Science.gov

Sample records for campanian-early maastrichtian orbital

  1. Upper Campanian-lower Maastrichtian sections of northern Rostov oblast: Article 2. Depositional environments and paleogeography

    NASA Astrophysics Data System (ADS)

    Beniamovskii, V. N.; Alekseev, A. S.; Podgaetskii, A. V.; Ovechkina, M. N.; Vishnevskaya, V. S.; Kopaevich, L. F.; Pronin, V. G.

    2014-09-01

    The study present the results of the integrated study on the Belgorod and Pavlovka formations (upper Campanian), Sukhodol Formation (Campanian-Maastrichtian), and Efremovo-Stepanovka Formation (Maastrichtian). Variations in lithological indicators and associated changes in the biotic assemblages were used to distinguish three stages in the basin evolution separated by hiatuses (Belgorod-Pavlovka, Sukhodol, and Efremovo-Stepanovka). This basin occupied the upland area in the north of the Paleozoic Donets Basin during late Campanian-early Maastrichtian times. Each stage was characterized by a specific depositional environment accompanied either by a decrease or by an increase in the terrigenous sediment supply from the Donets Basin and, possibly, Ukrainian Shield and sea-level and temperature fluctuations, as well as specific paleobiogeographic relations. During the Belgorod-Pavlovka stage, the basin was characterized by relatively deep-water environments, with warm waters and normal salinity, and predominantly carbonate sedimentation. The Sukhodol stage was marked by terrigenous sedimentation, a predominance of the agglutinated foraminiferal forms, and abundant radiolarians, which occurred during a marine regression and overall cooling. This stage corresponds to the global "Campanian-Maastrichtian boundary event." The first half of the Efremovo-Stepanovka stage was marked by resumed carbonate sedimentation, warming, transgression, and deepening of the basin, which were replaced by a renewed regression at the end of this time interval.

  2. Does ice drive early Maastrichtian eustasy?

    USGS Publications Warehouse

    Miller, K.G.; Barrera, E.; Olsson, R.K.; Sugarman, P.J.; Savin, S.M.

    1999-01-01

    A large (30-40 m), rapid (???1 m.y.), earliest Maastrichtian sealevel drop inferred from New Jersey sequence stratigraphic records correlates with synchronous ??18O increases in deep-water benthic and low-latitude surface-dwellin planktonic foraminifera. The coincidence of these events argues for the development of a moderate-sized ice sheet during the early Maastrichtian.

  3. The biostratigraphy and paleogeography of Maastrichtian inoceramids

    NASA Technical Reports Server (NTRS)

    Macleod, K. G.; Huber, B. T.; Ward, P. D.

    1994-01-01

    The global distribution of Maastrichtian inoceramids is now known in enough detail that the patterns of disappearance can be used to place first-order constraints on paleoceanographic changes that may have occurred during that age. The Inoceramidae is an excellent group to focus on in a study of Maastrichtian events for the following reasons: (1) they were globally distributed in the early Maastrichtian; (2) they did not survive the age (i.e., they undergo change during the interval); and (3) they have left a rich microfossil and macrofossil record. Some inoceramids grew to be very large; however, even the largest often passively disaggregated and are preserved as hundreds of millions of characteristic, columnar, polygonal prisms of calcite approximately 100 microns across. This taphonomic process has greatly increased the inoceramid fossil record and provides a means of objectively estimating changes in their standing population. In addition, because these prisms commonly occur in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) cores, it is relatively easy to generate a truly global database. The existing macrofossil record of inoceramids has less temporal and spacial resolution but greater taxonomic resolution than the microfossil record. In concert the microfossil and macrofossil records of inoceramids demonstrate that important changes occurred during the Maastrichtian. These changes are distinct from the KT boundary catastrophe but are part of the larger KT transition.

  4. Campanian-Maastrichtian phosphorites of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Bassam, K. S.; Al-Dahan, A. A.; Jamil, A. K.

    1983-08-01

    Bedded marine sedimentary phosphate rocks of Campanian-Maastrichtian age are exposed in the Western Desert of Iraq, forming part of the Tethyan phosphate province. The studied phosphorites are found in three horizons within carbonate rocks; they are mostly pelletal in texture, associated with bone fragments and detrital quartz grains, and cemented by calcite or chert. The mineralogy of the phosphate is dominated by carbonate-fluorapatite. The phosphate and the associated carbonate rocks are relatively enriched with Cr, Ni, Cu, Zn, V, and organic matter. The apatite is enriched with isotopically light carbon and heavy sulfur. The mode of phosphorite formation seems to have included syngenetic deposition of phosphate under reducing, slightly alkaline conditions in shallow marine environment. Decomposition of organic phosphatic remnants appear to have been the local source of phosphorus enrichment. However, the major tectonic and paleogeographic development of the Tethys Sea during Upper Cretaceous have probably played an important role in providing suitable setting for large scale formation of phosphorite.

  5. The Maastrichtian flora of the Amaam Lagoon area (Northeastern Russia)

    NASA Astrophysics Data System (ADS)

    Moiseeva, M. G.

    2012-12-01

    The Maastrichtian Koryak flora from the Amaam Lagoon area is comprehensively studied with reference to available data on the stratigraphy of the study area and age assessment of the flora-bearing deposits. In the Koryak flora 32 species of plant fossils are identified and systematically described in the work. The established traits of the Koryak floristic assemblage are used to correlate it with the other assemblages close in age from different localities of Northeastern RNortheastern Russiaussia and Alaska. The results of correlation and taxonomic revision of plant fossils from the upper part of the Prince Creek Formation, Northern Alaska show that in the Anadyr-Koryak and Northern Alaska circum-Pacific regions the Koryak stage of flora development and the respective phytostratigraphic horizon (upper Maastrichtian-Selandian), of key significance for interregional correlation of continental deposits, are distinguishable. Floristic changes recorded in the northern circum-Pacific regions across the Cretaceous-Paleogene boundary suggest that the evolution of vegetation was gradual, controlled by climatic change, evolutionary factors and plant migration. These results are inconsistent with the postulated global significance of the ecological crisis at that time.

  6. Low beta diversity of Maastrichtian dinosaurs of North America

    PubMed Central

    Vavrek, Matthew J.; Larsson, Hans C. E.

    2010-01-01

    Beta diversity is an important component of large-scale patterns of biodiversity, but its explicit examination is more difficult than that of alpha diversity. Only recently have data sets large enough been presented to begin assessing global patterns of species turnover, especially in the fossil record. We present here an analysis of beta diversity of a Maastrichtian (71–65 million years old) assemblage of dinosaurs from the Western Interior of North America, a region that covers ≈1.5 × 106 km2, borders an epicontinental sea, and spans ≈20° of latitude. Previous qualitative analyses have suggested regional groupings of these dinosaurs and generally concluded that there were multiple distinct faunal regions. However, these studies did not directly account for sampling bias, which may artificially decrease similarity and increase turnover between regions. Our analysis used abundance-based data to account for sampling intensity and was unable to support any hypothesis of multiple distinct faunas; earlier hypothesized faunal delineations were likely a sampling artifact. Our results indicate a low beta diversity and support a single dinosaur community within the entire Western Interior region of latest Cretaceous North America. Homogeneous environments are a known driver of low modern beta diversities, and the warm equable climate of the late Cretaceous modulated by the epicontenental seaway is inferred to be an underlying influence on the low beta diversity of this ancient ecosystem. PMID:20404176

  7. Late Cretaceous base level lowering in Campanian and Maastrichtian depositional sequences, Kure Beach, North Carolina

    USGS Publications Warehouse

    Harris, W.B.; Self-Trail J.M.

    2006-01-01

    Campanian through Maastrichtian mixed carbonate and siliciclastic sediments in a 422 m continuous core drilled at Kure Beach, NC provide a record of sea-level change. Based on lithology and stratigraphy, depositional sequences are defined, and calcareous nannofossil zones and 87Sr/86Sr ratios and corresponding ages using the LOWESS Table determined. Campanian and Maastrichtian sediments comprise six depositional sequences. The oldest is Tar Heel 1 and contains calcareous nannofossils that indicate assignment to the upper part of Zones CC18a, CC18c and the lower part of CC19. 87Sr/86 Sr ratios indicate ages from 83.2 to 80.0 Ma or lower Campanian. Tar Heel II contains calcareous nannofossils that indicate assignment to the upper part of Zone CC 19 and CC20. 87Sr/86Sr ratios indicate ages from 78.0 to 76.3 Ma or middle Campanian. Donoho Creek I and II are thin and contain calcareous nannofossils referable to upper Zone CC21 and Zone CC22, and to CC23, respectively. The top of Donoho Creek II marks the Campanian-Maastrichtian boundary. Donoho Creek I 87Sr/86Sr ratios cluster into two groups, and provide ages from 78.0 to 76.2 Ma and 73.7 to 72.3 Ma, respectively. 87Sr/86Sr ratios in Donoho Creek II indicate ages from 71.4 to 69.6 Ma. Two Maastrichtian sequences are present; the lowermost Peedee I contains calcareous nannofossils that place it in Zones CC25a and CC25b. 87Sr/86Sr r ratios indicate an age from 69.3 to 66.9 Ma or late Maastrichtian. Peedee II is assigned to calcareous nannofossil Zone CC26a. 87Sr/86Sr ratios indicate ages from 66.4 to 65.2 Ma or late Maastrichtian. The four Campanian sequences correlate to three depositional sequences in New Jersey; the sequence boundary between upper Campanian Donoho Creek I and Donoho Creek II is not recognized in New Jersey. This boundary is interpreted to result from Gulf Stream impingement and subsequent erosion on the outer shelf. The two Maastrichtian sequences recognized in the Kure Beach core correlate to the two

  8. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian

    USGS Publications Warehouse

    Watkins, D.K.; Self-Trail J.M.

    2005-01-01

    Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident shortterm changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian. Copyright 2005 by the American Geophysical Union.

  9. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn

    2016-02-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  10. Maastrichtian ammonites chiefly from the Prairie Bluff Chalk in Alabama and Mississippi

    USGS Publications Warehouse

    Cobban, W.A.; Kennedy, W.J.

    1995-01-01

    The Prairie Bluff Chalk of Alabama and Mississippi yields a diverse ammonite fauna of Maastrichtian age. Twenty-eight species, of which three are new, are recorded. The bulk of the fauna can be referred to a Discoscaphites conradi assemblage zone, but some elements in the fauna are significantly older. -Authors

  11. Late Cretaceous (Late Campanian-Maastrichtian) sea surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.

    2015-11-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  12. A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    PubMed Central

    Puértolas, Eduardo; Canudo, José I.; Cruzado-Caballero, Penélope

    2011-01-01

    Background The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America. Methodology/Principal Findings The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at −67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea. Conclusions/Significance The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian. PMID:21687705

  13. Upper Campanian-lower Maastrichtian planktonic foraminifers from Govorov Guyot (Magellan Seamounts, Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Korchagin, O. A.; Pletnev, S. P.; Mel'Nikov, M. E.

    2011-06-01

    The planktonic foraminiferal assemblage from foraminiferal limestone (ooze) dredged from the summit of one of guyots in the Magellan Seamount system of the Pacific is dominated by one-keeled species belonging to the genus Globotruncanita. The taxonomic composition of the assemblage correlates host rocks with the upper Campanian-lower Maastrichtian. One species and one subspecies are described as new taxa.

  14. Morphology and size variation of a portunoid crab from the Maastrichtian of the Americas

    NASA Astrophysics Data System (ADS)

    Vega, Francisco J.; Phillips, George E.; Nyborg, Torrey; Flores-Ventura, José; Clements, Don; Espinosa, Belinda; Solís-Pichardo, Gabriela

    2013-11-01

    The portunoid crab OphthalmoplaxRathbun, 1935, is known from late Cretaceous deposits of Africa and the Americas. A review of 76 specimens from many localities in North and South America reveals that the genus is represented by only two species - one in Africa (recently described) and the other in the Americas. Ophthalmoplax brasiliana (Maury, 1930) was distributed along the Atlantic and Gulf coasts of the Americas throughout the Maastrichtian - from Brazil to North Carolina. In early Maastrichtian deposits of North America (˜69.0 Ma), the species is represented by local populations of medium-sized individuals, and by the late Maastrichtian (˜67.0 Ma), populations of larger individuals became abundant. This size increase may be related to a decrease in ocean water temperatures. Populations of medium-sized individuals are found again in the latest Maastrichtian (˜66.2 Ma), below strata with ejecta deposits in Coahuila, Mexico, and in the uppermost Owl Creek Formation, Mississippi. This size decrease is possibly linked to an increase in seawater temperature occurring just below the K/P boundary, when Ophthalmoplax became extinct.

  15. Changes in floral diversities, floral turnover rates, and climates in Campanian and Maastrichtian time, North Slope of Alaska

    USGS Publications Warehouse

    Frederiksen, N.O.

    1989-01-01

    One-hundred-and-ten angiosperm pollen taxa have been found in upper Campanian to Masstrichtian rocks of the Colville River region, North Slope of Alaska. These are the highest paleolatitude Campanian and Maastrichtian floras known from North America. Total angiosperm pollen diversity rose during the Campanian and declined toward the end of the Maastrichtian. However, anemophilous porate pollen of the Betulaceae-Myricaceae-Ulmaceae complex increased gradually in diversity during the late Campanian and Maastrichtian and into the Paleocene. Turnover of angiosperm taxa was active throughout most of late Campanian and Maastrichtian time; rapid turnover affected mainly the taxa of zoophilous herbs, representing an bundant but ecologically subordinate element of the vegetation. Last appearances of pollen taxa during the late Campanian and Maastrichtian probably represented mainly extinctions rather than emigrations; end- Cretaceous angiosperm extinctions in the North American Arctic began well before the Cretaceous-Tertiary boundary event. The last appearances in the late Maastrichtian took place in bursts; they appear to represent stepwise rather than gradual events, which may indicate the existence of pulses of climatic change particularly in late Maastrichtian time. ?? 1989.

  16. Campanian to Maastrichtian pollen biostratigraphy and floral turnover rates, Colville River region, north slope of Alaska

    SciTech Connect

    Frederiksen, N.O.; Schindler, K.S.

    1987-05-01

    This study is based on occurrence data for 104 angiosperm pollen taxa from 83 pollen-bearing outcrop and core samples taken along the Colville River and stratigraphically distributed from the base of the Sentinel Hill Member of the Schrader Bluff Formation to the top of the Cretaceous section. Many of the pollen taxa are highly useful for intraregional correlations because they have remarkably short stratigraphic ranges and are consistently present within these ranges. Important similarities are present between North Slope pollen assemblages and those of western Canada, Siberia, and China. The Campanian-Maastrichtian boundary is approximately marked by the range bases of Wodehouseia edmontonicola and Senipites drummhellerensis and is nearly as far south (downsection) as Sentinel Hill core test 1. Based on pollen correlations with Alberta, the marine beds at Ocean Point are probably within the middle part of the Maastrichtian, and strata north of Ocean Point that contain Aquilapollenites conatus are uppermost Maastrichtian. Thus, if the Cretaceous-Tertiary boundary in the study area is represented by an unconformity as their data suggest, the lowermost Paleocene is missing, not the uppermost Cretaceous. Maximum diversities of species of the stratigraphically significant Triprojectacites and Expressipollis groups are in the upper Campanian. Major turnovers of angiosperm taxa occurred late in the Campanian and in the Maastrichtian, but high rates of first appearances coincided with high rates of last appearances. Thus, once a fairly high overall angiosperm diversity was established in the middle(.) Campanian, the diversity remained relatively constant until at or near the end of the Maastrichtian.

  17. Maastrichtian-aged lithostratigraphic patterns in the European tethys: Implications for sea level change and end-Cretaceous extinction patterns

    SciTech Connect

    Ward, P.; Macleod, K.G. . Dept. of Geological Sciences)

    1992-01-01

    Thirteen Maastrichtian-aged stratigraphic sections from a variety of sites spanning the ancient Tethys ocean in Western and Eastern Europe and Northern Africa have been measured in this study. The similarity in lithologies between even geographically separated localities allows refined lithostratigraphic correlation; individual members first defined from Bay of Biscay sections can now be recognized through all sections. The sections are found in the Bay of Biscay and Basque region of France and Spain (Sopelana, Zumaya, Hendaye, Bidart, Tercis, Pamplona;) southern Spain (Caravaca, Agost); northern Africa (El Kef); and Eastern Europe (Georgia). All of the sections are dominated by limestones in the Lower Maastrichtian, and marls or limestone-marl rhythmites in the Upper Maastrichtian. A conspicuous, massive limestone, usually 10 to 15 m thick, is found in all sections at the top of the Lower Maastrichtian; it is invariably overlain by a thicker unit composed entirely of marl. The thick limestone contains the last body fossils of the genus Inoceramus, and occurs just beneath the first occurrence of foraminifera diagnostic of the Abathomphalus mayaroensis Zone of Late Maastrichtian age. The dramatic shift in lithology lies at or just beneath the boundary between the Lower and Upper Maastrichtian, and may have been caused by one of the most rapid and profound sea level changes of the Cretaceous Period. The sea-level change may be a causal factor in the mid-Maastrichtian extinction which affected the Inoceramidae and other mollusks, such as the rudistid bivalves and ammonites, and certainly is one of the dominant factors in forming the sequence of lithologies found in the Maastrichtian Stage of Tethys.

  18. A palynological biozonation for the Maastrichtian Stage (Upper Cretaceous) of South Carolina, USA

    USGS Publications Warehouse

    Christopher, R.A.; Prowell, D.C.

    2002-01-01

    Three palynological biozones are proposed for the Maastrichtian Stage of South Carolina. In ascending stratigraphic order, the biozones are the Carolinapollis triangularis (Ct) Interval Biozone, the Holkopollenites chemardensis (Hc) Interval Biozone, and the Sparganiaceaepollenites uniformis (Su) Interval Biozone. Integration of the biostratigraphy with lithologic and geophysical log data suggests that within the study area, the upper and lower boundaries of each zone are bounded by regional unconformities, and that a three-fold subdivision of the Maastrichtian Stage is warranted. The biozonation is based on the analysis of 114 samples from 24 subsurface and three outcrop sections from the Coastal Plain of South Carolina; samples from an additional seven subsurface and 18 outcrop sections from North Carolina and Georgia were examined to evaluate the geographic extent of the biozones. One new genus and five new species of pollen are described, and emendations are presented for two genera and one species of pollen. ?? 2003 Published by Elsevier Science Ltd.

  19. The impact of the Maastrichtian cooling on the marine nutrient regime -- Evidence from midlatitudinal calcareous nannofossils

    NASA Astrophysics Data System (ADS)

    Linnert, Christian; Engelke, Julia; Wilmsen, Markus; Mutterlose, Jörg

    2016-06-01

    The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High-latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time, and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern midlatitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian -- lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae, and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis, and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g., K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high-latitude deep water formation probably changed the bottom water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate toward phosphate limitation.

  20. Inoceramid stratigraphy and depositional architecture of the Campanian and Maastrichtian of the Miechów Synclinorium (southern Poland)

    NASA Astrophysics Data System (ADS)

    Jurkowska, Agata

    2016-03-01

    Dynamic evolution of the Campanian and Maastrichtian (Upper Cretaceous) of the Miechow Synclinorium is presented. Through chronostratigraphic analysis, the geometry of the Campanian and Maastrichtian of the area is interpreted, while microfacies analysis allowed determination of some of the paleoenvironmental parameters (rate of sedimentation, bottom condition and terrigenous input). The chronostratigraphy is based on inoceramid biostratigraphy. Nine inoceramid zones are recognized: Sphenoceramus patootensiformis, Sphaeroceramus sarumensis-Cataceramus dariensis and `Inoceramus' azerbaydjanensis-`Inoceramus' vorhelmensis, `Inoceramus' tenuilineatus, Sphaeroceramus pertenuiformis, `Inoceramus' inkermanensis and `Inoceramus' costaecus- `Inoceramus' redbirdensis (Campanian); Endocostea typica and Trochoceramus radiosus (Maastrichtian). Five unconformities (isochronous in the study area) represented by horizons of slower sedimentation rate, were recognized. They correlate with eustatic sea-level changes, well recorded in European successions (Jarvis et al. 2002, 2006; Niebuhr et al. 2011). Unconformity horizons allow six alloformations to be distinguished. The thickness of particular chronostratigraphic units within the Campanian and Lower Maastrichtian increases progressively toward the axis of the Danish-Polish Trough, which indicates that the inversion of the trough could not have started before the Late Maastrichtian.

  1. Upper Maastrichtian ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA)

    USGS Publications Warehouse

    Larina, Ekaterina; Garb, Matthew P.; Landman, Neil H.; Dastas, Natalie; Thibault, Nicolas; Edwards, Lucy E.; Phillips, George; Rovelli, Remy; Myers, Corinne; Naujokaityte, Jone

    2016-01-01

    The Cretaceous outcrop belt of the Mississippi Embayment in the Gulf Coastal Plain (GCP) spans the Cretaceous/Paleogene (K/Pg) boundary. A detailed reconstruction of this time interval is critical for understanding the nature of biotic and environmental changes preceding the end-Cretaceous Mass Extinction event and for deciphering the likely extinction mechanism (i.e., bolide impact versus volcanism). Eight sections encompassing the K/Pg succession across the Mississippi Embayment were analyzed using biostratigraphic sampling of ammonites, dinoflagellates, and nannofossils. An upper Maastrichtian ammonite zonation is proposed as follows, from oldest to youngest:Discoscaphites conradi Zone, D. minardi Zone, and D. iris Zone. Our study documents that the ammonite zonation established in the Atlantic Coastal Plain (ACP) extends to the GCP. This zonation is integrated with nannofossil and dinoflagellate biostratigraphy to provide a framework to more accurately determine the age relationships in this region. We demonstrate that ammonites and dinoflagellates are more reliable stratigraphic indicators in this area than nannofossils because age-diagnostic nannofossils are not consistently present within the upper Maastrichtian in the GCP. This biostratigraphic framework has the potential to become a useful tool for correlation of strata both within the GCP and between the GCP, Western Interior, and ACP. The presence of the uppermost Maastrichtian ammonite D. iris, calcareous nannofossil Micula prinsii, and dinoflagellates Palynodinium grallator and Disphaerogena carposphaeropsis suggests that the K/Pg succession in the GCP is nearly complete. Consequently, the GCP is an excellent setting for investigating fine scale temporal changes across the K/Pg boundary and ultimately elucidating the mechanisms causing extinction.

  2. Evidence for large-scale reworking of Campanian sediments into the Upper Maastrichtian Peedee formation at Burches Ferry, South Carolina

    USGS Publications Warehouse

    Self-Trail J.M.; Christopher, R.A.; Prowell, D.C.

    2002-01-01

    A 44-ft-deep corehole (FLO-311) was drilled at Burches Ferry, Florence County, S.C., in order to document the lithologic and paleontologic characteristics of the boundary between the upper Campanian Donoho Creek Formation and the upper Maastrichtian Peedee Formation. Palynomorph and calcareous nannofossil data provide detailed age control for these sediments. Examination of calcareous nannofossil assemblages shows that sediments from the type locality of the Peedee Formation consist largely of reworked Campanian materials. Robust Campanian species such as Reinhardtites anthophorus, Reinhardtites levis, and Stoverius asymmetricus commonly are found reworked into the Maastrichtian Peedee Formation in its entirety. Therefore, identification of lower upper Maastrichtian sediments is based on the presence of background assemblages rather than on the more traditional marker species. The presence of species restricted to the latest Campanian at the Donoho Creek-Peedee contact in outcrop indicates that the entire sedimentary package represented by calcareous nannofossil Zones CC23 and CC24 has been removed.

  3. Volcanism and related Environmental changes linked to Late Maastrichtian High Stress and KT Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, Gerta; Adatte, Thierry

    2010-05-01

    Near the end of the Maastrichtian Earth was hit by a confluence of catastrophes ranging from impacts to some of the most devastating volcanic eruptions coupled with major changes in climate, sea level and ocean chemistry that ultimately led to the Cretaceous-Tertiary boundary (KTB) mass extinction. For three decades this mass extinction has been commonly attributed to the sole kill-effect of the Chicxulub impact on Yucatan. Multi-disciplinary evidence (paleontologic, stratigraphic, sedimentologic geochemical) from the Yucatan impact crater to sections in Mexico and Texas revealed that this impact predates the KTB and caused no mass extinction. Recent studies reveal that the most devastating Deccan volcanic eruptions in India occurred near the end of the Maastrichtian and ended coincident with the KT mass extinction (Keller et al., 2008). Examination of biotic stress in the marine realm leading up to the KT mass extinction reveals times of environmental stresses associated with volcanism, greenhouse warming, mesotrophic basins and shallow marginal settings from the Tethys Ocean to the South Atlantic and Indian Oceans (Keller and Abramovich, 2009). Biotic stress conditions vary with the degree of environmental change and range from intraspecies size reduction, to loss of diversity and ultimately mass extinction. No significant biotic stress was observed in assemblages before and after the Chicxulub impact identified by a layer of impact spherules in late Maastrichtian sediments of zone CF1 predating the KTB in Mexico and Texas (Keller et al., 2009b,c). Maximum biotic stress leading to the KT mass extinction is associated with Deccan volcanism in India near the end of the Maastrichtian. This suggests that the mass extinction was likely a direct cause of Deccan volcanism, although the presence of a major Ir anomaly at the KTB does not rule out the possibility of a second major bolide impact exacerbating already catastrophic conditions. Keller, G., Adatte, T., Gardin, S

  4. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  5. Campano-Maastrichtian foraminifera from onshore sediments in the Rio del Rey Basin, Southwest Cameroon

    NASA Astrophysics Data System (ADS)

    Njoh, Oliver Anoh; Victor, Obiosio; Christopher, Agyingi

    2013-03-01

    Campanian-Maastrichtian marine sediments outcrop in five genetically linked sedimentary basins along the West African coast in the Gulf of Guinea, from the Douala Basin in Cameroon to the Anambra Basin in Nigeria. These sediments in the more centrally located Rio del Rey Basin have been the least studied. Therefore, the geologic history of this region has merely been speculative. The Rio del Rey Basin like the adjacent Niger Delta is producing hydrocarbon from the offshore Tertiary sedimentary interval in which all studies have been focused, neglecting the onshore Cretaceous sediments. Outcrops in the basin are rare, small and highly weathered. Samples from some of these sediments have yielded a few Planktonic and dominantly benthonic foraminiferal assemblages. The long-ranging heterohelix and hedbergellids characterized the planktics while the species Afrobolivina afra which is a well known diagnostic taxon for Campanian-Maastrichtian sediments in West African basins clearly dominate the benthic assemblage. Its occurrence in association with other Upper Cretaceous forms such as Bolivina explicata, Praebulimina exiqua, Gabonita lata, Ammobaculites coprolithiformis amongst others, formed the basis on which this age was assigned to the sediments sampled from the Rio del Rey Basin. Hence, this work has undoubtedly established the much needed link in this regional geologic history and correlates these sediments with the Logbaba and Nkporo Formations in the Douala Basin in Cameroon and the southeastern Nigerian Sedimentary Basins. Thus, these units were all deposited during this same geologic period and probably controlled by the same geologic event.

  6. Is Torosaurus Triceratops? Geometric Morphometric Evidence of Late Maastrichtian Ceratopsid Dinosaurs

    PubMed Central

    Maiorino, Leonardo; Farke, Andrew A.; Kotsakis, Tassos; Piras, Paolo

    2013-01-01

    Background Recent assessments of morphological changes in the frill during ontogeny hypothesized that the late Maastrichtian horned dinosaur Torosaurus represents the “old adult” of Triceratops, although acceptance of this finding has been disputed on several lines of evidence. Methodology/Principal Findings Examining the cranial morphology of 28 skulls in lateral view and 36 squamosals of Nedoceratops hatcheri, Triceratops spp. and Torosaurus spp. by means of landmark-based geometric morphometrics, we compared ontogenetic trajectories among these taxa. Principal Component Analysis and cluster analysis confirmed different cranial morphologies. Torosaurus shape space is well separated from Triceratops, whereas Triceratops horridus and Triceratops prorsus partially overlap within Triceratops shape space. Linear regressions between shape and size suggest different ontogenetic trajectories among these taxa. Results support the “traditional” taxonomic status of Torosaurus. We hypothesize that ontogeny drives cranial morphology with different patterns between Torosaurus and Triceratops. Conclusions/Significance Torosaurus is a distinct and valid taxon. Whether looking at entire skulls, skulls without the frill, frills alone, or squamosals, Torosaurus has different morphologies and distinct allometric trajectories compared to Triceratops. This new approach confirms the taxonomic status of Torosaurus as well as the comparatively low diversity of ceratopsids at the end of the Maastrichtian in North America. PMID:24303058

  7. Hydrologically Correct, Global Paleo-Digital Elevation Models (DEMs): a Maastrichtian (Late Cretaceous) Example

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.

    2001-12-01

    The past surface relief of the Earth is an essential boundary condition for computer-based atmosphere and ocean modeling. It also provides the geographic context for understanding surface processes and biotic distributions and interactions. However, with increased model resolution and the addition of vegetation, soil (weathering) and chemical modules, there is now a need for more robust, detailed paleo-topographies and bathymetries that are fully integrated with the processes being modeled, especially the hydrological system (hydrologically correct). Here I present a new GIS-based, hydrologically correct, paleo-DEM for the Maastrichtian (Late Cretaceous). This project was initiated in 1995 while the author was a graduate at the University of Chicago using the plate reconstructions of Rowley (1995, unpublished). The Maastrichtian paleogeography used in this study is one of a series of 27 global maps, representing the Cretaceous and Cenozoic, being compiled simultaneously to ensure continuity between each time interval. Each map is generated at a scale of 1:30 million in ArcView GIS and ArcInfo, using data from the author's own databases of lithologic, tectonic and fossil information, the lithologic databases of the Paleogeographic Atlas Project (The University of Chicago), a survey of published literature, and DSDP / ODP data. Interpretations of elevation are derived following the methods outlined in Ziegler et al (1985), an understanding of the tectonic regime and evolution of each geographic feature, and the age-depth relationship for the ocean. The Maastrichtian has been completed first to provide the boundary conditions for a coupled atmosphere-ocean experiment. The hydrologically correct global DEM was derived using the elevation contours from the paleogeography and the suite of hydrological tools now available in ArcInfo GRID. The DEM has been constrained by defining areas of paleo-internal drainage, paleo-river mouths and known paleo-river courses. When

  8. Coupled Climate Model Simulations of a Late Cretaceous (Maastrichtian) Greenhouse Climate: Comparison with Proxy Data

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Kiehl, J. T.; Shields, C. A.; Scotese, C.

    2009-12-01

    Earth’s future climate is expected to warm considerably due to increased atmospheric carbon dioxide. Paleoclimate records indicate that pre-Quaternary time periods provide the best possible view of Earth under warm greenhouse conditions. Thus, past warm greenhouse climates provide an important tool to evaluate fully coupled climate models that are currently used to study future climate change. In this study, we use the Community Climate System Model (CCSM3) to investigate the climate of the latest Cretaceous (Maastrichtian). CCSM3 is a fully coupled three-dimensional global model that includes atmospheric, oceanic, sea-ice and terrestrial processes. The CCSM3 simulations employ slight modifications of the paleogeographic and global vegetation reconstructions used in earlier simulations of the late Maastrichtian with the GENESIS Earth System Model (Upchurch, Otto-Bliesner, and Scotese, 1999). CCSM3 simulations include two levels of atmospheric carbon dioxide (2XPAL and 6XPAL), best estimates of atmospheric methane, changes to low level liquid cloud properties based on the hypothesis of Kump and Pollard (2008), and different paleoelevations for the interior of Siberia. A coupled simulation of multi-century length is carried out to study steady state conditions for the surface ocean. For terrestrial regions, model mean annual temperatures and seasonality are compared with data from angiosperm leaf physiognomy, plant life form distribution, and other climatic indicators to determine how well the model represents high latitude warmth on a zonal and regional basis. Model precipitation is compared with a database of climatically restricted sediments and angiosperm leaf physiognomy for specific sites. For oceanic regions, the CCSM3 simulations are compared to marine proxies of surface and benthic temperatures, especially the δ18O of exceptionally preserved carbonate. Our simulations reproduce many features of Maastrichtian climate, such as the latitudinal gradient of

  9. Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea

    NASA Astrophysics Data System (ADS)

    Stage, Morten

    1999-11-01

    Low field bulk magnetic susceptibility has been determined on Maastrichtian chalk samples from a drill core from the Dan Field in the Danish North Sea. Fast Fourier Transformations (FFT) have been used to detect possible cycles in the magnetic susceptibility data. Power spectra from the complete section and from sub-sections of the magnetic susceptibility reveal two cyclicities of ca. 0.4 cycles/m and ca. 1.7 cycles/m, which are present on a 90% confidence level. Signal analysis of natural gamma-ray wire-line log data supports these findings. Sedimentation rate estimates place the cycles in the Milankovitch frequency band. Artificial time series are used to study the applicability of the FFT to identifying cyclicity in chalks. Expected geological distortions (e.g., hiati and sedimentation rate variations) are introduced into the time series to investigate the response of the frequency spectra. Different methods of handling missing data intervals are also examined.

  10. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  11. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  12. A multidisciplinary approach to reservoir subdivision of the Maastrichtian chalk in the Dan field, Danish North Sea

    SciTech Connect

    Kristensen, L.; Dons, T.; Schioler, P.

    1995-11-01

    Correlation of wireline log data from the North Sea chalk reservoirs is frequently hampered by rather subtle log patterns in the chalk section due to the apparent monotonous nature of the chalk sediments, which may lead to ambiguous correlations. This study deals with a correlation technique based on an integration of biostratigraphic data, seismic interpretation, and wireline log correlation; this technique aims at producing a consistent reservoir subdivision that honors both the well data and the seismic data. This multidisciplinary approach has been used to subdivide and correlate the Maastrichtian chalk in the Dan field. The biostratigraphic subdivision is based on a new detailed dinoflagellate study of core samples from eight wells. Integrating the biostratigraphic results with three-dimensional seismic data allows recognition of four stratigraphic units within the Maastrichtian, bounded by assumed chronostratigraphic horizons. This subdivision is further refined by adding a seismic horizon and four horizons from wireline log correlations, establishing a total of nine reservoir units. The approximate chronostratigraphic nature of these units provides an improved interpretation of the depositional and structural patterns in this area. The three upper reservoir units pinch out and disappear in a northeasterly direction across the field. We interpret this stratal pattern as reflecting a relative sea level fall or regional basinal subsidence during the latest Maastrichtian, possibly combined with local synsedimentary uplift due to salt tectonics. Isochore maps indicate that the underlying six non-wedging units are unaffected by salt tectonics.

  13. Geochemical, sedimentary and micropaleontological evidence for a Late Maastrichtian oceanic seamount within the Pindos ocean (Arvi Unit, S Crete, Greece)

    NASA Astrophysics Data System (ADS)

    Palamakumbura, Romesh N.; Robertson, Alastair H. F.; Dixon, John E.

    2013-06-01

    We test the model of Bonneau (1984) who hypothesised that the Arvi Unit in southern Crete represents Upper Cretaceous oceanic crust of a Pindos oceanic basin. The Arvi Unit is dominated by basaltic lava flows, pelagic carbonates and terrigenous sandstone turbidites. The "enriched" within-plate-type geochemistry of the basaltic lavas is consistent with a seamount setting. The subaqueous lava structures and associated pelagic carbonates further justify a seamount origin. Peperites composed of lava-pelagic carbonate mixtures date the Arvi Unit as Late Maastrichtian using diagnostic planktic foraminifera. The lavas are overlain by pelagic carbonates, also of Late Maastrichtian age, that then pass gradationally upwards into sand to pebble-grade gravity flows. The clastic sediments contain grains derived from several sources, namely continental (metamorphic and plutonic), ophiolite-related (e.g. serpentinite, gabbro, diabase), deep-sea (e.g. chert, pelagic carbonate) and shallow-marine (e.g. shell fragments). The terrigenous detritus is inferred to have come from the Pelagonian microcontinent unit (~ Asteroussia nappe) then to the northeast where ophiolites and deep-sea sediments were obducted during Late Jurassic time. The inferred Arvi seamount was accreted at the southeasterly-subducting active margin of the Pelagonian microcontinent after Maastrichtian time, related to closure of the Pindos ocean. The new evidence from the Arvi Unit provides additional evidence for the existence of the Pindos ocean between the Apulian and Pelagonian continental units in the Greece-Albania region.

  14. Paleogeodynamic evolution of the Northern South America margin through 13 maps from Maastrichtian to present

    SciTech Connect

    Stephan, J.F. )

    1993-02-01

    The paleogeodynamic history of the Northern South America margin (NSAM) for the last 75 Ma is depicted through 13 maps. Five major episodes can be distinguished: In Maastrichtian and Paleocene times, the NSAM is still a passive margin including, from west to east, the northeast-trending Tinaco-Caucagua Promontory (TCP) and the Coast Range Realm (CRR); From Lower to Upper Eocene the Villa de Cura-Tobago Cretaceous Arc obliquely collides with the margin, generating a northeast-trending foreland flysch basin (i.e., Matatere, Guarico, and Rio Guache flysch). By the end of Eocene, the TCP and CRR have been imbricated under the arc and thrusted southeastward, together with the flysch nappes, onto the upper margin. The allochthon front is stabilized roughly along an Acarigua-Caracas line; Oligocene and lowermost Miocene times correspond to a drastic geometric and kinematic reorganization probably related to a strong slow-down of the Caribbean plate movement. Subsidence and transtension are dominant; From late Lower Miocene to early Upper Miocene, the remnant central and eastern passive margin is tectonized due to the fast eastward transpressive shift of the Caribbean plate; In late Upper Miocene times, a second geodynamic reorganization occurs which gives rise to the present-day pattern where transpression is mostly active in Trinidad, Falcon, and the Merida Andes.

  15. Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions

    NASA Astrophysics Data System (ADS)

    Keller, Gerta

    2005-02-01

    During the late Maastrichtian, DSDP Site 216 on Ninetyeast Ridge, Indian Ocean, passed over a mantle plume leading to volcanic eruptions, islands built to sea level, and catastrophic environmental conditions for planktic and benthic foraminifera. The biotic effects were severe, including dwarfing of all benthic and planktic species, a 90% reduction in species diversity, exclusion of all ecological specialists, near-absence of ecological generalists, and dominance of the disaster opportunist Guembelitria alternating with low O 2-tolerant species. These faunal characteristics are identical to those of the K-T boundary mass extinction, except that the fauna recovered after Site 216 passed beyond the influence of mantle plume volcanism about 500 kyr before the K-T boundary. Similar biotic effects have been observed in Madagascar, Israel, and Egypt. The direct correlation between mantle plume volcanism and biotic effects on Ninetyeast Ridge and the similarity to the K-T mass extinction, which is generally attributed to a large impact, reveal that impacts and volcanism can cause similar environmental catastrophes. This raises the inevitable question: Are mass extinctions caused by impacts or mantle plume volcanism? The unequivocal correlation between intense volcanism and high-stress assemblages necessitates a review of current impact and mass extinction theories.

  16. Occurrence of a young elasmosaurid plesiosaur skeleton from the Late Cretaceous (Maastrichtian) of Antarctica

    USGS Publications Warehouse

    Martin, James E.; Sawyer, J. Foster; Reguero, Marcelo; Case, Judd A.

    2007-01-01

    The most completely articulated fossil skeleton heretofore found on the continent of Antarctica is represented by a juvenile plesiosaur. The specimen was found in the Sandwich Bluff area of Vega Island east of the Antarctic Peninsula from Late Cretaceous (Maastrichtian) marine deposits from the upper Snow Hill Island Formation. The plesiosaur skeleton is represented by a nearly complete torso, partial paddles, and neck and tail sections. Along the ventral margin of the torso are articulated gastralia, some that are unusual in being forked. Numerous small gastroliths are associated within the trunk cavity, indicating that even juveniles ingest gastroliths. Coupled with other known specimens, the skeleton indicates shallow marine environment may have been an area where marine reptiles had their young, and the young remained until reaching maturity prior to facing open marine environments. The morphology of the specimen suggests the skeleton represents a juvenile Mauisaurus, an elasmosaurid plesiosaur taxon originally described from New Zealand and endemic to the Weddellian Province of the austral region.

  17. A dromaeosaur from the Maastrichtian of James Ross Island and the Late Cretaceous Antarctic dinosaur fauna

    USGS Publications Warehouse

    Case, Judd A.; Martin, James E.; Reguero, Marcelo

    2007-01-01

    The recovery of material of a small theropod from the Early Maastrichtian, Cape Lamb Member of the Snow Hill Island Formation is an unusual occurrence from primarily marine sediments. The pedal morphology of the specimen that includes a Metatarsal II with a lateral expansion caudal to Metatarsal III, a third metatarsal that is proximally narrow and distally wide, a Metatarsal III with a distal end that is incipiently ginglymoidal and a second pedal digit with sickle-like ungual are all diagnostic of a theropod that belongs to the family of predatory dinosaurs, the Dromaeosauridae. Yet this Antarctic dromaeosaur retains plesiomorphic features in its ankle and foot morphology. As new dromaeosaur species are being recovered from the mid-Cretaceous of South America and the retention of primitive characters in the Antarctic dromaeosaur, a new biogeographic hypothesis on dromaeosaur distribution has been generated. Gondwanan dromaeosaurs are not North America immigrants into South America and Antarctica; rather they are the relicts of a cosmopolitan dromaeosaur distribution, which has been separated by the vicariant break up of Pangea and created an endemic clade of dromaeosaurs in Gondwana.

  18. Stable isotope distribution in continental Maastrichtian vertebrates from the Haţeg Basin, South Carpathians

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Csiki, Zoltan; Grigorescu, Dan

    2010-05-01

    The oxygen isotopic compositions of biogenic apatite from crocodiles, turtles and dinosaurs, and their relationship to climate and physiology have been evidenced by several studies (Barrick and Showers, 1995; Kolodny et al., 1996; Barrick et al., 1999; Fricke and Rogers, 2000; Stoskopf et al., 2001; Straight et al., 2004; Amiot et al., 2007). To date, few attempts have been made to correlate the enamel d13C to dietary resources of dinosaurs (Bocherens et al., 1988; Stanton Thomas and Carlson, 2004; Fricke and Pearson, 2008; Fricke, et al., 2008). One additional complication is that for dinosaurs, the d18O of enamel phosphate depends on both body water and variations in body temperature. Several studies addressed the issue of endothermy vs. ectothermy of fossil vertebrates by studying inter- and intra-bone and enamel isotopic variability (Barrick and Showers, 1994, 1995; Barrick et al., 1996; 1998; Fricke and Rogers, 2000). More recent investigations provided evidence for inter-tooth temporal variations and related them to seasonality and/or changes in physiology (Straight et al., 2004; Stanton Thomas and Carlson, 2004). The main objectives of this study are to extract palaeoclimatic information considering, beside lithofacial characteristics and the isotopic distribution of carbonates formed in paleosols, the stable isotope composition of vertebrate remains from the Haţeg Basin. We also sampled several teeth along their growth axis in order to get further information about growth rates and the amplitude of isotopic variation. Located in the South Carpathians in Romania, the Haţeg Basin contains a thick sequence of Maastrichtian continental deposits yielding a rich dinosaur and mammalian fauna. Stable isotope analyses of both calcretes and dinosaur, crocodilian and turtle remains from two localities (Tuştea and Sibişel) were integrated in order to reconstruct environmental conditions during the Maastrichtian time and to gain further insights into the metabolism

  19. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  20. Upper Albian-Maastrichtian calcareous plankton biostratigraphy, magnetostratigraphy and carbon isotope stratigraphy of the classical Tethyan Gubbio section (Italy)

    NASA Astrophysics Data System (ADS)

    Premoli Silva, Isabella; Coccioni, Rodolfo; Sabatino, Nadia; Sprovieri, Mario; Voigt, Silke

    2014-05-01

    The Tethyan pelagic sections at Bottaccione and Contessa Highway (Gubbio, central Italy) are internationally recognized to be the standard reference sections for the Late Cretaceous to Eocene geomagnetic polarity time scale calibrated to the integrated planktonic foraminiferal and calcareous nannofossil biostratigraphy. Due to the presence of a gap within Chron C31n in the Bottaccione section, we use two distinct portions of these sections to construct an upper Albian-Maastrichtian complete and well-preserved composite stratigraphic record, 333.1 m in thickness and ~37 Myr in duration. A refined magnetostratigraphy and planktonic foraminiferal and calcareous nannofossil biostratigraphy is here presented for this stratigraphic succession. In particular, the recovery of planktonic foraminifera successfully disaggregated from the hard lithologies allows to place more precisely several bioevents that include the lowest occurrence (LO) of Thalmanninella globotruncanoides defining the Albian/Cenomanian boundary, the LO of Globotruncana linneiana that approximates the base of the Santonian, the LO of Globotruncana aegyptiaca occurring earlier than previously recognized, the LO of Pseudoguembelina palpebra, and, in addition, the well-constrained and complete pattern of the evolutionary origin of Racemiguembelina fructicosa from Pseudotextularia elegans through Pseudotextularia intermedia and Racemiguembelina powelli previously undetected. Moreover, the highest occurrence of Gansserina gansseri and the LO of Plummerita hantkeninoides allow to subdivide the latest Maastrichtian into the Pseudoguembelina hariaensis, Pseudotextularia elegans and Plummerita hantkeninoides planktonic foraminiferal Zones. The refined magnetobiostratigraphic framework may improve reliability of Late Cretaceous correlations at low to middle latitude as well as paleoenvironmental, paleoclimatic and paleoceanographic interpretations. Finally, an almost complete, high-resolution carbon isotope curve

  1. Biogeochemial Cycling and Ocean Climate in the Maastrichtian: a Coupled Ecosystem-Physical Climate Simulation Study

    NASA Astrophysics Data System (ADS)

    Williams, J.; Valdes, P. J.

    2014-12-01

    Paleoclimate simulations of the Latest Cretaceous are presented, specifically for the Maastrichtian stage using the UK Met Office model HadCM3L. The vast majority of traditional paleoclimate simulation studies using General Circulation Models include representations of the atmosphere and ocean as well as a dynamic sea ice model. In this we study new presents model results from a GCM that also includes a detailed ocean biogeochemical scheme HadOCC. HadOCC is an ecosystem model, meaning it contains an explicit representation of planktonic species (both autotrophic phytoplankton and heterotrophic zooplankton) and is an NZPD model (Nutrient, Phytoplankton, Zooplankton, Detritus). It is also able to simulate air-sea gas exchange and primary productivity in the surface and near-surface as well as full ecosystem interaction throughout the water column. Compared to the present day, the Latest Cretaceous represents a very different world, both in terms of its atmospheric composition and in the configuration of the continents. It also offers the prospect of studying a past warm climate with significantly enhanced CO2 levels compared to the preindustrial era. For the simulations presented here, atmospheric CO2 levels are set to be four times their preindustrial values (290 parts per million). The combination of a very different continental configuration and hugely enhanced atmospheric CO2 levels results in a very different climate from what we know today. To first order, ocean temperatures are significantly higher and circulation patterns are very different. The combination of these fundamentally important ocean properties means that the resulting biological activity (which will be shown in an annual mean and seasonal sense) is able to provide clues as to which oceanic areas were more biologically active than others. Because of the fully dynamic and coupled nature of the biology and physics of this modelling framework, surface and benthic processes (and their interactions

  2. Late Maastrichtian chalk mounds, Stevns Klint, Denmark — Combined physical and biogenic structures

    NASA Astrophysics Data System (ADS)

    Anderskouv, Kresten; Damholt, Tove; Surlyk, Finn

    2007-08-01

    Upper Maastrichtian chalk exposed at the Sigerslev quarry, Stevns Klint, Denmark is characterized by wavy and mound-like bedding geometries outlined by bands of black flint nodules. Four morphological elements are recognized, although bedding geometries are highly variable: southward migrating mounds, eastward migrating mounds, chalk waves and evenly bedded chalk. The mounds are interpreted as having been formed by currents carrying fine-grained suspended sediment which was primarily deposited on the up-current mound flanks. Bryozoans were prolific on the up-current flanks and mound summits, which stabilized the mounds, increased bed roughness and the overall accumulation rate. However, accumulation thicknesses do not correlate consistently with bryozoan density. The bryozoans were therefore important for the formation of the mounds, but the distribution of bryozoans did not solely determine depositional thickness across a mound and thus mound growth pattern. Relatively long wavelength wavy-bedded chalk show gentle convex-up geometries and would probably be described as sediment waves if recognized in seismic sections. The chalk waves were deposited under weaker current velocities than those active during mound formation. The exposed succession is topped by more evenly bedded chalk which was deposited by quiet pelagic fall-out of fine-grained material. The whole succession was deposited on the upper part of the northern flank of a large WNW-ESE trending 3 km wide depositional ridge with an amplitude of 35-40 m formed by contour-parallel WNW-ward flowing bottom currents. The mounds may have been deposited by regional bottom currents, or by spill-over currents from the valley south of the large ridge. The succession was deposited during varying bottom current intensities and the depositional architecture indicates a complex and dynamic environment. The depositional style seems to be controlled by the interplay and relative importance of two end-member processes

  3. Upper Cretaceous (Maastrichtian) Charophyte Gyrogonites from the Lameta Formation of Jabalpur, Central India: Palaeobiogeographic and Palaeoecological Implications

    NASA Astrophysics Data System (ADS)

    Khosla, Ashu

    2014-12-01

    A charophyte gyrogonite assemblage consisting of Platychara cf. sahnii, Nemegtichara grambastii and Microchara sp. is reported herein from two localities (Bara Simla Hill and Chui Hill sections) of the Lameta Formation at Jabalpur. he Lameta Formation locally underlying the Deccan traps has been shown to be pedogenically modified alluvial plain deposits containing one of the most extensive dinosaur nesting sites in the world. They are associated with dinosaur bones and freshwater ostracod assemblages that suggest a Late Cretaceous (Maastrichtian) age. This is the first detailed systematic account of charophyte gyrogonites from the Lameta Formation. This charophyte assemblage is compatible with the biostratigraphic attribution provided by the ostracods. From a biogeographic viewpoint, it exhibits considerable similarity to other infratrappean assemblages of the Nand, Dongargaon, and Dhamni-Pavna sections (Maharashtra), and some intertrappean assemblages of Kora in Gujarat, Rangapur in Andhra Pradesh and Gurmatkal in South India. Globally, the genus Microchara is well distributed throughout Eurasia, whereas the genus Platychara occurs richly in the Upper Cretaceous deposits of Europe, Asia, America and Africa. However, at the specific level, Platychara cf. sahnii shows close affinities with charophytes from the Maastrichtian of Iran whilst Nemegtichara grambastii shows distinct affinities with two species of Early Palaeogene deposits of China and Mongolia. The presence of charophyte gyrogonites in the Lameta sediments is attributed to local lacustrine and palustrine conditions within a flood plain environment.

  4. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    NASA Astrophysics Data System (ADS)

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol

    2016-05-01

    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  5. Migrated hydrocarbons in exposure of Maastrichtian nonmarine strata near Saddle Mountain, lower Cook Inlet, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Lillis, P.G.; Helmold, K.P.; Stanley, R.G.

    2012-01-01

    Magoon and others (1980) described an 83-meter- (272-foot-) thick succession of Maastrichtian (Upper Cretaceous) conglomerate, sandstone, mudstone, and coal exposed on the south side of an unnamed drainage, approximately 3 kilometers (1.8 miles) east of Saddle Mountain in lower Cook Inlet (figs. 1 and 2). The initial significance of this exposure was that it was the first reported occurrence of nonmarine rocks of this age in outcrop in lower Cook Inlet, which helped constrain the Late Cretaceous paleogeography of the area and provided important information on the composition of latest Mesozoic sandstones in the basin. The Saddle Mountain section is thought to be an outcrop analog for Upper Cretaceous nonmarine strata penetrated in the OCS Y-0097 #1 (Raven) well, located approximately 40 kilometers (25 miles) to the south–southeast in Federal waters (fig. 1). Atlantic Richfield Company (ARCO) drilled the Raven well in 1980 and encountered oil-stained rocks and moveable liquid hydrocarbons between the depths of 1,760 and 3,700 feet. Completion reports on file with the Bureau of Ocean Energy Management (BOEM; formerly Bureau of Ocean Energy Management, Regulation and Enforcement, and prior to 2010, U.S. Minerals Management Service) either show flow rates of zero or do not mention flow rates. A fluid analysis report on file with BOEM suggests that a wireline tool sampled some oil beneath a 2,010-foot diesel cushion during the fl ow test of the 3,145–3,175 foot interval, but the recorded fl ow rate was still zero (Kirk Sherwood, written commun., January 9, 2012). Further delineation and evaluation of the apparent accumulation was never performed and the well was plugged and abandoned. As part of a 5-year comprehensive evaluation of the geology and petroleum systems of the Cook Inlet forearc basin, the Alaska Division of Geological & Geophysical Surveys obtained a research permit from the National Park Service to access the relatively poorly understood

  6. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Galbrun, Bruno; Gardin, Silvia; Minoletti, Fabrice; Le Callonnec, Laurence

    2016-04-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presence of Milankovitch frequencies and is used for proposal of two distinct orbital age models and to provide ages of important stratigraphic horizons, relative to the age of the Cretaceous-Paleogene boundary (K-PgB). Principal component analysis (PCA) performed on the nannofossil assemblage reveal two main factors, PCA1, mostly representing fluctuations of D. rotatorius, P. stoveri, Lithraphidites spp., Retecapsa spp., Staurolithites spp., Micula spp., and PCA2, mostly representing fluctuations of A. regularis, C. ehrenbergii, Micula spp., Rhagodiscus spp., W. barnesiae and Zeugrhabdotus spp. Variations in PCA1 and PCA2 match changes in bulk δ13C and δ18O, respectively, and suggest changes in surface-water fertility and temperatures and associated stress. The variations in abundances of high-latitude taxa and the warm-water species Micula murus and in bulk δ18O delineate fast changes in sea-surface paleotemperatures. As in many other sites, an end-Maastrichtian greenhouse warming is highlighted, followed by a short cooling and an additional warm pulse in the last 30 kyr of the Maastrichtian which has rarely been documented so far. Orbital tuning of the delineated climatic events is proposed following the two different age models. Calcareous nannofossil assemblages highlight a decrease in surface-water nutriency, but their species richness remains high through the latest Maastrichtian, indicating, in Tunisia, a weak impact of Deccan volcanism on calcareous nannoplankton diversity before the mass extinction.

  7. The Blake Nose Cretaceous-Paleogene (Florida Atlantic margin, ODP Leg 171B): an exemplar record of the Maastrichtian-Danian transition

    USGS Publications Warehouse

    Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, J.G.; Pak, D.K.; Pletsch, T.K.; Self-Trail J.M.; Shackleton, N.J.; Smit, J.; Ussler, W., III; Watkins, D.K.; Widmark, J.; Wilson, P.A.

    1997-01-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  8. Orbit to orbit transportation

    NASA Technical Reports Server (NTRS)

    Bergeron, R. P.

    1980-01-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  9. The genus Krithe (Ostracoda) from the Campanian and Maastrichtian (Upper Cretaceous) of the northern US Gulf Coastal Plain

    USGS Publications Warehouse

    Puckett, T.M.

    1997-01-01

    The ostracode genus Krithe is one of the most common genera in the Upper Cretaceous (late Santonian to Maastrichtian) deposits of the northern Gulf Coastal Plain of North America. Although it is never abundant, the genus occurs in sediments that were deposited under a wide range of palaeoenvironments, including nearshore sandy marls to offshore, nearly pure, chalk. The taxonomy of this taxon has been problematical, and what is herein considered to be a single species, K. cushmani, has been referred to in the literature under five different names. Two morphotypes were observed: relatively large individuals with 'mushroom'-shaped vestibules collected from chalk, and smaller individuals with pocket-shaped vestibules collected from nearshore deposits. Species of Krithe have been hypothesized to be useful in estimating dissolved oxygen concentration in ancient ocean floors, based on details of their morphology. Whereas the relationship between size and environment corroborates with previous predictions (larger individuals live in deeper water), the morphology of the vestibules contradicts predictions (the larger vestibules occur in the nearshore deposits and the smaller, more constricted vestibules occur in the chalk). A causal relationship between environment and morphology is discussed.

  10. A new ceratopsian dinosaur from the Javelina Formation (Maastrichtian) of West Texas and implications for chasmosaurine phylogeny.

    PubMed

    Wick, Steven L; Lehman, Thomas M

    2013-07-01

    Bravoceratops polyphemus gen. et sp. nov. is a large chasmosaurine ceratopsid from the lowermost part of the Javelina Formation (early Maastrichtian) of Big Bend National Park, TX, USA. B. polyphemus has a distinctive narrow snout, a long fenestrate frill, and a fan-shaped median parietal bar with a midline epiparietal on its posterior margin, as well as a symmetrical depression on its dorsal surface at the nexus of the parietal rami. This depression is interpreted to be the attachment point for a second midline epiparietal. This parietal morphology is distinct from that exhibited by Anchiceratops or Pentaceratops. The posterior midline epiparietal in B. polyphemus and its bifurcated quadratojugal-squamosal joint are features shared with the most derived chasmosaurines, Torosaurus and Triceratops. The combination of primitive and derived traits exhibited by B. polyphemus, and its stratigraphic position, is compatible with the gradual transition from basal, to intermediate, to derived chasmosaurines observed throughout the western interior of North America, and with phylogenetic analysis, which suggests that Bravoceratops may be closely related to Coahuilaceratops. PMID:23728202

  11. Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ 18O record of continental vertebrates

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Fluteau, Frédéric; Legendre, Serge; Martineau, François

    2004-09-01

    Latitudinal variations in model biogenic apatite δ18O values were calculated using fractionation equations of vertebrates and weighted rainfall δ18O values along with mean annual air temperatures provided by IAEA-WMO meteorological stations. The reference equation obtained was used to compute a continental temperature gradient for the Late Campanian-Middle Maastrichtian interval by using published and new δ18O values of phosphate from vertebrates. Samples are mainly tooth enamel from crocodilians and dinosaurs that lived at paleolatitudes ranging from 83-9+4°N (Alaska) to 32±3°S (Madagascar). The temperature gradient was less steep (0.4±0.1 °C/°latitude) than the present-day one (0.6 °C/°latitude) with temperatures that decreased from about 30 °C near the equator to about -5 °C at the poles. Above 30° of paleolatitude, air temperatures were higher than at present. The validity of these results is discussed by comparison with climatic criteria inferred from paleontological, paleobotanical and sedimentological data. The latitudinal distribution of oxygen isotope compositions of continental vertebrates is potentially a powerful tool for quantifying Mesozoic terrestrial climates.

  12. A new ceratopsian dinosaur from the Javelina Formation (Maastrichtian) of West Texas and implications for chasmosaurine phylogeny

    NASA Astrophysics Data System (ADS)

    Wick, Steven L.; Lehman, Thomas M.

    2013-07-01

    Bravoceratops polyphemus gen. et sp. nov. is a large chasmosaurine ceratopsid from the lowermost part of the Javelina Formation (early Maastrichtian) of Big Bend National Park, TX, USA. B. polyphemus has a distinctive narrow snout, a long fenestrate frill, and a fan-shaped median parietal bar with a midline epiparietal on its posterior margin, as well as a symmetrical depression on its dorsal surface at the nexus of the parietal rami. This depression is interpreted to be the attachment point for a second midline epiparietal. This parietal morphology is distinct from that exhibited by Anchiceratops or Pentaceratops. The posterior midline epiparietal in B. polyphemus and its bifurcated quadratojugal-squamosal joint are features shared with the most derived chasmosaurines, Torosaurus and Triceratops. The combination of primitive and derived traits exhibited by B. polyphemus, and its stratigraphic position, is compatible with the gradual transition from basal, to intermediate, to derived chasmosaurines observed throughout the western interior of North America, and with phylogenetic analysis, which suggests that Bravoceratops may be closely related to Coahuilaceratops.

  13. High-resolution late Maastrichtian early Danian oceanic 87Sr/86Sr record: Implications for Cretaceous-Tertiary boundary events

    NASA Astrophysics Data System (ADS)

    Vonhof, H. B.; Smit, J.

    1997-04-01

    A high-resolution late Maastrichtian early Danian seawater 87Sr/86Sr reference curve is constructed from two Cretaceous-Tertiary boundary (K-T boundary) sections: Bidart (France) and El Kef (Tunisia). The 87Sr/86Sr curve shows maxima at 0.3 0.4 Ma before the K-T boundary and at the K-T boundary. The first maximum could mark the onset of a major outflow of the Deccan Traps. The second maximum, a rapid 0.000 06 87Sr/86Sr, shift, extends from ˜3 4 m below to ˜1 m above the K-T boundary. This profile probably results from diagenetic smoothing of an originally sharp K-T boundary 87Sr/86Sr anomaly, rather than from a gradual process. The sharp shift could result from (1) the vaporization of the Chicxulub target rocks, (2) global wildfires, and (3) acid-rain leaching of soils and sialic surface rocks. Of these three possibilities, only Sr release by soil leaching combined with increased rainfall associated with the K-T event appears to be sufficiently large to produce the observed K-T 87Sr/86Sr anomaly.

  14. A Comparison of "Ice-House" (Modern) and "Hot-House" (Maastrichtian) Drainage Systems: the Implications of Large-Scale Changes in the Surface Hydrological Scheme

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.; Crossley, R.; Valdes, P. J.

    2002-12-01

    A GIS analysis of modern and Maastrichtian (Late Cretaceous) drainage systems has been made in order to investigate the potential differences between the surface hydrology of "ice-house" and "hot-house" worlds and how this might be reflected in the geological record. Because of the importance of CO2 concentrations for generating "hot-house" climates this study also has implications for potential future changes in the climate system. For the modern system we have utilized global maps of observed river systems, the Hydro1K digital dataset, observations of freshwater and sediment fluxes from recording stations, and modern day climate models and observations. For the Maastrichtian we have compiled a detailed global paleogeographic map and geological database (based on earlier work by the Paleogeographic Atlas Project, University of Chicago) that has been used to generate a paleo-DEM using the suite of hydrological tools in ArcGIS, complete with reconstructed river systems and drainage basins. This forms the primary boundary condition for a coupled ocean-atmosphere experiment using the HadCM3 model, with atmospheric CO2 set at 4 x pre-industrial levels. The results indicate a Maastrichtian world dominated by high sea surface temperatures (as high as 30-35 C in the tropics), and a consequently greatly enhanced hydrological cycle when compared with the Present. Globally, modeled Maastrichtian precipitation and evaporation are 1.5x that for the Present, with a 2.5x increase in total runoff. These changes are not evenly distributed, either spatially or seasonally, and therefore a detailed consideration of the paleogeography and paleo-drainage is essential, as these changes have a major influence on the distribution of vegetation and freshwater and sediment fluxes. For example, the Maastrichtian Tethyan monsoon, though less intense than noted for other modeled Mesozoic intervals, nonetheless dominates the seasonal distribution of precipitation and runoff over Saharan and

  15. Orbital cellulitis

    MedlinePlus

    ... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...

  16. Orbital pseudotumor

    MedlinePlus

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  17. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  18. Survival of Theriosuchus (Mesoeucrocodylia: Atoposauridae) in a Late Cretaceous archipelago: a new species from the Maastrichtian of Romania

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Rabi, Márton; Csiki, Zoltán

    2010-09-01

    Small terrestrial non-eusuchian mesoeucrocodylians are common components of Cretaceous assemblages of Gondwanan provinces with notosuchians and araripesuchids as flagship taxa in South America, Africa and Madagascar, well into the Late Cretaceous. On the other hand, these are exceedingly rare in Laurasian landmasses during the Late Cretaceous. Small terrestrial mesoeucrocodylians from Europe were often referred to the genus Theriosuchus, a taxon with stratigraphic range extending from the Late Jurassic to the late Early Cretaceous. Theriosuchus is abundantly reported from various European localities, although Asiatic and possibly North American members are also known. It has often been closely associated with the first modern crocodilians, members of the Eusuchia, because of the presence of procoelous vertebrae, a widespread key character diagnosing the Eusuchia. Nevertheless, the relationships of Theriosuchus have not been explored in detail although one species, Theriosuchus pusillus, has been extensively described and referred in numerous works. Here, we describe a new basal mesoeucrocodylian, Theriosuchus sympiestodon sp. nov. from the Maastrichtian of the Haţeg Basin, Romania, suggesting a large temporal gap (about 58 myr) in the fossil record of the genus. Inclusion of the new taxon, along with Theriosuchus guimarotae, in a phylogenetic analysis confirms its referral to the genus Theriosuchus, within a monophyletic atoposaurid clade. Although phylogenetic resolution within this clade is still poor, the new taxon appears, on morphological grounds, to be most closely related to T. pusillus. The relationships of Atoposauridae within Mesoeucrocodylia and especially to Neosuchia are discussed in light of the results of the present contribution as well as from recent work. Our results raise the possibility that Atoposauridae might not be regarded as a derived neosuchian clade anymore, although further investigation of the neosuchian interrelationships is needed

  19. Paleocene and Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the northern James Ross Basin, western Weddell Sea, Antarctica

    USGS Publications Warehouse

    Kulhanek, D.K.

    2007-01-01

    Site NBP0602A-9, drilled during the SHALDRIL II cruise of the RV/IB Nathaniel B. Palmer, includes two holes located in the northern James Ross Basin in the western Weddell Sea, very close to the eastern margin of the Antarctic Peninsula. Sediment from both holes consists of very dark grey, pebbly, sandy mud, grading to very dark greenish grey, pebbly, silty mud in the lower 2.5 m of the second hole. In addition to abundant pebbles found throughout the cores, both holes contain numerous sedimentary clasts. Biostratigraphic analysis of diatom assemblages from the glaciomarine muds yields rare to few, poorly preserved diatoms. The mixed assemblage consists mostly of extant species, but also includes reworked taxa that range to the Miocene. The absence of Rouxia spp., however, suggests the sediment is late Pleistocene in age. The sedimentary clasts, on the other hand, are nearly barren of diatoms, but contain rare, moderately to well-preserved calcareous nannofossils. The clasts contain three distinct assemblages. Two clasts are assigned an early Maastrichtian age based on the presence of Biscutum magnum and Nephrolithus corystus, while one clast yields a late Maastrichtian age based on the presence of Nephrolithus frequens. These samples also contain other characteristic Late Cretaceous species, including Biscutum notaculum, Cribrosphaerella daniae, Eiffellithus gorkae, Kamptnerius magnificus, and Prediscosphaera bukryi. Two samples yield an early Paleocene assemblage dominated by Hornibrookina teuriensis. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on Seymour and Snow Hill Islands, making it the likely source area for the Cretaceous clast material. Although no calcareous nannofossils have been reported from Paleocene formations on these islands, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present; thus the Paleocene clasts likely also originated from the Seymour Island area.

  20. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  1. A new species of Allodaposuchus (Eusuchia, Crocodylia) from the Maastrichtian (Late Cretaceous) of Spain: phylogenetic and paleobiological implications.

    PubMed

    Blanco, Alejandro; Fortuny, Josep; Vicente, Alba; Luján, Àngel H; García-Marçà, Jordi Alexis; Sellés, Albert G

    2015-01-01

    Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single specimen attributed to Allodaposuchus, represented by both cranial and postcranial remains, from the Casa Fabà site (Tremp Basin, NE Spain) in the lower red unit of the Tremp Fm. (early Maastrichtian, Late Cretaceous) offers a unique opportunity to deepen in the phylogenetic relationships of the group and its ecological features. Methods. The specimen is described in detail, and CT scan of the skull is performed in order to study the endocranial morphology as well as paratympanic sinuses configuration. In addition, myological and phylogenetic analyses are also carried out on the specimen for to shed light in ecological and phylogenetic issues, respectively. Results. The specimen described herein represents a new species, Allodaposuchus hulki sp. nov., closely related to the Romanian A. precedens. The CT scan of the skull revealed an unexpected paratympanic sinuses configuration. Allosaposuchus hulki exhibits an "anterodorsal tympanic sinus" not observed in any other extant or extinct crocodilian. The caudal tympanic recesses are extremely enlarged, and the expanded quadratic sinus seems to be connected to the middle-ear channel. Phylogenetic analyses confirm the emplacement of the informal taxonomic group 'Allodaposuchia' at the base of Crocodylia, being considered the sister group of Borealosuchus and Planocraniidae. Discussion. Although this is a preliminary hypothesis, the unique paratympanic configuration displayed by A. hulki suggests that it could possess a high

  2. Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Cronholm, Anders; Schmitz, Birger

    The distribution of sediment-dispersed extraterrestrial (ordinary chondritic) chromite (EC) grains (>63 μm) has been studied across the latest Maastrichtian and Paleocene in the Bottaccione Gorge section at Gubbio, Italy. This section is ideal for determining the accumulation rate of EC because of its condensed nature and well-constrained sedimentation rates. In a total of 210 kg of limestone representing eight samples of 14-28 kg distributed across 24 m of the Bottaccione section, only 6 EC grains were found (an average of 0.03 EC grains kg-1). In addition, one probable pallasitic chromite grain was found. No EC grains could be found in two samples at the Cretaceous-Tertiary (K-T) boundary, which is consistent with the K-T boundary impactor being a carbonaceous chondrite or comet low in chromite. The average influx of EC to Earth is calculated to ˜0.26 grain m-2 kyr-1. This corresponds to a total flux of ˜200 tons of extraterrestrial matter per year, compared to ˜30,000 tons per year, as estimated from Os isotopes in deep-sea sediments. The difference is explained by the EC grains representing only unmelted ordinary chondritic matter, predominantly in the size range from ˜0.1 mm to a few centimeters in diameter. Sedimentary EC grains can thus give important information on the extent to which micrometeorites and small meteorites survive the passage through the atmosphere. The average of 0.03 EC grain kg-1 in the Gubbio limestone contrasts with the up to ˜3 EC grains kg-1 in mid-Ordovician limestone that formed after the disruption of the L chondrite parent body in the asteroid belt at ˜470 Ma. The two types of limestone were deposited at about the same rate, and the difference in EC abundance gives support for an increase by two orders of magnitude in the flux of chondritic matter directly after the asteroid breakup.

  3. A new species of Allodaposuchus (Eusuchia, Crocodylia) from the Maastrichtian (Late Cretaceous) of Spain: phylogenetic and paleobiological implications

    PubMed Central

    Blanco, Alejandro; Fortuny, Josep; Vicente, Alba; Luján, Àngel H.; García-Marçà, Jordi Alexis

    2015-01-01

    Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single specimen attributed to Allodaposuchus, represented by both cranial and postcranial remains, from the Casa Fabà site (Tremp Basin, NE Spain) in the lower red unit of the Tremp Fm. (early Maastrichtian, Late Cretaceous) offers a unique opportunity to deepen in the phylogenetic relationships of the group and its ecological features. Methods. The specimen is described in detail, and CT scan of the skull is performed in order to study the endocranial morphology as well as paratympanic sinuses configuration. In addition, myological and phylogenetic analyses are also carried out on the specimen for to shed light in ecological and phylogenetic issues, respectively. Results. The specimen described herein represents a new species, Allodaposuchus hulki sp. nov., closely related to the Romanian A. precedens. The CT scan of the skull revealed an unexpected paratympanic sinuses configuration. Allosaposuchus hulki exhibits an “anterodorsal tympanic sinus” not observed in any other extant or extinct crocodilian. The caudal tympanic recesses are extremely enlarged, and the expanded quadratic sinus seems to be connected to the middle-ear channel. Phylogenetic analyses confirm the emplacement of the informal taxonomic group ‘Allodaposuchia’ at the base of Crocodylia, being considered the sister group of Borealosuchus and Planocraniidae. Discussion. Although this is a preliminary hypothesis, the unique paratympanic configuration displayed by A. hulki suggests that it could possess a high

  4. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  5. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  6. Orbital cellulitis.

    PubMed Central

    Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B

    1992-01-01

    Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488

  7. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  8. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  9. Paleoenvironmental interpretation of an ancient Arctic coastal plain: Integrated paleopedology and palynology from the Late Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA

    NASA Astrophysics Data System (ADS)

    McCarthy, P. J.; Flaig, P. P.; Fiorillo, A. R.

    2010-12-01

    The Cretaceous (Early Maastrichtian), dinosaur-bearing Prince Creek Formation, North Slope, Alaska, records high-latitude, alluvial sedimentation and soil formation on a low-lying, coastal plain during a greenhouse phase in Earth history. This study combines outcrop observations, micromorphology, geochemistry, and palynological analyses of paleosols in order to reconstruct local paleoenvironments of weakly developed, high-latitude coastal plain soils. Sediments of the Prince Creek Fm. include quartz- and chert-rich sandstone channels, and floodplains containing organic-rich siltstone and mudstone, carbonaceous shale, coal and ashfall deposits. Vertically stacked horizons of blocky-to-platy, drab-colored mudstone and siltstone with carbonaceous root-traces and mottled aggregates alternating with sandy units indicate that the development of compound and cumulative, weakly-developed soils on floodplains alternated with overbank alluviation and deposition on crevasse splay complexes on floodplains . Soil formation occurred on levees, point bars, crevasse splays and along the margins of floodplain lakes, ponds, and swamps. Soil-forming processes were interrupted by repeated deposition of sediment on top of soil profiles by flooding of nearby channels. Alluviation is evidenced by thin (<0.5 m) sand and silt horizons within soil profiles, along with common pedorelicts, papules, and fluctuations with depth in a variety of molecular ratios. Carbonaceous organic matter and root-traces, Fe-oxide depletion coatings, and zoned peds suggest periodic waterlogging, anoxia and gleying. In contrast, Fe-oxide mottles, ferruginous and manganiferous segregations, burrows, and rare illuvial clay coatings suggest recurring oxidation and periodic drying out of some soils. Jarosite mottles and halos, and rare pyrite and gypsum found in some distal paleosols implies a marine influence at the distal margins of the coastal plain. Biota including Peridinioid dinocysts, brackish and freshwater

  10. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  11. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  12. Amphibian, reptilian, and avian remains from the Fox Hills Formation (Maastrichtian): Shoreline and estuarine deposits of the Pierre Sea in south-central North Dakota

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.; Holland, F.D., Jr.

    2007-01-01

    Although vertebrate fossils, except for fish, are not common in the Maastrichtian Fox Hills Formation, amphibian, reptilian, and avian remains have been recovered at several localities in south-central North Dakota from shoreline facies of the retreating Pierre-Fox Hills seaway. This mixed fauna of aquatic, terrestrial, and marine taxa provides insight into the composition of coastal communities and habitats at the interface between the Hell Creek delta and the Western Interior Seaway. The delta-platform aquatic paleocommunity is represented by the efficient swimming salamanders Opistho- trition kayi and Lisserpeton bairdi, the carnivorous soft-shelled turtle "Aspideretes" sensu lato, the underwater piscivorous predator Champsosaurus laramiensis, and the large, predatory crocodile IBorealosuchus. Terrestrial areas were inhabited by the tortoise-like Basilemys and the predatory dinosaurs Tyrannosaurus and cf. Saurornit- holestes. Birds occupied niches in the warm-temperate to subtropical, forested delta platform and shoreline areas. These nonmarine taxa in the Fox Hills Formation indicate that the geographic range of these animals extended to shoreline areas of the Western Interior Seaway. The toxochelyid turtle Lophochelys and the ambush predators Mosasaurus dekayi and IPlioplatecarpus resided in the shallow marine and estuarine habitats. These taxa and marine fish taxa reported earlier indicate that normal marine conditions in south- central North Dakota persisted into the latest Late Cretaceous in comparison with coeval Hell Creek Formation sites more distal from the Western Interior Seaway. ?? 2007 The Geological Society of America. All rights reserved.

  13. Absolute paleobathymetry of Upper Cretaceous chalks based on ostracodes - Evidence from the Demopolis Chalk (Campanian and Maastrichtian) of the northern Gulf Coastal Plain

    SciTech Connect

    Puckett, T.M. )

    1991-05-01

    The presence of abundant and diverse sighted ostracodes in chalk and marl of the Demopolis Chalk (Campanian and Maastrichtian) in Alabama and Mississippi strongly suggests that the Late Cretaceous sea floor was within the photic zone. The maximum depth of deposition is calculated from an equation based on eye morphology and efficiency and estimates of the vertical light attenuation. In this equation, K, the vertical light attenuation coefficient, is the most critical variable because it is the divisor for the rest of the equation. Rates of accumulation of coccoliths during the Cretaceous are estimated and are on the same order as those in modern areas of high phytoplankton production, suggesting similar pigment and coccolith concentrations in the water column. Values of K are known for a wide range of water masses and pigment concentrations, including areas of high phytoplankton production; thus light attenuation through the Cretaceous seas can be estimated reliably. Waters in which attenuation is due only to biogenic matter-conditions that result in deposition of relatively pure chalk-have values of K ranging between 0.2 and 0.3. Waters rich in phytoplankton and mud-conditions that result in deposition of marl-have K values as great as 0.5. Substituting these values for K results in depth range of 65 to 90 m for deposition of chalk and depth of 35 m for deposition of marl. These depth values suggest that deposition of many Cretaceous chalks and marls around the world were deposited under relatively shallow conditions.

  14. Hemipelagic cephalopods from the Maastrichtian (late Cretaceous) Parras Basin at La Parra, Coahuila, Mexico, and their implications for the correlation of the lower Difunta Group

    NASA Astrophysics Data System (ADS)

    Ifrim, Christina; Stinnesbeck, Wolfgang; Garza, Rufino Rodríguez; Ventura, José Flores

    2010-04-01

    Few biostratigraphic data exist from the Parras and La Popa basins, mainly due to the absence of index fossils. This paper describes 19 ammonoid species from 15 genera and 1 nautilid from La Parra, southeastern Coahuila, Mexico. The assemblage consists of Tethyan [( Baculites ovatus, Brahmaites ( Anabrahmaites) vishnu, Fresvillia constricta, Hauericeras rembda, Pachydiscus ( P.) ex gr. neubergicus, Solenoceras reesidei, Tetragonites cf. superstes], cosmopolitan ( Anagaudryceras politissimum, Desmophyllites diphylloides, Diplomoceras cylindraceum, Gaudryceras kayei, Phyllopachyceras forbesianum, Pseudophyllites indra), and cold water taxa [ Fresvillia teres, Hypophylloceras ( Neophylloceras) surya, H. ( N.) hetonaiense, Pachydiscus ( P.) cf. egertoni]. Eutrephoceras sp. and Menuites juv. sp. were not determined to species level. A similar assemblage was recently described from the coeval Méndez Formation at Cerralvo, Nuevo León. Species endemic to North America, particularly the Western Interior Seaway, are absent at La Parra. The ammonoid assemblage and associated planktonic foraminifers allow for precise biostratigraphic assignation to the early Maastrichtian planktonic foraminiferal zone CF 5, and thus provide an important marker level for correlation of the lower Difunta Group. The new biostratigraphic data presented herein allow for the first time precise dating of the Cañon del Tule Formation of the Difunta Group. Their combination with existing sequence- and magnetostratigraphic data improve the correlation of the lower Difunta Group with time-equivalent lithostratigraphic units such as the Cárdenas Formation in Mexico. They also provide new insight into ammonoid migration patterns induced by sea-level changes. Baculites ovatus migrated into the La Popa Basin as a result of the sea-level highstand documented at La Parra.

  15. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  16. Did tropical rainforest vegetation exist during the Late Cretaceous? New data from the late Campanian to early Maastrichtian Olmos Formation, Coahuila, Mexico.

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Estrada-Ruiz, E.; Cevallos-Ferriz, S. S.

    2008-12-01

    A major problem in paleobotany and paleoclimatology is the origin of modern tropical and paratropical rainforests. Studies of leaf macrofossils, beginning with those of Wolfe and Upchurch, have suggested that tropical and paratropical (i.e., megathermal) rainforests with dominant angiosperms are of Cenozoic origin, and that comparable vegetation was either absent or greatly restricted during the Late Cretaceous. Earth System modeling studies, in contrast, predict the existence of megathermal rainforest vegetation during the mid- and Late Cretaceous, though with less areal extent than during the Late Cenozoic and Recent. Megathermal climate with year-round precipitation is simulated along the paleoequator and along the northern margin of the Tethys Ocean, and tends to occur in highly focused regions, in contrast to the more latitudinally zoned pattern of the Recent. Low-resolution climatic indicators, such as the distribution of coals and tree fern spores, are consistent with evidence from climate modeling for megathermal wet climates during the Late Cretaceous, and by extension megathermal rainforest vegetation. However, corroborative data from plant macrofossil assemblages is needed, because the physiognomy of leaves and woods directly reflects plant adaptation to the environment and can estimate climate independently of the generic and familial affinities of the paleoflora. Newly collected plant macrofossil assemblages from the late Campian to early Maastrichtian Olmos Formation of Coahuila, Mexico, provide evidence for megathermal rainforest vegetation on the northern margin of the Tethys Ocean at approximately 35 degrees paleolatitude. The newly collected leaf flora is 72 percent entire- margined and has abundant palms, features typical of modern megathermal rainforests. Thirty percent of the species have large leaves, and 50 percent of the species have drip tips, features indicative of wet conditions. Simple and multiple regression functions based on the

  17. Stable isotope (C and N) and sedimentary facies analyses of the Cantwell Formation, Denali National Park, Alaska as indicators of Maastrichtian paleoenvironment

    NASA Astrophysics Data System (ADS)

    Salazar Jaramillo, S.; Fowell, S. J.; Wooller, M. J.; Mccarthy, P. J.; Benowitz, J.

    2012-12-01

    Sedimentary facies and stable isotope analyses of Lower Cantwell Formation outcrops on the East Fork of the Toklat River in Denali National Park, Alaska, reveal a correlation between positive δ13C excursions and carbonaceous facies. 238U/206Pb zircon dating of a bentonite layer from our measured sections yields a crystallization age of 69.5 ± 0.69 Ma, indicating that dinosaur tracks identified in this part of the Cantwell Formation are of early Maastrichtian age. This date establishes the coeval nature of dinosaur bones from the Prince Creek Formation on Alaska's North Slope, allows reconstruction of Late Cretaceous climate gradients, and brackets the age of the Lower Cantwell-Upper Cantwell unconformity (~69 Ma to ~60 Ma) linked to the final docking of the Wrangell Composite Terrane. The Late Cretaceous Cantwell Formation is composed of nonmarine sandstone, siltstone, shale, carbonaceous mudstone and, locally, weakly developed paleosols. Facies associations are interpreted as levees, crevasse channels, crevasse splays, and floodplains, which were part of an anastomosed river system. δ13C, δ15N, C/N and TOC values of bulk organic matter were measured in order to reconstruct the local paleoenvironment and facilitate chemostratigraphic correlation with dinosaur-bearing strata on Alaska's North Slope. C/N ratios fall between 5 and 33, indicating that the organic matter is likely comprised of terrestrial plants and lacustrine algae. Throughout the 123 m section, δ13C values of bulk organic matter from sandstone, siltstone, and shale range between -27.1 and -24.9‰. Wood fragments and bulk organic samples from carbonaceous mudstone have higher TOC values and more positive δ13C values, ranging from -24.1 to -22.4‰. Positive δ13C excursions could reflect one or a combination of: 1) changes in composition of the vegetation (e.g., conifers vs. more mixed organic matter); 2) changes in sources of organic material (lacustrine vs. terrestrial); 3) changes in past

  18. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  19. Preliminary orbital parallax catalog

    NASA Technical Reports Server (NTRS)

    Halliwell, M.

    1981-01-01

    The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.

  20. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  1. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  2. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  3. Orbital Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Kehoe, T. J. J.

    2011-10-01

    The synthetic orbital frequencies and eccentricities of main belt asteroids computed by Knezevic and Milani [2] show evidence that the structure of the asteroid belt has been determined by a dense of web of high-order resonances. By examining the orbital frequency distribution at high resolution, we discover a correlation between asteroid number density, mean orbital eccentricity and Lyapunov Characteristic Exponent. In particular, the orbital eccentricities of asteroids trapped in resonance tend to be higher than those of non-resonant asteroids and we argue that this is observational evidence for orbital evolution due to chaotic diffusion.

  4. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  5. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  6. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  7. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  8. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  9. Early diagenetic stabilization of trace elements in reptile bone remains as an indicator of Maastrichtian Late Paleocene climatic changes: evidence from the Naran Bulak locality, the Gobi Desert (South Mongolia)

    NASA Astrophysics Data System (ADS)

    Samoilov, V. S.; Benjamini, Ch.; Smirnova, E. V.

    2001-08-01

    Maastrichtian dinosaur bone remains from the Naran Bulak locality (the Gobi Desert) with well-preserved bone textural features are enriched in some trace elements, primarily in REE. These features of vertebrate fossils were formed during diagenesis following rapid burial in mudflow sediments, and prior to postfossilization epigenetic changes. Trace elements are mainly concentrated in diagenetic apatite. Their contents in the bones correlate with that in their enclosing sediments for both maxima and minima. Fossil and sediment compositions were established under the influence of paleoclimate. They are correlated with long-term climatic changes with the aridity maximum at the K/T boundary. Climatic changes were recorded via the change of salinity of waters interacting with the buried vertebrate remains.

  10. Revised Stratigraphy of The Nallıhan-Dudaş (Beypazarı) Area and Significance of the Campanian-Maastrichtian Reef Occurrences Based on the Foraminiferal and Rudist Data

    NASA Astrophysics Data System (ADS)

    Görmüş, Muhittin; Sami Us, Muhammed; Özer, Sacit; Tekin, Erdoǧan; Akpınar, Serap; Kabakcı, Büşra

    2016-04-01

    Transgressive to regressive succession of the Cretaceous Period and Cretaceous Paleogene boundary from the Nallıhan-Beypazarı area have significant data to interpret the past geological history of northwestern Turkey. In the literature, main scientific differences are seen on the formation/lithodem names, their ages, contact relations and environmental interpretations. In the study, a revision has been made for a proper stratigraphy of the area. For the revised stratigraphy, the obtained results from our field and laboratory works and the literature information were used. The following stratigraphy were established from basement to top: the Permo-Triassic aged Sekli metamorphics, Jurassic to lower Cretaceous Soǧukçam formation, Campanian to Maastrichtian aged Dereköy Group-Haremiköy conglomerates, Çeǧiköy reefs, Nardin formation (Seben formation), Taraklı formation; the Paleogene aged Kızılçay group including Kızılbayır formation, Karaköy volcanoclastics, Selvipınar limestone, the Miocene-Pliocene terrestrial sediments, Çoraklar formation, Hırka formation, Akpınar formation, Çayırhan formation, Teke volkanics, Bozbelen formation, Kirmir formation. The main unconformities are between Jura and Campanian, Maastrichtian and Paleogene, Eocene and Miocene times. Among the geological units, the Çeǧiköy reefs having rich rudist fauna overlie the Haremiköy conglomerates in both sides at the north-Yeşilyurt village and at the south-Gökçeöz village. Another outcrop, Emincik is between two mentioned villages. Biohermal reefs mainly includes very rich rudists up to 40 centimetres in size around the Yeşilköy such as: Pironaea polystyla, Vaccinites loftusi, Hippurites sublaevis. Larger foraminifera Orbitoides medius, O. apiculatus, Siderolites calcitrapoides, Pseodosiderolites vidali are also common in the fore reef areas. Around the Gökçeöz at the south part, the identified rudists are as follows: Vaccinites sp., Hippurites aff. sublaevis

  11. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  12. Marned Orbital Systems Concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.

  13. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  14. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  15. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  16. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  17. Orbital physics in RIXS

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Krzysztof; Marra, Pasquale; Grueninger, Markus; Schmitt, Thorsten; van den Brink, Jeroen

    2013-03-01

    In contrast to magnetism, phenomena associated with the orbital degrees of freedom in transition metal oxides had always been considered to be very difficult to observe. However, recently resonant inelastic x-ray scattering (RIXS) has established itself as a perfect probe of the orbital excitations and orbital order in transition metal oxides. Here we give a brief overview of these recent theoretical and experimental advances which have inter alia led to the observation of the separation of the spin and orbital degree of freedom of an electron.

  18. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  19. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  20. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  1. Orbital preservation in maxillectomy.

    PubMed

    Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P

    1993-07-01

    Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956

  2. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  3. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  4. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  5. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  6. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  7. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  8. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  9. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  10. Working in orbit and beyond

    SciTech Connect

    Lorr, D.B. ); Garshnek, V. ); Cadoux, C. )

    1989-01-01

    This book contains papers presented at a conference on the challenges for space medicine. Topics covered include radiation hazards in low earth orbit, polar orbit, geosynchronous orbit, and deep space.

  11. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  12. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  13. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  14. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  15. Space Shuttle Orbiter ECLSS.

    NASA Technical Reports Server (NTRS)

    Stoll, O. T.; Laubach, G. E.; Gibb, J. W.

    1973-01-01

    The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.

  16. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  17. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  18. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  19. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  20. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  1. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  2. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  3. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  4. The Exoplanet Orbit Database

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2011-04-01

    We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.

  5. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  6. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  8. The orbits in cancer imaging

    PubMed Central

    Chong, V F H

    2006-01-01

    Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076

  9. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  10. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  11. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  12. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  13. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  14. Spin-Orbit Caloritronics

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien; Ndiaye, Papa Birame; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2014-03-01

    Utilizing spin-orbit coupling to enable the electrical manipulation of ferromagnets has recently attracted a considerable amount of interest. This spin-orbit torque appears in magnetic systems displaying inversion symmetry breaking. Another adjacent emerging topic, spin caloritronics, aims at exploiting magnonic spin currents driven by temperature gradients, allowing for the transmission of information and the control of magnetic domain walls. In this work, we demonstrate that a magnon flow generates torques on the local magnetization when subjected to Dzyaloshinskii-Moriya interaction (DMI) just as an electron flow generates torques when submitted to Rashba interaction. A direct consequence is the capability to control the magnetization direction of a homogeneous ferromagnet by applying a temperature gradient or local RF excitations. Merging the spin-orbit torques with spin caloritronics is rendered possible by the emergence of DMI in magnetic materials and opens promising avenues in the development of chargeless information technology.

  15. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  16. Orbital Superstructures in Spinels

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2006-03-01

    Orbital degrees of freedom often lead to specific types of orbital and spin ordering. Complicated and interesting superstructures are observed in B-sublattice of spinels. This is connected with the geometric frustration of this lattice and with the interconnection of edge-sharing MO6 octahedra, which is especially important for transition metals with partially-filled t2g levels. In some such systems (MgTi2O4, CuIr2S4, AlV2O4) there appears strange superstructures with the formation of spin gap states. In other cases (ZnV2O4) structural transitions, apparently connected with orbital ordering, are followed by long-range magnetic ordering. Last but not least, the famous Verwey transition in magnetite Fe3O4 leads to a very complicated structural pattern, accompanied by the appearance of ferroelectricity. In this talk I will discuss all these examples, paying main attention to an interplay of charge, spin and orbital degrees of freedom. In particular, for MgTi2O4, and CuIr2S4 we proposed the picture of orbitally-driven Peierls state [1]. Similar phenomenon can also explain situation in ZnV2O4 [2], although the corresponding superstructure has not yet been observed experimentally. Finally, I propose the model of charge and orbital ordering in magnetite [3], which uses the idea of an interplay of site- and bond-centered ordering [4] and which seems to explain both the structural data and the presence of ferroelectricity in Fe3O4 below Verwey transition. [1] D.I.Khomskii and T.Mizokawa, Phys.Rev.Lett. 94, 156402 (2005); [2] Hua Wu, T.Mizokawa and D.I.Khomskii, unpublished; [3] D.I.Khomskii, unpublished; [4] D.V.Efremov, J.van den Brink and D.I.Khomskii, Nature Mater. 3, 853 (2004)

  17. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  18. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  19. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  20. Orbital correlation of space objects based on orbital elements

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan

    2016-03-01

    Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.

  1. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  2. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  3. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  4. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  5. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  6. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  7. Kaguya Orbit Determination from JPL

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.

    2008-01-01

    Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.

  8. Single Frequency GPS Orbit Determination for Low Earth Orbiters

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Wu, Sien-Chong

    1996-01-01

    A number of missions in the future are planning to use GPS for precision orbit determination. Cost considerations and receiver availability make single frequency GPS receivers attractive if the orbit accuracy requirements can be met.

  9. Orbital hemorrhage and eyelid ecchymosis in acute orbital myositis.

    PubMed

    Reifler, D M; Leder, D; Rexford, T

    1989-02-15

    We examined two patients with acute orbital myositis associated with orbital hemorrhage and eyelid ecchymosis. Both patients were young women (aged 22 and 30 years) who had painful proptosis, diplopia, and computed tomographic evidence of single extraocular muscle involvement with spillover of inflammatory edema into the adjacent orbital fat. Patient 1 showed contralateral preseptal eyelid inflammation and did not suffer an orbital hemorrhage until after an episode of vomiting. In Patient 2, the diagnosis of occult orbital varix was initially considered but an orbital exploration and a biopsy specimen showed no vascular anomaly. Both patients were treated successfully with high-dose systemic corticosteroids. Some cases of idiopathic orbital inflammation may be related to preexisting vascular anomalies or orbital phlebitis. PMID:2913803

  10. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  11. Unusual sclerosing orbital pseudotumor infiltrating orbits and maxillofacial regions.

    PubMed

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  12. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    PubMed Central

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  13. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  14. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  16. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  17. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  18. Management of complex orbital fractures.

    PubMed

    Bhatti, N; Kanzaria, A; Huxham-Owen, N; Bridle, C; Holmes, S

    2016-09-01

    The treatment of orbital injuries has evolved considerably over the last two decades. We describe strategies involved in the emergency management of orbital injuries, the use of imaging, preformed and customised materials for reconstruction, and endoscopic techniques. PMID:27268464

  19. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

  20. Orbiter based construction equipment

    NASA Technical Reports Server (NTRS)

    Goodwin, C. J.

    1982-01-01

    Many orbiter based activities need equipment to hold a payload steady while it is being worked on. This work may be construction, updating, repair, services, check out, or refueling operations in preparation for return to Earth. The Handling and Positioning Aid (HPA) is intended for use as general purpose equipment. The HPA provides a wide choice of work station positions, both immediately above the orbiter cargo bay and beyond. It can act in a primary docking role and, if required, can assist actively in the berthing process. From an analysis of ten reference missions, it was determined that two types of HPA mobility are needed; a tilt table, which simply swings out of the cargo bay, pivoting about an athwartships y axis, and an articulated arm. Illustration of the aid are provided.

  1. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  2. On-orbit coldwelding

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1991-01-01

    Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.

  3. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite

    NASA Astrophysics Data System (ADS)

    Soliman, Mamdouh F.; El Goresy, Ahmed

    2012-08-01

    The upper Maastrichtian organic-rich sediments studied at Gabal Oweina, Egypt, are moderately enriched in syngenetic and diagenetic pyrite. Pyrite occurs mostly as layers or bands, group of lamina, lenses, diagenetic intercalated pockets, burrow fills and disseminated individual pyrite framboids and crystals within the host sediments. The pyritic thin bands and lamina consist mostly of unconsolidated to compact-oriented pyrite (oriented along the bedding planes) in gypsiferous-clayey matrix and less common as poorly oriented pyrite crystallites. In several cases, pyrite crystals of the latter type depict zoning, fracturing and micro-concretions. Pyritic burrow fills are composed mainly of pyrite, phosphatic ooids, microfossils, glauconitic grains, poorly graphitized carbon and native sulfur. Pyrite replaces minerals other than gypsum, sulfur or carbon. It also replaces microfossils thus turning some of the phosphatic ooids and microfossils to pyritized pseudomorphs. None of the studied phosphate ooids or framboids contains any mackinawite, pyrrhotite or greigite. Based on the microscopic and SEM observations of the micro-textures of disseminated pyrite found at Gabal Oweina section, four morphological forms of primary pyrite could be identified: (1) Grouped multiple-framboids; (2) Individual framboids; (3) Pyrite idiomorphic crystal overgrowths on framboids and (4) Single and aggregates of euhedral pyrite crystals. The multiple-framboid formation may have emerged from three successive processes: nucleation and growth of individual aggregates of the microcrystals to form combined micro-framboids (the growth of framboids); and followed by grouping of the several pyrite framboids. Direct pyrite nucleation (shell formation), crystallization, and aggregation processes might complete a single framboid. The disseminated single and aggregated euhedral pyrite crystals bear evidence indicating that their formation was via nucleation and growth of pyrite crystallites and

  4. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  5. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  6. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  7. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  8. [Echinococcosis of the orbit].

    PubMed

    Staindl, O; Krenkel, C

    1985-09-01

    A 5 year old girl with an echinococcuscyst in the right orbit is reported. The final diagnosis was made by removal of the cyst. A second cyst was found in the liver. The epidemiology, clinical and diagnostic problems of echinococcosis are reviewed. Radical surgery is still the only reliable treatment. For inoperable cases chemotherapy with Mebendazol seems promising. Many problems of chemotherapy remain to be solved and Mebendazol therapy is still in an experimental stage. PMID:4077595

  9. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  10. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  11. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  12. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  13. Orbiter OMS and RCS technology

    NASA Technical Reports Server (NTRS)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  14. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  15. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  16. Earth Co-orbital Objects

    NASA Astrophysics Data System (ADS)

    Wiegert, P.; Connors, M.; Chodas, P.; Veillet, C.; Mikkola, S.; Innanen, K.

    2002-12-01

    The recent discovery of asteroid 2002 AA29 by the LINEAR survey and the realization of its co-orbital relationship with Earth lead us to consider the characteristics of Earth Co-orbital Objects (ECOs) in general. An object with semimajor axis between 0.99 and 1.01 AU is in 1:1 resonance with the Earth. To be co-orbital in the sense of moving along the Earth's orbit, an object must further have its other orbital parameters similar to those of the Earth. Clarification is needed as to what range of orbital parameters can be regarded as similar enough to permit classification as an ECO. ECOs would be expected to librate on tadpole or horseshoe orbits, be relatively easy to access with spacecraft, and to sometimes exhibit quasisatellite behavior. 2002 AA29 is on a horseshoe orbit and was discovered in a general asteroid survey while near Earth at one end of the horseshoe orbit. Searches for Earth Trojan asteroids, which would be members of the ECO class on tadpole orbits near a triangular Lagrange Point, have not yet been successful. While 2002 AA29 has an orbit even less eccentric than Earth's, it has an inclination of about 10 degrees. 2000 PH5 and 2001 GO2 are on horseshoe orbits and interact gravitationally with Earth to 'bounce' when they approach the Earth from either side. With eccentricities of .23 and .17 respectively, they do not have decidedly Earth-like orbits despite inclinations less that 5 degrees. When in quasi-satellite mode, a body exhibits a looping motion relative to Earth in some ways resembling a satellite orbit. Several resonant bodies including 3753 Cruithne exhibit this behavior at times, but ECOs remain close to Earth while doing it. We suggest that directed searches be used to discover ECOs and characterize this class of objects. Orbital simulations suggest the best target spaces, which are only partially covered by present general searches.

  17. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  18. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  19. Lunar Prospector Orbit Determination Results

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Concha, Marco

    1998-01-01

    The orbit support for Lunar Prospector (LP) consists of three main areas: (1) cislunar orbit determination, (2) rapid maneuver assessment using Doppler residuals, and (3) routine mapping orbit determination. The cislunar phase consisted of two trajectory correction maneuvers during the translunar cruise followed by three lunar orbit insertion burns. This paper will detail the cislunar orbit determination accuracy and the real-time assessment of the cislunar trajectory correction and lunar orbit insertion maneuvers. The non-spherical gravity model of the Moon is the primary influence on the mapping orbit determination accuracy. During the first two months of the mission, the GLGM-2 lunar potential model was used. After one month in the mapping orbit, a new potential model was developed that incorporated LP Doppler data. This paper will compare and contrast the mapping orbit determination accuracy using these two models. LP orbit support also includes a new enhancement - a web page to disseminate all definitive and predictive trajectory and mission planning information. The web site provides definitive mapping orbit ephemerides including moon latitude and longitude, and four week predictive products including: ephemeris, moon latitude/longitude, earth shadow, moon shadow, and ground station view periods. This paper will discuss the specifics of this web site.

  20. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  1. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  2. Mars orbits with daily repeating ground traces

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Kerridge, Stuart; Diehl, Roger; neelon, Joseph; Ely, Todd; Turner, Andrew

    2003-01-01

    This paper derives orbits at Mars with ground traces that repeat at the same times every solar day (sol). A relay orbiter in such an orbit would pass over insitu probes at the same times every sol, ensuring consistent coverage and simplifying mission design and operations. 42 orbits in five classes are characteried: 14 cicular equatorial prograde orbits; 14 circular equatorial retrograde orbits; 11 circular sun synchrounous orbits; 2 eccentroc equatorial orbits; 1 eccentric critcally inclined orbit. the paper reports on the performance of a relay orbiter in some of the orbits.

  3. [Ganglioneuroblastoma of the orbit].

    PubMed

    Dhermy, P; Sekkat, A; Moussaoui, M; Bellakhdar, N; Haye, C; Charlot, J C

    1985-01-01

    Ganglioneuroblastoma a transitional tumor of sympathetic origin has not yet been described as involving orbit. It is characterized by a mixture of cells ranging from primitive neuroblast to well differentiated ganglion cells within a neurofibromatous tissue. The prognosis is uncertain, as the tumor may either undergo maturation into a ganglioneuroma or may metastasize widely and rapidly as in neuroblastoma. We may postulate a relationship between ganglioneuroblastoma and Recklinghausen's neurofibromatosis in view of the development of the tumor in conjunction with the phacomatosis. PMID:3924990

  4. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  5. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  6. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  7. Orbiter-orbiter and orbiter-lander tracking using same-beam interferometry

    NASA Astrophysics Data System (ADS)

    Folkner, W. M.; Border, J. S.

    Two spacecraft orbiting Mars may be tracked simultaneously by a single earth-based antenna. Same-beam interferometric techniques, using two widely separated antennas, produce a spacecraft-spacecraft measurement in the plane of the sky, complementary to the line-of-sight Doppler information. This paper presents an overview of the same-beam interferometric measurement technique, a measurement error analysis, and examples of the application of same-beam interferometry to orbit determination. For the case of Mars Observer and the Soviet Mars '94 mission, orbit determination improvement up to an order of magnitude is found. Relative tracking between a Mars orbiter and a lander fixed on the surface of Mars is also studied. The lander location may be determined to a few meters, while the orbiter ephemeris may be determined with accuracy similar to the orbiter-orbiter case.

  8. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  9. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  10. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  12. Orbit selection for a Mars geoscience/climatology orbiter

    NASA Technical Reports Server (NTRS)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  13. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  14. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  15. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  16. 'Columbia Hills' from Orbit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This view of the 'Columbia Hills' in Gusev Crater was made by draping an image from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter (image E0300012 from that camera) over a digital elevation model that was derived from two Mars Orbiter Camera images (E0300012 and R0200357).

    This unique view is helpful to the rover team members as they plan the journey of NASA's Mars Exploration Rover Spirit to the base of the Columbia Hills and beyond. Spirit successfully completed a three-month primary mission, and so far remains healthy in an extended mission of bonus exploration. As of sol 135 (on May 21, 2004), Spirit sits approximately 680 meters (0.4 miles) away from its first target at the western base of the hills, a spot informally called 'West Spur.' The team estimates that Spirit will reach West Spur by sol 146 (June 1, 2004). Spirit will most likely remain there for about a week to study the outcrops and rocks associated with this location.

    When done there, Spirit will head approximately 620 meters (0.38 miles) to a higher-elevation location informally called 'Lookout Point.' Spirit might reach Lookout Point by around sol 165 (June 20, 2004). On the way, the rover will pass by and study ripple-shaped wind deposits that may reveal more information about wind processes on Mars.

    Lookout Point will provide a great vantage point for scientists to remotely study the inner basin area of the Columbia Hills. This basin contains a broad range of interesting geological targets including the informally named 'Home Plate' and other possible layered outcrops. These features suggest that the hills contain rock layers. Spirit might investigate the layers to determine whether they are water-deposited sedimentary rock.

    Once at Lookout Point, Spirit will acquire 360-degree panoramic images of the entire area to help define the rover's next steps. Assuming the rover stays healthy, Spirit will eventually drive down into the basin to get an up

  17. Real and hybrid atomic orbitals

    NASA Astrophysics Data System (ADS)

    Cook, D. B.; Fowler, P. W.

    1981-09-01

    It is shown that the Schrödinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. Thus the real and hybrid atomic orbitals have as sound a pedigree as the more familiar complex orbitals based on the separation of the Schrödinger equation in spherical polar coordinates.

  18. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  19. Orbital molecules in electronic materials

    SciTech Connect

    Attfield, J. Paul

    2015-04-01

    Orbital molecules are made up of coupled orbital states on several metal ions within an orbitally ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers are known in many materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV{sub 2}O{sub 4} and magnetic 3-atom trimerons in magnetite (Fe{sub 3}O{sub 4}) have shown that orbital molecules constitute a general new class of quantum electronic states in solids.

  20. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  1. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  2. Orbital science's 'Bermuda Triangle'

    NASA Astrophysics Data System (ADS)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  3. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  4. Exploratory orbit analysis

    SciTech Connect

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  5. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  6. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  7. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  8. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  9. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  10. PyORBIT: A Python Shell For ORBIT

    SciTech Connect

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  11. Lageos orbit and solar eclipses

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1984-01-01

    The objective was to assess the importance of solar eclipses on Lageos' orbit. Solar radiation pressure perturbs the orbit of the Lageos satellite. The GEODYN orbit determination computer program includes solar radiation pressure as one of the forces operating on the satellite as it integrates the orbit. GEODYN also takes into account the extinction of sunlight when Lageos moves into the Earth's shadow. The effect of solar eclipses on the semimajor axis of Lageos' orbit was computed analytically by assuming Lageos to be in a circular orbit, the Sun and the Moon to be in the plane of the orbit, and the Moon to be stationary in the sky in front of the Sun. Also, the magnitude of the radiation pressure is assumed to be linearly related to the angular separation of the Sun and Moon, and that Lageos is a perfect absorber of radiation. The computation indicates that an eclipse of the Sun by the Moon as seen by Lageos can affect the semimajor axis at the 1 centimeter (1 cm) level. Such a change is significant enough to include in GEODYN, in order to get an accurate orbit for Lageos.

  12. What is a MISR orbit?

    Atmospheric Science Data Center

    2014-12-08

    ... The Terra platform that carries MISR and other scientific instruments flies at an altitude of 705 km above sea level on a ... day. In the context of MISR data exploitation, each complete revolution is called an orbit, and orbits are consecutively numbered from ...

  13. Endoscopic treatment of orbital tumors

    PubMed Central

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato

    2015-01-01

    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular muscles, with subsequent impact on extraocular mobility. Recently, minimally invasive techniques have been proposed as valid alternative to external approaches for selected orbital lesions. Among them, transnasal endoscopic approaches, “pure” or combined with external approaches, have been reported, especially for intraconal lesions located inferiorly and medially to the optic nerve. The avoidance of muscle detachment and the shortness of the surgical intraorbital trajectory makes endoscopic approach less invasive, thus minimizing tissue damage. Endoscopic surgery decreases the recovery time and improves the cosmetic outcome not requiring skin incisions. The purpose of this study is to review and discuss the current surgical techniques for orbital tumors removal, focusing on endoscopic approaches to the orbit and outlining the key anatomic principles to follow for safe tumor resection. PMID:25789299

  14. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  15. Satellite services and orbital retrieval

    NASA Technical Reports Server (NTRS)

    Adornato, R. J.

    1985-01-01

    Within the capabilities of the Space Shuttle Orbiter, a broad range of services which can be made available to the satellite user community as summarized. Payload deployment, close proximity retrieval, and a number of other mission related functions are discussed. The focus here is on close proximity retrieval and retrieval of payloads in higher energy low Earth orbits.

  16. General relativity and satellite orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.

  17. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690

  18. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  19. Orbital element distributions in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Serafin, R. A.

    Orbital-element distributions are studied for comets moving on admissible orbits in the Oort cloud and for some functions that depend on the orbital elements. Also found is the probability that an arbitrarily chosen admissible orbit belongs to the set of orbital elements and the distribution of circular velocities in the cloud.

  20. [Wooden spike orbital injury].

    PubMed

    Kiel, R; Wiaux, C; Atipo-Tsiba, P W; Gottrau, P de

    2005-03-01

    A 71-year-old female patient fell in her garden, inducing a skin wound on the temporal left eyebrow. Skin disinfection and wound closure were performed elsewhere, an X-ray image did not reveal a foreign body. She was referred to our service three days later with a progressive left periorbital swelling. Clinical inspection demonstrated a painfully, fluctuant swelling around the wound with an inflammatory pseudoptosis of the left eye. Vision was reduced on the left eye; anterior and posterior segments of both eyes were unharmed. After opening the wound sutures a purulent liquid was drained and a wooden fragment was found, measuring 22 x 0.5 mm. Because of restriction of abduction of the left eye, magnetic resonance imaging (MRI) was performed, detecting another organic intraorbital foreign body and a fracture of the left medial orbital wall. Anterior orbitotomy was performed and a wooden fragment was removed, measuring 47 x 0.6 mm. Under administration of intravenous antibiotics vision and ocular motility recovered uneventfully. This case emphasizes the value of MRI in the diagnostics of retained wooden foreign bodies as well as the importance of a soigneuse inspection of skin wounds with a high risk for remaining foreign bodies. PMID:15785993

  1. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  2. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  3. Precision Orbit Determination for the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; McGarry, J. F.; Neumann, G. A.; Mao, D.; Smith, D. E.; Zuber, M. T.

    2010-05-01

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on June 18, 2009. In mid-September 2009, the spacecraft orbit was changed from its commissioning orbit (30 x 216 km polar) to a quasi-frozen polar orbit with an average altitude of 50km (+-15km). One of the goals of the LRO mission is to develop a new lunar reference frame to facilitate future exploration. Precision Orbit Determination is used to achieve the accuracy requirements, and to precisely geolocate the high-resolution datasets obtained by the LRO instruments. In addition to the tracking data most commonly used to determine spacecraft orbits in planetary missions (radiometric Range and Doppler), LRO benefits from two other types of orbital constraints, both enabled by the Lunar Orbiter Laser Altimeter (LOLA) instrument. The altimetric data collected as the instrument's primary purpose can be used to derive constraints on the orbit geometry at the times of laser groundtrack intersections (crossovers). The multi-beam configuration and high firing-rate of LOLA further improves the strength of these crossovers, compared to what was possible with the MOLA instrument onboard Mars Global Surveyor (MGS). Furthermore, one-way laser ranges (LR) between Earth International Laser Ranging Service (ILRS) stations and the spacecraft are made possible by the addition of a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. Thanks to the accuracy of the LOLA timing system, the precision of 5-s LR normal points is below 10cm. We present the first results of the Precision Orbit Determination (POD) of LRO through the commissioning and nominal phases of the mission. Orbit quality is discussed, and various gravity fields are evaluated with the new (independent) LRO radio tracking data. The altimetric crossovers are used as an independent data type to evaluate the quality of the orbits. The contribution of the LR

  4. Solid Propulsion De-Orbiting and Re-Orbiting

    NASA Astrophysics Data System (ADS)

    Schonenborg, R. A. C.; Schoyer, H. F. R.

    2009-03-01

    With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.

  5. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events. PMID:27134437

  6. Synergy Between probes and Orbiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    There are many ways in which the science return from a planetary mission is considerably enhanced by interactions between entry probes and a mission orbiter. Mission configuration aspects that are desirable include delivery of entry probes by the orbiter, and communication between probe and orbiter. Both of these mission aspects could greatly enhance access to key scientific sites that might not otherwise be accessible using delivery from say, a flyby, or employing direct communication from probes to Earth. Examples for Venus and Jupiter will be discussed. A second class of orbiter-probe interaction could better be termed direct probe-orbiter science collaboration. That would include, determining the global context of the entry probe sites from the orbiter, obtaining ground truth from the probe for remote sensing observations from the orbiter, observing the global and vertical distribution of key atmospheric trace species, and measuring the global and vertical distribution of clouds and winds. The importance of each of these items will be illustrated by particular examples.

  7. Lifetimes of lunar satellite orbits

    NASA Technical Reports Server (NTRS)

    Meyer, Kurt W.; Buglia, James J.; Desai, Prasun N.

    1994-01-01

    The Space Exploration Initiative has generated a renewed interest in lunar mission planning. The lunar missions currently under study, unlike the Apollo missions, involve long stay times. Several lunar gravity models have been formulated, but mission planners do not have enough confidence in the proposed models to conduct detailed studies of missions with long stay times. In this report, a particular lunar gravitational model, the Ferrari 5 x 5 model, was chosen to determine the lifetimes for 100-km and 300-km perilune altitude, near-circular parking orbits. The need to analyze orbital lifetimes for a large number of initial orbital parameters was the motivation for the formulation of a simplified gravitational model from the original model. Using this model, orbital lifetimes were found to be heavily dependent on the initial conditions of the nearly circular orbits, particularly the initial inclination and argument of perilune. This selected model yielded lifetime predictions of less than 40 days for some orbits, and other orbits had lifetimes exceeding a year. Although inconsistencies and limitations are inherent in all existing lunar gravity models, primarily because of a lack of information about the far side of the moon, the methods presented in this analysis are suitable for incorporating the moon's nonspherical gravitational effects on the preliminary design level for future lunar mission planning.

  8. Mapping Elliptical Orbits Around Europa

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Cardoso dos Santos, Josué

    Due to specifics scientific purposes space missions has been proposed to explore natural satellites, comets and asteroids sending artificial satellites orbiting around these bodies. The planning of such missions must be taken into account a good choice for the orbits that reduces the cost related to station-keeping and the increasing the duration of the mission. The present research has the objective of using a new concept to map with respect the station-keeping maneuvers to study elliptical orbits around Europa. This concept is based in the integral of the perturbing forces over the time. This value can estimate the total variation of velocity received by the spacecraft from the perturbations forces acting on it. The value of this integral is a characteristic of the perturbations considered and the orbit chosen for the spacecraft. Numerical simulations are made showing the value of this integral for orbits around Europa as a function of the eccentricity and semi-major axis of the orbits. An important application of the present research is in the search for frozen orbits.

  9. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  10. Geostationary orbit determination using SATRE

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Li, ZhiGang; Yang, XuHai; Wu, WenJun; Cheng, Xuan; Yang, Ying; Feng, ChuGang

    2011-09-01

    A new strategy of precise orbit determination (POD) for GEO (Geostationary Earth Orbit) satellite using SATRE (SAtellite Time and Ranging Equipment) is presented. Two observation modes are proposed and different channels of the same instruments are used to construct different observation modes, one mode receiving time signals from their own station and the other mode receiving time signals from each other for two stations called pairs of combined observations. Using data from such a tracking network in China, the results for both modes are compared. The precise orbit determination for the Sino-1 satellite using the data from 6 June 2005 to 13 June 2005 has been carried out in this work. The RMS (Root-Mean-Square) of observing residuals for 3-day solutions with the former mode is better than 9.1 cm. The RMS of observing residuals for 3-day solutions with the latter mode is better than 4.8 cm, much better than the former mode. Orbital overlapping (3-day orbit solution with 1-day orbit overlap) tests show that the RMS of the orbit difference for the former mode is 0.16 m in the radial direction, 0.53 m in the along-track direction, 0.97 m in the cross-track direction and 1.12 m in the 3-dimension position and the RMS of the orbit difference for the latter mode is 0.36 m in the radial direction, 0.89 m in the along-track direction, 1.18 m in the cross-track direction and 1.52 m in the 3-dimension position, almost the same as the former mode. All the experiments indicate that a meter-level accuracy of orbit determination for geostationary satellite is achievable.

  11. Meteoroid and orbital debris shielding on the Orbital Maneuvering Vehicle

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Marc E.

    1989-01-01

    NASA's Orbital Maneuvering Vehicle (OMV) is being designed to withstand a 10-year lifetime in polar and low earth orbits. A large percentage of OMV's lifetime will be spent operating in the vicinity of the Space Shuttle and Space Station or in storage at these manned locations. An extensive analysis has been performed to determine the effects of the meteoroid and orbital debris environments on OMV's external fuel tanks. A finite element model of OMV was constructed using NASTRAN and analyzed with the meteoroid and debris design analysis code BUMPER. The results show that the long design lifetime, and the ever increasing man-made orbital debris environment, will require the use of shielding over the external fuel tanks.

  12. Spitzer Orbit Determination During In-orbit Checkout Phase

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2004-01-01

    The Spitzer Space Telescope was injected into heliocentric orbit on August 25, 2003 to observe and study astrophysical phenomena in the infrared range of frequencies. The initial 60 days was dedicated to Spitzer's "In-Orbit Checkout (IOC)" efforts. During this time high levels of Helium venting were used to cool down the telescope. Attitude control was done using reaction wheels, which in turn were de-saturated using cold gas Nitrogen thrusting. Dense tracking data (nearly continuous) by the Deep Space network (DSN) were used to perform orbit determination and to assess any possible venting imbalance. Only Doppler data were available for navigation. This paper deals with navigation efforts during the IOC phase. It includes Dust Cover Ejection (DCE) monitoring, orbit determination strategy validation and results and assessment of non-gravitational accelerations acting on Spitzer including that due to possible imbalance in Helium venting.

  13. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  14. Manrating orbital transfer vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    The expended capabilities for Orbital Transfer Vehicles (OTV) which will be needed to meet increased payload requirements for transporting materials and men to geosynchronous orbit are discussed. The requirement to provide manrating offers challenges and opportunities to the propulsion system designers. The propulsion approaches utilized in previous manned space vehicles of the United States are reviewed. The principals of reliability analysis are applied to the Orbit Transfer Vehicle. Propulsion system options are characterized in terms of the test requirements to demonstrate reliability goals and are compared to earlier vehicle approaches.

  15. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard L.; Gustafson, Eric D.; Thompson, Paul F.; Jefferson, David C.; Martin-Mur, Tomas J.; Mottinger, Neil A.; Pelletier, Frederic J.; Ryne, Mark S.

    2012-01-01

    This paper describes the orbit determination process, results and filter strategies used by the Mars Science Laboratory Navigation Team during cruise from Earth to Mars. The new atmospheric entry guidance system resulted in an orbit determination paradigm shift during final approach when compared to previous Mars lander missions. The evolving orbit determination filter strategies during cruise are presented. Furthermore, results of calibration activities of dynamical models are presented. The atmospheric entry interface trajectory knowledge was significantly better than the original requirements, which enabled the very precise landing in Gale Crater.

  16. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  17. Cluster headache after orbital exenteration.

    PubMed

    Evers, S; Sörös, P; Brilla, R; Gerding, H; Husstedt, I W

    1997-10-01

    A 37-year-old man developed an ipsilateral headache which fulfilled the criteria for cluster headache after orbital extenteration because of a traumatic lesion of the bulb. The headache could be treated successfully by drugs usually applied in the therapy of cluster headache. Six similar cases of cluster headache after orbital exenteration could be identified in the literature suggesting that the eye itself is not necessarily part of the pathogenesis of cluster headache. We hypothesize that orbital exenteration can cause cluster headache by lesions of sympathetic structures. Possibly, these mechanisms are similar to those of sympathetic reflex dystrophy (Sudeck-Leriche syndrome) causing pain of the limbs. PMID:9350391

  18. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  19. Orbit determination and control for the European Student Moon Orbiter

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Gibbings, Alison; Vetrisano, Massimo; Rizzi, Francesco; Martinez, Cesar; Vasile, Massimiliano

    2012-10-01

    This paper presents the preliminary navigation and orbit determination analyses for the European Student Moon Orbiter. The severe constraint on the total mission Δv and the all-day piggy-back launch requirement imposed by the limited available budget, led to the choice of using a low-energy transfer, more specifically a Weak Stability Boundary one, with a capture into an elliptic orbit around the Moon. A particular navigation strategy was devised to ensure capture and fulfil the requirement for the uncontrolled orbit stability at the Moon. This paper presents a simulation of the orbit determination process, based on an extended Kalman filter, and the navigation strategy applied to the baseline transfer of the 2011-2012 window. The navigation strategy optimally allocates multiple Trajectory Correction Manoeuvres to target a so-called capture corridor. The capture corridor is defined, at each point along the transfer, by back-propagating the set of perturbed states at the Moon that provides an acceptable lifetime of the lunar orbit.

  20. Iterative diagonalization for orbital optimization in natural orbital functional theory.

    PubMed

    Piris, M; Ugalde, J M

    2009-10-01

    A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated. PMID:19219918

  1. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  2. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  3. Cost Per Pound From Orbit

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  4. ARTEMIS Maneuvers into Lunar Orbit

    NASA Video Gallery

    This animation visualizes the maneuvers required to move the ARTEMIS spacecraft from their kidney-shaped paths on each side of the moon to orbiting the moon. It took one and a half years, over 90 o...

  5. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  6. A Case of Orbital Histoplasmosis.

    PubMed

    Krakauer, Mark; Prendes, Mark Armando; Wilkes, Byron; Lee, Hui Bae Harold; Fraig, Mostafa; Nunery, William R

    2016-01-01

    Histoplasma capsulatum var capsulatum is a dimorphic fungus endemic to the Ohio and Mississippi River Valleys of the United States. In this case report, a 33-year-old woman who presented with a right orbital mass causing progressive vision loss, diplopia, and facial swelling is described. Lateral orbitotomy with lateral orbital wall bone flap was performed for excisional biopsy of the lesion. The 1.5 × 1.8 × 2.3 cm cicatricial mass demonstrated a granulomatous lesion with necrosis and positive staining consistent with Histoplasma capsulatum var capsulatum infection. To the authors' knowledge, this is the first case of orbital histoplasmosis to be reported in the United States and the first case worldwide of orbital histoplasmosis due to Histoplasma capsulatum var capsulatum. PMID:25186215

  7. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  8. Real and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  9. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  10. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)