Science.gov

Sample records for campanian-early maastrichtian orbital

  1. Upper Campanian-lower Maastrichtian sections of northern Rostov oblast: Article 2. Depositional environments and paleogeography

    NASA Astrophysics Data System (ADS)

    Beniamovskii, V. N.; Alekseev, A. S.; Podgaetskii, A. V.; Ovechkina, M. N.; Vishnevskaya, V. S.; Kopaevich, L. F.; Pronin, V. G.

    2014-09-01

    The study present the results of the integrated study on the Belgorod and Pavlovka formations (upper Campanian), Sukhodol Formation (Campanian-Maastrichtian), and Efremovo-Stepanovka Formation (Maastrichtian). Variations in lithological indicators and associated changes in the biotic assemblages were used to distinguish three stages in the basin evolution separated by hiatuses (Belgorod-Pavlovka, Sukhodol, and Efremovo-Stepanovka). This basin occupied the upland area in the north of the Paleozoic Donets Basin during late Campanian-early Maastrichtian times. Each stage was characterized by a specific depositional environment accompanied either by a decrease or by an increase in the terrigenous sediment supply from the Donets Basin and, possibly, Ukrainian Shield and sea-level and temperature fluctuations, as well as specific paleobiogeographic relations. During the Belgorod-Pavlovka stage, the basin was characterized by relatively deep-water environments, with warm waters and normal salinity, and predominantly carbonate sedimentation. The Sukhodol stage was marked by terrigenous sedimentation, a predominance of the agglutinated foraminiferal forms, and abundant radiolarians, which occurred during a marine regression and overall cooling. This stage corresponds to the global "Campanian-Maastrichtian boundary event." The first half of the Efremovo-Stepanovka stage was marked by resumed carbonate sedimentation, warming, transgression, and deepening of the basin, which were replaced by a renewed regression at the end of this time interval.

  2. Does ice drive early Maastrichtian eustasy?

    USGS Publications Warehouse

    Miller, K.G.; Barrera, E.; Olsson, R.K.; Sugarman, P.J.; Savin, S.M.

    1999-01-01

    A large (30-40 m), rapid (???1 m.y.), earliest Maastrichtian sealevel drop inferred from New Jersey sequence stratigraphic records correlates with synchronous ??18O increases in deep-water benthic and low-latitude surface-dwellin planktonic foraminifera. The coincidence of these events argues for the development of a moderate-sized ice sheet during the early Maastrichtian.

  3. The biostratigraphy and paleogeography of Maastrichtian inoceramids

    NASA Technical Reports Server (NTRS)

    Macleod, K. G.; Huber, B. T.; Ward, P. D.

    1994-01-01

    The global distribution of Maastrichtian inoceramids is now known in enough detail that the patterns of disappearance can be used to place first-order constraints on paleoceanographic changes that may have occurred during that age. The Inoceramidae is an excellent group to focus on in a study of Maastrichtian events for the following reasons: (1) they were globally distributed in the early Maastrichtian; (2) they did not survive the age (i.e., they undergo change during the interval); and (3) they have left a rich microfossil and macrofossil record. Some inoceramids grew to be very large; however, even the largest often passively disaggregated and are preserved as hundreds of millions of characteristic, columnar, polygonal prisms of calcite approximately 100 microns across. This taphonomic process has greatly increased the inoceramid fossil record and provides a means of objectively estimating changes in their standing population. In addition, because these prisms commonly occur in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) cores, it is relatively easy to generate a truly global database. The existing macrofossil record of inoceramids has less temporal and spacial resolution but greater taxonomic resolution than the microfossil record. In concert the microfossil and macrofossil records of inoceramids demonstrate that important changes occurred during the Maastrichtian. These changes are distinct from the KT boundary catastrophe but are part of the larger KT transition.

  4. Campanian-Maastrichtian phosphorites of Iraq

    NASA Astrophysics Data System (ADS)

    Al-Bassam, K. S.; Al-Dahan, A. A.; Jamil, A. K.

    1983-08-01

    Bedded marine sedimentary phosphate rocks of Campanian-Maastrichtian age are exposed in the Western Desert of Iraq, forming part of the Tethyan phosphate province. The studied phosphorites are found in three horizons within carbonate rocks; they are mostly pelletal in texture, associated with bone fragments and detrital quartz grains, and cemented by calcite or chert. The mineralogy of the phosphate is dominated by carbonate-fluorapatite. The phosphate and the associated carbonate rocks are relatively enriched with Cr, Ni, Cu, Zn, V, and organic matter. The apatite is enriched with isotopically light carbon and heavy sulfur. The mode of phosphorite formation seems to have included syngenetic deposition of phosphate under reducing, slightly alkaline conditions in shallow marine environment. Decomposition of organic phosphatic remnants appear to have been the local source of phosphorus enrichment. However, the major tectonic and paleogeographic development of the Tethys Sea during Upper Cretaceous have probably played an important role in providing suitable setting for large scale formation of phosphorite.

  5. The Maastrichtian flora of the Amaam Lagoon area (Northeastern Russia)

    NASA Astrophysics Data System (ADS)

    Moiseeva, M. G.

    2012-12-01

    The Maastrichtian Koryak flora from the Amaam Lagoon area is comprehensively studied with reference to available data on the stratigraphy of the study area and age assessment of the flora-bearing deposits. In the Koryak flora 32 species of plant fossils are identified and systematically described in the work. The established traits of the Koryak floristic assemblage are used to correlate it with the other assemblages close in age from different localities of Northeastern RNortheastern Russiaussia and Alaska. The results of correlation and taxonomic revision of plant fossils from the upper part of the Prince Creek Formation, Northern Alaska show that in the Anadyr-Koryak and Northern Alaska circum-Pacific regions the Koryak stage of flora development and the respective phytostratigraphic horizon (upper Maastrichtian-Selandian), of key significance for interregional correlation of continental deposits, are distinguishable. Floristic changes recorded in the northern circum-Pacific regions across the Cretaceous-Paleogene boundary suggest that the evolution of vegetation was gradual, controlled by climatic change, evolutionary factors and plant migration. These results are inconsistent with the postulated global significance of the ecological crisis at that time.

  6. Low beta diversity of Maastrichtian dinosaurs of North America

    PubMed Central

    Vavrek, Matthew J.; Larsson, Hans C. E.

    2010-01-01

    Beta diversity is an important component of large-scale patterns of biodiversity, but its explicit examination is more difficult than that of alpha diversity. Only recently have data sets large enough been presented to begin assessing global patterns of species turnover, especially in the fossil record. We present here an analysis of beta diversity of a Maastrichtian (71–65 million years old) assemblage of dinosaurs from the Western Interior of North America, a region that covers ≈1.5 × 106 km2, borders an epicontinental sea, and spans ≈20° of latitude. Previous qualitative analyses have suggested regional groupings of these dinosaurs and generally concluded that there were multiple distinct faunal regions. However, these studies did not directly account for sampling bias, which may artificially decrease similarity and increase turnover between regions. Our analysis used abundance-based data to account for sampling intensity and was unable to support any hypothesis of multiple distinct faunas; earlier hypothesized faunal delineations were likely a sampling artifact. Our results indicate a low beta diversity and support a single dinosaur community within the entire Western Interior region of latest Cretaceous North America. Homogeneous environments are a known driver of low modern beta diversities, and the warm equable climate of the late Cretaceous modulated by the epicontenental seaway is inferred to be an underlying influence on the low beta diversity of this ancient ecosystem. PMID:20404176

  7. Late Cretaceous base level lowering in Campanian and Maastrichtian depositional sequences, Kure Beach, North Carolina

    USGS Publications Warehouse

    Harris, W.B.; Self-Trail J.M.

    2006-01-01

    Campanian through Maastrichtian mixed carbonate and siliciclastic sediments in a 422 m continuous core drilled at Kure Beach, NC provide a record of sea-level change. Based on lithology and stratigraphy, depositional sequences are defined, and calcareous nannofossil zones and 87Sr/86Sr ratios and corresponding ages using the LOWESS Table determined. Campanian and Maastrichtian sediments comprise six depositional sequences. The oldest is Tar Heel 1 and contains calcareous nannofossils that indicate assignment to the upper part of Zones CC18a, CC18c and the lower part of CC19. 87Sr/86 Sr ratios indicate ages from 83.2 to 80.0 Ma or lower Campanian. Tar Heel II contains calcareous nannofossils that indicate assignment to the upper part of Zone CC 19 and CC20. 87Sr/86Sr ratios indicate ages from 78.0 to 76.3 Ma or middle Campanian. Donoho Creek I and II are thin and contain calcareous nannofossils referable to upper Zone CC21 and Zone CC22, and to CC23, respectively. The top of Donoho Creek II marks the Campanian-Maastrichtian boundary. Donoho Creek I 87Sr/86Sr ratios cluster into two groups, and provide ages from 78.0 to 76.2 Ma and 73.7 to 72.3 Ma, respectively. 87Sr/86Sr ratios in Donoho Creek II indicate ages from 71.4 to 69.6 Ma. Two Maastrichtian sequences are present; the lowermost Peedee I contains calcareous nannofossils that place it in Zones CC25a and CC25b. 87Sr/86Sr r ratios indicate an age from 69.3 to 66.9 Ma or late Maastrichtian. Peedee II is assigned to calcareous nannofossil Zone CC26a. 87Sr/86Sr ratios indicate ages from 66.4 to 65.2 Ma or late Maastrichtian. The four Campanian sequences correlate to three depositional sequences in New Jersey; the sequence boundary between upper Campanian Donoho Creek I and Donoho Creek II is not recognized in New Jersey. This boundary is interpreted to result from Gulf Stream impingement and subsequent erosion on the outer shelf. The two Maastrichtian sequences recognized in the Kure Beach core correlate to the two

  8. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian

    USGS Publications Warehouse

    Watkins, D.K.; Self-Trail J.M.

    2005-01-01

    Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident shortterm changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian. Copyright 2005 by the American Geophysical Union.

  9. Upper Campanian-lower Maastrichtian planktonic foraminifers from Govorov Guyot (Magellan Seamounts, Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Korchagin, O. A.; Pletnev, S. P.; Mel'Nikov, M. E.

    2011-06-01

    The planktonic foraminiferal assemblage from foraminiferal limestone (ooze) dredged from the summit of one of guyots in the Magellan Seamount system of the Pacific is dominated by one-keeled species belonging to the genus Globotruncanita. The taxonomic composition of the assemblage correlates host rocks with the upper Campanian-lower Maastrichtian. One species and one subspecies are described as new taxa.

  10. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn

    2016-02-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  11. Maastrichtian ammonites chiefly from the Prairie Bluff Chalk in Alabama and Mississippi

    USGS Publications Warehouse

    Cobban, W.A.; Kennedy, W.J.

    1995-01-01

    The Prairie Bluff Chalk of Alabama and Mississippi yields a diverse ammonite fauna of Maastrichtian age. Twenty-eight species, of which three are new, are recorded. The bulk of the fauna can be referred to a Discoscaphites conradi assemblage zone, but some elements in the fauna are significantly older. -Authors

  12. Late Cretaceous (Late Campanian-Maastrichtian) sea surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.

    2015-11-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  13. A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    PubMed Central

    Puértolas, Eduardo; Canudo, José I.; Cruzado-Caballero, Penélope

    2011-01-01

    Background The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America. Methodology/Principal Findings The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at −67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea. Conclusions/Significance The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian. PMID:21687705

  14. Morphology and size variation of a portunoid crab from the Maastrichtian of the Americas

    NASA Astrophysics Data System (ADS)

    Vega, Francisco J.; Phillips, George E.; Nyborg, Torrey; Flores-Ventura, José; Clements, Don; Espinosa, Belinda; Solís-Pichardo, Gabriela

    2013-11-01

    The portunoid crab OphthalmoplaxRathbun, 1935, is known from late Cretaceous deposits of Africa and the Americas. A review of 76 specimens from many localities in North and South America reveals that the genus is represented by only two species - one in Africa (recently described) and the other in the Americas. Ophthalmoplax brasiliana (Maury, 1930) was distributed along the Atlantic and Gulf coasts of the Americas throughout the Maastrichtian - from Brazil to North Carolina. In early Maastrichtian deposits of North America (˜69.0 Ma), the species is represented by local populations of medium-sized individuals, and by the late Maastrichtian (˜67.0 Ma), populations of larger individuals became abundant. This size increase may be related to a decrease in ocean water temperatures. Populations of medium-sized individuals are found again in the latest Maastrichtian (˜66.2 Ma), below strata with ejecta deposits in Coahuila, Mexico, and in the uppermost Owl Creek Formation, Mississippi. This size decrease is possibly linked to an increase in seawater temperature occurring just below the K/P boundary, when Ophthalmoplax became extinct.

  15. Changes in floral diversities, floral turnover rates, and climates in Campanian and Maastrichtian time, North Slope of Alaska

    USGS Publications Warehouse

    Frederiksen, N.O.

    1989-01-01

    One-hundred-and-ten angiosperm pollen taxa have been found in upper Campanian to Masstrichtian rocks of the Colville River region, North Slope of Alaska. These are the highest paleolatitude Campanian and Maastrichtian floras known from North America. Total angiosperm pollen diversity rose during the Campanian and declined toward the end of the Maastrichtian. However, anemophilous porate pollen of the Betulaceae-Myricaceae-Ulmaceae complex increased gradually in diversity during the late Campanian and Maastrichtian and into the Paleocene. Turnover of angiosperm taxa was active throughout most of late Campanian and Maastrichtian time; rapid turnover affected mainly the taxa of zoophilous herbs, representing an bundant but ecologically subordinate element of the vegetation. Last appearances of pollen taxa during the late Campanian and Maastrichtian probably represented mainly extinctions rather than emigrations; end- Cretaceous angiosperm extinctions in the North American Arctic began well before the Cretaceous-Tertiary boundary event. The last appearances in the late Maastrichtian took place in bursts; they appear to represent stepwise rather than gradual events, which may indicate the existence of pulses of climatic change particularly in late Maastrichtian time. ?? 1989.

  16. Campanian to Maastrichtian pollen biostratigraphy and floral turnover rates, Colville River region, north slope of Alaska

    SciTech Connect

    Frederiksen, N.O.; Schindler, K.S.

    1987-05-01

    This study is based on occurrence data for 104 angiosperm pollen taxa from 83 pollen-bearing outcrop and core samples taken along the Colville River and stratigraphically distributed from the base of the Sentinel Hill Member of the Schrader Bluff Formation to the top of the Cretaceous section. Many of the pollen taxa are highly useful for intraregional correlations because they have remarkably short stratigraphic ranges and are consistently present within these ranges. Important similarities are present between North Slope pollen assemblages and those of western Canada, Siberia, and China. The Campanian-Maastrichtian boundary is approximately marked by the range bases of Wodehouseia edmontonicola and Senipites drummhellerensis and is nearly as far south (downsection) as Sentinel Hill core test 1. Based on pollen correlations with Alberta, the marine beds at Ocean Point are probably within the middle part of the Maastrichtian, and strata north of Ocean Point that contain Aquilapollenites conatus are uppermost Maastrichtian. Thus, if the Cretaceous-Tertiary boundary in the study area is represented by an unconformity as their data suggest, the lowermost Paleocene is missing, not the uppermost Cretaceous. Maximum diversities of species of the stratigraphically significant Triprojectacites and Expressipollis groups are in the upper Campanian. Major turnovers of angiosperm taxa occurred late in the Campanian and in the Maastrichtian, but high rates of first appearances coincided with high rates of last appearances. Thus, once a fairly high overall angiosperm diversity was established in the middle(.) Campanian, the diversity remained relatively constant until at or near the end of the Maastrichtian.

  17. Maastrichtian-aged lithostratigraphic patterns in the European tethys: Implications for sea level change and end-Cretaceous extinction patterns

    SciTech Connect

    Ward, P.; Macleod, K.G. . Dept. of Geological Sciences)

    1992-01-01

    Thirteen Maastrichtian-aged stratigraphic sections from a variety of sites spanning the ancient Tethys ocean in Western and Eastern Europe and Northern Africa have been measured in this study. The similarity in lithologies between even geographically separated localities allows refined lithostratigraphic correlation; individual members first defined from Bay of Biscay sections can now be recognized through all sections. The sections are found in the Bay of Biscay and Basque region of France and Spain (Sopelana, Zumaya, Hendaye, Bidart, Tercis, Pamplona;) southern Spain (Caravaca, Agost); northern Africa (El Kef); and Eastern Europe (Georgia). All of the sections are dominated by limestones in the Lower Maastrichtian, and marls or limestone-marl rhythmites in the Upper Maastrichtian. A conspicuous, massive limestone, usually 10 to 15 m thick, is found in all sections at the top of the Lower Maastrichtian; it is invariably overlain by a thicker unit composed entirely of marl. The thick limestone contains the last body fossils of the genus Inoceramus, and occurs just beneath the first occurrence of foraminifera diagnostic of the Abathomphalus mayaroensis Zone of Late Maastrichtian age. The dramatic shift in lithology lies at or just beneath the boundary between the Lower and Upper Maastrichtian, and may have been caused by one of the most rapid and profound sea level changes of the Cretaceous Period. The sea-level change may be a causal factor in the mid-Maastrichtian extinction which affected the Inoceramidae and other mollusks, such as the rudistid bivalves and ammonites, and certainly is one of the dominant factors in forming the sequence of lithologies found in the Maastrichtian Stage of Tethys.

  18. A palynological biozonation for the Maastrichtian Stage (Upper Cretaceous) of South Carolina, USA

    USGS Publications Warehouse

    Christopher, R.A.; Prowell, D.C.

    2002-01-01

    Three palynological biozones are proposed for the Maastrichtian Stage of South Carolina. In ascending stratigraphic order, the biozones are the Carolinapollis triangularis (Ct) Interval Biozone, the Holkopollenites chemardensis (Hc) Interval Biozone, and the Sparganiaceaepollenites uniformis (Su) Interval Biozone. Integration of the biostratigraphy with lithologic and geophysical log data suggests that within the study area, the upper and lower boundaries of each zone are bounded by regional unconformities, and that a three-fold subdivision of the Maastrichtian Stage is warranted. The biozonation is based on the analysis of 114 samples from 24 subsurface and three outcrop sections from the Coastal Plain of South Carolina; samples from an additional seven subsurface and 18 outcrop sections from North Carolina and Georgia were examined to evaluate the geographic extent of the biozones. One new genus and five new species of pollen are described, and emendations are presented for two genera and one species of pollen. ?? 2003 Published by Elsevier Science Ltd.

  19. The impact of the Maastrichtian cooling on the marine nutrient regime -- Evidence from midlatitudinal calcareous nannofossils

    NASA Astrophysics Data System (ADS)

    Linnert, Christian; Engelke, Julia; Wilmsen, Markus; Mutterlose, Jörg

    2016-06-01

    The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High-latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time, and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern midlatitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian -- lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae, and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis, and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g., K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high-latitude deep water formation probably changed the bottom water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate toward phosphate limitation.

  20. Inoceramid stratigraphy and depositional architecture of the Campanian and Maastrichtian of the Miechów Synclinorium (southern Poland)

    NASA Astrophysics Data System (ADS)

    Jurkowska, Agata

    2016-03-01

    Dynamic evolution of the Campanian and Maastrichtian (Upper Cretaceous) of the Miechow Synclinorium is presented. Through chronostratigraphic analysis, the geometry of the Campanian and Maastrichtian of the area is interpreted, while microfacies analysis allowed determination of some of the paleoenvironmental parameters (rate of sedimentation, bottom condition and terrigenous input). The chronostratigraphy is based on inoceramid biostratigraphy. Nine inoceramid zones are recognized: Sphenoceramus patootensiformis, Sphaeroceramus sarumensis-Cataceramus dariensis and `Inoceramus' azerbaydjanensis-`Inoceramus' vorhelmensis, `Inoceramus' tenuilineatus, Sphaeroceramus pertenuiformis, `Inoceramus' inkermanensis and `Inoceramus' costaecus- `Inoceramus' redbirdensis (Campanian); Endocostea typica and Trochoceramus radiosus (Maastrichtian). Five unconformities (isochronous in the study area) represented by horizons of slower sedimentation rate, were recognized. They correlate with eustatic sea-level changes, well recorded in European successions (Jarvis et al. 2002, 2006; Niebuhr et al. 2011). Unconformity horizons allow six alloformations to be distinguished. The thickness of particular chronostratigraphic units within the Campanian and Lower Maastrichtian increases progressively toward the axis of the Danish-Polish Trough, which indicates that the inversion of the trough could not have started before the Late Maastrichtian.

  1. Upper Maastrichtian ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA)

    USGS Publications Warehouse

    Larina, Ekaterina; Garb, Matthew P.; Landman, Neil H.; Dastas, Natalie; Thibault, Nicolas; Edwards, Lucy E.; Phillips, George; Rovelli, Remy; Myers, Corinne; Naujokaityte, Jone

    2016-01-01

    The Cretaceous outcrop belt of the Mississippi Embayment in the Gulf Coastal Plain (GCP) spans the Cretaceous/Paleogene (K/Pg) boundary. A detailed reconstruction of this time interval is critical for understanding the nature of biotic and environmental changes preceding the end-Cretaceous Mass Extinction event and for deciphering the likely extinction mechanism (i.e., bolide impact versus volcanism). Eight sections encompassing the K/Pg succession across the Mississippi Embayment were analyzed using biostratigraphic sampling of ammonites, dinoflagellates, and nannofossils. An upper Maastrichtian ammonite zonation is proposed as follows, from oldest to youngest:Discoscaphites conradi Zone, D. minardi Zone, and D. iris Zone. Our study documents that the ammonite zonation established in the Atlantic Coastal Plain (ACP) extends to the GCP. This zonation is integrated with nannofossil and dinoflagellate biostratigraphy to provide a framework to more accurately determine the age relationships in this region. We demonstrate that ammonites and dinoflagellates are more reliable stratigraphic indicators in this area than nannofossils because age-diagnostic nannofossils are not consistently present within the upper Maastrichtian in the GCP. This biostratigraphic framework has the potential to become a useful tool for correlation of strata both within the GCP and between the GCP, Western Interior, and ACP. The presence of the uppermost Maastrichtian ammonite D. iris, calcareous nannofossil Micula prinsii, and dinoflagellates Palynodinium grallator and Disphaerogena carposphaeropsis suggests that the K/Pg succession in the GCP is nearly complete. Consequently, the GCP is an excellent setting for investigating fine scale temporal changes across the K/Pg boundary and ultimately elucidating the mechanisms causing extinction.

  2. Evidence for large-scale reworking of Campanian sediments into the Upper Maastrichtian Peedee formation at Burches Ferry, South Carolina

    USGS Publications Warehouse

    Self-Trail J.M.; Christopher, R.A.; Prowell, D.C.

    2002-01-01

    A 44-ft-deep corehole (FLO-311) was drilled at Burches Ferry, Florence County, S.C., in order to document the lithologic and paleontologic characteristics of the boundary between the upper Campanian Donoho Creek Formation and the upper Maastrichtian Peedee Formation. Palynomorph and calcareous nannofossil data provide detailed age control for these sediments. Examination of calcareous nannofossil assemblages shows that sediments from the type locality of the Peedee Formation consist largely of reworked Campanian materials. Robust Campanian species such as Reinhardtites anthophorus, Reinhardtites levis, and Stoverius asymmetricus commonly are found reworked into the Maastrichtian Peedee Formation in its entirety. Therefore, identification of lower upper Maastrichtian sediments is based on the presence of background assemblages rather than on the more traditional marker species. The presence of species restricted to the latest Campanian at the Donoho Creek-Peedee contact in outcrop indicates that the entire sedimentary package represented by calcareous nannofossil Zones CC23 and CC24 has been removed.

  3. Volcanism and related Environmental changes linked to Late Maastrichtian High Stress and KT Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, Gerta; Adatte, Thierry

    2010-05-01

    Near the end of the Maastrichtian Earth was hit by a confluence of catastrophes ranging from impacts to some of the most devastating volcanic eruptions coupled with major changes in climate, sea level and ocean chemistry that ultimately led to the Cretaceous-Tertiary boundary (KTB) mass extinction. For three decades this mass extinction has been commonly attributed to the sole kill-effect of the Chicxulub impact on Yucatan. Multi-disciplinary evidence (paleontologic, stratigraphic, sedimentologic geochemical) from the Yucatan impact crater to sections in Mexico and Texas revealed that this impact predates the KTB and caused no mass extinction. Recent studies reveal that the most devastating Deccan volcanic eruptions in India occurred near the end of the Maastrichtian and ended coincident with the KT mass extinction (Keller et al., 2008). Examination of biotic stress in the marine realm leading up to the KT mass extinction reveals times of environmental stresses associated with volcanism, greenhouse warming, mesotrophic basins and shallow marginal settings from the Tethys Ocean to the South Atlantic and Indian Oceans (Keller and Abramovich, 2009). Biotic stress conditions vary with the degree of environmental change and range from intraspecies size reduction, to loss of diversity and ultimately mass extinction. No significant biotic stress was observed in assemblages before and after the Chicxulub impact identified by a layer of impact spherules in late Maastrichtian sediments of zone CF1 predating the KTB in Mexico and Texas (Keller et al., 2009b,c). Maximum biotic stress leading to the KT mass extinction is associated with Deccan volcanism in India near the end of the Maastrichtian. This suggests that the mass extinction was likely a direct cause of Deccan volcanism, although the presence of a major Ir anomaly at the KTB does not rule out the possibility of a second major bolide impact exacerbating already catastrophic conditions. Keller, G., Adatte, T., Gardin, S

  4. Is Torosaurus Triceratops? Geometric Morphometric Evidence of Late Maastrichtian Ceratopsid Dinosaurs

    PubMed Central

    Maiorino, Leonardo; Farke, Andrew A.; Kotsakis, Tassos; Piras, Paolo

    2013-01-01

    Background Recent assessments of morphological changes in the frill during ontogeny hypothesized that the late Maastrichtian horned dinosaur Torosaurus represents the “old adult” of Triceratops, although acceptance of this finding has been disputed on several lines of evidence. Methodology/Principal Findings Examining the cranial morphology of 28 skulls in lateral view and 36 squamosals of Nedoceratops hatcheri, Triceratops spp. and Torosaurus spp. by means of landmark-based geometric morphometrics, we compared ontogenetic trajectories among these taxa. Principal Component Analysis and cluster analysis confirmed different cranial morphologies. Torosaurus shape space is well separated from Triceratops, whereas Triceratops horridus and Triceratops prorsus partially overlap within Triceratops shape space. Linear regressions between shape and size suggest different ontogenetic trajectories among these taxa. Results support the “traditional” taxonomic status of Torosaurus. We hypothesize that ontogeny drives cranial morphology with different patterns between Torosaurus and Triceratops. Conclusions/Significance Torosaurus is a distinct and valid taxon. Whether looking at entire skulls, skulls without the frill, frills alone, or squamosals, Torosaurus has different morphologies and distinct allometric trajectories compared to Triceratops. This new approach confirms the taxonomic status of Torosaurus as well as the comparatively low diversity of ceratopsids at the end of the Maastrichtian in North America. PMID:24303058

  5. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  6. Campano-Maastrichtian foraminifera from onshore sediments in the Rio del Rey Basin, Southwest Cameroon

    NASA Astrophysics Data System (ADS)

    Njoh, Oliver Anoh; Victor, Obiosio; Christopher, Agyingi

    2013-03-01

    Campanian-Maastrichtian marine sediments outcrop in five genetically linked sedimentary basins along the West African coast in the Gulf of Guinea, from the Douala Basin in Cameroon to the Anambra Basin in Nigeria. These sediments in the more centrally located Rio del Rey Basin have been the least studied. Therefore, the geologic history of this region has merely been speculative. The Rio del Rey Basin like the adjacent Niger Delta is producing hydrocarbon from the offshore Tertiary sedimentary interval in which all studies have been focused, neglecting the onshore Cretaceous sediments. Outcrops in the basin are rare, small and highly weathered. Samples from some of these sediments have yielded a few Planktonic and dominantly benthonic foraminiferal assemblages. The long-ranging heterohelix and hedbergellids characterized the planktics while the species Afrobolivina afra which is a well known diagnostic taxon for Campanian-Maastrichtian sediments in West African basins clearly dominate the benthic assemblage. Its occurrence in association with other Upper Cretaceous forms such as Bolivina explicata, Praebulimina exiqua, Gabonita lata, Ammobaculites coprolithiformis amongst others, formed the basis on which this age was assigned to the sediments sampled from the Rio del Rey Basin. Hence, this work has undoubtedly established the much needed link in this regional geologic history and correlates these sediments with the Logbaba and Nkporo Formations in the Douala Basin in Cameroon and the southeastern Nigerian Sedimentary Basins. Thus, these units were all deposited during this same geologic period and probably controlled by the same geologic event.

  7. Coupled Climate Model Simulations of a Late Cretaceous (Maastrichtian) Greenhouse Climate: Comparison with Proxy Data

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Kiehl, J. T.; Shields, C. A.; Scotese, C.

    2009-12-01

    Earth’s future climate is expected to warm considerably due to increased atmospheric carbon dioxide. Paleoclimate records indicate that pre-Quaternary time periods provide the best possible view of Earth under warm greenhouse conditions. Thus, past warm greenhouse climates provide an important tool to evaluate fully coupled climate models that are currently used to study future climate change. In this study, we use the Community Climate System Model (CCSM3) to investigate the climate of the latest Cretaceous (Maastrichtian). CCSM3 is a fully coupled three-dimensional global model that includes atmospheric, oceanic, sea-ice and terrestrial processes. The CCSM3 simulations employ slight modifications of the paleogeographic and global vegetation reconstructions used in earlier simulations of the late Maastrichtian with the GENESIS Earth System Model (Upchurch, Otto-Bliesner, and Scotese, 1999). CCSM3 simulations include two levels of atmospheric carbon dioxide (2XPAL and 6XPAL), best estimates of atmospheric methane, changes to low level liquid cloud properties based on the hypothesis of Kump and Pollard (2008), and different paleoelevations for the interior of Siberia. A coupled simulation of multi-century length is carried out to study steady state conditions for the surface ocean. For terrestrial regions, model mean annual temperatures and seasonality are compared with data from angiosperm leaf physiognomy, plant life form distribution, and other climatic indicators to determine how well the model represents high latitude warmth on a zonal and regional basis. Model precipitation is compared with a database of climatically restricted sediments and angiosperm leaf physiognomy for specific sites. For oceanic regions, the CCSM3 simulations are compared to marine proxies of surface and benthic temperatures, especially the δ18O of exceptionally preserved carbonate. Our simulations reproduce many features of Maastrichtian climate, such as the latitudinal gradient of

  8. Hydrologically Correct, Global Paleo-Digital Elevation Models (DEMs): a Maastrichtian (Late Cretaceous) Example

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.

    2001-12-01

    The past surface relief of the Earth is an essential boundary condition for computer-based atmosphere and ocean modeling. It also provides the geographic context for understanding surface processes and biotic distributions and interactions. However, with increased model resolution and the addition of vegetation, soil (weathering) and chemical modules, there is now a need for more robust, detailed paleo-topographies and bathymetries that are fully integrated with the processes being modeled, especially the hydrological system (hydrologically correct). Here I present a new GIS-based, hydrologically correct, paleo-DEM for the Maastrichtian (Late Cretaceous). This project was initiated in 1995 while the author was a graduate at the University of Chicago using the plate reconstructions of Rowley (1995, unpublished). The Maastrichtian paleogeography used in this study is one of a series of 27 global maps, representing the Cretaceous and Cenozoic, being compiled simultaneously to ensure continuity between each time interval. Each map is generated at a scale of 1:30 million in ArcView GIS and ArcInfo, using data from the author's own databases of lithologic, tectonic and fossil information, the lithologic databases of the Paleogeographic Atlas Project (The University of Chicago), a survey of published literature, and DSDP / ODP data. Interpretations of elevation are derived following the methods outlined in Ziegler et al (1985), an understanding of the tectonic regime and evolution of each geographic feature, and the age-depth relationship for the ocean. The Maastrichtian has been completed first to provide the boundary conditions for a coupled atmosphere-ocean experiment. The hydrologically correct global DEM was derived using the elevation contours from the paleogeography and the suite of hydrological tools now available in ArcInfo GRID. The DEM has been constrained by defining areas of paleo-internal drainage, paleo-river mouths and known paleo-river courses. When

  9. Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea

    NASA Astrophysics Data System (ADS)

    Stage, Morten

    1999-11-01

    Low field bulk magnetic susceptibility has been determined on Maastrichtian chalk samples from a drill core from the Dan Field in the Danish North Sea. Fast Fourier Transformations (FFT) have been used to detect possible cycles in the magnetic susceptibility data. Power spectra from the complete section and from sub-sections of the magnetic susceptibility reveal two cyclicities of ca. 0.4 cycles/m and ca. 1.7 cycles/m, which are present on a 90% confidence level. Signal analysis of natural gamma-ray wire-line log data supports these findings. Sedimentation rate estimates place the cycles in the Milankovitch frequency band. Artificial time series are used to study the applicability of the FFT to identifying cyclicity in chalks. Expected geological distortions (e.g., hiati and sedimentation rate variations) are introduced into the time series to investigate the response of the frequency spectra. Different methods of handling missing data intervals are also examined.

  10. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  11. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  12. A multidisciplinary approach to reservoir subdivision of the Maastrichtian chalk in the Dan field, Danish North Sea

    SciTech Connect

    Kristensen, L.; Dons, T.; Schioler, P.

    1995-11-01

    Correlation of wireline log data from the North Sea chalk reservoirs is frequently hampered by rather subtle log patterns in the chalk section due to the apparent monotonous nature of the chalk sediments, which may lead to ambiguous correlations. This study deals with a correlation technique based on an integration of biostratigraphic data, seismic interpretation, and wireline log correlation; this technique aims at producing a consistent reservoir subdivision that honors both the well data and the seismic data. This multidisciplinary approach has been used to subdivide and correlate the Maastrichtian chalk in the Dan field. The biostratigraphic subdivision is based on a new detailed dinoflagellate study of core samples from eight wells. Integrating the biostratigraphic results with three-dimensional seismic data allows recognition of four stratigraphic units within the Maastrichtian, bounded by assumed chronostratigraphic horizons. This subdivision is further refined by adding a seismic horizon and four horizons from wireline log correlations, establishing a total of nine reservoir units. The approximate chronostratigraphic nature of these units provides an improved interpretation of the depositional and structural patterns in this area. The three upper reservoir units pinch out and disappear in a northeasterly direction across the field. We interpret this stratal pattern as reflecting a relative sea level fall or regional basinal subsidence during the latest Maastrichtian, possibly combined with local synsedimentary uplift due to salt tectonics. Isochore maps indicate that the underlying six non-wedging units are unaffected by salt tectonics.

  13. Geochemical, sedimentary and micropaleontological evidence for a Late Maastrichtian oceanic seamount within the Pindos ocean (Arvi Unit, S Crete, Greece)

    NASA Astrophysics Data System (ADS)

    Palamakumbura, Romesh N.; Robertson, Alastair H. F.; Dixon, John E.

    2013-06-01

    We test the model of Bonneau (1984) who hypothesised that the Arvi Unit in southern Crete represents Upper Cretaceous oceanic crust of a Pindos oceanic basin. The Arvi Unit is dominated by basaltic lava flows, pelagic carbonates and terrigenous sandstone turbidites. The "enriched" within-plate-type geochemistry of the basaltic lavas is consistent with a seamount setting. The subaqueous lava structures and associated pelagic carbonates further justify a seamount origin. Peperites composed of lava-pelagic carbonate mixtures date the Arvi Unit as Late Maastrichtian using diagnostic planktic foraminifera. The lavas are overlain by pelagic carbonates, also of Late Maastrichtian age, that then pass gradationally upwards into sand to pebble-grade gravity flows. The clastic sediments contain grains derived from several sources, namely continental (metamorphic and plutonic), ophiolite-related (e.g. serpentinite, gabbro, diabase), deep-sea (e.g. chert, pelagic carbonate) and shallow-marine (e.g. shell fragments). The terrigenous detritus is inferred to have come from the Pelagonian microcontinent unit (~ Asteroussia nappe) then to the northeast where ophiolites and deep-sea sediments were obducted during Late Jurassic time. The inferred Arvi seamount was accreted at the southeasterly-subducting active margin of the Pelagonian microcontinent after Maastrichtian time, related to closure of the Pindos ocean. The new evidence from the Arvi Unit provides additional evidence for the existence of the Pindos ocean between the Apulian and Pelagonian continental units in the Greece-Albania region.

  14. Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions

    NASA Astrophysics Data System (ADS)

    Keller, Gerta

    2005-02-01

    During the late Maastrichtian, DSDP Site 216 on Ninetyeast Ridge, Indian Ocean, passed over a mantle plume leading to volcanic eruptions, islands built to sea level, and catastrophic environmental conditions for planktic and benthic foraminifera. The biotic effects were severe, including dwarfing of all benthic and planktic species, a 90% reduction in species diversity, exclusion of all ecological specialists, near-absence of ecological generalists, and dominance of the disaster opportunist Guembelitria alternating with low O 2-tolerant species. These faunal characteristics are identical to those of the K-T boundary mass extinction, except that the fauna recovered after Site 216 passed beyond the influence of mantle plume volcanism about 500 kyr before the K-T boundary. Similar biotic effects have been observed in Madagascar, Israel, and Egypt. The direct correlation between mantle plume volcanism and biotic effects on Ninetyeast Ridge and the similarity to the K-T mass extinction, which is generally attributed to a large impact, reveal that impacts and volcanism can cause similar environmental catastrophes. This raises the inevitable question: Are mass extinctions caused by impacts or mantle plume volcanism? The unequivocal correlation between intense volcanism and high-stress assemblages necessitates a review of current impact and mass extinction theories.

  15. Occurrence of a young elasmosaurid plesiosaur skeleton from the Late Cretaceous (Maastrichtian) of Antarctica

    USGS Publications Warehouse

    Martin, James E.; Sawyer, J. Foster; Reguero, Marcelo; Case, Judd A.

    2007-01-01

    The most completely articulated fossil skeleton heretofore found on the continent of Antarctica is represented by a juvenile plesiosaur. The specimen was found in the Sandwich Bluff area of Vega Island east of the Antarctic Peninsula from Late Cretaceous (Maastrichtian) marine deposits from the upper Snow Hill Island Formation. The plesiosaur skeleton is represented by a nearly complete torso, partial paddles, and neck and tail sections. Along the ventral margin of the torso are articulated gastralia, some that are unusual in being forked. Numerous small gastroliths are associated within the trunk cavity, indicating that even juveniles ingest gastroliths. Coupled with other known specimens, the skeleton indicates shallow marine environment may have been an area where marine reptiles had their young, and the young remained until reaching maturity prior to facing open marine environments. The morphology of the specimen suggests the skeleton represents a juvenile Mauisaurus, an elasmosaurid plesiosaur taxon originally described from New Zealand and endemic to the Weddellian Province of the austral region.

  16. A dromaeosaur from the Maastrichtian of James Ross Island and the Late Cretaceous Antarctic dinosaur fauna

    USGS Publications Warehouse

    Case, Judd A.; Martin, James E.; Reguero, Marcelo

    2007-01-01

    The recovery of material of a small theropod from the Early Maastrichtian, Cape Lamb Member of the Snow Hill Island Formation is an unusual occurrence from primarily marine sediments. The pedal morphology of the specimen that includes a Metatarsal II with a lateral expansion caudal to Metatarsal III, a third metatarsal that is proximally narrow and distally wide, a Metatarsal III with a distal end that is incipiently ginglymoidal and a second pedal digit with sickle-like ungual are all diagnostic of a theropod that belongs to the family of predatory dinosaurs, the Dromaeosauridae. Yet this Antarctic dromaeosaur retains plesiomorphic features in its ankle and foot morphology. As new dromaeosaur species are being recovered from the mid-Cretaceous of South America and the retention of primitive characters in the Antarctic dromaeosaur, a new biogeographic hypothesis on dromaeosaur distribution has been generated. Gondwanan dromaeosaurs are not North America immigrants into South America and Antarctica; rather they are the relicts of a cosmopolitan dromaeosaur distribution, which has been separated by the vicariant break up of Pangea and created an endemic clade of dromaeosaurs in Gondwana.

  17. Paleogeodynamic evolution of the Northern South America margin through 13 maps from Maastrichtian to present

    SciTech Connect

    Stephan, J.F. )

    1993-02-01

    The paleogeodynamic history of the Northern South America margin (NSAM) for the last 75 Ma is depicted through 13 maps. Five major episodes can be distinguished: In Maastrichtian and Paleocene times, the NSAM is still a passive margin including, from west to east, the northeast-trending Tinaco-Caucagua Promontory (TCP) and the Coast Range Realm (CRR); From Lower to Upper Eocene the Villa de Cura-Tobago Cretaceous Arc obliquely collides with the margin, generating a northeast-trending foreland flysch basin (i.e., Matatere, Guarico, and Rio Guache flysch). By the end of Eocene, the TCP and CRR have been imbricated under the arc and thrusted southeastward, together with the flysch nappes, onto the upper margin. The allochthon front is stabilized roughly along an Acarigua-Caracas line; Oligocene and lowermost Miocene times correspond to a drastic geometric and kinematic reorganization probably related to a strong slow-down of the Caribbean plate movement. Subsidence and transtension are dominant; From late Lower Miocene to early Upper Miocene, the remnant central and eastern passive margin is tectonized due to the fast eastward transpressive shift of the Caribbean plate; In late Upper Miocene times, a second geodynamic reorganization occurs which gives rise to the present-day pattern where transpression is mostly active in Trinidad, Falcon, and the Merida Andes.

  18. Stable isotope distribution in continental Maastrichtian vertebrates from the Haţeg Basin, South Carpathians

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Csiki, Zoltan; Grigorescu, Dan

    2010-05-01

    The oxygen isotopic compositions of biogenic apatite from crocodiles, turtles and dinosaurs, and their relationship to climate and physiology have been evidenced by several studies (Barrick and Showers, 1995; Kolodny et al., 1996; Barrick et al., 1999; Fricke and Rogers, 2000; Stoskopf et al., 2001; Straight et al., 2004; Amiot et al., 2007). To date, few attempts have been made to correlate the enamel d13C to dietary resources of dinosaurs (Bocherens et al., 1988; Stanton Thomas and Carlson, 2004; Fricke and Pearson, 2008; Fricke, et al., 2008). One additional complication is that for dinosaurs, the d18O of enamel phosphate depends on both body water and variations in body temperature. Several studies addressed the issue of endothermy vs. ectothermy of fossil vertebrates by studying inter- and intra-bone and enamel isotopic variability (Barrick and Showers, 1994, 1995; Barrick et al., 1996; 1998; Fricke and Rogers, 2000). More recent investigations provided evidence for inter-tooth temporal variations and related them to seasonality and/or changes in physiology (Straight et al., 2004; Stanton Thomas and Carlson, 2004). The main objectives of this study are to extract palaeoclimatic information considering, beside lithofacial characteristics and the isotopic distribution of carbonates formed in paleosols, the stable isotope composition of vertebrate remains from the Haţeg Basin. We also sampled several teeth along their growth axis in order to get further information about growth rates and the amplitude of isotopic variation. Located in the South Carpathians in Romania, the Haţeg Basin contains a thick sequence of Maastrichtian continental deposits yielding a rich dinosaur and mammalian fauna. Stable isotope analyses of both calcretes and dinosaur, crocodilian and turtle remains from two localities (Tuştea and Sibişel) were integrated in order to reconstruct environmental conditions during the Maastrichtian time and to gain further insights into the metabolism

  19. Paleoenvironmental signals and paleoclimatic condition of the Early Maastrichtian oil shales from Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Zaki, Rafat; Mohamed, Ramadan S. A.

    2016-04-01

    Early Maastrichtian oil shales are hosted in the Duwi Formation of the Central Eastern Desert, Egypt. The examined member represents up to 20% of the total Duwi Formation. This interval is mainly composed of siliciclastic facies, phosphorites facies and carbonate facies. Oil shales microfacies is mainly composed of smectite, kaolinite, calcite, fluorapatite, quartz and pyrite. They are enriched in a number of major elements and trace metals in particular Ca, P, V, Ni, Cr, Sr, Zn, Mo, Nb, U and Y compared to the post-Archaean Australian shale (PAAS). Chondrite-normalized REEs patterns of oil shales for the studied area display light rare earth elements enrichment relatively to heavy rare earth elements with negative Ce/Ce* and Eu/Eu* anomalies. The most remarkable indicators for redox conditions are enrichments of V, Mo, Ni, Cr, U content and depletion of Mn content. Besides, V/V+Ni, V/Ni, U/Th, Ni/Co, authigentic uranium ratios with presence of framboidal shape of pyrite and its size are reflecting the deposition of these shales under marine anoxic to euxinic environmental conditions. Additionally, the ratio of Strontium (Sr) to Barium (Ba) Sr/Ba reflected highly saline water during deposition. Elemental ratios critical to paleoclimate and paleoweathering (Rb /Sr, Al2O3/TiO2), CIA values, binary diagram between (Al2O3+K2O+Na2O) and SiO2 and types of clay minerals dominated reflect warm to humid climate conditions prevailing during the accumulation of these organic-rich petroleum source rocks.

  20. Upper Albian-Maastrichtian calcareous plankton biostratigraphy, magnetostratigraphy and carbon isotope stratigraphy of the classical Tethyan Gubbio section (Italy)

    NASA Astrophysics Data System (ADS)

    Premoli Silva, Isabella; Coccioni, Rodolfo; Sabatino, Nadia; Sprovieri, Mario; Voigt, Silke

    2014-05-01

    The Tethyan pelagic sections at Bottaccione and Contessa Highway (Gubbio, central Italy) are internationally recognized to be the standard reference sections for the Late Cretaceous to Eocene geomagnetic polarity time scale calibrated to the integrated planktonic foraminiferal and calcareous nannofossil biostratigraphy. Due to the presence of a gap within Chron C31n in the Bottaccione section, we use two distinct portions of these sections to construct an upper Albian-Maastrichtian complete and well-preserved composite stratigraphic record, 333.1 m in thickness and ~37 Myr in duration. A refined magnetostratigraphy and planktonic foraminiferal and calcareous nannofossil biostratigraphy is here presented for this stratigraphic succession. In particular, the recovery of planktonic foraminifera successfully disaggregated from the hard lithologies allows to place more precisely several bioevents that include the lowest occurrence (LO) of Thalmanninella globotruncanoides defining the Albian/Cenomanian boundary, the LO of Globotruncana linneiana that approximates the base of the Santonian, the LO of Globotruncana aegyptiaca occurring earlier than previously recognized, the LO of Pseudoguembelina palpebra, and, in addition, the well-constrained and complete pattern of the evolutionary origin of Racemiguembelina fructicosa from Pseudotextularia elegans through Pseudotextularia intermedia and Racemiguembelina powelli previously undetected. Moreover, the highest occurrence of Gansserina gansseri and the LO of Plummerita hantkeninoides allow to subdivide the latest Maastrichtian into the Pseudoguembelina hariaensis, Pseudotextularia elegans and Plummerita hantkeninoides planktonic foraminiferal Zones. The refined magnetobiostratigraphic framework may improve reliability of Late Cretaceous correlations at low to middle latitude as well as paleoenvironmental, paleoclimatic and paleoceanographic interpretations. Finally, an almost complete, high-resolution carbon isotope curve

  1. Biogeochemial Cycling and Ocean Climate in the Maastrichtian: a Coupled Ecosystem-Physical Climate Simulation Study

    NASA Astrophysics Data System (ADS)

    Williams, J.; Valdes, P. J.

    2014-12-01

    Paleoclimate simulations of the Latest Cretaceous are presented, specifically for the Maastrichtian stage using the UK Met Office model HadCM3L. The vast majority of traditional paleoclimate simulation studies using General Circulation Models include representations of the atmosphere and ocean as well as a dynamic sea ice model. In this we study new presents model results from a GCM that also includes a detailed ocean biogeochemical scheme HadOCC. HadOCC is an ecosystem model, meaning it contains an explicit representation of planktonic species (both autotrophic phytoplankton and heterotrophic zooplankton) and is an NZPD model (Nutrient, Phytoplankton, Zooplankton, Detritus). It is also able to simulate air-sea gas exchange and primary productivity in the surface and near-surface as well as full ecosystem interaction throughout the water column. Compared to the present day, the Latest Cretaceous represents a very different world, both in terms of its atmospheric composition and in the configuration of the continents. It also offers the prospect of studying a past warm climate with significantly enhanced CO2 levels compared to the preindustrial era. For the simulations presented here, atmospheric CO2 levels are set to be four times their preindustrial values (290 parts per million). The combination of a very different continental configuration and hugely enhanced atmospheric CO2 levels results in a very different climate from what we know today. To first order, ocean temperatures are significantly higher and circulation patterns are very different. The combination of these fundamentally important ocean properties means that the resulting biological activity (which will be shown in an annual mean and seasonal sense) is able to provide clues as to which oceanic areas were more biologically active than others. Because of the fully dynamic and coupled nature of the biology and physics of this modelling framework, surface and benthic processes (and their interactions

  2. Late Maastrichtian chalk mounds, Stevns Klint, Denmark — Combined physical and biogenic structures

    NASA Astrophysics Data System (ADS)

    Anderskouv, Kresten; Damholt, Tove; Surlyk, Finn

    2007-08-01

    Upper Maastrichtian chalk exposed at the Sigerslev quarry, Stevns Klint, Denmark is characterized by wavy and mound-like bedding geometries outlined by bands of black flint nodules. Four morphological elements are recognized, although bedding geometries are highly variable: southward migrating mounds, eastward migrating mounds, chalk waves and evenly bedded chalk. The mounds are interpreted as having been formed by currents carrying fine-grained suspended sediment which was primarily deposited on the up-current mound flanks. Bryozoans were prolific on the up-current flanks and mound summits, which stabilized the mounds, increased bed roughness and the overall accumulation rate. However, accumulation thicknesses do not correlate consistently with bryozoan density. The bryozoans were therefore important for the formation of the mounds, but the distribution of bryozoans did not solely determine depositional thickness across a mound and thus mound growth pattern. Relatively long wavelength wavy-bedded chalk show gentle convex-up geometries and would probably be described as sediment waves if recognized in seismic sections. The chalk waves were deposited under weaker current velocities than those active during mound formation. The exposed succession is topped by more evenly bedded chalk which was deposited by quiet pelagic fall-out of fine-grained material. The whole succession was deposited on the upper part of the northern flank of a large WNW-ESE trending 3 km wide depositional ridge with an amplitude of 35-40 m formed by contour-parallel WNW-ward flowing bottom currents. The mounds may have been deposited by regional bottom currents, or by spill-over currents from the valley south of the large ridge. The succession was deposited during varying bottom current intensities and the depositional architecture indicates a complex and dynamic environment. The depositional style seems to be controlled by the interplay and relative importance of two end-member processes

  3. Upper Cretaceous (Maastrichtian) Charophyte Gyrogonites from the Lameta Formation of Jabalpur, Central India: Palaeobiogeographic and Palaeoecological Implications

    NASA Astrophysics Data System (ADS)

    Khosla, Ashu

    2014-12-01

    A charophyte gyrogonite assemblage consisting of Platychara cf. sahnii, Nemegtichara grambastii and Microchara sp. is reported herein from two localities (Bara Simla Hill and Chui Hill sections) of the Lameta Formation at Jabalpur. he Lameta Formation locally underlying the Deccan traps has been shown to be pedogenically modified alluvial plain deposits containing one of the most extensive dinosaur nesting sites in the world. They are associated with dinosaur bones and freshwater ostracod assemblages that suggest a Late Cretaceous (Maastrichtian) age. This is the first detailed systematic account of charophyte gyrogonites from the Lameta Formation. This charophyte assemblage is compatible with the biostratigraphic attribution provided by the ostracods. From a biogeographic viewpoint, it exhibits considerable similarity to other infratrappean assemblages of the Nand, Dongargaon, and Dhamni-Pavna sections (Maharashtra), and some intertrappean assemblages of Kora in Gujarat, Rangapur in Andhra Pradesh and Gurmatkal in South India. Globally, the genus Microchara is well distributed throughout Eurasia, whereas the genus Platychara occurs richly in the Upper Cretaceous deposits of Europe, Asia, America and Africa. However, at the specific level, Platychara cf. sahnii shows close affinities with charophytes from the Maastrichtian of Iran whilst Nemegtichara grambastii shows distinct affinities with two species of Early Palaeogene deposits of China and Mongolia. The presence of charophyte gyrogonites in the Lameta sediments is attributed to local lacustrine and palustrine conditions within a flood plain environment.

  4. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    NASA Astrophysics Data System (ADS)

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol

    2016-05-01

    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  5. Migrated hydrocarbons in exposure of Maastrichtian nonmarine strata near Saddle Mountain, lower Cook Inlet, Alaska

    USGS Publications Warehouse

    LePain, D.L.; Lillis, P.G.; Helmold, K.P.; Stanley, R.G.

    2012-01-01

    Magoon and others (1980) described an 83-meter- (272-foot-) thick succession of Maastrichtian (Upper Cretaceous) conglomerate, sandstone, mudstone, and coal exposed on the south side of an unnamed drainage, approximately 3 kilometers (1.8 miles) east of Saddle Mountain in lower Cook Inlet (figs. 1 and 2). The initial significance of this exposure was that it was the first reported occurrence of nonmarine rocks of this age in outcrop in lower Cook Inlet, which helped constrain the Late Cretaceous paleogeography of the area and provided important information on the composition of latest Mesozoic sandstones in the basin. The Saddle Mountain section is thought to be an outcrop analog for Upper Cretaceous nonmarine strata penetrated in the OCS Y-0097 #1 (Raven) well, located approximately 40 kilometers (25 miles) to the south–southeast in Federal waters (fig. 1). Atlantic Richfield Company (ARCO) drilled the Raven well in 1980 and encountered oil-stained rocks and moveable liquid hydrocarbons between the depths of 1,760 and 3,700 feet. Completion reports on file with the Bureau of Ocean Energy Management (BOEM; formerly Bureau of Ocean Energy Management, Regulation and Enforcement, and prior to 2010, U.S. Minerals Management Service) either show flow rates of zero or do not mention flow rates. A fluid analysis report on file with BOEM suggests that a wireline tool sampled some oil beneath a 2,010-foot diesel cushion during the fl ow test of the 3,145–3,175 foot interval, but the recorded fl ow rate was still zero (Kirk Sherwood, written commun., January 9, 2012). Further delineation and evaluation of the apparent accumulation was never performed and the well was plugged and abandoned. As part of a 5-year comprehensive evaluation of the geology and petroleum systems of the Cook Inlet forearc basin, the Alaska Division of Geological & Geophysical Surveys obtained a research permit from the National Park Service to access the relatively poorly understood

  6. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Galbrun, Bruno; Gardin, Silvia; Minoletti, Fabrice; Le Callonnec, Laurence

    2016-04-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presence of Milankovitch frequencies and is used for proposal of two distinct orbital age models and to provide ages of important stratigraphic horizons, relative to the age of the Cretaceous-Paleogene boundary (K-PgB). Principal component analysis (PCA) performed on the nannofossil assemblage reveal two main factors, PCA1, mostly representing fluctuations of D. rotatorius, P. stoveri, Lithraphidites spp., Retecapsa spp., Staurolithites spp., Micula spp., and PCA2, mostly representing fluctuations of A. regularis, C. ehrenbergii, Micula spp., Rhagodiscus spp., W. barnesiae and Zeugrhabdotus spp. Variations in PCA1 and PCA2 match changes in bulk δ13C and δ18O, respectively, and suggest changes in surface-water fertility and temperatures and associated stress. The variations in abundances of high-latitude taxa and the warm-water species Micula murus and in bulk δ18O delineate fast changes in sea-surface paleotemperatures. As in many other sites, an end-Maastrichtian greenhouse warming is highlighted, followed by a short cooling and an additional warm pulse in the last 30 kyr of the Maastrichtian which has rarely been documented so far. Orbital tuning of the delineated climatic events is proposed following the two different age models. Calcareous nannofossil assemblages highlight a decrease in surface-water nutriency, but their species richness remains high through the latest Maastrichtian, indicating, in Tunisia, a weak impact of Deccan volcanism on calcareous nannoplankton diversity before the mass extinction.

  7. The Blake Nose Cretaceous-Paleogene (Florida Atlantic margin, ODP Leg 171B): an exemplar record of the Maastrichtian-Danian transition

    USGS Publications Warehouse

    Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, J.G.; Pak, D.K.; Pletsch, T.K.; Self-Trail J.M.; Shackleton, N.J.; Smit, J.; Ussler, W., III; Watkins, D.K.; Widmark, J.; Wilson, P.A.

    1997-01-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  8. Orbit to orbit transportation

    NASA Technical Reports Server (NTRS)

    Bergeron, R. P.

    1980-01-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  9. A new ceratopsian dinosaur from the Javelina Formation (Maastrichtian) of West Texas and implications for chasmosaurine phylogeny.

    PubMed

    Wick, Steven L; Lehman, Thomas M

    2013-07-01

    Bravoceratops polyphemus gen. et sp. nov. is a large chasmosaurine ceratopsid from the lowermost part of the Javelina Formation (early Maastrichtian) of Big Bend National Park, TX, USA. B. polyphemus has a distinctive narrow snout, a long fenestrate frill, and a fan-shaped median parietal bar with a midline epiparietal on its posterior margin, as well as a symmetrical depression on its dorsal surface at the nexus of the parietal rami. This depression is interpreted to be the attachment point for a second midline epiparietal. This parietal morphology is distinct from that exhibited by Anchiceratops or Pentaceratops. The posterior midline epiparietal in B. polyphemus and its bifurcated quadratojugal-squamosal joint are features shared with the most derived chasmosaurines, Torosaurus and Triceratops. The combination of primitive and derived traits exhibited by B. polyphemus, and its stratigraphic position, is compatible with the gradual transition from basal, to intermediate, to derived chasmosaurines observed throughout the western interior of North America, and with phylogenetic analysis, which suggests that Bravoceratops may be closely related to Coahuilaceratops. PMID:23728202

  10. Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ 18O record of continental vertebrates

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Fluteau, Frédéric; Legendre, Serge; Martineau, François

    2004-09-01

    Latitudinal variations in model biogenic apatite δ18O values were calculated using fractionation equations of vertebrates and weighted rainfall δ18O values along with mean annual air temperatures provided by IAEA-WMO meteorological stations. The reference equation obtained was used to compute a continental temperature gradient for the Late Campanian-Middle Maastrichtian interval by using published and new δ18O values of phosphate from vertebrates. Samples are mainly tooth enamel from crocodilians and dinosaurs that lived at paleolatitudes ranging from 83-9+4°N (Alaska) to 32±3°S (Madagascar). The temperature gradient was less steep (0.4±0.1 °C/°latitude) than the present-day one (0.6 °C/°latitude) with temperatures that decreased from about 30 °C near the equator to about -5 °C at the poles. Above 30° of paleolatitude, air temperatures were higher than at present. The validity of these results is discussed by comparison with climatic criteria inferred from paleontological, paleobotanical and sedimentological data. The latitudinal distribution of oxygen isotope compositions of continental vertebrates is potentially a powerful tool for quantifying Mesozoic terrestrial climates.

  11. A new ceratopsian dinosaur from the Javelina Formation (Maastrichtian) of West Texas and implications for chasmosaurine phylogeny

    NASA Astrophysics Data System (ADS)

    Wick, Steven L.; Lehman, Thomas M.

    2013-07-01

    Bravoceratops polyphemus gen. et sp. nov. is a large chasmosaurine ceratopsid from the lowermost part of the Javelina Formation (early Maastrichtian) of Big Bend National Park, TX, USA. B. polyphemus has a distinctive narrow snout, a long fenestrate frill, and a fan-shaped median parietal bar with a midline epiparietal on its posterior margin, as well as a symmetrical depression on its dorsal surface at the nexus of the parietal rami. This depression is interpreted to be the attachment point for a second midline epiparietal. This parietal morphology is distinct from that exhibited by Anchiceratops or Pentaceratops. The posterior midline epiparietal in B. polyphemus and its bifurcated quadratojugal-squamosal joint are features shared with the most derived chasmosaurines, Torosaurus and Triceratops. The combination of primitive and derived traits exhibited by B. polyphemus, and its stratigraphic position, is compatible with the gradual transition from basal, to intermediate, to derived chasmosaurines observed throughout the western interior of North America, and with phylogenetic analysis, which suggests that Bravoceratops may be closely related to Coahuilaceratops.

  12. High-resolution late Maastrichtian early Danian oceanic 87Sr/86Sr record: Implications for Cretaceous-Tertiary boundary events

    NASA Astrophysics Data System (ADS)

    Vonhof, H. B.; Smit, J.

    1997-04-01

    A high-resolution late Maastrichtian early Danian seawater 87Sr/86Sr reference curve is constructed from two Cretaceous-Tertiary boundary (K-T boundary) sections: Bidart (France) and El Kef (Tunisia). The 87Sr/86Sr curve shows maxima at 0.3 0.4 Ma before the K-T boundary and at the K-T boundary. The first maximum could mark the onset of a major outflow of the Deccan Traps. The second maximum, a rapid 0.000 06 87Sr/86Sr, shift, extends from ˜3 4 m below to ˜1 m above the K-T boundary. This profile probably results from diagenetic smoothing of an originally sharp K-T boundary 87Sr/86Sr anomaly, rather than from a gradual process. The sharp shift could result from (1) the vaporization of the Chicxulub target rocks, (2) global wildfires, and (3) acid-rain leaching of soils and sialic surface rocks. Of these three possibilities, only Sr release by soil leaching combined with increased rainfall associated with the K-T event appears to be sufficiently large to produce the observed K-T 87Sr/86Sr anomaly.

  13. The genus Krithe (Ostracoda) from the Campanian and Maastrichtian (Upper Cretaceous) of the northern US Gulf Coastal Plain

    USGS Publications Warehouse

    Puckett, T.M.

    1997-01-01

    The ostracode genus Krithe is one of the most common genera in the Upper Cretaceous (late Santonian to Maastrichtian) deposits of the northern Gulf Coastal Plain of North America. Although it is never abundant, the genus occurs in sediments that were deposited under a wide range of palaeoenvironments, including nearshore sandy marls to offshore, nearly pure, chalk. The taxonomy of this taxon has been problematical, and what is herein considered to be a single species, K. cushmani, has been referred to in the literature under five different names. Two morphotypes were observed: relatively large individuals with 'mushroom'-shaped vestibules collected from chalk, and smaller individuals with pocket-shaped vestibules collected from nearshore deposits. Species of Krithe have been hypothesized to be useful in estimating dissolved oxygen concentration in ancient ocean floors, based on details of their morphology. Whereas the relationship between size and environment corroborates with previous predictions (larger individuals live in deeper water), the morphology of the vestibules contradicts predictions (the larger vestibules occur in the nearshore deposits and the smaller, more constricted vestibules occur in the chalk). A causal relationship between environment and morphology is discussed.

  14. A Comparison of "Ice-House" (Modern) and "Hot-House" (Maastrichtian) Drainage Systems: the Implications of Large-Scale Changes in the Surface Hydrological Scheme

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.; Crossley, R.; Valdes, P. J.

    2002-12-01

    A GIS analysis of modern and Maastrichtian (Late Cretaceous) drainage systems has been made in order to investigate the potential differences between the surface hydrology of "ice-house" and "hot-house" worlds and how this might be reflected in the geological record. Because of the importance of CO2 concentrations for generating "hot-house" climates this study also has implications for potential future changes in the climate system. For the modern system we have utilized global maps of observed river systems, the Hydro1K digital dataset, observations of freshwater and sediment fluxes from recording stations, and modern day climate models and observations. For the Maastrichtian we have compiled a detailed global paleogeographic map and geological database (based on earlier work by the Paleogeographic Atlas Project, University of Chicago) that has been used to generate a paleo-DEM using the suite of hydrological tools in ArcGIS, complete with reconstructed river systems and drainage basins. This forms the primary boundary condition for a coupled ocean-atmosphere experiment using the HadCM3 model, with atmospheric CO2 set at 4 x pre-industrial levels. The results indicate a Maastrichtian world dominated by high sea surface temperatures (as high as 30-35 C in the tropics), and a consequently greatly enhanced hydrological cycle when compared with the Present. Globally, modeled Maastrichtian precipitation and evaporation are 1.5x that for the Present, with a 2.5x increase in total runoff. These changes are not evenly distributed, either spatially or seasonally, and therefore a detailed consideration of the paleogeography and paleo-drainage is essential, as these changes have a major influence on the distribution of vegetation and freshwater and sediment fluxes. For example, the Maastrichtian Tethyan monsoon, though less intense than noted for other modeled Mesozoic intervals, nonetheless dominates the seasonal distribution of precipitation and runoff over Saharan and

  15. Orbital pseudotumor

    MedlinePlus

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  16. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  17. Orbital cellulitis

    MedlinePlus

    ... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...

  18. Survival of Theriosuchus (Mesoeucrocodylia: Atoposauridae) in a Late Cretaceous archipelago: a new species from the Maastrichtian of Romania

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Rabi, Márton; Csiki, Zoltán

    2010-09-01

    Small terrestrial non-eusuchian mesoeucrocodylians are common components of Cretaceous assemblages of Gondwanan provinces with notosuchians and araripesuchids as flagship taxa in South America, Africa and Madagascar, well into the Late Cretaceous. On the other hand, these are exceedingly rare in Laurasian landmasses during the Late Cretaceous. Small terrestrial mesoeucrocodylians from Europe were often referred to the genus Theriosuchus, a taxon with stratigraphic range extending from the Late Jurassic to the late Early Cretaceous. Theriosuchus is abundantly reported from various European localities, although Asiatic and possibly North American members are also known. It has often been closely associated with the first modern crocodilians, members of the Eusuchia, because of the presence of procoelous vertebrae, a widespread key character diagnosing the Eusuchia. Nevertheless, the relationships of Theriosuchus have not been explored in detail although one species, Theriosuchus pusillus, has been extensively described and referred in numerous works. Here, we describe a new basal mesoeucrocodylian, Theriosuchus sympiestodon sp. nov. from the Maastrichtian of the Haţeg Basin, Romania, suggesting a large temporal gap (about 58 myr) in the fossil record of the genus. Inclusion of the new taxon, along with Theriosuchus guimarotae, in a phylogenetic analysis confirms its referral to the genus Theriosuchus, within a monophyletic atoposaurid clade. Although phylogenetic resolution within this clade is still poor, the new taxon appears, on morphological grounds, to be most closely related to T. pusillus. The relationships of Atoposauridae within Mesoeucrocodylia and especially to Neosuchia are discussed in light of the results of the present contribution as well as from recent work. Our results raise the possibility that Atoposauridae might not be regarded as a derived neosuchian clade anymore, although further investigation of the neosuchian interrelationships is needed

  19. Paleocene and Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the northern James Ross Basin, western Weddell Sea, Antarctica

    USGS Publications Warehouse

    Kulhanek, D.K.

    2007-01-01

    Site NBP0602A-9, drilled during the SHALDRIL II cruise of the RV/IB Nathaniel B. Palmer, includes two holes located in the northern James Ross Basin in the western Weddell Sea, very close to the eastern margin of the Antarctic Peninsula. Sediment from both holes consists of very dark grey, pebbly, sandy mud, grading to very dark greenish grey, pebbly, silty mud in the lower 2.5 m of the second hole. In addition to abundant pebbles found throughout the cores, both holes contain numerous sedimentary clasts. Biostratigraphic analysis of diatom assemblages from the glaciomarine muds yields rare to few, poorly preserved diatoms. The mixed assemblage consists mostly of extant species, but also includes reworked taxa that range to the Miocene. The absence of Rouxia spp., however, suggests the sediment is late Pleistocene in age. The sedimentary clasts, on the other hand, are nearly barren of diatoms, but contain rare, moderately to well-preserved calcareous nannofossils. The clasts contain three distinct assemblages. Two clasts are assigned an early Maastrichtian age based on the presence of Biscutum magnum and Nephrolithus corystus, while one clast yields a late Maastrichtian age based on the presence of Nephrolithus frequens. These samples also contain other characteristic Late Cretaceous species, including Biscutum notaculum, Cribrosphaerella daniae, Eiffellithus gorkae, Kamptnerius magnificus, and Prediscosphaera bukryi. Two samples yield an early Paleocene assemblage dominated by Hornibrookina teuriensis. The Maastrichtian assemblages are similar to those found in the López de Bertodano Formation on Seymour and Snow Hill Islands, making it the likely source area for the Cretaceous clast material. Although no calcareous nannofossils have been reported from Paleocene formations on these islands, the occurrence of calcareous foraminifers suggests other calcareous plankton may be present; thus the Paleocene clasts likely also originated from the Seymour Island area.

  20. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  1. A new species of Allodaposuchus (Eusuchia, Crocodylia) from the Maastrichtian (Late Cretaceous) of Spain: phylogenetic and paleobiological implications.

    PubMed

    Blanco, Alejandro; Fortuny, Josep; Vicente, Alba; Luján, Àngel H; García-Marçà, Jordi Alexis; Sellés, Albert G

    2015-01-01

    Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single specimen attributed to Allodaposuchus, represented by both cranial and postcranial remains, from the Casa Fabà site (Tremp Basin, NE Spain) in the lower red unit of the Tremp Fm. (early Maastrichtian, Late Cretaceous) offers a unique opportunity to deepen in the phylogenetic relationships of the group and its ecological features. Methods. The specimen is described in detail, and CT scan of the skull is performed in order to study the endocranial morphology as well as paratympanic sinuses configuration. In addition, myological and phylogenetic analyses are also carried out on the specimen for to shed light in ecological and phylogenetic issues, respectively. Results. The specimen described herein represents a new species, Allodaposuchus hulki sp. nov., closely related to the Romanian A. precedens. The CT scan of the skull revealed an unexpected paratympanic sinuses configuration. Allosaposuchus hulki exhibits an "anterodorsal tympanic sinus" not observed in any other extant or extinct crocodilian. The caudal tympanic recesses are extremely enlarged, and the expanded quadratic sinus seems to be connected to the middle-ear channel. Phylogenetic analyses confirm the emplacement of the informal taxonomic group 'Allodaposuchia' at the base of Crocodylia, being considered the sister group of Borealosuchus and Planocraniidae. Discussion. Although this is a preliminary hypothesis, the unique paratympanic configuration displayed by A. hulki suggests that it could possess a high

  2. Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Cronholm, Anders; Schmitz, Birger

    The distribution of sediment-dispersed extraterrestrial (ordinary chondritic) chromite (EC) grains (>63 μm) has been studied across the latest Maastrichtian and Paleocene in the Bottaccione Gorge section at Gubbio, Italy. This section is ideal for determining the accumulation rate of EC because of its condensed nature and well-constrained sedimentation rates. In a total of 210 kg of limestone representing eight samples of 14-28 kg distributed across 24 m of the Bottaccione section, only 6 EC grains were found (an average of 0.03 EC grains kg-1). In addition, one probable pallasitic chromite grain was found. No EC grains could be found in two samples at the Cretaceous-Tertiary (K-T) boundary, which is consistent with the K-T boundary impactor being a carbonaceous chondrite or comet low in chromite. The average influx of EC to Earth is calculated to ˜0.26 grain m-2 kyr-1. This corresponds to a total flux of ˜200 tons of extraterrestrial matter per year, compared to ˜30,000 tons per year, as estimated from Os isotopes in deep-sea sediments. The difference is explained by the EC grains representing only unmelted ordinary chondritic matter, predominantly in the size range from ˜0.1 mm to a few centimeters in diameter. Sedimentary EC grains can thus give important information on the extent to which micrometeorites and small meteorites survive the passage through the atmosphere. The average of 0.03 EC grain kg-1 in the Gubbio limestone contrasts with the up to ˜3 EC grains kg-1 in mid-Ordovician limestone that formed after the disruption of the L chondrite parent body in the asteroid belt at ˜470 Ma. The two types of limestone were deposited at about the same rate, and the difference in EC abundance gives support for an increase by two orders of magnitude in the flux of chondritic matter directly after the asteroid breakup.

  3. A new species of Allodaposuchus (Eusuchia, Crocodylia) from the Maastrichtian (Late Cretaceous) of Spain: phylogenetic and paleobiological implications

    PubMed Central

    Blanco, Alejandro; Fortuny, Josep; Vicente, Alba; Luján, Àngel H.; García-Marçà, Jordi Alexis

    2015-01-01

    Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single specimen attributed to Allodaposuchus, represented by both cranial and postcranial remains, from the Casa Fabà site (Tremp Basin, NE Spain) in the lower red unit of the Tremp Fm. (early Maastrichtian, Late Cretaceous) offers a unique opportunity to deepen in the phylogenetic relationships of the group and its ecological features. Methods. The specimen is described in detail, and CT scan of the skull is performed in order to study the endocranial morphology as well as paratympanic sinuses configuration. In addition, myological and phylogenetic analyses are also carried out on the specimen for to shed light in ecological and phylogenetic issues, respectively. Results. The specimen described herein represents a new species, Allodaposuchus hulki sp. nov., closely related to the Romanian A. precedens. The CT scan of the skull revealed an unexpected paratympanic sinuses configuration. Allosaposuchus hulki exhibits an “anterodorsal tympanic sinus” not observed in any other extant or extinct crocodilian. The caudal tympanic recesses are extremely enlarged, and the expanded quadratic sinus seems to be connected to the middle-ear channel. Phylogenetic analyses confirm the emplacement of the informal taxonomic group ‘Allodaposuchia’ at the base of Crocodylia, being considered the sister group of Borealosuchus and Planocraniidae. Discussion. Although this is a preliminary hypothesis, the unique paratympanic configuration displayed by A. hulki suggests that it could possess a high

  4. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  5. Orbital cellulitis.

    PubMed Central

    Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B

    1992-01-01

    Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488

  6. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  7. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  8. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  9. Paleoenvironmental interpretation of an ancient Arctic coastal plain: Integrated paleopedology and palynology from the Late Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA

    NASA Astrophysics Data System (ADS)

    McCarthy, P. J.; Flaig, P. P.; Fiorillo, A. R.

    2010-12-01

    The Cretaceous (Early Maastrichtian), dinosaur-bearing Prince Creek Formation, North Slope, Alaska, records high-latitude, alluvial sedimentation and soil formation on a low-lying, coastal plain during a greenhouse phase in Earth history. This study combines outcrop observations, micromorphology, geochemistry, and palynological analyses of paleosols in order to reconstruct local paleoenvironments of weakly developed, high-latitude coastal plain soils. Sediments of the Prince Creek Fm. include quartz- and chert-rich sandstone channels, and floodplains containing organic-rich siltstone and mudstone, carbonaceous shale, coal and ashfall deposits. Vertically stacked horizons of blocky-to-platy, drab-colored mudstone and siltstone with carbonaceous root-traces and mottled aggregates alternating with sandy units indicate that the development of compound and cumulative, weakly-developed soils on floodplains alternated with overbank alluviation and deposition on crevasse splay complexes on floodplains . Soil formation occurred on levees, point bars, crevasse splays and along the margins of floodplain lakes, ponds, and swamps. Soil-forming processes were interrupted by repeated deposition of sediment on top of soil profiles by flooding of nearby channels. Alluviation is evidenced by thin (<0.5 m) sand and silt horizons within soil profiles, along with common pedorelicts, papules, and fluctuations with depth in a variety of molecular ratios. Carbonaceous organic matter and root-traces, Fe-oxide depletion coatings, and zoned peds suggest periodic waterlogging, anoxia and gleying. In contrast, Fe-oxide mottles, ferruginous and manganiferous segregations, burrows, and rare illuvial clay coatings suggest recurring oxidation and periodic drying out of some soils. Jarosite mottles and halos, and rare pyrite and gypsum found in some distal paleosols implies a marine influence at the distal margins of the coastal plain. Biota including Peridinioid dinocysts, brackish and freshwater

  10. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  11. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  12. Amphibian, reptilian, and avian remains from the Fox Hills Formation (Maastrichtian): Shoreline and estuarine deposits of the Pierre Sea in south-central North Dakota

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.; Holland, F.D., Jr.

    2007-01-01

    Although vertebrate fossils, except for fish, are not common in the Maastrichtian Fox Hills Formation, amphibian, reptilian, and avian remains have been recovered at several localities in south-central North Dakota from shoreline facies of the retreating Pierre-Fox Hills seaway. This mixed fauna of aquatic, terrestrial, and marine taxa provides insight into the composition of coastal communities and habitats at the interface between the Hell Creek delta and the Western Interior Seaway. The delta-platform aquatic paleocommunity is represented by the efficient swimming salamanders Opistho- trition kayi and Lisserpeton bairdi, the carnivorous soft-shelled turtle "Aspideretes" sensu lato, the underwater piscivorous predator Champsosaurus laramiensis, and the large, predatory crocodile IBorealosuchus. Terrestrial areas were inhabited by the tortoise-like Basilemys and the predatory dinosaurs Tyrannosaurus and cf. Saurornit- holestes. Birds occupied niches in the warm-temperate to subtropical, forested delta platform and shoreline areas. These nonmarine taxa in the Fox Hills Formation indicate that the geographic range of these animals extended to shoreline areas of the Western Interior Seaway. The toxochelyid turtle Lophochelys and the ambush predators Mosasaurus dekayi and IPlioplatecarpus resided in the shallow marine and estuarine habitats. These taxa and marine fish taxa reported earlier indicate that normal marine conditions in south- central North Dakota persisted into the latest Late Cretaceous in comparison with coeval Hell Creek Formation sites more distal from the Western Interior Seaway. ?? 2007 The Geological Society of America. All rights reserved.

  13. Absolute paleobathymetry of Upper Cretaceous chalks based on ostracodes - Evidence from the Demopolis Chalk (Campanian and Maastrichtian) of the northern Gulf Coastal Plain

    SciTech Connect

    Puckett, T.M. )

    1991-05-01

    The presence of abundant and diverse sighted ostracodes in chalk and marl of the Demopolis Chalk (Campanian and Maastrichtian) in Alabama and Mississippi strongly suggests that the Late Cretaceous sea floor was within the photic zone. The maximum depth of deposition is calculated from an equation based on eye morphology and efficiency and estimates of the vertical light attenuation. In this equation, K, the vertical light attenuation coefficient, is the most critical variable because it is the divisor for the rest of the equation. Rates of accumulation of coccoliths during the Cretaceous are estimated and are on the same order as those in modern areas of high phytoplankton production, suggesting similar pigment and coccolith concentrations in the water column. Values of K are known for a wide range of water masses and pigment concentrations, including areas of high phytoplankton production; thus light attenuation through the Cretaceous seas can be estimated reliably. Waters in which attenuation is due only to biogenic matter-conditions that result in deposition of relatively pure chalk-have values of K ranging between 0.2 and 0.3. Waters rich in phytoplankton and mud-conditions that result in deposition of marl-have K values as great as 0.5. Substituting these values for K results in depth range of 65 to 90 m for deposition of chalk and depth of 35 m for deposition of marl. These depth values suggest that deposition of many Cretaceous chalks and marls around the world were deposited under relatively shallow conditions.

  14. Hemipelagic cephalopods from the Maastrichtian (late Cretaceous) Parras Basin at La Parra, Coahuila, Mexico, and their implications for the correlation of the lower Difunta Group

    NASA Astrophysics Data System (ADS)

    Ifrim, Christina; Stinnesbeck, Wolfgang; Garza, Rufino Rodríguez; Ventura, José Flores

    2010-04-01

    Few biostratigraphic data exist from the Parras and La Popa basins, mainly due to the absence of index fossils. This paper describes 19 ammonoid species from 15 genera and 1 nautilid from La Parra, southeastern Coahuila, Mexico. The assemblage consists of Tethyan [( Baculites ovatus, Brahmaites ( Anabrahmaites) vishnu, Fresvillia constricta, Hauericeras rembda, Pachydiscus ( P.) ex gr. neubergicus, Solenoceras reesidei, Tetragonites cf. superstes], cosmopolitan ( Anagaudryceras politissimum, Desmophyllites diphylloides, Diplomoceras cylindraceum, Gaudryceras kayei, Phyllopachyceras forbesianum, Pseudophyllites indra), and cold water taxa [ Fresvillia teres, Hypophylloceras ( Neophylloceras) surya, H. ( N.) hetonaiense, Pachydiscus ( P.) cf. egertoni]. Eutrephoceras sp. and Menuites juv. sp. were not determined to species level. A similar assemblage was recently described from the coeval Méndez Formation at Cerralvo, Nuevo León. Species endemic to North America, particularly the Western Interior Seaway, are absent at La Parra. The ammonoid assemblage and associated planktonic foraminifers allow for precise biostratigraphic assignation to the early Maastrichtian planktonic foraminiferal zone CF 5, and thus provide an important marker level for correlation of the lower Difunta Group. The new biostratigraphic data presented herein allow for the first time precise dating of the Cañon del Tule Formation of the Difunta Group. Their combination with existing sequence- and magnetostratigraphic data improve the correlation of the lower Difunta Group with time-equivalent lithostratigraphic units such as the Cárdenas Formation in Mexico. They also provide new insight into ammonoid migration patterns induced by sea-level changes. Baculites ovatus migrated into the La Popa Basin as a result of the sea-level highstand documented at La Parra.

  15. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  16. Did tropical rainforest vegetation exist during the Late Cretaceous? New data from the late Campanian to early Maastrichtian Olmos Formation, Coahuila, Mexico.

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Estrada-Ruiz, E.; Cevallos-Ferriz, S. S.

    2008-12-01

    A major problem in paleobotany and paleoclimatology is the origin of modern tropical and paratropical rainforests. Studies of leaf macrofossils, beginning with those of Wolfe and Upchurch, have suggested that tropical and paratropical (i.e., megathermal) rainforests with dominant angiosperms are of Cenozoic origin, and that comparable vegetation was either absent or greatly restricted during the Late Cretaceous. Earth System modeling studies, in contrast, predict the existence of megathermal rainforest vegetation during the mid- and Late Cretaceous, though with less areal extent than during the Late Cenozoic and Recent. Megathermal climate with year-round precipitation is simulated along the paleoequator and along the northern margin of the Tethys Ocean, and tends to occur in highly focused regions, in contrast to the more latitudinally zoned pattern of the Recent. Low-resolution climatic indicators, such as the distribution of coals and tree fern spores, are consistent with evidence from climate modeling for megathermal wet climates during the Late Cretaceous, and by extension megathermal rainforest vegetation. However, corroborative data from plant macrofossil assemblages is needed, because the physiognomy of leaves and woods directly reflects plant adaptation to the environment and can estimate climate independently of the generic and familial affinities of the paleoflora. Newly collected plant macrofossil assemblages from the late Campian to early Maastrichtian Olmos Formation of Coahuila, Mexico, provide evidence for megathermal rainforest vegetation on the northern margin of the Tethys Ocean at approximately 35 degrees paleolatitude. The newly collected leaf flora is 72 percent entire- margined and has abundant palms, features typical of modern megathermal rainforests. Thirty percent of the species have large leaves, and 50 percent of the species have drip tips, features indicative of wet conditions. Simple and multiple regression functions based on the

  17. Stable isotope (C and N) and sedimentary facies analyses of the Cantwell Formation, Denali National Park, Alaska as indicators of Maastrichtian paleoenvironment

    NASA Astrophysics Data System (ADS)

    Salazar Jaramillo, S.; Fowell, S. J.; Wooller, M. J.; Mccarthy, P. J.; Benowitz, J.

    2012-12-01

    Sedimentary facies and stable isotope analyses of Lower Cantwell Formation outcrops on the East Fork of the Toklat River in Denali National Park, Alaska, reveal a correlation between positive δ13C excursions and carbonaceous facies. 238U/206Pb zircon dating of a bentonite layer from our measured sections yields a crystallization age of 69.5 ± 0.69 Ma, indicating that dinosaur tracks identified in this part of the Cantwell Formation are of early Maastrichtian age. This date establishes the coeval nature of dinosaur bones from the Prince Creek Formation on Alaska's North Slope, allows reconstruction of Late Cretaceous climate gradients, and brackets the age of the Lower Cantwell-Upper Cantwell unconformity (~69 Ma to ~60 Ma) linked to the final docking of the Wrangell Composite Terrane. The Late Cretaceous Cantwell Formation is composed of nonmarine sandstone, siltstone, shale, carbonaceous mudstone and, locally, weakly developed paleosols. Facies associations are interpreted as levees, crevasse channels, crevasse splays, and floodplains, which were part of an anastomosed river system. δ13C, δ15N, C/N and TOC values of bulk organic matter were measured in order to reconstruct the local paleoenvironment and facilitate chemostratigraphic correlation with dinosaur-bearing strata on Alaska's North Slope. C/N ratios fall between 5 and 33, indicating that the organic matter is likely comprised of terrestrial plants and lacustrine algae. Throughout the 123 m section, δ13C values of bulk organic matter from sandstone, siltstone, and shale range between -27.1 and -24.9‰. Wood fragments and bulk organic samples from carbonaceous mudstone have higher TOC values and more positive δ13C values, ranging from -24.1 to -22.4‰. Positive δ13C excursions could reflect one or a combination of: 1) changes in composition of the vegetation (e.g., conifers vs. more mixed organic matter); 2) changes in sources of organic material (lacustrine vs. terrestrial); 3) changes in past

  18. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  19. Preliminary orbital parallax catalog

    NASA Technical Reports Server (NTRS)

    Halliwell, M.

    1981-01-01

    The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.

  20. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  1. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  2. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  3. Orbital Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Kehoe, T. J. J.

    2011-10-01

    The synthetic orbital frequencies and eccentricities of main belt asteroids computed by Knezevic and Milani [2] show evidence that the structure of the asteroid belt has been determined by a dense of web of high-order resonances. By examining the orbital frequency distribution at high resolution, we discover a correlation between asteroid number density, mean orbital eccentricity and Lyapunov Characteristic Exponent. In particular, the orbital eccentricities of asteroids trapped in resonance tend to be higher than those of non-resonant asteroids and we argue that this is observational evidence for orbital evolution due to chaotic diffusion.

  4. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  5. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  6. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  7. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  8. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  9. Early diagenetic stabilization of trace elements in reptile bone remains as an indicator of Maastrichtian Late Paleocene climatic changes: evidence from the Naran Bulak locality, the Gobi Desert (South Mongolia)

    NASA Astrophysics Data System (ADS)

    Samoilov, V. S.; Benjamini, Ch.; Smirnova, E. V.

    2001-08-01

    Maastrichtian dinosaur bone remains from the Naran Bulak locality (the Gobi Desert) with well-preserved bone textural features are enriched in some trace elements, primarily in REE. These features of vertebrate fossils were formed during diagenesis following rapid burial in mudflow sediments, and prior to postfossilization epigenetic changes. Trace elements are mainly concentrated in diagenetic apatite. Their contents in the bones correlate with that in their enclosing sediments for both maxima and minima. Fossil and sediment compositions were established under the influence of paleoclimate. They are correlated with long-term climatic changes with the aridity maximum at the K/T boundary. Climatic changes were recorded via the change of salinity of waters interacting with the buried vertebrate remains.

  10. Revised Stratigraphy of The Nallıhan-Dudaş (Beypazarı) Area and Significance of the Campanian-Maastrichtian Reef Occurrences Based on the Foraminiferal and Rudist Data

    NASA Astrophysics Data System (ADS)

    Görmüş, Muhittin; Sami Us, Muhammed; Özer, Sacit; Tekin, Erdoǧan; Akpınar, Serap; Kabakcı, Büşra

    2016-04-01

    Transgressive to regressive succession of the Cretaceous Period and Cretaceous Paleogene boundary from the Nallıhan-Beypazarı area have significant data to interpret the past geological history of northwestern Turkey. In the literature, main scientific differences are seen on the formation/lithodem names, their ages, contact relations and environmental interpretations. In the study, a revision has been made for a proper stratigraphy of the area. For the revised stratigraphy, the obtained results from our field and laboratory works and the literature information were used. The following stratigraphy were established from basement to top: the Permo-Triassic aged Sekli metamorphics, Jurassic to lower Cretaceous Soǧukçam formation, Campanian to Maastrichtian aged Dereköy Group-Haremiköy conglomerates, Çeǧiköy reefs, Nardin formation (Seben formation), Taraklı formation; the Paleogene aged Kızılçay group including Kızılbayır formation, Karaköy volcanoclastics, Selvipınar limestone, the Miocene-Pliocene terrestrial sediments, Çoraklar formation, Hırka formation, Akpınar formation, Çayırhan formation, Teke volkanics, Bozbelen formation, Kirmir formation. The main unconformities are between Jura and Campanian, Maastrichtian and Paleogene, Eocene and Miocene times. Among the geological units, the Çeǧiköy reefs having rich rudist fauna overlie the Haremiköy conglomerates in both sides at the north-Yeşilyurt village and at the south-Gökçeöz village. Another outcrop, Emincik is between two mentioned villages. Biohermal reefs mainly includes very rich rudists up to 40 centimetres in size around the Yeşilköy such as: Pironaea polystyla, Vaccinites loftusi, Hippurites sublaevis. Larger foraminifera Orbitoides medius, O. apiculatus, Siderolites calcitrapoides, Pseodosiderolites vidali are also common in the fore reef areas. Around the Gökçeöz at the south part, the identified rudists are as follows: Vaccinites sp., Hippurites aff. sublaevis

  11. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  12. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  13. Marned Orbital Systems Concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.

  14. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  15. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  16. Orbital physics in RIXS

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Krzysztof; Marra, Pasquale; Grueninger, Markus; Schmitt, Thorsten; van den Brink, Jeroen

    2013-03-01

    In contrast to magnetism, phenomena associated with the orbital degrees of freedom in transition metal oxides had always been considered to be very difficult to observe. However, recently resonant inelastic x-ray scattering (RIXS) has established itself as a perfect probe of the orbital excitations and orbital order in transition metal oxides. Here we give a brief overview of these recent theoretical and experimental advances which have inter alia led to the observation of the separation of the spin and orbital degree of freedom of an electron.

  17. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  18. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  19. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  20. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  1. Orbital preservation in maxillectomy.

    PubMed

    Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P

    1993-07-01

    Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956

  2. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  3. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  4. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  5. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  6. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  7. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  8. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  9. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  10. Working in orbit and beyond

    SciTech Connect

    Lorr, D.B. ); Garshnek, V. ); Cadoux, C. )

    1989-01-01

    This book contains papers presented at a conference on the challenges for space medicine. Topics covered include radiation hazards in low earth orbit, polar orbit, geosynchronous orbit, and deep space.

  11. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  12. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  13. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  14. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  15. Space Shuttle Orbiter ECLSS.

    NASA Technical Reports Server (NTRS)

    Stoll, O. T.; Laubach, G. E.; Gibb, J. W.

    1973-01-01

    The Orbiter Environmental Control and Life Support System (ECLSS) provides the functions of atmosphere revitalization, crew life support, active thermal conditioning, and airlock support for EVA and docking activities. The ECLSS must satisfy the requirements of orbital missions with four to ten crewmembers and mission duration of a few hours to 30 days and the requirements associated with an atmospheric horizontal flight test program and ferry flight missions. The ECLSS development plan utilizes an ECLSS ground test article and thermal/vacuum testing to support the first horizontal flight test at the end of 1976. The ground testing and horizontal flight test program certify the Orbiter ECLSS for the first orbital flight in early 1978.

  16. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  17. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  18. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  19. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  20. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  1. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  2. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  3. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  4. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  5. The Exoplanet Orbit Database

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2011-04-01

    We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.

  6. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  8. The orbits in cancer imaging

    PubMed Central

    Chong, V F H

    2006-01-01

    Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076

  9. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  10. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  11. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  12. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  13. Spin-Orbit Caloritronics

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien; Ndiaye, Papa Birame; Moon, Jung-Hwan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2014-03-01

    Utilizing spin-orbit coupling to enable the electrical manipulation of ferromagnets has recently attracted a considerable amount of interest. This spin-orbit torque appears in magnetic systems displaying inversion symmetry breaking. Another adjacent emerging topic, spin caloritronics, aims at exploiting magnonic spin currents driven by temperature gradients, allowing for the transmission of information and the control of magnetic domain walls. In this work, we demonstrate that a magnon flow generates torques on the local magnetization when subjected to Dzyaloshinskii-Moriya interaction (DMI) just as an electron flow generates torques when submitted to Rashba interaction. A direct consequence is the capability to control the magnetization direction of a homogeneous ferromagnet by applying a temperature gradient or local RF excitations. Merging the spin-orbit torques with spin caloritronics is rendered possible by the emergence of DMI in magnetic materials and opens promising avenues in the development of chargeless information technology.

  14. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  15. Orbital Superstructures in Spinels

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2006-03-01

    Orbital degrees of freedom often lead to specific types of orbital and spin ordering. Complicated and interesting superstructures are observed in B-sublattice of spinels. This is connected with the geometric frustration of this lattice and with the interconnection of edge-sharing MO6 octahedra, which is especially important for transition metals with partially-filled t2g levels. In some such systems (MgTi2O4, CuIr2S4, AlV2O4) there appears strange superstructures with the formation of spin gap states. In other cases (ZnV2O4) structural transitions, apparently connected with orbital ordering, are followed by long-range magnetic ordering. Last but not least, the famous Verwey transition in magnetite Fe3O4 leads to a very complicated structural pattern, accompanied by the appearance of ferroelectricity. In this talk I will discuss all these examples, paying main attention to an interplay of charge, spin and orbital degrees of freedom. In particular, for MgTi2O4, and CuIr2S4 we proposed the picture of orbitally-driven Peierls state [1]. Similar phenomenon can also explain situation in ZnV2O4 [2], although the corresponding superstructure has not yet been observed experimentally. Finally, I propose the model of charge and orbital ordering in magnetite [3], which uses the idea of an interplay of site- and bond-centered ordering [4] and which seems to explain both the structural data and the presence of ferroelectricity in Fe3O4 below Verwey transition. [1] D.I.Khomskii and T.Mizokawa, Phys.Rev.Lett. 94, 156402 (2005); [2] Hua Wu, T.Mizokawa and D.I.Khomskii, unpublished; [3] D.I.Khomskii, unpublished; [4] D.V.Efremov, J.van den Brink and D.I.Khomskii, Nature Mater. 3, 853 (2004)

  16. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  17. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  18. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  19. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  20. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  1. Orbital correlation of space objects based on orbital elements

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan

    2016-03-01

    Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.

  2. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  3. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  4. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  5. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  6. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  7. Kaguya Orbit Determination from JPL

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.

    2008-01-01

    Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.

  8. Orbital hemorrhage and eyelid ecchymosis in acute orbital myositis.

    PubMed

    Reifler, D M; Leder, D; Rexford, T

    1989-02-15

    We examined two patients with acute orbital myositis associated with orbital hemorrhage and eyelid ecchymosis. Both patients were young women (aged 22 and 30 years) who had painful proptosis, diplopia, and computed tomographic evidence of single extraocular muscle involvement with spillover of inflammatory edema into the adjacent orbital fat. Patient 1 showed contralateral preseptal eyelid inflammation and did not suffer an orbital hemorrhage until after an episode of vomiting. In Patient 2, the diagnosis of occult orbital varix was initially considered but an orbital exploration and a biopsy specimen showed no vascular anomaly. Both patients were treated successfully with high-dose systemic corticosteroids. Some cases of idiopathic orbital inflammation may be related to preexisting vascular anomalies or orbital phlebitis. PMID:2913803

  9. Single Frequency GPS Orbit Determination for Low Earth Orbiters

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Wu, Sien-Chong

    1996-01-01

    A number of missions in the future are planning to use GPS for precision orbit determination. Cost considerations and receiver availability make single frequency GPS receivers attractive if the orbit accuracy requirements can be met.

  10. Unusual sclerosing orbital pseudotumor infiltrating orbits and maxillofacial regions.

    PubMed

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  11. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    PubMed Central

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  12. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  13. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  15. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  16. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  17. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  18. Management of complex orbital fractures.

    PubMed

    Bhatti, N; Kanzaria, A; Huxham-Owen, N; Bridle, C; Holmes, S

    2016-09-01

    The treatment of orbital injuries has evolved considerably over the last two decades. We describe strategies involved in the emergency management of orbital injuries, the use of imaging, preformed and customised materials for reconstruction, and endoscopic techniques. PMID:27268464

  19. Orbiter based construction equipment

    NASA Technical Reports Server (NTRS)

    Goodwin, C. J.

    1982-01-01

    Many orbiter based activities need equipment to hold a payload steady while it is being worked on. This work may be construction, updating, repair, services, check out, or refueling operations in preparation for return to Earth. The Handling and Positioning Aid (HPA) is intended for use as general purpose equipment. The HPA provides a wide choice of work station positions, both immediately above the orbiter cargo bay and beyond. It can act in a primary docking role and, if required, can assist actively in the berthing process. From an analysis of ten reference missions, it was determined that two types of HPA mobility are needed; a tilt table, which simply swings out of the cargo bay, pivoting about an athwartships y axis, and an articulated arm. Illustration of the aid are provided.

  20. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  1. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

  2. On-orbit coldwelding

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1991-01-01

    Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.

  3. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite

    NASA Astrophysics Data System (ADS)

    Soliman, Mamdouh F.; El Goresy, Ahmed

    2012-08-01

    The upper Maastrichtian organic-rich sediments studied at Gabal Oweina, Egypt, are moderately enriched in syngenetic and diagenetic pyrite. Pyrite occurs mostly as layers or bands, group of lamina, lenses, diagenetic intercalated pockets, burrow fills and disseminated individual pyrite framboids and crystals within the host sediments. The pyritic thin bands and lamina consist mostly of unconsolidated to compact-oriented pyrite (oriented along the bedding planes) in gypsiferous-clayey matrix and less common as poorly oriented pyrite crystallites. In several cases, pyrite crystals of the latter type depict zoning, fracturing and micro-concretions. Pyritic burrow fills are composed mainly of pyrite, phosphatic ooids, microfossils, glauconitic grains, poorly graphitized carbon and native sulfur. Pyrite replaces minerals other than gypsum, sulfur or carbon. It also replaces microfossils thus turning some of the phosphatic ooids and microfossils to pyritized pseudomorphs. None of the studied phosphate ooids or framboids contains any mackinawite, pyrrhotite or greigite. Based on the microscopic and SEM observations of the micro-textures of disseminated pyrite found at Gabal Oweina section, four morphological forms of primary pyrite could be identified: (1) Grouped multiple-framboids; (2) Individual framboids; (3) Pyrite idiomorphic crystal overgrowths on framboids and (4) Single and aggregates of euhedral pyrite crystals. The multiple-framboid formation may have emerged from three successive processes: nucleation and growth of individual aggregates of the microcrystals to form combined micro-framboids (the growth of framboids); and followed by grouping of the several pyrite framboids. Direct pyrite nucleation (shell formation), crystallization, and aggregation processes might complete a single framboid. The disseminated single and aggregated euhedral pyrite crystals bear evidence indicating that their formation was via nucleation and growth of pyrite crystallites and

  4. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  5. [Echinococcosis of the orbit].

    PubMed

    Staindl, O; Krenkel, C

    1985-09-01

    A 5 year old girl with an echinococcuscyst in the right orbit is reported. The final diagnosis was made by removal of the cyst. A second cyst was found in the liver. The epidemiology, clinical and diagnostic problems of echinococcosis are reviewed. Radical surgery is still the only reliable treatment. For inoperable cases chemotherapy with Mebendazol seems promising. Many problems of chemotherapy remain to be solved and Mebendazol therapy is still in an experimental stage. PMID:4077595

  6. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  7. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  8. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  9. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  10. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  11. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  12. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  13. Orbiter OMS and RCS technology

    NASA Technical Reports Server (NTRS)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  14. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  15. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  16. Earth Co-orbital Objects

    NASA Astrophysics Data System (ADS)

    Wiegert, P.; Connors, M.; Chodas, P.; Veillet, C.; Mikkola, S.; Innanen, K.

    2002-12-01

    The recent discovery of asteroid 2002 AA29 by the LINEAR survey and the realization of its co-orbital relationship with Earth lead us to consider the characteristics of Earth Co-orbital Objects (ECOs) in general. An object with semimajor axis between 0.99 and 1.01 AU is in 1:1 resonance with the Earth. To be co-orbital in the sense of moving along the Earth's orbit, an object must further have its other orbital parameters similar to those of the Earth. Clarification is needed as to what range of orbital parameters can be regarded as similar enough to permit classification as an ECO. ECOs would be expected to librate on tadpole or horseshoe orbits, be relatively easy to access with spacecraft, and to sometimes exhibit quasisatellite behavior. 2002 AA29 is on a horseshoe orbit and was discovered in a general asteroid survey while near Earth at one end of the horseshoe orbit. Searches for Earth Trojan asteroids, which would be members of the ECO class on tadpole orbits near a triangular Lagrange Point, have not yet been successful. While 2002 AA29 has an orbit even less eccentric than Earth's, it has an inclination of about 10 degrees. 2000 PH5 and 2001 GO2 are on horseshoe orbits and interact gravitationally with Earth to 'bounce' when they approach the Earth from either side. With eccentricities of .23 and .17 respectively, they do not have decidedly Earth-like orbits despite inclinations less that 5 degrees. When in quasi-satellite mode, a body exhibits a looping motion relative to Earth in some ways resembling a satellite orbit. Several resonant bodies including 3753 Cruithne exhibit this behavior at times, but ECOs remain close to Earth while doing it. We suggest that directed searches be used to discover ECOs and characterize this class of objects. Orbital simulations suggest the best target spaces, which are only partially covered by present general searches.

  17. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  18. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  19. Lunar Prospector Orbit Determination Results

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Concha, Marco

    1998-01-01

    The orbit support for Lunar Prospector (LP) consists of three main areas: (1) cislunar orbit determination, (2) rapid maneuver assessment using Doppler residuals, and (3) routine mapping orbit determination. The cislunar phase consisted of two trajectory correction maneuvers during the translunar cruise followed by three lunar orbit insertion burns. This paper will detail the cislunar orbit determination accuracy and the real-time assessment of the cislunar trajectory correction and lunar orbit insertion maneuvers. The non-spherical gravity model of the Moon is the primary influence on the mapping orbit determination accuracy. During the first two months of the mission, the GLGM-2 lunar potential model was used. After one month in the mapping orbit, a new potential model was developed that incorporated LP Doppler data. This paper will compare and contrast the mapping orbit determination accuracy using these two models. LP orbit support also includes a new enhancement - a web page to disseminate all definitive and predictive trajectory and mission planning information. The web site provides definitive mapping orbit ephemerides including moon latitude and longitude, and four week predictive products including: ephemeris, moon latitude/longitude, earth shadow, moon shadow, and ground station view periods. This paper will discuss the specifics of this web site.

  20. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  1. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  2. Mars orbits with daily repeating ground traces

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Kerridge, Stuart; Diehl, Roger; neelon, Joseph; Ely, Todd; Turner, Andrew

    2003-01-01

    This paper derives orbits at Mars with ground traces that repeat at the same times every solar day (sol). A relay orbiter in such an orbit would pass over insitu probes at the same times every sol, ensuring consistent coverage and simplifying mission design and operations. 42 orbits in five classes are characteried: 14 cicular equatorial prograde orbits; 14 circular equatorial retrograde orbits; 11 circular sun synchrounous orbits; 2 eccentroc equatorial orbits; 1 eccentric critcally inclined orbit. the paper reports on the performance of a relay orbiter in some of the orbits.

  3. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  4. [Ganglioneuroblastoma of the orbit].

    PubMed

    Dhermy, P; Sekkat, A; Moussaoui, M; Bellakhdar, N; Haye, C; Charlot, J C

    1985-01-01

    Ganglioneuroblastoma a transitional tumor of sympathetic origin has not yet been described as involving orbit. It is characterized by a mixture of cells ranging from primitive neuroblast to well differentiated ganglion cells within a neurofibromatous tissue. The prognosis is uncertain, as the tumor may either undergo maturation into a ganglioneuroma or may metastasize widely and rapidly as in neuroblastoma. We may postulate a relationship between ganglioneuroblastoma and Recklinghausen's neurofibromatosis in view of the development of the tumor in conjunction with the phacomatosis. PMID:3924990

  5. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  6. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  7. Orbiter-orbiter and orbiter-lander tracking using same-beam interferometry

    NASA Astrophysics Data System (ADS)

    Folkner, W. M.; Border, J. S.

    Two spacecraft orbiting Mars may be tracked simultaneously by a single earth-based antenna. Same-beam interferometric techniques, using two widely separated antennas, produce a spacecraft-spacecraft measurement in the plane of the sky, complementary to the line-of-sight Doppler information. This paper presents an overview of the same-beam interferometric measurement technique, a measurement error analysis, and examples of the application of same-beam interferometry to orbit determination. For the case of Mars Observer and the Soviet Mars '94 mission, orbit determination improvement up to an order of magnitude is found. Relative tracking between a Mars orbiter and a lander fixed on the surface of Mars is also studied. The lander location may be determined to a few meters, while the orbiter ephemeris may be determined with accuracy similar to the orbiter-orbiter case.

  8. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  9. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  10. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  12. Orbit selection for a Mars geoscience/climatology orbiter

    NASA Technical Reports Server (NTRS)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  13. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  14. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  15. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  16. 'Columbia Hills' from Orbit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This view of the 'Columbia Hills' in Gusev Crater was made by draping an image from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter (image E0300012 from that camera) over a digital elevation model that was derived from two Mars Orbiter Camera images (E0300012 and R0200357).

    This unique view is helpful to the rover team members as they plan the journey of NASA's Mars Exploration Rover Spirit to the base of the Columbia Hills and beyond. Spirit successfully completed a three-month primary mission, and so far remains healthy in an extended mission of bonus exploration. As of sol 135 (on May 21, 2004), Spirit sits approximately 680 meters (0.4 miles) away from its first target at the western base of the hills, a spot informally called 'West Spur.' The team estimates that Spirit will reach West Spur by sol 146 (June 1, 2004). Spirit will most likely remain there for about a week to study the outcrops and rocks associated with this location.

    When done there, Spirit will head approximately 620 meters (0.38 miles) to a higher-elevation location informally called 'Lookout Point.' Spirit might reach Lookout Point by around sol 165 (June 20, 2004). On the way, the rover will pass by and study ripple-shaped wind deposits that may reveal more information about wind processes on Mars.

    Lookout Point will provide a great vantage point for scientists to remotely study the inner basin area of the Columbia Hills. This basin contains a broad range of interesting geological targets including the informally named 'Home Plate' and other possible layered outcrops. These features suggest that the hills contain rock layers. Spirit might investigate the layers to determine whether they are water-deposited sedimentary rock.

    Once at Lookout Point, Spirit will acquire 360-degree panoramic images of the entire area to help define the rover's next steps. Assuming the rover stays healthy, Spirit will eventually drive down into the basin to get an up

  17. Real and hybrid atomic orbitals

    NASA Astrophysics Data System (ADS)

    Cook, D. B.; Fowler, P. W.

    1981-09-01

    It is shown that the Schrödinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. Thus the real and hybrid atomic orbitals have as sound a pedigree as the more familiar complex orbitals based on the separation of the Schrödinger equation in spherical polar coordinates.

  18. Orbital molecules in electronic materials

    SciTech Connect

    Attfield, J. Paul

    2015-04-01

    Orbital molecules are made up of coupled orbital states on several metal ions within an orbitally ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers are known in many materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV{sub 2}O{sub 4} and magnetic 3-atom trimerons in magnetite (Fe{sub 3}O{sub 4}) have shown that orbital molecules constitute a general new class of quantum electronic states in solids.

  19. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  20. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  1. Exploratory orbit analysis

    SciTech Connect

    Michelotti, L.

    1989-03-01

    Unlike the other documents in these proceedings, this paper is neither a scientific nor a technical report. It is, rather, a short personal essay which attempts to describe an Exploratory Orbit Analysis (EOA) environment. Analyzing the behavior of a four or six dimensional nonlinear dynamical system is at least as difficult as analyzing events in high-energy collisions; the consequences of doing it badly, or slowly, would be at least as devastating; and yet the level of effort and expenditure invested in the latter, the very attention paid to it by physicists at large, must be two orders of magnitude greater than that given to the former. It is difficult to choose the model which best explains the behavior of a physical device if one does not first understand the behavior of the available models. The time is ripe for the development of a functioning EOA environment, which I will try to describe in this paper to help us achieve this goal.

  2. Skylab Orbiter Workshop Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This cutaway illustration shows the characteristics and basic elements of the Skylab Orbiter Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment. The compartment below the crew quarters was a container for liquid and solid waste and trash accumulated throughout the mission. A solar array, consisting of two wings covered on one side with solar cells, was mounted outside the workshop to generate electrical power to augment the power generated by another solar array mounted on the solar observatory. Thrusters were provided at one end of the workshop for short-term control of the attitude of the space station.

  3. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  4. TOPEX orbital radiation study

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. M.

    1984-01-01

    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

  5. Orbital science's 'Bermuda Triangle'

    NASA Astrophysics Data System (ADS)

    Sherrill, Thomas J.

    1991-02-01

    The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.

  6. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  7. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  8. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; Legerton, Victor N.; Mccreary, Faith A.; Mitchell, Robert T.; Mottinger, Neil A.; Moultrie, Benjamin A.; Moyer, Theodore D.; Rinker, Sheryl L.; Ryne, Mark S.; Stavert, L. Robert; Sunseri, Richard F.

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  9. Orbit Determination Toolbox

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  10. PyORBIT: A Python Shell For ORBIT

    SciTech Connect

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. We also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.

  11. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  12. Lageos orbit and solar eclipses

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1984-01-01

    The objective was to assess the importance of solar eclipses on Lageos' orbit. Solar radiation pressure perturbs the orbit of the Lageos satellite. The GEODYN orbit determination computer program includes solar radiation pressure as one of the forces operating on the satellite as it integrates the orbit. GEODYN also takes into account the extinction of sunlight when Lageos moves into the Earth's shadow. The effect of solar eclipses on the semimajor axis of Lageos' orbit was computed analytically by assuming Lageos to be in a circular orbit, the Sun and the Moon to be in the plane of the orbit, and the Moon to be stationary in the sky in front of the Sun. Also, the magnitude of the radiation pressure is assumed to be linearly related to the angular separation of the Sun and Moon, and that Lageos is a perfect absorber of radiation. The computation indicates that an eclipse of the Sun by the Moon as seen by Lageos can affect the semimajor axis at the 1 centimeter (1 cm) level. Such a change is significant enough to include in GEODYN, in order to get an accurate orbit for Lageos.

  13. What is a MISR orbit?

    Atmospheric Science Data Center

    2014-12-08

    ... The Terra platform that carries MISR and other scientific instruments flies at an altitude of 705 km above sea level on a ... day. In the context of MISR data exploitation, each complete revolution is called an orbit, and orbits are consecutively numbered from ...

  14. Endoscopic treatment of orbital tumors

    PubMed Central

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato

    2015-01-01

    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular muscles, with subsequent impact on extraocular mobility. Recently, minimally invasive techniques have been proposed as valid alternative to external approaches for selected orbital lesions. Among them, transnasal endoscopic approaches, “pure” or combined with external approaches, have been reported, especially for intraconal lesions located inferiorly and medially to the optic nerve. The avoidance of muscle detachment and the shortness of the surgical intraorbital trajectory makes endoscopic approach less invasive, thus minimizing tissue damage. Endoscopic surgery decreases the recovery time and improves the cosmetic outcome not requiring skin incisions. The purpose of this study is to review and discuss the current surgical techniques for orbital tumors removal, focusing on endoscopic approaches to the orbit and outlining the key anatomic principles to follow for safe tumor resection. PMID:25789299

  15. Satellite services and orbital retrieval

    NASA Technical Reports Server (NTRS)

    Adornato, R. J.

    1985-01-01

    Within the capabilities of the Space Shuttle Orbiter, a broad range of services which can be made available to the satellite user community as summarized. Payload deployment, close proximity retrieval, and a number of other mission related functions are discussed. The focus here is on close proximity retrieval and retrieval of payloads in higher energy low Earth orbits.

  16. General relativity and satellite orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.

  17. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690

  18. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  19. Orbital element distributions in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Serafin, R. A.

    Orbital-element distributions are studied for comets moving on admissible orbits in the Oort cloud and for some functions that depend on the orbital elements. Also found is the probability that an arbitrarily chosen admissible orbit belongs to the set of orbital elements and the distribution of circular velocities in the cloud.

  20. [Wooden spike orbital injury].

    PubMed

    Kiel, R; Wiaux, C; Atipo-Tsiba, P W; Gottrau, P de

    2005-03-01

    A 71-year-old female patient fell in her garden, inducing a skin wound on the temporal left eyebrow. Skin disinfection and wound closure were performed elsewhere, an X-ray image did not reveal a foreign body. She was referred to our service three days later with a progressive left periorbital swelling. Clinical inspection demonstrated a painfully, fluctuant swelling around the wound with an inflammatory pseudoptosis of the left eye. Vision was reduced on the left eye; anterior and posterior segments of both eyes were unharmed. After opening the wound sutures a purulent liquid was drained and a wooden fragment was found, measuring 22 x 0.5 mm. Because of restriction of abduction of the left eye, magnetic resonance imaging (MRI) was performed, detecting another organic intraorbital foreign body and a fracture of the left medial orbital wall. Anterior orbitotomy was performed and a wooden fragment was removed, measuring 47 x 0.6 mm. Under administration of intravenous antibiotics vision and ocular motility recovered uneventfully. This case emphasizes the value of MRI in the diagnostics of retained wooden foreign bodies as well as the importance of a soigneuse inspection of skin wounds with a high risk for remaining foreign bodies. PMID:15785993

  1. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  2. Precision Orbit Determination for the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; McGarry, J. F.; Neumann, G. A.; Mao, D.; Smith, D. E.; Zuber, M. T.

    2010-05-01

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on June 18, 2009. In mid-September 2009, the spacecraft orbit was changed from its commissioning orbit (30 x 216 km polar) to a quasi-frozen polar orbit with an average altitude of 50km (+-15km). One of the goals of the LRO mission is to develop a new lunar reference frame to facilitate future exploration. Precision Orbit Determination is used to achieve the accuracy requirements, and to precisely geolocate the high-resolution datasets obtained by the LRO instruments. In addition to the tracking data most commonly used to determine spacecraft orbits in planetary missions (radiometric Range and Doppler), LRO benefits from two other types of orbital constraints, both enabled by the Lunar Orbiter Laser Altimeter (LOLA) instrument. The altimetric data collected as the instrument's primary purpose can be used to derive constraints on the orbit geometry at the times of laser groundtrack intersections (crossovers). The multi-beam configuration and high firing-rate of LOLA further improves the strength of these crossovers, compared to what was possible with the MOLA instrument onboard Mars Global Surveyor (MGS). Furthermore, one-way laser ranges (LR) between Earth International Laser Ranging Service (ILRS) stations and the spacecraft are made possible by the addition of a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. Thanks to the accuracy of the LOLA timing system, the precision of 5-s LR normal points is below 10cm. We present the first results of the Precision Orbit Determination (POD) of LRO through the commissioning and nominal phases of the mission. Orbit quality is discussed, and various gravity fields are evaluated with the new (independent) LRO radio tracking data. The altimetric crossovers are used as an independent data type to evaluate the quality of the orbits. The contribution of the LR

  3. Solid Propulsion De-Orbiting and Re-Orbiting

    NASA Astrophysics Data System (ADS)

    Schonenborg, R. A. C.; Schoyer, H. F. R.

    2009-03-01

    With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.

  4. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  5. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events. PMID:27134437

  6. Lifetimes of lunar satellite orbits

    NASA Technical Reports Server (NTRS)

    Meyer, Kurt W.; Buglia, James J.; Desai, Prasun N.

    1994-01-01

    The Space Exploration Initiative has generated a renewed interest in lunar mission planning. The lunar missions currently under study, unlike the Apollo missions, involve long stay times. Several lunar gravity models have been formulated, but mission planners do not have enough confidence in the proposed models to conduct detailed studies of missions with long stay times. In this report, a particular lunar gravitational model, the Ferrari 5 x 5 model, was chosen to determine the lifetimes for 100-km and 300-km perilune altitude, near-circular parking orbits. The need to analyze orbital lifetimes for a large number of initial orbital parameters was the motivation for the formulation of a simplified gravitational model from the original model. Using this model, orbital lifetimes were found to be heavily dependent on the initial conditions of the nearly circular orbits, particularly the initial inclination and argument of perilune. This selected model yielded lifetime predictions of less than 40 days for some orbits, and other orbits had lifetimes exceeding a year. Although inconsistencies and limitations are inherent in all existing lunar gravity models, primarily because of a lack of information about the far side of the moon, the methods presented in this analysis are suitable for incorporating the moon's nonspherical gravitational effects on the preliminary design level for future lunar mission planning.

  7. Synergy Between probes and Orbiter

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    There are many ways in which the science return from a planetary mission is considerably enhanced by interactions between entry probes and a mission orbiter. Mission configuration aspects that are desirable include delivery of entry probes by the orbiter, and communication between probe and orbiter. Both of these mission aspects could greatly enhance access to key scientific sites that might not otherwise be accessible using delivery from say, a flyby, or employing direct communication from probes to Earth. Examples for Venus and Jupiter will be discussed. A second class of orbiter-probe interaction could better be termed direct probe-orbiter science collaboration. That would include, determining the global context of the entry probe sites from the orbiter, obtaining ground truth from the probe for remote sensing observations from the orbiter, observing the global and vertical distribution of key atmospheric trace species, and measuring the global and vertical distribution of clouds and winds. The importance of each of these items will be illustrated by particular examples.

  8. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  9. Mapping Elliptical Orbits Around Europa

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Cardoso dos Santos, Josué

    Due to specifics scientific purposes space missions has been proposed to explore natural satellites, comets and asteroids sending artificial satellites orbiting around these bodies. The planning of such missions must be taken into account a good choice for the orbits that reduces the cost related to station-keeping and the increasing the duration of the mission. The present research has the objective of using a new concept to map with respect the station-keeping maneuvers to study elliptical orbits around Europa. This concept is based in the integral of the perturbing forces over the time. This value can estimate the total variation of velocity received by the spacecraft from the perturbations forces acting on it. The value of this integral is a characteristic of the perturbations considered and the orbit chosen for the spacecraft. Numerical simulations are made showing the value of this integral for orbits around Europa as a function of the eccentricity and semi-major axis of the orbits. An important application of the present research is in the search for frozen orbits.

  10. Geostationary orbit determination using SATRE

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Li, ZhiGang; Yang, XuHai; Wu, WenJun; Cheng, Xuan; Yang, Ying; Feng, ChuGang

    2011-09-01

    A new strategy of precise orbit determination (POD) for GEO (Geostationary Earth Orbit) satellite using SATRE (SAtellite Time and Ranging Equipment) is presented. Two observation modes are proposed and different channels of the same instruments are used to construct different observation modes, one mode receiving time signals from their own station and the other mode receiving time signals from each other for two stations called pairs of combined observations. Using data from such a tracking network in China, the results for both modes are compared. The precise orbit determination for the Sino-1 satellite using the data from 6 June 2005 to 13 June 2005 has been carried out in this work. The RMS (Root-Mean-Square) of observing residuals for 3-day solutions with the former mode is better than 9.1 cm. The RMS of observing residuals for 3-day solutions with the latter mode is better than 4.8 cm, much better than the former mode. Orbital overlapping (3-day orbit solution with 1-day orbit overlap) tests show that the RMS of the orbit difference for the former mode is 0.16 m in the radial direction, 0.53 m in the along-track direction, 0.97 m in the cross-track direction and 1.12 m in the 3-dimension position and the RMS of the orbit difference for the latter mode is 0.36 m in the radial direction, 0.89 m in the along-track direction, 1.18 m in the cross-track direction and 1.52 m in the 3-dimension position, almost the same as the former mode. All the experiments indicate that a meter-level accuracy of orbit determination for geostationary satellite is achievable.

  11. Spitzer Orbit Determination During In-orbit Checkout Phase

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2004-01-01

    The Spitzer Space Telescope was injected into heliocentric orbit on August 25, 2003 to observe and study astrophysical phenomena in the infrared range of frequencies. The initial 60 days was dedicated to Spitzer's "In-Orbit Checkout (IOC)" efforts. During this time high levels of Helium venting were used to cool down the telescope. Attitude control was done using reaction wheels, which in turn were de-saturated using cold gas Nitrogen thrusting. Dense tracking data (nearly continuous) by the Deep Space network (DSN) were used to perform orbit determination and to assess any possible venting imbalance. Only Doppler data were available for navigation. This paper deals with navigation efforts during the IOC phase. It includes Dust Cover Ejection (DCE) monitoring, orbit determination strategy validation and results and assessment of non-gravitational accelerations acting on Spitzer including that due to possible imbalance in Helium venting.

  12. Meteoroid and orbital debris shielding on the Orbital Maneuvering Vehicle

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Marc E.

    1989-01-01

    NASA's Orbital Maneuvering Vehicle (OMV) is being designed to withstand a 10-year lifetime in polar and low earth orbits. A large percentage of OMV's lifetime will be spent operating in the vicinity of the Space Shuttle and Space Station or in storage at these manned locations. An extensive analysis has been performed to determine the effects of the meteoroid and orbital debris environments on OMV's external fuel tanks. A finite element model of OMV was constructed using NASTRAN and analyzed with the meteoroid and debris design analysis code BUMPER. The results show that the long design lifetime, and the ever increasing man-made orbital debris environment, will require the use of shielding over the external fuel tanks.

  13. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  14. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  15. Cluster headache after orbital exenteration.

    PubMed

    Evers, S; Sörös, P; Brilla, R; Gerding, H; Husstedt, I W

    1997-10-01

    A 37-year-old man developed an ipsilateral headache which fulfilled the criteria for cluster headache after orbital extenteration because of a traumatic lesion of the bulb. The headache could be treated successfully by drugs usually applied in the therapy of cluster headache. Six similar cases of cluster headache after orbital exenteration could be identified in the literature suggesting that the eye itself is not necessarily part of the pathogenesis of cluster headache. We hypothesize that orbital exenteration can cause cluster headache by lesions of sympathetic structures. Possibly, these mechanisms are similar to those of sympathetic reflex dystrophy (Sudeck-Leriche syndrome) causing pain of the limbs. PMID:9350391

  16. Manrating orbital transfer vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1985-01-01

    The expended capabilities for Orbital Transfer Vehicles (OTV) which will be needed to meet increased payload requirements for transporting materials and men to geosynchronous orbit are discussed. The requirement to provide manrating offers challenges and opportunities to the propulsion system designers. The propulsion approaches utilized in previous manned space vehicles of the United States are reviewed. The principals of reliability analysis are applied to the Orbit Transfer Vehicle. Propulsion system options are characterized in terms of the test requirements to demonstrate reliability goals and are compared to earlier vehicle approaches.

  17. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard L.; Gustafson, Eric D.; Thompson, Paul F.; Jefferson, David C.; Martin-Mur, Tomas J.; Mottinger, Neil A.; Pelletier, Frederic J.; Ryne, Mark S.

    2012-01-01

    This paper describes the orbit determination process, results and filter strategies used by the Mars Science Laboratory Navigation Team during cruise from Earth to Mars. The new atmospheric entry guidance system resulted in an orbit determination paradigm shift during final approach when compared to previous Mars lander missions. The evolving orbit determination filter strategies during cruise are presented. Furthermore, results of calibration activities of dynamical models are presented. The atmospheric entry interface trajectory knowledge was significantly better than the original requirements, which enabled the very precise landing in Gale Crater.

  18. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  19. Iterative diagonalization for orbital optimization in natural orbital functional theory.

    PubMed

    Piris, M; Ugalde, J M

    2009-10-01

    A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated. PMID:19219918

  20. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  1. Orbit determination and control for the European Student Moon Orbiter

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Gibbings, Alison; Vetrisano, Massimo; Rizzi, Francesco; Martinez, Cesar; Vasile, Massimiliano

    2012-10-01

    This paper presents the preliminary navigation and orbit determination analyses for the European Student Moon Orbiter. The severe constraint on the total mission Δv and the all-day piggy-back launch requirement imposed by the limited available budget, led to the choice of using a low-energy transfer, more specifically a Weak Stability Boundary one, with a capture into an elliptic orbit around the Moon. A particular navigation strategy was devised to ensure capture and fulfil the requirement for the uncontrolled orbit stability at the Moon. This paper presents a simulation of the orbit determination process, based on an extended Kalman filter, and the navigation strategy applied to the baseline transfer of the 2011-2012 window. The navigation strategy optimally allocates multiple Trajectory Correction Manoeuvres to target a so-called capture corridor. The capture corridor is defined, at each point along the transfer, by back-propagating the set of perturbed states at the Moon that provides an acceptable lifetime of the lunar orbit.

  2. ARTEMIS Maneuvers into Lunar Orbit

    NASA Video Gallery

    This animation visualizes the maneuvers required to move the ARTEMIS spacecraft from their kidney-shaped paths on each side of the moon to orbiting the moon. It took one and a half years, over 90 o...

  3. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  4. A Case of Orbital Histoplasmosis.

    PubMed

    Krakauer, Mark; Prendes, Mark Armando; Wilkes, Byron; Lee, Hui Bae Harold; Fraig, Mostafa; Nunery, William R

    2016-01-01

    Histoplasma capsulatum var capsulatum is a dimorphic fungus endemic to the Ohio and Mississippi River Valleys of the United States. In this case report, a 33-year-old woman who presented with a right orbital mass causing progressive vision loss, diplopia, and facial swelling is described. Lateral orbitotomy with lateral orbital wall bone flap was performed for excisional biopsy of the lesion. The 1.5 × 1.8 × 2.3 cm cicatricial mass demonstrated a granulomatous lesion with necrosis and positive staining consistent with Histoplasma capsulatum var capsulatum infection. To the authors' knowledge, this is the first case of orbital histoplasmosis to be reported in the United States and the first case worldwide of orbital histoplasmosis due to Histoplasma capsulatum var capsulatum. PMID:25186215

  5. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  6. Real and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  7. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  8. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  9. Cost Per Pound From Orbit

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  10. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  11. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  12. Two stage to orbit design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A preliminary design of a two-stage to orbit vehicle was conducted with the requirements to carry a 10,000 pound payload into a 300 mile low-earth orbit using an airbreathing first stage, and to take off and land unassisted on a 15,000 foot runway. The goal of the design analysis was to produce the most efficient vehicle in size and weight which could accomplish the mission requirements. Initial parametric analysis indicated that the weight of the orbiter and the transonic performance of the system were the two parameters that had the largest impact on the design. The resulting system uses a turbofan ramjet powered first stage to propel a scramjet and rocket powered orbiter to the stage point of Mach 6 to 6.5 at an altitude of 90,000 ft.

  13. Lunar Orbiter I - Moon & Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    First view of the earth and moon from space. Published in: Spaceflight Revolution: Langley Research Center From Sputnik to Apollo, by James R. Hansen. NASA History Series. NASA SP ; 4308. p ii. Caption: 'The picture of the century was this first view of the earth from space. Lunar Orbiter I took the photo on 23 August 1966 on its 16th orbit just before it passed behind the moon. The photo also provided a spectacular dimensional view of the lunar surface.'

  14. Orbits in a logarithmic potential

    SciTech Connect

    Hooverman, R. H.

    2014-04-15

    The characteristics of charged particle orbits in the logarithmic electrostatic potential field surrounding a straight conducting wire at a fixed potential are investigated. The equations of motion of an electron in a logarithmic potential are derived, the limiting cases are considered, and the results of numerical integration of the equations of motion are presented along with sketches of a few representative orbits. (C.E.S.)

  15. Orbit Prediction Tool for Different Classes of Space Debris Orbits

    NASA Astrophysics Data System (ADS)

    Wnuk, Edwin; Wytrzyszczak, Iwona; Golembiewska, Justyna; Klinkrad, Heiner

    There are two aspects of the orbital evolution of space debris: the long-term evolution and the short-term prediction of individual object orbits. In the case of the long-term evolution (years or tens of years time span) general characteristics (e.g. total number of objects, spa-tial distribution and density) of a future space environment are predicted with the use of a relatively simple theory of motion for statistical analysis of future orbits of a large number of objects -a cloud of particles". In the short-term orbital evolution of space debris objects, as considered in this paper, future positions and velocities of individual objects are calculated for a few days or a few weeks time span. A much more sophisticated theory of satellite motion is applied in this case. The paper presents the orbital prediction tool that uses an analytical and semi-analytical theories of satellite motion. The force model includes all important perturbing factors: geopotential effects with arbitrary degree and order spherical harmonic coefficients taken into account, luni-solar attractions, solar radiation pressure and atmospheric drag. The analytical theory of motion is of the second order and is not sensitive to singularities for small eccentricities and small inclinations. A new algorithm for the transformation between mean and osculating elements for the second order theory is applied. Predicted positions of a satel-lite on a given level of accuracy are calculated only with the use of terms that essentially influence on predicted satellite orbit, all other terms are omitted. The number of terms in for-mulas for perturbations, and thus complexity of the theory, depends on the defined level of accuracy and the type of orbit. In practice, we create a dynamical model for a given class of satellite orbit. Geopotential and luni-solar perturbations are calculated in the two following steps. In the first step, values of secular terms and all amplitudes of periodic terms are calculated

  16. Dynamics of Earth orbiting formations

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred Y.; Acikmese, Ahmed B.

    2004-01-01

    In this paper the equations of motion of a formation consisting of n spacecraft in Earth orbit are derived via Lagrange's equations. The equations of motion of the formation are developed with respect to both (1) a bound Keplerian reference orbit, and (2) a specific spacecraft in the formation. The major orbital perturbations acting on a formation in low Earth orbit are also included in the analysis. In contrast to the traditional approach based on the balance of linear momentum, the use of Lagrange's equations leads to a high-level matrix derivation of the formation equations of motion. The matrix form of the nonlinear motion equations is then linearized about a bound Keplerian reference orbit. Next, it is demonstrated that under the assumption of a circular reference orbit, the linearized equations of motion reduce to the well-known Hill-Clohessy-Wiltshire equations. The resulting linear and nonlinear dynamic equations lead to maximal physical insight into the structure of formation dynamics, and are ideally suited for use in the design and validation of formation guidance and control laws.

  17. Mars Observer Orbit Insertion Briefing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    For the first part of this briefing, see NONP-NASA-VT-2000081556. Marvin Traxler continues his discussion on signal tracking from the Mars Observer. Julie Webster, Lead Engineer, Telecommunications Subsystem, is introduced. She explains how signals coming back from Mars are detected. Dr. Pasquale Esposito talks about flyby orbits and capture orbits. He says that frequencies coming from the spacecraft can determine if the spacecraft has flown by Mars, or if a capture orbit has occurred. Charles Whetsel, System Engineer Spacecraft Team, presents a computer program. He shows where the signal will appear on the computer from the Spacecraft. Suzanne Dodd presents orbit insertion geometry. Dr. Arden Albee, Project Scientist Mars Observer Project, Cal Tech tech, says that Mars is studied to get more data to confirm their hypotheses derived from previous Mars Missions such as the Viking Mars Program and the Mariner Program. Dr. Albee also describes instrumentation on the Mars Observer such as the Ultra Stable Oscillator, Mars Orbiter Laser Altimeter, and Magnetometer. The camera on the spacecraft is similar to a fax machine because it scans one line at a time as the spacecraft orbits Mars. Dr. Michael Malin, Principle Investigator Mars Observer Camera, Malin Space Science Systems, Inc., describe this process.

  18. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  19. Satellite Orbital Interpolation Comparison Methods

    NASA Astrophysics Data System (ADS)

    Richard, J.-Y.; Deleflie, F.; Gambis, D.

    2012-04-01

    A satellite or artificial probe orbit is made of time series of orbital elements such as state vectors (position and velocities, keplerian orbital elements) given at regular or irregular time intervals. These time series are fitted to observations, so that differences between observations (distance, radial velocity) and the theoretical quantity be minimal, according to a statistical criterion, mostly based on the least-squared algorithm. These computations are carried out using dedicated software, such as the GINS used by GRGS, mainly at CNES Toulouse and Paris Observatory. From an operational point of view, time series of orbital elements are 7-day long. Depending on the dynamical configurations, more generally, they can typically vary from a couple of days to some weeks. One of the fundamental parameters to be adjusted is the initial state vector. This can lead to time gaps, at the level of a few dozen of centimeters between the last point of a time series to the first one of the following data set. The objective of this presentation consists in the improvement of an interpolation method freed itself of such possible "discontinuities" resulting between satellite's orbit arcs when a new initial bulletin is adjusted. We show the principles of interpolation for these time series and compare solutions coming from different interpolation methods such as Lagrange polynomial, spline cubic, Chebyshev orthogonal polynomial and cubic Hermite polynomial. These polynomial coefficients are used to reconstruct and interpolate the satellite orbits without time gaps and discontinuities and requiring a weak memory size.

  20. Sur les inocérames de Tercis (Landes, France) : le meilleur outil corrélatif entre Europe et Amérique du Nord autour de la limite Campanien MaastrichtienInoceramids of the site of Tercis (Landes, France): the best correlative tool between Europe and North America across the Campanian Maastrichtian boundary

    NASA Astrophysics Data System (ADS)

    Odin, Gilles Serge; Walaszczyk, Ireneusz

    2003-01-01

    Four hundred inoceramids have been collected in the geological site at Tercis, where the Campanian-Maastrichtian boundary has been recently defined. At Tercis, a distinct drop of the adult size of inoceramids is observed between levels 111 and 117 and two turnovers of faunal composition were documented between levels 94 and 96 and between levels 111 and 117; the latter interval encompasses the stage boundary. The recognised inoceramid assemblages are very close to those known from North America, allowing better correlation than before between the two domains in the interval 77-70 Ma. The presence of these faunas perfectly located in the section leads to consider the Tercis section as the best known reference for this fossil group, the surprisingly good correlative potential of which has still to be considered in many areas.

  1. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  2. Orbital emphysema following remote skull trauma.

    PubMed

    Brown, S M; Lissner, G

    1995-06-01

    In an unusual case of orbital emphysema following nose blowing, a reliable patient history and examination demonstrated no direct trauma to the orbit. Blunt posterior skull trauma was sustained several hours before the development of the orbital emphysema. A "seismic" transmittal of force to the orbital walls is postulated. PMID:7654620

  3. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    Starke, S. E.

    1977-01-01

    The documentation and user's guide for the Analytical Satellite Orbit Predictor (ASOP) computer program is presented. The ASOP is based on mathematical methods that represent a new state-of-the-art for rapid orbit computation techniques. It is intended to be used for computation of near-earth orbits including those of the shuttle/orbiter and its payloads.

  4. THE ORBITS OF THE OUTER URANIAN SATELLITES

    SciTech Connect

    Brozovic, M.; Jacobson, R. A.

    2009-04-15

    We report on the numerically integrated orbits for the nine outer Uranian satellites. The orbits are calculated based on fits to the astrometric observations for the period from 1984 to 2006. The results include the state vectors, post-fit residuals, and mean orbital elements. We also assess the accuracy of the orbital fits and discuss the need for future measurements.

  5. The 2009 Mars Telecommunications Orbiter

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; DePaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    2004-01-01

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even greater networking capabilities in the future. With Mars Telecommunications Orbiter overhead in the martian sky, the Mars Science Laboratory rover scheduled to follow the orbiter to Mars by about a month could send to Earth more than 100 times as much data per day as it could otherwise send. The orbiter will be designed for the capability of relaying up to 15 gigabits per day from the rover, equivalent to more than three full compact discs each day. The same benefits would accrue to other future major Mars missions from any nation.

  6. Anterior Orbit and Adnexal Amyloidosis

    PubMed Central

    Al Hussain, Hailah; Edward, Deepak P.

    2013-01-01

    Purpose: To describe six cases of anterior orbital and adnexal amyloidosis and to report on proteomic analysis to characterize the nature of amyloid in archived biopsies in two cases. Materials and Methods: The clinical features, radiological findings, pathology, and outcome of six patients with anterior orbit and adnexal amyloidosis were retrieved from the medical records. The biochemical nature of the amyloid was determined using liquid chromatography/mass spectroscopy archived paraffin-embedded tissue in two cases. Results: Of the six cases, three had unilateral localized anterior orbit and lacrimal gland involvement. Four of the six patients were female with an average duration of 12.8 years from the time of onset to presentation eyelid infiltration by amyloid caused ptosis in five cases. CT scan in patients with lacrimal gland involvement (n = 3) demonstrated calcified deformable anterior orbital masses and on pathological exmaintionamyloid and calcific deposits replaced the lacrimal gland acini. Ptosis repair was performed in three patients with good outcomes. One patient required repeated debulking of the mass and one patient had recurrenct disease. Proteomic analysis revealed polyclonal IgG-associated amyloid deposition in one patient and AL kappa amyloid in the second patient. Conclusion: Amyloidosis of the anterior orbit and lacrimal gland can present with a wide spectrum of findings with good outcomes after surgical excision. The nature of amyloid material can be precisely determined in archival pathology blocks using diagnostic proteomic analysis. PMID:24014979

  7. Communications satellites in non-geostationary orbits

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Doong, Wen; Nguyen, Tuan Q.; Turner, Andrew E.; Weyandt, Charles

    1988-01-01

    The design of a satellite communications system in an orbit lower than GEO is described. Two sun-synchronous orbits which lie in the equatorial plane have been selected: (1) the apogee at constant time-of-day equatorial orbit, a highly eccentric orbit with five revolutions per day, which allows 77-135 percent more satellite mass to be placed in orbit than for GEO; and (2) the sun-synchronous 12-hour equatorial orbit, a circular orbit with two revolutions per day, which allows 23-29 percent more mass. The results of a life cycle economic analysis illustrate that nongeostationary satellite systems could be competitive with geostationary satellite systems.

  8. Orbital expansion of the congenitally anophthalmic socket.

    PubMed Central

    Tucker, S M; Sapp, N; Collin, R

    1995-01-01

    BACKGROUND--Congenital anophthalmos is a rare condition in which intervention at an early age can stimulate orbital expansion and maximise facial symmetry. Much is still unknown, however, regarding the degree of soft tissue and bony orbital growth achieved using the orbital expanders presently available. METHODS--A retrospective review of 59 congenitally anophthalmic orbits in 42 patients was carried out. RESULTS--The soft tissue and bony orbital expansion achieved using serial solid shapes is reported, and experience with hydrophilic expanders and inflatable silicone expanders is reviewed. CONCLUSION--Although serially fitted solid shapes in the orbit lead to increased expansion of orbital soft tissue and bone compared with no orbital implant, further orbital tissue enlargement is required. The inflatable silicone expander may allow more rapid and extensive orbital tissue expansion, but design changes are needed to achieve this. PMID:7662633

  9. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  10. Radio frequency interference at the geostationary orbit

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1981-01-01

    Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.

  11. Gravity Probe B orbit determination

    NASA Astrophysics Data System (ADS)

    Shestople, P.; Ndili, A.; Hanuschak, G.; Parkinson, B. W.; Small, H.

    2015-11-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s-1. Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements.

  12. Imaging molecular orbitals using photoionization

    NASA Astrophysics Data System (ADS)

    Santra, Robin

    2006-10-01

    The interpretation of a recent experiment using high-order harmonic generation [Itatani et al., Nature 432 (2004) 867] as a measurement of the highest occupied molecular orbital of a molecule is conceptually problematic, even if the independent-particle picture is taken seriously. Guided by the relationship between the amplitude for one-photon-induced electron emission and the electron-ion recombination amplitude in the three-step model of high-order harmonic generation, it is argued that synchrotron-based photoionization might be a superior approach to imaging molecular orbitals. Within the Hartree-Fock independent-particle picture, the molecular-frame photoelectron angular distributions, measured as a function of photon energy, could be used to reconstruct all orbitals occupied in the Hartree-Fock ground state of the molecule investigated. It is suggested that laser alignment techniques could be employed to facilitate the measurement of the molecular-frame photoelectron angular distributions.

  13. The Challenge of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2012-01-01

    Since the dawn of the Space Age more than 50 years ago, humans have been launching objects into the space environment faster than they have been removed by active means or natural decay. This has led to a proliferation of debris -- derelict satellites, discarded rocket upper stages, and pieces from satellite breakups -- in Earth orbit, especially in well-used orbital regimes. This talk will summarize the current knowledge of the debris environment and describe plans to address the challenges orbital debris raises for the future usability of near-Earth space. The talk will be structured around 4 categories: Measurements, Modeling, Shielding, and Mitigation. This will include discussions of the long-term prognosis of debris growth (i.e., the "Kessler Syndrome") as well as plans for active debris removal.

  14. The evolution of comet orbits

    NASA Technical Reports Server (NTRS)

    Everhart, E.

    1976-01-01

    The origin of comets and the evolution of their orbits are discussed. Factors considered include: the law of survival of comets against ejection on hyperbolic orbits; short-period comets are not created by single close encounters of near-parabolic comets with Jupiter; observable long-period comets do not evolve into observable short-period comets; unobservable long-period comets with perihelia near Jupiter can evolve into observable short-period comets; long-period comets cannot have been formed or created within the planetary region of the solar system (excluding the effects of stellar perturbations); it is possible that some of the short-period comets could have been formed inside the orbit of Neptune; circularly-restricted three-body problem, and its associated Jacobi integral, are not valid approximations to use in studying origin and evolution of comets.

  15. Orbiter Atlantis returns to KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Stairs are rolled to the forward opening of the Shuttle Carrier Aircraft -- with its piggyback cargo, the orbiter Atlantis -- after it rolls to a stop at the Shuttle Landing Facility. Atlantis returns home after a 10-month stay in the Palmdale, CA, orbiter processing facility undergoing extensive inspections and modifications. They included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. The flight from Palmdale included a fueling stop in Ft. Hood, TX, and overnight stay at Ft. Campbell, KY. Atlantis will undergo preparations in the Orbiter Processing Facility at KSC for its planned flight in June 1999.

  16. Orbital Variability of η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Gies, Douglas; Gull, Ted; Moffat, Anthony; St-Louis, Nicole

    2013-08-01

    We propose to obtain weekly spectra of η Carinae in order to document the systemic variability with respect to the orbital geometry. The orbit is long (5.5 years), and our previous SMARTS and NOAO programs (started in 2008) have documented well the line profile variations of the system. With a full orbit of coverage (obtained through this proposal through 2014B), we will have the largest data set available in order to find spectroscopic evidence of the companion star that has eluded observers. The CTIO 1.5 m and echelle spectrograph provides the only resource in the southern hemisphere to study the H(alpha) transition of the star, as this line saturates all other publicly available spectrographs in the southern hemisphere.

  17. Orbital extension of trigeminal schwannoma.

    PubMed

    Ghosh, Shantanu; Das, Debabrata; Varshney, Rahul; Nandy, Sumit

    2015-01-01

    Schwannomas, also known as neurilemmomas, are benign peripheral nerve sheath tumors. Trigeminal schwannomas are rare intracranial tumors. Here, we report a 35-year-old female presenting with an axial proptosis of right eyeball with right-sided III, IV and VI cranial nerve palsy. Her best corrected visual acuity in the right eye was perception of light absent and in the left eye was 20/20. MRI scan revealed a large right-sided heterogeneous, extra-axial middle cranial fossa mass that extended to the intraconal space of right orbit. A diagnosis of intracranial trigeminal nerve schwannoma with right orbital extension was made. Successful surgical excision of the mass with preservation of the surrounding tissues and orbital exenteration was done. Post-operative period was uneventful. PMID:25552864

  18. Orbital extension of trigeminal schwannoma

    PubMed Central

    Ghosh, Shantanu; Das, Debabrata; Varshney, Rahul; Nandy, Sumit

    2015-01-01

    Schwannomas, also known as neurilemmomas, are benign peripheral nerve sheath tumors. Trigeminal schwannomas are rare intracranial tumors. Here, we report a 35-year-old female presenting with an axial proptosis of right eyeball with right-sided III, IV and VI cranial nerve palsy. Her best corrected visual acuity in the right eye was perception of light absent and in the left eye was 20/20. MRI scan revealed a large right-sided heterogeneous, extra-axial middle cranial fossa mass that extended to the intraconal space of right orbit. A diagnosis of intracranial trigeminal nerve schwannoma with right orbital extension was made. Successful surgical excision of the mass with preservation of the surrounding tissues and orbital exenteration was done. Post-operative period was uneventful. PMID:25552864

  19. Using Mean Orbit Period in Mars Reconnaissance Orbiter Maneuver Design

    NASA Technical Reports Server (NTRS)

    Chung, Min-Kun J.; Menon, Premkumar R.; Wagner, Sean V.; Williams, Jessica L.

    2014-01-01

    Mars Reconnaissance Orbiter (MRO) has provided communication relays for a number of Mars spacecraft. In 2016 MRO is expected to support a relay for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft. In addition, support may be needed by another mission, ESA's ExoMars EDL Demonstrator Module's (EDM), only 21 days after the InSight coverage. The close proximity of these two events presents a unique challenge to a conventional orbit synchronization maneuver where one deterministic maneuver is executed prior to each relay. Since the two events are close together and the difference in required phasing between InSight and EDM may be up to half an orbit (yielding a large execution error), the downtrack timing error can increase rapidly at the EDM encounter. Thus, a new maneuver strategy that does not require a deterministic maneuver in-between the two events (with only a small statistical cleanup) is proposed in the paper. This proposed strategy rests heavily on the stability of the mean orbital period. The ability to search and set the specified mean period is fundamental in the proposed maneuver design as well as in understanding the scope of the problem. The proposed strategy is explained and its result is used to understand and solve the problem in the flight operations environment.

  20. Comet Halley - The orbital motion

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.

  1. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  2. Saturn orbiter dual probe mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.

    1978-01-01

    The described Saturn orbiter dual probe mission and spacecraft combines three systems into a multi-purpose Saturn exploration package. The spacecraft consists of: (1) Saturn orbiter; (2) Saturn probe; and (3) Titan probe or lander. This single spacecraft provides the capability to conduct in situ measurements of the Saturn and Titan atmospheres, and, possibly the Titan surface, as well as a variety of remote sensing measurements. The remote sensing capabilities will be used to study the surfaces, interiors and environments of Saturn's satellites, the rings of Saturn, Saturn's magnetosphere, and synoptic properties of Saturn's atmosphere.

  3. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  4. Energy and the Elliptical Orbit

    NASA Astrophysics Data System (ADS)

    Nettles, Bill

    2009-03-01

    In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.

  5. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  6. Orbits of 15 visual binaries

    NASA Astrophysics Data System (ADS)

    Heintz, W. D.

    1981-04-01

    Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.

  7. Precise GPS orbits for geodesy

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    1994-05-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  8. Spin-orbital driven ferroelectricity

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Li, You-Quan

    2014-10-01

    We study the effect of octahedron rotation on the electric polarization with spin-orbit coupling. Employing local coordinates to represent the tilting of the ligands' octahedra, we evaluate the electric polarization in a chain of transition metal ions with non-polar octahedron rotation. We find the orbital ordering produced by the ligands' rotation and the spin order, together, determine the polarization features, manifesting that non-vanishing polarization appears in collinear spin order and the direction of polarization is no more restricted in the plane of spin rotation in cycloidal ordering.

  9. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  10. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  11. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions

  12. Precision Orbit Determination for the Lunar Reconnaissance Orbiter: orbit quality and gravity field estimation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Lemoine, F. G.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.; Mao, D.

    2010-12-01

    We present results of the Precision Orbit Determination work undertaken by the Lunar Orbiter Laser Altimeter (LOLA) Science Team for the Lunar Reconnaissance Orbiter (LRO) mission, in order to meet the position knowledge accuracy requirements (50-m total position) and to precisely geolocate the LRO datasets. In addition to the radiometric tracking data, one-way laser ranges (LR) between Earth stations and the spacecraft are made possible by a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. The LOLA timing system enables 5-s LR normal points with precision better than 10cm. Other types of geodetic constraints are derived from the altimetric data itself. The orbit geometry can be constrained at the times of laser groundtrack intersections (crossovers). Due to the Moon's slow rotation, orbit solutions and normal equations including altimeter crossovers are processed and created in one month batches. Recent high-resolution topographic maps near the lunar poles are used to produce a new kind of geodetic constraints. Purely geometric, those do not necessitate actual groundtrack intersections. We assess the contributions of those data types, and the quality of our orbits. Solutions which use altimetric crossover meet the horizontal 50-m requirement, and perform usually better (10-20m). We also obtain gravity field solutions based on LRO and historical data. The various LRO data are accumulated into normal equations, separately for each one month batch and for each measurement type, which enables the final weights to be adjusted during the least-squares inversion step. Expansion coefficients to degree and order 150 are estimated, and a Kaula rule is still needed to stabilize the farside field. The gravity field solutions are compared to previous solutions (GLGM-3, LP150Q, SGM100h) and the geopotential predicted from the latest LOLA spherical harmonic expansion.

  13. Development and applications of an orbital insertion surface for the space shuttle orbiter/tug

    NASA Technical Reports Server (NTRS)

    Deaton, A. W.; Brandon, P. D.

    1973-01-01

    The concept of a space shuttle orbit/tug orbital insertion surface is developed. Practical applications in the area of ascent targeting, on-orbit rendezvous targeting, payloads/OMS propellant off-loading, and mission analysis are identified.

  14. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  15. Orbital debris sweeper and method

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1991-01-01

    An orbital debris sweeper is provided for removing particles from orbit which otherwise may impact and damage an orbiting spacecraft. The debris sweeper includes a central sweeper core which carries a debris monitoring unit, and a plurality of large area impact panels rotatable about a central sweeper rotational axis. In response to information from the debris monitoring unit, a computer determines whether individual monitored particles preferably impact one of the rotating panels or pass between the rotating panels. A control unit extends or retracts one or more booms which interconnect the sweeper core and the panels to change the moment of inertia of the sweeper and thereby the rotational velocity of the rotating panels. According to the method of the present invention, the change in panel rotational velocity increases the frequency of particles which desirably impact one of the panels and are thereby removed from orbit, while large particles which may damage the impact panels pass between the trailing edge of one panel and the leading edge of the rotationally succeeding panel.

  16. Non-infectious orbital vasculitides.

    PubMed

    Perumal, B; Black, E H; Levin, F; Servat, J J

    2012-05-01

    Non-infectious vasculitides comprise a large number of diseases. Many of these diseases can cause inflammation within the orbit and a clinical presentation, which mimics numerous other processes. Orbital disease can often be the initial presentation of a systemic process and early diagnosis can help prevent long-term, potentially fatal consequences. The evaluation and treatment of non-infectious orbital vasculitides are often complicated and require a thorough understanding of the disease and underlying systemic associations. The long-term prognosis visually and systemically must be weighed against the risks and benefits of the treatment regimen. A large variety of corticosteroid formulations currently exist and are the mainstay of initial treatment. Traditional steroid-sparing immunosuppressive agents are also an important arsenal against these vasculitides. Recently, a new class of drugs called biologics, which target the various mediators of the inflammation cascade, may potentially provide more effective and less toxic treatment. This review aims to synthesize the current literature on non-infectious orbital vasculitides. PMID:22361845

  17. Biomaterials for orbital fractures repair

    PubMed Central

    Totir, M; Ciuluvica, R; Dinu, I; Careba, I; Gradinaru, S

    2014-01-01

    The unique and complex anatomy of the orbit requires significant contouring of the implants to restore the proper anatomy. Fractures of the orbital region have an incidence of 10-25% from total facial fractures and the most common age group was the third decade of life. The majority of cases require reconstruction of the orbital floor to support the globe position and restore the shape of the orbit. The reason for this is that the bony walls are comminuted and/or bone fragments are missing. Therefore, the reconstruction of missing bone is important rather than reducing bone fragments. This can be accomplished using various materials. There is hardly any anatomic region in the human body that is so controversial in terms of appropriate material used for fracture repair: nonresorbable versus resorbable, autogenous/allogenous/xenogenous versus alloplastic material, non-prebent versus preformed (anatomical) plates, standard versus custom-made plates, nonporous versus porous material, non-coated versus coated plates. Thus, the importance of material used for reconstruction becomes more challenging for the ophthalmologist and the oral and maxillofacial surgeon. PMID:27057250

  18. Augmented orbiter heat rejection study

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1981-01-01

    Spacecraft radiator concepts are presented that relieve attitude restrictions required by the shuttle orbiter space radiator for baseline and extended capability STS missions. Cost effective heat rejection kits are considered which add additional capability in the form of attached spacelab radiators or a deployable radiator module.

  19. NATO: In-orbit experience

    NASA Technical Reports Server (NTRS)

    Capulli, J. J.

    1980-01-01

    The performance of the NATO-111-A and NATO 111-B satellite battery is reported. The electrical power subsystem is briefly described. The electrical characteristics and the reconditioning experience of the batteries is cited. The in-orbit experience is compared with results of preflight accelerated life tests.

  20. Biomaterials for orbital fractures repair

    PubMed Central

    Totir, M; Ciuluvica, R; Dinu, I; Careba, I; Gradinaru, S

    2015-01-01

    The unique and complex anatomy of the orbit requires significant contouring of the implants to restore the proper anatomy. Fractures of the orbital region have an incidence of 10-25% from the total facial fractures and the most common age group was the third decade of life. The majority of cases required reconstruction of the orbital floor to support the globe position and restore the shape of the orbit. The reason for this was that the bony walls were comminuted and/ or bone fragments were missing. Therefore, the reconstruction of the missing bone was important rather than reducing the bone fragments. This could be accomplished by using various materials. There is hardly any anatomic region in the human body that is so controversial in terms of appropriate material used for fracture repair: non resorbable versus resorbable, autogenous/ allogeneic/ xenogenous versus alloplastic material, non-prebent versus preformed (anatomical) plates, standard versus custom-made plates, nonporous versus porous material, non-coated versus coated plates. Thus, the importance of the material used for reconstruction becomes more challenging for the ophthalmologist and the oral and maxillofacial surgeon. PMID:25914737

  1. Energy and the Elliptical Orbit

    ERIC Educational Resources Information Center

    Nettles, Bill

    2009-01-01

    In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and…

  2. Non-infectious orbital vasculitides

    PubMed Central

    Perumal, B; Black, E H; Levin, F; Servat, J J

    2012-01-01

    Non-infectious vasculitides comprise a large number of diseases. Many of these diseases can cause inflammation within the orbit and a clinical presentation, which mimics numerous other processes. Orbital disease can often be the initial presentation of a systemic process and early diagnosis can help prevent long-term, potentially fatal consequences. The evaluation and treatment of non-infectious orbital vasculitides are often complicated and require a thorough understanding of the disease and underlying systemic associations. The long-term prognosis visually and systemically must be weighed against the risks and benefits of the treatment regimen. A large variety of corticosteroid formulations currently exist and are the mainstay of initial treatment. Traditional steroid-sparing immunosuppressive agents are also an important arsenal against these vasculitides. Recently, a new class of drugs called biologics, which target the various mediators of the inflammation cascade, may potentially provide more effective and less toxic treatment. This review aims to synthesize the current literature on non-infectious orbital vasculitides. PMID:22361845

  3. Three Planets Orbiting Wolf 1061

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M⊕ minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M⊕ minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M⊕ minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H & K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  4. NASA Facts, Orbits and Revolutions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet is intended for senior high physics students. It contains information on the sidereal and synodic periods of revolution of an orbiting satellite, including their calculation. This pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook.…

  5. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vertrone, A. V.; Lewis, B. H.; Martin, M. D.

    1982-01-01

    The extremely long mission of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of these photos can be used to form stereo images allowing the student of Mars to examine a subject in three dimensional. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set.

  6. Nuclear propulsion for orbital transfer

    SciTech Connect

    Beale, G.A.; Lawrence, T.J. )

    1989-06-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine.

  7. Orbits of Six Binary Stars

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    2005-04-01

    Preliminary orbital elements of binary systems WDS 03494-1956 = RST 2324, WDS 03513+2621 = A 1830, WDS 04093-2025 = RST 2333, WDS 06485-1226 = A 2935, WDS 07013-0906 = A 671, and WDS 18323-1439 = CHR 73 are presented. For all systems but WDS 18323-1439 the individual masses and dynamical parallaxes are derived.

  8. Precision orbit computations for Starlette

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Williamson, R. G.

    1976-01-01

    The Starlette satellite, launched in February 1975 by the French Centre National d'Etudes Spatiales, was designed to minimize the effects of nongravitational forces and to obtain the highest possible accuracy for laser range measurements. Analyses of the first four months of global laser tracking data confirmed the stability of the orbit and the precision to which the satellite's position is established.

  9. New instrument for orbital anthropometry.

    PubMed

    Kohout, M; Pai, L; Berenguer, B; Tayler, P; Pracharktam, N; Mulliken, J B

    1998-06-01

    A new instrument for orbital anthropometry is described. It consists of the base for a slit-lamp upon which the patient's head rests and rulers mounted on three independently movable axes. The z-axis probe is used to measure sagittal relationship between the corneal apices and points on the orbital perimeter. The instrument was tested against a sliding caliper and its accuracy was found to be within 0.2 mm or 2%. Intra- and inter-observer reliability were assessed by repeated measurements of two subjects by three observers. The intra-observer reliability was 0.99. Variations between observers was not significantly different for points orbitale inferius (oi), nasion (n), and orbitale superius (os), however, there was a statistically significant difference for measurement of orbitale laterale (ol). The correlation between anthropometric readings for lateral orbital wall to apex corneal (ol-ac) and CT scans for the same landmarks was assessed. Analysis of variance showed no difference between the measurement methods. This anthropometer is convenient and accurate for measurement of the sagittal orbital-globe relationships. A disadvantage is that it cannot be used intraoperatively. PMID:9702637

  10. Space Shuttle Orbiter-Illustration

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  11. Orbital Debris Research at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2009-01-01

    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment.

  12. CT & CBCT imaging: assessment of the orbits.

    PubMed

    Hatcher, David C

    2012-11-01

    The orbits can be visualized easily on routine or customized protocols for computed tomography (CT) or cone beam CT (CBCT) scans. Detailed orbital investigations are best performed with 3-dimensional imaging methods. CT scans are preferred for visualizing the osseous orbital anatomy and fissures while magnetic resonance imaging is preferred for evaluating tumors and inflammation. CBCT provides high-resolution anatomic data of the sinonasal spaces, airway, soft tissue surfaces, and bones but does not provide much detail within the soft tissues. This article discusses CBCT imaging of the orbits, osseous anatomy of the orbits, and CBCT investigation of selected orbital pathosis. PMID:22981080

  13. Magneto-orbital coupling in iron pnictides

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayandip; Raghuvanshi, Nimisha; Singh, Avinash

    2016-05-01

    A magneto-orbital coupling mechanism is proposed to account for the weak energy gap at the Fermi energy in the (π , 0) ordered SDW state of a realistic three-orbital model for iron pnictides involving dxz, dyz, and dxy Fe orbitals. The orbital mixing terms between the dxy and dxz /dyz orbitals, which are important in reproducing the orbital composition of the elliptical electron pockets at (± π , 0) and (0 , ± π), are shown to play a key role in the energy gap formation in the SDW state.

  14. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    The DOD and NASA inertial upper stage communication system design, hardware specifications and interfaces were analyzed to determine their compatibility with the Orbiter payload communications equipment (Payload Interrogator, Payload Signal Processors, Communications Interface Unit, and the Orbiter operational communications equipment (the S-Band and Ku-band systems). Topics covered include (1) IUS/shuttle Orbiter communications interface definition; (2) Orbiter avionics equipment serving the IUS; (3) IUS communication equipment; (4) IUS/shuttle Orbiter RF links; (5) STDN/TDRS S-band related activities; and (6) communication interface unit/Orbiter interface issues. A test requirement plan overview is included.

  15. Conversion of Osculating Orbital Elements to Mean Orbital Elements

    NASA Technical Reports Server (NTRS)

    Der, Gim J.; Danchick, Roy

    1996-01-01

    Orbit determination and ephemeris generation or prediction over relatively long elapsed times can be accomplished with mean elements. The most simple and efficient method for orbit determination, which is also known as epoch point conversion, performs the conversion of osculating elements to mean elements by iterative procedures. Previous epoch point conversion methods are restricted to shorter elapsed times with linear convergence. The new method presented in this paper calculates an analytic initial guess of the unknown mean elements from a first order theory of secular perturbations and computes a transition matrix with accurate numerical partials. It thereby eliminates the problem of an inaccurate initial guess and an identity transition matrix employed by previous methods. With a good initial guess of the unknown mean elements and an accurate transition matrix, converging osculating elements to mean elements can be accomplished over long elapsed times with quadratic convergence.

  16. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  17. Localized neurofibromas in the bilateral orbits.

    PubMed

    Takeuchi, Satoru; Wada, Kojiro; Nagatani, Kimihiro; Nawashiro, Hiroshi

    2013-10-01

    Localized neurofibromas are rare in the orbit and, unlike the more common plexiform neurofibromas, are not typically associated with von Recklinghausen neurofibromatosis. We present a rare case of localized neurofibromas in the bilateral orbits. PMID:24426488

  18. Analysing weak orbital signals in Gaia data

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2014-11-01

    Anomalous orbits are found when minimum-χ2 estimation is applied to synthetic Gaia data for orbits with astrometric signatures comparable to the single-scan measurement error (Pourbaix 2002, A&A, 385, 686). These orbits are nearly parabolic, edge-on, and their major axes align with the line-of-sight to the observer. Such orbits violate the Copernican principle (CPr) and as such could be rejected. However, the preferred alternative is to develop a statistical technique that incorporates the CPr as a fundamental postulate. This can be achieved in a Bayesian context by defining a Copernican prior. Pourbaix's anomalous orbits then no longer arise. Instead, the selected orbits have a somewat higher χ2 but do not violate the CPr. The problem of detecting a weak additional orbit in an astrometric binary with a well-determined orbit is also treated.

  19. Rational orbits around charged black holes

    SciTech Connect

    Misra, Vedant; Levin, Janna

    2010-10-15

    We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effective potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.

  20. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  1. Management of ocular, orbital, and adnexal trauma

    SciTech Connect

    Spoor, T.C.; Nesi, F.A.

    1988-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Ruptured Globe: Primary Care; Corneal Trauma, Endophthalmitis; Antibiotic Usage; Radiology of Orbital Trauma; Maxillofacial Fractures; Orbital Infections; and Basic Management of Soft Tissue Injury.

  2. Assessment and management of orbital cellulitis.

    PubMed

    Amin, Nikul; Syed, Irfan; Osborne, Sarah

    2016-04-01

    Orbital cellulitis is a medical emergency requiring multidisciplinary team involvement. Early diagnosis and intervention is imperative to avoid serious complications. This article provides an evidence-based approach to the assessment and management of patients with orbital cellulitis. PMID:27071427

  3. NASA Now: Orbital Mechanics: Earth Observing Satellites

    NASA Video Gallery

    This NASA Now program is all about satellites and their orbits. Dr. James Gleason, project scientist for NPP, explains what it takes for a satellite to stay in orbit, why there are different types ...

  4. Overview of the Mars Reconnaissance Orbiter mission

    NASA Technical Reports Server (NTRS)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  5. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  6. Orbiter CIU/IUS communications hardware evaluation

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1979-01-01

    Inertial Upper Stage (IUS) and DoD Communication Interface Unit (CIU) communication system design, hardware specifications, and interfaces were evaluated to determine their compatibility with the Orbiter payload communication and data handling equipment and the Orbiter network communication equipment.

  7. #1 Stereo Orbit - Launch to Feb 2011

    NASA Video Gallery

    The STEREO mission consists of two spacecraft orbiting the Sun, one moving a bit faster than Earth and the other a bit slower. In the time since the STEREO spacecraft entered these orbits near the ...

  8. MOOSE: Manned On-Orbit Servicing Equipment

    NASA Technical Reports Server (NTRS)

    Budinoff, J. (Editor); Leontsinis, N. (Editor); Lane, J. (Editor); Singh, R. (Editor); Angelone, K.; Boswell, C.; Chamberlain, I.; Concha, M.; Corrodo, M.; Custodio, O.

    1993-01-01

    The ability to service satellites has thus far been limited to low earth orbit platforms within reach of the Space Shuttle. Other orbits, such as geosynchronous orbits containing high-value spacecraft have not been attainable by a servicing vehicle. The useful life of a satellite can be extended by replacing spent propellant and damaged orbital replacement units, forestalling the need for eventual replacement. This growing need for satellite on-orbits servicing can be met by the Manned On-Orbit Servicing Equipment (MOOSE). Missions requiring orbit transfer capability, precision manipulation and maneuvering, and man-in-the-loop control can be accomplished using MOOSE. MOOSE is a flexible, reusable, single operator, aerobraking spacecraft designed to refuel, repair, and service orbiting spacecraft. MOOSE will be deployed from Space Station Freedom, (SSF), where it will be stored, resupplied, and refurbished.

  9. Topological classification of Brownian orbits.

    PubMed

    Tanaka, Fumihiko

    2012-09-14

    This paper presents the exact formula for the bivariate probability distribution function of a Brownian particle as a function of its position and velocity, whose orbit makes a specified number of turns around an infinite straight line. In the limit of large friction constant, the solution reduces to the well-known results for random Wiener paths. Topological entanglements of stiff polymers are discussed on the basis of this solution. The method to find the solution is applied to the velocity space of a Brownian motion, and the probability to find a closed path with a specified winding number is obtained. Hence, closed two-dimensional Brownian orbits are classified into regular homotopy classes, whose statistical weight is derived as a function of the total length and the friction constant. PMID:22979890

  10. The Mercury Dual Orbiter mission

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Slavin, J. A.

    1990-01-01

    The Mercury Orbiter (MeO) will carry out a full range of particles, fields, and planetary imaging science at Mercury. Present mission plans call for a launch in 1999 with a flight time of about 4.5 years. By means of multiple Venus and Mercury gravitational assists, the mission can be accomplished with present U.S. launch vehicles and a very large payload can be placed in orbit around Mercury. The dual-spacecraft concept will permit outstanding scientific study of solar cosmic rays and the solar wind throughout the inner heliosphere from 0.3 AU to 1.0 AU. Modest enhancements to the planned magnetospheric instruments and utilization of onboard solar instruments will permit unique investigation of solar particle acceleration and transport with the MeO spacecraft.

  11. Lunar Orbiter: Moon and Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  12. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  13. SILEX in-orbit performances

    NASA Astrophysics Data System (ADS)

    Planche, Gilles; Chorvalli, Vincent

    2004-06-01

    PASTEL embarked on-board SPOT4, French LEO earth observation satellite, and OPALE mounted on-board ARTEMIS, European GEO telecommunication satellite are the key components of SILEX (Semi-conductor Inter-satellite Link Experiment) system. Launched in March 1998, PASTEL terminal was first verified via star tracking. Then, first SILEX optical communication was successfully performed in December 2001 with ARTEMIS at 31000 km. Following 12 months ARTEMIS orbit rising, SILEX commissioning phase was successfully achieved in spring 2003. Today, more than hundred successful optical communications have been achieved. On 1st of October 2003, the SILEX optical link was declared fully operational by the European and French space agencies. After a recall of SILEX architecture, design and on-ground verification, this paper reports on in-orbit results.

  14. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  15. Orbiter Thermal Protection System Development

    NASA Technical Reports Server (NTRS)

    Greenshields, D. H.

    1977-01-01

    The development of the Space Shuttle Orbiter Thermal Protection System (TPS) is traced from concept definition, through technical development, to final design and qualification for manned flight. A sufficiently detailed description of the TPS design is presented to support an indepth discussion of the key issues encountered in conceptual design, materials development, and structural integration. Emphasis is placed on the unique combination of requirements which resulted in the use not only of revolutionary design concepts and materials, but also of unique design criteria, newly developed analysis, testing and manufacturing methods, and finally of an unconventional approach to system certification for operational flight. The conclusion is drawn that a significant advance in all areas of thermal protection system development has been achieved which results in a highly efficient, flexible, and cost-effective thermal protection system for the Orbiter of the Space Shuttle System.

  16. The Orbiting Primate Experiment (OPE)

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Debourne, M. N. G.; Mcclure, H. M.

    1977-01-01

    Instrumentation and life support systems are described for an experiment to determine the physiological effects of long term space flight on unrestrained, minimally instrumented rhesus macaques flown in orbit for periods up to six months or one year. On return from orbit, vestibular, cardiovascular, and skeletal muscle function will be tested. Blood chemistry and hematological studies will be conducted as well as tests of the immunological competence of selected animals. Nasal, rectal, and throat swabs will be used for bacterial and viral studies, and histopathological and histochemical investigations will be be made of all organs using light and electron microscopy. The experiment is being considered as a payload for the biomedical experiment scientific satellite.

  17. Low thrust orbit determination program

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Shults, G. L.; Huling, K. R.; Ratliff, C. W.

    1972-01-01

    Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP).

  18. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  19. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.

  20. Space Shuttle Orbiter descent navigation

    NASA Technical Reports Server (NTRS)

    Montez, M. N.; Madden, M. F.

    1982-01-01

    The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.

  1. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The documentation and user's guide are presented for the analytical satellite orbit predictor computer program which is intended to be used for computation of near-earth orbits including those of the shuttle orbiter and its payloads. The Poincare-Similar elements used make it possible to compute near-earth orbits to within an accuracy of a few meters. Recursive equations are used instead of complicated formulas. Execution time is on the order of a few milliseconds.

  2. The Orbital Workshop Sleep Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This wide-angle view is of the Orbital Workshop (OWS) sleep compartment, located in the lower level of the OWS. Each crewman was assigned a small space for sleeping and zipped themselves into sleeping bags stretched against the wall. Because of the absence of gravity, sleeping comfort was achieved in any position relative to the spacecraft; body support was not necessary. Sleeping could be accommodated quite comfortably in a bag that held the body at a given place in Skylab.

  3. Orbiter structural design and verification

    NASA Technical Reports Server (NTRS)

    Glynn, P. C.; Moser, T. L.

    1985-01-01

    The space shuttle development program provided the opportunity to challenge many of the established practices and approaches used in prior manned space flight programs. The most significant accomplishments and resulting precedents which emerged during the structural development of the space shuttle and the space shuttle orbiter are reviewed. Innovations in criteria, design solutions, and certification are highlighted, and brief comments on the lessons learned are included. Thermal stress, graphite epoxy moisture, window structure, and structural inspection are discussed under lessons learned.

  4. Assembling the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph was taken during assembly of the bottom and upper floors of the Skylab Orbital Workshop (OWS). The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  5. Viking orbiter system primary mission

    NASA Technical Reports Server (NTRS)

    Goudy, J. R.

    1977-01-01

    An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.

  6. Orbital lymphoma: Role of radiation

    PubMed Central

    Yadav, B S; Sharma, S C

    2009-01-01

    The purpose of this article is to review the literature for clinical presentation, treatment, outcome and complications of using radiotherapy for the treatment of orbital lymphoma. For this, MEDLINE, EMBASE, and the Cochrane Library were searched through January 2007 for published data on primary non-Hodgkin's lymphoma (NHL) of the orbit. The search was conducted in all document types, using the following terms “Non-Hodgkin's lymphoma, MALT (mucosa associated lymphoid tissue) and orbit”. Data extracted were based on age, sex, therapeutic methods and outcome of treatment. When full articles were not available, abstracts were used as a source of information. Only those articles whose abstracts or full text were available in English were included in table. The review of reports of NHL of the orbit, in general, served as a source of information about its clinical behavior, treatment and overall prognosis. Fifty-six publications were identified, including six in languages other than English. There was no randomized trial. All the studies were retrospective. The studies were heterogeneous in patient number (3 to 112), histology, disease stage (IE to IV), radiotherapy doses used (4 to 53.8Gy), local control rates (65 to 100%), distant relapse rates (0 to 67%, from low grade to high grade) and five-year survival rates (33 to 100%). Three of the studies with a good number of patients also demonstrated clinical benefit with radiotherapy in terms of superior efficacy or less toxicity. Available data support the acceptance of radiotherapy as a standard therapeutic option in patients with low to intermediate grade orbital lymphoma. Toxicity of radiotherapy is mild if delivered precisely. PMID:19237780

  7. Orbital assembly and maintenance study

    NASA Technical Reports Server (NTRS)

    Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J.; Salis, M.; Skidmore, R.; Thomas, R.

    1975-01-01

    The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented.

  8. Opportunity Tracks Seen from Orbit

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Opportunity landed on the red planet a year ago. This enhanced-resolution image from the Mars Orbiter Camera on NASA's Mars Global Surveyor orbiter is the only picture obtained thus far (by Jan. 24, 2005) that shows the tracks made by Opportunity.

    The image was acquired on April 26, 2004, during Opportunity's 91st martian day, or sol. That was the first day of Opportunity's extended mission, and the rover had recently completed exploration of small 'Fram Crater' on the route from its landing site toward 'Endurance Crater,' where it would eventually spend six months. The rover itself can be seen in this image -- an amazing accomplishment, considering that the orbiter was nearly 400 kilometers (nearly 250 miles) away at the time! Also visible and labeled on this image are the spacecraft's lander, backshell, parachute and heat shield, plus effects of its landing rockets.

    The camera captured this image with use of a technique called compensated pitch and roll targeted observation. In this method, the entire spacecraft rolls as it passes over the target area so the camera can scan in a way that sees details at three times higher resolution than the camera's normal high-resolution capability.

    The tracks made by Opportunity on the sandy surface of Meridiani Planum are not quite as visible from orbit as are the tracks made in Gusev Crater by the other Mars Exploration Rover, Spirit. A dustier surface at the Spirit site increases contrast between the tracks and the surrounding surfaces. Indeed, some parts of the track made by Opportunity are not visible in this image. Sunlight illuminates the scene from the left. North is toward the top of the image. The 100-meter scale bar is 109 yards long.

  9. Geological exploration from orbital altitudes

    USGS Publications Warehouse

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  10. Vigilance problems in orbiter processing

    NASA Technical Reports Server (NTRS)

    Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.

    1993-01-01

    A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.

  11. Commercializing the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Miller, M. W.

    1984-01-01

    Key milestones necessary to establish the transfer orbit stage are examined. The selection of the project concept and synthesis of the company are described followed by an analysis venture capability support and the selection of a major aerospace company as prime contractor. A landmark agreement with NASA sanctioned the commercial TOS concept and provided the critical support necessary to raise the next round of venture capital. Project management and customer commitments are also discussed.

  12. Mars Orbiting Plasma Surveyor (MOPS)

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Andre, M.; Blomberg, L. G.; Lundin, R.; Marklund, G. T.; Rathsman, P.; von Scheele, F.; Wahlund, J.-E.

    Mars Orbiting Plasma Surveyor (MOPS) S. Barabash (1), M. André (2), L. G. Blomberg (3), R. Lundin (1),G. T. Marklund (3), P. Rathsman (4), F. von Schéele (4), J.-E. Wahlund (2) (1) Swedish Institute of Space Physics, Kiruna, Sweden (stas@irf.se) (2) Swedish Institute of Space Physics, Uppsala, Sweden (3) Royal Institute of Technology, Department of Space and Plasma Physics , Stockholm, Sweden (4) Swedish Space Corporation, Solna, Sweden Mars Orbiting Plasma Surveyor (MOPS) is a microsatellite mission focused on studies of the near - Mars environment and the planet - solar wind interaction. The recent findings by the ESA Mars Express mission further highlighted the complexity of the processes taking place at the planet resulting from the solar wind interaction that strongly affect the planet's atmosphere. However, despite many previous Martian missions carrying different types of space plasma experiments, a comprehensive investigation including simultaneous measurements of particles, fields, and waves has never been performed. We propose a spinning spacecraft of a mass of 50-80 kg with a 10 kg payload which can "hitchhike" on another platform until Mars orbit insertion and then be released into a suitable orbit. The spacecraft design is based on the experience gained in very successful Swedish space plasma missions, Viking, Freja, Astrid -1, and Astrid - 2. In the present mission design, the MOPS spacecraft is equipped with its own 1m high gain antenna for direct communication with the Earth. The payload includes a wave experiment with wire booms, magnetometer with a rigid boom, electron and ion energy spectrometers and an ion mass analyser. An energetic neutral atom imager and an UV photometer may complete the core payload.

  13. Orbits of nine Uranian rings

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Frogel, J. A.; Elias, J. H.; Mink, D. J.; Liller, W.

    1981-01-01

    Observations of a stellar occultation by Uranus and its nine rings are presented and used to examine the structures and kinematics of the rings. The observations of the occultation of the K giant star KM 12 were obtained in the K band with the 4-m CTIO telescope at a signal-to-noise ratio higher than any previously obtained. Ring occultation profiles reveal the alpha ring to possibly have a double structure and less abrupt boundaries than the gamma ring, which exhibits diffraction fringes, while the eta ring is a broad ring with an unresolved narrow component at its inner edge. The present timing data, as well as previous occultation timings, are fit to a kinematic model in which all nine rings are treated as coplanar eclipses of zero inclination, precessing due to the zonal harmonics of the Uranian gravitational potential to obtain solutions for the ring orbits. Analysis of the residuals from the fitted orbits reveals that the proposed model is a good representation of ring kinematics. The reference system defined by the orbit solutions has also been used to obtain a value of 0.022 + or - 0.003 for the ellipticity of Uranus and a Uranian rotation period of 15.5 h.

  14. Mutual Orbits of Transneptunian Binaries

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Noll, K. S.; Roe, H. G.; Porter, S. B.; Trujillo, C. A.; Benecchi, S. D.; Buie, M. W.

    2012-10-01

    We report the latest results from a program of high spatial resolution imaging to resolve the individual components of binary transneptunian objects. These observations use Hubble Space Telescope and also laser guide star adaptive optics systems on Keck and Gemini telescopes on Mauna Kea. From relative astrometry over multiple epochs, we determine the mutual orbits of the components, and thus the total masses of the systems. Accurate masses anchor subsequent detailed investigations into the physical characteristics of these systems. For instance, dynamical masses enable computation of bulk densities for systems where the component sizes can be estimated from other measurements. Additionally, patterns in the ensemble characteristics of binary orbits offer clues to circumstances in the protoplanetary nebula when these systems formed, as well as carrying imprints of various subsequent dynamical evolution processes. The growing ensemble of known orbits shows intriguing patterns that can shed light on the evolution of this population of distant objects. This work has been supported by an NSF Planetary Astronomy grant and by several Hubble Space Telescope and NASA Keck data analysis grants. The research makes use of data from the Gemini Observatory obtained through NOAO survey program 11A-0017, from a large number of Hubble Space Telescope programs, and from several NASA Keck programs.

  15. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  16. Extended Duration Orbiter Medical Project

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.

    1990-01-01

    The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.

  17. Synchronous orbit power technology needs

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.; Billerbeck, W. J.

    1979-01-01

    The needs are defined for future geosynchronous orbit spacecraft power subsystem components, including power generation, energy storage, and power processing. A review of the rapid expansion of the satellite communications field provides a basis for projection into the future. Three projected models, a mission model, an orbit transfer vehicle model, and a mass model for power subsystem components are used to define power requirements and mass limitations for future spacecraft. Based upon these three models, the power subsystems for a 10 kw, 10 year life, dedicated spacecraft and for a 20 kw, 20 year life, multi-mission platform are analyzed in further detail to establish power density requirements for the generation, storage and processing components of power subsystems as related to orbit transfer vehicle capabilities. Comparison of these requirements to state of the art design values shows that major improvements, by a factor of 2 or more, are needed to accomplish the near term missions. However, with the advent of large transfer vehicles, these requirements are significantly reduced, leaving the long lifetime requirement, associated with reliability and/or refurbishment, as the primary development need. A few technology advances, currently under development, are noted with regard to their impacts on future capability.

  18. Density-orbital embedding theory

    SciTech Connect

    Gritsenko, O. V.; Visscher, L.

    2010-09-15

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.

  19. Outgassing products from orbiter TPS materials

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Lash, Tom J.; Rawls, J. Richard

    1995-01-01

    The Space Transportation System (STS) orbiters are known to be significant sources of outgassing in low earth orbit (LEO). Infrared and mass spectra of residues and outgassing from orbiter thermal protection tile and an external blanket are presented. Several sources of methyl and phenyl methyl silicones are identified. About fifty pounds of silicones are estimated to be outgassed during an STS mission.

  20. The History of the Molniya Orbit

    NASA Astrophysics Data System (ADS)

    Kettering Group

    Arthur C. Clarke's name is often linked with the Geostationary orbit as a result of his 1945 paper in Wireless World. Less well-known is where the credit for discovering the Molniya orbit should lie. This paper presents the evidence uncovered to date concerning the original concept and provides some insight into the ways in which the orbit has subsequently been exploited.

  1. Prebifurcation periodic ghost orbits in semiclassical quantization

    SciTech Connect

    Kus, M. ); Haake, F. ); Delande, D. )

    1993-10-04

    Classical periodic orbits are stationary-phase points in path integral representations of quantum propagators. We show that complex solutions of the stationary-phase equation, not corresponding to real classical periodic orbits, give additional contributions to the propagator which can be important, especially near bifurcations. We reveal the existence and relevance of such periodic ghost orbits for a kicked top.

  2. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…

  3. The geostationary orbit and developing countries

    NASA Technical Reports Server (NTRS)

    Medina, E. R.

    1982-01-01

    The geostationary orbit is becoming congested due to use by several countries throughout the world, and the request for use of this orbit is increasing. There are 188 geostationary stations in operation. An equitable distribution of stations on this orbit is requested.

  4. STATISTICAL ANALYSIS OF A DETERMINISTIC STOCHASTIC ORBIT

    SciTech Connect

    Kaufman, Allan N.; Abarbanel, Henry D.I.; Grebogi, Celso

    1980-05-01

    If the solution of a deterministic equation is stochastic (in the sense of orbital instability), it can be subjected to a statistical analysis. This is illustrated for a coded orbit of the Chirikov mapping. Statistical dependence and the Markov assumption are tested. The Kolmogorov-Sinai entropy is related to the probability distribution for the orbit.

  5. Some Observations on Molecular Orbital Theory

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2005

    2005-01-01

    A few flawed predictions in the context of homonuclear diatomic molecules are presented in order to introduce students to molecular orbital (MO) theory. A common misrepresentation of the relationship between the energy of an atomic orbital and the energy of the MO associated with the atomic orbital is illustrated.

  6. Orbital-Transfer Vehicle With Aerodynamic Braking

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Nagy, K.; Roberts, B. B.; Ried, R. C.; Kroll, K.; Gamble, J.

    1986-01-01

    Vehicle includes airbrake for deceleration into lower orbit. Report describes vehicle for carrying payloads between low and high orbits around Earth. Vehicle uses thin, upper atmosphere for braking when returning to low orbit. Since less propellant needed than required for full retrorocket braking, vehicle carries larger payload and therefore reduces cost of space transportation.

  7. Prospective Ukrainian lunar orbiter mission

    NASA Astrophysics Data System (ADS)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  8. The orbital record in stratigraphy

    NASA Technical Reports Server (NTRS)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity

  9. New Crocodyliforms from Southwestern Europe and Definition of a Diverse Clade of European Late Cretaceous Basal Eusuchians.

    PubMed

    Narváez, Iván; Brochu, Christopher A; Escaso, Fernando; Pérez-García, Adán; Ortega, Francisco

    2015-01-01

    The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens. PMID:26535893

  10. New Crocodyliforms from Southwestern Europe and Definition of a Diverse Clade of European Late Cretaceous Basal Eusuchians

    PubMed Central

    Narváez, Iván; Brochu, Christopher A.; Escaso, Fernando; Pérez-García, Adán; Ortega, Francisco

    2015-01-01

    The late Campanian-early Maastrichtian site of Lo Hueco (Cuenca, Spain) has provided a set of well-preserved crocodyliform skull and lower jaw remains, which are described here and assigned to a new basal eusuchian taxon, Lohuecosuchus megadontos gen. et sp. nov. The reevaluation of a complete skull from the synchronous site of Fox-Amphoux (Department of Var, France) allows us to define a second species of this new genus. Phylogenetic analysis places Lohuecosuchus in a clade exclusively composed by European Late Cretaceous taxa. This new clade, defined here as Allodaposuchidae, is recognized as the sister group of Hylaeochampsidae, also comprised of European Cretaceous forms. Allodaposuchidae and Hylaeochampsidae are grouped in a clade identified as the sister group of Crocodylia, the only crocodyliform lineage that reaches our days. Allodaposuchidae shows a vicariant distribution pattern in the European Late Cretaceous archipelago, with several Ibero-Armorican forms more closely related to each other than with to Romanian Allodaposuchus precedens. PMID:26535893

  11. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.

  12. Linear magnetoelectric effect by orbital magnetism.

    PubMed

    Scaramucci, A; Bousquet, E; Fechner, M; Mostovoy, M; Spaldin, N A

    2012-11-01

    We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO(4) as a model compound we show that spin-orbit coupling partially lifts the quenching of the 3d orbitals and causes small orbital magnetic moments (μ((L)) ≈ 0.3 μ(B)) parallel to the spins of the Fe(2+) ions. An applied electric field E modifies the size of these orbital magnetic moments inducing a net magnetization linear in E. PMID:23215421

  13. Circular orbits on a warped spandex fabric

    NASA Astrophysics Data System (ADS)

    Middleton, Chad A.; Langston, Michael

    2014-04-01

    We present a theoretical and experimental analysis of circular-like orbits made by a marble rolling on a warped spandex fabric. We show that the mass of the fabric interior to the orbital path influences the motion of the marble in a nontrivial way and can even dominate the orbital characteristics. We also compare a Kepler-like expression for such orbits to similar expressions for orbits about a spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  14. On-orbit flight control algorithm description

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.

  15. Novel Surgical Approaches to the Orbit

    PubMed Central

    Campbell, Ashley A.; Grob, Seanna R.; Yoon, Michael K.

    2015-01-01

    Determining safe surgical access to the orbit can be difficult given the complex anatomy and delicacy of the orbital structures. When considering biopsy or removal of an orbital tumor or repair of orbital fractures, careful planning is required to determine the ideal approach. Traditionally, this has at times necessitated invasive procedures with large incisions and extensive bone removal. The purpose of this review was to present newly techniques and devices in orbital surgery that have been reported over the past decade, with aims to provide better exposure and/or minimally invasive approaches and to improve morbidity and/or mortality. PMID:26692713

  16. Space Shuttle Orbiter auxiliary power unit status

    NASA Astrophysics Data System (ADS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  17. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  18. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing

  19. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  20. Maneuver Design Using Relative Orbital Elements

    NASA Astrophysics Data System (ADS)

    Spencer, David A.; Lovell, Thomas A.

    2015-12-01

    Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.

  1. Two cases of orbital infarction syndrome.

    PubMed

    Yang, S W; Kim, S Y; Chung, J; Kim, K B

    2000-12-01

    Orbital infarction syndrome is defined as ischemia of all intraorbital and intraocular structures. It is a rare disease caused by rich anastomotic vascularization of the orbit. It can occur secondary to different conditions, such as, acute perfusion failure, systemic vasculitis, orbital cellulitis and vasculitis. It results in orbital and ocular pain, total ophthalmoplegia, anterior and posterior segment ischemia, and acute blindness. We report here upon two cases of orbital infarction with similar presentations but with different causes, namely, mucormycosis and as a postoperative complication of intracranial aneurysm, discuss the possible mechanisms of orbital infarction, and present a review of the literature on the topic. The prompt recognition of clinical pictures and rapid diagnosis is essential for the early treatment of orbital infarction, since its progression is very rapid and it can be even fatal. PMID:11213734

  2. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  3. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  4. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; Frampton, Robert; Sichi, Steve; Peltz, Leora; Masciarelli, James; VanCleve, Jeffey

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  5. Orbiter fuel cell improvement assessment

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1981-01-01

    The history of fuel cells and the theory of fuel cells is given. Expressions for thermodynamic and electrical efficiencies are developed. The voltage losses due to electrode activation, ohmic resistance and ionic diffusion are discussed. Present limitations of the Orbiter Fuel Cell, as well as proposed enhancements, are given. These enhancements are then evaluated and recommendations are given for fuel cell enhancement both for short-range as well as long-range performance improvement. Estimates of reliability and cost savings are given for enhancements where possible.

  6. Assembling the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph was taken during installation of floor grids on the upper and lower floors inside the Skylab Orbital Workshop at the McDornell Douglas plant at Huntington Beach, California. The OWS was divided into two major compartments. The lower level provided crew accommodations for sleeping, food preparation and consumption, hygiene, waste processing and disposal, and performance of certain experiments. The upper level consisted of a large work area and housed water storage tanks, a food freezer, storage vaults for film, scientific airlocks, mobility and stability experiment equipment, and other experimental equipment.

  7. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in

  8. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The work reported involved the improvement of aerodynamic theory for free molecular and transition flow regimes. The improved theory was applied to interpretation of the dynamic response of objects traveling through the atmosphere. Satellite drag analysis includes analysis methods, atmospheric super rotation effects, and satellite lift effects on orbital dynamics. Transition flow regimes were studied with falling sphere data and errors resulting in inferred atmospheric parameters from falling sphere techniques. Improved drag coefficients reveal considerable error in previous falling sphere data. The drag coefficient has been studied for the entire spectrum of Knudsen Number and speed ratio, with particular emphasis on the theory of the very low-speed ratio regime.

  9. Calibration effects on orbit determination

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Winn, F. B.; Zielenbach, J. W.; Yip, K. B.

    1974-01-01

    The effects of charged particle and tropospheric calibrations on the orbit determination (OD) process are analyzed. The calibration process consisted of correcting the Doppler observables for the media effects. Calibrated and uncalibrated Doppler data sets were used to obtain OD results for past missions as well as Mariner Mars 1971. Comparisons of these Doppler reductions show the significance of the calibrations. For the MM'71 mission, the media calibrations proved themselves effective in diminishing the overall B-plane error and reducing the Doppler residual signatures.

  10. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  11. Viking orbiter stereo imaging catalog

    NASA Technical Reports Server (NTRS)

    Blasius, K. R.; Vetrone, A. V.; Martin, M. D.

    1980-01-01

    The extremely long missions of the two Viking Orbiter spacecraft produced a wealth of photos of surface features. Many of which can be used to form stereo images allowing the earth-bound student of Mars to examine the subject in 3-D. This catalog is a technical guide to the use of stereo coverage within the complex Viking imaging data set. Since that data set is still growing (January, 1980, about 3 1/2 years after the mission began), a second edition of this catalog is planned with completion expected about November, 1980.

  12. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  13. Space Shuttle orbiter separation bolts

    NASA Technical Reports Server (NTRS)

    Ritchie, R. S.

    1979-01-01

    Evolution of the space shuttle from previous spacecraft systems dictated growth and innovative design of previously standard ordnance devices. Initially, one bolt design was programmed for both 747 and external tank application. However, during development and subsequent analyses, two distinct designs evolved. The unique requirements of both bolts include: high combined loading, redundant initiation, flush separation plane, self-righting and shank attenuation. Of particular interest are the test methods, problem areas, and use of subscale models which demonstrated feasibility at an early phase in the program. The techniques incorporated in the shuttle orbiter bolts are applicable to other mechanisms.

  14. Orbiter wheel and tire certification

    NASA Technical Reports Server (NTRS)

    Campbell, C. C., Jr.

    1985-01-01

    The orbiter wheel and tire development has required a unique series of certification tests to demonstrate the ability of the hardware to meet severe performance requirements. Early tests of the main landing gear wheel using conventional slow roll testing resulted in hardware failures. This resulted in a need to conduct high velocity tests with crosswind effects for assurance that the hardware was safe for a limited number of flights. Currently, this approach and the conventional slow roll and static tests are used to certify the wheel/tire assembly for operational use.

  15. Tetherline system for orbiting satellites

    NASA Technical Reports Server (NTRS)

    Rupp, C. C.; Kissel, R. R. (Inventor)

    1978-01-01

    A system for tethering one orbiting space vehicle to another was designed so that a tetherline between the vehicles is controlled by a motorized reel which in turn is controlled to deploy, retrieve, or maintain a constant line length while effecting a stabilizing influence on the line. This is accomplished by applying a tension to the line which takes into account the instantaneous length of the line, rate of change of the length of the line, and certain constants which vary depending upon the mode of operation, deployment, retrieval, or station keeping.

  16. On-Orbit Software Analysis

    NASA Technical Reports Server (NTRS)

    Moran, Susanne I.

    2004-01-01

    The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx. The primary objectives of the Project were: Discovery and verification of software program properties and dependencies, Detection and isolation of software defects across different versions of software, and Compilation of historical data and technical expertise for future applications

  17. Orbiting pairs of walking droplets

    NASA Astrophysics Data System (ADS)

    Siefert, Emmanuel; Bush, John W. M.; Oza, Anand

    2015-11-01

    Droplets may self-propel on the surface of a vibrating fluid bath, pushed forward by their own Faraday pilot-wave field. We present the results of a combined experimental and theoretical investigation of the interaction of pairs of such droplets. Particular attention is given to characterizing the system's dependence on the vibrational forcing of the bath and the impact parameter of the walking droplets. Observed criteria for the capture and stability of orbital pairs are rationalized by accompanying theoretical developments. Thanks to the NSF.

  18. Precise Orbit Determination for Altimeter Satellites

    NASA Astrophysics Data System (ADS)

    Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Beckley, B. B.; Wang, Y.; Chinn, D. S.

    2002-05-01

    Orbit error remains a critical component in the error budget for all radar altimeter missions. This paper describes the ongoing work at GSFC to improve orbits for three radar altimeter satellites: TOPEX/POSEIDON (T/P), Jason, and Geosat Follow-On (GFO). T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits (2-3 cm radially) produced at GSFC. Jason, the T/P follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. Reaching the Jason centimeter accuracy orbit goal would greatly benefit the knowledge of ocean circulation. Several new POD strategies which promise significant improvement to the current T/P orbit are evaluated over one year of data. Also, preliminary, but very promising Jason POD results are presented. Orbit improvement for GFO has been dramatic, and has allowed this mission to provide a POESEIDON class altimeter product. The GFO Precise Orbit Ephemeris (POE) orbits are based on satellite laser ranging (SLR) tracking supplemented with GFO/GFO altimeter crossover data. The accuracy of these orbits were evaluated using several tests, including independent TOPEX/GFO altimeter crossover data. The orbit improvements are shown over the years 2000 and 2001 for which the POEs have been completed.

  19. Mission Design for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA's Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination.

  20. GPS-LEO orbiter occultation orbital analyses and event determination

    NASA Astrophysics Data System (ADS)

    Abdul Rashid, Z. A.; Cheng, P. P.

    2003-04-01

    A good knowledge of the vertical profiles of temperature and humidity throughout the atmosphere are crucial to understand the present state of the Earth's atmosphere and it's modeling. The application of radio occultation technique has a heritage of over 2 decades in NASA's planetary exploration program to study the atmosphere of most of the major bodies in the solar system. Results from NASA's planetary program experiment have proven to be very effective at characterizing the atmosphere of a planet. However, the use of radio occultation technique to remote sensing the Earth's atmosphere is only practical to be implemented recently with the advent of the matured Global Positioning System (GPS). The GPS occultation technique is well suited to observe the Earth's atmosphere, due to it excellent geographical coverage, all weather capability, long-term stability, self-calibration and high vertical resolution. The GPS/MET (GPS Meteorology) experiment launched in April 1995 is the proof-of-concept of this technique. The results from this experiment is appealing and shown that the GPS occultation technique is a promising candidate to monitor the Earth's atmosphere. With the advancement of receiver technologies and lower system cost, the GPS occultation technique is a promising tool to predict the long-term climatic changes and numerical weather modeling of the Earth's atmosphere at a higher precision. This paper briefly describes the radio occultation concept and the GPS satellite systems, which form the basis understanding of this subject matter. This is followed by a detail description of the occultation geometries between the GPS satellites and a LEO orbiter. A method to determine the occultation event is discussed and thoroughly analyzed in terms of orbit inclinations, altitudes, receiver sampling rates, antenna positioning (aft and fore pointing), and antenna mask angles. A simulator is developed using MATLAB for the orbital analyses and occultation determination in

  1. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  2. Shadowing Lemma and chaotic orbit determination

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Milani, Andrea

    2016-03-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  3. Introducing the Moon's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2014-11-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.

  4. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  5. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  6. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  7. Investigations of SPS Orbit Drifts

    SciTech Connect

    Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel; Goddard, Brennan; Kain, Verena; Meddahi, Malika; Wenninger, Jorg; Gianfelice-Wendt, Eliana

    2014-07-01

    The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variations are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.

  8. Fungal infections of the orbit

    PubMed Central

    Mukherjee, Bipasha; Raichura, Nirav Dilip; Alam, Md. Shahid

    2016-01-01

    Fungal infections of the orbit can lead to grave complications. Although the primary site of inoculation of the infective organism is frequently the sinuses, the patients can initially present to the ophthalmologist with ocular signs and symptoms. Due to its varied and nonspecific clinical features, especially in the early stages, patients are frequently misdiagnosed and even treated with steroids which worsen the situation leading to dire consequences. Ophthalmologists should be familiar with the clinical spectrum of disease and the variable presentation of this infection, as early diagnosis and rapid institution of appropriate therapy are crucial elements in the management of this invasive sino-orbital infection. In this review, relevant clinical, microbiological, and imaging findings are discussed along with the current consensus on local and systemic management. We review the recent literature and provide a comprehensive analysis. In the immunocompromised, as well as in healthy patients, a high index of suspicion must be maintained as delay in diagnosis of fungal pathology may lead to disfiguring morbidity or even mortality. Obtaining adequate diagnostic material for pathological and microbiological examination is critical. Newer methods of therapy, particularly oral voriconazole and topical amphotericin B, may be beneficial in selected patients. PMID:27380972

  9. The Orbiting Carbon Observatory mission

    NASA Technical Reports Server (NTRS)

    Crisp, David; Johnson, Christyl

    2003-01-01

    The Orbiting Carbon Observatory (OCO) mission was selected by NASA's Office of Earth Science as the fifth mission in its Earth System Science Pathfinder (ESSP) Program. OCO will make the first global, space-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to characterize sources and sinks of this important greenhouse gas. These measurements will improve our ability to forecasts CO2-induced climate change. OCO will fly in a 1:15 PM sun-synchronous orbit, sharing its ground track with the Earth Observing System (EOS) Aqua platform. It will carry high-resolution spectrometers to measure reflected sunlight in the molecular oxygen (O2) A-band at 0.76-microns and the CO2 bands at 1.61 and 2.06 microns to retrieve the column-averaged CO2 dry air mole fraction, XCO2. A comprehensive validation and correlative measurement program has been incorporated into this mission to ensure that XCO2 can be retrieved with precisions of 0.3% (1 ppm) on regional scales.

  10. Orbital applications of electrodynamic propulsion

    NASA Astrophysics Data System (ADS)

    Irwin, Troy

    1993-12-01

    Electrodynamic propulsion (EDP) uses forces resulting from electric currents in conductors as a spacecraft travels through a magnetic field. A vehicle-independent expression for the specific power required for any maneuver is derived and used to assess EDP feasibility. Analytical expressions for the accelerations and combined current-conductor vector required to change the orbital plane or the argument of perigee are developed based on Lagrange's planetary equations. Solutions to the forced Clohessy-Wiltshire equations are developed to study iii-plane rendezvous. Results show EDP can change inclination or right ascension of the ascending mode at approximately 0.4 degrees/day with current spacecraft specific power technology. The effects of the Earth's oblateness on a 24 hour, 90 degree inclination Molniya orbit can be negated. Rendezvous is possible with EDP, and approaches along the target velocity vector with no attitude change are possible with current spacecraft specific power. Approaches involving altitude changes will be possible when modest spacecraft power improvements are made. EDP allows a soft dock - velocities and accelerations decay to zero as the chase vehicle the target - and there is no thruster plume to impart momentum or contaminate the target.

  11. Six Planets Orbiting HD 219134

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Burt, Jennifer; Meschiari, Stefano; Butler, R. Paul; Henry, Gregory W.; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-11-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P = 3.1, 6.8, 22.8, 46.7, 94.2, and 2247 days, spanning masses of {M}{sin}i=3.8, 3.5, 8.9, 21.3, 10.8, and 108 {{M}}\\oplus , respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8 m automatic photometric telescope at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ∼0.0002 mag, providing strong support for planetary-reflex motion as the source of the RV variations. The HD 219134 system with its bright (V = 5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, which are expected to be detected by NASA’s forthcoming TESS Mission and by ESA’s forthcoming PLATO Mission.

  12. LROC - Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Eliason, E.; Hiesinger, H.; Jolliff, B. L.; McEwen, A.; Malin, M. C.; Ravine, M. A.; Thomas, P. C.; Turtle, E. P.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO) went into lunar orbit on 23 June 2009. The LRO Camera (LROC) acquired its first lunar images on June 30 and commenced full scale testing and commissioning on July 10. The LROC consists of two narrow-angle cameras (NACs) that provide 0.5 m scale panchromatic images over a combined 5 km swath, and a wide-angle camera (WAC) to provide images at a scale of 100 m per pixel in five visible wavelength bands (415, 566, 604, 643, and 689 nm) and 400 m per pixel in two ultraviolet bands (321 nm and 360 nm) from the nominal 50 km orbit. Early operations were designed to test the performance of the cameras under all nominal operating conditions and provided a baseline for future calibrations. Test sequences included off-nadir slews to image stars and the Earth, 90° yaw sequences to collect flat field calibration data, night imaging for background characterization, and systematic mapping to test performance. LRO initially was placed into a terminator orbit resulting in images acquired under low signal conditions. Over the next three months the incidence angle at the spacecraft’s equator crossing gradually decreased towards high noon, providing a range of illumination conditions. Several hundred south polar images were collected in support of impact site selection for the LCROSS mission; details can be seen in many of the shadows. Commissioning phase images not only proved the instruments’ overall performance was nominal, but also that many geologic features of the lunar surface are well preserved at the meter-scale. Of particular note is the variety of impact-induced morphologies preserved in a near pristine state in and around kilometer-scale and larger young Copernican age impact craters that include: abundant evidence of impact melt of a variety of rheological properties, including coherent flows with surface textures and planimetric properties reflecting supersolidus (e.g., liquid melt) emplacement, blocks delicately perched on

  13. Observations of opacity in Mars Orbiter Laser Orbiter experiment. Results from SPO orbit.

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Muhleman, D. O.

    1998-09-01

    Mars Orbiter Laser Altimeter (MOLA) is an instrument on board of Mars Global Surveyor spacecraft. The laser operates at 1.064 micron wavelength, emitting 8-nsec-long pulses. MOLA measures topography, reflectivity and returned pulse width. Here we will discuss reflectivity and interpret it in terms of atmospheric opacity. Reflectivity is a ratio of the returned energy to the emitted energy. It can be interpreted as a product of albedo (A) of the Martian surface and two-way atmospheric transmission ( R = A * e({) -2 tau }), where tau is atmospheric opacity. Attenuation of the MOLA signal in the atmosphere is only due to extinction of photons from the laser beam. There are practically no photons scattered into the laser beam. This allows us a very straightforward calculation of opacity, given albedo of the surface. We will present opacity calculations based on IRTM bolometric channel albedo map and red-filter camera images and discuss problems associated with opacity calculations based on these datasets. We were able to obtain values for atmospheric opacity at the MOLA wavelength (1.064 micron) during hiatus orbits (L_s = 180-220) and Science Phasing Orbits (SPO) (L_s = 300 - 367). Preliminary assessment of the results for the equatorial regions indicates clear atmosphere during start of SPO (L_s = 300-316), then opacity peaks at L_s = 330 and slowly decreases till the end of SPO observations. At the same time two other instruments (TES and MOC) on MGS were performing measurements of opacity at their corresponding wavelengths (9 micron and 0.7 micron). Atmospheric opacity is a function of the wavelength due to the scattering properties of the aerosols. We will present our approach for comparison opacity measurements at MOLA, MOC and TES wavelengths. This comparison will allow us to determine particles size distribution properties, which is an important parameter for atmospheric heating.

  14. Orbiting orbitals: visualization of vibronic motion at a conical intersection.

    PubMed

    Lee, Joonhee; Perdue, Shawn M; Perez, Alejandro Rodriguez; El-Khoury, Patrick Z; Honkala, Karoliina; Apkarian, V A

    2013-11-21

    The Jahn-Teller (JT) active unpaired electron of single metalloporphyrin radical anions is imaged through scanning tunneling microscopy. It is demonstrated that the electron is delocalized over the porphyrin macrocycle and its topographic image is determined by vibronic motion: the orbital of the electron adiabatically follows the zero-point pseudorotation of skeletal deformations. Transformation of the polar graphs of the observed images allows visualization of the adiabatic vibrational density to which the electron is coupled. The vibronic potential at the conical intersection is visualized and the half-integer angular momentum characteristic of the Berry phase is revealed in the radial function of the electron. The measurements underscore the economy of Jahn-Teller dynamics: small atomic displacements (∼10(-1) Å) determined by weak interactions (∼10 meV) control the motion of the electron on a 10 Å scale and determine the molecular shape and function. PMID:23444830

  15. Orbit Design and Simulation for Kufasat Nanosatellite

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohammed Chessab

    2015-12-01

    Orbit design for KufaSat Nano-satellites is presented. Polar orbit is selected for the KufaSat mission. The orbit was designed with an Inclination which enables the satellite to see every part of the earth. KufaSat has a payload for imaging purposes which require a large amount of power, so the orbit is determined to be sun synchronous in order to provide the power through solar panels. The KufaSat mission is designed for the low earth orbit. The six initial Keplerian Elements of KufaSat are calculated. The orbit design of KufaSat according to the calculated Keplerian elements has been simulated and analyzed by using MATLAB first and then by using General Mission Analysis Tool.

  16. Orbital tumor revealing a systemic sarcoidosis.

    PubMed

    Hannanachi Sassi, Samia; Dhouib, Rim; Kanchal, Fatma; Doghri, Raoudha; Boujelbene, Nadia; Bouguila, Hedi; Mrad, Karima

    2015-01-01

    Ocular involvement is seen in approximately 25% of patients with sarcoidosis. Uveitis is the most common ocular manifestation, but sarcoidosis may involve any part of the eye. Orbital manifestations of sarcoidosis are uncommon with few series in the literature. A 65-year-old woman presented with redness of the right eye and painless, unilateral eyelid swelling. Orbital scanning revealed mass infiltrating the soft tissue of the inferior right orbital quadrant. Biopsy results showed nodular, noncaseating granulomas consistent with sarcoidosis. The complete systemic workup revealed systemic manifestations of sarcoidosis at the time of examination with hilar and mediastinal lymphadenopathies noted on CT scan. The orbital surgical treatment was followed by systemic prednisone therapy with good response. Although rare, orbital sarcoidosis must be considered in the evaluation of orbital tumors in elderly patients. A search for systemic findings should be undertaken and appropriate therapy should be instituted. PMID:25796029

  17. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  18. Endoscopic management of orbital apex lesions.

    PubMed

    Sethi, D S; Lau, D P

    1997-01-01

    Lesions of the orbital apex often present a diagnostic dilemma. Clinical assessment and imaging studies are helpful but a tissue biopsy is often required. The morbidity associated with transcranial approaches to the orbital apex may outweigh the benefits of obtaining a biopsy by these routes. Fine needle aspiration cytology of orbital apex lesions can be performed but there are disadvantages with this method. We describe a transnasal endoscopic technique to biopsy the orbital apex. The technique was used successfully to obtain a tissue diagnosis in six patients with orbital apex lesions. This enabled commencement of definitive treatment. There were no significant complications. The transnasal approach to the orbital apex using the endoscopes is reliable. Endoscopes provide excellent illumination, magnification, and a panoramic view of the operative field. PMID:9438058

  19. Mars Observer trajectory and orbit design

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Roncoli, Ralph B.

    1991-01-01

    The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.

  20. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  1. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  2. Extended duration Orbiter life support definition

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1978-01-01

    Extending the baseline seven-day Orbiter mission to 30 days or longer and operating with a solar power module as the primary source for electrical power requires changes to the existing environmental control and life support (ECLS) system. The existing ECLS system imposes penalties on longer missions which limit the Orbiter capabilities and changes are required to enhance overall mission objectives. Some of these penalties are: large quantities of expendables, the need to dump or store large quantities of waste material, the need to schedule fuel cell operation, and a high landing weight penalty. This paper presents the study ground rules and examines the limitations of the present ECLS system against Extended Duration Orbiter mission requirements. Alternate methods of accomplishing ECLS functions for the Extended Duration Orbiter are discussed. The overall impact of integrating these options into the Orbiter are evaluated and significant Orbiter weight and volume savings with the recommended approaches are described.

  3. Theory of Orbital Susceptibility on Excitonic Insulator

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroyasu; Ogata, Masao

    2016-09-01

    We study the temperature dependence of the orbital susceptibility of an excitonic insulator on the basis of a two-band model. It is shown that a drastic change (an anomalous enhancement) in susceptibility as a function of temperature occurs owing to the occurrence of additional orbital susceptibility due to the excitonic gap. We calculate explicitly the temperature dependence of orbital susceptibility for a model of Ta2NiSe5, and show that the result is consistent with experimental results.

  4. Orbital decompression in thyroid eye disease.

    PubMed

    Fichter, N; Guthoff, R F; Schittkowski, M P

    2012-01-01

    Though enlargement of the bony orbit by orbital decompression surgery has been known for about a century, surgical techniques vary all around the world mostly depending on the patient's clinical presentation but also on the institutional habits or the surgeon's skills. Ideally every surgical intervention should be tailored to the patient's specific needs. Therefore the aim of this paper is to review outcomes, hints, trends, and perspectives in orbital decompression surgery in thyroid eye disease regarding different surgical techniques. PMID:24558591

  5. Orbital Decompression in Thyroid Eye Disease

    PubMed Central

    Fichter, N.; Guthoff, R. F.; Schittkowski, M. P.

    2012-01-01

    Though enlargement of the bony orbit by orbital decompression surgery has been known for about a century, surgical techniques vary all around the world mostly depending on the patient's clinical presentation but also on the institutional habits or the surgeon's skills. Ideally every surgical intervention should be tailored to the patient's specific needs. Therefore the aim of this paper is to review outcomes, hints, trends, and perspectives in orbital decompression surgery in thyroid eye disease regarding different surgical techniques. PMID:24558591

  6. Extended Duration Orbiter - Meeting the challenge

    NASA Technical Reports Server (NTRS)

    Saucier, D. R.

    1992-01-01

    The paper overviews the Extended Duration Orbiter (EDO) program designed to provide an on-orbit stay capability of 16 days using the Orbiter Vehicle OV-102. Special attention is given to the EDO's subsystems and substructures, including the cryogenic pallet, the cryogenic storage tanks, the cryogenic solenoid valves, the regenerable carbon dioxide removal system, and the waste collection system. The EDO program will start with the STS-50 U.S. Microgravity Lab mission planned for June 1992.

  7. Original and future cometary orbits. IV

    NASA Astrophysics Data System (ADS)

    Marsden, B. G.

    1990-06-01

    The values of the 'original' and 'future' reciprocal semimajor axes are calulcated for 36 recent osculating cometary orbits. The results are compared with the computations of Yabushita and Hasegawa (1989). Adjustments for deriving original and future orbits are given for nine other recent comets for which only parabolic orbit determinations are available. Specific attention is given to the physical comet pair 1987 XXX/1988 III.

  8. The orbits of the satellites of Neptune

    NASA Astrophysics Data System (ADS)

    Jacobson, R. A.

    1990-05-01

    This article presents the results of a fit of numerically integrated Neptunian satellite orbits to earth-based astrometric observations and early Voyager spacecraft observations. Ephemerides based on these orbits were used by the Voyager project as the final pre-encounter ephemerides. As a by-product of the orbit fits, estimates of the Neptune mass, the second zonal harmonic of Neptune, and the pole orientation of Neptune were also obtained.

  9. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  10. Orbit determination by range-only data.

    NASA Technical Reports Server (NTRS)

    Duong, N.; Winn, C. B.

    1973-01-01

    The determination of satellite orbits for use in geodesy using range-only data has been examined. A recently developed recursive algorithm for rectification of the nominal orbit after processing each observation has been tested. It is shown that when a synchronous satellite is tracked simultaneously with a subsynchronous geodetic target satellite, the orbits of each may be readily determined by processing the range information. Random data errors and satellite perturbations are included in the examples presented.

  11. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  12. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  13. Neural networks and orbit control in accelerators

    SciTech Connect

    Bozoki, E.; Friedman, A.

    1994-07-01

    An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to `kicks` and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given.

  14. Orbit stability of the ALS storage ring

    SciTech Connect

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability.

  15. Orbital Dispersion of Comet Encke's Meteoroids

    NASA Astrophysics Data System (ADS)

    Klačka, Jozef; Pittich, Eduard M.

    1995-01-01

    The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms-1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown.

  16. Managing resonant trapped orbits in our Galaxy

    NASA Astrophysics Data System (ADS)

    Binney, James

    2016-08-01

    Galaxy modelling is greatly simplified by assuming the existence of a global system of angle-action coordinates. Unfortunately, global angle-action coordinates do not exist because some orbits become trapped by resonances, especially where the radial and vertical frequencies coincide. We show that in a realistic Galactic potential such trapping occurs only on thick-disc and halo orbits (speed relative to the guiding centre ≳ 80 km s-1). We explain how the Torus Mapper code (TM) behaves in regions of phase space in which orbits are resonantly trapped, and we extend TM so trapped orbits can be manipulated as easily as untrapped ones. The impact that the resonance has on the structure of velocity space depends on the weights assigned to trapped orbits. The impact is everywhere small if each trapped orbit is assigned the phase space density equal to the time average along the orbit of the DF for untrapped orbits. The impact could be significant with a different assignment of weights to trapped orbits.

  17. A periodic table for black hole orbits

    SciTech Connect

    Levin, Janna; Perez-Giz, Gabe

    2008-05-15

    Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.

  18. NASA Orbiter Extended Nose Landing Gear

    NASA Technical Reports Server (NTRS)

    King, Steven R.; Jensen, Scott A.; Hansen, Christopher P.

    1999-01-01

    This paper discusses the design, development, test, and evaluation of a prototype Extended Nose Landing Gear (ENLG) for NASA's Space Shuttle orbiters. The ENLG is a proposed orbiter modification developed in-house at NASA's Johnson Space Center (JSC) by a joint government/industry team. It increases the orbiter's nose landing gear (NLG) length, thereby changing the vehicle's angle of attack during rollout, which lowers the aerodynamic forces on the vehicle. This, in combination with a dynamic elevon change, will lower the loads on the orbiter's main landing gear (MLG). The extension is accomplished by adding a telescoping section to the current NLG strut that will be pneumatically extended during NLG deployment.

  19. Synergy Between Entry Probes and Orbiters

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    2005-01-01

    We identify two catagories of probe-orbiter interactions which benefit the science return from a particular mission. The first category is termed "Mission Design Aspects". This category is meant to describe those aspects of the mission design involving the orbiter that affect the science return from the probe(s). The second category of probe-orbiter interaction is termed "Orbiter-Probe Science Interactions", and is meant to include interactions between oribter and probe(s) that directly involve science measurements made from each platform. Two mission related aspects of probe-orbiter interactions are delivery of a probe(s) to the entry site(s) by an orbiter, and communication between each probe and the orbiter. We consider four general probe-orbiter science interactions that greatly enhance, or in certain cases are essential for, the mission science return. The four topics are, global context of the probe entry site(s), ground truth for remote sensing observations of an orbiter, atmospheric composition measurements, and wind measurements.

  20. The NOVA-2 postlaunch orbit adjustment process

    NASA Astrophysics Data System (ADS)

    Heyler, Gene A.

    The NOVA-2 satellite was the last of three `drag free' spacecraft to be placed into the Transit Navigation Systems's constellation of satellites. After its launch from Vandenburg Air Force Base into an initial 510 x 170 nmi near poar orbit, an intensive two-week operations schedule was implemented to : raise the orbit approximately 450 nmi to within .015 sec of desired period, trim eccentricity to within .003, trim inclination to within .006 degrees of requirement, freeze the phase of the spacecraft in orbit relative to the other two `drag free' satellites, dump extra fuel by deliberately fual wasting burns, and transition the spacecraft from a slow spin mode to gravity gradient. This paper will briefly discuss the concept of a `drag free' satellite, the selection of the orbit plane in the constellations, and the derivation of the required final orbit parameters. The paper will also discuss peripheral support needed to assist the OATS (Orbit Adjust and Transfer System) ground software, including attitude determination and maneuvers, orbit determination, and orbit prediction through the burns. However, the specific focus of this paper is on the design and execution of the nine OATS burns that accomplished the orbital maneuvers.

  1. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  2. Orbital motion of the solar power satellite

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.

    1977-01-01

    A study on the effects of solar radiation pressure on the SPS orbit is documented. It was shown that the eccentricity of the orbit can increase from initially being zero. The SPS configuration is primarily considered but the results are applicable to any geosynchronous satellite that resembles a flat surface continually facing the sun. The orbital evolution of the SPS was investigated over its expected 30 year lifetime and the satellite was assumed to be in free flight. The satellite's motion was described with analytical formulae which could be used to develop an orbit control theory in order to minimize station keeping costs.

  3. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  4. Orbital Operations for Phobos and Deimos Exploration

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Parker, Jeffrey S.; Strange, Nathan J.; Grebow, Daniel

    2012-01-01

    One of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to one of the moons of Mars, Phobos or Deimos. There are several options available to the mission architect for operations around these bodies. These options include distant retrograde orbits (DROs), Lagrange-point orbits such as halos and Lyapunov orbits, and fixed-point stationkeeping or "hovering." These three orbit options are discussed in the context of the idealized circular restricted three body problem, full-dynamics propagations, and a concept of operations. The discussion is focused on Phobos, but all results hold for Deimos

  5. On-orbit coldwelding: Fact or friction?

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.

  6. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  7. TOPEX/Poseidon orbit acquisition maneuver design

    NASA Technical Reports Server (NTRS)

    Bhat, Ramachandra S.

    1992-01-01

    The current baseline injection orbit for the jointly sponsored NASA/CNES TOPEX/Poseidon mission is near-circular, approximately 30 km below the desired operational orbit altitude and at the operational orbit inclination. A baseline maneuver sequence to retarget from this injection orbit to the desired operational orbit has been designed based upon the expected worst-case 3-sigma injection and maneuver execution errors. The sequence requires seven maneuvers, including an initial calibration burn, and achieves the operational orbit with the desired ground track pattern in 30 days. A delay sensitivity analysis has been conducted to estimate the allowable operational delay for each maneuver without increasing the total orbit acquisition period. The baseline sequence provides back-ups for a one-revolution delay for each maneuver and one-day delay for most maneuvers. It is also shown that a higher injection orbit allows the maneuver sequence to achieve the operational orbit in 26 days under a worst-case scenario.

  8. Space Shuttle orbiter approach and landing test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

  9. The accuracy of Halley's cometary orbits

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    The accuracy of a scientific computation depends in the main on the data fed in and the analysis method used. This statement is certainly true of Edmond Halley's cometary orbit work. Considering the 420 comets that had been seen before Halley's era of orbital calculation (1695 - 1702) only 24, according to him, had been observed well enough for their orbits to be calculated. Two questions are considered in this paper. Do all the orbits listed by Halley have the same accuracy? and, secondly, how accurate was Halley's method of calculation?

  10. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  11. Mars Observer Lecture: Mars Orbit Insertion

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne R. (Personal Name)

    1993-01-01

    The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a lecture by Suzanne R. Dodd, the Mission Planning Team Chief for the Mars Observer Project. Ms Dodd begins with a brief overview of the mission and the timeline from the launch to orbital insertion. Ms Dodd then reviews slides showing the trajectory of the spacecraft on its trip to Mars. Slides of the spacecraft being constructed are also shown. She then discusses the Mars orbit insertion and the events that will occur to move the spacecraft from the capture orbit into a mapping orbit. During the trip to Mars, scientists at JPL had devised a new strategy, called Power In that would allow for an earlier insertion into the mapping orbit. The talk summarizes this strategy, showing on a slide the planned transition orbits. There are shots of the Martian moon, Phobos, taken from the Viking spacecraft, as Ms Dodd explains that the trajectory will allow the orbiter to make new observations of that moon. She also explains the required steps to prepare for mapping after the spacecraft has achieved the mapping orbit around Mars. The lecture ends with a picture of Mars from the Observer on its approach to the planet.

  12. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  13. GPS as an orbit determination subsystems

    NASA Technical Reports Server (NTRS)

    Fennessey, Richard; Roberts, Pat; Knight, Robin; Vanvolkinburg, Bart

    1995-01-01

    This paper evaluates the use of Global Positioning System (GPS) receivers as a primary source of tracking data for low-Earth orbit satellites. GPS data is an alternative to using range, azimuth, elevation, and range-rate (RAER) data from the Air Force Satellite Control Network antennas, the Space Ground Link System (SGLS). This evaluation is applicable to missions such as Skipper, a joint U.S. and Russian atmosphere research mission, that will rely on a GPS receiver as a primary tracking data source. The Detachment 2, Space and Missile Systems Center's Test Support Complex (TSC) conducted the evaluation based on receiver data from the Space Test Experiment Platform Mission O (STEP-O) and Advanced Photovoltaic and Electronics Experiments (APEX) satellites. The TSC performed orbit reconstruction and prediction on the STEP-0 and APEX vehicles using GPS receiver navigation solution data, SGLS RAER data, and SGLS anglesonly (azimuth and elevation) data. For the STEP-O case, the navigation solution based orbits proved to be more accurate than SGLS RAER based orbits. For the APEX case, navigation solution based orbits proved to be less accurate than SGLS RAER based orbits for orbit prediction, and results for orbit reconstruction were inconclusive due to the lack of a precise truth orbit. After evaluating several different GPS data processing methods, the TSC concluded that using GPS navigation solution data is a viable alternative to using SGLS RAER data.

  14. SCIAMACHY In-orbit Operations until 2013

    NASA Astrophysics Data System (ADS)

    Gottwald, Manfred; Krieg, Eckhart; Lichtenberg, Günter; Noël, Stefan; Bramstedt, Klaus; Bovensmann, Heinrich

    In 2010 ENVISAT enters its next mission extension phase when a manoeuvre transfers the plat-form from its nominal into a modified orbit. This modified orbit is not only characterized by the lower altitude but also by slightly drifting parameters such as e.g. the inclination or the Mean Local Solar Time at ascending node crossing. Thus all SCIAMACHY measurements requiring an accurate pointing knowledge are affected. How the line-of-sight evolves along the orbit de-pends on orbit altitude and orbital period. Therefore adjustments to SCIAMACHY's on-board instrument configuration are necessary reflecting this orbit chance. Based on a detailed analysis simulating SCIAMACHY operations in the modified orbit until the end of 2013, the impacts on nadir, limb and solar and lunar occultation measurements when orbiting the Earth at a reduced altitude was studied. By modifying SCIAMACHY's configuration these impacts can be compensated for. Thus the current performance of instrument operations, including the pointing knowledge, can be maintained. It ensures acquisition of high quality measurement data for the entire duration of the mission. This presentation describes how the instrument will be configured for achieving successful operations until the end of 2013. In addition a brief outlook is given how the drifting modified orbit may impact an operations phase even beyond 2013 and potential corrective countermeasures.

  15. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  16. Phonons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-01

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  17. Fibrous dysplasia of the orbit.

    PubMed Central

    Bibby, K; McFadzean, R

    1994-01-01

    Twelve patients with fibrous dysplasia of the orbit are reviewed and the ophthalmic findings described. Three case histories are presented in detail. Six patients were managed conservatively; four have shown radiological progression of the disease. Six patients underwent surgery. A conservative procedure, comprising debulking dysplastic bone, was carried out in four--all required further surgery including radical excision in two patients. Two subjects had primary radical operations. No recurrence was encountered in the four patients who had undergone radical surgery. It would appear that fibrous dysplasia is not a disease confined to adolescence but may continue into adulthood, and even middle age. Patients may never require surgery, but require follow up for late progression. If surgical intervention is deemed necessary, an attempt should be made to excise all dysplastic bone, since progression of the disease after conservative surgery is relatively common. Images PMID:8199111

  18. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  19. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This photograph shows technicians performing a checkout of the Metabolic Analyzer (center background) and the Ergometer (foreground) in the Orbital Workshop (OWS). The shower compartment is at right. The Ergometer (Skylab Experiment M171) evaluated man's metabolic effectiveness and cost of work in space environment. Located in the experiment and work area of the OWS, the shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  20. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this photograph, the Orbital Workshop shower compartment was unfolded by technicians for inspection. The shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  1. Spin-orbit-coupled superconductivity

    PubMed Central

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C.-T.

    2014-01-01

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature Tc, clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < Tc, the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity. PMID:24961726

  2. Orbits of six visual binaries

    NASA Astrophysics Data System (ADS)

    Couteau, P.

    1987-12-01

    Recent interferometric and visual observations have been used to compile orbital elements for the binaries COU 79, Phi 342, ADS 5726, COU 292, ADS 15487, and COU 542. The problematic binaries COU 79 and Phi 342 are discussed in detail. The results for COU 79 indicate a dynamic parallax of 0.0182 arcsec and absolute visual magnitudes of 2.5 and 2.8, values which are not consistent with the previously-determined spectral type of F6V. A parallax of 0.01420 arcsec is found for Phi 342, and the visual magnitudes of 2.74 and 3.13 are indicative of superluminous stars outside of the main sequence.

  3. Mars Science Laboratory Orbit Determination

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Gustafson, Eric; Jefferson, David; Martin-Mur, Tomas; Mottinger, Neil; Pelletier, Fred; Ryne, Mark; Thompson, Paul

    2012-01-01

    Mars Science Laboratory (MSL) Orbit Determination (OD) met all requirements with considerable margin, MSL OD team developed spin signature removal tool and successfully used the tool during cruise, A novel approach was used for the MSL solar radiation pressure model and resulted in a very accurate model during the approach phase, The change in velocity for Attitude Control System (ACS) turns was successfully calibrated and with appropriate scale factor resulted in improved change in velocity prediction for future turns, All Trajectory Correction Maneuvers were successfully reconstructed and execution errors were well below the assumed pre-fight execution errors, The official OD solutions were statistically consistent throughout cruise and for OD solutions with different arc lengths as well, Only EPU-1 was sent to MSL. All other Entry Parameter Updates were waived, EPU-1 solution was only 200 m separated from final trajectory reconstruction in the B-plane

  4. Polar orbiting operational weather satellites.

    NASA Technical Reports Server (NTRS)

    Stampfl, R. A.; Albert, G.

    1972-01-01

    The progress in the development of operational weather satellites is reviewed, covering their chronology from Explorer 7 of 1959 through Meteor 12 of June, 1972. Special attention is given to the development of the TIROS series satellites with the evolution of their operational sensors, data systems and performance requirements. The topics also include the data collection system designs, to Advanced Very High Resolution Radiometer (AVHRR), the sounder radiometer, the Solar Environment Monitor (SEM), the data processor, and TIROS-N operation and orbital characteristics. It is expected that TIROS-N and its forthcoming advanced versions will provide an effective technology for sensing environmental data on a global scale in the latter half of the decade.

  5. Mars Reconnaissance Orbiter Wrapper Script

    NASA Technical Reports Server (NTRS)

    Gladden, Roy; Fisher, Forest; Khanampornpan, Teerapat

    2008-01-01

    The MRO OLVM wrapper script software allows Mars Reconnaissance Orbiter (MRO) sequence and spacecraft engineers to rapidly simulate a spacecraft command product through a tool that simulates the onboard sequence management software (OLVM). This script parses sequence files to determine the appropriate time boundaries for the sequence, and constructs the script file to be executed by OLVM to span the entirety of the designated sequence. It then constructs script files to be executed by OLVM, constructs the appropriate file directories, populates these directories with needed input files, initiates OLVM to simulate the actual command product that will be sent to the spacecraft, and captures the results of the simulation run to an external file for later review. Additionally, the tool allows a user to manually construct the script, if desired, and then execute the script with a simple command line.

  6. Bayesian inference for orbital eccentricities

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2013-03-01

    Highest posterior density intervals (HPDIs) are derived for the true eccentricities ɛ of spectroscopic binaries with measured values e ≈ 0. These yield upper limits when e is below the detection threshold eth and seamlessly transform to upper and lower bounds when e > eth. In the main text, HPDIs are computed with an informative eccentricity prior representing orbital decay due to tidal dissipation. In an appendix, the corresponding HPDIs are computed with a uniform prior and are the basis for a revised version of the Lucy-Sweeney test, with the previous outcome ɛ = 0 now replaced by an upper limit ɛU. Sampling experiments with known prior confirm the validity of the HPDIs.

  7. Bifurcation Complexity from Orbit-Flip Homoclinic Orbit of Weak Type

    NASA Astrophysics Data System (ADS)

    Lu, Qiuying; Naudot, Vincent

    In this paper, we study the unfolding of a three-dimensional vector field having an orbit-flip homoclinic orbit of weak type. Such a homoclinic orbit is a degenerate version of the so-called orbit-flip homoclinic orbit. We show the existence of inclination-flip homoclinic orbits of arbitrary higher order bifurcating from the unperturbed system. Our strategy consists of using the local moving coordinates method and blow up in the parameter space. In addition, the numerical existence of the orbit-flip homoclinic orbit of weak type is presented based on the truncated Taylor expansion and the numerical computation for both the strong stable manifold and unstable manifold.

  8. Post-traumatic orbital reconstruction: anatomical landmarks and the concept of the deep orbit.

    PubMed

    Evans, B T; Webb, A A C

    2007-04-01

    Dissection deep within the orbit is a cause for concern to surgeons because of the perceived risks of injuring critical structures such as the contents of the superior orbital fissure and the optic nerve. Although "safe distances" (those distances within which it is considered safe to dissect within the orbit) have been described, these are of limited value if the orbit is severely disrupted or is congenitally shallow. In addition, traumatic defects in the orbital floor, in particular, often extend beyond these distances. Reliable landmarks based on the relations between anatomical structures within the orbit, rather than absolute distances, are described that permit safe dissection within the orbit. We present the concept of the deep orbit and describe its relevance to repair of injuries. PMID:17097776

  9. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  10. GOCE Satellite Orbit in a Computational Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2013-04-01

    The presented work plays an important role in research of possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using a combination of satellite to satellite tracking high-low (SST- hl) observations and gravity gradient tensor (GGT) measurements. The orbit improvement process will be started from a computed orbit, which should be close to a reference ("true") orbit as much as possible. To realize this objective, various variants of GOCE orbit were generated by means of the Torun Orbit Processor (TOP) software package. The TOP software is based on the Cowell 8th order numerical integration method. This package computes a satellite orbit in the field of gravitational and non-gravitational forces (including the relativistic and empirical accelerations). The three sets of 1-day orbital arcs were computed using selected geopotential models and additional accelerations generated by the Moon, the Sun, the planets, the Earth and ocean tides, the relativity effects. Selected gravity field models include, among other things, the recent models from the GOCE mission and the models such as EIGEN-6S, EIGEN-5S, EIGEN-51C, ITG-GRACE2010S, EGM2008, EGM96. Each set of 1-day orbital arcs corresponds to the GOCE orbit for arbitrary chosen date. The obtained orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions in the computed orbits and in the reference ones. These RMS values are a measure of performance of selected geopotential models in terms of GOCE orbit computation. The RMS values are given for the truncated and whole geopotential models. For the three variants with the best fit to the reference orbits, the empirical acceleration models were added to the satellite motion model. It allowed for further improving the fitting of computed orbits to the

  11. Sentinel-2A: Orbit Modelling Improvements and their Impact on the Orbit Prediction

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Otten, Michiel; Fernández Sánchez, Jaime; Fernández Martín, Carlos; Féménias, Pierre

    2016-07-01

    Sentinel-2A is the second satellite of the European Copernicus Programme. The satellite has been launched on 23rd June 2015 and it is operational since mid October 2015. This optical mission carries a GPS receiver for precise orbit determination. The Copernicus POD (Precise Orbit Determination) Service is in charge of generating precise orbital products and auxiliary files for Sentinel-2A as well as for the Sentinel-1 and -3 missions. The accuracy requirements for the Sentinel-2A orbit products are not very stringent with 3 m in 3D (3 sigma) for the near real-time (NRT) orbit and 10 m in 2D (3 sigma) for the predicted orbit. The fulfilment of the orbit accuracy requirements is normally not an issue. The Copernicus POD Service aims, however, to provide the best possible orbits for all three Sentinel missions. Therefore, a sophisticated box-wing model is generated for the Sentinel-2 satellite as it is done for the other two missions as well. Additionally, the solar wing of the satellite is rewound during eclipse, which has to be modelled accordingly. The quality of the orbit prediction is dependent on the results of the orbit estimation performed before it. The values of the last estimation of each parameter is taken for the orbit propagation, i.e. estimating ten atmospheric drag coefficients per 24h, the value of the last coefficient is used as a fix parameter for the subsequent orbit prediction. The question is whether the prediction might be stabilised by, e.g. using an average value of all ten coefficients. This paper presents the status and the quality of the Sentinel-2 orbit determination in the operational environment of the Copernicus POD Service. The impact of the orbit model improvements on the NRT and predicted orbits is studied in detail. Changes in the orbit parametrization as well as in the settings for the orbit propagation are investigated. In addition, the impact of the quality of the input GPS orbit and clock product on the Sentinel-2A orbit

  12. Precise Orbit Determination of the Lunar Reconnaissance Orbiter and inferred gravity field information

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.; Krauss, S.

    2014-04-01

    This contribution deals with Precise Orbit Determination of the Lunar Reconnaissance Orbiter, which is tracked with optical laser ranges in addition to radiometric Doppler range-rates and range observations. The optimum parameterization is assessed by overlap analysis tests that indicate the inner precision of the computed orbits. Information about the very long wavelengths of the lunar gravity field is inferred from the spacecraft positions. The NASA software packages GEODYN II and SOLVE were used for orbit determination and gravity field recovery [1].

  13. Orbits Close to Asteroid 4769 Castalia

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.; Ostro, S. J.; Hudson, R. S.; Werner, R. A.

    1996-01-01

    We use a radar-derived physical model of 4769 Castalia (1989 PB) to investigate close orbit dynamics around that kilometer- sized, uniformly rotating asteroid. Our methods of analysis provide a basis for systematic studies of particle dynamics close to any uniformly rotating asteroid. We establish that a Jacobi integral exists for particles orbiting this asteroid, examine the attendant zero-velocity surfaces, find families of periodic orbits, and determine their stability. All synchronous orbits and direct orbits within approx. 3 mean radii of Castalia are unstable and are subject to impact or escape from Castalia. Retrograde orbits are mostly stable and allow particles to orbit close to the asteroid surface. We derive a model which allows us to predict the escape conditions of a particle in orbit about Castalia and the (temporary) capture conditions for a hyperbolic interloper. Orbits within 1.5 km of Castalia are subject to immediate ejection from the system. Hyperbolic orbits with a V(sub infinity) less than 0.4 m/sec can potentially be captured by Castalia if their periapsis radius Is within approx. 2 km. For Castalia this capture region is small, but the results also apply to larger asteroids whose capture regions would also be larger. We determine bounds on ejecta speeds which either ensure ejecta escape or re-impact as functions of location on Castalia's surface. The speeds that ensure escape range from 0.28 to 0.84 m/sec and the speeds that ensure re-impact range from 0 to 0.18 m/sec. Speeds between these two bounds lead either to escape, re-impact, or potentially finite-time stable orbits. We develop a simple criterion which can establish whether a particle could have been ejected from the asteroid in the past and if it will impact the surface in the future.

  14. Small Orbital Stereo Tracking Camera Technology Development

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  15. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  16. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  17. Orbit optimization of Mars orbiters for entry navigation: From an observability point of view

    NASA Astrophysics Data System (ADS)

    Yu, Zhengshi; Zhu, Shengying; Cui, Pingyuan

    2015-06-01

    In this paper, the observability of orbiter-based Mars entry navigation is investigated and its application to the orbit optimization of Mars orbiters is demonstrated. An observability analysis of Mars entry navigation processing of range measurements to multiple orbiters based on Fisher information matrix is conducted. The determinant of Fisher information matrix is derived to quantify the degree of observability. The orbit optimization method based on the observability analysis is then proposed. Two navigation scenarios using three and four orbiters are considered in simulations. To verify the advantages of navigation performance, the orbiter-based and ground beacon-based navigation schemes are comparatively analyzed. In the simulation, an Extended Kalman Filter is used to examine the navigation accuracy. It is concluded that the proposed orbit optimization method is able to optimize the orbits of Mars orbiters with the maximum degree of observability. For the Mars entry navigation based on orbiters, a better configuration which is a main contributor to the observability, can be achieved. The navigation performance is more excellent than the ground beacon-based navigation. However, a diminishing return of navigation accuracy is obtained solely by increasing the number of orbiters.

  18. On the Precision of Artificial Satellite Orbit Determination from Observations from an Orbiting Platform

    NASA Astrophysics Data System (ADS)

    Murison, Marc A.

    2006-06-01

    This paper addresses the characterization of the precision of observationally determined orbit parameters when optical observations are taken of an artificial satellite ("target") from another orbiting body ("platform"). Of interest are, among others, optimal platform orbits and optimal observing strategies for a given level of observational astrometric precision and for certain types of target orbits. Classical orbit determination methods are not particularly amenable for gaining analytical insight into the characterization of the determined orbital parameter errors. Here we make an attempt to bypass classical orbit determination and look for an approach that can instead make use of certain approximations to the relative distance and velocity vectors. Furthermore, given the modern possibility for spectroscopic optical instruments in space, we also investigate what may additionally be gained from radial velocity observations. We start with the distance and velocity vectors of an orbiting target body with respect to an orbiting observation platform. We approximate the relative distance and velocity vectors, allowed by certain assumptions such as small eccentricities, relative inclination angle(s), and ratio of orbit radii. We then analytically propagate the observational errors through the equations and characterize what target orbit parameter errors we are able. It turns out this is more difficult than anticipated at first. We then perform numerical simulations to more completely characterize the behaviors of the determined orbit parameter errors.

  19. Space shuttle earth orbital rendezvous targeting techniques for near circular target satellite orbits

    NASA Technical Reports Server (NTRS)

    Deaton, A. W.

    1972-01-01

    The targeting techniques are developed which are required to determine the guidance reference release time of the space shuttle navigation system, the orbital insertion targeting values, and a time line of orbital maneuvers. An extension is made for rendezvous with a target satellite in an elliptical orbit.

  20. Orbital apex disorders: a case series.

    PubMed

    Warburton, R E; Brookes, C C D; Golden, B A; Turvey, T A

    2016-04-01

    Orbital apex syndrome is an uncommon disorder characterized by ophthalmoplegia, proptosis, ptosis, hypoesthesia of the forehead, and vision loss. It may be classified as part of a group of orbital apex disorders that includes superior orbital fissure syndrome and cavernous sinus syndrome. Superior orbital fissure syndrome presents similarly to orbital apex syndrome without optic nerve impairment. Cavernous sinus syndrome includes hypoesthesia of the cheek and lower eyelid in addition to the signs seen in orbital apex syndrome. While historically described separately, these three disorders share similar causes, diagnostic course, and management strategies. The purpose of this study was to report three cases of orbital apex disorders treated recently and to review the literature related to these conditions. Inflammatory and vascular disorders, neoplasm, infection, and trauma are potential causes of orbital apex disorders. Management is directed at the causative process. The cases described represent a rare but important group of conditions seen by the maxillofacial surgeon. A review of the clinical presentation, etiology, and management of these conditions may prompt timely recognition and treatment. PMID:26725107

  1. On-Orbit Propulsion OMS/RCS

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  2. Posttraumatic Orbital Emphysema: A Numerical Model

    PubMed Central

    Skorek, Andrzej; Kłosowski, Paweł; Plichta, Łukasz; Zmuda Trzebiatowski, Marcin; Lemski, Paweł

    2014-01-01

    Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10−3 to 1 · 10−2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749

  3. Nontraumatic orbital floor fracture after nose blowing.

    PubMed

    Sandhu, Ranjit S; Shah, Akash D

    2016-03-01

    A 40-year-old woman with no history of trauma or prior surgery presented to the emergency department with headache and left eye pain after nose blowing. Noncontrast maxillofacial computed tomography examination revealed an orbital floor fracture that ultimately required surgical repair. There are nontraumatic causes of orbital blowout fractures, and imaging should be obtained irrespective of trauma history. PMID:26973725

  4. Posttraumatic orbital emphysema: a numerical model.

    PubMed

    Skorek, Andrzej; Kłosowski, Paweł; Plichta, Lukasz; Raczyńska, Dorota; Zmuda Trzebiatowski, Marcin; Lemski, Paweł

    2014-01-01

    Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features-thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10(-3) to 1 · 10(-2) second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749

  5. Nontraumatic orbital floor fracture after nose blowing

    PubMed Central

    Sandhu, Ranjit S.; Shah, Akash D.

    2016-01-01

    A 40-year-old woman with no history of trauma or prior surgery presented to the emergency department with headache and left eye pain after nose blowing. Noncontrast maxillofacial computed tomography examination revealed an orbital floor fracture that ultimately required surgical repair. There are nontraumatic causes of orbital blowout fractures, and imaging should be obtained irrespective of trauma history. PMID:26973725

  6. FAST IR ORBIT FEEDBACK AT RHIC.

    SciTech Connect

    MONTAG, C.; MICHNOFF, R.; SATOGATA, T.; ET AL.

    2005-05-16

    Mechanical low-{beta} triplet vibrations lead to horizontal jitter of RHIC beams at frequencies around 10 Hz. The resulting beam offsets at the interaction points are considered detrimental to RHIC luminosity performance. To stabilize beam orbits at the interaction points, installation of a fast orbit feedback is foreseen. A prototype of this system is being developed and tested. Recent results will be presented.

  7. Electron plasma orbits from competing diocotron drifts.

    PubMed

    Hurst, N C; Danielson, J R; Baker, C J; Surko, C M

    2014-07-11

    The perpendicular dynamics of a pure electron plasma column are investigated when the plasma spans two Penning-Malmberg traps with noncoinciding axes. The plasma executes noncircular orbits described by competing image-charge electric-field (diocotron) drifts from the two traps. A simple model is presented that predicts a set of nested orbits in agreement with observed plasma trajectories. PMID:25062198

  8. Space missions orbits around small worlds

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; dos Santos Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho; Bertachini de Almeida Prado, Antônio Fernando

    2015-08-01

    Space missions under study to visit icy moons and small worlds in our solar system will requires orbits with low-altitude and high inclinations. These orbits provides a better coverage to map the surface and to analyse the gravitational and magnetic fields. In this context, obtain these orbits has become important in planning of these missions. Celestial bodies like Haumea, Europa, Ganymede, Callisto, Enceladus, Titan and Triton are among the objects under study study to receive missions in a near future. In order to obtain low-altitude and high inclined orbits for future exploration of these bodies, this work aims to present an analytical study to describe and evaluate gravitational disturbances over a spacecraft's orbit around a minor body. An analytical model for the third-body perturbation is presented. Perturbations due to the non-sphericity of the minor body are considered. The effects on spacecraft's orbital elements are analyzed to provide the the more useful and desired orbits. The dynamic of these orbits is explored by numerical simulations. The results present good accordance with the literature.

  9. Stationkeeping for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Lamb, Rivers

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Follo wing several weeks in a quasi-frozen commissioning orbit, LRO will fl y in a 50 km mean altitude lunar polar orbit. During the one year mis sion duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explor es the characteristics of low lunar orbits and explains how the LRO s tationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five miss ion constraints. These five constraints are to maintain ground statio n contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping (Delta)V. This pape r addresses how the maneuver plan for LRO is designed to meet all of the above constraints.

  10. Inverse-Square Orbits: A Geometric Approach.

    ERIC Educational Resources Information Center

    Rainwater, James C.; Weinstock, Robert

    1979-01-01

    Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)

  11. Orbit, reentry, and landing attachment for globes

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.

    1970-01-01

    Navigational device, invented to aid recovery of spacecraft from any orbit, also illustrates motions of satellites relative to earth and their entry-ranging requirements. Device rapidly and accurately defines lateral range requirements for spacecraft returning to any desired site without manual or computerized calculation of orbital equations of motion.

  12. Orbital Analysis for Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Chodas, P. W.

    1995-01-01

    For recently discovered Near-Earth Objects (NEO) two body computations can be used to determine the minimum distance between the object's orbit and that of the Earth. Determinations can then be made for potential near-term threats to the Earth. This preliminary orbit analysis must be followed with planetary perturbation computations of the object's future motion to predict actual close Earth approaches.

  13. Orbitals: Some Fiction and Some Facts

    ERIC Educational Resources Information Center

    Autschbach, Jochen

    2012-01-01

    The use of electron orbitals in quantum theory and chemistry is discussed. Common misconceptions are highlighted. Suggestions are made how chemistry educators may describe orbitals in the first and second year college curriculum more accurately without introducing unwanted technicalities. A comparison is made of different ways of graphically…

  14. Guidance for an aeroassisted orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth R.

    1988-01-01

    The use of atmospheric drag for slowing satellite in high energy, high apogee orbits to a lower energy, lower apogee orbit about the Earth is investigated. The high energy orbit is assumed to intercept the Earth's atmosphere. Guidance for the atmospheric phase of the trajectory may be done using the aerodynamic forces generated by the passage through the atmosphere. This research was concerned with the investigation of several methods of guidance during the atmospheric phase to cause a significant reduction in the final velocity as the vehicle leaves the atmosphere. In addition, the velocity direction was controlled to exit to a desired target orbit. Lastly excess aerodynamic lift was used to effect a plane change between the entry orbit plane and the exit orbit plane to achieve a desired orbit plane. The guidance methods were applied to a 3 degree-of-freedom simulation which included an oblate Earth gravity model and a rotating atmosphere. Simulation results were compared on the basis of speed of computation of the guidance parameters and amount of added velocity necessary to achieve the desired orbit.

  15. Students' Understanding of Orbitals: A Survey.

    ERIC Educational Resources Information Center

    MacKinnon, Gregory R.

    The study of chemistry includes many abstract concepts that students may find difficult to understand. A fundamental yet troublesome part of introductory chemistry courses is the topic of electron configuration and specifically quantum-mechanical orbitals. In an effort to examine the way students internalize the concept of atomic orbitals and how…

  16. Spin-orbit fields at semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Gmitra, Martin

    Solids without space inversion symmetry exhibit spin-orbit fields, which are emerging manifestations of spin-orbit coupling of the underlying atomic structure. Primary examples of spatially asymmetric systems are interfaces, which are omnipresent in electronic devices. As the device dimensions scale down, interfaces imprint their symmetries into the transport channel by proximity effects. Proximity spin-orbit fields already play important roles in anisotropic magnetoresistance of ultrathin structures such as Fe/GaAs, in the physics of Majorana fermions and Andreev reflection of semiconductor/superconductor junctions, in Skyrmion textures in ferromagnets, or in spin-orbit torques. It is thus of vital interest to gain qualitative insight and realistic quantitative description of the interfacial spin-orbit fields for various materials hybrid settings. We have proposed a methodology to extract spin-orbit fields, both their magnitudes and directions, and applied it to investigate Fe/GaAs junctions. Only at low momenta the traditional description of the fields in terms of linear Rashba and Dresselhaus works. At generic momenta the fields exhibit what we call ``butterfly'' patterns, conforming to the interfacial symmetry. Remarkably, the spin-orbit fields depend rather strongly on the magnetization orientation. We will also discuss our recent results on the spin-orbit coupling in zinc-blende and wurtzite semiconductor nanostructures. The work is supported by the DFG SFB 689.

  17. Orbital fracture deterioration after scuba diving.

    PubMed

    Nakatani, Hiroko; Yoshioka, Nobutaka

    2009-07-01

    Sinus barotrauma is a common disease in divers. However, it is not familiar to maxillofacial surgeon. We presented orbital fracture deterioration by sinus barotrauma in scuba diving and a review of literatures. We also discussed the clinical features, the prevention, and the possible mechanism of orbital fracture deterioration after scuba diving. PMID:19625851

  18. A Catalog of Selected Viking Orbiter Images

    NASA Technical Reports Server (NTRS)

    Turner, R. L.; Carroll, R. D.

    1983-01-01

    This collection of Viking Orbiter photomosaics is designed to facilitate identification and location of the various pictures with respect to the surface of Mars. Only a representative set of the nearly 50,000 images taken by the two Viking Orbiters, and computer-processed prior to December 1978, are contained in the mosaics and in the picture listings.

  19. USAF antenna on-orbit assembly

    NASA Technical Reports Server (NTRS)

    Heartquist, P. E.

    1978-01-01

    Structural concepts, upper stage evaluations, and orbiter packing are discussed for spacecraft having 300 ft to 1000 ft diameter sensors. Techniques are examined for stowing, deploying, and transferring to high earth orbit expandable hex, expanding tetrahedral ring, and fold out truss configurations. Upper stage final candidate configurations and their influence on antenna design selection are discussed.

  20. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.