungus and other pathogens that cause blast diseases of monocot plants. These species infect the above-ground tissues of host plants using the penetration structure, appressorium; and 3) clade C comprised primarily of root-associated species that penetrate the root tissue with hyphopodia. The well-supported phylogenies provide a robust framework for elucidating evolution of pathogenesis, nutrition modes, and phenotypic characters in Magnaporthales. PMID:25819715

  13. Pyrosequencing reveals fungal communities in the rhizosphere of Xinjiang Jujube.

    PubMed

    Liu, Peng; Wang, Xiao-Hui; Li, Jian-Gui; Qin, Wei; Xiao, Cheng-Ze; Zhao, Xu; Jiang, Hong-Xia; Sui, Jun-Kang; Sa, Rong-Bo; Wang, Wei-Yan; Liu, Xun-Li

    2015-01-01

    Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS) rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA) revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research. PMID:25685820

  14. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  15. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  16. Positive selection in phytotoxic protein-encoding genes of Botrytis species.

    PubMed

    Staats, Martijn; van Baarlen, Peter; Schouten, Alexander; van Kan, Jan A L; Bakker, Freek T

    2007-01-01

    Evolutionary patterns of sequence divergence were analyzed in genes from the fungal genus Botrytis (Ascomycota), encoding phytotoxic proteins homologous to a necrosis and ethylene-inducing protein from Fusarium oxysporum. Fragments of two paralogous genes (designated NEP1 and NEP2) were amplified from all known Botrytis species and sequenced. NEP1 sequences of two Botrytis species contain premature stop codons, indicating that they may be non-functional. Both paralogs of all species encode proteins with a remarkably similar predicted secondary structure, however, they contain different types of post-translational modification motifs, which are conserved across the genus. While both NEP genes are, overall, under purifying selection, we identified a number of amino acids under positive selection based on inference using maximum likelihood models. Positively selected amino acids in NEP1 were not under selection in corresponding positions in NEP2. The biological significance of positively selected residues and the role of NEP proteins in pathogenesis remain to be resolved. PMID:16935013

  17. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ? 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance. PMID:21993713

  18. Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China.

    PubMed

    Meng, Han; Li, Ke; Nie, Ming; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Gu, Ji-Dong; Li, Bo

    2013-03-01

    Bacteria and fungi are ecologically important contributors to various functioning of forest ecosystems. In this study, we examined simultaneously the bacterial and fungal distributions in response to elevation changes of a forest. By using clone library analysis from genomic DNA extracted from forest humic clay soils, the composition and diversity of bacterial and fungal communities were determined across an elevation gradient from low via medium to high, in a subtropical forest in the Mountain Lushan, China. Our results showed that soil water content and nutrient availability, specifically total carbon, differed significantly with elevation changes. Although the soil acidity did not differ significantly among the three sites, low pH (around 4) could be an important selection factor selecting for acidophilic Acidobacteria and Alphaproteobacteria, which were the most abundant bacterial clones. As the majority of the fungi recovered, both Basidiomycota and Ascomycota, and their relative abundance were most closely associated with the total carbon. Based on the Shannon-Weaver diversity index and ?-libshuff analysis, the soil at medium elevation contained the highest diversity of bacteria compared with those at high and low elevations. However, it is difficult to predict overall fungal diversity along elevation. The extreme high soil moisture content which may lead to the formation of anaerobic microhabitats in the forest soils potentially reduces the overall bacterial and fungal diversity. PMID:22539023

  19. Root-associated fungi of Vaccinium carlesii in subtropical forests of China: intra- and inter-annual variability and impacts of human disturbances

    PubMed Central

    Zhang, Yanhua; Ni, Jian; Tang, Fangping; Pei, Kequan; Luo, Yiqi; Jiang, Lifen; Sun, Lifu; Liang, Yu

    2016-01-01

    Ericoid mycorrhiza (ERM) are expected to facilitate establishment of ericaceous plants in harsh habitats. However, diversity and driving factors of the root-associated fungi of ericaceous plants are poorly understood. In this study, hair-root samples of Vaccinium carlesii were taken from four forest types: old growth forests (OGF), secondary forests with once or twice cutting (SEC I and SEC II), and Cunninghamia lanceolata plantation (PLF). Fungal communities were determined using high-throughput sequencing, and impacts of human disturbances and the intra- and inter-annual variability of root-associated fungal community were evaluated. Diverse fungal taxa were observed and our results showed that (1) Intra- and inter-annual changes in root-associated fungal community were found, and the Basidiomycota to Ascomycota ratio was related to mean temperature of the sampling month; (2) Human disturbances significantly affected structure of root-associated fungal community of V. carlesii, and two secondary forest types were similar in root-associated fungal community and were closer to that of the old growth forest; (3) Plant community composition, edaphic parameters, and geographic factors significantly affected root-associated fungal communities of V. carlesii. These results may be helpful in better understanding the maintenance mechanisms of fungal diversity associated with hair roots of ERM plants under human disturbances. PMID:26928608

  20. Blackpatch of Clover, Cause of Slobbers Syndrome: A Review of the Disease and the Pathogen, Rhizoctonia leguminicola.

    PubMed

    Kagan, Isabelle A

    2016-01-01

    Rhizoctonia leguminicola Gough and Elliott is a widely used name for the causal agent of blackpatch disease of red clover (Trifolium pratense L.). This fungal pathogen produces alkaloids (slaframine and swainsonine) that affect grazing mammals. Slaframine causes livestock to salivate profusely, and swainsonine causes neurological problems. Although the blackpatch fungus was classified as a Rhizoctonia species (phylum Basidiomycota), morphological studies have indicated that it is in the phylum Ascomycota, and sequencing data have indicated that it may be a new genus of ascomycete. The effects of the alkaloids on grazing mammals and their biosynthetic pathways have been extensively studied. In contrast, few studies have been done on management of the disease, which requires a greater understanding of the pathogen. Methods of disease management have included seed treatments and fungicides, but these have not been investigated since the 1950s. Searches for resistant cultivars have been limited. This review summarizes the biological effects and biosynthetic precursors of slaframine and swainsonine. Emphasis is placed on current knowledge about the epidemiology of blackpatch disease and the ecology and taxonomy of the pathogen. Possibilities for future research and disease management efforts are suggested. PMID:26858953

  1. Fungal Alternative Splicing is Associated with Multicellular Complexity and Virulence: A Genome-Wide Multi-Species Study

    PubMed Central

    Grützmann, Konrad; Szafranski, Karol; Pohl, Martin; Voigt, Kerstin; Petzold, Andreas; Schuster, Stefan

    2014-01-01

    Alternative splicing (AS) is a cellular process that increases a cell's coding capacity from a limited set of genes. Although AS is common in higher plants and animals, its prevalence in other eukaryotes is mostly unknown. In fungi the involvement of AS in gene expression and its effect on multi-cellularity and virulence is of great medical and economic interest. We present a genome-wide comparative study of AS in 23 informative fungi of different taxa, based on alignments of public transcript sequences. Random sampling of expressed sequence tags allows for robust and comparable estimations of AS rates. We find that a greater fraction of fungal genes than previously expected is associated with AS. We estimate that on average, 6.4% of the annotated genes are affected by AS, with Cryptococcus neoformans showing an extraordinary rate of 18%. The investigated Basidiomycota show higher average AS rates (8.6%) than the Ascomycota (6.0%), although not significant. We find that multi-cellular complexity and younger evolutionary age associate with higher AS rates. Furthermore, AS affects genes involved in pathogenic lifestyle, particularly in functions of stress response and dimorphic switching. Together, our analysis strongly supports the view that AS is a rather common phenomenon in fungi and associates with higher multi-cellular complexity. PMID:24122896

  2. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    PubMed

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  3. A functional selection model explains evolutionary robustness despite plasticity in regulatory networks

    PubMed Central

    Habib, Naomi; Wapinski, Ilan; Margalit, Hanah; Regev, Aviv; Friedman, Nir

    2012-01-01

    Evolutionary rewiring of regulatory networks is an important source of diversity among species. Previous evidence suggested substantial divergence of regulatory networks across species. However, systematically assessing the extent of this plasticity and its functional implications has been challenging due to limited experimental data and the noisy nature of computational predictions. Here, we introduce a novel approach to study cis-regulatory evolution, and use it to trace the regulatory history of 88 DNA motifs of transcription factors across 23 Ascomycota fungi. While motifs are conserved, we find a pervasive gain and loss in the regulation of their target genes. Despite this turnover, the biological processes associated with a motif are generally conserved. We explain these trends using a model with a strong selection to conserve the overall function of a transcription factor, and a much weaker selection over the specific genes it targets. The model also accounts for the turnover of bound targets measured experimentally across species in yeasts and mammals. Thus, selective pressures on regulatory networks mostly tolerate local rewiring, and may allow for subtle fine-tuning of gene regulation during evolution. PMID:23089682

  4. Investigations of biodeterioration by fungi in historic wooden churches of Chilo, Chile.

    PubMed

    Ortiz, Rodrigo; Prraga, Mario; Navarrete, Jos; Carrasco, Ivo; de la Vega, Eduardo; Ortiz, Manuel; Herrera, Paula; Jurgens, Joel A; Held, Benjamin W; Blanchette, Robert A

    2014-04-01

    The use of wood in construction has had a long history and Chile has a rich cultural heritage of using native woods for building churches and other important structures. In 2000, UNESCO designated a number of the historic churches of Chilo, built entirely of native woods, as World Heritage Sites. These unique churches were built in the late 1700 s and throughout the 1800 s, and because of their age and exposure to the environment, they have been found to have serious deterioration problems. Efforts are underway to better understand these decay processes and to carryout conservation efforts for the long-term preservation of these important structures. This study characterized the types of degradation taking place and identified the wood decay fungi obtained from eight historic churches in Chilo, seven of them designated as UNESCO World Heritage sites. Micromorphological observations identified white, brown and soft rot in the structural woods and isolations provided pure cultures of fungi that were identified by sequencing of the internal transcribed region of rDNA. Twenty-nine Basidiomycota and 18 Ascomycota were found. These diverse groups of fungi represent several genera and species not previously reported from Chile and demonstrates a varied microflora is causing decay in these historic buildings. PMID:24407313

  5. Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

    PubMed Central

    Devi, Lamabam Sophiya; Khaund, Polashree; Nongkhlaw, Fenella M. W.

    2012-01-01

    Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D = 1.44) and Aspergillus (D = 1.288) were found to have highest diversity index followed by Talaromyces (D = 1.26) and Fusarium (D = 1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution. PMID:23115506

  6. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.

    PubMed

    Stursov, Martina; Zif?kov, Lucia; Leigh, Mary Beth; Burgess, Robert; Baldrian, Petr

    2012-06-01

    Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic. PMID:22379979

  7. The Polyketide Synthase Gene pks4 of Trichoderma reesei Provides Pigmentation and Stress Resistance

    PubMed Central

    Atanasova, Lea; Knox, Benjamin P.; Kubicek, Christian P.; Baker, Scott E.

    2013-01-01

    Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi. PMID:24036343

  8. The agricultural pathology of ant fungus gardens

    PubMed Central

    Currie, Cameron R.; Mueller, Ulrich G.; Malloch, David

    1999-01-01

    Gardens of fungus-growing ants (Formicidae: Attini) traditionally have been thought to be free of microbial parasites, with the fungal mutualist maintained in nearly pure monocultures. We conducted extensive isolations of alien (nonmutualistic) fungi from ant gardens of a phylogenetically representative collection of attine ants. Contrary to the long-standing assumption that gardens are maintained free of microbial pathogens and parasites, they are in fact host to specialized parasites that are only known from attine gardens and that are found in most attine nests. These specialized garden parasites, belonging to the microfungus genus Escovopsis (Ascomycota: anamorphic Hypocreales), are horizontally transmitted between colonies. Consistent with theory of virulence evolution under this mode of pathogen transmission, Escovopsis is highly virulent and has the potential for rapid devastation of ant gardens, leading to colony mortality. The specialized parasite Escovopsis is more prevalent in gardens of the more derived ant lineages than in gardens of the more primitive (basal) ant lineages. Because fungal cultivars of derived attine lineages are asexual clones of apparently ancient origin whereas cultivars of primitive ant lineages were domesticated relatively recently from free-living sexual stocks, the increased virulence of pathogens associated with ancient asexual cultivars suggests an evolutionary cost to cultivar clonality, perhaps resulting from slower evolutionary rates of cultivars in the coevolutionary race with their pathogens. PMID:10393936

  9. Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands.

    PubMed

    Nam, Yoon-Jong; Kim, Hyun; Lee, Jin-Hyung; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-01-01

    Ulleungdo and Dokdo are volcanic islands that experience a characteristic marine climate, influenced by warm currents. The richness and diversity of the plant species, particularly vascular plants, are higher on Ulleungdo than on Dokdo. In contrast to the native plant life, little is known about the diversity of soil fungi living in the rhizosphere of these two islands. In this study, we utilized the barcoded pyrosequencing method to analyze rhizosphere soil fungi on Ulleungdo and Dokdo. In total, 768 operational taxonomic units (OTUs) were analyzed from the Ulleungdo samples, while 640 OTUs and 382 OTUs were analyzed from the Dongdo and Seodo (islets of Dokdo) samples, respectively. Species richness was considerably higher in the Ulleungdo samples than in the Dongdo and Seodo samples, while there was little difference in species diversity between the samples. The taxonomic composition analyses demonstrated that members of the phylum Basidiomycota dominated the Ulleungdo samples, whereas members of the phylum Ascomycota were predominant in the Dokdo samples. Ectomycorrhizal fungi belonging to the phylum Basidiomycota, in particular, were more abundant in the Ulleungdo samples. This finding suggests that the difference in the abundance of the ectomycorrhizal fungi in the rhizospheres of Ulleungdo and Dokdo may have been affected by species richness and diversity of the vascular plants. Our study is the first detailed report of the composition of soil fungal communities on the Ulleungdo and Dokdo islands. In addition, our findings provide a basis for understanding the ecological interactions between plants and fungi. PMID:26227909

  10. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.

    PubMed

    Hoffmann, Christian; Dollive, Serena; Grunberg, Stephanie; Chen, Jun; Li, Hongzhe; Wu, Gary D; Lewis, James D; Bushman, Frederic D

    2013-01-01

    Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health. PMID:23799070

  11. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach.

    PubMed

    Singh, Purnima; Raghukumar, Chandralata; Verma, Pankaj; Shouche, Yogesh

    2011-04-01

    Few studies have addressed the occurrence of fungi in deep-sea sediments, characterized by elevated hydrostatic pressure, low temperature, and fluctuating nutrient conditions. We evaluated the diversity of fungi at three locations of the Central Indian Basin (CIB) at a depth of ~5,000 m using culture-independent approach. Community DNA isolated from these sediments was amplified using universal and fungal-specific internal transcribed spacers and universal 18S rDNA primer pairs. A total of 39 fungal operational taxonomic units, with 32 distinct fungal taxa were recovered from 768 clones generated from 16 environmental clone libraries. The application of multiple primers enabled the recovery of eight sequences that appeared to be new. The majority of the recovered sequences belonged to diverse phylotypes of Ascomycota and Basidiomycota. Our results suggested the existence of cosmopolitan marine fungi in the sediments of CIB. This study further demonstrated that diversity of fungi varied spatially in the CIB. Individual primer set appeared to amplify different fungal taxa occasionally. This is the first report on culture-independent diversity of fungi from the Indian Ocean. PMID:21057784

  12. Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts

    PubMed Central

    Eisen, Jonathan A.; Kopp, Artyom

    2012-01-01

    The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach. PMID:22885750

  13. Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum.

    PubMed

    Passarini, Michel R Z; Miqueletto, Paula B; de Oliveira, Valéria M; Sette, Lara D

    2015-02-01

    The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples. PMID:25213208

  14. Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature

    PubMed Central

    Busk, Peter K.; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls. PMID:25461894

  15. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments. PMID:25688692

  16. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of ?-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5mgL(-1) and 44.15mgL(-1) and MIC values 5.1mgL(-1) and 48.48mgL(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with ?-proteobacteria and Ascomycota group. PMID:26378869

  17. Degradation of oil by fungi isolated from Gulf of Mexico beaches.

    PubMed

    Simister, R L; Poutasse, C M; Thurston, A M; Reeve, J L; Baker, M C; White, H K

    2015-11-15

    Fungi of the Ascomycota phylum were isolated from oil-soaked sand patties collected from beaches following the Deepwater Horizon oil spill. To examine their ability to degrade oil, fungal isolates were grown on oiled quartz at 20°C, 30°C and 40°C. Consistent trends in oil degradation were not related to fungal species or temperature and all isolates degraded variable quantities of oil (32-65%). Fungal isolates preferentially degraded short (

  18. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs. PMID:25522194

  19. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing.

    PubMed

    Zhang, Tao; Wei, Xin-Li; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2015-01-01

    This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic. PMID:26463847

  20. Characterization of early microbial communities on volcanic deposits along a vegetation gradient on the island of Miyake, Japan.

    PubMed

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  1. Diagnostics for a troubled backbone: testing topological hypotheses of trapelioid lichenized fungi in a large-scale phylogeny of Ostropomycetidae (Lecanoromycetes)

    PubMed Central

    Resl, Philipp; Schneider, Kevin; Westberg, Martin; Printzen, Christian; Palice, Zden?k; Thor, Gran; Fryday, Alan; Mayrhofer, Helmut; Spribille, Toby

    2016-01-01

    Trapelioid fungi constitute a widespread group of mostly crust-forming lichen mycobionts that are key to understanding the early evolutionary splits in the Ostropomycetidae, the second-most species-rich subclass of lichenized Ascomycota. The uncertain phylogenetic resolution of the approximately 170 species referred to this group contributes to a poorly resolved backbone for the entire subclass. Based on a data set including 657 newly generated sequences from four ribosomal and four protein-coding gene loci, we tested a series of a priori and new evolutionary hypotheses regarding the relationships of trapelioid clades within Ostropomycetidae. We found strong support for a monophyletic group of nine core trapelioid genera but no statistical support to reject the long-standing hypothesis that trapelioid genera are sister to Baeomycetaceae or Hymeneliaceae. However, we can reject a sister group relationship to Ostropales with high confidence. Our data also shed light on several long-standing questions, recovering Anamylopsoraceae nested within Baeomycetaceae, elucidating two major monophyletic groups within trapelioids (recognized here as Trapeliaceae and Xylographaceae), and rejecting the monophyly of the genus Rimularia. We transfer eleven species of the latter genus to Lambiella and describe the genus Parainoa to accommodate a previously misunderstood species of Trapeliopsis. Past phylogenetic studies in Ostropomycetidae have invoked divergence order for drawing taxonomic conclusions on higher level taxa. Our data show that if backbone support is lacking, contrasting solutions may be recovered with different or added data. We accordingly urge caution in concluding evolutionary relationships from unresolved phylogenies.

  2. Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia.

    PubMed

    Huang, Qian; An, Hongmei; Song, Hongchuan; Mao, Hongqiang; Shen, Weiyun; Dong, Jinyan

    2015-01-01

    This study investigated the diversity and host component-transforming activity of endophytic fungi in medicinal plant Kadsura angustifolia. A total of 426 isolates obtained were grouped into 42 taxa belonging to Fungi Imperfecti (65.96%), Ascomycota (27.00%), Zygomycota (1.64%), Basidiomycota (0.47%) and Mycelia Sterilia (4.93%). The abundance, richness, and species composition of endophytic assemblages were significantly dependent on the tissue and the sampling site. Many phytopathogenic species associated with healthy K. angustifolia were found prevalent. Among them, Verticillium dahliae was dominant with 16.43% abundance. From 134 morphospecies selected, 39 showed remarkable biocatalytic activity and were further identified as species belonging to the genera Colletotrichum, Eupenicillium, Fusarium, Hypoxylon, Penicillium, Phomopsis, Trametes, Trichoderma, Umbelopsis, Verticillium and Xylaria on the basis of the sequence analysis of the internal transcribed spacer (ITS1-5.8S-ITS2). The results obtained in this work show that K. angustifolia is an interesting reservoir of pathogenic fungal species, and could be a community model for further ecological and evolutionary studies. Additionally, the converting potency screening of some endophytic fungi from this specific medicinal plant may provide an interesting niche on the search for novel biocatalysts. PMID:25530313

  3. Predation Success By A Plant-Ant Indirectly Favours The Growth And Fitness Of Its Host Myrmecophyte

    PubMed Central

    Dejean, Alain; Orivel, Jrme; Rossi, Vivien; Roux, Olivier; Lauth, Jrmie; Mal, Pierre-Jean G.; Crghino, Rgis; Leroy, Cline

    2013-01-01

    Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to byproduct benefits stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher ?15N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms. PMID:23516632

  4. Spatial Distribution of Fungal Communities in an Arable Soil.

    PubMed

    Moll, Julia; Hoppe, Bjrn; Knig, Stephan; Wubet, Tesfaye; Buscot, Franois; Krger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  5. A Five-Year Survey of Dematiaceous Fungi in a Tropical Hospital Reveals Potential Opportunistic Species

    PubMed Central

    Yew, Su Mei; Chan, Chai Ling; Lee, Kok Wei; Na, Shiang Ling; Tan, Ruixin; Hoh, Chee-Choong; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-01-01

    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance. PMID:25098697

  6. Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons

    PubMed Central

    Pedersen, Carsten; Skamnioti, Pari; Thordal-Christensen, Hans; Micali, Cristina; Brown, James K. M.; Ridout, Christopher J.

    2009-01-01

    Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVRk1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVRk1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome. PMID:19829700

  7. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  8. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts.

    PubMed

    Suh, Sung-Oui; Marshall, Christopher J; McHugh, Joseph V; Blackwell, Meredith

    2003-11-01

    During a survey of insect gut micro-organisms, we consistently isolated Pichia stipitis-like yeasts (Fungi: Ascomycota, Saccharomycetes) from the wood-ingesting beetles, Odontotaenius disjunctus and Verres sternbergianus (Coleoptera: Passalidae). The yeasts were isolated from passalid beetles over a wide area, including the eastern and midwestern USA and Panama. Phylogenetic analyses of the nuclear encoded small and large subunit rRNA gene (rDNA) sequences distinguished a well-supported clade consisting of the passalid yeasts and Pichia stipitis, P. segobiensis, Candida shehatae and C. ergatensis. Members of this clade have the ability to ferment and assimilate xylose or to hydrolyse xylan, major components of the polysaccharide, hemicellulose. Sexual reproduction was present in the passalid isolates but was rare among the gut yeasts of other beetles to which they were compared. Minor genetic and phenotypic variation among some of the passalid yeasts was detected using markers from the internal transcribed spacer region of the rDNA repeat unit, morphology, and in vitro metabolic tests. The consistent association of xylose-fermenting yeasts of almost identical genotypes with passalid beetles across a broad geographical distribution, suggests a significant symbiotic association. PMID:14629392

  9. Growth Inhibition of Beauveria bassiana by Bacteria Isolated from the Cuticular Surface of the Corn Leafhopper, Dalbulus maidis and the Planthopper, Delphacodes kuscheli, Two Important Vectors of Maize Pathogens

    PubMed Central

    Toledo, A.V.; Alippi, A.M.; de Remes Lenicov, A.M.M.

    2011-01-01

    The phytosanitary importance of the corn leafhopper, Dalbulus maidis (De Long and Wolcott) (Hemiptera: Cicadellidae) and the planthopper, Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) lies in their ability to transmit phloem-associated plant pathogens, mainly viruses and mollicutes, and to cause considerable mechanical damage to corn plants during feeding and oviposition. Fungi, particularly some members of the Ascomycota, are likely candidates for biocontrol agents against these insect pests, but several studies revealed their failure to invade the insect cuticle possibly because of the presence of inhibitory compounds such as phenols, quinones, and lipids and also by the antibiosis effect of the microbiota living on the cuticular surface of the host. The present work aims to understand interactions between the entomopathogenic fungus Beauveria bassiana (Balsamao-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) and bacterial antagonists isolated from the cuticular surface of D. maidis and D. kuscheli. A total of 155 bacterial isolates were recovered from the insect's cuticle and tested against B. bassiana. Ninety-one out of 155 strains inhibited the growth of B. bassiana. Bacterial strains isolated from D. maidis were significantly more antagonistic against B. bassiana than those isolates from D. kuscheli. Among the most effective antagonistic strains, six isolates of Bacillus thuringiensis Berliner (Bacillales: Bacillaeae (after B. subtilis)), one isolate of B. mycoides Flgge, eight isolates of B. megaterium de Bary, five isolates of B.pumilus Meyer and Gottheil, one isolate of B. licheniformis (Weigmann) Chester, and four isolates of B. subtilis (Ehrenberg) Cohn were identified. PMID:21529147

  10. Molecular Diversity of Fungal Phylotypes Co-Amplified Alongside Nematodes from Coastal and Deep-Sea Marine Environments

    PubMed Central

    Lambshead, John D.; Austen, Melanie C.; Smerdon, Gary R.; Rogers, Alex D.

    2011-01-01

    Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions. PMID:22046287

  11. The spectrum of fungal allergy.

    PubMed

    Simon-Nobbe, Birgit; Denk, Ursula; Pll, Verena; Rid, Raphaela; Breitenbach, Michael

    2008-01-01

    Fungi can be found throughout the world. They may live as saprophytes, parasites or symbionts of animals and plants in indoor as well as outdoor environment. For decades, fungi belonging to the ascomycota as well as to the basidiomycota have been known to cause a broad panel of human disorders. In contrast to pollen, fungal spores and/or mycelial cells may not only cause type I allergy, the most prevalent disease caused by molds, but also a large number of other illnesses, including allergic bronchopulmonary mycoses, allergic sinusitis, hypersensitivity pneumonitis and atopic dermatitis; and, again in contrast to pollen-derived allergies, fungal allergies are frequently linked with allergic asthma. Sensitization to molds has been reported in up to 80% of asthmatic patients. Although research on fungal allergies dates back to the 19th century, major improvements in the diagnosis and therapy of mold allergy have been hampered by the fact that fungal extracts are highly variable in their protein composition due to strain variabilities, batch-to-batch variations, and by the fact that extracts may be prepared from spores and/or mycelial cells. Nonetheless, about 150 individual fungal allergens from approximately 80 mold genera have been identified in the last 20 years. First clinical studies with recombinant mold allergens have demonstrated their potency in clinical diagnosis. This review aims to give an overview of the biology of molds and diseases caused by molds in humans, as well as a detailed summary of the latest results on recombinant fungal allergens. PMID:17709917

  12. Characterization of the Fungal Microbiota (Mycobiome) in Healthy and Dandruff-Afflicted Human Scalps

    PubMed Central

    Park, Hee Kuk; Ha, Myung-Ho; Park, Sang-Gue; Kim, Myeung Nam; Kim, Beom Joon; Kim, Wonyong

    2012-01-01

    The human scalp harbors a vast community of microbial mutualists, the composition of which is difficult to elucidate as many of the microorganisms are not culturable using current culture techniques. Dandruff, a common scalp disorder, is known as a causative factor of a mild seborrheic dermatitis as well as pityriasis versicolor, seborrheic dermatitis, and atopic dermatitis. Lipophilic yeast Malassezia is widely accepted to play a role in dandruff, but relatively few comprehensive studies have been reported. In order to investigate fungal biota and genetic resources of dandruff, we amplified the 26S rRNA gene from samples of healthy scalps and dandruff-afflicted scalps. The sequences were analyzed by a high throughput method using a GS-FLX 454 pyrosequencer. Of the 74,811 total sequence reads, Basidiomycota (Filobasidium spp.) was the most common phylum associated with dandruff. In contrast, Ascomycota (Acremonium spp.) was common in the healthy scalps. Our results elucidate the distribution of fungal communities associated with dandruff and provide new avenues for the potential prevention and treatment of dandruff. PMID:22393454

  13. Updating on the fungal composition in Sardinian sheep's milk by culture-independent methods.

    PubMed

    Panelli, Simona; Brambati, Eva; Bonacina, Cesare; Feligini, Maria

    2014-05-01

    This work applies culture-independent methods for the characterization of fungal populations (yeasts and moulds) naturally occurring in Sardinian ewe's milk sampled in the Italian areas with the largest dairy production (Sardinia and Lazio regions). Sequences of the D1/D2 variable domains at the 5' end of the 26S rRNA gene were obtained by amplification of DNA directly isolated from milk, and this allowed identification of a total of 6 genera and 15 species of fungi. Among the 6 identified genera Geotrichum spp., Candida spp., Phaeosphaeriopsis spp., Pestalotiopsis spp. and Cladosporium spp. belong to the phylum of Ascomycota, while Cryptococcus spp. is part of the phylum of Basidiomycota. In particular, two genera (Pestalotiopsis and Phaeosphaeriopsis) and two species (Plectosphaerella cucumerina and Pryceomyces carsonii) have never been reported in dairy ecosystems before. Results provide evidence that several moulds and yeasts, previously described only in ovine cheeses, are transferred directly from raw milk. The knowledge of fungal consortia inhabiting sheep raw milk is a particularly relevant issue because several species are directly involved in cheese making and ripening, determining the typical aroma. On the other hand, spoilage yeasts and moulds are involved in anomalous fermentation of cheese and may be responsible for considerable economic losses and serious risks for consumers' health. PMID:24666807

  14. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.

    PubMed

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-yeasts split concomitant with the yeasts' genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  15. PCR-denaturing gradient gel electrophoresis analysis of microbial community in soy-daddawa, a Nigerian fermented soybean (Glycine max (L.) Merr.) condiment.

    PubMed

    Ezeokoli, Obinna T; Gupta, Arvind K; Mienie, Charlotte; Popoola, Temitope O S; Bezuidenhout, Cornelius C

    2016-03-01

    Soy-daddawa, a fermented soybean (Glycine max (L.) Merr.) condiment, plays a significant role in the culinary practice of West Africa. It is essential to understand the microbial community of soy-daddawa for a successful starter culture application. This study investigated the microbial community structure of soy-daddawa samples collected from Nigerian markets, by PCR-denaturing gradient gel electrophoresis (DGGE) targeting the V3-V5 region of the 16S rRNA gene of bacteria and internal transcribed spacer 2 (ITS2) region of fungi. Six bacterial and 16 fungal (nine yeasts and seven molds) operational taxonomic units (OTUs)/species were obtained at 97% sequence similarity. Taxonomic assignments revealed that bacterial OTUs belonged to the phyla Firmicutes and Actinobacteria, and included species from the genera Atopostipes, Bacillus, Brevibacterium and Nosocomiicoccus. Densitometric analysis of DGGE image/bands revealed that Bacillus spp. were the dominant OTU/species in terms of population numbers. Fungal OTUs belonged to the phyla Ascomycota and Zygomycota, and included species from the genera, Alternaria, Aspergillus, Candida, Cladosporium, Dokmaia, Issatchenkia, Kodamaea, Lecythophora, Phoma, Pichia, Rhizopus, Saccharomyces and Starmerella. The majority of fungal species have not been previously reported in soy-daddawa. Potential opportunistic human pathogens such as Atopostipes suicloacalis, Candida rugosa, Candida tropicalis, and Kodamaea ohmeri were detected. Variation in soy-daddawa microbial communities amongst samples and presence of potential opportunistic pathogens emphasises the need for starter culture employment and good handling practices in soy-daddawa processing. PMID:26796580

  16. Spatial Distribution of Fungal Communities in an Arable Soil

    PubMed Central

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  17. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques.

    PubMed

    de Souza Leite, Tiago; Cnossen-Fassoni, Andria; Pereira, Olinto Liparini; Mizubuti, Eduardo Seiti Gomide; de Arajo, Elza Fernandes; de Queiroz, Marisa Vieira

    2013-02-01

    Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies. PMID:23456713

  18. Hybrid histidine kinases in pathogenic fungi.

    PubMed

    Defosse, Tatiana A; Sharma, Anupam; Mondal, Alok K; Dug de Bernonville, Thomas; Latg, Jean-Paul; Calderone, Richard; Giglioli-Guivarc'h, Nathalie; Courdavault, Vincent; Clastre, Marc; Papon, Nicolas

    2015-03-01

    Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs. PMID:25560420

  19. Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils.

    PubMed

    Pereira de Castro, Alinne; Sartori da Silva, Maria Regina Silveira; Quirino, Betania Ferraz; da Cunha Bustamante, Mercedes Maria; Krger, Ricardo Henrique

    2016-01-01

    The Cerrado, the largest savanna region in South America, is located in central Brazil. Cerrado physiognomies, which range from savanna grasslands to forest formations, combined with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study, high-throughput sequencing of ribosomal RNA genes was combined with shotgun metagenomic analysis to explore the taxonomic composition and potential functions of soil microbial communities in four different vegetation physiognomies during both dry and rainy seasons. Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils strongly correlated with seasonal patterns of soil water uptake. The relative abundance of AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased in the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota increased. In addition, analysis of shotgun metagenomic data revealed a significant increase in the relative abundance of genes associated with iron acquisition and metabolism, dormancy, and sporulation during the dry season, and an increase in the relative abundance of genes related to respiration and DNA and protein metabolism during the rainy season. These gene functional categories are associated with adaptation to water stress. Our results further the understanding of how tropical savanna soil microbial communities may be influenced by vegetation covering and temporal variations in soil moisture. PMID:26849674

  20. Antioxidant and Antimycotic Activities of Two Native Lavandula Species from Portugal

    PubMed Central

    Baptista, Rafael; Madureira, Ana Margarida; Jorge, Rita; Adão, Rita; Duarte, Aida; Duarte, Noélia; Lopes, Maria Manuel; Teixeira, Generosa

    2015-01-01

    The antioxidant and antimycotic activities of the essential oils and extracts of two native Portuguese Lavandula species, L. stoechas subsp. luisieri and L. pedunculata, were evaluated by in vitro assays. The total phenolics and flavonoids content were also determined. The antioxidant potential was assessed through DPPH radical scavenging, inhibition of lipid peroxidation (ILP), and DNA protection assays. All samples displayed a high DPPH scavenging activity, some of them showing concentration dependence. The majority of the samples were also able to inhibit lipid peroxidation. A strong correlation was observed between the results of DPPH and ILP assays and the flavonoids content of the samples. In the DNA protection assay, all the extracts were able to preserve DNA integrity. The antimycotic activity was performed against twelve fungi belonging to Basidiomycota and Ascomycota Divisions. L. stoechas subsp. luisieri exhibited the broadest activity spectra. L. pedunculata extracts were active against five fungi. Cryptococcus neoformans was the most sensitive, being inhibited by all the extracts. Our results led to the conclusion that L. stoechas subsp. luisieri and L. pedunculata can be useful as new sources of natural antioxidants and antimycotic agents, providing a possible valorization of the existing biodiversity and resources of Portuguese flora. PMID:25922611

  1. Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina.

    PubMed

    Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene

    2016-01-01

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. PMID:26805821

  2. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes

    PubMed Central

    Wang, Hao; Fewer, David P.; Holm, Liisa; Rouhiainen, Leo; Sivonen, Kaarina

    2014-01-01

    Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites. PMID:24927540

  3. Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China.

    PubMed

    Han, Guomin; Feng, Xiaoguang; Jia, Yong; Wang, Congyan; He, Xingbing; Zhou, Qiyou; Tian, Xingjun

    2011-08-01

    Approximately 60 fungal isolates from Zijin Mountain (Nanjing, China) were screened to determine their algicidal ability. The results show that 8 fungi belonging to Ascomycota and 5 belonging to Basidiomycota have algicidal ability. Of these fungi, Irpex lacteus T2b, Trametes hirsuta T24, Trametes versicolor F21a, and Bjerkandera adusta T1 showed strong algicidal ability. The order of fungal chlorophyll-a removal efficiency was as follows: T. versicolor F21a > I. lacteus T2b > B. adusta T1 > T. hirsuta T24. In particular, T. versicolor F21a completely removed algal cells within 30 h, showing the strongest algicidal ability. The results also show that all 4 fungal species degraded algal cells through direct attack. In addition, most of the tested fungi from the order Polyporales of Basidiomycota exhibited strong algicidal activity, suggesting that most fungi that belong to this order have algicidal ability. The findings of this work could direct the search for terrestrial fungi for bloom control. PMID:21887638

  4. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes

    PubMed Central

    Kroken, Scott; Glass, N. Louise; Taylor, John W.; Yoder, O. C.; Turgeon, B. Gillian

    2003-01-01

    Fungal type I polyketides (PKs) are synthesized by PK synthases (PKSs) and include well known secondary metabolites such as the anticholesterol drug lovastatin and the potent natural carcinogen aflatoxin. Other type I PKs are known to be virulence factors for some plant pathogens and pigments such as melanin. In this study, a phylogenomic approach was used to investigate the origin and diversity of fungal genes encoding putative PKSs that are predicted to synthesize type I PKs. The resulting genealogy, constructed by using the highly conserved PKS ketosynthase (KS) domain, indicated that: (i) Species within subphylum Pezizomycotina (phylum Ascomycota) but not early diverging ascomycetes, like Saccharomyces cerevisiae (Saccharomycotina) or Schizosaccharomyces pombe (Taphrinomycotina), had large numbers (7–25) of PKS genes. (ii) Bacteria and fungi had separate groups of PKS genes; the few exceptions are the likely result of horizontal gene transfer from bacteria to various sublineages of fungi. (iii) The bulk of genes encoding fungal PKSs fell into eight groups. Four groups were predicted to synthesize variously reduced PKs, and four groups were predicted to make unreduced PKs. (iv) Species within different classes of Pezizomycotina shared the same groups of PKS genes. (v) Different fungal genomes shared few putative orthologous PKS genes, even between closely related genomes in the same class or genus. (vi) The discontinuous distributions of orthologous PKSs among fungal species can be explained by gene duplication, divergence, and gene loss; horizontal gene transfer among fungi does not need to be invoked. PMID:14676319

  5. Molecular Phylogenetic Analysis Reveals the New Genus Hemisphaericaspora of the Family Debaryomycetaceae

    PubMed Central

    Hui, Fengli; Ren, Yongcheng; Chen, Liang; Li, Ying; Zhang, Lin; Niu, Qiuhong

    2014-01-01

    Four strains of a novel ascomycetous yeast species were recovered from the frass of wood-boring beetles collected from the Baotianman Nature Reserve and the Laojieling Nature Reserve in Henan Province, China. This species produced unconjugated and deliquescent asci with hemispheroid or helmet-shaped ascospores. Analysis of gene sequences for the D1/D2 domain of the large subunit (LSU) rRNA, as well as analysis of concatenated gene sequences for the nearly complete small subunit (SSU) rRNA and D1/D2 domain of the large subunit (LSU) rRNA placed the novel species in a small clade including only one recognised species, Candida insectamans, in the family Debaryomycetaceae (Saccharomycotina, Ascomycota). DNA sequence analyses demonstrated that the novel species was distinct from all currently recognised teleomorphic yeast genus. The name Hemisphaericaspora nanyangensis gen nov., sp. nov. is proposed to accommodate the novel genus and species. The new genus can be distinguished from closely related teleomorphic genera Lodderomyces and Spathaspora through sequence comparison and ascospore morphology. The ex-type strain of H. nanyangensis is CBS 13020T ( = CICC 33021 = NYNU 13717). Furthermore, based on phenotypic and genotypic characteristics, C. insectamans is transferred to the newly described genus as Hemisphaericaspora insectamans comb. nov., in accordance with the changes in the International Code of Nomenclature for algae, fungi and plants. PMID:25075963

  6. Phylogenetic Relationships Matter: Antifungal Susceptibility among Clinically Relevant Yeasts

    PubMed Central

    Schmalreck, A. F.; Becker, K.; Fegeler, W.; Czaika, V.; Ulmer, H.; Lass-Flörl, C.

    2014-01-01

    The objective of this study was 2-fold: to evaluate whether phylogenetically closely related yeasts share common antifungal susceptibility profiles (ASPs) and whether these ASPs can be predicted from phylogeny. To address this question, 9,627 yeast strains were collected and tested for their antifungal susceptibility. Isolates were reidentified by considering recent changes in taxonomy and nomenclature. A phylogenetic (PHYLO) code based on the results of multilocus sequence analyses (large-subunit rRNA, small-subunit rRNA, translation elongation factor 1α, RNA polymerase II subunits 1 and 2) and the classification of the cellular neutral sugar composition of coenzyme Q and 18S ribosomal DNA was created to group related yeasts into PHYLO groups. The ASPs were determined for fluconazole, itraconazole, and voriconazole in each PHYLO group. The majority (95%) of the yeast strains were Ascomycetes. After reclassification, a total of 23 genera and 54 species were identified, resulting in an increase of 64% of genera and a decrease of 5% of species compared with the initial identification. These taxa were assigned to 17 distinct PHYLO groups (Ascomycota, n = 13; Basidiomycota, n = 4). ASPs for azoles were similar among members of the same PHYLO group and different between the various PHYLO groups. Yeast phylogeny may be an additional tool to significantly enhance the assessment of MIC values and to predict antifungal susceptibility, thereby more rapidly initiating appropriate patient management. PMID:24366735

  7. gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and A. fumigatus

    PubMed Central

    Futagami, Taiki; Kizjakina, Karina; Sobrado, Pablo; Ekino, Keisuke; Takegawa, Kaoru; Goto, Masatoshi; Nomura, Yoshiyuki; Oka, Takuji

    2013-01-01

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, fungal-type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of ?-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has ?1,5- or ?1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ?gfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a fungal ?-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi. PMID:24118544

  8. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    PubMed Central

    Dreesens, Lisa L.; Lee, Charles K.; Cary, S. Craig

    2014-01-01

    Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important) heterotrophic component of the ecosystem. PMID:25079129

  9. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  10. Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China.

    PubMed

    Ishida, Takahide A; Nara, Kazuhide; Ma, Shurong; Takano, Tetsuo; Liu, Shenkui

    2009-06-01

    Alkaline-saline soil is widespread in arid and semiarid regions of the world and causes severe environmental and agricultural problems. To advance our understanding of the adaptation of ectomycorrhizal fungi (EMF) to alkaline-saline soil, we investigated EMF communities on Mongolian willow (Salix linearistipularis) growing in alkaline-saline soil (up to pH 9.2) in northeastern China. In total, 75 root samples were collected from 25 willow individuals over 4.7 ha. To identify fungal species in ectomycorrhizal root tips, we used terminal restriction fragment length polymorphism and sequencing analyses of the internal transcribed spacer region of ribosomal DNA. We detected 11 EMF species, including species of Inocybe, Hebeloma, and Tomentella of the Basidiomycota and three Ascomycota species. The EMF richness of the study site was estimated to be 15-17 using major estimators. The most abundant species was Geopora sp. 1, while no Geopora-dominated EMF communities have been reported so far. Phylogenetic analysis showed that the phylogroup including Geopora sp. 1 has been found mostly in alkaline soil habitats, indicating its adaptation to high soil pH. Because EMF are indispensable for host plant growth, the EMF species detected in this study may be useful for restoration of alkaline-saline areas. PMID:19104846

  11. Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China.

    PubMed

    Zhou, Zhen-Xin; Jiang, Huan; Yang, Chen; Yang, Ming-Zhi; Zhang, Han-Bo

    2010-04-01

    Invasive plants have caused great economic losses and environmental problems worldwide. Eupatorium adenophorum is one of the most invasive weeds in China. To better understand its invasive mechanisms, in the present paper, the microbial communities of healthy and diseased leaves of E. adenophorum were obtained using both culture-independent and -dependent methods and their diversities were compared. The bacteria obtained from culture-independent method belong to Proteobacteria (95.8%), Actinobacteria (2.1%), and Firmicutes (2.1%) and fungi belong to Ascomycota (65.2%) and Basidiomycota (34.8%). Very few overlapped microbial species were found by culture-dependent and -independent methods. Healthy leaves display higher bacterial diversity than diseased leaves. Phylogenetic structures are very different between healthy and diseased phyllosphere microbial communities. Bacteria close to Acinetobacter and Pseudomonas were dominant on healthy leaves, whereas those close to Shigella were dominant on diseased leaves. 52.9% of fungal clones from healthy leaves were Ustilaginomycetes, close to Rhodotorula phylloplana and uncultured basidomycete; by contrast, 60% of clones from diseased leaves were Lecanoromycetes, close to Umbilicaria muehlenbergii. No bacteria but four fungal strains phylogenetically close to Myrothecium sp. and Alternaria alternate were pathogenic to seedlings and detached leaves of the invasive plant. Therefore, this plant may be resistant to pathogens from bacteria but not fungi in its introduced range. PMID:20437143

  12. A Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae. PMID:21984921

  13. Blackpatch of Clover, Cause of Slobbers Syndrome: A Review of the Disease and the Pathogen, Rhizoctonia leguminicola

    PubMed Central

    Kagan, Isabelle A.

    2016-01-01

    Rhizoctonia leguminicola Gough and Elliott is a widely used name for the causal agent of blackpatch disease of red clover (Trifolium pratense L.). This fungal pathogen produces alkaloids (slaframine and swainsonine) that affect grazing mammals. Slaframine causes livestock to salivate profusely, and swainsonine causes neurological problems. Although the blackpatch fungus was classified as a Rhizoctonia species (phylum Basidiomycota), morphological studies have indicated that it is in the phylum Ascomycota, and sequencing data have indicated that it may be a new genus of ascomycete. The effects of the alkaloids on grazing mammals and their biosynthetic pathways have been extensively studied. In contrast, few studies have been done on management of the disease, which requires a greater understanding of the pathogen. Methods of disease management have included seed treatments and fungicides, but these have not been investigated since the 1950s. Searches for resistant cultivars have been limited. This review summarizes the biological effects and biosynthetic precursors of slaframine and swainsonine. Emphasis is placed on current knowledge about the epidemiology of blackpatch disease and the ecology and taxonomy of the pathogen. Possibilities for future research and disease management efforts are suggested. PMID:26858953

  14. Microbial hitchhikers on intercontinental dust: catching a lift in Chad

    PubMed Central

    Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G; Brown, Christopher T; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H; Kirchner, Timothy; de Quadros, Patricia Dorr; Triplett, Eric W; Broughton, William J; Gorbushina, Anna A

    2013-01-01

    Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. PMID:23254516

  15. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Sitepu, Irnayuli R; Shi, Shuang; Simmons, Blake A; Singer, Steven W; Boundy-Mills, Kyria; Simmons, Christopher W

    2014-12-01

    Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wickerhamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products. PMID:25348480

  16. Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales.

    PubMed

    Tedersoo, Leho; Prtel, Kadri; Jairus, Teele; Gates, Genevieve; Pldmaa, Kadri; Tamm, Heidi

    2009-12-01

    Mycorrhizosphere microbes enhance functioning of the plant-soil interface, but little is known of their ecology. This study aims to characterize the ascomycete communities associated with ectomycorrhizas in two Tasmanian wet sclerophyll forests. We hypothesize that both the phyto- and mycobiont, mantle type, soil microbiotope and geographical distance affect the diversity and occurrence of the associated ascomycetes. Using the culture-independent rDNA sequence analysis, we demonstrate a high diversity of these fungi on different hosts and habitats. Plant host has the strongest effect on the occurrence of the dominant species and community composition of ectomycorrhiza-associated fungi. Root endophytes, soil saprobes, myco-, phyto- and entomopathogens contribute to the ectomycorrhiza-associated ascomycete community. Taxonomically these Ascomycota mostly belong to the orders Helotiales, Hypocreales, Chaetothyriales and Sordariales. Members of Helotiales from both Tasmania and the Northern Hemisphere are phylogenetically closely related to root endophytes and ericoid mycorrhizal fungi, suggesting their strong ecological and evolutionary links. Ectomycorrhizal mycobionts from Australia and the Northern Hemisphere are taxonomically unrelated to each other and phylogenetically distant to other helotialean root-associated fungi, indicating independent evolution. The ubiquity and diversity of the secondary root-associated fungi should be considered in studies of mycorrhizal communities to avoid overestimating the richness of true symbionts. PMID:19671076

  17. Identification of two fungal endophytes associated with the endangered orchid Orchis militaris L.

    PubMed

    Vendramin, Elena; Gastaldo, Andrea; Tondello, Alessandra; Baldan, Barbara; Villani, Mariacristina; Squartini, Andrea

    2010-03-01

    A survey of the endangered orchid Orchis militaris populations was carried out in north-eastern Italy. The occurrence of fungal root endophytes was investigated by light and electron microscopies and molecular techniques. Two main sites of presence were individuated in the Euganean Hills, differing as to the percentage of flowering individuals and of capsules completing maturity. Fluorescence microscopy revealed an intracellular cortical colonization by hyphal pelotons. Two ITS PCR products co-amplified. Sequencing revealed for the former an identity and a high similarity (99%) with a Tulasnellaceae (Basidiomycota) fungus found within tissues of the same host in independent studies in Hungary and Estonia, suggesting an interesting case of tight specificity throughout the Eurosiberian home range. The second amplicon had 99% similarity with Tetracladium species (Ascomycota) recently demonstrated as potential endophytes. TEM revealed two different hyphal structures. Double fungal colonization appears to occur in Orchis militaris and the possible requirement of a specific fungal partner throws light on the causes of this plant's rarity and threatened status. PMID:20372038

  18. Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal Proteomes

    PubMed Central

    Jiménez-López, Claudia; Lorenz, Michael C.; van Hoof, Ambro

    2013-01-01

    Alternative splicing is commonly used by the Metazoa to generate more than one protein from a gene. However, such diversification of the proteome by alternative splicing is much rarer in fungi. We describe here an ancient fungal alternative splicing event in which these two proteins are generated from a single alternatively spliced ancestral SKI7/HBS1 gene retained in many species in both the Ascomycota and Basidiomycota. While the ability to express two proteins from a single SKI7/HBS1 gene is conserved in many fungi, the exact mechanism by which they achieve this varies. The alternative splicing was lost in Saccharomyces cerevisiae following the whole-genome duplication event as these two genes subfunctionalized into the present functionally distinct HBS1 and SKI7 genes. When expressed in yeast, the single gene from Lachancea kluyveri generates two functionally distinct proteins. Expression of one of these proteins complements hbs1, but not ski7 mutations, while the other protein complements ski7, but not hbs1. This is the first known case of subfunctionalization by loss of alternative splicing in yeast. By coincidence, the ancestral alternatively spliced gene was also duplicated in Schizosaccharomyces pombe with subsequent subfunctionalization and loss of splicing. Similar subfunctionalization by loss of alternative splicing in fungi also explains the presence of two PTC7 genes in the budding yeast Tetrapisispora blattae, suggesting that this is a common mechanism to preserve duplicate alternatively spliced genes. PMID:23516382

  19. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products

    PubMed Central

    Throckmorton, Kurt; Wiemann, Philipp; Keller, Nancy P.

    2015-01-01

    Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi. PMID:26378577

  20. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindo, Colombia)].

    PubMed

    Chaparro, Deisy Fernanda; Rosas, Diana Carolina; Varela, Amanda

    2009-12-31

    White rot fungi (Ascomycota and Basidiomycota) were collected on fallen trunks with different decay stages, in a subandean forest (La Montaa del Ocaso nature reserve), and it was evaluated their ligninolitic activity. They were cultured on malt extract agar. Then it was performed semiquantitative tests for laccase and cellobiose dehydrogenase (CDH) activity using ABTS and DCPIP as enzymatic inducers. Based on the results of these tests, the fungi with higher activities from trunks with different decay stages were selected: Cookeina sulcipes (for stage 1), a fungus from the family Corticiaceae (for stage 2), Xylaria polymorpha (for stage 3) and Earliella sp. (for stage 4). A fermentation was performed at 28 degrees C, during 11 days, in a rotatory shaker at 150 rpm. Biomass, glucose, proteins and enzyme activities measurements were performed daily. The fungi that were in the trunks with decay states from 1 to 3, showed higher laccase activity as the state of decay increased. A higher DCH activity was also associated with a higher. Also, there was a positive relationship between both enzymes' activities. Erliella was the fungus which presented the highest biomass production (1140,19 g/l), laccase activity (157 UL(-1)) and CDH activity (43,50 UL(-1)). This work is the first report of laccase and CDH activity for Cookeina sulcipes and Earliella sp. Moreover, it gives basis for the use of these native fungi in biotechnological applications and the acknowledgment of their function in the wood decay process in native forest. PMID:19796977

  1. Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines.

    PubMed

    Stuart, Rodrigo Makowiecky; Romão, Aline Silva; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio; Araújo, Welington Luiz

    2010-04-01

    The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community. PMID:20191263

  2. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline.

    PubMed

    Hannula, S E; Boschker, H T S; de Boer, W; van Veen, J A

    2012-05-01

    • The aim of this study was to gain understanding of the carbon flow from the roots of a genetically modified (GM) amylopectin-accumulating potato (Solanum tuberosum) cultivar and its parental isoline to the soil fungal community using stable isotope probing (SIP). • The microbes receiving (13)C from the plant were assessed through RNA/phospholipid fatty acid analysis with stable isotope probing (PLFA-SIP) at three time-points (1, 5 and 12 d after the start of labeling). The communities of Ascomycota, Basidiomycota and Glomeromycota were analysed separately with RT-qPCR and terminal restriction fragment length polymorphism (T-RFLP). • Ascomycetes and glomeromycetes received carbon from the plant as early as 1 and 5 d after labeling, while basidiomycetes were slower in accumulating the labeled carbon. The rate of carbon allocation in the GM variety differed from that in its parental variety, thereby affecting soil fungal communities. • We conclude that both saprotrophic and mycorrhizal fungi rapidly metabolize organic substrates flowing from the root into the rhizosphere, that there are large differences in utilization of root-derived compounds at a lower phylogenetic level within investigated fungal phyla, and that active communities in the rhizosphere differ between the GM plant and its parental cultivar through effects of differential carbon flow from the plant. PMID:22413848

  3. Reconstruction and Analysis of the Evolution of Modular Transcriptional Regulatory Programs Using Arboretum.

    PubMed

    Knaack, Sara A; Thompson, Dawn A; Roy, Sushmita

    2016-01-01

    Comparative functional genomics aims to measure and compare genome-wide functional data such as transcriptomes, proteomes, and epigenomes across multiple species to study the conservation and divergence patterns of such quantitative measurements. However, computational methods to systematically compare these quantitative genomic profiles across multiple species are in their infancy. We developed Arboretum, a novel algorithm to identify modules of co-expressed genes and trace their evolutionary history across multiple species from a complex phylogeny. To interpret the results from Arboretum we developed several measures to examine the extent of conservation and divergence in modules and their relationship to species lifestyle, cis-regulatory elements, and gene duplication. We applied Arboretum to study the evolution of modular transcriptional regulatory programs controlling transcriptional response to different environmental stresses in the yeast Ascomycota phylogeny. We found that modules of similar patterns of expression captured the transcriptional responses to different stresses across species; however, the genes exhibiting these patterns were not the same. Divergence in module membership was associated with changes in lifestyle and specific clades and that gene duplication was a major factor contributing to the divergence of module membership. PMID:26483033

  4. Epipolythiodiketopiperazines from the Marine Derived Fungus Dichotomomyces cejpii with NF-κB Inhibitory Potential

    PubMed Central

    Harms, Henrik; Orlikova, Barbora; Ji, Seungwon; Nesaei-Mosaferan, Damun; König, Gabriele M.; Diederich, Marc

    2015-01-01

    The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1) was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4) was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors. PMID:26258781

  5. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors.

    PubMed

    Bolaos, Jessica; De Len, Luis Fernando; Ochoa, Edgardo; Darias, Jos; Raja, Huzefa A; Shearer, Carol A; Miller, Andrew N; Vanderheyden, Patrick; Porras-Alfaro, Andrea; Caballero-George, Catherina

    2015-10-01

    Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58% represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6%) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50% of the control and seven others inhibited between 30 and 45%. Our results indicate that marine sponges from Panama are a "hot spot" of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges. PMID:26026948

  6. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    SciTech Connect

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  7. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  8. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma.

    PubMed

    Jaklitsch, Walter M; Stadler, Marc; Voglmayr, Hermann

    2012-01-01

    Three new species of Hypocrea/Trichoderma sect. Trichoderma (Hypocreaceae, Hypocreales, Ascomycota, Fungi) are described from recent collections in southern Europe and the Canary Islands. They have been characterized by morphological and molecular methods, including microscopic examination of the teleomorph in thin sections, the anamorph, growth rate experiments and phylogenetic analyses based on a part of the translation elongation factor 1-alpha encoding gene (tef1) containing the two last introns and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Analyses involving tef1 did not unequivocally resolve the sister clade relationship of Hypocrea caerulescens relative to the Koningii and Viride clades, while analyses based on rpb2 clearly suggest a close relationship with the former, although the phenotype of H. caerulescens is similar to H. viridescens, particularly by its warted conidia and a coconut-like odor in CMD culture. Hypocrea hispanica and T. samuelsii however are clearly related to the Viride clade by both phylogenetic markers, despite their morphological similarity to H. koningii and its relatives. An apparently specific blue pigment is formed in CMD cultures by Hypocrea caerulescens but could not be obtained by extraction with organic solvents. PMID:22453122

  9. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem.

    PubMed

    Veach, Allison M; Dodds, Walter K; Jumpponen, Ari

    2015-10-01

    Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. PMID:26347079

  10. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean.

    PubMed

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-01-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species. PMID:26939571

  11. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.

    PubMed

    Vieira, Mariana L A; Johann, Susana; Hughes, Frederic M; Rosa, Carlos A; Rosa, Luiz H

    2014-12-01

    The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher ?-biodiversity were also those that contributed more to the regional (?) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities. PMID:25403761

  12. DIRS and Ngaro Retrotransposons in Fungi

    PubMed Central

    Muszewska, Anna; Steczkiewicz, Kamil; Ginalski, Krzysztof

    2013-01-01

    Retrotransposons with a tyrosine recombinase (YR) have been discovered recently and lack thorough annotation in fungi. YR retrotransposons are divided into 3 groups: DIRS, Ngaro and VIPER (known only from kinetoplastida). We used comparative genomics to investigate the evolutionary patterns of retrotransposons in the fungal kingdom. The identification of both functional and remnant elements provides a unique view on both recent and past transposition activity. Our searches covering a wide range of fungal genomes allowed us to identify 2241 YR retrotransposons. Based on CLANS clustering of concatenated sequences of the reverse transcriptase (RT), RNase H (RH), DNA N-6-adenine-methyltransferase (MT) and YR protein domains we propose a revised classification of YR elements expanded by two new categories of Ngaro elements. A phylogenetic analysis of 477 representatives supports this observation and additionally demonstrates that DIRS and Ngaro abundance changed independently in Basidiomycota and Blastocladiomycota/Mucoromycotina/Kixellomycotina. Interestingly, a single remnant Ngaro element could be identified in an Ascomycota genome. Our analysis revealed also that 3 Pucciniomycotina taxa, known for their overall mobile element abundance and big genome size, encode an elevated number of Ngaro retrotransposons. Considering the presence of DIRS elements in all analyzed Mucoromycotina, Kickxellomycotina and Blastocladiomycota genomes one might assume a common origin of fungal DIRS retrotransposons with a loss in Dicarya. Ngaro elements described to date from Opisthokonta, seem to have invaded the common ancestor of Agaricomycotina and Pucciniomycotina after Ustilagomycotina divergence. Yet, most of analyzed genomes are devoid of YR elements and most identified retrotransposons are incomplete. PMID:24086727

  13. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  14. Ophiocordyceps unilateralis

    PubMed Central

    Elliot, Simon L; Hughes, David P

    2011-01-01

    Ophiocordyceps unilateralis (Ascomycota: Hypocreales) is a specialized parasite that infects, manipulates and kills formicine ants, predominantly in tropical forest ecosystems. We have reported previously, based on a preliminary study in remnant Atlantic Forest in Minas Gerais (Brazil), that O. unilateralis represents a species complex. On each of the four species of infected carpenter ant (Camponotus) collected, the funguscharacterized macroscopically by a single stalk arising from the dorsal neck region on which the sexual structures (stromatal plates) are borne laterallycan readily be distinguished both microscopically and functionally. Here, we describe and discuss the biology, life cycle and infection strategies of O. unilateralis s.l. and hypothesize that there may be hundreds of species within the complex parasitizing formicine ants worldwide. We then address the diversity within related hypocrealean fungi, with particular reference to symbionts (mutualists through to parasites), and argue that the widely-quoted total of extant fungi (1.5 million species) may be grossly underestimated. PMID:22046474

  15. Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing.

    PubMed

    Ramesh, Pandit; Reena, Patel; Amitbikram, Mohapatra; Chaitanya, Joshi; Anju, Kunjadia

    2015-12-01

    Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425?bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides. PMID:26301953

  16. Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus.

    PubMed

    Alenezi, Faizah N; Rekik, Imen; Be?ka, Marta; Ibrahim, Abrar F; Luptakova, Lenka; Jaspars, Marcel; Woodward, Steve; Belbahri, Lassaad

    2016-01-01

    Aneurinibacillus migulanus strains Nagano and NCTC 7096 show potential in biocontrol against fungal and fungus-like plant pathogens, including a wide range of Ascomycota, Basidiomycota, and Oomycetes. Differences in terms of the range of pathogens that each strain inhibits, however, suggested that production of a single antibiotic cyclic peptide, gramicidin S (GS), by the two strains, is not the sole mechanism of inhibition. The availability of four sequenced genomes of Aneurinibacillus prompted us to apply genome mining techniques to identify the bioactive potential of A. migulanus and to provide insights into the secondary metabolite arsenal of the genus Aneurinibacillus. Up to eleven secondary metabolite biosynthetic gene clusters were present in the three Aneurinibacillus species. Biosynthetic gene clusters specifying bacteriocins, microcins, non-ribosomal peptides, polyketides, terpenes, phosphonates, lasso peptides and linaridins were identified. Chitinolytic potential and iron metabolism regulation were also investigated. With increasing numbers of biocontrol bacterial genomes being sequenced and mined, the use of approaches similar to those described in this paper will lead to an increase in the numbers of environmentally friendly natural products available to use against plant diseases. PMID:26686620

  17. Phylogenetic analysis and classification of the fungal bHLH domain.

    PubMed

    Sailsbery, Joshua K; Atchley, William R; Dean, Ralph A

    2012-05-01

    The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1-F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH-containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358

  18. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea.

    PubMed

    Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

    2012-01-01

    In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens. PMID:23717111

  19. Dysbiosis of Fungal Microbiota in the Intestinal Mucosa of Patients with Colorectal Adenomas

    PubMed Central

    Luan, Chunguang; Xie, Lingling; Yang, Xi; Miao, Huifang; Lv, Na; Zhang, Ruifen; Xiao, Xue; Hu, Yongfei; Liu, Yulan; Wu, Na; Zhu, Yuanmin; Zhu, Baoli

    2015-01-01

    The fungal microbiota is an important component of the human gut microbiome and may be linked to gastrointestinal disease. In this study, the fungal microbiota of biopsy samples from adenomas and adjacent tissues was characterized by deep sequencing. Ascomycota, Glomeromycota and Basidiomycota were identified as the dominant phyla in both adenomas and adjacent tissues from all subjects. Among the 60 genera identified, the opportunist pathogens Phoma and Candida represented an average of 45% of the fungal microbiota. When analyzed at the operational taxonomic unit (OTU) level, however, a decreased diversity in adenomas was observed, and three OTUs differed significantly from the adjacent tissues. Principal Component Analysis (PCA) revealed that the core OTUs formed separate clusters for advanced and non-advanced adenomas for which the abundance of four OTUs differed significantly. Moreover, the size of adenomas and the disease stage were closely related to changes in the fungal microbiota in subjects with adenomas. This study characterized the fungal microbiota profile of subjects with adenomas and identified potential diagnostic biomarkers closely related to different stages of adenomas. PMID:25613490

  20. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests.

    PubMed

    Saravesi, Karita; Aikio, Sami; Wäli, Piippa R; Ruotsalainen, Anna Liisa; Kaukonen, Maarit; Huusko, Karoliina; Suokas, Marko; Brown, Shawn P; Jumpponen, Ari; Tuomi, Juha; Markkola, Annamari

    2015-05-01

    Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale. PMID:25687127

  1. Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests?

    PubMed

    Evans, Harry C; Elliot, Simon L; Hughes, David P

    2011-09-01

    Ophiocordyceps unilateralis (Ascomycota: Hypocreales) is a specialized parasite that infects, manipulates and kills formicine ants, predominantly in tropical forest ecosystems. We have reported previously, based on a preliminary study in remnant Atlantic Forest in Minas Gerais (Brazil), that O. unilateralis represents a species complex. On each of the four species of infected carpenter ant (Camponotus) collected, the fungus-characterized macroscopically by a single stalk arising from the dorsal neck region on which the sexual structures (stromatal plates) are borne laterally-can readily be distinguished both microscopically and functionally. Here, we describe and discuss the biology, life cycle and infection strategies of O. unilateralis s.l. and hypothesize that there may be hundreds of species within the complex parasitizing formicine ants worldwide. We then address the diversity within related hypocrealean fungi, with particular reference to symbionts (mutualists through to parasites), and argue that the widely-quoted total of extant fungi (1.5 million species) may be grossly underestimated. PMID:22046474

  2. Network-assisted genetic dissection of pathogenicity and drug resistance in the opportunistic human pathogenic fungus Cryptococcus neoformans

    PubMed Central

    Kim, Hanhae; Jung, Kwang-Woo; Maeng, Shinae; Chen, Ying-Lien; Shin, Junha; Shim, Jung Eun; Hwang, Sohyun; Janbon, Guilhem; Kim, Taeyup; Heitman, Joseph; Bahn, Yong-Sun; Lee, Insuk

    2015-01-01

    Cryptococcus neoformans is an opportunistic human pathogenic fungus that causes meningoencephalitis. Due to the increasing global risk of cryptococcosis and the emergence of drug-resistant strains, the development of predictive genetics platforms for the rapid identification of novel genes governing pathogenicity and drug resistance of C. neoformans is imperative. The analysis of functional genomics data and genome-scale mutant libraries may facilitate the genetic dissection of such complex phenotypes but with limited efficiency. Here, we present a genome-scale co-functional network for C. neoformans, CryptoNet, which covers ~81% of the coding genome and provides an efficient intermediary between functional genomics data and reverse-genetics resources for the genetic dissection of C. neoformans phenotypes. CryptoNet is the first genome-scale co-functional network for any fungal pathogen. CryptoNet effectively identified novel genes for pathogenicity and drug resistance using guilt-by-association and context-associated hub algorithms. CryptoNet is also the first genome-scale co-functional network for fungi in the basidiomycota phylum, as Saccharomyces cerevisiae belongs to the ascomycota phylum. CryptoNet may therefore provide insights into pathway evolution between two distinct phyla of the fungal kingdom. The CryptoNet web server (www.inetbio.org/cryptonet) is a public resource that provides an interactive environment of network-assisted predictive genetics for C. neoformans. PMID:25739925

  3. [Microeukaryotic biodiversity in the waste ore samples surrounding an acid mine drainage lake].

    PubMed

    Li, Si-Yuan; Hao, Chun-Bo; Wang, Li-Hua; L, Zheng; Zhang, Li-Na; Liu, Ying; Feng, Chuan-Ping

    2013-10-01

    The abandoned mineral samples were collected in an acid mine drainage area in Anhui Province. Molecular ecological methods were used to construct 18S rDNA clone libraries after analyzing the main physicochemical parameters, and then the microeukaryotic diversity and community structure in the acid mine drainage area were studied. The results showed that the region was strongly acidic (pH <3), and the concentrations of Fe, SO2-(4), P, NO-(3) -N showed the same trend, all higher in the bare waste ore samples PD and 1 M than in the vegetation covered samples LW and XC. Four eukaryotic phyla were detected in the abandoned mineral samples: Ascomycota, Basidiomycota, Glomeromycota and Arthropoda. Glomeromycota can form an absolute symbiotic relationship with the plant, and it was a key factor for early plant to adapt the terrestrial environment. The biodiversity of the vegetation covered samples LW and XC, which contained Glomeromycota, was much higher than that of the bare abandoned rock samples PD and 1 M. Moreover, many sequences in the libraries were closely related to some isolated strains, which are tolerant to low pH and heavy metals, such as Penicillium purpurogenum, Chaetothyriales sp. and Staninwardia suttonii. PMID:24364337

  4. Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials.

    PubMed

    Cadete, Raquel M; Cheab, Monaliza A M; Santos, Renata O; Safar, Silvana V B; Zilli, Jerri E; Vital, Marcos J S; Basso, Luiz C; Lee, Ching-Fu; Kurtzman, Cletus P; Lachance, Marc-André; Rosa, Carlos A

    2015-09-01

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit rRNA gene showed that this species is related to C. japonica, C. maesa and C. easanensis. Six isolates were obtained from different sources, including rotting wood, tree bark and sugar cane filter cake in Brazil, frass from white oak in the USA and decayed leaf in Taiwan. A novel species is suggested to accommodate these isolates, for which the name C. xylosilytica sp. nov. is proposed. The type strain of C. xylosilytica sp. nov. is NRRL YB-2097(T) ( = CBS 13984(T) = UFMG-CM-Y347(T)) and the allotype is UFMG-CM-Y409 ( = CBS 14083). The novel species is heterothallic and complementary mating types are represented by the type and allotype strains. The MycoBank number is MB 811428. PMID:26025941

  5. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing.

    PubMed

    Vargas-Gastlum, Lluvia; Romero-Olivares, Adriana L; Escalante, Ana E; Rocha-Olivares, Axaycatl; Brizuela, Carlos; Riquelme, Meritxell

    2015-05-01

    Fungi play fundamental ecological roles in terrestrial ecosystems. However, their distribution and diversity remain poorly described in natural communities, particularly in arid and semi-arid ecosystems. In order to identify environmental factors determining fungal community structure in these systems, we assessed their diversity in conjunction with soil physicochemical characteristics in a semi-arid ecosystem in Baja California, Mexico, endemic for Coccidioidomycosis (Valley Fever). Two different microhabitats, burrows (influenced by rodent activity) and topsoil, were compared in winter and summer. Using a metagenomic approach, the ITS1 region of nuclear ribosomal DNA was used as barcode. A total of 1940 Operational Taxonomic Units (OTUs) were identified from 362332 ITS1 sequences obtained by 454 pyrosequencing. Differences in fungal composition between seasons were clearly identified. Moreover, differences in composition between microhabitats were mainly correlated to significant differences in environmental factors, such as moisture and clay content in topsoil samples, and temperature and electrical conductivity in burrow samples. Overall, the fungal community structure (dominated by Ascomycota and Basidiomycota) was less variable between seasons in burrow than in topsoil samples. Coccidioides spp. went undetected by pyrosequencing. However, a nested PCR approach revealed its higher prevalence in burrows. PMID:25877341

  6. Influence of ozone on litter quality and its subsequent effects on the initial structure of colonizing microbial communities.

    PubMed

    Aneja, Manish Kumar; Sharma, Shilpi; Fleischmann, Frank; Stich, Susanne; Heller, Werner; Bahnweg, Günther; Munch, Jean Charles; Schloter, Michael

    2007-07-01

    Ozone is considered as the main factor in air pollution related to a decline of forest in North America and Europe. In the present study, the effect of changed litter quality, due to ozone stress to trees, on the microbial communities colonizing the subsequent litter was investigated. Litter bag technique using beech and spruce litter from ozone-stressed and control trees, was combined with 16S and 18S rRNA-based fingerprinting methods and cloning to characterize phylogenetic diversity. Litter bags were incubated for 2 and 8 weeks in a beech-spruce mixed forest. Differences between the structure of microbial communities colonizing control and ozone-exposed litter were evident by fingerprints of 16S and 18S rRNA RT-PCR products. RT-PCR products, from litter degraded for 8 weeks, were cloned to identify the bacterial and fungal groups. Clones similar to members of Actinobacteria dominated the bacterial libraries, whereas effects of changed litter quality were mainly observed for the Proteobacteria. Fungal libraries were dominated by clones similar to Ascomycota members. Reduced proportion of clones similar to Basidiomycota and Zygomycota in library from ozone-stressed spruce trees and Chytridiomycota from ozone-stressed beech trees was observed when compared to their control counterparts. As hypothesized, changed litter quality due to elevated O3 did influence the structure of litter-colonizing microbial communities. However, these differences were not as pronounced as those between the two plant species. PMID:17364248

  7. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    SciTech Connect

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  8. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    DOE PAGESBeta

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  9. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Frhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  10. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sbastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  11. Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi.

    PubMed

    Divakar, Pradeep K; Crespo, Ana; Wedin, Mats; Leavitt, Steven D; Hawksworth, David L; Myllys, Leena; McCune, Bruce; Randlane, Tiina; Bjerke, Jarle W; Ohmura, Yoshihito; Schmitt, Imke; Boluda, Carlos G; Alors, David; Roca-Valiente, Beatriz; Del-Prado, Ruth; Ruibal, Constantino; Buaruang, Kawinnat; Núñez-Zapata, Jano; Amo de Paz, Guillermo; Rico, Víctor J; Molina, M Carmen; Elix, John A; Esslinger, Theodore L; Tronstad, Inger Kristin K; Lindgren, Hanna; Ertz, Damien; Gueidan, Cécile; Saag, Lauri; Mark, Kristiina; Singh, Garima; Dal Grande, Francesco; Parnmen, Sittiporn; Beck, Andreas; Benatti, Michel Navarro; Blanchon, Dan; Candan, Mehmet; Clerc, Philippe; Goward, Trevor; Grube, Martin; Hodkinson, Brendan P; Hur, Jae-Seoun; Kantvilas, Gintaras; Kirika, Paul M; Lendemer, James; Mattsson, Jan-Eric; Messuti, María Inés; Miadlikowska, Jolanta; Nelsen, Matthew; Ohlson, Jan I; Pérez-Ortega, Sergio; Saag, Andres; Sipman, Harrie J M; Sohrabi, Mohammad; Thell, Arne; Thor, Göran; Truong, Camille; Yahr, Rebecca; Upreti, Dalip K; Cubas, Paloma; Lumbsch, H Thorsten

    2015-12-01

    We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes. PMID:26299211

  12. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.

    PubMed

    Bue, M; Reich, M; Murat, C; Morin, E; Nilsson, R H; Uroz, S; Martin, F

    2009-10-01

    * Soil fungi play a major role in ecological and biogeochemical processes in forests. Little is known, however, about the structure and richness of different fungal communities and the distribution of functional ecological groups (pathogens, saprobes and symbionts). * Here, we assessed the fungal diversity in six different forest soils using tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS-1). No less than 166 350 ITS reads were obtained from all samples. In each forest soil sample (4 g), approximately 30 000 reads were recovered, corresponding to around 1000 molecular operational taxonomic units. * Most operational taxonomic units (81%) belonged to the Dikarya subkingdom (Ascomycota and Basidiomycota). Richness, abundance and taxonomic analyses identified the Agaricomycetes as the dominant fungal class. The ITS-1 sequences (73%) analysed corresponded to only 26 taxa. The most abundant operational taxonomic units showed the highest sequence similarity to Ceratobasidium sp., Cryptococcus podzolicus, Lactarius sp. and Scleroderma sp. * This study validates the effectiveness of high-throughput 454 sequencing technology for the survey of soil fungal diversity. The large proportion of unidentified sequences, however, calls for curated sequence databases. The use of pyrosequencing on soil samples will accelerate the study of the spatiotemporal dynamics of fungal communities in forest ecosystems. PMID:19703112

  13. Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergii DC.).

    PubMed

    Coats, V C; Pelletreau, K N; Rumpho, M E

    2014-03-01

    The soil microbial community acts as a reservoir of microbes that directly influences the structure and composition of the aboveground plant community, promotes plant growth, increases stress tolerance and mediates local patterns of nutrient cycling. Direct interactions between plants and rhizosphere-dwelling microorganisms occur at, or near, the surface of the root. Upon introduction and establishment, invasive plants modify the soil microbial communities and soil biochemistry affecting bioremediation efforts and future plant communities. Here, we used tag-encoded FLX amplicon 454 pyrosequencing (TEFAP) to characterize the bacterial and fungal community diversity in the rhizosphere of Berberis thunbergii DC. (Japanese barberry) from invasive stands in coastal Maine to investigate effects of soil type, soil chemistry and surrounding plant cover on the soil microbial community structure. Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia were the dominant bacterial phyla, whereas fungal communities were comprised mostly of Ascomycota and Basidiomycota phyla members, including Agaricomycetes and Sordariomycetes. Bulk soil chemistry had more effect on the bacterial community structure than the fungal community. An effect of geographic location was apparent in the rhizosphere microbial communities, yet it was less significant than the effect of surrounding plant cover. These data demonstrate a high degree of spatial variation in the rhizosphere microbial communities of Japanese barberry with apparent effects of soil chemistry, location and canopy cover on the microbial community structure. PMID:24118303

  14. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments

    PubMed Central

    Rdou, Vanessa; Navarri, Marion; Meslet-Cladire, Laurence; Barbier, Georges

    2015-01-01

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  15. Multigene phylogenies and morphological characterization of five new Ophiostoma spp. associated with spruce-infesting bark beetles in China.

    PubMed

    Yin, Mingliang; Wingfield, Michael J; Zhou, Xudong; de Beer, Z Wilhelm

    2016-04-01

    Ophiostoma spp. (Ophiostomatales, Ascomycota) are well-known fungi associated with bark beetles (Coleoptera: Scolytinae). Some of these are serious tree pathogens, while the majority is blue-stain agents of timber. In recent years, various bark beetle species have been attacking spruce forests in Qinghai province, China, causing significant damage. A preliminary survey was done to explore the diversity of the ophiostomatoid fungal associates of these beetles. The aims of the present study were to identify and characterize new Ophiostoma spp. associated with spruce-infesting bark beetles in Qinghai Province, and to resolve phylogenetic relationships of Ophiostoma spp. related to the Chinese isolates, using multigene phylogenetic analyses. Results obtained from four gene regions (ribosomal internal transcribed spacer regions, β-tubulin, calmodulin, translation elongation factor-1α) revealed five new Ophiostoma spp. from Qinghai. These included O. nitidus sp. nov., O. micans sp. nov., and O. qinghaiense sp. nov. in a newly defined O. piceae complex. The other two new species, O. poligraphi sp. nov. and O. shangrilae sp. nov., grouped in the O. brunneo-ciliatum complex. Based on DNA sequence and morphological comparisons, we also show that O. arduennense and O. torulosum are synonyms of O. distortum, while O. setosum is a synonym of O. cupulatum. PMID:27020148

  16. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales.

    PubMed

    Luo, Jing; Qiu, Huan; Cai, Guohong; Wagner, Nicole E; Bhattacharya, Debashish; Zhang, Ning

    2015-01-01

    The order Magnaporthales (Ascomycota, Fungi) includes devastating pathogens of cereals, such as the rice blast fungus Pyricularia (Magnaporthe) oryzae, which is a model in host-pathogen interaction studies. Magnaporthales also includes saprotrophic species associated with grass roots and submerged wood. Despite its scientific and economic importance, the phylogenetic position of Magnaporthales within Sordariomycetes and the interrelationships of its constituent taxa, remain controversial. In this study, we generated novel transcriptome data from 21 taxa that represent key Magnaporthales lineages of different infection and nutrition modes and phenotypes. Phylogenomic analysis of >200 conserved genes allowed the reconstruction of a robust Sordariomycetes tree of life that placed the monophyletic group of Magnaporthales sister to Ophiostomatales. Among Magnaporthales, three major clades were recognized: 1) an early diverging clade A comprised of saprotrophs associated with submerged woods; 2) clade B that includes the rice blast fungus and other pathogens that cause blast diseases of monocot plants. These species infect the above-ground tissues of host plants using the penetration structure, appressorium; and 3) clade C comprised primarily of root-associated species that penetrate the root tissue with hyphopodia. The well-supported phylogenies provide a robust framework for elucidating evolution of pathogenesis, nutrition modes, and phenotypic characters in Magnaporthales. PMID:25819715

  17. Phylogenomic Relationships between Amylolytic Enzymes from 85 Strains of Fungi

    PubMed Central

    Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng

    2012-01-01

    Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions. PMID:23166747

  18. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities.

    PubMed

    Taylor, D L; Bruns, T D

    1999-11-01

    We have investigated colonization strategies by comparing the abundance and frequency of ectomycorrhizal fungal species on roots in a mature Pinus muricata forest with those present as resistant propagules colonizing potted seedlings grown in the same soil samples. Thirty-seven fungal species were distinguished by internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs); most were identified to species level by sporocarp RFLP matches or to genus/family level by using sequence databases for the mitochondrial and nuclear large-subunit rRNA genes. The below-ground fungal community found in the mature forest contrasted markedly with the resistant propagule community, as only four species were found in both communities. The dominant species in the mature forest were members of the Russulaceae, Thelephorales and Amanitaceae. In contrast, the resistant propagule community was dominated by Rhizopogon species and by species of the Ascomycota. Only one species, Tomentella sublilacina (Thelephorales), was common in both communities. The spatial distribution of mycorrhizae on mature roots and propagules in the soil differed among the dominant species. For example, T. sublilacina mycorrhizae exhibited a unique bias toward the organic horizons, Russula brevipes mycorrhizae were denser and more clumped than those of other species and Cenococcum propagules were localized, whereas R. subcaerulescens propagules were evenly distributed. We suggest that species differences in resource preferences and colonization strategies, such as those documented here, contribute to the maintenance of species richness in the ectomycorrhizal community. PMID:10620228

  19. Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal.

    PubMed

    Gadanho, Mrio; Sampaio, Jos Paulo

    2004-12-01

    Temperature gradient gel electrophoresis (TGGE) was employed for the assessment of yeast diversity in the estuary of the Tagus river (Portugal). The molecular detection of yeasts was carried out directly from water samples and, in parallel, a cultivation approach by means of an enrichment step was employed. A nested PCR was employed to obtain a fungal amplicon containing the D2 domain of the 26S rRNA gene. For identification the TGGE bands were extracted, re-amplified, and sequenced. Fourteen fungal taxa were detected and all except one were yeasts. Most yeast sequences corresponded to members of the Ascomycota and only three belonged to the Basidiomycota. Five yeasts (four ascomycetes and one basidiomycete) could not be identified to the species level due to the uniqueness of their sequences. The number of species detected after enrichment was higher than the number of taxa found using the direct detection method. This suggests that some yeast populations are present in densities that are below the detection threshold of the method. With respect to the analysis of the yeast community structure, our results indicate that the dominant populations belong to Debaryomyces hansenii, Rhodotorula mucilaginosa, Cryptococcus longus, and to an uncultured basidiomycetous yeast phylogenetically close to Cr. longus. The combined analysis of direct detection and cultivation approaches indicates a similar community structure at the two sampled sites since nine species were present at both localities. PMID:15556087

  20. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species.

    PubMed

    Menkis, Audrius; Urbina, Hector; James, Timothy Y; Rosling, Anna

    2014-12-01

    The class Archaeorhizomycetes (Taphrinomycotina, Ascomycota) was introduced to accommodate an ancient lineage of soil-inhabiting fungi found in association with plant roots. Based on environmental sequencing data Archaeorhizomycetes may comprise a significant proportion of the total fungal community in soils. Yet the only species described and cultivated in this class is Archaeorhizomyces finlayi. In this paper, we describe a second species from a pure culture, Archaeorhizomyces borealis NS99-600(T) (=CBS138755(ExT)) based on morphological, physiological, and multi-locus molecular characterization. Archaeorhizomyces borealis was isolated from a root tip of a Pinus sylvestris seedling grown in a forest nursery in Lithuania. Analysis of Archaeorhizomycete species from environmental samples shows that it has a Eurasian distribution and is the most commonly observed species. Archaeorhizomyces borealis shows slow growth in culture and forms yellowish creamy colonies, characteristics that distinguish A. borealis from its closest relative A. finlayi. Here we also propose a sequence-based taxonomic classification of Archaeorhizomycetes and predict that approximately 500 species in this class remain to be isolated and described. PMID:25457942

  1. Efficacy of water- and oil-in-water-formulated Metarhizium anisopliae in Rhipicephalus sanguineus eggs and eclosing larvae.

    PubMed

    Luz, Christian; D'Alessandro, Walmirton Bezerra; Rodrigues, Juscelino; Fernandes, verton Kort Kamp

    2016-01-01

    Conidia of the entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were assessed against Rhipicephalus sanguineus (Arachnida: Ixodidae) eggs under laboratory conditions. Clusters of 25 eggs were applied either directly with the fungal conidial formulations or set on previously fungus-treated filter paper. Treatments consisted of conidia formulated in water or an oil-in-water emulsion at final concentrations of 3.3??10(3), 10(4), 3.3??10(4), 10(5), or 3.3??10(5)conidia/cm(2). The development of mycelium and new conidia on egg clusters incubated at 25C and humidity close to saturation depended on conidial concentration, formulation, and application technique. No larvae eclosed from eggs after direct applications of conidia regardless of the formulation. The eclosion and survival of larvae from indirectly treated egg clusters depended on the type of formulation and conidial concentration applied. Oil-in-water formulations of conidia demonstrated the highest activity against eggs of R. sanguineus. PMID:26364059

  2. Susceptibility of Cabbage Maggot Larvae (Diptera: Anthomyiidae) to Hypocreales Entomopathogenic Fungi.

    PubMed

    Myrand, V; Buffet, J P; Guertin, C

    2015-02-01

    The pathogenicity of six Metarhizium spp., four Beauveria bassiana (Balsamo) Vuillemin, and four Tolypocladium cylindrosporum Gams (Ascomycota: Hypocreales) fungal pathogens exposed to third-instar Delia radicum L. was evaluated in laboratory bioassays. The presence of intra- and intergeneric variations concerning the pathogenicity of the isolates was investigated. Results show that all Metarhizium spp. and T. cylindrosporum isolates caused a noteworthy mortality to the third instar and consequently reduced adult eclosion. The well-known standard, F52 strain (identified as Metarhizium brunneum), resulted in up to 79% reduction in D. radicum eclosion. The other Metarhizium isolates including UAMH 9197 (Metarhizium anisopliae) and UAMH 2801 (M. brunneum), as well as T. cylindrosporum DAOM 167325 and DAOM 183952, produced a mean eclosion reduction of >50%. While the pathogenicity of Metarhizium spp. and T. cylindrosporum is similar, the B. bassiana isolates are undoubtedly less pathogenic. Based on the results obtained with the selected isolates, no intrageneric differences relative to the pathogenicity of the isolates appeared to be present. Globally, this study deepened the knowledge about D. radicum susceptibility toward Hypocreales entomopathogenic fungi, chiefly T. cylindrosporum. The implications of this study regarding the development of a biological control agent are discussed. PMID:26470101

  3. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada

    PubMed Central

    Wurzbacher, Christian; Grimmett, Ivan J.; Bärlocher, Felix

    2016-01-01

    Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM , coarse particulate organic matter). Mechanical and biological processing converts this into fine particulate organic matter (FPOM). Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU), of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina), Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota) dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems. PMID:26918122

  4. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  5. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.

    PubMed

    Kappel, Lisa; Gaderer, Romana; Flipphi, Michel; Seidl-Seiboth, Verena

    2016-02-01

    Chitin is an important structural constituent of fungal cell walls composed of N-acetylglucosamine (GlcNAc) monosaccharides, but catabolism of GlcNAc has not been studied in filamentous fungi so far. In the yeast Candida albicans, the genes encoding the three enzymes responsible for stepwise conversion of GlcNAc to fructose-6-phosphate are clustered. In this work, we analysed GlcNAc catabolism in ascomycete filamentous fungi and found that the respective genes are also clustered in these fungi. In contrast to C.?albicans, the cluster often contains a gene for an Ndt80-like transcription factor, which we named RON1 (regulator of N-acetylglucosamine catabolism 1). Further, a gene for a glycoside hydrolase 3 protein related to bacterial N-acetylglucosaminidases can be found in the GlcNAc gene cluster in filamentous fungi. Functional analysis in Trichoderma reesei showed that the transcription factor RON1 is a key activator of the GlcNAc gene cluster and essential for GlcNAc catabolism. Furthermore, we present an evolutionary analysis of Ndt80-like proteins in Ascomycota. All GlcNAc cluster genes, as well as the GlcNAc transporter gene ngt1, and an additional transcriptional regulator gene, csp2, encoding the homolog of Neurospora crassa?CSP2/GRHL, were functionally characterised by gene expression analysis and phenotypic characterisation of knockout strains in T.?reesei. PMID:26481444

  6. C Terminus of Nce102 Determines the Structure and Function of Microdomains in the Saccharomyces cerevisiae Plasma Membrane ?

    PubMed Central

    Loibl, Martin; Grossmann, Guido; Stradalova, Vendula; Klingl, Andreas; Rachel, Reinhard; Tanner, Widmar; Malinsky, Jan; Opekarov, Miroslava

    2010-01-01

    The plasma membrane of the yeast Saccharomyces cerevisiae contains stably distributed lateral domains of specific composition and structure, termed MCC (membrane compartment of arginine permease Can1). Accumulation of Can1 and other specific proton symporters within MCC is known to regulate the turnover of these transporters and is controlled by the presence of another MCC protein, Nce102. We show that in an NCE102 deletion strain the function of Nce102 in directing the specific permeases into MCC can be complemented by overexpression of the NCE102 close homolog FHN1 (the previously uncharacterized YGR131W) as well as by distant Schizosaccharomyces pombe homolog fhn1 (SPBC1685.13). We conclude that this mechanism of plasma membrane organization is conserved through the phylum Ascomycota. We used a hemagglutinin (HA)/Suc2/His4C reporter to determine the membrane topology of Nce102. In contrast to predictions, its N and C termini are oriented toward the cytosol. Deletion of the C terminus or even of its last 6 amino acids does not disturb protein trafficking, but it seriously affects the formation of MCC. We show that the C-terminal part of the Nce102 protein is necessary for localization of both Nce102 itself and Can1 to MCC and also for the formation of furrow-like membrane invaginations, the characteristic ultrastructural feature of MCC domains. PMID:20581291

  7. The Gut Microbiota of Workers of the Litter-Feeding Termite Syntermes wheeleri (Termitidae: Syntermitinae): Archaeal, Bacterial, and Fungal Communities.

    PubMed

    Santana, Renata Henrique; Cato, Elisa Caldeira Pires; Lopes, Fabyano Alvares Cardoso; Constantino, Reginaldo; Barreto, Cristine Chaves; Krger, Ricardo Henrique

    2015-08-01

    The gut microbiota of termites allows them to thrive on a variety of different materials such as wood, litter, and soil. For that reason, they play important roles in the decomposition of biomass in diverse biomes. This function is essential in the savanna, where litter-feeding termites are one of the few invertebrates active during the dry season. In this study, we describe the gut microbiota of workers (third and fourth instars) of the species Syntermes wheeleri, a litter-feeding termite from the Brazilian savanna. Results of 16S and 18S ribosomal RNA (rRNA) gene-targeted pyrosequencing using primers sets specific to each domain have revealed its bacterial, archaeal, and fungal diversities. Firmicutes accounted for more than half of the operational taxonomic units of the Bacteria domain. The most abundant fungal species were from the class Dothideomycetes of the phylum Ascomycota. The methanogenic orders Methanobacteriales, Methanosarcinales, and Methanomicrobiales of the phylum Euryarchaeota accounted for the greatest part of the Archaea detected in this termite. A comparison of the gut microbiota of the two instars revealed a difference in operational taxonomic unit (OTU) abundance but not in species richness. This description of the whole gut microbiota represents the first study to evaluate relationships among bacteria, archaea, fungi, and host in S. wheeleri. PMID:25749937

  8. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress

    PubMed Central

    Ling, Juan; Zhang, Yanying; Wu, Meilin; Wang, Youshao; Dong, Junde; Jiang, Yufeng; Yang, Qingsong; Zeng, Siquan

    2015-01-01

    Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs), but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), quantitative PCR (qPCR) and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA) indicated that significant factors driving community shifts were ammonium and pH (p < 0.05). Significant amounts of the variations (31.1%) were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination. PMID:26096007

  9. Phylogenetic Analysis and Classification of the Fungal bHLH Domain

    PubMed Central

    Sailsbery, Joshua K.; Atchley, William R.; Dean, Ralph A.

    2012-01-01

    The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1–F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH–containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358

  10. Distribution and diversity of fungi in freshwater sediments on a river catchment scale

    PubMed Central

    Liu, Jie; Wang, Jianan; Gao, Guanghai; Bartlam, Mark G.; Wang, Yingying

    2015-01-01

    Fungal communities perform essential functions in biogeochemical cycles. However, knowledge of fungal community structural changes in river ecosystems is still very limited. In the present study, we combined culture-dependent and culture-independent methods to investigate fungal distribution and diversity in sediment on a regional scale in the Songhua River catchment, located in North-East Asia. A total of 147 samples over the whole river catchment were analyzed. The results showed that compared to the mainstream, the tributaries have a higher fungal community organization and culturable fungal concentration, but possess lower community dynamics as assessed by denaturing gradient gel electrophoresis (DGGE). Furthermore, phylogenetic analysis of DGGE bands showed that Ascomycota and Basidiomycota were the predominant community in the Songhua River catchment. Redundancy analysis revealed that longitude was the primary factor determining the variation of fungal community structure, and fungal biomass was mainly related to the total nutrient content. Our findings provide new insights into the characteristics of fungal community distribution in a temperate zone river at a regional scale, and demonstrate that fungal dispersal is restricted by geographical barriers in a whole river catchment. PMID:25954259

  11. Root-associated fungi of Vaccinium carlesii in subtropical forests of China: intra- and inter-annual variability and impacts of human disturbances.

    PubMed

    Zhang, Yanhua; Ni, Jian; Tang, Fangping; Pei, Kequan; Luo, Yiqi; Jiang, Lifen; Sun, Lifu; Liang, Yu

    2016-01-01

    Ericoid mycorrhiza (ERM) are expected to facilitate establishment of ericaceous plants in harsh habitats. However, diversity and driving factors of the root-associated fungi of ericaceous plants are poorly understood. In this study, hair-root samples of Vaccinium carlesii were taken from four forest types: old growth forests (OGF), secondary forests with once or twice cutting (SEC I and SEC II), and Cunninghamia lanceolata plantation (PLF). Fungal communities were determined using high-throughput sequencing, and impacts of human disturbances and the intra- and inter-annual variability of root-associated fungal community were evaluated. Diverse fungal taxa were observed and our results showed that (1) Intra- and inter-annual changes in root-associated fungal community were found, and the Basidiomycota to Ascomycota ratio was related to mean temperature of the sampling month; (2) Human disturbances significantly affected structure of root-associated fungal community of V. carlesii, and two secondary forest types were similar in root-associated fungal community and were closer to that of the old growth forest; (3) Plant community composition, edaphic parameters, and geographic factors significantly affected root-associated fungal communities of V. carlesii. These results may be helpful in better understanding the maintenance mechanisms of fungal diversity associated with hair roots of ERM plants under human disturbances. PMID:26928608

  12. Intraspecific and interspecific tolerance to copper sulphate in five Iberian amphibian species at two developmental stages.

    PubMed

    Garca-Muoz, E; Guerrero, F; Parra, G

    2010-08-01

    Intraspecific and interspecific variations have been observed across many taxa with respect to resistance to natural environmental stressors. It has already been well documented that amphibians are sensitive to habitat degradation and are regarded as bioindicators of aquatic and agricultural ecosystems. In southern Spain, different toxic substances, including copper sulphate, which is used to control Cycloconium oleaginum (Fungi, Ascomycota, Venturiaceae) during spring and autumn, are used in intensive olive tree agriculture. In this context, many wetlands are affected by a diffuse pollution process. Thus, toxicological studies using different species living in wetlands surrounded by agricultural activity are needed to understand the alterations suffered by these ecosystems. To achieve this understanding, individuals of five amphibian species (Bufo bufo, Epidalea calamita, Discoglossus jeanneae, Pelobates cultripes, and Pelophylax perezi) at Gosner developmental stages 19 and 25 were exposed to different copper sulphate concentrations in 96 h acute toxicity tests. Exposure to copper sulphate had a negative effect on total larval length reached at the end of the experimental period and generated approximately 30% of growth reduction respect to control treatments. P. perezi was the most tolerant species studied and showed no mortality at the maximum concentration tested (0.20 mg Cu L(-1)), whereas the most sensitive species (B. bufo, E. calamita, and D. jeanneae) showed approximately 90% mortality at the same concentration. These results indicates that the sole presence in wetlands of P. perezi, the most abundant species in southeast of Iberian Peninsula, might be correlated with its high tolerance to agrochemicals. PMID:20162266

  13. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.

    PubMed

    Miller, Ana Zélia; Laiz, Leonila; Gonzalez, Juan Miguel; Dionísio, Amélia; Macedo, Maria Filomena; Saiz-Jimenez, Cesareo

    2008-11-01

    In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process. PMID:18768211

  14. Bacterial, archaeal and fungal succession in the forefield of a receding glacier.

    PubMed

    Zumsteg, Anita; Luster, Jrg; Gransson, Hans; Smittenberg, Rienk H; Brunner, Ivano; Bernasconi, Stefano M; Zeyer, Josef; Frey, Beat

    2012-04-01

    Glacier forefield chronosequences, initially composed of barren substrate after glacier retreat, are ideal locations to study primary microbial colonization and succession in a natural environment. We characterized the structure and composition of bacterial, archaeal and fungal communities in exposed rock substrates along the Damma glacier forefield in central Switzerland. Soil samples were taken along the forefield from sites ranging from fine granite sand devoid of vegetation near the glacier terminus to well-developed soils covered with vegetation. The microbial communities were studied with genetic profiling (T-RFLP) and sequencing of clone libraries. According to the T-RFLP profiles, bacteria showed a high Shannon diversity index (H) (ranging from 2.3 to 3.4) with no trend along the forefield. The major bacterial lineages were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Cyanobacteria. An interesting finding was that Euryarchaeota were predominantly colonizing young soils and Crenarchaeota mainly mature soils. Fungi shifted from an Ascomycota-dominated community in young soils to a more Basidiomycota-dominated community in old soils. Redundancy analysis indicated that base saturation, pH, soil C and N contents and plant coverage, all related to soil age, correlated with the microbial succession along the forefield. PMID:22159526

  15. Agni's fungi: heat-resistant spores from the Western Ghats, southern India.

    PubMed

    Suryanarayanan, T S; Govindarajulu, M B; Thirumalai, E; Reddy, M Sudhakara; Money, Nicholas P

    2011-09-01

    This study concerns the thermotolerance of spores of mesophilic fungi isolated from a tropical semi-arid habitat subject to dry season fire in the Western Ghats, southern India. Among 25 species of Ascomycota isolated from leaf litter, nine were able to grow after incubation in a drying oven for 2h at 100C; the spores of two of these species survived 2h incubation at 110C, and one survived exposure to 115C for 2h. The range of thermotolerance among mesophilic fungi isolated from the leaf litter was surprising: filamentous fungi from other habitats, including species that colonize scorched vegetation after fires and thermophilic forms occurring in self-heating plant composts, cannot survive even brief exposure to such high temperatures. It is possible that the exceptional heat resistance of the Indian fungi is related to adaptations to surviving fires. Genetic analysis of the physiological mechanisms of heat resistance in these fungi offers prospects for future biotechnological innovations. The discovery of extreme thermotolerance among common saprotrophs shows that this physiological trait may be more widespread than recognized previously, adding to concern about the evolution of opportunistic pathogens on a warmer planet. The fungi in this study are among the most heat-resistant eukaryotes on record and are referred to here as 'Agni's Fungi', after the Hindu God of Fire. PMID:21872180

  16. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts

    PubMed Central

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R.; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi–yeasts split concomitant with the yeasts’ genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  17. Unravelling the Diversity of Grapevine Microbiome

    PubMed Central

    Pinto, Ctia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceio; C. Gomes, Ana

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines. PMID:24454903

  18. Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina

    PubMed Central

    Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M.; de Bruijn, Irene

    2016-01-01

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. PMID:26805821

  19. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing.

    PubMed

    Eichorst, Stephanie A; Kuske, Cheryl R

    2012-04-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [(13)C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the (13)C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or (12)C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the (13)C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community. PMID:22287013

  20. Profiling microbial communities in manganese remediation systems treating coal mine drainage.

    PubMed

    Chaput, Dominique L; Hansel, Colleen M; Burgos, William D; Santelli, Cara M

    2015-03-01

    Water discharging from abandoned coal mines can contain extremely high manganese levels. Removing this metal is an ongoing challenge. Passive Mn(II) removal beds (MRBs) contain microorganisms that oxidize soluble Mn(II) to insoluble Mn(III/IV) minerals, but system performance is unpredictable. Using amplicon pyrosequencing, we profiled the bacterial, fungal, algal, and archaeal communities in four MRBs, performing at different levels, in Pennsylvania to determine whether they differed among MRBs and from surrounding soil and to establish the relative abundance of known Mn(II) oxidizers. Archaea were not detected; PCRs with archaeal primers returned only nontarget bacterial sequences. Fungal taxonomic profiles differed starkly between sites that remove the majority of influent Mn and those that do not, with the former being dominated by Ascomycota (mostly Dothideomycetes) and the latter by Basidiomycota (almost entirely Agaricomycetes). Taxonomic profiles for the other groups did not differ significantly between MRBs, but operational taxonomic unit-based analyses showed significant clustering by MRB with all three groups (P < 0.05). Soil samples clustered separately from MRBs in all groups except fungi, whose soil samples clustered loosely with their respective MRB. Known Mn(II) oxidizers accounted for a minor proportion of bacterial sequences (up to 0.20%) but a greater proportion of fungal sequences (up to 14.78%). MRB communities are more diverse than previously thought, and more organisms may be capable of Mn(II) oxidation than are currently known. PMID:25595765

  1. Characterization of the Fungal Microbiome (Mycobiome) in Fecal Samples from Dogs

    PubMed Central

    Foster, M. Lauren; Dowd, Scot E.; Stephenson, Christine; Steiner, Jrg M.; Suchodolski, Jan S.

    2013-01-01

    The prevalence and phylogenetic description of fungal organisms and their role as part of the intestinal ecosystem have not yet been studied extensively in dogs. This study evaluated the fungal microbiome of 19 dogs (12 healthy dogs and 7 dogs with acute diarrhea) using fungal tag-encoded FLX-Titanium amplicon pyrosequencing. Five distinct fungal phyla were identified, with Ascomycota (medians: 97.9% of obtained sequences in healthy dogs and 98.2% in diseased dogs) and Basidiomycota (median 1.0% in healthy dogs and median 0.5% in diseased dogs) being the most abundant fungal phyla. A total of 219 fungal genera were identified across all 19 dogs with a median (range) of 28 (469) genera per sample. Candida was the most abundant genus found in both the diseased dogs (median: 1.9%, range: 0.2%38.5% of sequences) and healthy dogs (median: 5.2%, range: 0.0%63.1% of sequences). Candida natalensis was the most frequently identified species. No significant differences were observed in the relative proportions of fungal communities between healthy and diseased dogs. In conclusion, fecal samples of healthy dogs and dogs with acute diarrhea harbor various fungal genera, and their role in gastrointestinal health and disease warrants further studies. PMID:23738233

  2. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean

    PubMed Central

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-01-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species. PMID:26939571

  3. Generic circumscriptions in Geoglossomycetes.

    PubMed

    Hustad, V P; Miller, A N; Dentinger, B T M; Cannon, P F

    2013-12-01

    The class Geoglossomycetes is a recently created class of Ascomycota, currently comprised of one family (Geoglossaceae) and five genera (Geoglossum, Nothomitra, Sarcoleotia, Thuemenidium and Trichoglossum). These fungi, commonly known as earth tongues, have long been a subject of mycological research. However, the taxonomy within the group has historically been hindered by the lack of reliable morphological characters, uncertain ecological associations, and the inability to grow these fungi in culture. The phylogenetic relationships of Geoglossomycetes were investigated by conducting maximum likelihood and Bayesian analyses using a 4-gene dataset (ITS, LSU, MCM7, RPB1). Five well-supported monophyletic clades were found that did not correspond exactly with the currently recognised genera, necessitating a taxonomic revision of the group. Two new genera are proposed: Glutinoglossum to accommodate G. glutinosum and the newly described species G. heptaseptatum, and Sabuloglossum to accommodate S. arenarium. The type species of Thuemenidium, traditionally included within the Geoglossaceae, is confirmed as belonging to a separate lineage that is only distantly related to Geoglossomycetes. PMID:24761038

  4. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood.

    PubMed

    Covino, Stefano; Fabianová, Tereza; Křesinová, Zdena; Čvančarová, Monika; Burianová, Eva; Filipová, Alena; Vořísková, Jana; Baldrian, Petr; Cajthaml, Tomáš

    2016-01-15

    The feasibility of decontaminating creosote-treated wood (CTW) by co-composting with agricultural wastes was investigated using two bulking agents, grass cuttings (GC) and broiler litter (BL), each employed at a 1:1 ratio with the matrix. The initial concentration of total polycyclic aromatic hydrocarbons (PAHs) in CTW (26,500 mg kg(-1)) was reduced to 3 and 19% after 240 d in GC and BL compost, respectively. PAH degradation exceeded the predicted bioaccesible threshold, estimated through sequential supercritical CO2 extraction, together with significant detoxification, assessed by contact tests using Vibrio fisheri and Hordeum vulgare. GC composting was characterized by high microbial biomass growth in the early phases, as suggested by phospholipid fatty acid analyses. Based on the 454-pyrosequencing results, fungi (mostly Saccharomycetales) constituted an important portion of the microbial community, and bacteria were characterized by rapid shifts (from Firmicutes (Bacilli) and Actinobacteria to Proteobacteria). However, during BL composting, larger amounts of prokaryotic and eukaryotic PLFA markers were observed during the cooling and maturation phases, which were dominated by Proteobacteria and fungi belonging to the Ascomycota and those putatively related to the Glomeromycota. This work reports the first in-depth analysis of the chemical and microbiological processes that occur during the co-composting of a PAH-contaminated matrix. PMID:26342147

  5. Expanding genomics of mycorrhizal symbiosis.

    PubMed

    Kuo, Alan; Kohler, Annegret; Martin, Francis M; Grigoriev, Igor V

    2014-01-01

    The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

  6. Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds.

    PubMed

    Gonçalves, Vívian N; Cantrell, Charles L; Wedge, David E; Ferreira, Mariana C; Soares, Marco Aurélio; Jacob, Melissa R; Oliveira, Fabio S; Galante, Douglas; Rodrigues, Fabio; Alves, Tânia M A; Zani, Carlos L; Junior, Policarpo A S; Murta, Silvane; Romanha, Alvaro J; Barbosa, Emerson C; Kroon, Erna G; Oliveira, Jaquelline G; Gomez-Silva, Benito; Galetovic, Alexandra; Rosa, Carlos A; Rosa, Luiz H

    2016-01-01

    This study assessed the diversity of cultivable rock-associated fungi from Atacama Desert. A total of 81 fungal isolates obtained were identified as 29 Ascomycota taxa by sequencing different regions of DNA. Cladosporium halotolerans, Penicillium chrysogenum and Penicillium cf. citrinum were the most frequent species, which occur at least in four different altitudes. The diversity and similarity indices ranged in the fungal communities across the latitudinal gradient. The Fisher-α index displayed the higher values for the fungal communities obtained from the siltstone and fine matrix of pyroclastic rocks with finer grain size, which are more degraded. A total of 23 fungal extracts displayed activity against the different targets screened. The extract of P. chrysogenum afforded the compounds α-linolenic acid and ergosterol endoperoxide, which were active against Cryptococcus neoformans and methicillin-resistance Staphylococcus aureus respectively. Our study represents the first report of a new habitat of fungi associated with rocks of the Atacama Desert and indicated the presence of interesting fungal community, including species related with saprobes, parasite/pathogen and mycotoxigenic taxa. The geological characteristics of the rocks, associated with the presence of rich resident/resilient fungal communities suggests that the rocks may provide a favourable microenvironment fungal colonization, survival and dispersal in extreme conditions. PMID:26235221

  7. Species richness and adaptation of marine fungi from deep-subseafloor sediments.

    PubMed

    Rdou, Vanessa; Navarri, Marion; Meslet-Cladire, Laurence; Barbier, Georges; Burgaud, Gatan

    2015-05-15

    The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi. PMID:25769836

  8. Is Roesleria subterranea a primary pathogen or a minor parasite of grapevines? Risk assessment and a diagnostic decision scheme

    PubMed Central

    2011-01-01

    In the past the root rot pathogen Roesleria subterranea (Ascomycota) was generally considered as a minor parasite, a view with which we were often confronted during field work in German wine-growing regions where this ascomycete recently caused serious problems in established vineyards and at replant sites. To irrevocably demonstrate that R. subterranea is not a minor, but a primary pathogen of grapevines (and fruit trees) a pest risk analysis was carried out according to the guidelines defined by EPPO standard series PM 5, which defines the information needed, and contains standardised, detailed key questions and a decision support scheme for risk analysis. Following the provided decision scheme, it becomes apparent that R. subterranea must be considered as a serious, primary pathogen for grapevines and fruit trees that can cause massive economic losses. Based on the literature, the pathogen seems to be ubiquitous in wine growing regions in cool climates of the northern hemisphere. It is likely that because of its growth below ground, the small fruiting bodies, and ambiguous symptoms above ground, R. subterranea has been overlooked in the past and therefore, has not been considered as primary pathogen for grapevine. Available published information together with experience from field trials was implemented into a diagnostic decision scheme which will, together with the comprehensive literature provided, be the basis (a) to implement quick and efficient diagnosis of this pathogen in the field and (b) to conduct risk analysis and management in areas where R. subterranea has not established yet. PMID:22318129

  9. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development

    PubMed Central

    Friedl, Martina A.

    2012-01-01

    In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests. PMID:22075025

  10. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic).

    PubMed

    Zhang, Tao; Wang, Neng Fei; Zhang, Yu Qin; Liu, Hong Yu; Yu, Li Yan

    2015-01-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic. PMID:26494429

  11. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    PubMed

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. PMID:26505311

  12. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    PubMed Central

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, ?-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  13. Cercosporoid fungi (Mycosphaerellaceae) 4. Species on dicots (Acanthaceae to Amaranthaceae).

    PubMed

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2015-12-01

    The present paper continues a series of comprehensive taxonomic treatments of cercosporoid fungi (formerly Cercospora s. lat.), belonging to the Mycosphaerellaceae (Ascomycota). The fourth contribution of this series initiates treatments of cercosporoid fungi on dicots and comprises species occurring on hosts belonging the the families Acanthaceae, Actinidiaceae, Adoxaceae, Aizoaceae, Altingiaceae, and Amaranthaceae. The species are described and illustrated in alphabetical order under the particular cercosporoid genera, supplemented by keys to the species concerned. A detailed introduction, a survey of currently recognised cercosporoid genera, a key to the genera concerned, and a discussion of taxonomically relevant characters were published in the first part of this series. The following taxonomic novelties are introduced: Cercospora blepharidicola nom. nov., C. celosiigena sp. nov., C. justiciae-adhatodae sp. nov., C. justiciigena nom. nov., C. sambucicola nom. nov., C. thunbergiigena nom. nov., Cercosporella pseudachyranthis comb. nov., Pseudocercospora cyathulae comb. nov., P. depazeoides comb. nov., P. varia var. viburni-sargentii var. nov., P. viburnicola sp. nov., P. viburni-erosi sp. nov., and P. viburni-nudi sp. nov. PMID:26734548

  14. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma

    PubMed Central

    Jaklitsch, Walter M.; Stadler, Marc; Voglmayr, Hermann

    2012-01-01

    Three new species of Hypocrea/Trichoderma sect. Trichoderma (Hypocreaceae, Hypocreales, Ascomycota, Fungi) are described from recent collections in southern Europe and the Canary Islands. They have been characterized by morphological and molecular methods, including microscopic examination of the teleomorph in thin sections, the anamorph, growth rate experiments and phylogenetic analyses based on a part of the translation elongation factor 1-alpha encoding gene (tef1) containing the two last introns and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Analyses involving tef1 did not unequivocally resolve the sister clade relationship of Hypocrea caerulescens relative to the Koningii and Viride clades, while analyses based on rpb2 clearly suggest a close relationship with the former, although the phenotype of H. caerulescens is similar to H. viridescens, particularly by its warted conidia and a coconut-like odor in CMD culture. Hypocrea hispanica and T. samuelsii however are clearly related to the Viride clade by both phylogenetic markers, despite their morphological similarity to H. koningii and its relatives. An apparently specific blue pigment is formed in CMD cultures by Hypocrea caerulescens but could not be obtained by extraction with organic solvents. PMID:22453122

  15. Three European species of Hypocrea with reddish brown stromata and green ascospores

    PubMed Central

    Jaklitsch, Walter M.; Kubicek, Christian P.; Druzhinina, Irina S.

    2011-01-01

    The European species Hypocrea epimyces (Hypocreales, Ascomycota, Fungi) is redescribed based on the holotype including the drawing on its envelope by Saccardo and freshly collected material. The holomorphs of two closely related species, H. alni and H. brunneoviridis, are described as new species of the genus. They are characterized with morphological and molecular methods, including culture studies and phylogenetic analyses with internal transcribed spacers 1 and 2 as a part of the ribosomal RNA gene cluster, calmodulin, endochitinase, intron 4 of the translation elongation factor 1-alpha gene, and a part of the RNA polymerase II subunit B gene as phylogenetic markers. All species described here have green ascospores. Although phylogenetically closely related to H. lixii, they form reddish brown instead of green to black stromata. Except for H. brunneoviridis, forming nearly gliocladium-like conidiophores, the anamorphs of these species are similar to each other but vary in the angles of conidiophore branches and phialides, in phenotypic arrangement of conidiation on growth plates and in growth rates of cultures. PMID:18959165

  16. Truffles contain endocannabinoid metabolic enzymes and anandamide.

    PubMed

    Pacioni, Giovanni; Rapino, Cinzia; Zarivi, Osvaldo; Falconi, Anastasia; Leonardi, Marco; Battista, Natalia; Colafarina, Sabrina; Sergi, Manuel; Bonfigli, Antonella; Miranda, Michele; Barsacchi, Daniela; Maccarrone, Mauro

    2015-02-01

    Truffles are the fruiting body of fungi, members of the Ascomycota phylum endowed with major gastronomic and commercial value. The development and maturation of their reproductive structure are dependent on melanin synthesis. Since anandamide, a prominent member of the endocannabinoid system (ECS), is responsible for melanin synthesis in normal human epidermal melanocytes, we thought that ECS might be present also in truffles. Here, we show the expression, at the transcriptional and translational levels, of most ECS components in the black truffle Tuber melanosporum Vittad. at maturation stage VI. Indeed, by means of molecular biology and immunochemical techniques, we found that truffles contain the major metabolic enzymes of the ECS, while they do not express the most relevant endocannabinoid-binding receptors. In addition, we measured anandamide content in truffles, at different maturation stages (from III to VI), through liquid chromatography-mass spectrometric analysis, whereas the other relevant endocannabinoid 2-arachidonoylglycerol was below the detection limit. Overall, our unprecedented results suggest that anandamide and ECS metabolic enzymes have evolved earlier than endocannabinoid-binding receptors, and that anandamide might be an ancient attractant to truffle eaters, that are well-equipped with endocannabinoid-binding receptors. PMID:25433633

  17. Morphological and Molecular Characterization of a Fungus, Hirsutella sp., Isolated from Planthoppers and Psocids in Argentina

    PubMed Central

    Toledo, Andrea V.; Simurro, María E.; Balatti, Pedro A.

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  18. Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina.

    PubMed

    Toledo, Andrea V; Simurro, María E; Balatti, Pedro A

    2013-01-01

    A mycosed planthopper, Oliarus dimidiatus Berg (Hemiptera: Cixiidae), and two psocids, Heterocaecilius sp. (Psocodea: Pseudocaeciliidae) and Ectopsocus sp. (Ectopsocidae), were collected from Los Hornos and La Plata, Buenos Aires, Argentina between February and September 2007. Observations of mycelia growing on the host revealed that the putative fungal parasite had synnemata supporting monophialidic conidiogenous cells. Likewise, in vitro fungal cultures presented characteristics typical of the fungus Hirsutella citriformis Speare (Ascomycota: Hypocreales: Clavicipitaceae). The identity of the isolated fungi characterized based on morphological aspects was complemented by means of the internal transcribed spacer sequences. The sequences of both isolates were highly homologous to those of Cordyceps sp. (Fries) Link and Ophiocordyceps sinensis (Berkely) G.H. Sung, J.M. Sung, Hywel-Jones, and Spatafora (Ophiocordycipitaceae). We additionally confirmed that both isolates had the ability to infect and kill adults of Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) after 10 days. Therefore, based on the morphology of the isolated fungi, their ribosomal internal transcribed spacer sequence, and their ability to parasite insects, we conclude that the fungi isolated belong to the genus Hirsutella and might have biotechnological potential. PMID:23885970

  19. Antioxidant and antimycotic activities of two native lavandula species from portugal.

    PubMed

    Baptista, Rafael; Madureira, Ana Margarida; Jorge, Rita; Ado, Rita; Duarte, Aida; Duarte, Nolia; Lopes, Maria Manuel; Teixeira, Generosa

    2015-01-01

    The antioxidant and antimycotic activities of the essential oils and extracts of two native Portuguese Lavandula species, L. stoechas subsp. luisieri and L. pedunculata, were evaluated by in vitro assays. The total phenolics and flavonoids content were also determined. The antioxidant potential was assessed through DPPH radical scavenging, inhibition of lipid peroxidation (ILP), and DNA protection assays. All samples displayed a high DPPH scavenging activity, some of them showing concentration dependence. The majority of the samples were also able to inhibit lipid peroxidation. A strong correlation was observed between the results of DPPH and ILP assays and the flavonoids content of the samples. In the DNA protection assay, all the extracts were able to preserve DNA integrity. The antimycotic activity was performed against twelve fungi belonging to Basidiomycota and Ascomycota Divisions. L. stoechas subsp. luisieri exhibited the broadest activity spectra. L. pedunculata extracts were active against five fungi. Cryptococcus neoformans was the most sensitive, being inhibited by all the extracts. Our results led to the conclusion that L. stoechas subsp. luisieri and L. pedunculata can be useful as new sources of natural antioxidants and antimycotic agents, providing a possible valorization of the existing biodiversity and resources of Portuguese flora. PMID:25922611

  20. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents

    PubMed Central

    Hoffmann, Christian; Dollive, Serena; Grunberg, Stephanie; Chen, Jun; Li, Hongzhe; Wu, Gary D.; Lewis, James D.; Bushman, Frederic D.

    2013-01-01

    Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health. PMID:23799070

  1. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products.

    PubMed

    Throckmorton, Kurt; Wiemann, Philipp; Keller, Nancy P

    2015-09-01

    Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi. PMID:26378577

  2. Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared Geochemical Drivers Observed in Natural Analogues

    PubMed Central

    Warren, Lesley A.; Kendra, Kathryn E.

    2015-01-01

    Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers. PMID:25979895

  3. Genetics, genomics and evolution of ergot alkaloid diversity.

    PubMed

    Young, Carolyn A; Schardl, Christopher L; Panaccione, Daniel G; Florea, Simona; Takach, Johanna E; Charlton, Nikki D; Moore, Neil; Webb, Jennifer S; Jaromczyk, Jolanta

    2015-04-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  4. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland.

    PubMed

    Honegger, Rosmarie; Edwards, Dianne; Axe, Lindsey

    2013-01-01

    Lichenization is assumed to be a very ancient mode of fungal nutrition, but fossil records are rare. Here we describe two fragments of exceptionally preserved, probably charred, lichen thalli with internal stratification. Cyanolichenomycites devonicus has a cyanobacterial and Chlorolichenomycites salopensis a unicellular, presumably green algal photobiont. Fruiting bodies are missing. Cyanolichenomycites devonicus forms asexual spores in a pycnidium. All specimens were examined with scanning electron microscopy techniques. The fossils were extracted by maceration. Extant lichens and free-living cyanobacteria were either experimentally charcoalified for comparison or conventionally prepared. Based on their septate hyphal structure, both specimens are tentatively interpreted as representatives of the Pezizomycotina (Ascomycota). Their presence in 415 million yr (Myr) old rocks from the Welsh Borderland predates existing Late Cretaceous records of pycnidial conidiomata by some 325 Myr and Triassic records of lichens with broadly similar organization by some 195 Myr. These fossils represent the oldest known record of lichens with symbionts and anatomy as typically found in morphologically advanced taxa today. The latter does not apply to Winfrenatia reticulata, the enigmatic crustose lichen fossil from the Lower Devonian, nor to presumed lichen-like organisms such as the Cambrian Farghera robusta or to the Lower Devonian Spongiophyton minutissimum. PMID:23110612

  5. Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field.

    PubMed

    Shrestha, Prachand; Szaro, Timothy M; Bruns, Thomas D; Taylor, John W

    2011-08-01

    The goals of our project were to document the diversity and distributions of cultivable fungi associated with decaying Miscanthus and sugarcane plants in nature and to further assess biodegradation of host plant cell walls by these fungi in pure cultures. Late in 2008 and early in 2009 we collected decaying Miscanthus and Saccharum from 8 sites in Illinois and 11 sites in Louisiana, respectively. To recover fungi that truly decay plants and to recover slow-growing fungi, we washed the plant material repeatedly to remove spores and cultivated fungi from plant fragments small enough to harbor at most one mycelium. We randomly selected 950 fungal colonies out of 4,560 microwell colonies and used molecular identification to discover that the most frequently recovered fungal species resided in Hypocreales (Sordariomycetes), Pleosporales (Dothideomycetes), and Chaetothryiales (Eurotiomycetes) and that only a few weedy species were recovered. We were particularly interested in Pleosporales and Chaetothyriales, groups that have not been mined for plant decay fungi. To confirm that we had truly recovered fungi that deconstruct plant cell walls, we assayed the capacity of the fungi to consume whole, alkali-pretreated, ground Miscanthus. Solid substrate cultures of the nine most commonly encountered Ascomycota resulted in Miscanthus weight loss of 8 to 13% over 4 weeks. This is the first systematic, high-throughput, isolation and biodegradation assessment of fungi isolated from decaying bioenergy grasses. PMID:21685162

  6. Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom.

    PubMed

    Medina, Edgar M; Jones, Gary W; Fitzpatrick, David A

    2011-10-01

    We have used three independent phylogenomic approaches (concatenated alignments, single-, and multi-gene supertrees) to reconstruct the fungal tree of life (FTOL) using publicly available fungal genomes. This is the first time multi-gene families have been used in fungal supertree reconstruction and permits us to use up to 66% of the 1,001,217 genes in our fungal database. Our analyses show that different phylogenomic datasets derived from varying clustering criteria and alignment orientation do not have a major effect on phylogenomic supertree reconstruction. Overall the resultant phylogenomic trees are relatively congruent with one another and successfully recover the major fungal phyla, subphyla and classes. We find that where incongruences do occur, the inferences are usually poorly supported. Within the Ascomycota phylum, our phylogenies reconstruct monophyletic Saccharomycotina and Pezizomycotina subphyla clades and infer a sister group relationship between these to the exclusion of the Taphrinomycotina. Within the Pezizomycotina subphylum, all three phylogenies infer a sister group relationship between the Leotiomycetes and Sordariomycetes classes. However, there is conflict regarding the relationships with the Dothideomycetes and Eurotiomycetes classes. Within the Basidiomycota phylum, supertrees derived from single- and multi-gene families infer a sister group relationship between the Pucciniomycotina and Agaricomycotina subphyla while the concatenated phylogeny infers a poorly supported relationship between the Agaricomycotina and Ustilagomycotina. The reconstruction of a robust FTOL is important for future fungal comparative analyses. We illustrate this point by performing a preliminary investigation into the phyletic distribution of yeast prion-like proteins in the fungal kingdom. PMID:21938499

  7. A five-gene phylogeny of Pezizomycotina.

    PubMed

    Spatafora, Joseph W; Sung, Gi-Ho; Johnson, Desiree; Hesse, Cedar; O'Rourke, Benjamin; Serdani, Maryna; Spotts, Robert; Lutzoni, Franois; Hofstetter, Valrie; Miadlikowska, Jolanta; Reeb, Valrie; Gueidan, Ccile; Fraker, Emily; Lumbsch, Thorsten; Lcking, Robert; Schmitt, Imke; Hosaka, Kentaro; Aptroot, Andr; Roux, Claude; Miller, Andrew N; Geiser, David M; Hafellner, Josef; Hestmark, Geir; Arnold, A Elizabeth; Bdel, Burkhard; Rauhut, Alexandra; Hewitt, David; Untereiner, Wendy A; Cole, Mariette S; Scheidegger, Christoph; Schultz, Matthias; Sipman, Harrie; Schoch, Conrad L

    2006-01-01

    Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-lalpha) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sampling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as monophyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbiliomycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta. Within Leotiomyceta, the supraclass clades of Leotiomycetes s.s. plus Sordariomycetes and Arthoniomycetes plus Dothideomycetes were resolved with moderate support. PMID:17486977

  8. Rupestriomyces and Spissiomyces, two new genera of rock-inhabiting fungi from China.

    PubMed

    Su, Lei; Guo, Liyun; Hao, Yang; Xiang, Meichun; Cai, Lei; Liu, Xingzhong

    2015-01-01

    Bare rocks in arid and semi-arid climates may harbor a bewildering biodiversity of fungi that are overlooked in China. During a survey of rock-inhibiting fungi in China, more than 1000 were isolated and 14 belonging to Dothideomycetes (Ascomycota) were selected for detailed study. Phylogenetic trees based on combined sequence datasets of mt 16S rDNA, partial nuc rDNA 18S and 28S indicated that these strains clustered in two distinct, well supported and previously unknown lineages within the class Dothideomycetes. Therefore two new genera were established corresponding to those two clades. Spissiomyces gen. nov. is characterized by thick-walled, yellowish brown hyphae and globose or subglobose conidia, if present. Rupestriomyces gen. nov. is characterized by globose, barrel-shaped, ampulliform or ovoidal conidia formed from acropetal, catenate hyphae. Further phylogenetic analyses using combined sequence datasets of the rDNA internal transcribed spacer (ITS) region and 16S rDNA, part of genes of RPB2, TUB2, nuc rDNA 18S and 28S revealed that those strains represented five new species (i.e. Spissiomyces aggregatus, S. ramosus, Rupestriomyces sinensis, R. ampulliformis, R. torulosus). They were described, illustrated and compared with similar taxa based on morphological characteristics and phylogenetic relationships. The results of this paper provides insight into the richness and diversity of rock-inhibiting fungi in nature. PMID:25911702

  9. Dark septate endophytic pleosporalean genera from semiarid areas.

    PubMed

    Knapp, D G; Kovcs, G M; Zajta, E; Groenewald, J Z; Crous, P W

    2015-12-01

    Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages belonging to Pleosporales that were found previously in semiarid sandy grasslands. For molecular phylogenetic studies seven loci (ITS, partial 18S nrRNA, 28S nrRNA, actin, calmodulin, transcription-elongation factor 1- ? and -tubulin genes) were amplified and sequenced. Based on morphology and the resulting molecular phylogeny these isolates were found to represent three novel genera within the Pleosporales, namely Aquilomyces, Flavomyces and Darksidea, with eight novel species. Molecular data revealed that monotypic Aquilomyces belongs to Morosphaeriaceae, monotypic Flavomyces represents an incertae sedis lineage related to Massarinaceae, and Darksidea, with six new species, is allied to the Lentitheciaceae. During this study we tested numerous conditions to induce sporulation, and managed for the first time to induce several DSE to form their sexual morphs. PMID:26823630

  10. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns

    PubMed Central

    Crous, Pedro W.; de Wit, Pierre J. G. M.; van der Burgt, Ate

    2015-01-01

    Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom. PMID:26046656

  11. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa.

    PubMed

    Soca-Chafre, Giovanny; Rivera-Ordua, Flor N; Hidalgo-Lara, M Eugenia; Hernandez-Rodriguez, Cesar; Marsch, Rodolfo; Flores-Cotera, Luis B

    2011-02-01

    We studied the endophytic mycoflora associated with Taxus globosa, the Mexican yew. The study localities; Las Avispas (LA), San Gaspar (SG), and La Mina (LM) were three segments of cloud forest within the range of Sierra Gorda Biosphere Reserve, Mxico. Overall, 245 endophytes were isolated and 105 representative Ascomycota (morphotaxons) were chosen for phylogenetic and genotypic characterization. Maximum likelihood analyses of large subunit of ribosomal RNA (LSU) rDNA showed well-supported clades of Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, and Sordariomycetes. Analyses of ITS rDNA groups showed 57 genotypes (95% sequence similarity), in general consistent with the phylogenetically delimitated taxa based on LSU rDNA sequences. The endophyte diversity measured by Fisher's ?, Shanonn, and Simpson indices was ca. three-fold and ca. two-fold greater in LM than in LA and SG respectively. A screening for paclitaxel using a competitive inhibition enzyme immunoassay showed 16 positive isolates producing between 65 and 250 ng l(-1). The isolates included Acremonium, Botryosphaeria, Fusarium, Gyromitra, Nigrospora, Penicillium, three novel Pleosporales, and Xylaria. PMID:21315312

  12. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae.

    PubMed

    Geiser, David M; Gueidan, Ccile; Miadlikowska, Jolanta; Lutzoni, Franois; Kauff, Frank; Hofstetter, Valrie; Fraker, Emily; Schoch, Conrad L; Tibell, Leif; Untereiner, Wendy A; Aptroot, Andr

    2006-01-01

    The class Eurotiomycetes (Ascomycota, Pezizomycotina) is a monophyletic group comprising two major clades of very different ascomycetous fungi: (i) the subclass Eurotiomycetidae, a clade that contains most of the fungi previously recognized as Plectomycetes because of their mostly enclosed ascomata and prototunicate asci; and (ii) the subclass Chaetothyriomycetidae, a group of fungi that produce ascomata with an opening reminiscent of those produced by Dothideomycetes or Sordariomycetes. In this paper we use phylogenetic analyses based on data available from the Assembling the Fungal Tree of Life project (AFTOL), in addition to sequences in GenBank, to outline this important group of fungi. The Eurotiomycetidae include producers of toxic and useful secondary metabolites, fermentation agents used to make food products and enzymes, xerophiles and psychrophiles, and the important genetics model Aspergillus nidulans. The Chaetothyriomycetidae include the common black yeast fungi, some of which are pathogens of humans and animals, as well as some primarily lichenized groups newly found to be phylogenetically associated with this group. The recently proposed order Mycocaliciales shows a sister relationship with Eurotiomycetes. The great majority of human pathogenic Pezizomycotina are Eurotiomycetes, particularly in Eurotiales, Onygenales and Chaetothyriales. Due to their broad importance in basic research, industry and public health, several genome projects have focused on species in Onygenales and Eurotiales. PMID:17486980

  13. The obligately lichenicolous genus Lichenoconium represents a novel lineage in the Dothideomycetes.

    PubMed

    Lawrey, James D; Diederich, Paul; Nelsen, Matthew P; Sikaroodi, Masoumeh; Gillevet, Patrick M; Brand, A Maarten; van den Boom, Pieter

    2011-02-01

    Lichenicolous fungi are obligately lichen-associated organisms that have evolved many times throughout the Ascomycota and Basidiomycota. Approximately 20% of lichenicolous ascomycetes are recognized only from asexual (anamorphic) characteristics, so the phylogenetic position of many groups has never been resolved. Here we present the first molecular phylogeny of Lichenoconium, a genus of strictly asexual, obligately lichenicolous species with broad geographic distributions and diverse host ecologies. We obtained nuclear and mitochondrial rDNA sequences from fungal cultures isolated from four species in the genus, including a new species, Lichenoconium aeruginosum sp. nov., collected in France, Luxembourg and Netherlands. Our multilocus phylogeny supports the monophyly of fungi in the genus Lichenoconium, and places the genus in the Dothideomycetes, an ascomycete class made up mainly of saprobes and plant-associated endophytes and pathogens. There are only a few recognized groups of lichen-formers in the Dothideomycetes, but Lichenoconium is not supported as being closely related to any of these, nor to any other recognized order within the Dothideomycetes. Given that Lichenoconium is but one of over 100 genera of anamorphic lichenicolous fungi, most of which have never been studied phylogenetically, we suggest that asexual lichenicolous fungi may represent novel and evolutionarily significant phylogenetic groups in the Kingdom Fungi. PMID:21315315

  14. Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes.

    PubMed

    Gazis, R; Miadlikowska, J; Lutzoni, F; Arnold, A E; Chaverri, P

    2012-10-01

    Through a culture-based survey of living sapwood and leaves of rubber trees (Hevea spp.) in remote forests of Peru, we discovered a new major lineage of Ascomycota, equivalent to a class rank. Multilocus phylogenetic analyses reveal that this new lineage originated during the radiation of the 'Leotiomyceta', which resulted not only in the evolution of the Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, and Sordariomycetes, but also of the majority of hyperdiverse foliar endophytes. Because its origin is nested within this major burst of fungal diversification, we could not recover strong support for its phylogenetic relationship within the 'Leotiomyceta'. Congruent with their long phylogenetic history and distinctive preference for growing in sapwood, this new lineage displays unique morphological, physiological, and ecological traits relative to known endophytes and currently described members of the 'Leotiomyceta'. In marked contrast to many foliar endophytes, the strains we isolated fail to degrade cellulose and lignin in vitro. Discovery of the new class, herein named Xylonomycetes and originally mis-identified by ITSrDNA sequencing alone, highlights the importance of inventorying tropical endophytes from unexplored regions, using multilocus data sets to infer the phylogenetic placement of unknown strains, and the need to sample diverse plant tissues using traditional methods to enhance efforts to discover the evolutionary, taxonomic, and functional diversity of symbiotrophic fungi. PMID:22772026

  15. A search for the phylogenetic relationship of the ascomycete Rhizoctonia leguminicola using genetic analysis.

    PubMed

    Alhawatema, Mohammad S; Sanogo, Soum; Baucom, Deana L; Creamer, Rebecca

    2015-06-01

    Rhizoctonia leguminicola, which causes fungal blackpatch disease of legumes and other plants, produces slaframine and swainsonine that are largely responsible for causing salivation, lacrimation, frequent urination, and diarrhea in grazing animals including cattle, sheep, and horses. The original identification of R. leguminicola was based only on morphological characters of the fungal mycelia in cultures because of the lack of fungal genetic markers. Recent investigations suggested that R. leguminicola does not belong to genus Rhizoctonia and is instead a member of the ascomycetes, necessitating an accurate reclassification. The objective of this study was to use both genetic and morphological characters of R. leguminicola to find taxonomic placement of this pathogen within ascomycetes. Internal transcribed spacer region (ITS) and glyceraldehyde-3-phosphate dehydrogenase (gpd) encoding gene were amplified from R. leguminicola isolates by PCR using universal primers and sequencing. Rhizoctonia leguminicola ITS and gpd sequences were aligned with other fungal sequences of close relatives, and phylogenetic trees were constructed using neighbor-joining and parsimony analyses. Rhizoctonia leguminicola isolates were clustered within a clade that contains several genera of ascomycetes belonging to the class dothideomycetes. We suggest that the fungus is misidentified in the genus Rhizoctonia and propose its reclassification in a new genus within the phylum Ascomycota. PMID:25585493

  16. Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes).

    PubMed

    Giraldo, A; Gen, J; Sutton, D A; Madrid, H; Cano, J; Crous, P W; Guarro, J

    2014-06-01

    Numerous members of Ascomycota and Basidiomycota produce only poorly differentiated arthroconidial asexual morphs in culture. These arthroconidial fungi are grouped in genera where the asexual-sexual connections and their taxonomic circumscription are poorly known. In the present study we explored the phylogenetic relationships of two of these ascomycetous genera, Arthrographis and Arthropsis. Analysis of D1/D2 sequences of all species of both genera revealed that both are polyphyletic, with species being accommodated in different orders and classes. Because genetic variability was detected among reference strains and fresh isolates resembling the genus Arthrographis, we carried out a detailed phenotypic and phylogenetic analysis based on sequence data of the ITS region, actin and chitin synthase genes. Based on these results, four new species are recognised, namely Arthrographis chlamydospora, A. curvata, A. globosa and A. longispora. Arthrographis chlamydospora is distinguished by its cerebriform colonies, branched conidiophores, cuboid arthroconidia and terminal or intercalary globose to subglobose chlamydospores. Arthrographis curvata produced both sexual and asexual morphs, and is characterised by navicular ascospores and dimorphic conidia, namely cylindrical arthroconidia and curved, cashewnut-shaped conidia formed laterally on vegetative hyphae. Arthrographis globosa produced membranous colonies, but is mainly characterised by doliiform to globose arthroconidia. Arthrographis longispora also produces membranous colonies, but has poorly differentiated conidiophores and long arthroconidia. Morphological variants are described for A. kalrae and our results also revealed that Eremomyces langeronii and A. kalrae, traditionally considered the sexual and asexual morphs of the same species, are not conspecific. PMID:25264385

  17. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada.

    PubMed

    Wurzbacher, Christian; Grimmett, Ivan J; Brlocher, Felix

    2015-01-01

    Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM , coarse particulate organic matter). Mechanical and biological processing converts this into fine particulate organic matter (FPOM). Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU), of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina), Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota) dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles.Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems. PMID:26918122

  18. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Frhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Pschl, U.

    2015-02-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in southeast Wyoming, we found ice-nucleation-active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). To our knowledge this is the first report of ice nucleation activity in a zygomycotic fungi because the few known INA fungi all belong to the phyla Ascomycota and Basidiomycota. M. alpina is known to be saprobic and widespread in soil, and Mortierella spores are present in air and rain. Sequencing of the ITS region and the gene for ?-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, < 300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  19. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  20. Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens.

    PubMed

    Toledo, A V; Alippi, A M; de Remes Lenicov, A M M

    2011-01-01

    The phytosanitary importance of the corn leafhopper, Dalbulus maidis (De Long and Wolcott) (Hemiptera: Cicadellidae) and the planthopper, Delphacodes kuscheli Fennah (Hemiptera: Delphacidae) lies in their ability to transmit phloem-associated plant pathogens, mainly viruses and mollicutes, and to cause considerable mechanical damage to corn plants during feeding and oviposition. Fungi, particularly some members of the Ascomycota, are likely candidates for biocontrol agents against these insect pests, but several studies revealed their failure to invade the insect cuticle possibly because of the presence of inhibitory compounds such as phenols, quinones, and lipids and also by the antibiosis effect of the microbiota living on the cuticular surface of the host. The present work aims to understand interactions between the entomopathogenic fungus Beauveria bassiana (Balsamao-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) and bacterial antagonists isolated from the cuticular surface of D. maidis and D. kuscheli. A total of 155 bacterial isolates were recovered from the insect's cuticle and tested against B. bassiana. Ninety-one out of 155 strains inhibited the growth of B. bassiana. Bacterial strains isolated from D. maidis were significantly more antagonistic against B. bassiana than those isolates from D. kuscheli. Among the most effective antagonistic strains, six isolates of Bacillus thuringiensis Berliner (Bacillales: Bacillaeae (after B. subtilis)), one isolate of B. mycoides Flügge, eight isolates of B. megaterium de Bary, five isolates of B.pumilus Meyer and Gottheil, one isolate of B. licheniformis (Weigmann) Chester, and four isolates of B. subtilis (Ehrenberg) Cohn were identified. PMID:21529147

  1. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi.

    PubMed

    Zhang, Zhen-Na; Wu, Qin-Yi; Zhang, Gui-Zhi; Zhu, Yue-Yan; Murphy, Robert W; Liu, Zhen; Zou, Cheng-Gang

    2015-01-01

    CFEM domain commonly occurs in fungal extracellular membrane proteins. To provide insights for understanding putative functions of CFEM, we investigate the evolutionary dynamics of CFEM domains by systematic comparative genomic analyses among diverse animals, plants, and more than 100 fungal species, which are representative across the entire group of fungi. We here show that CFEM domain is unique to fungi. Experiments using tissue culture demonstrate that the CFEM-containing ESTs in some plants originate from endophytic fungi. We also find that CFEM domain does not occur in all fungi. Its single origin dates to the most recent common ancestors of Ascomycota and Basidiomycota, instead of multiple origins. Although the length and architecture of CFEM domains are relatively conserved, the domain-number varies significantly among different fungal species. In general, pathogenic fungi have a larger number of domains compared to other species. Domain-expansion across fungal genomes appears to be driven by domain duplication and gene duplication via recombination. These findings generate a clear evolutionary trajectory of CFEM domains and provide novel insights into the functional exchange of CFEM-containing proteins from cell-surface components to mediators in host-pathogen interactions. PMID:26255557

  2. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    NASA Astrophysics Data System (ADS)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups was recorded. Our results confirm Apennine beech forests as important repositories of saproxylic fungal diversity. We identified species of high scientific concern, in both National Parks. The most represented genus is Mycena with six and five species in the sampling units of "Gran Sasso and Monti della Laga" and "Cilento,Vallo di Diano and Alburni" national Parks respectively. Within the "Gran Sasso and Monti della Laga National Park" the area of Incodara is of special interest due to the occurrence of the species Ossicaulis lignatilis, which is among the 21 identified indicator species for assessing conservation value of beech forests in Europe. A consistent group of Ascomycota species, including Biscogniauxia nummularia, Bisporella citrina, Diatrype disciformis, Kretzschmaria deusta, Nemania serpens, and Xylaria hypoxylon, was tightly associated with coarse woody debris in "Gran Sasso and Monti della Laga National Park" plots. The decay stage seemed to exert a major influence on both species richness and their spatial patterns, with coarse woody debris in the intermediate to late stages of decay being the richest in species. (471 words)

  3. Diversity and Antimicrobial Activity of Culturable Endophytic Fungi Isolated from Moso Bamboo Seeds

    PubMed Central

    Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is significantly different from the other strains published. PMID:24759896

  4. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment.

    PubMed

    Siles, Jos A; Rachid, Caio T C C; Sampedro, Inmaculada; Garca-Romera, Inmaculada; Tiedje, James M

    2014-01-01

    The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR) and C. floccosa-transformed DOR (CORDOR) on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR. PMID:25058610

  5. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.

    PubMed

    Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat

    2015-03-01

    Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. PMID:25533315

  6. Sloth hair as a novel source of fungi with potent anti-parasitic, anti-cancer and anti-bacterial bioactivity.

    PubMed

    Higginbotham, Sarah; Wong, Weng Ruh; Linington, Roger G; Spadafora, Carmenza; Iturrado, Liliana; Arnold, A Elizabeth

    2014-01-01

    The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths--arboreal mammals commonly found in the lowland forests of Panama--carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae) in Soberana National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs), several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum) and Chagas disease (Trypanosoma cruzi), and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair. PMID:24454729

  7. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  8. Fungal Communities Respond to Long-Term CO2 Elevation by Community Reassembly

    PubMed Central

    Tu, Qichao; Yuan, Mengting; He, Zhili; Deng, Ye; Xue, Kai; Wu, Liyou; Hobbie, Sarah E.; Reich, Peter B.

    2015-01-01

    Fungal communities play a major role as decomposers in the Earth's ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ?27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4+ availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems. PMID:25616796

  9. Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence.

    PubMed

    Sakamoto, Yuichi; Watanabe, Hisayuki; Nagai, Masaru; Nakade, Keiko; Takahashi, Machiko; Sato, Toshitsugu

    2006-06-01

    Lentinan is an antitumor product that is purified from fresh Lentinula edodes fruiting bodies. It is a cell wall component, comprising beta-1,3-glucan with beta-1,6-linked branches, which becomes degraded during postharvest preservation as a result of increased glucanase activity. In this study, we used N-terminal amino acid sequence to isolate tlg1, a gene encoding a thaumatin-like (TL) protein in L. edodes. The cDNA clone was approximately 1.0 kb whereas the genomic sequence was 2.1 kb, and comparison of the two indicated that tlg1 contains 12 introns. The tlg1 gene product (TLG1) was predicted to comprise 240 amino acids, with a molecular mass of 25 kD and isoelectric point value of 3.5. The putative amino acid sequence exhibits approximately 40% identity with plant TL proteins, and a fungal genome database search revealed that these TL proteins are conserved in many fungi including the basidiomycota and ascomycota. Transcription of tlg1 was not detected in vegetative mycelium or young and fresh mushrooms. However, transcription increased following harvest. Western-blot analysis demonstrated a rise in TLG1 levels following harvest and spore diffusion. TLG1 expressed in Escherichia coli and Aspergillus oryzae exhibited beta-1,3-glucanase activity and, when purified from the L. edodes fruiting body, demonstrated lentinan degrading activity. Thus, we suggest that TLG1 is involved in lentinan and cell wall degradation during senescence following harvest and spore diffusion. PMID:16648221

  10. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    NASA Astrophysics Data System (ADS)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  11. MYT3, A Myb-Like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2014-01-01

    We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum. PMID:24722578

  12. Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen.

    PubMed

    Bagagli, Eduardo; Bosco, Sandra M G; Theodoro, Raquel Cordeiro; Franco, Marcello

    2006-09-01

    The habitat of the mycelial saprobic form of Paracoccidioides brasiliensis, which produces the infectious propagula, has not been determined and has proven difficult for mycologists to describe. The fungus has been rarely isolated from the environment, the disease has a prolonged latency period and no outbreaks have been reported. These facts have precluded the adoption of preventive measures to avoid infection. The confirmation of natural infections in nine-banded armadillos (Dasypus novemcinctus) with P. brasiliensis, in high frequency and wide geographic distribution, has opened new avenues for the study and understanding of its ecology. Armadillos belong to the order Xenarthra, which has existed in South America ever since the Paleocene Era (65 million years ago), when the South American subcontinent was still a detached land, before the consolidation of what is now known as the American continent. On the other hand, strong molecular evidence suggests that P. brasiliensis and other dimorphic pathogenic fungi--such as Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum--belong to the family Onygenaceae sensu lato (order Onygenales, Ascomycota), which appeared around 150 million years ago. P. brasiliensis ecology and relation to its human host are probably linked to the fungal evolutionary past, especially its long coexistence with and adaptation to animal hosts other than Homo sapiens, of earlier origin. Instead of being a blind alley, the meaning of parasitism for dimorphic pathogenic fungi should be considered as an open two-way avenue, in which the fungus may return to the environment, therefore contributing to preserve its teleomorphic (sexual) and anamorphic (asexual) forms in a defined and protected natural habitat. PMID:16473563

  13. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties. PMID:24278144

  14. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed to generate compost with the desired properties. PMID:24278144

  15. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach.

    PubMed

    Simes, Marta Filipa; Antunes, Andr; Ottoni, Cristiane A; Amini, Mohammad Shoaib; Alam, Intikhab; Alzubaidy, Hanin; Mokhtar, Noor-Azlin; Archer, John A C; Bajic, Vladimir B

    2015-10-01

    Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%-85%), while Basidiomycota was less abundant (14%-24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported. PMID:26549842

  16. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis

    PubMed Central

    Laguardia-Nascimento, Mateus; Branco, Kelly Moreira Grillo Ribeiro; Gasparini, Marcela Ribeiro; Giannattasio-Ferraz, Silvia; Leite, Laura Rabelo; Araujo, Flávio Marcos Gomes; Salim, Anna Christina de Matos; Nicoli, Jacques Robert; de Oliveira, Guilherme Corrêa; Barbosa-Stancioli, Edel Figueiredo

    2015-01-01

    Understanding of microbial communities inhabiting cattle vaginal tract may lead to a better comprehension of bovine physiology and reproductive health being of great economic interest. Up to date, studies involving cattle microbiota are focused on the gastrointestinal tract, and little is known about the vaginal microbiota. This study aimed to investigate the vaginal microbiome in Nellore cattle, heifers and cows, pregnant and non-pregnant, using a culture independent approach. The main bacterial phyla found were Firmicutes (~40–50%), Bacteroidetes (~15–25%) and Proteobacteria (~5–25%), in addition to ~10–20% of non-classified bacteria. 45–55% of the samples were represented by only ten OTUs: Aeribacillus, Bacteroides, Clostridium, Ruminococcus, Rikenella, Alistipes, Bacillus, Eubacterium, Prevotella and non-classified bacteria. Interestingly, microbiota from all 20 animals could be grouped according to the respiratory metabolism of the main OTUs found, creating three groups of vaginal microbiota in cattle. Archaeal samples were dominated by the Methanobrevibacter genus (Euryarchaeota, ~55–70%). Ascomycota was the main fungal phylum (~80–95%) and Mycosphaerella the most abundant genus (~70–85%). Hormonal influence was not clear, but a tendency for the reduction of bacterial and increase of archaeal populations in pregnant animals was observed. Eukaryotes did not vary significantly between pregnant and non-pregnant animals, but tended to be more abundant on cows than on heifers. The present work describes a great microbial variability in the vaginal community among the evaluated animals and groups (heifers and cows, pregnant and non-pregnant), which is significantly different from the findings previously reported using culture dependent methods, pointing out the need for further studies on this issue. The microbiome found also indicates that the vaginal colonization appears to be influenced by the gastrointestinal community. PMID:26599789

  17. Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics.

    PubMed

    Zhang, Dongqing; Luo, Jinxue; Lee, Zarraz May Ping; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2016-06-01

    The treatment performance of ibuprofen (IBP)-enriched wastewater by horizontal subsurface flow constructed wetlands planted with cattail (Typha angustifolia) and unplanted control mesocosms was investigated. Removal efficiencies of IBP were significantly (p < .05) enhanced in the planted mesocosms (78.5%) compared to those in the unplanted beds (57.9%). An 18S rRNA gene high-throughput pyrosequencing approach was used to investigate the effects of IBP on the structure of the fungal community in these wetland systems. The overall diversity of the fungal community was reduced under the IBP exposure. Taxonomic analysis revealed that 62.2% of the fungal sequences were affiliated with Basidiomycota, followed by Ascomycota (37.4%) at the phylum level. Uncultured fungus (48.2%), Chaetomium sp. (14.2%), Aspergillus sp. (12.4%), Trichoderma sp. (5.7%), Cladosporium sp. (5.4%), and Emericellopsis sp. (5.2%) were identified as dominant genera. At the genus level, a distinct profile of the fungal community in the IBP-enriched mesocosms was observed as compared to the control beds, and as well specific fungal genera were enhanced in the planted beds, regardless of IBP enrichment. However, despite these differences, the composition of the fungal community (as measured by Bray-Curtis similarity) was mostly unaffected by the significant IBP enrichment. On the other hand, a consistent similarity pattern of fungal community structure in the planted mesocosms suggests that the presence of higher macrophytes in the wetland systems may well help shape the fungal community structure. PMID:26581707

  18. Phylogenetic diversity of culturable fungi in the Heshang Cave, central China.

    PubMed

    Man, Baiying; Wang, Hongmei; Xiang, Xing; Wang, Ruicheng; Yun, Yuan; Gong, Linfeng

    2015-01-01

    Caves are nutrient-limited and dark subterranean ecosystems. To date, attention has been focused on geological research of caves in China, whilst indigenous microbial diversity has been insufficiently characterized. Here, we report the fungal diversity in the pristine, oligotrophic, karst Heshang Cave, central China, using a culture-dependent method coupled with the analysis of the fungal rRNA-ITS gene sequences. A total of 194 isolates were obtained with six different media from 14 sampling sites of sediments, weathered rocks, and bat guanos. Phylogenetic analysis clustered the 194 sequenced isolates into 33 genera within 15 orders of three phyla, Ascomycota, Basidiomycota, and Zygomycota, indicating a high degree of fungal diversity in the Heshang Cave. Notably, 16 out of the 36 fungal genera were also frequently observed in solution caves around the world and 23 genera were previously found in carbonate cave, indicating potential similarities among fungal communities in cave ecosystems. However, 10 genera in this study were not reported previously in any solution caves, thus expanding our knowledge about fungal diversity in cave ecosystems. Moreover, culturable fungal diversity varied from one habitat to another within the cave, being the highest in sediments, followed by weathered rocks and bat guanos as indicated by ?-diversity indexes. At the genus level, Penicillium accounted for 40, 54, and 52% in three habitats of sediments, weathered rocks, and bat guanos, respectively. Trichoderma, Paecilomyces, and Aspergillus accounted for 9, 22, and 37% in the above habitats, correspondingly. Despite of the dominance of Penicillium in all samples, ?-diversity index indicated significant differences between each two fungal communities in the three habitats in view of both the composition and abundance. Our study is the first report on fungal communities in a natural pristine solution cave system in central China and sheds light on fungal diversity and functions in cave ecosystems. PMID:26539184

  19. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis.

    PubMed

    Cui, Jin-Long; Guo, Ting-Ting; Ren, Zhen-Xing; Zhang, Na-Sha; Wang, Meng-Liang

    2015-01-01

    Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi