Science.gov

Sample records for campylobacter jejuni adherence

  1. Campylobacter jejuni organism (image)

    MedlinePlus

    ... after a person has been exposed to the organism. Campylobacter jejuni is one of the most common ... ill cat or dog. This is what Campylobacter organisms look like through a microscope. (Image courtesy of ...

  2. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

    PubMed

    Ramirez-Hernandez, Alejandra; Rupnow, John; Hutkins, Robert W

    2015-08-01

    Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen. PMID:26219363

  3. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures.

    PubMed Central

    Grant, C C; Konkel, M E; Cieplak, W; Tompkins, L S

    1993-01-01

    Previous studies of Campylobacter jejuni have suggested that flagellin is an adhesin for epithelial cells and that motility is a virulence factor of this bacterium. The role of flagella in the interactions of C. jejuni with nonpolarized and polarized epithelial cells was examined with flagellar mutants. Flagellated, nonmotile (flaA flaB+ Mot-) and nonflagellated, nonmotile (flaA flaB Mot-) mutants of C. jejuni were constructed by in vivo homologous recombination and gene replacement techniques. Both classes of mutants were found to adhere to cells of human epithelial origin (INT 407) equally well; however, on the basis of the percentage of the inoculum internalized, internalization of the flaA flaB Mot- mutants was decreased by factors ranging from approximately 30 to 40 compared with the parent. The flaA flaB+ Mot- mutant was internalized by the INT 407 cells at levels six- to sevenfold higher than the flaA flaB Mot- mutants. Both classes of mutants, unlike the parent, were unable to translocate across polarized Caco-2 monolayers. These results indicate that flagella are not involved in C. jejuni adherence to epithelial cells but that they do play a role in internalization. Furthermore, the results suggest that either the motility of C. jejuni or the product of flaA is essential for the bacterium to cross polarized epithelial cell monolayers. Images PMID:8478066

  4. Campylobacter jejuni, other campylobacters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For approximately three decades, the genus Campylobacter has had increased focus as a threat to food safety, due to the rise in enteritis in humans caused by consumption or handling of foods contaminated with the organism. For this reason, numerous research studies have been conducted and books wri...

  5. Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans.

    PubMed

    Lapierre, Lisette; Gatica, María A; Riquelme, Víctor; Vergara, Constanza; Yañez, José Manuel; San Martín, Betty; Sáenz, Leonardo; Vidal, Maricel; Martínez, María Cristina; Araya, Pamela; Flores, Roberto; Duery, Oscar; Vidal, Roberto

    2016-07-01

    The aim of this research was to statistically analyze the association between antimicrobial susceptibility/resistance to erythromycine, gentamicin, ciprofloxacin, and tetracycline and 11 virulence genes associated with adherence, invasion, and cytotoxicity in 528 isolates of Campylobacter coli and Campylobacter jejuni obtained from retail meat and fecal samples from food-producing animals and human patients. A high percentage of Campylobacter strains were resistant to antimicrobials, specifically ciprofloxacin and tetracycline. Moreover, we observed a wide distribution of virulence genes within the analyzed strains. C. jejuni strains were more susceptible to antimicrobials, and showed greater number of virulence genes than C. coli strains. Genes related to invasion capability, such as racR, ciaB, and pldA, were associated with antimicrobial-susceptible strains in both species. The genes cdtA and dnaJ, a citotoxin unit and an adherence-related gene, respectively, were associated with antimicrobial-resistant strains in both species. In conclusion, Campylobacter strains show a statistically significant association between antimicrobial susceptibility and the presence of virulence genes. PMID:26779841

  6. The hyperosmotic stress response of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hyperosmotic stress response of Campylobacter jejuni: The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, or upon entering host organisms, where osmotic adaptation can be associa...

  7. Inflammasome Activation by Campylobacter jejuni

    PubMed Central

    Bouwman, Lieneke I.; de Zoete, Marcel R.; Bleumink-Pluym, Nancy M.C.; Flavell, Richard A.; van Putten, Jos P.M

    2014-01-01

    The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. Here we report that C. jejuni infection of mouse macrophages induces up-regulation of pro-IL-1β transcript and secretion of IL-1β without eliciting cell death. Immunoblotting indicated cleavage of caspase-1 and IL-1β in infected cells. In bone-marrow-derived macrophages from different knock-out mice, IL-1β secretion was found to require NLRP3, ASC, and caspase-1/11, but not NLRC4. In contrast to NLRP3 activation by ATP, C. jejuni activation did not require priming of these macrophages. C. jejuni also activated the NLRP3 inflammasome in human macrophages as indicated by the presence of ASC foci and FLICA-positive cells. Analysis of a vast array of C. jejunimutants with defects in capsule formation, LOS biosynthesis, chemotaxis, flagella synthesis and flagellin (-like) secretion, T6SS needle protein or cytolethal distending toxin revealed a direct correlation between the number of intracellular bacteria and NLRP3 inflammasome activation. The C. jejuni invasion related activation of the NLRP3 inflammasome without cytotoxicity and even in non-primed cells extends the known repertoire of bacterial inflammasome activation and likely contributes to C. jejuni-induced intestinal inflammation. PMID:25267974

  8. Chemotactic behavior of Campylobacter jejuni.

    PubMed Central

    Hugdahl, M B; Beery, J T; Doyle, M P

    1988-01-01

    The chemotactic behavior of Campylobacter jejuni was determined in the presence of different amino acids, carbohydrates, organic acids, and preparations and constituents of mucin and bile. L-Fucose was the only carbohydrate and L-aspartate, L-cysteine, L-glutamate, and L-serine were the only amino acids producing a chemotactic (positive) response. Several salts of organic acids, including pyruvate, succinate, fumarate, citrate, malate, and alpha-ketoglutarate, were also chemoattractants, as were bile (beef, chicken, and oxgall) and mucin (bovine gallbladder and hog gastric). Most constituents of bile tested individually were chemorepellents, but the mucin component was chemoattractant. The chemotactic behavior of C. jejuni toward L-fucose, a constituent of both bile and mucin, may be an important factor in the affinity of the organism for the gallbladder and intestinal tract. Images PMID:3372020

  9. Survival of Campylobacter jejuni in Waterborne Protozoa

    PubMed Central

    Snelling, W. J.; McKenna, J. P.; Lecky, D. M.; Dooley, J. S. G.

    2005-01-01

    The failure to reduce the Campylobacter contamination of intensively reared poultry may be partially due to Campylobacter resisting disinfection in water after their internalization by waterborne protozoa. Campylobacter jejuni and a variety of waterborne protozoa, including ciliates, flagellates, and alveolates, were detected in the drinking water of intensively reared poultry by a combination of culture and molecular techniques. An in vitro assay showed that C. jejuni remained viable when internalized by Tetrahymena pyriformis and Acanthamoeba castellanii for significantly longer (up to 36 h) than when they were in purely a planktonic state. The internalized Campylobacter were also significantly more resistant to disinfection than planktonic organisms. Collectively, our results strongly suggest that protozoa in broiler drinking water systems can delay the decline of Campylobacter viability and increase Campylobacter disinfection resistance, thus increasing the potential of Campylobacter to colonize broilers. PMID:16151149

  10. Oxygen requirement and tolerance of Campylobacter jejuni.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human pathogen Campylobacter jejuni is considered a microaerophile, yet it has been shown to grow in vitro under atmospheres with elevated oxygen tensions. Hence, a better understanding of the oxygen requirement and tolerance of C. jejuni is required. Bacterial growth was measured under various ...

  11. The atypical hyperosmotic stress response of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Atypical Hyperosmotic Stress Response of Campylobacter jejuni Background. Campylobacter species are unusually sensitive to hyperosmotic stress conditions imposed in the laboratory and encode no characterized osmoprotectant systems. Despite these limitations, the Gram-negative Campylobacter jeju...

  12. Use of Comparative Genomics and Eukaryotic Cell Adherence/Invasion Assays of the Food-Borne Pathogen Campylobacter jejuni for the Identification of Putative Virulence Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter, the leading bacterial etiology of acute humans gastroenteritis, is commonly associated with the handling/consumption of poultry. Eukaryotic cell adhesion/invasion assays were performed on fifty-one C. jejuni isolates. A range of adhesion/invasion abilities was exhibited. To identify ...

  13. Septic abortion caused by Campylobacter jejuni bacteraemia.

    PubMed

    Skuhala, Tomislava; Škerk, Višnja; Markotić, Alemka; Bukovski, Suzana; Desnica, Boško

    2016-08-01

    A 20-year-old female patient, 14 weeks pregnant, was admitted to hospital with anamnestic and clinical features of acute pyelonephritis. Clinical signs of septic abortion developed and after obstetric examination the therapy was changed to ampicillin, gentamicin and clindamycin. Campylobacter jejuni was isolated from blood cultures. Pathohistological findings confirmed diagnosis of purulent chorioamnionitis. After 2 weeks of ciprofloxacin administration the patient fully recovered. Campylobacter jejuni was not isolated from stool culture and no signs of acute enteritis were registered during the illness. Invasive forms of Campylobacter disease without enteritis are not unusual in immunocompromised hosts but they are restricted to C. fetus rather than C. jejuni isolates. PMID:25872616

  14. Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated Caco-2 cells by Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of pectic oligosaccharides (POS) to inhibit adherence to and invasion of undifferentiated (UC) and differentiated (DC) Caco-2 cells by Campylobacter jejuni (C. jejuni) was investigated. It was observed that both adherence and invasion were significantly higher in UC than in DC. POS (2.5 ...

  15. Concerted evolution in Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerted evolution is the phenomenon in which multiple copies of genes maintain sequence similarity in a single individual while the genes continue to diverge between individuals. Concerted evolution has been described in Campylobacter jejuni and C. coli for the pair of flagellin genes, which are ...

  16. Epidemiological aspects of Campylobacter jejuni enteritis.

    PubMed

    Norkrans, G; Svedhem, A

    1982-08-01

    An epidemiological study on Campylobacter jejuni enterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared the fresh chicken alone, and none of their family members became ill. Thus the preparation of food contaminated with Campylobacter seems to elevate the risk for contracting the disease. Sick household pets transmitted the campylobacter infection to two patients. Forty-six of the patients had a total of 85 close household members. Three definite secondary cases were found. There was no evidence of transmission of Campylobacter by food prepared by two cooks who were working while still being asymptomatic excreters. Clinical reinfection with Campylobacter was observed in one patient. No patients became long-term carriers of Campylobacter. PMID:7097000

  17. Gyr B versus 16s rDNA sequencing for the identification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of the genus Campylobacter are the causative agents of a sizable number of the cases of food-borne illness in the developed world. The majority of this disease is caused by three of the thermotolerant Campylobacter species: Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. ...

  18. Campylobacter jejuni free oligosaccharides: function and fate.

    PubMed

    Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M

    2010-01-01

    The Campylobacter jejuni N-linked protein glycosylation pathway produces a heptasaccharide that is added to >65 periplasmic and membrane proteins and is also released into the periplasm as the free oligosaccharide (fOS). The fOS is a novel soluble component of the C. jejuni periplasmic space that exists in 10-fold greater quantities than its asparagine-linked counterpart. Structurally, fOS is the same heptasaccharide that is found attached to asparagine residues on C. jejuni glycoproteins and both glycans are cleaved from the undecaprenylpyrophosphate anchor by the previously identified oligosaccharyltransferase PglB, which we have now shown to be a bifunctional enzyme also displaying hydrolase activity. The fOS levels in C. jejuni, similar to bacterial periplasmic glucans, can be manipulated by altering the salt and osmolyte concentrations in the growth environment. Here, we outline potential functions of fOS and raise new questions about the underlying mechanism involved in PglB-mediated fOS release from its lipid anchor and fOS retention within the C. jejuni periplasm. PMID:21178500

  19. Antimicrobial resistance in campylobacter jejuni and campylobacter coli isolated from chicken carcass rinstates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The development of antimicrobial resistance in Campylobacter species, particularly C. jejuni and C. coli, is of public health concern. Methods: Campylobacter isolates recovered from spent chicken carcass rinsates collected at federally inspected slaughter establishments were submitted t...

  20. Post-genome Analysis of the Foodborne Pathogen Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Kay, Emily J.; Gundogdu, Ozan; Wren, Brendan

    The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).

  1. Campylobacter jejuni abortions in two beef cattle herds in Saskatchewan

    PubMed Central

    Van Donkersgoed, Joyce; Janzen, Eugene D.; Chirino-Trejo, Manuel; Berry, Catherine; Clark, Edward G.; Haines, Deborah M.

    1990-01-01

    Abortions, accompanied by placental retention and weight loss, occurred during February and March in 19% of 120 and 10% of 108 beef cows and heifers on two neighboring ranches in southern Saskatchewan. A diagnosis of Campylobacter jejuni abortion was made based on lesions of necrotizing and suppurative placentitis and fetal bronchopneumonia in association with the culture of large numbers of C. jejuni from placentas and fetal tissues. Campylobacter jejuni was isolated with variable frequency from fecal samples of aborting and healthy cows, and scouring and healthy calves. Campylobacter jejuni serotype 2 (Lior) was isolated from fetal tissues and feces of a scouring calf, whereas C. jejuni serotypes 1, 4, 5 and 99 were isolated from feces of in-contact cattle. We hypothesized that the source and mode of transmission of C. jejuni was fecal contamination of water supplies and feeding grounds by carrier cows or wildlife. PMID:17423586

  2. Presence of antibodies against campylobacter flagellar capping proteins versus campylobacter jejuni isolation in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the leading foodborne pathogen that causes human acute bacterial gastroenteritis worldwide. Human cases have been linked to consumption and/or handling of contaminated poultry products. Although Campylobacter jejuni is commonly regarded as a commensal in broiler cecal micro...

  3. Hyperosmotic Stress Response of Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Frirdich, Emilisa; Huynh, Steven; Parker, Craig T.

    2012-01-01

    The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter−1. C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely “bet-hedging” survival strategies relying on the presence of stress-fit individuals in a heterogeneous population. PMID:22961853

  4. DNA Micorarrays for Genotyping and Population Studies of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Campylobacter jejuni is a major cause worldwide of foodborne bacterial gastroenteritis. The continued development of more effective and informative typing methods is necessary to improve our understanding of the epidemiology and population dynamics of this important pathogen. Comparat...

  5. INACTIVATION OF 'CAMPYLOBACTER JEJUNI' BY CHLORINE AND MONOCHLORAMINE

    EPA Science Inventory

    Campylobacter jejuni and closely related organisms are important bacterial causes of acute diarrheal illness in the United States. Both endemic and epidemic infections have been associated with consuming untreated or improperly treated surface water. The susceptibility of three C...

  6. Heat injury and repair in Campylobacter jejuni.

    PubMed

    Palumbo, S A

    1984-09-01

    A procedure for detecting and quantitating heat injury in Campylobacter jejuni was developed. Washed cells of C. jejuni A7455 were heated in potassium phosphate buffer (0.1 M, pH 7.3) at 46 degrees C. Samples were plated on brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate and on a medium containing brilliant green, bile, Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate. Colonies were counted after 5 days of incubation at 37 degrees C in an atmosphere containing 5% O2, 10% CO2, and 85% N2. After 45 min at 46 degrees C, there was virtually no killing and ca. two log cycles of injury. Cells grown at 42 degrees C were more susceptible to injury than cells grown at 37 degrees C. The addition to brucella agar supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate of three different antibiotic mixtures used in the isolation of C. jejuni from foods or clinical specimens did not prevent recovery of heat-injured C. jejuni. Cells lost 260 nm of absorbing materials during heat injury. The addition of 5% NaCl or 40% sucrose to the heating buffer prevented leakage but did not prevent injury. Of the additional salts, sugars, and amino acids tested for protection, only NH4Cl, KCl, and LiCl2 prevented injury. Heat-injured C. jejuni repaired (regained dye and bile tolerance) in brucella broth supplemented with Na2S2O3, FeSO4 X 7H2O, and sodium pyruvate within 4 h. Increasing the NaCl in this medium to 1.25% inhibited repair, and increasing it to 2% was lethal. Heat-injured C. jejuni will repair at 42 degrees C but not at 5 degrees C. PMID:6497368

  7. Colonization of broilers by Campylobacter jejuni internalized within Acanthamoeba castellanii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the first report that Campylobacter jejuni, internalized within Acanthamoeba castellanii, colonized broilers. After 1, 3, 7 and 14 days post challenge none of the broilers challenged with negative controls were colonized, but were with internalized C. jejuni. The biology of protozoa-Cam...

  8. Reactions of Chicken Sera to Recombinant Campylobacter jejuni Flagellar Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a Gram-negative rod bacterium and is the leading but under-reported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated ...

  9. Characterization of Campylobacter jejuni and coli strains isolated in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    associated with significant foodborne disease. Campylobacter jejuni and C. coli are the two most prevalent species contributing to human diarrheal disease. The objective of this study was to determine the routes of transmission for Campylobacter throughout turkey production and processing. A floc...

  10. Conformational analysis of the Campylobacter jejuni porin.

    PubMed Central

    Bolla, J M; Loret, E; Zalewski, M; Pagés, J M

    1995-01-01

    The major outer membrane protein (MOMP) of Campylobacter jejuni was purified to homogeneity by selective solubilization and fast protein liquid chromatography. The amino acid composition of the MOMP indicates the presence of cysteine residues. The amino-terminal sequence, determined over 31 residues, shows no significant homology with any other porin from gram-negative bacteria except in a discrete region. Immunocross-reactivity between Escherichia coli OmpC and the MOMP was analyzed, and a common antigenic site between these two porins was identified with an anti-peptide antibody. From circular dichroism and immunological investigations, the existence of a stable folded monomer, containing a high level of beta-sheet secondary structure, is evident. Conformational analyses show the presence of a native trimeric state generated by association of the three folded monomers; the stability of this trimer is reduced compared with that of E. coli porins. This study clearly reveals that the C. jejuni MOMP is related to the family of trimeric bacterial porins. PMID:7543469

  11. Occurrence of Campylobacter jejuni in pets living with human patients infected with C. jejuni.

    PubMed

    Damborg, Peter; Olsen, Katharina E P; Møller Nielsen, Eva; Guardabassi, Luca

    2004-03-01

    Campylobacter jejuni was recovered from four dogs (11%) and four cats (33%) living with Danish human patients infected with C. jejuni. Pulsed-field gel electrophoresis (PFGE) analysis revealed the occurrence of the same quinolone-resistant strain in a girl and her dog. C. jejuni isolates with closely related (>95% similarity) PFGE profiles occurred in humans and pets from different Danish counties. PMID:15004120

  12. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan

    PubMed Central

    SHYAKA, Anselme; KUSUMOTO, Akiko; CHAISOWWONG, Warangkhana; OKOUCHI, Yoshiki; FUKUMOTO, Shinya; YOSHIMURA, Aya; KAWAMOTO, Keiko

    2015-01-01

    The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells. PMID:25843040

  13. Occurrence of Campylobacter jejuni and Campylobacter coli and their biotypes in beef and dairy cattle from the south of Chile

    PubMed Central

    Fernández, Heriberto; Hitschfeld, Marianne

    2009-01-01

    The prevalence of Campylobacter jejuni and Campylobacter coli and their biotypes in beef and dairy cattle from the South of Chile was established. Campylobacter were statistically more prevalent among beef cattle (35.9%) than among dairy cattle (21.3%), being C. jejuni the species most frequently isolated. PMID:24031386

  14. Host adaption to the bacteriophage carrier state of Campylobacter jejuni

    PubMed Central

    Brathwaite, Kelly J.; Siringan, Patcharin; Connerton, Phillippa L.; Connerton, Ian F.

    2015-01-01

    The carrier state of the foodborne pathogen Campylobacter jejuni represents an alternative life cycle whereby virulent bacteriophages can persist in association with host bacteria without commitment to lysogeny. Host bacteria exhibit significant phenotypic changes that improve their ability to survive extra-intestinal environments, but exhibit growth-phase-dependent impairment in motility. We demonstrate that early exponential phase cultures become synchronised with respect to the non-motile phenotype, which corresponds with a reduction in their ability to adhere to and invade intestinal epithelial cells. Comparative transcriptome analyses (RNA-seq) identify changes in gene expression that account for the observed phenotypes: downregulation of stress response genes hrcA, hspR and per and downregulation of the major flagellin flaA with the chemotactic response signalling genes cheV, cheA and cheW. These changes present mechanisms by which the host and bacteriophage can remain associated without lysis, and the cultures survive extra-intestinal transit. These data provide a basis for understanding a critical link in the ecology of the Campylobacter bacteriophage. PMID:26004283

  15. Reducing Campylobacter jejuni Colonization of Poultry via Vaccination

    PubMed Central

    Neal-McKinney, Jason M.; Samuelson, Derrick R.; Eucker, Tyson P.; Nissen, Mark S.; Crespo, Rocio; Konkel, Michael E.

    2014-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization. PMID:25474206

  16. Adaptive mechanisms of Campylobacter jejuni to erythromycin treatment

    PubMed Central

    2013-01-01

    Background Macrolide is the drug of choice to treat human campylobacteriosis, but Campylobacter resistance to this antibiotic is rising. The mechanisms employed by Campylobacter jejuni to adapt to erythromycin treatment remain unknown and are examined in this study. The transcriptomic response of C. jejuni NCTC 11168 to erythromycin (Ery) treatment was determined by competitive microarray hybridizations. Representative genes identified to be differentially expressed were further characterized by constructing mutants and assessing their involvement in antimicrobial susceptibility, oxidative stress tolerance, and chicken colonization. Results Following the treatment with an inhibitory dose of Ery, 139 genes were up-regulated and 119 were down-regulated. Many genes associated with flagellar biosynthesis and motility was up-regulated, while many genes involved in tricarboxylic acid cycle, electron transport, and ribonucleotide biosynthesis were down-regulated. Exposure to a sub-inhibitory dose of Ery resulted in differential expression of much fewer genes. Interestingly, two putative drug efflux operons (cj0309c-cj0310c and cj1173-cj1174) were up-regulated. Although mutation of the two operons did not alter the susceptibility of C. jejuni to antimicrobials, it reduced Campylobacter growth under high-level oxygen. Another notable finding is the consistent up-regulation of cj1169c-cj1170c, of which cj1170c encodes a known phosphokinase, an important regulatory protein in C. jejuni. Mutation of the cj1169c-cj1170c rendered C. jejuni less tolerant to atmospheric oxygen and reduced Campylobacter colonization and transmission in chickens. Conclusions These findings indicate that Ery treatment elicits a range of changes in C. jejuni transcriptome and affects the expression of genes important for in vitro and in vivo adaptation. Up-regulation of motility and down-regulation of energy metabolism likely facilitate Campylobacter to survive during Ery treatment. These findings

  17. Genotypes and antibiotic resistance of canine Campylobacter jejuni isolates.

    PubMed

    Amar, Chantal; Kittl, Sonja; Spreng, David; Thomann, Andreas; Korczak, Bożena M; Burnens, André P; Kuhnert, Peter

    2014-01-10

    Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis. PMID:24210812

  18. Ribosomal operon intergenic sequence (IGS) heterogeneity in Campylobacter coli and Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni and Campylobacter coli are closely related species that can not be distinguished by their 16S or 23S rRNA genes. However, the intergenic sequence (IGS) fragment that is between the 16S and 23S genes is markedly different and characteristic for each species. A peculiarity of th...

  19. Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    PubMed Central

    Day, Christopher J.; Tiralongo, Joe; Hartnell, Regan D.; Logue, Carie-Anne; Wilson, Jennifer C.; von Itzstein, Mark; Korolik, Victoria

    2009-01-01

    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure. PMID:19290056

  20. Characterization of Mono- and Mixed-Culture Campylobacter jejuni Biofilms

    PubMed Central

    Ica, Tuba; Caner, Vildan; Istanbullu, Ozlem; Nguyen, Hung Duc; Ahmed, Bulbul; Call, Douglas R.

    2012-01-01

    Campylobacter jejuni, one of the most common causes of human gastroenteritis, is a thermophilic and microaerophilic bacterium. These characteristics make it a fastidious organism, which limits its ability to survive outside animal hosts. Nevertheless, C. jejuni can be transmitted to both humans and animals via environmental pathways, especially through contaminated water. Biofilms may play a crucial role in the survival of the bacterium under unfavorable environmental conditions. The goal of this study was to investigate survival strategies of C. jejuni in mono- and mixed-culture biofilms. We grew monoculture biofilms of C. jejuni and mixed-culture biofilms of C. jejuni with Pseudomonas aeruginosa. We found that mono- and mixed-culture biofilms had significantly different structures and activities. Monoculture C. jejuni biofilms did not consume a measurable quantity of oxygen. Using a confocal laser scanning microscope (CLSM), we found that cells from monoculture biofilms were alive according to live/dead staining but that these cells were not culturable. In contrast, in mixed-culture biofilms, C. jejuni remained in a culturable physiological state. Monoculture C. jejuni biofilms could persist under lower flow rates (0.75 ml/min) but were unable to persist at higher flow rates (1 to 2.5 ml/min). In sharp contrast, mixed-culture biofilms were more robust and were unaffected by higher flow rates (2.5 ml/min). Our results indicate that biofilms provide an environmental refuge that is conducive to the survival of C. jejuni. PMID:22179238

  1. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    PubMed Central

    Plickert, R.; Fischer, A.; Göbel, U. B.; Bereswill, S.

    2013-01-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni. PMID:24265916

  2. Pleuritis caused by Campylobacter jejuni subspecies jejuni in a patient undergoing long-term hemodialysis.

    PubMed

    Nagai, Miho; Hirayama, Kouichi; Ohishi, Tsuyoshi; Shimohata, Homare; Ohkusu, Kiyofumi; Kobayashi, Masaki

    2010-01-01

    A 73-year-old female hemodialysis patient experienced fever, shortness of breath on effort, and chest discomfort. A decrease in breath sounds in the right lung field, leukocytosis, elevated CRP level, and a right massive pleural effusion were observed. The patient was diagnosed with bacterial pleuritis based on leukocyte-predominant exudative pleural effusion, and treated with ceftriaxone. Her symptoms, however, were not improved, so thoracic drainage was attempted. Campylobacter species were isolated from cultured pleural fluid samples, and Campylobacter jejuni subspecies jejuni was detected on the multiplex PCR assay. The antibiotic was therefore changed to minocycline following pazufloxacin, and her symptoms were improved. PMID:21088354

  3. Survival and Transport of Campylobacter Jejuni from Poultry Litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading cause of gastrointestinal illness worldwide. Although widely known to survive in refrigerated and undercooked poultry, less is known about its occurrence in poultry litter and the potential for transport from applied litter material into the subsurface. In this stud...

  4. Inactivation of Campylobacter jejuni on poultry by ultraviolet light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a foodborne pathogen which is commonly associated with poultry, and is responsible for many foodborne illness outbreaks. Ultraviolet light (UV-C) is a U.S. Food and Drug Administration approved technology that can be used to treat foods and food contact surfaces. In this stud...

  5. Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins Hung-Yueh Yeh*, Kelli L. Hiett, John E. Line, Brian B. Oakley and Bruce S. Seal, Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, Uni...

  6. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction.

    PubMed Central

    Oyofo, B A; Thornton, S A; Burr, D H; Trust, T J; Pavlovskis, O R; Guerry, P

    1992-01-01

    Development of a routine detection assay for Campylobacter jejuni and Campylobacter coli in clinical specimens was undertaken by using the polymerase chain reaction (PCR). An oligonucleotide primer pair from a conserved 5' region of the flaA gene of C. coli VC167 was used to amplify a 450-bp region by PCR. The primer pair specifically detected 4 strains of C. coli and 47 strains of C. jejuni; but it did not detect strains of Campylobacter fetus, Campylobacter lari, Campylobacter upsaliensis, Campylobacter cryaerophila, Campylobacter butzleri, Campylobacter hyointestinalis, Wolinella recta, Helicobacter pylori, Escherichia coli, Shigella spp., Salmonella spp., Vibrio cholerae, Citrobacter freundii, or Aeromonas spp. By using a nonradioactively labeled probe internal to the PCR product, the assay could detect as little as 0.0062 pg of purified C. coli DNA, or the equivalent of four bacteria. In stools seeded with C. coli cells, the probe could detect between 30 and 60 bacteria per PCR assay. The assay was also successfully used to detect C. coli in rectal swab specimens from experimentally infected rabbits and C. jejuni in human stool samples. Images PMID:1400961

  7. Antimicrobial Activities of Isothiocyanates Against Campylobacter jejuni Isolates

    PubMed Central

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25–5 μg mL−1) compared to AITC (MIC of 50–200 μg mL−1). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC. PMID:22919644

  8. The paternal effect of Campylobacter jejuni colonization in ceca in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni (C. jejuni) is one of the most common causes of acute enteritis worldwide. Chickens are believed to be the main reservoir of C. jejuni. The role that host genetics plays in resistance/susceptible to C. jejuni colonization in broilers is still not clear. Day-old broilers from ...

  9. Prevalence, virulence, and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in white stork Ciconia ciconia in Poland.

    PubMed

    Szczepańska, Bernadeta; Kamiński, Piotr; Andrzejewska, Małgorzata; Śpica, Dorota; Kartanas, Edmund; Ulrich, Werner; Jerzak, Leszek; Kasprzak, Mariusz; Bocheński, Marcin; Klawe, Jacek J

    2015-01-01

    The aim of this study was to investigate the role of white stork Ciconia ciconia as a potential reservoir of Campylobacter spp. Antimicrobial resistance and the presence of putative virulence genes of the isolates were also examined. A total of 398 white stork chicks sampled in Western Poland in habitats with high density of breeding were examined. Rectal swabs were collected during breeding season 2009-2012 from storks developing in a relatively pure environment (Odra meadows), in polluted areas (a copper mining-smelting complex), and in suburbs. Of the anal swabs collected, 7.6% were positive for Campylobacter among chicks (5.3% samples positive for C. jejuni and 2.3% samples positive for C. coli). Samples from polluted areas had the highest prevalence of Campylobacter (12.2%). The prevalence of resistance among C. jejuni and C. coli isolates from young storks was as follows: to ciprofloxacin (52.4%, 44.4%), and to tetracycline (19%, 77.8%). All of the analyzed isolates were susceptible to macrolides. The resistance to both classes of antibiotics was found in the 23.3% of Campylobacter spp. All Campylobacter spp. isolates had cadF gene and flaA gene responsible for adherence and motility. CdtB gene associated with toxin production was present in 88.9% of C. coli isolates and 57.1% of C. jejuni isolates. The iam marker was found more often in C. coli strains (55.6%) compared to C. jejuni isolates (42.9%). Our results confirm the prevalence of Campylobacter spp. in the white stork in natural conditions and, because it lives in open farmlands with access to marshy wetlands, the environmental sources such as water reservoirs and soil-water can be contaminated from white stork feces and the pathogens can be widely disseminated. We can thus conclude that Campylobacter spp. may easily be transmitted to waterfowl, other birds, and humans via its environmental sources and/or by immediate contact. PMID:25456607

  10. Roles of Lipooligosaccharide and Capsular Polysaccharide in Antimicrobial Resistance and Natural Transformation of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To investigate the roles of surface polysaccharides, such as capsular polysaccharide (CPS) and lipooligosaccharide (LOS), in modulating natural transformation and antimicrobial resistance in Campylobacter jejuni. Methods: A series of C. jejuni mutants, which are defective in either CPS ...

  11. Comparative proteomic label-free analysis of Campylobacter jejuni NCTC 11168 cultured with porcine mucin.

    PubMed

    Hong, Sahyun; Cha, Injun; Kim, Nan-Ok; Seo, Jong-Bok; Kim, Soo-Young; Kim, Jong-Hyun; Chung, Gyung Tae; Jeon, Byeonghwa; Kang, Yeon-Ho

    2014-03-01

    Campylobacter jejuni is a major gastrointestinal pathogen in humans. Poultry is a primary reservoir for C. jejuni, and C. jejuni appears to be highly adapted to the gastrointestinal tracts of avian species. We determined the protein expression profiles of C. jejuni NCTC 11168 cultured in medium containing porcine mucin. Differentially expressed proteins in the presence and absence of porcine mucin were identified using the label-free method. We identified 52 proteins with expression that was either upregulated (32 proteins) or downregulated (20 proteins) by porcine mucin. These proteins are involved in diverse cellular functions, such as motility, cell wall synthesis, iron transport, energy production, and amino acid metabolism. In particular, the upregulated proteins were involved in chemotaxis (CheV and CetA), motility (FlaA), colonization and adherence (CadF, FrdA, CfrA, MapA, and HydA), and stress tolerance (TrxB and ClpB). These results suggest that C. jejuni changes its protein expression in response to porcine mucin and that this change in expression may contribute to host adaptation of C. jejuni NCTC 11168. PMID:24552179

  12. Analysis of Campylobacter jejuni antigens with monoclonal antibodies.

    PubMed Central

    Kosunen, T U; Bång, B E; Hurme, M

    1984-01-01

    To develop monoclonal reagents for antigenic analysis and serotyping of Campylobacter spp., hybridoma cell lines were produced by fusion of mouse myeloma cells and spleen cells from mice immunized with Formalin-treated Campylobacter jejuni organisms. An enzyme immunoassay was used for preliminary screening of the cell culture supernatants and ascites. Twenty-nine clones which reacted with the immunogen were obtained. Seven of these clones were positive in passive hemagglutination tests with sheep erythrocytes coated with boiled saline extract of whole bacteria; four of these reacted with the purified polysaccharide preparation and with the autoclaved saline extract, but not with lipopolysaccharide prepared from the immunogen strain. Two of the antipolysaccharide clones agglutinated live bacteria in slide tests. Four additional clones gave positive slide agglutination tests with live bacteria, but in tube testing no clones agglutinated Formalin-treated bacteria. No cross-reactions with unrelated bacteria were seen, but several clones reacted in the enzyme immunoassay with many of the 24 Campylobacter strains studied. The clone which gave the highest mean enzyme immunoassay values with Campylobacter coli and C. jejuni strains also reacted with Campylobacter fetus subsp. veneralis and C. fetus subsp. fetus strains. This clone also gave the highest enzyme immunoassay value with an acid glycine extract of the immunogen, which indicates the presence of common antigens in the extract. The results suggest that monoclonal antibodies may be used to devise serotyping schemes for Campylobacter spp. PMID:6365954

  13. The influence of age on Campylobacter jejuni infection in chicken.

    PubMed

    Han, Zifeng; Pielsticker, Colin; Gerzova, Lenka; Rychlik, Ivan; Rautenschlein, Silke

    2016-09-01

    Campylobacter jejuni (C. jejuni)-host-interaction may be affected by the maturation stage of the chicken's immune system and the developing gut microbiota composition. We compared these parameters between birds C. jejuni-inoculated at day one, 10, 22 and 31 post hatch. The highest C. jejuni-colonization rate and numbers of colony forming units (CFU) were detected in caecal content of day-one-inoculated birds while the lowest was detected in 22-days-old birds. The low bacterial colonization of 22-days-old chickens correlated with the most prominent immune reactions in this age group in comparison to other age groups. Age and C. jejuni-inoculation had a significant effect on lymphocyte numbers and cytokine expression levels in caecum as well as on gut flora composition. Overall, the immune response to C. jejuni is significantly influenced by the age of the infected chickens leading to differences in C. jejuni-colonization pattern between age goups. PMID:27131855

  14. Colonization factors of Campylobacter jejuni in the chicken gut

    PubMed Central

    2011-01-01

    Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development. PMID:21714866

  15. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor.

    PubMed

    Masdor, Noor Azlina; Altintas, Zeynep; Tothill, Ibtisam E

    2016-04-15

    A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays. The performance of the QCM immunosensor developed using sandwich assay by utilising the rabbit polyclonal antibody as the capture antibody and conjugated to AuNPs as the detection antibody gave the highest sensitivity. This sensor achieved a limit of detection (LOD) of 150 colony forming unit (CFU)mL(-1) of C. jejuni in solution. The QCM sensor showed excellent sensitivity and specificity for Campylobacter detection with low cross reactivity for other foodborne pathogens such as Salmonella Typhimurium, (7%) Listeria monocytogenes (3%) and Escherichia coli (0%). The development of this biosensor would help in the sensitive detection of Campylobacter which can result in reducing pre-enrichment steps; hence, reducing assay time. This work demonstrates the potential of this technology for the development of a rapid and sensitive detection method for C. jejuni. PMID:26649490

  16. Campylobacter jejuni Bacteremia in a Patient With Acute Lymphocytic Leukemia

    PubMed Central

    Anvarinejad, Mojtaba; Amin Shahidi, Maneli; Pouladfar, Gholam Reza; Dehyadegari, Mohammad Ali; Mardaneh, Jalal

    2016-01-01

    Introduction Campylobacter jejuni is a slender, motile, non-spore-forming, helical-shaped, gram-negative bacterium. It is one of the most common causes of human gastroenteritis in the world. The aim of this study was to present a patient with acute lymphocytic leukemia (ALL), who was infected with Campylobacter jejuni. Case Presentation We describe the medical records of a pediatric ALL patient with bacteremia caused by C. jejuni, who was diagnosed at Amir hospital, Shiraz, Iran. This 14-year-old male visited the emergency department of Amir hospital with night sweats, severe polar high-grade fever, reduced appetite, and nausea in August 2013. Given the suspected presence of an anaerobic or microaerophilic microorganism, aerobic and anaerobic blood cultures were performed using an automated blood cultivator, the BACTEC 9240 system. In order to characterize the isolate, diagnostic biochemical tests were used. Antibiotic susceptibility testing was done with the disk diffusion method. The primary culture was found to be positive for Campylobacter, and the subculture of the solid plate yielded a confluent growth of colonies typical for Campylobacter, which was identified as C. jejuni by morphological and biochemical tests. The isolate was resistant to ciprofloxacin, cefotaxime, cephalexin, piperacillin/tazobactam, nalidixic acid, aztreonam, cefuroxime, cefixime, ceftazidime, and tobramycin. Conclusions C. jejuni should be considered in the differential diagnosis as a potential cause of bacteremia in immunosuppressed patients. In cases where the BACTEC result is positive in aerobic conditions but the organism cannot be isolated, an anaerobic culture medium is suggested, especially in immunocompromised patients. PMID:27621914

  17. Colonization properties of Campylobacter jejuni in chickens

    PubMed Central

    Pielsticker, C.; Glünder, G.; Rautenschlein, S.

    2012-01-01

    Campylobacter is the most common bacterial food-borne pathogen worldwide. Poultry and specifically chicken and raw chicken meat is the main source for human Campylobacter infection. Whilst being colonized by Campylobacter spp. chicken in contrast to human, do scarcely develop pathological lesions. The immune mechanisms controlling Campylobacter colonization and infection in chickens are still not clear. Previous studies and our investigations indicate that the ability to colonize the chicken varies significantly not only between Campylobacter strains but also depending on the original source of the infecting isolate. The data provides circumstantial evidence that early immune mechanisms in the gut may play an important role in the fate of Campylobacter in the host. PMID:24611122

  18. Whole-Genome Sequences of Agricultural, Host-Associated Campylobacter coli and Campylobacter jejuni Strains

    PubMed Central

    Altermann, Eric; Olson, Jonathan; Wray, Gregory Allan; Siletzky, Robin M.; Kathariou, Sophia

    2016-01-01

    We report here the genome sequences of four agricultural, multidrug-resistant Campylobacter spp.: C. coli 11601 and C. jejuni 11601MD, isolated from turkey cecum and jejunum, respectively, and C. coli 6067 and C. coli 6461, isolated from turkey-house water and swine feces, respectively. The genomes provide insights on Campylobacter antimicrobial resistance and host adaptations. PMID:27540063

  19. Whole-Genome Sequences of Agricultural, Host-Associated Campylobacter coli and Campylobacter jejuni Strains.

    PubMed

    Dutta, Vikrant; Altermann, Eric; Olson, Jonathan; Wray, Gregory Allan; Siletzky, Robin M; Kathariou, Sophia

    2016-01-01

    We report here the genome sequences of four agricultural, multidrug-resistant Campylobacter spp.: C. coli 11601 and C. jejuni 11601MD, isolated from turkey cecum and jejunum, respectively, and C. coli 6067 and C. coli 6461, isolated from turkey-house water and swine feces, respectively. The genomes provide insights on Campylobacter antimicrobial resistance and host adaptations. PMID:27540063

  20. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    PubMed

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. PMID:26709064

  1. THE EFFECT OF PRESLAUGHTER EVENTS ON THE PREVALENCE OF CAMPYLOBACTER JEJUNI AND CAMPYLOBACTER COLI IN TURKEYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to determine if perimarketing events (i.e., feed withdrawal, catching, transport, and pre-slaughter holding) impact Campylobacter spp. in the intestines of turkeys. The distribution of C. jejuni and C. coli along the intestinal tract was examined before and after transpor...

  2. Construction, Expression, and Characterization of Flagellar Proteins for the Food-borne Pathogen Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Campylobacter jejuni, a Gram-negative bacterium, is the leading etiologic agent of human acute bacterial gastroenteritis worldwide. The source of this bacterium for human infection has been implicated as consumption and handling of poultry where Campylobacter jejuni is a commensal in th...

  3. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  4. Effect of H2 on culture of Campylobacter jejuni within mixed populations of ruminal bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading bacterial cause of human foodborne illness. Campylobacter readily colonize the gut of food animals as evidenced by prevalence rates often exceeding 80%. Physiologically, C. jejuni conserve energy via amino acid catabolism and anaerobic respiration. Hydrogen is rep...

  5. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli.

    PubMed

    Alfredson, David A; Korolik, Victoria

    2007-12-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world and infections with these organisms occur more frequently than do infections due to Salmonella species, Shigella species, or Escherichia coli 0157:H7. The incidence of human Campylobacter infections has increased markedly in both developed and developing countries worldwide and, more significantly, so has the rapid emergence of antibiotic-resistant Campylobacter strains, with evidence suggesting that the use of antibiotics, in particular the fluoroquinolones, as growth promoters in food animals and the veterinary industry is accelerating this trend. In this minireview, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter spp are discussed. PMID:18031331

  6. Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli from poultry in Italy.

    PubMed

    Giacomelli, Martina; Salata, Cristiano; Martini, Marco; Montesissa, Clara; Piccirillo, Alessandra

    2014-04-01

    This study was aimed at assessing the antimicrobial resistance (AMR) of Campylobacter isolates from broilers and turkeys reared in industrial farms in Northern Italy, given the public health concern represented by resistant campylobacters in food-producing animals and the paucity of data about this topic in our country. Thirty-six Campylobacter jejuni and 24 Campylobacter coli isolated from broilers and 68 C. jejuni and 32 C. coli from turkeys were tested by disk diffusion for their susceptibility to apramycin, gentamicin, streptomycin, cephalothin, cefotaxime, ceftiofur, cefuroxime, ampicillin, amoxicillin+clavulanic acid, nalidixic acid, flumequine, enrofloxacin, ciprofloxacin, erythromycin, tilmicosin, tylosin, tiamulin, clindamycin, tetracycline, sulfamethoxazole+trimethoprim, chloramphenicol. Depending on the drug, breakpoints provided by Comité de l'antibiogramme de la Société Française de Microbiologie, Clinical and Laboratory Standards Institute, and the manufacturer were followed. All broiler strains and 92% turkey strains were multidrug resistant. Very high resistance rates were detected for quinolones, tetracycline, and sulfamethoxazole+trimethoprim, ranging from 65% to 100% in broilers and from 74% to 96% in turkeys. Prevalence of resistance was observed also against ampicillin (97% in broilers, 88% in turkeys) and at least three cephalosporins (93-100% in broilers, 100% in turkeys). Conversely, no isolates showed resistance to chloramphenicol and tiamulin. Susceptibility prevailed for amoxicillin+clavulanic acid and aminoglycosides in both poultry species, and for macrolides and clindamycin among turkey strains and among C. jejuni from broilers, whereas most C. coli strains from broilers (87.5%) were resistant. Other differences between C. jejuni and C. coli were observed markedly in broiler isolates, with the overall predominance of resistance in C. coli compared to C. jejuni. This study provides updates and novel data on the AMR of broiler and

  7. An outbreak of Campylobacter jejuni infection among conference delegates.

    PubMed

    Raupach, Jane C A; Hundy, Rebecca L

    2003-01-01

    Campylobacter infection is one of the most commonly reported foodborne diseases in Australia however, reported Campylobacter outbreaks are rare. This report describes such an outbreak among delegates attending a 10 day international academic meeting in South Australia during May 2001. A retrospective cohort study of the 29 delegates who attended the conference was conducted. A questionnaire was sent by email with a response rate of 93 per cent. Ten cases (onset of diarrhoea while attending the conference) were identified. Two were culture positive for Campylobacter jejuni. There was a significant association between the illness and eating a number of food items from two restaurants however, environmental investigation of the two venues did not identify a definitive source for the outbreak. This investigation demonstrates the usefulness of email in the distribution of questionnaires among specific cohorts. PMID:14510066

  8. Bacteriocins control chicken colonization while probiotic bacteria are ineffective at reducing Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broilers chickens are widely considered an important source for human exposure to Campylobacter jejuni. We sought to intervene in C. jejuni colonization by using a probiotic approach. Isolates from chicken intestine were screened for C. jejuni inhibition. These isolates were live-fed to treat chi...

  9. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. C. jejuni has a highly branched...

  10. Status of vaccine research and development for Campylobacter jejuni.

    PubMed

    Riddle, Mark S; Guerry, Patricia

    2016-06-01

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea worldwide and is associated with a number of sequelae, including Guillain-Barre Syndrome, reactive arthritis, irritable bowel syndrome and growth stunting/malnutrition. Vaccine development against C. jejuni is complicated by its antigenic diversity, a lack of small animal models, and a poor understanding of the bacterium's pathogenesis. Vaccine approaches have been limited to recombinant proteins, none of which have advanced beyond Phase I testing. Genomic analyses have revealed the presence of a polysaccharide capsule on C. jejuni. Given the success of capsule-conjugate vaccines for other mucosal pathogens of global importance, efforts to evaluate this established approach for C. jejuni are also being pursued. A prototypical capsule-conjugate vaccine has demonstrated efficacy against diarrheal disease in non-human primates and is currently in Phase I testing. In addition to proof of concept studies, more data on the global prevalence of capsular types, and a better understanding of the acute and chronic consequences of C. jejuni are needed to inform investments for a globally relevant vaccine. PMID:26973064

  11. High Prevalence and Genetic Diversity of Campylobacter jejuni in Wild Crows and Pigeons.

    PubMed

    Ramonaitė, Sigita; Novoslavskij, Aleksandr; Zakarienė, Gintarė; Aksomaitienė, Jurgita; Malakauskas, Mindaugas

    2015-11-01

    The occurrence, seasonal variation and genetic diversity of Campylobacter spp. in pigeons and crows over a 1-year period were evaluated. Campylobacter spp. were isolated from 166 (34.6 %) out of 480 wild bird faecal samples. The occurrence of Campylobacter spp. in faecal samples was higher among crows (39.2 %) than pigeons (30.0 %), (P < 0.05). Campylobacter jejuni was the most common species detected among wild bird faecal samples (98.2 %). Meanwhile, Campylobacter coli prevalence in wild bird faecal samples was low-6 %. The Simpson's diversity index of C. jejuni flaA RFLP types was lower in pigeons (D = 0.88) compared with C. jejuni isolates detected in crows (D = 0.97). Obtained results revealed that C. jejuni are widely prevalent among crows and pigeons, indicating these wild birds as potential infection sources to humans. Further studies are required to determine crows and pigeons role in zoonotic transmission of Campylobacter. PMID:26228635

  12. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.

    PubMed

    Semchenko, Evgeny A; Day, Christopher J; Moutin, Marc; Wilson, Jennifer C; Tiralongo, Joe; Korolik, Victoria

    2012-01-01

    Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM(1), asialo GM(2) and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375) with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM(2)-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides. PMID:22815868

  13. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis

    PubMed Central

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H.; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A.

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates. PMID:26394042

  14. Iron Acquisition and Regulation in Campylobacter jejuni

    PubMed Central

    Palyada, Kiran; Threadgill, Deborah; Stintzi, Alain

    2004-01-01

    Iron affects the physiology of bacteria in two different ways: as a micronutrient for bacterial growth and as a catalyst for the formation of hydroxyl radicals. In this study, we used DNA microarrays to identify the C. jejuni genes that have their transcript abundance affected by iron availability. The transcript levels of 647 genes were affected after the addition of iron to iron-limited C. jejuni cells. Several classes of affected genes were revealed within 15 min, including immediate-early response genes as well as those specific to iron acquisition and metabolism. In contrast, only 208 genes were differentially expressed during steady-state experiments comparing iron-rich and iron-limited growth conditions. As expected, genes annotated as being involved in either iron acquisition or oxidative stress defense were downregulated during both time course and steady-state experiments, while genes encoding proteins involved in energy metabolism were upregulated. Because the level of protein glycosylation increased with iron limitation, iron may modulate the level of C. jejuni virulence by affecting the degree of protein glycosylation. Since iron homeostasis has been shown to be Fur regulated in C. jejuni, an isogenic fur mutant was used to define the Fur regulon by transcriptome profiling. A total of 53 genes were Fur regulated, including many genes not previously associated with Fur regulation. A putative Fur binding consensus sequence was identified in the promoter region of most iron-repressed and Fur-regulated genes. Interestingly, a fur mutant was found to be significantly affected in its ability to colonize the gastrointestinal tract of chicks, highlighting the importance of iron homeostasis in vivo. Directed mutagenesis of other genes identified by the microarray analyses allowed the characterization of the ferric enterobactin receptor, previously named CfrA. Chick colonization assays indicated that mutants defective in enterobactin-mediated iron acquisition

  15. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples.

    PubMed Central

    Linton, D; Lawson, A J; Owen, R J; Stanley, J

    1997-01-01

    Three sets of primers were designed for PCR detection and differentiation of Campylobacter jejuni and Campylobacter coli. The first PCR assay was designed to coidentify C. jejuni and C. coli based on their 16S rRNA gene sequences. The second PCR assay, based on the hippuricase gene sequence, identified all tested reference strains of C. jejuni and also strains of that species which lack detectable hippuricase activity. The third PCR assay, based on the sequence of a cloned (putative) aspartokinase gene and the downstream open reading frame, identified all tested reference strains of C. coli. The assays will find immediate application in the rapid identification to species level of isolates. The assays combine with a protocol for purification of total DNA from fecal samples to allow reproducible PCR identification of campylobacters directly from stools. Of 20 clinical samples from which campylobacters had been cultured, we detected C. jejuni in 17, C. coli in 2, and coinfection of C. jejuni and Campylobacter hyointestinalis in 1. These results were concordant with culture and phenotypic identification to species level. Strain typing by PCR-restriction fragment length polymorphism of the flagellin (flaA) gene detected identical flaA types in fecal DNA and the corresponding campylobacter isolate. Twenty-five Campylobacter-negative stool samples gave no reaction with the PCR assays. These PCR assays can rapidly define the occurrence, species incidence, and flaA genotypes of enteropathogenic campylobacters. PMID:9316909

  16. Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters.

    PubMed

    Tatchou-Nyamsi-König, Josiane-Aurore; Dague, Etienne; Mullet, Martine; Duval, Jérôme F L; Gaboriaud, Fabien; Block, Jean-Claude

    2008-12-01

    Adhesion of the bacteria Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET), a polymer widely used within the bottled water industry was measured in two different groundwater solutions. From this, it was found that whilst the percentage cell adhesion for a given strain did not change between groundwater types, substantial variation was obtained between the two bacterial species tested: M. avium (10-30% adhered cells) and C. jejuni (1-2%) and no major variations were measured as a function of groundwater composition for a given strain. To explain this, the interfacial electro-hydrodynamic properties of the bacteria were investigated by microelectrophoresis, with the resultant data analysed on the basis of electrokinetic theory for soft biocolloidal particles. The results obtained showed that M. avium carries a significant volume charge density and that its peripheral layer exhibits limited hydrodynamic flow permeation compared to that of C. jejuni. It was also demonstrated that steric hindrance to flow penetration and the degree of hydrophobicity within/of the outer bacterial interface are larger for M. avium cells. In line with this, the larger amount of M. avium cells deposited onto PET substrates as compared to that of C. jejuni can be explained by hydrophobic attraction and chemical binding between hydrophobic PET and outer soft surface layer of the bacteria. Hydrophobicity of PET was addressed by combining contact angle analyses and force spectroscopy using CH(3)-terminated AFM tip. PMID:18929388

  17. Campylobacter jejuni and salmonella in raw red meats

    PubMed Central

    Turnbull, P. C. B.; Rose, Phyllis

    1982-01-01

    Thirty-one laboratories examined a total of 6169 meat samples, 1236 from abattoirs and 4933 from retail and other outlets. Campylobacter jejuni was isolated from 98 (1·6%). A higher isolation rate of 49/1236 (4·0%) was found among abattoir than among retail and other samples (49/4933-1·0%). Twenty-two of the laboratories looked for salmonella; although 94/4002 (2·3%) were positive, in only one sample of minced beef were campylobacter and salmonella found together. Isolation rates for salmonellae were 75/3576 (2·1%) from retail and 19/426 (4·5%) from abattoir samples. Analysis of the results revealed that (1) the contamination rate of raw red meat by C. jejuni is, in general, very low; (2) when contaminated, numbers of organisms are generally also very low; (3) enrichment procedures were of some value; 41/98 (42%) isolates were detected by enrichment only, but, on the other hand 8 (8%) were direct plate positive/enrichment negative; (4) practice at looking for the organism and increased seasonal temperatures over the survey period did not result in a noticeable increase in isolations; (5) there was no apparent correlation between campylobacter and salmonella isolations. PMID:20475890

  18. A proteome-wide protein interaction map for Campylobacter jejuni

    PubMed Central

    Parrish, Jodi R; Yu, Jingkai; Liu, Guozhen; Hines, Julie A; Chan, Jason E; Mangiola, Bernie A; Zhang, Huamei; Pacifico, Svetlana; Fotouhi, Farshad; DiRita, Victor J; Ideker, Trey; Andrews, Phillip; Finley, Russell L

    2007-01-01

    Background Data from large-scale protein interaction screens for humans and model eukaryotes have been invaluable for developing systems-level models of biological processes. Despite this value, only a limited amount of interaction data is available for prokaryotes. Here we report the systematic identification of protein interactions for the bacterium Campylobacter jejuni, a food-borne pathogen and a major cause of gastroenteritis worldwide. Results Using high-throughput yeast two-hybrid screens we detected and reproduced 11,687 interactions. The resulting interaction map includes 80% of the predicted C. jejuni NCTC11168 proteins and places a large number of poorly characterized proteins into networks that provide initial clues about their functions. We used the map to identify a number of conserved subnetworks by comparison to protein networks from Escherichia coli and Saccharomyces cerevisiae. We also demonstrate the value of the interactome data for mapping biological pathways by identifying the C. jejuni chemotaxis pathway. Finally, the interaction map also includes a large subnetwork of putative essential genes that may be used to identify potential new antimicrobial drug targets for C. jejuni and related organisms. Conclusion The C. jejuni protein interaction map is one of the most comprehensive yet determined for a free-living organism and nearly doubles the binary interactions available for the prokaryotic kingdom. This high level of coverage facilitates pathway mapping and function prediction for a large number of C. jejuni proteins as well as orthologous proteins from other organisms. The broad coverage also facilitates cross-species comparisons for the identification of evolutionarily conserved subnetworks of protein interactions. PMID:17615063

  19. Antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli isolates obtained in Montreal, Quebec, Canada, from 2002 to 2013.

    PubMed

    Gaudreau, Christiane; Boucher, France; Gilbert, Huguette; Bekal, Sadjia

    2014-07-01

    From 2002 to 2013 in Montreal, Quebec, Canada, 38 Campylobacter coli isolates were more frequently erythromycin, tetracycline, and ciprofloxacin resistant than 440 Campylobacter jejuni subsp. jejuni isolates (18.4% versus 1.8%; P = 0.00005), of which the 148 isolates acquired abroad were more frequently erythromycin, tetracycline, and ciprofloxacin resistant than the 292 isolates acquired locally (5.4% versus 0%; P = 0.0001). PMID:24759726

  20. Antimicrobial Susceptibility of Campylobacter jejuni and Campylobacter coli Isolates Obtained in Montreal, Quebec, Canada, from 2002 to 2013

    PubMed Central

    Boucher, France; Gilbert, Huguette; Bekal, Sadjia

    2014-01-01

    From 2002 to 2013 in Montreal, Quebec, Canada, 38 Campylobacter coli isolates were more frequently erythromycin, tetracycline, and ciprofloxacin resistant than 440 Campylobacter jejuni subsp. jejuni isolates (18.4% versus 1.8%; P = 0.00005), of which the 148 isolates acquired abroad were more frequently erythromycin, tetracycline, and ciprofloxacin resistant than the 292 isolates acquired locally (5.4% versus 0%; P = 0.0001). PMID:24759726

  1. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli recovered from organic turkey farms in Germany.

    PubMed

    El-Adawy, Hosny; Ahmed, Marwa F E; Hotzel, Helmut; Tomaso, Herbert; Tenhagen, Bernd-Alois; Hartung, Joerg; Neubauer, Heinrich; Hafez, Hafez M

    2015-11-01

    The popularity of food produced from animals kept under an organic regimen has increased in recent years. In Germany, turkey meat consumption has increased. Despite several studies assessing the susceptibility of campylobacters to various antibiotics in poultry, no sufficient data exists regarding the antimicrobial resistance of campylobacters in organic-reared turkeys. This study provides information about antibiotic resistance in Campylobacter isolated from turkeys reared on organic farms in Germany. Ninety-six Campylobacter strains (41 C. jejuni and 55 C. coli) were isolated from different free-range turkey flocks. In vitro antimicrobial sensitivity testing was done using a broth microdilution test, and the presence of resistance genes to antibiotics (ciprofloxacin, tetracycline) was investigated. All Campylobacter isolates from organic turkeys (n = 96) were phenotypically sensitive to gentamicin, erythromycin, streptomycin, and chloramphenicol. In this study, the antibiotic susceptibilities of C. jejuni to ciprofloxacin, tetracycline, and naladixic acid were 56.0%, 51.3%, and 56.0%, respectively. In contrast, 44.0%, 73.0%, and 74.6% of C. coli isolates were resistant to tetracycline, ciprofloxacin, and nalidixic acid, respectively. Replacement of the Thr-86→Ile in the gyrA gene, and the presence of the tet(O) gene were the mainly identified resistance mechanisms against fluoroquinolones and tetracycline, respectively.These results also reinforce the need to develop strategies and implement specific control procedures to reduce the development of antimicrobial resistance. PMID:26371330

  2. Role of environmental survival in transmission of Campylobacter jejuni.

    PubMed

    Bronowski, Christina; James, Chloe E; Winstanley, Craig

    2014-07-01

    Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans. PMID:24888326

  3. Campylobacter jejuni Infections Associated with Raw Milk Consumption - Utah, 2014.

    PubMed

    Davis, Kenneth R; Dunn, Angela C; Burnett, Cindy; McCullough, Laine; Dimond, Melissa; Wagner, Jenni; Smith, Lori; Carter, Amy; Willardson, Sarah; Nakashima, Allyn K

    2016-01-01

    In May 2014, the Utah Public Health Laboratory (UPHL) notified the Utah Department of Health (UDOH) of specimens from three patients infected with Campylobacter jejuni yielding indistinguishable pulsed-field gel electrophoresis (PFGE) patterns. All three patients had consumed raw (unpasteurized and nonhomogenized) milk from dairy A. In Utah, raw milk sales are legal from farm to consumer with a sales permit from the Utah Department of Agriculture and Food (UDAF). Raw milk dairies are required to submit monthly milk samples to UDAF for somatic cell and coliform counts, both of which are indicators of raw milk contamination. Before this cluster's identification, dairy A's routine test results were within acceptable levels (<400,000 somatic cells/mL and <10 coliform colony forming units/mL). Subsequent enhanced testing procedures recovered C. jejuni, a fastidious organism, in dairy A raw milk; the isolate matched the cluster pattern. UDAF suspended dairy A's raw milk permit during August 4-October 1, and reinstated the permit when follow-up cultures were negative. Additional cases of C. jejuni infection were identified in October, and UDAF permanently revoked dairy A's permit to sell raw milk on December 1. During May 9-November 6, 2014, a total of 99 cases of C. jejuni infection were identified. Routine somatic cell and coliform counts of raw milk do not ensure its safety. Consumers should be educated that raw milk might be unsafe even if it meets routine testing standards. PMID:27031585

  4. Investigations into the antiadhesive activity of herbal extracts against Campylobacter jejuni.

    PubMed

    Bensch, K; Tiralongo, J; Schmidt, K; Matthias, A; Bone, K M; Lehmann, R; Tiralongo, E

    2011-08-01

    Campylobacter jejuni is one of the most common bacterial causes of diarrhoea in the industrialized world, being associated with the occurrence of Guillain-Barré Syndrome, and inducing diseases partially through intestinal adherence. With increasing reports of C. jejuni drug resistance against standard antibiotics, investigations into antiadhesive agents for the prevention of bacterial infection are highly significant. Given the consumer-driven development towards holistic and integrative healthcare, research into additional anti-Campylobacter effects of herbal medicines that are already used for their beneficial effects on bowel and digestive functions is important. Twenty-one herbal extracts were screened for antiadhesive activity against C. jejuni using modifications of previously published antiadhesion assays. Antiadhesion effects with IC(50) values <3 mg/mL were obtained for seven ethanol plant extracts, with Zingiber officinale (ginger), Capsicum annum (cayenne) and Glycyrrhiza glabra (licorice) displaying the highest antiadhesion activity against C. jejuni (IC(50) : <0.1 mg/mL, 0.29 mg/mL and 0.65 mg/mL, respectively). Differences in antiadhesion activity were found for two different Echinacea species, with E. purpurea displaying significantly higher and dose dependent antiadhesion activity than E. angustifolia. No significant antiadhesion activity (IC(50) values >35 mg/mL) was found for Agrimonia eupatoria (agrimony), Andrographis paniculata (andrographis), Matricaria recutita (chamomile), Foeniculum vulgare (fennel), Filipendula ulmaria (meadowsweet) and Artemisia absinthium (wormwood) extracts. This study provides evidence for additional beneficial effects of marketed herbal medicines in gastrointestinal disorders. PMID:21280113

  5. Comparison of genotypes and antibiotic resistances of Campylobacter jejuni and Campylobacter coli on chicken retail meat and at slaughter.

    PubMed

    Kittl, Sonja; Korczak, Bożena M; Niederer, Lilian; Baumgartner, Andreas; Buettner, Sabina; Overesch, Gudrun; Kuhnert, Peter

    2013-06-01

    Multilocus sequence typing (MLST) and antibiotic resistance patterns of Campylobacter jejuni and Campylobacter coli from retail chicken meat showed high overlap with isolates collected at slaughterhouses, indicating little selection along the production chain. They also showed significant common sequence types with human clinical isolates, revealing chicken meat as a likely source for human infection. PMID:23584778

  6. Comparison of Genotypes and Antibiotic Resistances of Campylobacter jejuni and Campylobacter coli on Chicken Retail Meat and at Slaughter

    PubMed Central

    Kittl, Sonja; Korczak, Bożena M.; Niederer, Lilian; Baumgartner, Andreas; Buettner, Sabina; Overesch, Gudrun

    2013-01-01

    Multilocus sequence typing (MLST) and antibiotic resistance patterns of Campylobacter jejuni and Campylobacter coli from retail chicken meat showed high overlap with isolates collected at slaughterhouses, indicating little selection along the production chain. They also showed significant common sequence types with human clinical isolates, revealing chicken meat as a likely source for human infection. PMID:23584778

  7. Relationship between Presence of Anti-Campylobacter FliD Protein Antibodies and Campylobacter jejuni Isolation from Broiler Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. Poultry products are regarded as a major source of this bacterium for human infection. Although this bacterium is a commensal in chicken cecal microbiome, Campylobacte...

  8. Prevalence of Campylobacter jejuni and Campylobacter coli species in cats and dogs from Bydgoszcz (Poland) region.

    PubMed

    Andrzejewska, M; Szczepańska, B; Klawe, J J; Spica, D; Chudzińska, M

    2013-01-01

    The aim of this study was to investigate the role of cats and dogs as a potential reservoir of Campylobacter spp. Rectal swabs from 83 dogs and 71 cats were examined. Samples were obtained from the animals aged between 2 weeks and 24 months living in shelters, private households, farms and from veterinary clinics located in Bydgoszcz region during routine check-up. Campylobacter spp. were isolated from 4.81% dogs and 9.86% cats, respectively. C. jejuni was predominant in this study. All strains were isolated in autumn and winter from the animals living in farms and private houses. All the animals positive for Campylobacter prevalence had access to small water basins, accidental source of food and had contact with wild birds, poultry or their feaces. Isolates characterization revealed high prevalence of Campylobacter virulence genes-flaA, cadF and cdtB. 91% of isolated strains were susceptible to erythromycin. 81% among isolated strains were susceptible to azithromycin, 64% to tetracycline and 36% to ciprofloxacin. For 2 C. jejuni strains isolated from cats Random Amplified Polymorphic DNA (RAPD) profiling indicated 80% homology between them. PMID:23691584

  9. Fluoroquinolone resistance detection in Campylobacter coli and Campylobacter jejuni by Luminex xMAP technology.

    PubMed

    Barco, Lisa; Lettini, Antonia Anna; Dalla Pozza, Maria Cristina; Ramon, Elena; Fasolato, Manuela; Ricci, Antonia

    2010-09-01

    The proportion of Campylobacter spp. isolates that are resistant to fluoroquinolones, the drugs of choice for campylobacteriosis, has been increasing worldwide. We developed an innovative method based on a Luminex xMAP DNA suspension array that allows the identification of Campylobacter species and, simultaneously, the detection of the most common point mutation in the gyrA gene (substitution from threonine 86 to isoleucine 86) that is responsible for fluoroquinolone resistance. Ninety-six Campylobacter coli and Campylobacter jejuni isolates collected from turkeys were first investigated by microdilution test to characterize the antimicrobial resistance patterns. The isolates, amplified for the quinolone resistance determining region of the gyrA gene, were then tested using Luminex suspension array. The reliability of the method was demonstrated by the total concordance between the results obtained using Luminex and those of the sequencing of gyrA polymerase chain reaction products. The genotypic characterization of fluoroquinolone resistance using Luminex was also consistent with the data on phenotypical resistance obtained by microdilution test. The results of this study strongly support the potential of Luminex xMAP technology as an efficient molecular method for the rapid and accurate identification of C. coli and C. jejuni isolates and the characterization of the major determinant of fluoroquinolone resistance. PMID:20500084

  10. Genotypes and Antibiotic Resistances of Campylobacter jejuni and Campylobacter coli Isolates from Domestic and Travel-Associated Human Cases

    PubMed Central

    Niederer, Lilian; Kuhnert, Peter; Egger, Ralph; Büttner, Sabina; Hächler, Herbert

    2012-01-01

    Multilocus sequence typing (MLST) extended with flaB typing of 425 Campylobacter jejuni isolates and 42 Campylobacter coli isolates revealed quite a low overlap between human isolates from travel-associated and domestic cases in Switzerland. Men were more frequently affected by Campylobacter than women, but strains from women and, overall, from travel-associated cases showed mutations conferring quinolone resistance more frequently than strains from men and domestic cases, respectively. PMID:22020515

  11. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli.

    PubMed

    Mughini-Gras, Lapo; Penny, Christian; Ragimbeau, Catherine; Schets, Franciska M; Blaak, Hetty; Duim, Birgitta; Wagenaar, Jaap A; de Boer, Albert; Cauchie, Henry-Michel; Mossong, Joel; van Pelt, Wilfrid

    2016-09-15

    Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contamination with Campylobacter is largely unknown. In the Netherlands, the massive poultry culling to control the 2003 avian influenza epidemic coincided with a 44-50% reduction in human campylobacteriosis cases in the culling areas, suggesting substantial environment-mediated spread of poultry-borne Campylobacter. We inferred the origin of surface water Campylobacter jejuni and Campylobacter coli strains in Luxembourg and the Netherlands, as defined by multilocus sequence typing, by comparison to strains from poultry, pigs, ruminants, and wild birds, using the asymmetric island model for source attribution. Most Luxembourgish water strains were attributed to wild birds (61.0%), followed by poultry (18.8%), ruminants (15.9%), and pigs (4.3%); whereas the Dutch water strains were mainly attributed to poultry (51.7%), wild birds (37.3%), ruminants (9.8%), and pigs (1.2%). Attributions varied over seasons and surface water types, and geographical variation in the relative contribution of poultry correlated with the magnitude of poultry production at either the national or provincial level, suggesting that environmental dissemination of Campylobacter from poultry farms and slaughterhouses can be substantial in poultry-rich regions. PMID:27244295

  12. Intestinal colonization of neonatal animals by Campylobacter fetus subsp. jejuni.

    PubMed Central

    Field, L H; Underwood, J L; Pope, L M; Berry, L J

    1981-01-01

    Neonatal mice (2.3 to 2.8 g) were inoculated intragastrically with different human isolates of Campylobacter fetus subsp. jejuni. At weekly intervals thereafter, mice were sacrificed and dilution plate counts were performed on segments of the gastrointestinal tract. Mice were uniformly colonized by some strains for 2 weeks, whereas other strains were being cleared at that time. One strain (BO216) persisted in some mice for 3 weeks. The greatest number of organisms (10(7)) was recovered from the cecum and large intestine. The small intestine had from 10(2) to 10(5) colony-forming units. Colonization of the stomach was not found consistently. One strain killed 13% of the infected mice. Deaths occurred between 1 and 5 days postinfection. Two other strains killed a smaller percentage of challenged animals, and two additional strains killed none. Retarded weight gain was noticed in some, but not all, of the infected mice. The intestines of neonatal rats and rabbits were colonized much the same as those of mice, whereas hamsters were resistant to colonization. Preweanling mice, up to about 6.5 to 7.0 g, could be colonized with C. fetus subsp. jejuni after intragastric challenge, but weanling mice of larger weight (9.8 g) and young adult mice (18.3 g) could not. Scanning electron photomicrographs of the lower ileum showed campylobacters in and below the dried mucous gel that lines the intestines. The use of this model for additional studies is discussed. Images PMID:7287188

  13. DNA Sequence Heterogeneity of Campylobacter jejuni CJIE4 Prophages and Expression of Prophage Genes

    PubMed Central

    Clark, Clifford G.; Chong, Patrick M.; McCorrister, Stuart J.; Mabon, Philip; Walker, Matthew; Westmacott, Garrett R.

    2014-01-01

    Campylobacter jejuni carry temperate bacteriophages that can affect the biology or virulence of the host bacterium. Known effects include genomic rearrangements and resistance to DNA transformation. C. jejuni prophage CJIE1 shows sequence variability and variability in the content of morons. Homologs of the CJIE1 prophage enhance both adherence and invasion to cells in culture and increase the expression of a specific subset of bacterial genes. Other C. jejuni temperate phages have so far not been well characterized. In this study we describe investigations into the DNA sequence variability and protein expression in a second prophage, CJIE4. CJIE4 sequences were obtained de novo from DNA sequencing of five C. jejuni isolates, as well as from whole genome sequences submitted to GenBank by other research groups. These CJIE4 DNA sequences were heterogenous, with several different insertions/deletions (indels) in different parts of the prophage genome. Two variants of a 3–4 kb region inserted within CJIE4 had different gene content that distinguished two major conserved CJIE4 prophage families. Additional indels were detected throughout the prophage. Detection of proteins in the five isolates characterized in our laboratory in isobaric Tags for Relative and Absolute Quantitation (iTRAQ) experiments indicated that prophage proteins within each of the two large indel variants were expressed during growth of the bacteria on Mueller Hinton agar plates. These proteins included the extracellular DNase associated with resistance to DNA transformation and prophage repressor proteins. Other proteins associated with known or suspected roles in prophage biology were also expressed from CJIE4, including capsid protein, the phage integrase, and MazF, a type II toxin-antitoxin system protein. Together with the results previously obtained for the CJIE1 prophage these results demonstrate that sequence variability and expression of moron genes are both general properties of temperate

  14. Virulence characteristics of five new Campylobacter jejuni chicken isolates.

    PubMed

    Stef, Lavinia; Cean, Ada; Vasile, Aida; Julean, Calin; Drinceanu, Dan; Corcionivoschi, Nicolae

    2013-01-01

    Campylobacter enteritis has emerged as one of the most common forms of human diarrheal illness. In this study we have investigated the virulence potential of five new C. jejuni chicken isolates (RO14, RO19, RO24, RO29 and RO37) originated from private households in the rural regions of Banat and Transylvania in Romania. Following isolation and in vitro virulence assay, on HCT-8 cells, our results show that all the C. jejuni chicken isolates overcome the virulence abilities of the highly virulent strain C. jejuni 81-176. Motility, an important virulence factor was significantly improved in all the new chicken isolates. The ability to survive to the antimicrobial activity of the human serum, to resist to the violent attack of bile acids and to survive in the presence of synthetic antibiotics was increased in all the chicken isolates. However, these were statistically significant only for isolates RO29 and RO37. In conclusion our study shows, based on invasiveness and motility, and also on the data provided by the serum and bile resistance experiments that all the new chicken isolates are able to infect human cells, in vitro, and could potentially represent a health hazard for humans. PMID:24330718

  15. High frequency genetic variation of purine biosynthesis genes is a mechanism of success in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic variation is prevalent among progeny of the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity bestows increased survival to bacterial populations because variable phenotypes ensure some cells will be protected against future s...

  16. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  17. Chemical decontamination of Campylobacter jejuni on chicken skin and meat.

    PubMed

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne; Haxgart, Sine Nygaard; Christensen, Bjarke Bak

    2009-06-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168, which were not significantly different from the reduction obtained by sterile water (0.95 log). Statistically larger reductions (1.57 to 3.81 log) were caused by formic acid (2%), lactic acid (2.5%), trisodium phosphate (10%), capric acid sodium salt (5%), grapefruit seed extract (1.6%), and chlorhexidine diacetate salt hydrate (1%). The most effective compounds were cetylpyridinium chloride (0.5%) and benzalkonium chloride (1%) (>4.2 log). However, when these treated samples were stored for 24 h at 5 degrees C, cetylpyridinium chloride, benzalkonium chloride, and grapefruit seed extract were less effective, indicating that some cells may recover after a 1-min treatment with these chemicals. An increase in treatment time to 15 min resulted in higher effectiveness of trisodium phosphate and formic acid. Interestingly, when reduction of the C. jejuni population was compared on chicken skin and meat, sterile water and lactic acid caused considerably larger reductions on skin than on meat, whereas the opposite was seen for caprylic acid sodium salt. In conclusion, this study has identified chemicals with substantial reduction effects on C. jejuni. The analysis has further emphasized that treatment time and food matrix affect the outcome in an unpredictable manner and, therefore, detailed studies are needed to evaluate the reduction effectiveness of chemicals. PMID:19610327

  18. Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni (C. jejuni) is one of the most common causes of gastroenteritis in the world. Given the potential risks to human, animal and environmental health the development and optimization of methods to quantify this important pathogen in environmental samples is essential. Two of the mos...

  19. Antibacterial effect of trans-cinnamaldehyde on Salmonella Enteritidis and Campylobacter jejuni in chickens drinking water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Enteritidis and Campylobacter jejuni are two major food-borne pathogens in the US, accounting to more than 3 million cases of human illness annually. Chickens are the natural hosts of these bacteria. Drinking water can be a potential source of S. Enteritidis and C.jejuni, resulting in the...

  20. Inactivation of Salmonella Enteritidis and Campylobacter jejuni in Poultry Drinking Water by trans-cinnamaldehyde

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Enteritidis and Campylobacter jejuni are two major food-borne pathogens in the US, accounting to more than 3 million cases of human illness annually. Chickens are the natural hosts of these bacteria. Poultry drinking water can be a potential source of S. Enteritidis and C.jejuni, resultin...

  1. The microbiome structure and Campylobacter jejuni transcriptome in naturally-raised chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis in humans worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Few transcription factors have been identified, and the...

  2. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification pre...

  3. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial effect of ZnO nanoparticles on Campylobacter jejuni was investigated for cell growth inhibition and inactivation. The results showed that C. jejuni was extremely sensitive to the treatment of ZnO nanoparticles. The minimal inhibitory concentration (MIC) of ZnO nanoparticles to C. j...

  4. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  5. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The species Campylobacter jejuni (C. jejuni) is considered naturally competent for DNA uptake and displays strong genetic diversity. Yet, non-transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the non-transformabil...

  6. QUANTIFICATIVE ANALYSIS OF VIABLE, STRESSED AND DEAD CELLS OF CAMPYLOBACTER JEJUNI STRAIN 81-176

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is an important foodborne gastrointestinal pathogen. Research has shown that changes in culturability, cell morphology, and viability occur when C. jejuni cells are subjected to stresses such as low nutrient availability, entry into stationary phase, or low CO2/high O2 condition...

  7. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  8. Antibacterial effect of trans-cinnamaldehyde on Salmonella Enteritidis and Campylobacter jejuni in chicken drinking water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Enteritidis and Campylobacter jejuni are two major food-borne pathogens in the US, accounting to more than 3 million cases of human illness annually. Chickens are the natural hosts of these bacteria and their drinking water can be a potential source of Salmonella and Campylobacter resulti...

  9. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  10. Chemically defined media for auxotyping of Campylobacter jejuni.

    PubMed

    Dickgiesser, N; Czylwik, D

    1985-08-01

    A set of chemically defined media has been developed for the cultivation of Campylobacter jejuni strains of human origin. A minimal medium, a complete medium and 5 different nutrient-deficient media (NDM1-NDM5) are described. Some of the strains investigated required L-methionine(lacking in NDM1), L-cystine and L-cysteine (NDM2), K2HPO4 (NDM 3), KH2PO4 (NDM4) and NAD, thiamine and calcium pantothenate (NDM5). 57.7% of the strains investigated required L-methionine. The strains grew at pH 6.6-7.7. The media described are not suitable for C. intestinalis. PMID:4060921

  11. Evidence of reinfection with multiple strains of Campylobacter jejuni and Campylobacter coli in Macaca nemestrina housed under hyperendemic conditions.

    PubMed Central

    Russell, R G; Sarmiento, J I; Fox, J; Panigrahi, P

    1990-01-01

    A prospective bacteriologic study of 18 infant pig-tailed macaques (Macaca nemestrina) housed in a nursery facility in which Campylobacter spp. are endemic was undertaken to determine the epidemiology of infection and reinfection. The isolates of Campylobacter jejuni and C. coli cultured from 8 of the 18 infants were characterized by serotyping, DNA hybridization, and polyacrylamide gel electrophoresis protein profiles. The chronology of infection was indicative of multiple reinfections with different strains of C. jejuni and C. coli during the 12-month study of each infant. The duration of infection with a particular strain was 3 to 4 weeks. Infants were also infected with nalidixic acid-resistant campylobacters. These observations indicated that long-term infections under endemic conditions are caused by continual reinfection. C. jejuni or C. coli infection correlated with diarrhea in 5 of the 18 infants at 1 to 4 months of age. Images PMID:2365455

  12. An Improved Culture Method for Selective Isolation of Campylobacter jejuni from Wastewater.

    PubMed

    Kim, Jinyong; Oh, Euna; Banting, Graham S; Braithwaite, Shannon; Chui, Linda; Ashbolt, Nicholas J; Neumann, Norman F; Jeon, Byeonghwa

    2016-01-01

    Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with C t value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater. PMID:27617011

  13. An Improved Culture Method for Selective Isolation of Campylobacter jejuni from Wastewater

    PubMed Central

    Kim, Jinyong; Oh, Euna; Banting, Graham S.; Braithwaite, Shannon; Chui, Linda; Ashbolt, Nicholas J.; Neumann, Norman F.; Jeon, Byeonghwa

    2016-01-01

    Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater. PMID:27617011

  14. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    PubMed Central

    Maziero, Maike T.; de Oliveira, Tereza Cristina R. M.

    2010-01-01

    Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4°C and for 28 days at -20°C. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20°C, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions. PMID:24031523

  15. Simple adult rabbit model for Campylobacter jejuni enteritis.

    PubMed Central

    Caldwell, M B; Walker, R I; Stewart, S D; Rogers, J E

    1983-01-01

    We tested the usefulness of the Removable Intestinal Tie Adult Rabbit Diarrhea model to establish Campylobacter jejuni infection in rabbits. The procedure involved ligation of the cecum, placement of a slip knot at the terminal ileum, and injection of the test inoculum into the mid-small bowel. The ends of the slip knot were externalized, and the tie was released 4 h later. Fifty-five rabbits received C. jejuni, and 16 received uninoculated medium as controls. Daily rectal swabs were positive for 2 weeks in infected rabbits. The diarrheal attack rate was 64% in infected rabbits and 0% in controls. Diarrhea was characterized by loose, mucus-containing stools after an incubation period ranging from 24 h to 6 days. When blood was obtained daily for culture from 30 rabbits for 4 days post-challenge, bacteremia was present in 96.3% 24 h after challenge but diminished to 5 of 19 (26.3%) at 96 h. Death occurred in 53% of rabbits and was always preceded by diarrhea. No control animal died. Only 5 of 35 animals experiencing diarrhea recovered. An indirect whole-cell enzyme-linked immunosorbent assay was used to determine serum immunoglobulin G responses. Mean titers rose from 1:198 preoperatively to 1:9,087 on day 28. Necropsy on eight infected and two control animals showed inflammatory lesions with ulceration in 62.5% and goblet cell hyperplasia in 75% of infected rabbits. We conclude that the Removable Intestinal Tie Adult Rabbit Diarrhea procedure is a simple, effective method to establish C. jejuni infection which mimics human disease. Images PMID:6642664

  16. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model

    PubMed Central

    Shang, Yuwei; Ren, Fangzhe; Song, Zhaojun; Li, Qiuchun; Zhou, Xiaohui; Wang, Xiaobo; Xu, Zhonglan; Bao, Guangyu; Wan, Ting; Lei, Tianyao; Wang, Nan; Jiao, Xin-an; Huang, Jinlin

    2016-01-01

    A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens. PMID:27357336

  17. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model.

    PubMed

    Shang, Yuwei; Ren, Fangzhe; Song, Zhaojun; Li, Qiuchun; Zhou, Xiaohui; Wang, Xiaobo; Xu, Zhonglan; Bao, Guangyu; Wan, Ting; Lei, Tianyao; Wang, Nan; Jiao, Xin-An; Huang, Jinlin

    2016-01-01

    A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens. PMID:27357336

  18. Global Distribution of Campylobacter jejuni Penner Serotypes: A Systematic Review

    PubMed Central

    Pike, Brian L.; Guerry, Patricia; Poly, Frédéric

    2013-01-01

    Penner serotyping has been the principal method for differentiating Campylobacter isolates since its inception. Campylobacter capsule polysaccharide (CPS), the principal serodeterminant on which Penner serotyping is based, is presently of interest as a vaccine component. To determine the required valency of an effective CPS-based vaccine, a comprehensive understanding of CPS distribution is needed. Because of the association between Penner serotype and CPS, we conducted a systematic review to estimate the frequency and distribution of Penner serotypes associated with cases of Campylobacteriosis. In total, more than 21,000 sporadic cases of C. jejuni cases were identified for inclusion. While regional variation exists, distribution estimates indicate that eight serotypes accounted for more than half of all sporadic diarrheal cases globally and three serotypes (HS4 complex, HS2, and HS1/44) were dominant inter-regionally as well as globally. Furthermore, a total of 17 different serotypes reached a representation of 2% or greater in at least one of the five regions sampled. While this review is an important first step in defining CPS distribution, these results make it clear that significant gaps remain in our knowledge. Eliminating these gaps will be critical to future vaccine development efforts. PMID:23826280

  19. Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,18...

  20. FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of Campylobacter jejuni fdhTU reveals a role in formate dehydrogenase activity and implications for electron donor requirements during the pathogen-host cell interaction. Campylobacter jejuni is a foodborne bacterial pathogen which colonizes the intestinal tract and causes severe gastroent...

  1. COMPARATIVE ASSESSMENT OF STANDARD CULTURE AND REAL-TIME PCR TO DETECT CAMPYLOBACTER JEJUNI IN RETAIL CHICKEN SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of poultry by Campylobacter is a significant source of human diarrheal illness. Conventional bacteriological methods to detect and speciate Campylobacter jejuni (C. jejuni) from chicken samples are labor-intensive and time-consuming. The purpose of this study was to compare standard c...

  2. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    PubMed Central

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  3. The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Han, Jing; Wang, Yang; Sahin, Orhan; Zhang, Qijing

    2013-01-01

    Arsenic, a toxic metalloid, exists in the natural environment and its organic form is approved for use as a feed additive for animal production. As a major foodborne pathogen of animal origin, Campylobacter is exposed to arsenic selection pressure in the food animal production environments. Previous studies showed that Campylobacter isolates from poultry were highly resistant to arsenic compounds and a 4-gene operon (containing arsP, arsR, arsC, and acr3) was associated with arsenic resistance in Campylobacter. However, this 4-gene operon is only present in some Campylobacter isolates and other arsenic resistance mechanisms in C. jejuni have not been characterized. In this study, we determined the role of several putative arsenic resistance genes including arsB, arsC2, and arsR3 in arsenic resistance in C. jejuni and found that arsB, but not the other two genes, contributes to the resistance to arsenite and arsenate. Inactivation of arsB in C. jejuni resulted in 8- and 4-fold reduction in the MICs of arsenite and arsenate, respectively, and complementation of the arsB mutant restored the MIC of arsenite. Additionally, overexpression of arsB in C. jejuni 11168 resulted in a 16-fold increase in the MIC of arsenite. PCR analysis of C. jejuni isolates from different animals hosts indicated that arsB and acr3 (the 4-gene operon) are widely distributed in various C. jejuni strains, suggesting that Campylobacter requires at least one of the two genes for adaptation to arsenic-containing environments. These results identify ArsB as an alternative mechanism for arsenic resistance in C. jejuni and provide new insights into the adaptive mechanisms of Campylobacter in animal food production environments. PMID:23554953

  4. Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I...

  5. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  6. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    PubMed

    Watson, Robert O; Galán, Jorge E

    2008-01-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells. PMID:18225954

  7. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study.

    PubMed

    Doorduyn, Y; Van Den Brandhof, W E; Van Duynhoven, Y T H P; Breukink, B J; Wagenaar, J A; Van Pelt, W

    2010-10-01

    A case-control study comprising 1315 Campylobacter jejuni cases, 121 Campylobacter coli cases and 3409 frequency-matched controls was conducted in The Netherlands in 2002-2003. Risk factors for both C. jejuni and C. coli enteritis were consumption of undercooked meat and barbecued meat, ownership of cats and use of proton pump inhibitors. Consumption of chicken was a predominant risk factor for C. jejuni enteritis, but many additional risk factors were identified. Unique risk factors for C. coli infections were consumption of game and tripe, and swimming. Contact with farm animals and persons with gastroenteritis were predominant risk factors for C. jejuni enteritis in young children (0-4 years). Important risk factors for the elderly (>or=60 years) were eating in a restaurant, use of proton pump inhibitors and having a chronic intestinal illness. Consumption of chicken in spring, steak tartare in autumn and winter and barbecued meat in rural areas showed strong associations with C. jejuni infections. This study illustrates that important differences in risk factors exist for different Campylobacter spp. and these may differ dependent on age, season or degree of urbanization. PMID:20223048

  8. 23S rRNA gene mutations contributing to macrolide resistance in Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Operon specific 23S rRNA mutations affecting minimum inhibitory concentrations (MICs) of macrolides (erythromycin [ERY], azithromycin [AZM], tylosin [TYL]) and a lincosamide (clindamycin [CLI]) were examined in a collection of Campylobacter jejuni and C. coli isolates. The three copies of the Campy...

  9. Antimicrobial Resistance in Campylobacter jejuni and Campylobacter coli isolated from Chicken Carcass Rinsates: Update from the Animal Arm of NARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The development of antimicrobial resistance in Campylobacter species, particularly C. jejuni and C. coli, is of public health concern. Purpose: The purpose of this study was to analyze the minimum inhibitory concentrations (MICs) for antimicrobials used in susceptibility testing of C....

  10. Pentavalent Single-Domain Antibodies Reduce Campylobacter jejuni Motility and Colonization in Chickens

    PubMed Central

    Riazi, Ali; Strong, Philippa C. R.; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M.; Szymanski, Christine M.; MacKenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin. PMID:24391847

  11. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    PubMed

    Riazi, Ali; Strong, Philippa C R; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M; Szymanski, Christine M; Mackenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin. PMID:24391847

  12. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Salt, Louise J.; Cross, Kathryn L.; Betts, Roy P.

    2014-01-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain. PMID:25192991

  13. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    PubMed Central

    Nyati, Kishan Kumar; Nyati, Roopanshi

    2013-01-01

    Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS. PMID:24000328

  14. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. PMID:26610432

  15. The Intestinal Microbiota Influences Campylobacter jejuni Colonization and Extraintestinal Dissemination in Mice.

    PubMed

    O'Loughlin, Jason L; Samuelson, Derrick R; Braundmeier-Fleming, Andrea G; White, Bryan A; Haldorson, Gary J; Stone, Jennifer B; Lessmann, Jeremy J; Eucker, Tyson P; Konkel, Michael E

    2015-07-01

    Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics. PMID:25934624

  16. The Intestinal Microbiota Influences Campylobacter jejuni Colonization and Extraintestinal Dissemination in Mice

    PubMed Central

    O'Loughlin, Jason L.; Samuelson, Derrick R.; Braundmeier-Fleming, Andrea G.; White, Bryan A.; Haldorson, Gary J.; Stone, Jennifer B.; Lessmann, Jeremy J.; Eucker, Tyson P.

    2015-01-01

    Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics. PMID:25934624

  17. Prevalence and characterization of hippurate-negative Campylobacter jejuni in King County, Washington.

    PubMed Central

    Totten, P A; Patton, C M; Tenover, F C; Barrett, T J; Stamm, W E; Steigerwalt, A G; Lin, J Y; Holmes, K K; Brenner, D J

    1987-01-01

    A total of 593 strains of thermophilic Campylobacter species were isolated either from humans with diarrhea or from poultry in King County, Washington. Of these strains, 98 (52 hippurate-positive strains and all 46 of the hippurate-negative strains) were selected for further phenotypic characterization and genetic classification. Hippurate hydrolysis, the test typically used to differentiate Campylobacter jejuni and C. coli, did not always correlate with the genetic classification. All hippurate-positive strains were classified as C. jejuni. Of the hippurate-negative strains, 20% were C. jejuni, 78% were C. coli, and 2% were C. laridis. Assuming that the remaining hippurate-positive strains were all C. jejuni, then hippurate-negative C. jejuni represented a small percentage (9 of 556 or 1.6%) of C. jejuni strains but a significant percentage (9 of 46 or 20%) of hippurate-negative strains. This finding suggests that hippurate hydrolysis should not be used as the sole criterion for differentiating thermophilic Campylobacter species, particularly when describing the disease states associated with these organisms. Images PMID:3654945

  18. Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI

    PubMed Central

    Buelow, Daelynn R.; Christensen, Jeffrey E.; Neal-McKinney, Jason M.; Konkel, Michael E.

    2011-01-01

    Summary Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in Intracellular survival. We show that CiaI harbors an amino-terminal type III secretion (T3S) sequence and is secreted from C. jejuni through the flagellar T3S system. In addition, the ciaI mutant was impaired in intracellular survival when compared to a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells. PMID:21435039

  19. Prevention of Biofilm Formation and Removal of Existing Biofilms by Extracellular DNases of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Hanman, Kate; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments. PMID:25803828

  20. Is allicin able to reduce Campylobacter jejuni colonization in broilers when added to drinking water?

    PubMed

    Robyn, J; Rasschaert, G; Hermans, D; Pasmans, F; Heyndrickx, M

    2013-05-01

    Reducing Campylobacter shedding on the farm could result in a reduction of the number of human campylobacteriosis cases. In this study, we first investigated if allicin, allyl disulfide, and garlic oil extract were able to either prevent C. jejuni growth or kill C. jejuni in vitro. Allyl disulfide and garlic oil extract reduced C. jejuni numbers in vitro below a detectable level at a concentration of 50 mg/kg (no lower concentrations were tested), whereas allicin reduced C. jejuni numbers below a detectable level at a concentration as low as 7.5 mg/kg. In further experiments we screened for the anti-C. jejuni activity of allicin in a fermentation system closely mimicking the broiler cecal environment using cecal microbiota and mucus isolated from C. jejuni-free broilers. During these fermentation experiments, allicin reduced C. jejuni numbers below a detectable level after 24 h at a concentration of 50 mg/kg. In contrast, 25 mg/kg of allicin killed C. jejuni in the first 28 h of incubation, but anti-C. jejuni activity was lost after 48 h of incubation, probably due to the presence of mucin in the growth medium. This had been confirmed in fermentation experiments in the presence of broiler cecal mucus. Based on these results, we performed an in vivo experiment to assess the prevention or reduction of cecal C. jejuni colonization in broiler chickens when allicin was added to drinking water. We demonstrated that allicin in drinking water did not have a statistically significant effect on cecal C. jejuni colonization in broilers. It was assumed, based on in vitro experiments, that the activity of allicin was thwarted by the presence of mucin-containing mucus. Despite promising in vitro results, allicin was not capable of statistically influencing C. jejuni colonization in a broiler flock, although a trend toward lower cecal C. jejuni numbers in allicin-treated broilers was observed. PMID:23571353

  1. Long-Lasting Outbreak of Erythromycin- and Ciprofloxacin-Resistant Campylobacter jejuni Subspecies jejuni From 2003 to 2013 in Men Who Have Sex With Men, Quebec, Canada.

    PubMed

    Gaudreau, Christiane; Rodrigues-Coutlée, Sophie; Pilon, Pierre A; Coutlée, François; Bekal, Sadjia

    2015-11-15

    From January 2003 to December 2013, sexual transmission of 2 clades of Campylobacter jejuni subspecies jejuni isolates resulted in a prolonged outbreak among men who have sex with men living in Quebec, Canada. The outbreak isolates were acquired locally and were resistant to erythromycin and ciprofloxacin. PMID:26187024

  2. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  3. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    PubMed Central

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  4. Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine

    PubMed Central

    Xu, Fuzhou; Wu, Cun; Guo, Fangfang; Cui, Guolin; Zeng, Ximin; Yang, Bing; Lin, Jun

    2015-01-01

    Upon colonization in the host gastrointestinal tract, the enteric bacterial pathogen Campylobacter jejuni is exposed to a variety of signaling molecules including the catecholamine hormones epinephrine (Epi) and norepinephrine (NE). NE has been observed to stimulate the growth and potentially enhance the pathogenicity of C. jejuni. However, the underlying mechanisms are still largely unknown. In this study, both Epi and NE were also observed to promote C. jejuni growth in MEMα-based iron-restricted medium. Adhesion and invasion of Caco-2 cells by C. jejuni were also enhanced upon exposure to Epi or NE. To further examine the effect of Epi or NE on the pathobiology of C. jejuni, transcriptomic profiles were conducted for C. jejuni NCTC 11168 that was cultured in iron-restricted medium supplemented with Epi or NE. Compared to the genes expressed in the absence of the catecholamine hormones, 183 and 156 genes were differentially expressed in C. jejuni NCTC 11168 that was grown in the presence of Epi and NE, respectively. Of these differentially expressed genes, 102 genes were common for both Epi and NE treatments. The genes differentially expressed by Epi or NE are involved in diverse cellular functions including iron uptake, motility, virulence, oxidative stress response, nitrosative stress tolerance, enzyme metabolism, DNA repair and metabolism and ribosomal protein biosynthesis. The transcriptome analysis indicated that Epi and NE have similar effects on the gene expression of C. jejuni, and provided insights into the delicate interaction between C. jejuni and intestinal stress hormones in the host. PMID:26042101

  5. Antimicrobial Susceptibility Profiles of Human Campylobacter jejuni Isolates and Association with Phylogenetic Lineages

    PubMed Central

    Cha, Wonhee; Mosci, Rebekah; Wengert, Samantha L.; Singh, Pallavi; Newton, Duane W.; Salimnia, Hossein; Lephart, Paul; Khalife, Walid; Mansfield, Linda S.; Rudrik, James T.; Manning, Shannon D.

    2016-01-01

    Campylobacter jejuni is a zoonotic pathogen and the most common bacterial cause of human gastroenteritis worldwide. With the increase of antibiotic resistance to fluoroquinolones and macrolides, the drugs of choice for treatment, C. jejuni was recently classified as a serious antimicrobial resistant threat. Here, we characterized 94 C. jejuni isolates collected from patients at four Michigan hospitals in 2011 and 2012 to determine the frequency of resistance and association with phylogenetic lineages. The prevalence of resistance to fluoroquinolones (19.1%) and macrolides (2.1%) in this subset of C. jejuni isolates from Michigan was similar to national reports. High frequencies of fluoroquinolone-resistant C. jejuni isolates, however, were recovered from patients with a history of foreign travel. A high proportion of these resistant isolates were classified as multilocus sequence type (ST)-464, a fluoroquinolone-resistant lineage that recently emerged in Europe. A significantly higher prevalence of tetracycline-resistant C. jejuni was also found in Michigan and resistant isolates were more likely to represent ST-982, which has been previously recovered from ruminants and the environment in the U.S. Notably, patients with tetracycline-resistant C. jejuni infections were more likely to have contact with cattle. These outcomes prompt the need to monitor the dissemination and diversification of imported fluoroquinolone-resistant C. jejuni strains and to investigate the molecular epidemiology of C. jejuni recovered from cattle and farm environments to guide mitigation strategies. PMID:27199922

  6. Evaluation of commercial antisera for serotyping heat-labile antigens of Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Nicholson, M A; Patton, C M

    1993-01-01

    Commercial antisera for serotyping 22 heat-labile antigens of Campylobacter jejuni and Campylobacter coli were evaluated by using 66 isolates from human and nonhuman sources. Test results were compared with results of tests using antisera produced at the Centers for Disease Control (CDC), Atlanta, Ga. All strains (three isolates of each of the 22 serotypes) were typeable with the CDC antisera. Of 66 test strains, 39 (59%) were typed as the same serotype with both sets of antisera. Twenty-four strains (36%), including two heat-labile serotype reference strains, were nonreactive with the commercial antisera, and three strains (4.5%) were typed as serotypes different from those obtained with CDC antisera. Five of the 22 commercial antisera correctly serotyped all homologous strains. Our study indicated that two polyvalent antiserum pools, 7 unabsorbed antisera, and 16 absorbed monovalent antisera are weak and need modification to enhance their antibody titers. Further studies are necessary to explain the antigenic change to a different serotype in three strains. PMID:8463402

  7. Efficacy of filter types for detecting Campylobacter jejuni and Campylobacter coli in environmental water samples by polymerase chain reaction.

    PubMed Central

    Oyofo, B A; Rollins, D M

    1993-01-01

    A previously developed polymerase chain reaction (PCR) amplification of a target region in the flaA Campylobacter flagellin gene was evaluated and adapted for use with environmental water samples. The ability to detect Campylobacter jejuni or Campylobacter coli in seeded water samples was tested with various filters after concentration and freeze-thaw lysis of the bacterial cells. A nonradioactive probe for the amplified flagellin gene fragment detected as little as 1 to 10 fg of genomic DNA and as few as 10 to 100 viable C. jejuni cells per 100 ml of water filtered onto Fluoropore (Millipore Corp.) filters. No amplification was obtained with cellulose acetate filters, most likely because of binding of the DNA to the filter. Concentration and lysis of target cells on Fluoropore and Durapore (Millipore Corp.) filters allowed PCR to be performed in the same reaction tube without removing the filters. This methodology was then adapted for use with environmental water samples. The water supply to a broiler chicken production farm was suspected as the source of C. jejuni known to be endemic in grow-out flocks at the farm, despite the inability to culture the organisms by standard methods. The filtration-PCR method detected Campylobacter DNA in more than half of the farm water samples examined. Amplified campylobacter DNA was not detected in small volumes of regional surface water samples collected on a single occasion in February. The filtration-PCR amplification method provided a basis for detection of C. jejuni and C. coli in environmental waters with a high degree of specificity and sensitivity. Images PMID:8285708

  8. Prevalence and Distribution of Campylobacter jejuni in Small-Scale Broiler Operations.

    PubMed

    Tangkham, Wannee; Janes, Marlene; LeMieux, Frederick

    2016-01-01

    Campylobacter jejuni has been recognized as one of the most prevalent causes of foodborne bacterial illnesses in humans. Previous studies have focused on the transmission routes of C. jejuni from commercial flock farms to the final retail product. The objective of this study was to determine the prevalence of C. jejuni and Campylobacter spp. in eggshells, live birds, feed, drinking water, and the rearing environment in a small-scale broiler operation. Broilers were raised under two different production systems: (i) environmentally controlled housing and (ii) open-air housing with two replications. Each week, samples were collected from eggshells, bird feces, feed, drinking water, enclosures (vertical walls of bird housing), and feed troughs for enumeration and isolation testing. All samples were plated on modified charcoal-cefoperazone-deoxycholate agar to determine the log CFU per gram and percent prevalence of Campylobacter spp. Isolation of C. jejuni was verified with latex agglutination and hippurate hydrolysis tests. The results from this study suggest that vertical transmission of these bacteria from egg surfaces to newly hatched chicks is not a significant risk factor. The results also suggest that the prevalence of C. jejuni at time of harvest (week 6) was significantly higher (P < 0.05) in the open-air housing broilers than in those in the environmentally controlled housing. Elevated levels of cross-contaminants, especially water and feed, may have played a role in this outcome. PMID:26735032

  9. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    PubMed

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development. PMID:27145048

  10. Complete genome sequence of Campylobacter jejuni RM1285 a rod-shaped morphological variant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a spiral-shaped Gram-negative food-borne human pathogen found on poultry products. Strain RM1285 is a rod-shaped variant of this species. The genome of RM1285 was determined to be 1,635,803 bp with a G+C content of 30.5%....

  11. Construction, expression, purification and antigenicity of recombinant Campylobacter jejuni flagellar proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni, a flagellated, spiral-rod Gram-negative bacterium, is the leading etiologic agent of human acute bacterial gastroenteritis worldwide. The source of this microorganism for human infection has been implicated as consumption and handling of poultry meat where this microorganism i...

  12. Characterization and Reactivity of Broiler Chicken Sera to Selected Recombinant Campylobacter jejuni Chemotactic Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to c...

  13. Population Diversity of Campylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat

    PubMed Central

    Marotta, Francesca; Garofolo, Giuliano; Di Donato, Guido; Aprea, Giuseppe; Platone, Ilenia; Cianciavicchia, Silvia; Alessiani, Alessandra; Di Giannatale, Elisabetta

    2015-01-01

    This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707  C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR) and by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC). The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter. PMID:26543870

  14. Structural analysis of the capsular polysaccharide from Campylobacter jejuni RM1221

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of Campylobacter jejuni strain RM1221 (Penner serotype HS:53) was reported recently and contains a novel capsular polysaccharide (CPS) biosynthesis locus. Cell surface carbohydrates such as CPS are known to be important for bacterial survival and often contribute to pathogenesis....

  15. SURVIVAL OF CAMPYLOBACTER JEJUNI AND ESCHERICHIA COLI IN GROUNDWATER DURING PROLONGED STARVATION AT LOW TEMPERATURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: Evaluate the survival of Campylobacter jejuni relative to that of Escherichia coli in groundwater microcosms with variations in nutrient composition. Methods and Results: Studies were conducted in groundwaters and de-ionized water incubated for 400 days at 4 ºC. Samples were taken for cultura...

  16. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies are sought to reduce intestinal colonization of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry, chestnut tannin extracts, and conden...

  17. Comparison of methods for detecting live, stressed, and dead cells of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microaerophilic gram-negative bacterium Campylobacter jejuni is the leading cause of food-borne illnesses. It can be found in high prevalence in poultry products and in many environments, yet it is difficult to culture in the laboratory. When stressed, it can assume a "viable but non-culturabl...

  18. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the U.S. and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the path...

  19. Analysis of evolutionary patterns of genes in campylobacter jejuni and C. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In order to investigate the population genetics structure of thermophilic Campylobacter spp., we extracted a set of 1029 core gene families (CGF) from 25 sequenced genomes of C. jejuni, C. coli and C. lari. Based on these CGFs we employed different approaches to reveal the evolutionary ...

  20. Beyond gangliosides: Multiple forms of glycan mimicry exhibited by Campylobacter jejuni in its lipooligosaccharide (LOS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome (GBS). We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host g...

  1. Draft Genome Sequence of Campylobacter jejuni Bf, an Atypical Strain Able To Grow under Aerobiosis

    PubMed Central

    Bronnec, Vicky; Haddad, Nabila; Cruveiller, Stéphane; Hernould, Mathieu; Tresse, Odile

    2016-01-01

    In this study, we describe the draft genome sequence of a Campylobacter jejuni clinical isolate issued from a French patient suffering from severe campylobacteriosis. This atypical strain is characterized by an unusual resistance to oxygen and the ability to grow under an aerobic atmosphere, a characteristic as-of-yet unique to this species. PMID:27056213

  2. FAILURE OF VIABLE NONCULTURABLE CAMPYLOBACTER JEJUNI TO COLONIZE THE CECUM OF NEWLY HATCHED LEGHORN CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni cells entered the viable but nonculturable (VBNC) state upon suspension in reverse osmosis water. Viability was determined with tetrazolium violet. VBNC cells suspended in water for 7, 10, or 14 days were given, by gastric gavage, to day-of-hatch leghorn chickens. The ceca of...

  3. Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...

  4. Antimicrobial edible apple films inactivate antibiotic resistant and susceptible Campylobacter jejuni strains on chicken breast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the leading cause of bacterial diarrheal illness worldwide. Many strains are now becoming multi-drug resistant. To help overcome this problem, apple-based edible films containing carvacrol and cinnamaldehyde were evaluated for their effectiveness against antibiotic resistant...

  5. IDENTIFYING INTESTINAL MICROBIAL POPULATIONS THAT INFLUENCE THE GROWTH OF CAMPYLOBACTER JEJUNI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogen Campylobacter jejuni is the most common cause of bacterial-derived food borne illness in the United States, resulting in an estimated 2 million cases annually. Poultry has been recognized as a significant vector for this pathogen into the food supply, with 90% of poultry carcasses cont...

  6. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bacterial foodborne pathogen Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the postinfectious neuropathies, Guillain-Barré (GBS) and Miller Fisher (MFS) syndromes. This study described the use of multilocus sequence typing (MLST) and DNA microarrays ...

  7. The complete genome sequences of 65 Campylobacter jejuni and C. coli strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni (Cj) and C. coli (Cc) are genetically highly diverse based on various molecular methods including MLST, microarray-based comparisons and the whole genome sequences of a few strains. Cj and Cc diversity is also exhibited by variable capsular polysaccharides (CPS) that are the maj...

  8. EFFECTS OF UNIQUE COMMUNITIES OF INTESTINAL MICROBIOTA ON CAMPYLOBACTER JEJUNI COLONIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni has been identified as a major source of food-borne illness worldwide, with an annual estimate of 2 million cases in the United States alone. Most common source of infection is through consumption of poultry, whose animal populations are nearly ubiquitously contaminated with C....

  9. EFFECTS OF UNIQUE INTESTINAL COMMUNITIES ON THE COLONIZATION OF CAMPYLOBACTER JEJUNI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the most common cause of bacterial-derived food borne illness in the US, causing an estimated 2 million cases annually. With nearly 90% of poultry contaminated at slaughter, it provides a significant source for this pathogen to enter the food supply. Competitive exclusion, ...

  10. Age related susceptibility to Campylobacter jejuni infection in a high prevalance population.

    PubMed Central

    Richardson, N J; Koornhof, H J; Bokkenheuser, V D; Mayet, Z; Rosen, E U

    1983-01-01

    In a year long prospective study of diarrhoea in children under 2 years of age in Soweto, South Africa, Campylobacter jejuni was isolated in 18 of 60 children under 9 months of age with diarrhoea, compared with 4 of 60 age matched controls. In the older children, 16 of 51 children with diarrhoea and 17 of 51 control children excreted this organism in their faeces. These results indicate a change in susceptibility to C jejuni in children over 9 months of age. Campylobacter enteritis in the young children was usually mild, without macroscopic blood in the faeces, and prolonged excretion of the organism after acute attacks was not infrequent. Breast feeding did not seem to protect against colonisation with C jejuni. PMID:6614976

  11. Use of an arbitrarily primed PCR product in the development of a Campylobacter jejuni-specific PCR.

    PubMed Central

    Day, W A; Pepper, I L; Joens, L A

    1997-01-01

    Development of a PCR assay for Campylobacter jejuni is based on the isolation of species-specific DNA. An arbitrarily primed PCR incorporating 10-mer primers was used to generate fingerprints of C. jejuni M129 genomic DNA. Fingerprint products were then screened individually for their species specificity in dot blot hybridizations with 6 C. jejuni isolates, 4 Campylobacter species other than C. jejuni, and 27 enteric bacterial species other than Campylobacter spp. A 486-bp fingerprint product hybridized specifically to C. jejuni DNA under stringent conditions; no binding to Campylobacter DNA other than that of C. jejuni or to DNA from enteric bacteria was detected. The 486-bp fingerprint product was sequenced, and primers corresponding to three overlapping regions of the DNA probe were synthesized. Evaluation of the three primer pairs for specificity to C. jejuni DNA identified an oligonucleotide primer pair which amplified a 265-bp product from six C. jejuni isolates only. In sensitivity studies using a crude M129 lysate as the template, the C. jejuni-specific PCR amplified the 265-bp product in a lysate with as few as 100 bacteria. PMID:9055418

  12. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products

    PubMed Central

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-01-01

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low. PMID:27294947

  13. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products.

    PubMed

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-01-01

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low. PMID:27294947

  14. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation.

    PubMed

    Mohan, V

    2015-08-01

    Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis. PMID:25934376

  15. Inter- and intra-genomic heterogeneity of the intervening sequence in the 23S ribosomal RNA gene of Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An intervening sequence (IVS) can be present or absent in the 23S rRNA of Campylobacter jejuni and C. coli. As part of a survey, we used a polymerase chain reaction (PCR) assay to detect the presence of the IVS in 43 isolates of C. coli and 82 isolates of C. jejuni. An IVS was present in 40 (93%) ...

  16. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine

    PubMed Central

    Nothaft, Harald; Davis, Brandi; Lock, Yee Ying; Perez-Munoz, Maria Elisa; Vinogradov, Evgeny; Walter, Jens; Coros, Colin; Szymanski, Christine M.

    2016-01-01

    Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain. PMID:27221144

  17. FdhTU-Modulated Formate Dehydrogenase Expression and Electron Donor Availability Enhance Recovery of Campylobacter jejuni following Host Cell Infection

    PubMed Central

    Pryjma, Mark; Apel, Dmitry; Huynh, Steven; Parker, Craig T.

    2012-01-01

    Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment. PMID:22636777

  18. Caecal transcriptome analysis of colonized and non-colonized chickens within two genetic lines that differ in caecal colonization by Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide. The molecular mechanisms of the host responses of chickens to C. jejuni colonization have not been well understood. We have previously shown differences in C. jejuni colonization at 7 days pos...

  19. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions.

    PubMed

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  20. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    PubMed Central

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  1. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare.

    PubMed

    Humphrey, Suzanne; Chaloner, Gemma; Kemmett, Kirsty; Davidson, Nicola; Williams, Nicola; Kipar, Anja; Humphrey, Tom; Wigley, Paul

    2014-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne infection; chicken meat is its main source. C. jejuni is considered commensal in chickens based on experimental models unrepresentative of commercial production. Here we show that the paradigm of Campylobacter commensalism in the chicken is flawed. Through experimental infection of four commercial breeds of broiler chickens, we show that breed has a significant effect on C. jejuni infection and the immune response of the animals, although these factors have limited impact on the number of bacteria in chicken ceca. All breeds mounted an innate immune response. In some breeds, this response declined when interleukin-10 was expressed, consistent with regulation of the intestinal inflammatory response, and these birds remained healthy. In another breed, there was a prolonged inflammatory response, evidence of damage to gut mucosa, and diarrhea. We show that bird type has a major impact on infection biology of C. jejuni. In some breeds, infection leads to disease, and the bacterium cannot be considered a harmless commensal. These findings have implications for the welfare of chickens in commercial production where C. jejuni infection is a persistent problem. Importance: Campylobacter jejuni is the most common cause of food-borne bacterial diarrheal disease in the developed world. Chicken is the most common source of infection. C. jejuni infection of chickens had previously not been considered to cause disease, and it was thought that C. jejuni was part of the normal microbiota of birds. In this work, we show that modern rapidly growing chicken breeds used in intensive production systems have a strong inflammatory response to C. jejuni infection that can lead to diarrhea, which, in turn, leads to damage to the feet and legs on the birds due to standing on wet litter. The response and level of disease varied between breeds and is related to regulation of the inflammatory immune response. These findings

  2. Complete Genome Sequence of UV-Resistant Campylobacter jejuni RM3194, Including an 81.08-Kilobase Plasmid

    PubMed Central

    Reichenberger, Erin R.; Bono, James L.

    2016-01-01

    Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%. PMID:27125483

  3. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni

    PubMed Central

    Du, Xueqing; Wang, Nan; Ren, Fangzhe; Tang, Hong; Jiao, Xinan; Huang, Jinlin

    2016-01-01

    Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity. PMID:27471500

  4. cj0371: A Novel Virulence-Associated Gene of Campylobacter jejuni.

    PubMed

    Du, Xueqing; Wang, Nan; Ren, Fangzhe; Tang, Hong; Jiao, Xinan; Huang, Jinlin

    2016-01-01

    Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis, and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis, and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity. PMID:27471500

  5. Bactericidal properties of Campylobacter jejuni-specific immunoglobulin M antibodies in commercial immunoglobulin preparations.

    PubMed Central

    Autenrieth, I B; Schwarzkopf, A; Ewald, J H; Karch, H; Lissner, R

    1995-01-01

    Campylobacter jejuni is one of the most common enterocolitis-causing microorganisms worldwide. It is of particular importance in immunodeficient patients, who frequently are prone to develop extraintestinal manifestations. Since these cases respond poorly to antibiotic treatment, a supportive immunomodulating therapy including the administration of C. jejuni-specific immunoglobulins would be desirable. In the present study, nine commercial immunoglobulin preparations for intravenous use were tested for the presence of C. jejuni lipopolysaccharide (LPS)- and outer membrane protein (OMP)-specific antibodies by using immunoblot and enzyme-linked immunosorbent assay techniques. The immunoglobulin G (IgG) antibody reactivities against these antigens were comparable in eight of nine tested immunoglobulin preparations. Only in one preparation were C. jejuni OMP- and LPS-specific IgM antibodies found. In this preparation the immunoblot test revealed a strong reactivity against both flagellin and a major OMP. Moreover, all immunoglobulin preparations recognized OMPs of C. jejuni serotypes Lior 4, 9, 11, and 29 equally strongly, while the reactivity to an anti-Lior 36 isolate was less marked. Furthermore, the bactericidal properties of three immunoglobulin preparations were tested by means of chemiluminescence signaling in and bacterial killing by human polymorphonuclear leukocytes (PMNL). The results show that the IgM preparation enhanced Campylobacter-triggered chemiluminescence signaling in PMNL as well as killing of C. jejuni by PMNL, while the other immunoglobulin preparations did not do so. These results suggest that the administration of immunoglobulin preparations containing C. jejuni-specific IgM antibodies would be beneficial for patients with severe C. jejuni infections. PMID:8540699

  6. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...

  7. Application of bacteriocin produced by Streptococcus cricetus S760 for treating Campylobacter jejuni and Salmonella-associated infections in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Campylobacter jejuni and Salmonella enteritidis are leading food-borne pathogens worldwide. An important natural reservoir for these pathogens is commercially distributed poultry. Objective: To control C. jejuni and S. enteritidis associated infections in broilers by treating with a p...

  8. N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness.

    PubMed

    Alemka, Abofu; Nothaft, Harald; Zheng, Jing; Szymanski, Christine M

    2013-05-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  9. N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness

    PubMed Central

    Nothaft, Harald; Zheng, Jing

    2013-01-01

    Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that has been well characterized and modifies more than 60 periplasmic and membrane-bound proteins. However, the precise role of this modification in the biology of C. jejuni remains unexplored. We hypothesized that the N-glycans protect C. jejuni surface proteins from the action of gut proteases. The C. jejuni pglB mutant, deficient in the expression of the oligosaccharyltransferase, exhibited reduced growth in medium supplemented with chicken cecal contents (CCC) compared with that of wild-type (WT) cells. Inactivation of the cecal proteases by heat treatment or with protease inhibitors completely restored bacterial viability and partially rescued bacterial growth. Physiological concentrations of trypsin, but not chymotrypsin, also reduced C. jejuni pglB mutant CFU. Live or dead staining indicated that CCC preferentially influenced C. jejuni growth as opposed to bacterial viability. We identified multiple chicken cecal proteases by mass fingerprinting. The use of protease inhibitors that target specific classes indicated that both metalloproteases and serine proteases were involved in the attenuated growth of the oligosaccharyltransferase mutant. In conclusion, protein N-linked glycosylation of surface proteins may enhance C. jejuni fitness by protecting bacterial proteins from cleavage due to gut proteases. PMID:23460522

  10. Divergent Mechanisms of Interaction of Helicobacter pylori and Campylobacter jejuni with Mucus and Mucins

    PubMed Central

    Naughton, Julie Ann; Mariño, Karina; Dolan, Brendan; Reid, Colm; Gough, Ronan; Gallagher, Mary E.; Kilcoyne, Michelle; Gerlach, Jared Q.; Joshi, Lokesh; Rudd, Pauline; Carrington, Stephen; Bourke, Billy

    2013-01-01

    Helicobacter pylori and Campylobacter jejuni colonize the stomach and intestinal mucus, respectively. Using a combination of mucus-secreting cells, purified mucins, and a novel mucin microarray platform, we examined the interactions of these two organisms with mucus and mucins. H. pylori and C. jejuni bound to distinctly different mucins. C. jejuni displayed a striking tropism for chicken gastrointestinal mucins compared to mucins from other animals and preferentially bound mucins from specific avian intestinal sites (in order of descending preference: the large intestine, proximal small intestine, and cecum). H. pylori bound to a number of animal mucins, including porcine stomach mucin, but with less avidity than that of C. jejuni for chicken mucin. The strengths of interaction of various wild-type strains of H. pylori with different animal mucins were comparable, even though they did not all express the same adhesins. The production of mucus by HT29-MTX-E12 cells promoted higher levels of infection by C. jejuni and H. pylori than those for the non-mucus-producing parental cell lines. Both C. jejuni and H. pylori bound to HT29-MTX-E12 mucus, and while both organisms bound to glycosylated epitopes in the glycolipid fraction of the mucus, only C. jejuni bound to purified mucin. This study highlights the role of mucus in promoting bacterial infection and emphasizes the potential for even closely related bacteria to interact with mucus in different ways to establish successful infections. PMID:23716616

  11. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    PubMed Central

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host. PMID:25325018

  12. Increasing Prevalence of Campylobacter jejuni in Feedlot Cattle through the Feeding Period

    PubMed Central

    Besser, Thomas E.; LeJeune, Jeffrey T.; Rice, Daniel H.; Berg, Janice; Stilborn, R. P.; Kaya, Katherine; Bae, Wonki; Hancock, Dale D.

    2005-01-01

    The prevalence of Campylobacter jejuni in commercial feedlot cattle was monitored throughout the feeding period by repeated bacteriologic culture of feces. Fecal pats (n = 10) in 20 feedlot pens were sampled at 2-weeks interval beginning at entry into the feedlot and continuing until slaughter. The least-squares mean C. jejuni prevalence increased from 1.6% at the first sampling to 61.3% at the final sampling just prior to slaughter. Diverse C. jejuni pulsed-field gel electrophoresis macrorestriction profiles (MRP) were identified among the cattle isolates, but five prevalent MRP and minor variants accounted for >80% of all typed isolates. Chlorination of the water supplied to the water troughs of half of the pens did not affect C. jejuni prevalence in the cattle. Overall, the least-squares mean C. jejuni prevalences were 45.6 and 43.6% in chlorinated and nonchlorinated feedlot pens, respectively. The results of this study demonstrate apparent transmission of C. jejuni among feedlot cattle during the feeding period, unaffected by water chlorination, resulting in a high prevalence of C. jejuni excretion by cattle approaching slaughter. PMID:16204484

  13. Survival of Campylobacter jejuni in water: effect of grazing by the freshwater crustacean Daphnia carinata (Cladocera).

    PubMed

    Schallenberg, M; Bremer, P J; Henkel, S; Launhardt, A; Burns, C W

    2005-09-01

    Environmental studies of the human-pathogenic bacterium Campylobacter jejuni have focused on linking distributions with potential sources. However, in aquatic ecosystems, the abundance of C. jejuni may also be regulated by predation. We examine the potential for grazing by the freshwater planktonic crustacean Daphnia carinata to reduce the survival of C. jejuni. We use a system for measuring grazing and clearance rates of D. carinata on bacteria and demonstrate that D. carinata can graze C. jejuni cells at a rate of 7% individual(-1) h(-1) under simulated natural conditions in the presence of an algal food source. We show that passage of C. jejuni through the Daphnia gut and incorporation into fecal material effectively reduces survival of C. jejuni. This is the first evidence to suggest that grazing by planktonic organisms can reduce the abundance of C. jejuni in natural waters. Biomanipulation of planktonic food webs to enhance Daphnia densities offers potential for reducing microbial pathogen densities in drinking water reservoirs and recreational water bodies, thereby reducing the risk of contracting water-borne disease. PMID:16151090

  14. Survival of Campylobacter jejuni in Water: Effect of Grazing by the Freshwater Crustacean Daphnia carinata (Cladocera)

    PubMed Central

    Schallenberg, M.; Bremer, P. J.; Henkel, S.; Launhardt, A.; Burns, C. W.

    2005-01-01

    Environmental studies of the human-pathogenic bacterium Campylobacter jejuni have focused on linking distributions with potential sources. However, in aquatic ecosystems, the abundance of C. jejuni may also be regulated by predation. We examine the potential for grazing by the freshwater planktonic crustacean Daphnia carinata to reduce the survival of C. jejuni. We use a system for measuring grazing and clearance rates of D. carinata on bacteria and demonstrate that D. carinata can graze C. jejuni cells at a rate of 7% individual−1 h−1 under simulated natural conditions in the presence of an algal food source. We show that passage of C. jejuni through the Daphnia gut and incorporation into fecal material effectively reduces survival of C. jejuni. This is the first evidence to suggest that grazing by planktonic organisms can reduce the abundance of C. jejuni in natural waters. Biomanipulation of planktonic food webs to enhance Daphnia densities offers potential for reducing microbial pathogen densities in drinking water reservoirs and recreational water bodies, thereby reducing the risk of contracting water-borne disease. PMID:16151090

  15. Modification and evaluation of Brucella broth based Campylobacter jejuni transport medium.

    PubMed

    Bai, Yao; Cui, Sheng Hui; Xu, Xiao; Li, Feng Qin

    2014-06-01

    Reliable transport of Campylobacter jejuni isolates is critical to microbial epidemiology research, especially in developing countries without a good temperature control mailing system. Various factors, including oxygen, temperature, transport medium composition, could affect the survival of C. jejuni. In this study, the protective effects of different ingredients in C. jejuni transport media at 4 °C and 25 °C and under aerobic condition were quantitatively evaluated respectively. The results showed that enriched medium, supplementation with 5% blood and being kept at 4 °C could improve the viability of different C. jejuni strains during transport. In addition, supplementation with 25 mmol/L L-fucose in Wang's transport medium could significantly improve the survival of C. jejuni at both 4 °C and 25 °C. To the best of our knowledge, this is the first report to evaluate the protective effect of L-fucose in enriched C. jejuni transport medium which is feasible in developing countries without an effective cold chain mailing system. These data will be good reference for C. jejuni transport medium improvement in future. PMID:24961857

  16. Mechanisms underlying zoonotic success of Campylobacter jejuni: the CprRS two-component regulatory system influences essential processes, biofilm formation, and pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading cause of food- and waterbourne bacterial gastroenteritis in the developed world. Although illness is usually self-limiting, immunocompromised individuals are at risk for infections recalcitrant to antibiotic treatment, and prior campylobacter infection correlates wi...

  17. Prevalence, antibiograms, and transferable tet(O) plasmid of Campylobacter jejuni and Campylobacter coli isolated from raw chicken, pork, and human clinical cases in Korea.

    PubMed

    Kim, Jun Man; Hong, Joonbae; Bae, Wonki; Koo, Hye Cheong; Kim, So Hyun; Park, Yong Ho

    2010-08-01

    The antibiotic resistance patterns and prevalence of the transferable tet(O) plasmid were investigated in Campylobacter jejuni and Campylobacter coli isolates from raw chicken, pork, and humans with clinical campylobacteriosis. A total of 180 C. jejuni and C. coli isolates were identified, and the prevalence rates of C. jejuni and C. coli in raw chicken samples were 83% (83 of 100) and 73% (73 of 100), respectively. Twelve percent (6 of 50) and 10% (5 of 50) of pork samples were contaminated with C. jejuni and C. coli, respectively. Disk diffusion susceptibility testing revealed that the most frequently detected resistance was to tetracycline (92.2%), followed by nalidixic acid (75.6%), ciprofloxacin (65.0%), azithromycin (41.5%), ampicillin (33.3%), and streptomycin (26.1%). Of the C. jejuni and C. coli isolates, 65.7% (n=109) contained plasmids carrying the tet(O) gene. Six C. jejuni isolates and two C. coli isolates with high-level resistance to tetracycline (MIC=256 microg/ml) harbored the tet(O) plasmid, which is transferable to other C. jejuni and C. coli isolates. These results demonstrate the presence of an interspecies transferable plasmid containing the tet(O) gene and a high prevalence of antibiotic resistance in Korean Campylobacter isolates and provide an understanding of the antibiotic resistance distribution among Campylobacter species in Korea. PMID:20819352

  18. Typing of heat-stable and heat-labile antigens of Campylobacter jejuni and Campylobacter coli by coagglutination.

    PubMed Central

    Wong, K H; Skelton, S K; Patton, C M; Feeley, J C; Morris, G

    1985-01-01

    A coagglutination system has been devised for typing heat-stable and heat-labile antigens of Campylobacter jejuni and C. coli. The use of protein A-positive Staphylococcus aureus cells carrying Campylobacter sp. serotype antibody and the treatment of Campylobacter sp. cells with DNase in the antigen suspension permitted rapid and specific coagglutination of rough (autoagglutinable) as well as smooth cultures. Cells of S. aureus were sensitized with Campylobacter sp. serotype antisera. Four to five types of sensitized S. aureus cells were pooled. A strain of Campylobacter sp. was first tested with the pools and then typed with the individual reagents of the reactive pool. After the described procedures, 68 serotype strains tested blindly as unknowns were correctly typed according to their heat-stable or heat-labile antigens. The two most commonly used typing schemes which are based separately on the heat-stable or the heat-labile antigens as assayed by passive hemagglutination and slide agglutination, respectively, can be utilized simultaneously in the coagglutination system for strain characterization. The coagglutination system is simple, yields results rapidly, conserves typing reagents, and offers the flexibility of formulating the pools of reagents according to the experimental design or the prevalence of serotypes in a geographic location. It should be a practical system for the typing of Campylobacter spp. in public health or clinical laboratories. PMID:3998098

  19. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle

    PubMed Central

    2011-01-01

    Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic

  20. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand

    PubMed Central

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-01-01

    Abstract A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST, and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. We applied molecular epidemiology and population genetics to obtain insights in to the population structure, host-species relationships, gene flow and

  1. Development of a selective broth medium for the detection of injured Campylobacter jejuni by capacitance monitoring.

    PubMed

    Line, J Eric; Pearson, Kirsten G

    2003-10-01

    The purpose of these studies was to develop a conductimetric method for the rapid detection of Campylobacter jejuni. Numerous basal medium components were analyzed to develop a growth-enhancing broth medium for detection of freeze-injured Campylobacter cells using a conductimetric system. The final medium was composed of a modified Campy-Line agar from which the agar and triphenyltetrazolium chloride were removed and the amino acid, L-arginine was added. Pure isolates of C. jejuni. (frozen and thawed to produce stressed cells) were utilized to test the detection methodology. Monitoring of significant changes in the capacitance signal was found suitable for detection of Campylobacter proliferation. Using stressed pure cultures, Campylobacter growth was repeatedly detected at very low inoculum levels (about one cell per well). There was a direct linear relationship between detection times (DTs) and the initial inoculum level. For example, using a single strain, the mean DT (n = 20) at the 10 CFU/ml inoculum level was 28.6 h, with 100% of the inoculated wells detecting. The mean DTs at the 100, 1,000, and 10,000 CFU/ml inoculum levels were 24.9, 21.4, and 17.0 h, respectively. This study demonstrates that conductimetric methods can be utilized for the rapid detection of C. jejuni. PMID:14572208

  2. Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties.

    PubMed Central

    Wu, Y L; Lee, L H; Rollins, D M; Ching, W M

    1994-01-01

    The protein response to physiological stress was characterized in Campylobacter jejuni 81176 after exposure to heat and pH shock and following periods of recovery. Immunoreactivities of major stress-related proteins were determined with anti-Campylobacter immune rabbit serum and intestinal lavage fluid. Distinct proteins with molecular masses ranging from 10 to 120 kDa were induced and/or released by selective heat or pH treatments. The most notable responses were those of two proteins with apparent molecular masses of 45 and 64 kDa that were induced and two other proteins of 10 and 12 kDa that were released by selective heat shock, alkaline pH treatment, or both. On the basis of N-terminal sequence analysis and immunological cross-reactivity data, the 64- and 10-kDa proteins were the C. jejuni homologs of Escherichia coli GroEL and GroES proteins, respectively. Enhanced chemiluminescence Western blotting (immunoblotting) revealed that all four proteins were among the major protein antigens recognized by anti-Campylobacter rabbit serum immunoglobulin G (IgG) and immune rabbit intestinal lavage IgA (secretory IgA). The results of this investigation suggest that the C. jejuni 10-, 12-, 45-, and 64-kDa proteins and a number of minor stress-related proteins deserve further evaluation of their respective roles in Campylobacter pathogenesis and immunity. Images PMID:7927682

  3. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii.

    PubMed Central

    Oelschlaeger, T A; Guerry, P; Kopecko, D J

    1993-01-01

    Bacterial invasion of six different human epithelial cell lines showed that some strains of the intestinal pathogen Campylobacter jejuni invaded intestinal cell lines at a level 10(2)-10(4) times higher than reported previously for other Campylobacter strains. Separately, urinary tract isolates of Citrobacter freundii triggered a high-efficiency invasion of bladder cells. Use of multiple inhibitors with known effects on eukaryotic cell structures/processes allowed us to define in these genetically distinct bacterial genera unusual bacterial invasion mechanisms that uniquely require microtubules but not microfilaments. Campylobacter jejuni strain 81-176 uptake into 407 intestinal cells and Citrobacter entry into T24 bladder cells was blocked by microtubule depolymerization and inhibitors of coated-pit formation but not by microfilament depolymerization. Inhibitors of endosome acidification had no significant impact on intracellular survival of Campylobacter jejuni or Citrobacter freundii, but monensin markedly reduced Citrobacter uptake. Epithelial cell invasion by both of these bacterial genera was dependent upon de novo bacterial protein synthesis but not upon de novo eukaryotic cell protein synthesis. In contrast to the T24 cell line-specific, strict microtubule-dependent uptake, Citrobacter entry into other cell lines was inhibited by both microtubule- and microfilament-depolymerization, suggesting that these bacteria encode two separate pathways for uptake (i, microtubule-dependent; ii, microfilament-dependent) that are cell line-specific and are recognized perhaps depending on the presence and abundance of appropriate eukaryotic receptors. Images Fig. 1 Fig. 2 Fig. 3 PMID:8341714

  4. Campylobacter jejuni Is Not Merely a Commensal in Commercial Broiler Chickens and Affects Bird Welfare

    PubMed Central

    Humphrey, Suzanne; Chaloner, Gemma; Kemmett, Kirsty; Davidson, Nicola; Williams, Nicola; Kipar, Anja; Humphrey, Tom

    2014-01-01

    ABSTRACT Campylobacter jejuni is the leading cause of bacterial food-borne infection; chicken meat is its main source. C. jejuni is considered commensal in chickens based on experimental models unrepresentative of commercial production. Here we show that the paradigm of Campylobacter commensalism in the chicken is flawed. Through experimental infection of four commercial breeds of broiler chickens, we show that breed has a significant effect on C. jejuni infection and the immune response of the animals, although these factors have limited impact on the number of bacteria in chicken ceca. All breeds mounted an innate immune response. In some breeds, this response declined when interleukin-10 was expressed, consistent with regulation of the intestinal inflammatory response, and these birds remained healthy. In another breed, there was a prolonged inflammatory response, evidence of damage to gut mucosa, and diarrhea. We show that bird type has a major impact on infection biology of C. jejuni. In some breeds, infection leads to disease, and the bacterium cannot be considered a harmless commensal. These findings have implications for the welfare of chickens in commercial production where C. jejuni infection is a persistent problem. PMID:24987092

  5. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets.

    PubMed

    Guyard-Nicodème, Muriel; Rivoal, Katell; Houard, Emmanuelle; Rose, Valérie; Quesne, Ségolène; Mourand, Gwenaëlle; Rouxel, Sandra; Kempf, Isabelle; Guillier, Laurent; Gauchard, Françoise; Chemaly, Marianne

    2015-06-16

    Campylobacter was detected in 76% of broiler meat products collected in retail outlets during a monitoring plan carried out in France throughout 2009. Campylobacter jejuni was the most prevalent species (64.7% of products being contaminated). The 175 C. jejuni isolates collected were characterized. MLST typing results confirmed substantial genetic diversity as the 175 C. jejuni isolates generated 76 sequence types (STs). The ST-21, ST-45 and ST-464 complexes predominated accounting for 43% of all isolates. A class-specific PCR to screen the sialylated lipooligosaccharide (LOS) locus classes A, B and C showed that 50.3% of the C. jejuni isolates harbored sialylated LOS. The antimicrobial resistance profiles established using a subset of 97 isolates showed that resistance to tetracycline was the most common (53.6%), followed with ciprofloxacin and nalidixic acid (32.9%, and 32.0% respectively). All the tested isolates were susceptible to erythromycin, chloramphenicol and gentamicin. Clear associations were demonstrated between certain clonal complexes and LOS locus classes and between certain clonal complexes and antimicrobial resistance. This work paints a representative picture of C. jejuni isolated from poultry products circulating in France, providing data on STs, LOS locus classes and antibiotic resistance profiles in isolates recovered from products directly available to the consumer. PMID:25770428

  6. Genetic Diversity of Campylobacter jejuni and Campylobacter coli Isolates from Conventional Broiler Flocks and the Impacts of Sampling Strategy and Laboratory Method

    PubMed Central

    Colles, F. M.; Rodgers, J. D.; McCarthy, N. D.; Davies, R. H.; Maiden, M. C. J.; Clifton-Hadley, F. A.

    2016-01-01

    The genetic diversity of Campylobacter jejuni and Campylobacter coli isolates from commercial broiler farms was examined by multilocus sequence typing (MLST), with an assessment of the impact of the sample type and laboratory method on the genotypes of Campylobacter isolated. A total of 645 C. jejuni and 106 C. coli isolates were obtained from 32 flocks and 17 farms, with 47 sequence types (STs) identified. The Campylobacter jejuni isolates obtained by different sampling approaches and laboratory methods were very similar, with the same STs identified at similar frequencies, and had no major effect on the genetic profile of Campylobacter population in broiler flocks at the farm level. For C. coli, the results were more equivocal. While some STs were widely distributed within and among farms and flocks, analysis of molecular variance (AMOVA) revealed a high degree of genetic diversity among farms for C. jejuni, where farm effects accounted for 70.5% of variance, and among flocks from the same farm (9.9% of variance for C. jejuni and 64.1% for C. coli). These results show the complexity of the population structure of Campylobacter in broiler production and that commercial broiler farms provide an ecological niche for a wide diversity of genotypes. The genetic diversity of C. jejuni isolates among broiler farms should be taken into account when designing studies to understand Campylobacter populations in broiler production and the impact of interventions. We provide evidence that supports synthesis of studies on C. jejuni populations even when laboratory and sampling methods are not identical. PMID:26873321

  7. Analysis of Campylobacter jejuni Whole Genome DNA Microarrays to Identify Gene Differences for Use in Strain Subtyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Campylobacter jejuni is a major cause of gastroenteritis in humans and is carried in many common food animals. In order to reduce human infections a better understanding of Campylobacter epidemiology is needed. One way to improve this is the identification of genes that allow for the det...

  8. Recovery of viable non-culturable dry stressed Campylobacter jejuni from inoculated samples utilizing a chick bioassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown that stressed Campylobacter cells in aquatic environments can be viable non-culturable. Preliminary experiments have shown in a matter of hours, certain Campylobacter jejuni strains are not readily recovered from dry stressed samples by current methodology procedures. The object...

  9. Analysis of Campylobacter jejuni whole genome DNA microarrays: significance of prophage and hypervariable regions for discriminating isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Campylobacter jejuni is a major cause of gastroenteritis in humans and is carried in many common food animals. In order to reduce human infections a better understanding of Campylobacter epidemiology is needed. Identifying genes that enable discriminating between isolates is an importa...

  10. Multilocus sequence typing (and phylogenetic analysis) of Campylobacter jejuni and Campylobacter coli strains isolated from clinical cases in Greece

    PubMed Central

    2013-01-01

    Background The molecular epidemiology of C. jejuni and C. coli clinical strains isolated from children with gastroenteritis, was investigated using the multilocus sequence typing method (MLST). This analysis establishes for the first time in Greece and constitutes an important tool for the epidemiological surveillance and control of Campylobacter infection in our country. Methods The MLST genotypes were compared with those gained by other typing methods (HS-typing, PFGE and FlaA typing) and were also phylogenetically analyzed, in order to uncover genetic relationships. Results Among 68 C. jejuni strains, 41 different MLST-Sequence Types (MLST-STs) were found. Fifty six strains or 34 MLST-STs could be sorted into 15 different MLST-Sequence Type Complexes (MLST-STCs), while twelve strains or seven MLST-STs did not match any of the MLST-STCs of the database. Twenty C. coli strains belonged to 14 different MLST-STs. Eleven MLST-STs were classified in the same MLST-STC (828), and three were unclassifiable. There was no significant association between the MLST-STs and the results of the other typing methods. Phylogenetic analysis revealed that some strains, classified to the species of C. jejuni, formed a separate, phylogenetically distinct group. In eight strains some alleles belonging to the taxonomic cluster of C. jejuni, were also detected in C. coli and vice versa, a phenomenon caused by the genetic mosaic encountered inside the genus Campylobacter. Conclusions The MLST-ST determination proved to be a very useful tool for the typing as well as the identification of Campylobacter on the species level. PMID:24010733

  11. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter

    PubMed Central

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Introduction Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Materials and methods Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. Results and discussion C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter

  12. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress.

    PubMed

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François; Stintzi, Alain

    2016-05-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  13. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    PubMed Central

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 h. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments. PMID:26217328

  14. Evaluation of passive immunotherapeutic efficacy of hyperimmunized egg yolk powder against intestinal colonization of Campylobacter jejuni in chickens.

    PubMed

    Paul, Narayan C; Al-Adwani, Salma; Crespo, Rocio; Shah, Devendra H

    2014-11-01

    Campylobacter jejuni is a leading cause of foodborne bacterial gastroenteritis in human. Chickens are the reservoir host of C. jejuni, and contaminated chicken meat is an important source of human infection. Therefore, control of C. jejuni in chickens can have direct effect on human health. In this study we tested the passive immunotherapeutic efficacy of the chicken egg-yolk-derived antibodies, in the form of hyperimmunized egg yolk powder (HEYP), against 7 colonization-associated proteins of C. jejuni, namely, CadF (Campylobacter adhesion to fibronectin), FlaA (flagellar proteins), MOMP (major outer membrane protein), FlpA (fibronectin binding protein A), CmeC (Campylobacter multidrug efflux C), Peb1A (Campylobacter putative adhesion), and JlpA (Jejuni lipoprotein A). Three chicken experiments were performed. In each experiment, chickens were treated orally via feed supplemented with 10% (wt/wt) egg yolk powder. In experiment 1, chicken groups were experimentally infected with C. jejuni (10(8) cfu) followed by treatment with 5 HEYP (CadF, FlaA, MOMP, FlpA, CmeC) for 4 d either individually or as a cocktail containing equal parts of each HEYP. In experiment 2, chickens were treated for 21 d with cocktail containing equal parts of 7 HEYP before and after experimental infection with C. jejuni (10(8) cfu). In experiment 3, chickens were treated with feed containing a cocktail of 7 HEYP before and after (prophylaxis), and after (treatment) experimental infection with C. jejuni (10(5) cfu). Intestinal colonization of C. jejuni was monitored by culturing cecal samples from chickens euthanized at the end of each experiment. The results showed that there were no differences in the cecal colonization of C. jejuni between HEYP treated and nontreated control chickens, suggesting that use of HEYP at the dose and the regimens used in the current study is not efficacious in reducing C. jejuni colonization in chickens. PMID:25214556

  15. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    PubMed Central

    Karlyshev, A.V.; Thacker, G.; Jones, M.A.; Clements, M.O.; Wren, B.W.

    2014-01-01

    According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection. PMID:24918062

  16. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization.

    PubMed Central

    Konkel, M E; Cieplak, W

    1992-01-01

    Campylobacter jejuni has been shown to bind to and enter epithelial cells in culture. The interaction of C. jejuni with INT 407 epithelial cells was examined to determine whether bacterial protein synthesis is required for either binding or internalization. Chloramphenicol, a selective inhibitor of bacterial protein synthesis, significantly reduced the internalization, but not binding, of C. jejuni compared with untreated controls as determined by protection from gentamicin. Electrophoretic analysis of metabolically labeled proteins revealed that C. jejuni cultured with INT 407 cells synthesized 14 proteins that were not detected in organisms cultured in medium alone. The inhibitory effect of chloramphenicol on internalization was reduced by preincubation of C. jejuni with INT 407 cells. The results indicate that C. jejuni, like some other enteric pathogens, engages in a directed response to cocultivation with epithelial cells by synthesizing one or more proteins that facilitate internalization and suggest that this phenomenon is relevant to the pathogenesis of enteritis caused by C. jejuni. Images PMID:1399005

  17. Incidence and ecology of Campylobacter jejuni and coli in animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its initial emergence in the 1970’s, Campylobacter have been estimated to be one of the most common causative agents of foodborne illnesses, along with nontyphoidal Salmonella species. Campylobacter species naturally colonize the gastrointestinal tracts of domestic and feral animals and are a...

  18. Campylobacter jejuni Motility Is Required for Infection of the Flagellotropic Bacteriophage F341

    PubMed Central

    Baldvinsson, Signe Berg; Sørensen, Martine C. Holst; Vegge, Christina S.; Clokie, Martha R. J.

    2014-01-01

    Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor. PMID:25261508

  19. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro.

    PubMed

    Anderson, Robin C; Vodovnik, Maša; Min, Byeng R; Pinchak, William E; Krueger, Nathan A; Harvey, Roger B; Nisbet, David J

    2012-07-01

    Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins. PMID:22528299

  20. Extended scheme for serotyping Campylobacter jejuni: results obtained in Israel from 1980 to 1981.

    PubMed Central

    Rogol, M; Sechter, I; Braunstein, I; Gerichter, C B

    1983-01-01

    The serotyping scheme for Campylobacter jejuni previously developed in the National Center for Campylobacter, Jerusalem, was extended by the use of 20 new sera and modified by the absorption of the sera, when necessary, with homologous boiled cultures or heterologous live cultures. The extended scheme is based on slide agglutination of live suspensions and is performed in two stages: pretesting with four pooled sera and final testing with monovalent sera. So far, 34 serotypes have been recognized. Among 442 isolates of C. jejuni, 86.4% could be typed with this scheme. Of the 382 cultures typed, 90% reacted with one single serum, and the remainder showed a complex antigenic structure. The frequent serotypes identified were: 11 (12.9%), 12 (8.2%), 18 (6.3%), and 3 (6.1%). When epidemiological data were available, the results of the serotyping corresponded with the epidemiological evidence. PMID:6619282

  1. Comparison of selective media for primary isolation of Campylobacter fetus subsp. jejuni.

    PubMed Central

    Patton, C M; Mitchell, S W; Potter, M E; Kaufmann, A F

    1981-01-01

    Three selective media, Skirrow, Butzler, and a modification of Butzler medium, were compared for the primary isolation of Campylobacter fetus subsp. jejuni. This organism was isolated from 87 of 347 specimens (72 from 240 dogs rectal swabs and 15 from 107 cats rectal swabs). The positive rate for dogs (30%) was twice as high as that for cats (14%). Skirrow and Butzler media were comparable in their isolation of C. fetus subsp. jejuni. A significantly higher rate of positive results was obtained with modified Butzler medium. The best combination of two media was that of modified Butzler and Skirrow media, which detected 98% of the isolates obtained. The percentage of Campylobacter-positive specimens was increased by 9% by holding primary isolation plates 72 h. Images PMID:7204549

  2. The abundant free-living amoeba, Acanthamoeba polyphaga, increases the survival of Campylobacter jejuni in milk and orange juice

    PubMed Central

    Olofsson, Jenny; Berglund, Petra Griekspoor; Olsen, Björn; Ellström, Patrik; Axelsson-Olsson, Diana

    2015-01-01

    Background Campylobacter jejuni is a common cause of human bacterial diarrhea in most parts of the world. Most C. jejuni infections are acquired from contaminated poultry, milk, and water. Due to health care costs and human suffering, it is important to identify all possible sources of infection. Unpasteurized milk has been associated with several outbreaks of C. jejuni infection. Campylobacter has been identified on fresh fruit, and other gastrointestinal pathogens such as Salmonella, E. coli O157:H7 and Cryptosporidium have been involved in fruit juice outbreaks. C. jejuni is sensitive to the acidic environment of fruit juice, but co-cultures with the amoeba, Acanthamoeba polyphaga, have previously been shown to protect C. jejuni at low pH. Methods To study the influence of A. polyphaga on the survival of C. jejuni in milk and juice, the bacteria were incubated in the two products at room temperature and at 4°C with the following treatments: A) C. jejuni preincubated with A. polyphaga before the addition of product, B) C. jejuni mixed with A. polyphaga after the addition of product, and C) C. jejuni in product without A. polyphaga. Bacterial survival was assessed by colony counts on blood agar plates. Results Co-culture with A. polyphaga prolonged the C. jejuni survival both in milk and juice. The effect of co-culture was most pronounced in juice stored at room temperature. On the other hand, A. polyphaga did not have any effect on C. jejuni survival during pasteurization of milk or orange juice, indicating that this is a good method for eliminating C. jejuni in these products. Conclusion Amoebae-associated C. jejuni in milk and juice might cause C. jejuni infections. PMID:26387556

  3. Campylobacter jejuni Colonization Is Associated with a Dysbiosis in the Cecal Microbiota of Mice in the Absence of Prominent Inflammation

    PubMed Central

    Lone, Abdul G.; Selinger, L. Brent; Uwiera, Richard R. E.; Xu, Yong; Inglis, G. Douglas

    2013-01-01

    Background Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal) colonized by C. jejuni at high relative to low densities. Methods Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. Results Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. Conclusions High density colonization by C. jejuni is associated with a dysbiosis in

  4. Identification of the main quinolone resistance determinant in Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR.

    PubMed

    Hormeño, Lorena; Palomo, Gonzalo; Ugarte-Ruiz, María; Porrero, M Concepción; Borge, Carmen; Vadillo, Santiago; Píriz, Segundo; Domínguez, Lucas; Campos, Maria J; Quesada, Alberto

    2016-03-01

    Among zoonotic diseases, campylobacteriosis stands out as the major bacterial infection producing human gastroenteritis. Antimicrobial therapy, only recommended in critical cases, is challenged by resistance mechanisms that should be unambiguously detected for achievement of effective treatments. Quinolone (ciprofloxacin) resistance of Campylobacter jejuni and Campylobacter coli, the 2 main Campylobacter detected in humans, is conferred by the mutation gyrA C-257-T, which can be genotyped by several methods that require a previous identification of the pathogen species to circumvent the sequence polymorphism of the gene. A multiplex PCR, based on degenerated oligonucleotides, has been designed for unambiguous identification of the quinolone resistance determinant in Campylobacter spp. isolates. The method was verified with 249 Campylobacter strains isolated from humans (141 isolates) and from the 3 most important animal sources for this zoonosis: poultry (34 isolates), swine (38 isolates), and cattle (36 isolates). High resistance to ciprofloxacin, MIC above 4μg/mL, linked to the mutated genotype predicted by MAMA-DEG PCR (mismatch amplification mutation assay PCR with degenerated primers) was found frequently among isolates from the different hosts. PMID:26658311

  5. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  6. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens

    PubMed Central

    Chintoan-Uta, Cosmin; Cassady-Cain, Robin L.; Al-Haideri, Halah; Watson, Eleanor; Kelly, David J.; Smith, David G.E.; Sparks, Nick H.C.; Kaiser, Pete; Stevens, Mark P.

    2015-01-01

    Campylobacter is the leading cause of foodborne diarrhoeal illness in the developed world and consumption or handling of contaminated poultry meat is the principal source of infection. Strategies to control Campylobacter in broilers prior to slaughter are urgently required and are predicted to limit the incidence of human campylobacteriosis. Towards this aim, a purified recombinant subunit vaccine based on the superoxide dismutase (SodB) protein of C. jejuni M1 was developed and tested in White Leghorn birds. Birds were vaccinated on the day of hatch and 14 days later with SodB fused to glutathione S-transferase (GST) or purified GST alone. Birds were challenged with C. jejuni M1 at 28 days of age and caecal Campylobacter counts determined at weekly intervals. Across three independent trials, the vaccine induced a statistically significant 1 log10 reduction in caecal Campylobacter numbers in vaccinated birds compared to age-matched GST-vaccinated controls. Significant induction of antigen-specific serum IgY was detected in all vaccinated birds, however the magnitude and timing of SodB-specific IgY did not correlate with lower numbers of C. jejuni. Antibodies from SodB-vaccinated chickens detected the protein in the periplasm and not membrane fractions or on the bacterial surface, suggesting that the protection observed may not be strictly antibody-mediated. SodB may be useful as a constituent of vaccines for control of C. jejuni infection in broiler birds, however modest protection was observed late relative to the life of broiler birds and further studies are required to potentiate the magnitude and timing of protection. PMID:26458797

  7. Heterogeneity of a Campylobacter jejuni Protein That Is Secreted through the Flagellar Filament▿

    PubMed Central

    Poly, Frédéric; Ewing, Cheryl; Goon, Scarlett; Hickey, Thomas E.; Rockabrand, David; Majam, Gary; Lee, Lanfong; Phan, Julie; Savarino, Nicholas J.; Guerry, Patricia

    2007-01-01

    Cj0859c, or FspA, is a small, acidic protein of Campylobacter jejuni that is expressed by a σ28 promoter. Analysis of the fspA gene in 41 isolates of C. jejuni revealed two overall variants of the predicted protein, FspA1 and FspA2. Secretion of FspA occurs in broth-grown bacteria and requires a minimum flagellar structure. The addition of recombinant FspA2, but not FspA1, to INT407 cells in vitro resulted in a rapid induction of apoptosis. These data define a novel C. jejuni virulence factor, and the observed heterogeneity among fspA alleles suggests alternate virulence potential among different strains. PMID:17517862

  8. Risk Factors Associated with Campylobacter jejuni Infections in Curaçao, Netherlands Antilles

    PubMed Central

    Endtz, Hubert P.; van West, Hanneke; Godschalk, Peggy C. R.; de Haan, Lidewij; Halabi, Yaskara; van den Braak, Nicole; Kesztyüs, Barbara I.; Leyde, Ewald; Ott, Alewijn; Verkooyen, Roel; Price, Lawrence J.; Woodward, David L.; Rodgers, Frank G.; Ang, C. Wim; van Koningsveld, Rinske; van Belkum, Alex; Gerstenbluth, Izzy

    2003-01-01

    A steady increase in the incidence of Guillain-Barré syndrome (GBS) with a seasonal preponderance, almost exclusively related to Campylobacter jejuni, and a rise in the incidence of laboratory-confirmed Campylobacter enteritis have been reported from Curaçao, Netherlands Antilles. We therefore investigated possible risk factors associated with diarrhea due to epidemic C. jejuni. Typing by pulsed-field gel electrophoresis identified four epidemic clones which accounted for almost 60% of the infections. One hundred six cases were included in a case-control study. Infections with epidemic clones were more frequently observed in specific districts in Willemstad, the capital of Curaçao. One of these clones caused infections during the rainy season only and was associated with the presence of a deep well around the house. Two out of three GBS-related C. jejuni isolates belonged to an epidemic clone. The observations presented point toward water as a possible source of Campylobacter infections. PMID:14662945

  9. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    PubMed

    Backert, Steffen; Boehm, Manja; Wessler, Silja; Tegtmeyer, Nicole

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain-Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  10. Reproductive failure in mink and ferrets after intravenous or oral inoculation of Campylobacter jejuni.

    PubMed Central

    Bell, J A; Manning, D D

    1990-01-01

    Four pregnant mink and seven pregnant ferrets, including five with previous exposure and specific antibody, were injected intravenously with 10(8)-10(10) colony-forming units of Campylobacter jejuni. All 11 pregnancies failed 1-16 days after infection, with results ranging from fetal resorption to expulsion of dead or premature living kits. In every case, uterine contents (placenta, uterine fluid and/or kits) were culture-positive for C. jejuni. Three pregnant mink and nine pregnant ferrets, including four with previous exposure and antibody, were fed 10(9)-10(11) C. jejuni. Two of the mink aborted; kits of all three were culture-positive, but those of one female survived. Seven of the nine ferrets aborted, with two having culture-positive uterine contents. None of 28 uninfected ferret control pregnancies ended in abortion. The most prominent histological feature observed was severe placentitis, which appears to be a more likely cause of Campylobacter-induced abortion than direct pathogenic effects on infected kits. These results suggest that infection of mink or ferrets with C. jejuni during pregnancy poses a serious risk of reproductive failure, even for previously exposed females. Images Fig. 1. PMID:2249178

  11. Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens.

    PubMed

    Kurekci, Cemil; Al Jassim, Rafat; Hassan, Errol; Bishop-Hurley, Sharon L; Padmanabha, Jagadish; McSweeney, Christopher S

    2014-09-01

    The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and α-tops (including α-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C. jejuni in chicken fecal and cecal samples. In addition, BW and feed intake were recorded weekly for the calculation of BW gain and feed conversion ratio. The mean log10 counts of C. jejuni were similar (P > 0.05) across treatments. However, significantly lower levels of fecal Campylobacter counts (P < 0.05) were recorded at d 41 for the α-tops treatment by culture methods. No differences (P > 0.05) in BW gain were obtained for dietary supplementation, except for the E. glabra extract, which had a negative impact (P < 0.001) on BW, resulting in sporadic death. Results from this study suggest that supplemental natural compounds used in the current study did not reduce the shedding of C. jejuni to desired levels. PMID:25002548

  12. High-Voltage Electroporation of Bacteria: Genetic Transformation of Campylobacter jejuni with Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Miller, Jeff F.; Dower, William J.; Tompkins, Lucy S.

    1988-02-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of a Campylobacter cell suspension to a high-voltage exponential decay discharge (5-13 kV/cm) for a brief period of time (resistance-capacitance time constant = 2.4-26 msec) in the presence of plasmid DNA. Electrical transformation of C. jejuni results in frequencies as high as 1.2 × 106 transformants per μ g of DNA. We have investigated the effects of pulse amplitude and duration, cell growth conditions, divalent cations, and DNA concentration on the efficiency of transformation. Transformants of C. jejuni obtained by electroporation contained structurally intact plasmid molecules. In addition, evidence is presented that indicates that C. jejuni possesses DNA restriction and modification systems. The use of electroporation as a method for transforming other bacterial species and guidelines for its implementation are also discussed.

  13. Virulence spectra of typed strains of Campylobacter jejuni from different sources: a blinded in vivo study.

    PubMed

    Stewart-Tull, D E S; Coote, J G; Thompson, D H; Candlish, Denise; Wardlaw, A C; Candlish, A

    2009-05-01

    Campylobacter jejuni is a major cause of human diarrhoeal disease, but specific virulence mechanisms have not been well defined. The aims of the present blinded study were to measure and compare the in vivo properties of 40 serotyped, biotyped and genotyped C. jejuni isolates from different sources and genetic makeup. An 11-day-old chick embryo lethality assay, which measured embryo deaths and total viable bacteria over 72 h following inoculation of bacteria into the chorioallantoic membrane, revealed a spectrum of activity within the C. jejuni strains. Human and chicken isolates showed similar high virulence values for embryo deaths while the virulence of the bovine isolates was less pronounced. A one-way ANOVA comparison between the capacity of the strains to kill the chick embryos after 24 h with cytotoxicity towards cultured CaCo-2 cells was significant (P=0.025). After inoculation with a Campylobacter strain, mouse ligated ileal loops were examined histologically and revealed degrees of villous atrophy, abnormal mucosa, dilation of the lumen, congestion and blood in lumen, depending on the isolate examined. A 'total pathology score', derived for each C. jejuni strain after grading the pathology features for degree of severity, showed no apparent relationship with the source of isolation. Some relationship was found between amplified fragment length polymorphism groups and total ileal loop pathology scores, and a one-way ANOVA comparison of the mouse pathology scores against total chick embryo deaths after 72 h was significant (P=0.049). PMID:19369514

  14. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    PubMed Central

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  15. Mutant prevention concentrations of fluoroquinolones against Campylobacter jejuni isolated from chicken.

    PubMed

    Wang, Liping; Yuanshu, Zhang; Yuhan, Zhang; Yaojie; Yingxia, Li

    2010-08-26

    The mutant prevention concentration (MPC) and mutant selection window (MSW) concepts have been used to evaluate antibiotic concentration ranges that prevent the emergence of antibiotic resistant mutants. Campylobacter jejuni is highly mutable to fluoroquinolone (FQ) antibiotics, but it is unknown if the MPC concept can be used to prevent mutant emergence. In this study, the MPCs of three FQs including enrofloxacin, norfloxacin and ciprofloxacin were determined using 13 C. jejuni isolates. Also, first- and second-step FQ-resistant mutants were selected and the mutations in gyrA and gyrB as well as the contribution of efflux pump to FQ resistance were investigated. The MICs of all selected mutants were determined in the presence or absence of the efflux pump inhibitors carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and reserpine. Our results revealed that the three tested FQs had different MPC ranges and the MPC order was norfloxacin > ciprofloxacin > enrofloxacin, suggesting a better in vitro efficacy of enrofloxacin over ciprofloxacin and norfloxacin in reducing the emergence of C. jejuni mutants. The results also confirmed the single-step mechanism of acquired FQs resistance in C. jejuni mutants. Both point mutations (Thr-86-Ile and Asp-90-Asn) in the gyrA gene and the function of efflux pumps contributed to the acquired resistance to ciprofloxacin and norfloxacin, while gyrA mutations (Thr-86-Ile and Asp-90-Asn) were the main mechanism for enrofloxacin resistance. These findings provide new insights into the development and mechanisms of FQ resistance in Campylobacter. PMID:20226601

  16. Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni

    PubMed Central

    Richards, Michele R.; Fodor, Christopher; Ashmus, Roger A.; Stahl, Martin; Karlyshev, Andrey V.; Wren, Brendan W.; Stintzi, Alain; Miller, William G.; Lowary, Todd L.; Szymanski, Christine M.

    2014-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81–176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity. PMID:24498018

  17. Passive immunization to reduce Campylobacter jejuni colonization and transmission in broiler chickens

    PubMed Central

    2014-01-01

    Campylobacter jejuni is the most common cause of bacterium-mediated diarrheal disease in humans worldwide. Poultry products are considered the most important source of C. jejuni infections in humans but to date no effective strategy exists to eradicate this zoonotic pathogen from poultry production. Here, the potential use of passive immunization to reduce Campylobacter colonization in broiler chicks was examined. For this purpose, laying hens were immunized with either a whole-cell lysate or the hydrophobic protein fraction of C. jejuni and their eggs were collected. In vitro tests validated the induction of specific ImmunoglobulinY (IgY) against C. jejuni in the immunized hens’ egg yolks, in particular. In seeder experiments, preventive administration of hyperimmune egg yolk significantly (P < 0.01) reduced bacterial counts of seeder animals three days after oral inoculation with approximately 104 cfu C. jejuni, compared with control birds. Moreover, transmission to non-seeder birds was dramatically reduced (hydrophobic protein fraction) or even completely prevented (whole-cell lysate). Purified IgY promoted bacterial binding to chicken intestinal mucus, suggesting enhanced mucosal clearance in vivo. Western blot analysis in combination with mass spectrometry after two-dimensional gel-electrophoresis revealed immunodominant antigens of C. jejuni that are involved in a variety of cell functions, including chemotaxis and adhesion. Some of these (AtpA, EF-Tu, GroEL and CtpA) are highly conserved proteins and could be promising targets for the development of subunit vaccines. PMID:24589217

  18. The complete genome sequence and annotation of a Campylobacter jejuni strain, MTVDSCj20, isolated from a naturally colonized farm-raised chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...

  19. Mechanisms underlying zoonotic success of Campylobacter jejuni: the CprRS two-component regulatory system influences essential processes, biofilm formation, and pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms underlying zoonotic success of Campylobacter jejuni: the CprRS two-component regulatory system influences essential processes, biofilm formation, and pathogenesis Campylobacter jejuni is a leading cause of food- and waterbourne bacterial gastroenteritis in the developed world. Although il...

  20. Molecular, Antigenic, and Functional Characteristics of Ferric Enterobactin Receptor CfrA in Campylobacter jejuni

    PubMed Central

    Zeng, Ximin; Xu, Fuzhou; Lin, Jun

    2009-01-01

    The ferric enterobactin receptor CfrA not only is responsible for high-affinity iron acquisition in Campylobacter jejuni but also is essential for C. jejuni colonization in animal intestines. In this study, we determined the feasibility of targeting the iron-regulated outer membrane protein CfrA for immune protection against Campylobacter colonization. Alignment of complete CfrA sequences from 15 Campylobacter isolates showed that the levels of amino acid identity for CfrA range from 89% to 98%. Immunoblotting analysis using CfrA-specific antibodies demonstrated that CfrA was dramatically induced under iron-restricted conditions and was widespread and produced in 32 Campylobacter primary strains from various sources and from geographically diverse areas. The immunoblotting survey results were highly correlated with the results of an enterobactin growth promotion assay and a PCR analysis using cfrA-specific primers. Inactivation of the cfrA gene also impaired norepinephrine-mediated growth promotion, suggesting that CfrA is required for C. jejuni to sense intestinal stress hormones during colonization. Complementation of the cfrA mutant with a wild-type cfrA allele in trans fully restored the production and function of CfrA. A growth assay using purified anti-CfrA immunoglobulin G demonstrated that specific CfrA antibodies could block the function of CfrA, which diminished ferric enterobactin-mediated growth promotion under iron-restricted conditions. The inhibitory effect of CfrA antibodies was dose dependent. Immunoblotting analysis also indicated that CfrA was expressed and immunogenic in chickens experimentally infected with C. jejuni. Amino acid substitution mutagenesis demonstrated that R327, a basic amino acid that is highly conserved in CfrA, plays a critical role in ferric enterobactin acquisition in C. jejuni. Together, these findings strongly suggest that CfrA is a promising vaccine candidate for preventing and controlling Campylobacter infection in

  1. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni colonization of chickens is dependent upon surface exposed proteins termed adhesins. Putative C. jejuni adhesins include CadF, CapA, JlpA, MOMP, PEB1, Cj1279c, and Cj1349c. We examined the genetic relatedness of ninety-seven C. jejuni isolates recovered from human, poultry, bo...

  2. [The study of influence of stresses on virulence genes expression in foodborne pathogens Campylobacter jejuni].

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Sheveleva, S A

    2016-01-01

    The study of the responses to cold exposure in Campylobacterjejuni (C. jejuni)--one of the most common foodborne pathogens is important for elucidating the mechanisms of acquisition of products contaminated with campylobacter, hazardous properties. These data are also necessary to create effective systems of microbiological controls at all stages of production and storage of food. 5 pairs of oligonucleotide primers were selected for detecting of genes cadF, cdtB, ciaB, flaA, iamA, encoding the main factors of pathogenicity of foodborne pathogens Campylobacter jejuni--adhesion and invasion of epithelial cells, production of CDT-toxin and mobility. To quantify the expression levels of target genes of C. jejuni a comparative method of determining the amount of amplification products of genes encoding pathogenicity factors of Campylobacter spp. has been developed using real-time PCR with intercalating dyes. To calculate and quantify gene expression the mathematical models have been obtained that allow extrapolation of threshold cycles of amplification to the initial number of copies of RNA/DNA in the tested samples. It has been established that exposure of C. jejuni at low temperatures +4 degrees C did not lead to increased levels of expression of genes cdtB and ciaB. However, in the populations of C. jejuni subjected to freezing, followed by incubation at optimum for the pathogen temperature of +42 degrees C, the increase in expression of mRNA encoding protein subunit B of CDT-toxin and antigenic marker of invasion took place. The number of copies of RNA in C. jejuni after stress exposure increased by 1.14-2.6 lg in comparison with intact cultures. CdtB and ciaB gene expression in C. jejuni can serve as an indicator of cell response to stress and helps to restore the functions of the bacterial cells after the termination of cold exposure and return of the pathogen in conditions favourable to the realization of its pathogenic potential. PMID:27228703

  3. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility.

    PubMed

    Hendrixson, D R; Akerley, B J; DiRita, V J

    2001-04-01

    Campylobacter jejuni constitutes the leading cause of bacterial gastroenteritis in the United States and a major cause of diarrhoea worldwide. Little is known about virulence mechanisms in this organism because of the scarcity of suitable genetic tools. We have developed an efficient system of in vitro transposon mutagenesis using a mariner-based transposon and purified mariner transposase. Through in vitro transposition of C. jejuni chromosomal DNA followed by natural transformation of the transposed DNA, large random transposon mutant libraries consisting of approximately 16 000 individual mutants were generated. The first genetic screen of C. jejuni using a transposon-generated mutant library identified 28 mutants defective for flagellar motility, one of the few known virulence determinants of this pathogen. We developed a second genetic system, which allows for the construction of defined chromosomal deletions in C. jejuni, and demonstrated the requirement of sigma28 and sigma54 for motility. In addition, we show that sigma28 is involved in the transcription of flaA and that sigma54 is required for transcription of three other flagellar genes, flaB and flgDE. We also identified two previously uncharacterized genes required for motility encoding proteins that we call CetA and CetB, which mediate energy taxis responses. Through our analysis of the Cet proteins, we propose a unique mechanism for sensing energy levels and mediating energy taxis in C. jejuni. PMID:11298288

  4. Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles

    PubMed Central

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81–176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced. PMID:24223169

  5. HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni

    PubMed Central

    2011-01-01

    Background Acute gastroenteritis caused by the food-borne pathogen Campylobacter jejuni is associated with attachment of bacteria to the intestinal epithelium and subsequent invasion of epithelial cells. In C. jejuni, the periplasmic protein HtrA is required for efficient binding to epithelial cells. HtrA has both protease and chaperone activity, and is important for virulence of several bacterial pathogens. Results The aim of this study was to determine the role of the dual activities of HtrA in host cell interaction of C. jejuni by comparing an htrA mutant lacking protease activity, but retaining chaperone activity, with a ΔhtrA mutant and the wild type strain. Binding of C. jejuni to both epithelial cells and macrophages was facilitated mainly by HtrA chaperone activity that may be involved in folding of outer membrane adhesins. In contrast, HtrA protease activity played only a minor role in interaction with host cells. Conclusion We show that HtrA protease and chaperone activities contribute differently to C. jejuni's interaction with mammalian host cells, with the chaperone activity playing the major role in host cell binding. PMID:21939552

  6. Genotypes and Antibiotic Resistances of Campylobacter jejuni Isolates from Cattle and Pigeons in Dairy Farms

    PubMed Central

    Bianchini, Valentina; Luini, Mario; Borella, Laura; Parisi, Antonio; Jonas, Romie; Kittl, Sonja; Kuhnert, Peter

    2014-01-01

    Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains. PMID:25026083

  7. Genotypes and antibiotic resistances of Campylobacter jejuni isolates from cattle and pigeons in dairy farms.

    PubMed

    Bianchini, Valentina; Luini, Mario; Borella, Laura; Parisi, Antonio; Jonas, Romie; Kittl, Sonja; Kuhnert, Peter

    2014-07-01

    Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains. PMID:25026083

  8. High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176.

    PubMed

    Mohawk, Krystle L; Poly, Frédéric; Sahl, Jason W; Rasko, David A; Guerry, Patricia

    2014-01-01

    Campylobacter jejuni is an important cause of bacterial diarrhea worldwide. The pathogenesis of C. jejuni is poorly understood and complicated by phase variation of multiple surface structures including lipooligosaccharide, capsule, and flagellum. When C. jejuni strain 81-176 was plated on blood agar for single colonies, the presence of translucent, non-motile colonial variants was noted among the majority of opaque, motile colonies. High-throughput genomic sequencing of two flagellated translucent and two opaque variants as well as the parent strain revealed multiple genetic changes compared to the published genome. However, the only mutated open reading frame common between the two translucent variants and absent from the opaque variants and the parent was motA, encoding a flagellar motor protein. A total of 18 spontaneous motA mutations were found that mapped to four distinct sites in the gene, with only one class of mutation present in a phase variable region. This study exemplifies the mutative/adaptive properties of C. jejuni and demonstrates additional variability in C. jejuni beyond phase variation. PMID:24558375

  9. Campylobacter jejuni sequence types show remarkable spatial and temporal stability in Blackbirds

    PubMed Central

    Griekspoor, Petra; Hansbro, Philip M.; Waldenström, Jonas; Olsen, Björn

    2015-01-01

    Background The zoonotic bacterium Campylobacter jejuni has a broad host range but is especially associated with birds, both domestic and wild. Earlier studies have indicated thrushes of the genus Turdus in Europe to be frequently colonized with C. jejuni, and predominately with host-associated specific genotypes. The European Blackbird Turdus merula has a large distribution in Europe, including some oceanic islands, and was also introduced to Australia by European immigrants in the 1850s. Methods The host specificity and temporal stability of European Blackbird C. jejuni was investigated with multilocus sequence typing in a set of isolates collected from Sweden, Australia, and The Azores. Results Remarkably, we found that the Swedish, Australian, and Azorean isolates were genetically highly similar, despite extensive spatial and temporal isolation. This indicates adaptation, exquisite specificity, and stability in time for European Blackbirds, which is in sharp contrast with the high levels of recombination and mutation found in poultry-related C. jejuni genotypes. Conclusion The maintenance of host-specific signals in spatially and temporally separated C. jejuni populations suggests the existence of strong purifying selection for this bacterium in European Blackbirds. PMID:26634844

  10. Reconstitution of a Functional Toll-like Receptor 5 Binding Site in Campylobacter jejuni Flagellin*

    PubMed Central

    de Zoete, Marcel R.; Keestra, A. Marijke; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2010-01-01

    Bacterial flagellin is important for intestinal immune homeostasis. Flagellins from most species activate Toll-like receptor 5 (TLR5). The principal bacterial food-borne pathogen Campylobacter jejuni escapes TLR5 recognition, probably due to an alternate flagellin subunit structure. We investigated the molecular basis of TLR5 evasion by aiming to reconstitute TLR5 stimulating activity in live C. jejuni. Both native glycosylated C. jejuni flagellins (FlaA and FlaB) and recombinant proteins purified from Escherichia coli failed to activate NF-κB in HEK293 cells expressing TLR5. Introduction of multiple defined regions from Salmonella flagellin into C. jejuni FlaA via a recombinatorial approach revealed three regions critical for the activation of human and mouse TLR5, including a β-hairpin structure not previously implicated in TLR5 recognition. Surprisingly, this domain was not required for the activation of chicken TLR5, indicating a selective requirement for the β-hairpin in the recognition of mammalian TLR5. Expression of the active chimeric protein in C. jejuni resulted in secreted glycosylated flagellin that induced a potent TLR5 response. Overall, our results reveal a novel structural requirement for TLR5 recognition of bacterial flagellin and exclude flagellin glycosylation as an additional mechanism of bacterial evasion of the TLR5 response. PMID:20164175

  11. Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin.

    PubMed

    de Zoete, Marcel R; Keestra, A Marijke; Wagenaar, Jaap A; van Putten, Jos P M

    2010-04-16

    Bacterial flagellin is important for intestinal immune homeostasis. Flagellins from most species activate Toll-like receptor 5 (TLR5). The principal bacterial food-borne pathogen Campylobacter jejuni escapes TLR5 recognition, probably due to an alternate flagellin subunit structure. We investigated the molecular basis of TLR5 evasion by aiming to reconstitute TLR5 stimulating activity in live C. jejuni. Both native glycosylated C. jejuni flagellins (FlaA and FlaB) and recombinant proteins purified from Escherichia coli failed to activate NF-kappaB in HEK293 cells expressing TLR5. Introduction of multiple defined regions from Salmonella flagellin into C. jejuni FlaA via a recombinatorial approach revealed three regions critical for the activation of human and mouse TLR5, including a beta-hairpin structure not previously implicated in TLR5 recognition. Surprisingly, this domain was not required for the activation of chicken TLR5, indicating a selective requirement for the beta-hairpin in the recognition of mammalian TLR5. Expression of the active chimeric protein in C. jejuni resulted in secreted glycosylated flagellin that induced a potent TLR5 response. Overall, our results reveal a novel structural requirement for TLR5 recognition of bacterial flagellin and exclude flagellin glycosylation as an additional mechanism of bacterial evasion of the TLR5 response. PMID:20164175

  12. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates.

    PubMed Central

    Engberg, J.; Aarestrup, F. M.; Taylor, D. E.; Gerner-Smidt, P.; Nachamkin, I.

    2001-01-01

    The incidence of human Campylobacter jejuni and C. coli infections has increased markedly in many parts of the world in the last decade as has the number of quinolone-resistant and, to a lesser extent, macrolide-resistant Campylobacter strains causing infections. We review macrolide and quinolone resistance in Campylobacter and track resistance trends in human clinical isolates in relation to use of these agents in food animals. Susceptibility data suggest that erythromycin and other macrolides should remain the drugs of choice in most regions, with systematic surveillance and control measures maintained, but fluoroquinolones may now be of limited use in the empiric treatment of Campylobacter infections in many regions. PMID:11266291

  13. Antimicrobial effects of Pseudomonas aeruginosa on survivability and recovery of Campylobacter jejuni on poultry products.

    PubMed

    Davis, M A; Conner, D E

    2007-04-01

    Three types of poultry products representing differences in skin coverage were tested to determine the ability of Pseudomonas aeruginosa to inhibit growth of Campylobacter jejuni. Processed ready-to-cook poultry carcasses were obtained from the Poultry Research Unit at Auburn University and were not subjected to any treatment to reduce or eliminate the native microflora on the carcasses. Carcasses were cut into wing sections (drumette, flat, tip), split breast pieces (with and without bone), and boneless, skinless breast pieces. Equal numbers of the 3 product types were subjected to 1 of 6 treatments: 1) uninoculated, 2) C. jejuni only, 3) P. aeruginosa type 1 only, 4) P. aeruginosa type 2 only, 5) C. jejuni + P. aeruginosa type 1, or 6) C. jejuni + P. aeruginosa type 2. Products were inoculated at 10(4) to 10(5) cfu. Postinoculation, equal numbers of product type were also subjected to the following: 1) aerobic or vacuum packaging, 2) storage temperature of 4 or 10 degrees C, and 3) storage of 0, 1, 2, 3, or 4 d. Products were sampled after storage duration to determine the population of C. jejuni and P. aeruginosa. Individual pieces were rinsed with 50 mL of buffered peptone water. The recovered rinse was used to make appropriate dilutions and spiral plated onto Campy-Cefex and Pseudomonas P agars. Campy-Cefex plates were incubated microaerophilically at 42 degrees C for 48 h, whereas Pseudomonas P plates were incubated aerobically at 37 degrees C for 24 to 48 h. Random suspect colonies on Campy-Cefex plates were confirmed by cell morphology when viewed under microscopic examination. Suspect colonies on Pseudomonas P plates produced a blue color in the medium indicative of glycerol reduction. At both 4 and 10 degrees C, neither type of P. aeruginosa inhibited the growth or survival of C. jejuni compared to plates that were inoculated with C. jejuni only. PMID:17369550

  14. Examination of nanoparticle inactivation of Campylobacter jejuni biofilms using infrared and Raman spectroscopies

    PubMed Central

    Lu, Xiaonan; Weakley, Andrew T.; Aston, D. Eric; Rasco, Barbara A.; Wang, Shuo; Konkel, Michael E.

    2012-01-01

    Aims To investigate inactivation effect and mechanism of zinc oxide nanoparticles (ZnO NPs) activity against Campylobacter jejuni biofilms. Methods and Results ZnO NPs with concentrations of 0, 0.6, 1.2 and 6 mmol l−1 were employed in antimicrobial tests against C. jejuni planktonic cells and biofilms. C. jejuni sessile cells in biofilms were more resistant to a low concentration of ZnO NPs when compared to planktonic cells. The ZnO NPs penetrated the extracellular polymeric substance (EPS) without damage to the EPS and directly interacted with the sessile bacterial cells, as determined using infrared spectroscopy and scanning electron microscopy. Raman spectroscopy shows alterations in quinone structures and damage to nucleic acids following C. jejuni treatment with ZnO NPs. The mechanism of DNA damage is most likely due to the generation of reactive oxygen species (ROS). Spectroscopic based partial least squares regression (PLSR) models could predict the number of surviving sessile cell numbers within a bacterial biofilm (≥log 4 CFU, RMSEE <0.36) from Fourier transform infrared (FT-IR) spectral measurements. Conclusions ZnO NPs were found to have antimicrobial activity against C. jejuni biofilms. ZnO NPs penetrated the biofilm EPS within 1 hr without damaging it and interacted directly with sessile cells in biofilms. Alterations in the DNA/RNA bases, which are due to the generation of ROS, appear to result in C. jejuni cell death. Significance and Impact of the Study ZnO NPs may offer a realistic strategy to eliminate C. jejuni biofilms in the environment. PMID:22734855

  15. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    PubMed

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas. PMID:23873654

  16. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni.

    PubMed

    Hao, Haihong; Yuan, Zonghui; Shen, Zhangqi; Han, Jing; Sahin, Orhan; Liu, Peng; Zhang, Qijing

    2013-03-01

    Macrolide antibiotics are important for clinical treatment of infections caused by Campylobacter jejuni. Development of resistance to this class of antibiotics in Campylobacter is a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure of C. jejuni to escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome of C. jejuni were examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant, including the upregulation of genes encoding ribosomal proteins and the downregulation of genes involved in energy metabolism and motility. These results indicate (i) that mutations in L4 and L22 along with temporal overexpression of antibiotic efflux genes precede and may facilitate the development of high-level macrolide resistance and (ii) that the development of macrolide resistance affects the pathways important for physiology and metabolism in C. jejuni, providing an explanation for the reduced fitness of macrolide-resistant Campylobacter. PMID:23274667

  17. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni.

    PubMed

    Kovač, Jasna; Šimunović, Katarina; Wu, Zuowei; Klančnik, Anja; Bucar, Franz; Zhang, Qijing; Možina, Sonja Smole

    2015-01-01

    The aim of the study was to investigate the mode of action of (-)-α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (-)-α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (-)-α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (-)-α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (-)-α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (-)-α-pinene. Additionally, (-)-α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (-)-α-pinene. Transcriptomic analysis indicated that (-)-α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (-)-α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (-)-α-pinene to develop its use in the control of antibiotic resistance

  18. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  19. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings.

    PubMed

    Zakarienė, Gintarė; Rokaitytė, Anita; Ramonaitė, Sigita; Novoslavskij, Aleksandr; Mulkytė, Kristina; Zaborskienė, Gintarė; Malakauskas, Mindaugas

    2015-03-01

    The antimicrobial effect of spice-based marinades against Campylobacter jejuni on inoculated fresh broiler wings was investigated. Experiments were carried out with 1 strain of C. jejuni and 6 marinades. Four experimental marinades were composed for the study and contained spices (thyme, rosemary, basil, marjoram, and so on) and different combination of bioactive compounds. Two marinades were commercial and contained spices (black pepper, sweet red pepper, and so on) and chemical additives (monosodium glutamate, sodium diacetate, calcium lactate), 1 commercial marinade was also enriched with bioactive compounds (linalool, cinnamaldehyde, lactic acid). Total aerobic bacterial count was examined to estimate the possible effect of tested marinades on the shelf-life of marinated broiler wings. Study revealed that thyme-based marinade was the most effective against C. jejuni on broiler wings and reduced the numbers of campylobacters by 1.04 log colony forming unit (CFU)/g (P ≤ 0.05) during storage for 168 h at 4 °C temperature. Moreover, it was more effective against C. jejuni than commercial marinade with 0.47 log CFU/g (P ≤ 0.05) reduction effect. Both experimental and commercial marinades had very similar effect on the total aerobic bacterial count. Although experimental and commercial marinades had different effect on pH of broiler wings, this parameter did not show a major impact on the antimicrobial effect of tested marinades (P ≥ 0.05). Our study shows that experimental natural thyme-based marinade can reduce numbers of C. jejuni more effectively than tested commercial marinades. PMID:25627752

  20. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh.

    PubMed

    Islam, Z; van Belkum, A; Wagenaar, J A; Cody, A J; de Boer, A G; Sarker, S K; Jacobs, B C; Talukder, K A; Endtz, H P

    2014-12-01

    Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of Campylobacter to humans in Bangladesh. We determined the population structure of C. jejuni isolated from poultry (n = 66) and patients with enteritis (n = 39) or GBS (n = 10). Lipooligosaccharide (LOS) typing showed that 50/66 (76 %) C. jejuni strains isolated from poultry could be assigned to one of five LOS locus classes (A-E). The distribution of neuropathy-associated LOS locus classes A, B, and C were 30/50 (60 %) among the typable strains isolated from poultry. The LOS locus classes A, B, and C were significantly associated with GBS and enteritis-related C. jejuni strains more than for the poultry strains [(31/38 (82 %) vs. 30/50 (60 %), p < 0.05]. Multilocus sequence typing (MLST) defined 15 sequence types (STs) and six clonal complexes (CCs) among poultry isolates, including one ST-3740 not previously documented. The most commonly identified type, ST-5 (13/66), in chicken was seen only once among human isolates (1/49) (p < 0.001). Amplified fragment length polymorphism (AFLP) revealed three major clusters (A, B, and C) among C. jejuni isolated from humans and poultry. There seems to be a lack of overlap between the major human and chicken clones, which suggests that there may be additional sources for campylobacteriosis other than poultry in Bangladesh. PMID:24962195

  1. In vivo and in silico determination of essential genes of Campylobacter jejuni

    PubMed Central

    2011-01-01

    Background In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain. Results A metabolic model of C. jejuni was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium Helicobacter pylori, and extensive literature mining. Using this model, we have used in silico Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this in silico approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published Campylobacter protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy. Conclusions We have constructed the first curated metabolic model for the food-borne pathogen Campylobacter jejuni and have presented the resulting

  2. MIGRATORY BIRDS OF CENTRAL WASHINGTON AS RESERVOIRS OF 'CAMPYLOBACTER JEJUNI'

    EPA Science Inventory

    Migratory ducks, Canada geese, and sandhill crane from the Pacific North American Flyway have been screened for Campylobacter spp. Two hundred ninety-eight samples from these birds were examined and the carrier rates detected were as follows: sandhill crane, 81 percent; ducks, 73...

  3. Plant derived compounds inactivate antibiotic resistant Campylobacter jejuni strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-three Campylobacter isolates were screened for their resistance to the antibiotics ampicillin, cefaclor, ciprofloxacin, erythromycin, gentamycin, tetracycline, and trimethroprim/sulfamethoxazole. Based on this screen, the resistant strains D28a and H2a and the nonresistant strain A24a were se...

  4. Salmonella species and Campylobacter jejuni Cecal Colonization Model in Broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella and Campylobacter are of concern to the poultry industry because of the continuing association of poultry-borne transmission of this disease to humans. Live, mature bird interventions can only be demonstrated by comparing colonization in non-treated groups of control birds to tre...

  5. A receptor-binding protein of Campylobacter jejuni bacteriophage NCTC 12673 recognizes flagellin glycosylated with acetamidino-modified pseudaminic acid.

    PubMed

    Javed, Muhammad Afzal; van Alphen, Lieke B; Sacher, Jessica; Ding, Wen; Kelly, John; Nargang, Cheryl; Smith, David F; Cummings, Richard D; Szymanski, Christine M

    2015-01-01

    Bacteriophage receptor-binding proteins (RBPs) confer host specificity. We previously identified a putative RBP (Gp047) from the campylobacter lytic phage NCTC 12673 and demonstrated that Gp047 has a broader host range than its parent phage. While NCTC 12673 recognizes the capsular polysaccharide (CPS) of a limited number of Campylobacter jejuni isolates, Gp047 binds to a majority of C. jejuni and related Campylobacter coli strains. In this study, we demonstrate that Gp047 also binds to acapsular mutants, suggesting that unlike the parent phage, CPS is not the receptor for Gp047. Affinity chromatography and far-western analyses of C. jejuni lysates using Gp047 followed by mass spectrometry indicated that Gp047 binds to the major flagellin protein, FlaA. Because C. jejuni flagellin is extensively glycosylated, we investigated this binding specificity further and demonstrate that Gp047 only recognizes flagellin decorated with acetamidino-modified pseudaminic acid. This binding activity is localized to the C-terminal quarter of the protein and both wild-type and coccoid forms of C. jejuni are recognized. In addition, Gp047 treatment agglutinates vegetative cells and reduces their motility. Because Gp047 is highly conserved among all campylobacter phages sequenced to date, it is likely that this protein plays an important role in the phage life cycle. PMID:25354466

  6. Campylobacter jejuni bacteremia and Helicobacter pylori in a patient with X-linked agammaglobulinemia

    PubMed Central

    van den Bruele, T.; Mourad-Baars, P. E. C.; Claas, E. C. J.; van der Plas, R. N.; Kuijper, E. J.

    2010-01-01

    We describe a 15-year-old patient with X-linked agammaglobulinemia who developed malabsorption and bacteremia due to infection of Helicobacter pylori and Campylobacter jejuni. The Campylobacter bacteremia was only recognized after subculturing of blood culture bottles that failed to signal in the automated system. After 2 weeks of treatment with meropenem and erythromycin for 4 weeks, the patient developed a relapse of bacteremia 10 months later with a high level erythromycin resistant C. jejuni. Sequencing revealed an A2058C mutation in the 23 S rRNA gene associated with this resistance. Treatment with doxycycline for 4 weeks finally resulted in complete eradication. This case report illustrates the importance for physicians to use adapted culture methods and adequate prolonged therapy in patients with an immunodeficiency. A summary of published case reports and series of patients with hypogammaglobulinemia or agammaglobulinemia with Campylobacter or Helicobacter bacteremia is given. Electronic supplementary material The online version of this article (doi:10.1007/s10096-010-0999-7) contains supplementary material, which is available to authorized users. PMID:20556465

  7. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome.

    PubMed

    Heikema, A P; Islam, Z; Horst-Kreft, D; Huizinga, R; Jacobs, B C; Wagenaar, J A; Poly, F; Guerry, P; van Belkum, A; Parker, C T; Endtz, H P

    2015-09-01

    In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sialylated LOS in stools derived from patients with uncomplicated enteritis implies that additional bacterial factors should be involved. To assess whether the polysaccharide capsule is a marker for GBS, the capsular genotypes of two geographically distinct GBS-associated C. jejuni strain collections and an uncomplicated enteritis control collection were determined. Capsular genotyping of C. jejuni strains from the Netherlands revealed that three capsular genotypes, HS1/44c, HS2 and HS4c, were dominant in GBS-associated strains and capsular types HS1/44c and HS4c were significantly associated with GBS (p 0.05 and p 0.01, respectively) when compared with uncomplicated enteritis. In a GBS-associated strain collection from Bangladesh, capsular types HS23/36c, HS19 and HS41 were most prevalent and the capsular types HS19 and HS41 were associated with GBS (p 0.008 and p 0.02, respectively). Next, specific combinations of the LOS class and capsular genotypes were identified that were related to the occurrence of GBS. Multilocus sequence typing revealed restricted genetic diversity for strain populations with the capsular types HS2, HS19 and HS41. We conclude that capsular types HS1/44c, HS2, HS4c, HS19, HS23/36c and HS41 are markers for GBS. Besides a crucial role for sialylated LOS of C. jejuni in GBS pathogenesis, the identified capsules may contribute to GBS susceptibility. PMID:26070960

  8. Phenotypic Characters and Molecular Epidemiology of Campylobacter Jejuni in East China.

    PubMed

    Zeng, Dexin; Zhang, Xiaoping; Xue, Feng; Wang, Yanhong; Jiang, Luyan; Jiang, Yuan

    2016-01-01

    In this study, we investigated the distribution, phenotypic and molecular typing characters of Campylobacter jejuni in domestic fowl, and livestock populations in East China, to provide some reference for researches on its molecular epidemiology. A total of 1250 samples were collected from different animal sources, and C. jejuni strains were then isolated and tested for antibiotic sensitivity. Antibiotics-resistance gene and pathogenic genes were detected by polymerase chain reaction. Phylogenic analysis on the C. jejuni strains was performed by multilocus sequence typing (MLST) method. The results showed that 108 out of the 1250 samples (mean 8.64%) were C. jejuni positive. These 108 C. jejuni strains were highly sensitive to antibiotics such as chloramphenicol, amoxicillin, amikacin, cefotaxime, and azithromycin, whereas they were highly resistant to antibiotics such as cefoperazone, cotrimoxazole, cefamandole, sulfamethoxazole, and cefradine. Pathogenicity related gene identification indicated that the mean carrying rate of adhesion related gene cadF and racR, flagellin gene flaA, toxin regulating gene cdtA, cdtB, cdtC, wlaN and virB11, heat shock proteins and transferring proteins related genes dnaJ and ceuE, CiaB and pldA were 92.45%, 38.69%, 73.58%, 71.70%, 52.83%, 96.23%, 12.26%, 1.89%, 0.94%, 65.09%, 39.62% and 9.43%, respectively. A total of 58.82% of these strains contained more than 6 pathogenicity-related genes. MLST typed 58 ST types from the 108 isolated C. jejuni strains, including 24 new types, and ST-21 was the major type, accounting for 39.3% of the total strains. PMID:26565657

  9. Comparison of epidemiologically linked Campylobacter jejuni isolated from human and poultry sources.

    PubMed

    Lajhar, S A; Jennison, A V; Patel, B; Duffy, L L

    2015-12-01

    Campylobacter jejuni is responsible for most foodborne bacterial infections worldwide including Australia. The aim of this study was to investigate a combination of typing methods in the characterization of C. jejuni isolated from clinical diarrhoeal samples (n = 20) and chicken meat (n = 26) in order to identify the source of infection and rank isolates based on their relative risk to humans. Sequencing of the flaA short variable region demonstrated that 86% of clinical isolates had genotypes that were also found in chicken meat. A polymerase chain reaction binary typing system identified 27 different codes based on the presence or absence of genes that have been reported to be associated with various aspects of C. jejuni pathogenicity, indicating that not all isolates may be of equal risk to human health. The lipooligosaccharide (LOS) of the C. jejuni isolates was classified into six classes (A, B, C, E, F, H) with 10·4% remaining unclassified. The majority (72·7%) of clinical isolates possessed sialylated LOS classes. Sialylated LOS classes were also detected in chicken isolates (80·7%). Antimicrobial tests indicated a low level of resistance, with no phenotypic resistance found to most antibiotics tested. A combination of typing approaches was useful to assign isolates to a source of infection and assess their risk to humans. PMID:25936829

  10. Nucleotide sequence and characterization of peb4A encoding an antigenic protein in Campylobacter jejuni.

    PubMed

    Burucoa, C; Frémaux, C; Pei, Z; Tummuru, M; Blaser, M J; Cenatiempo, Y; Fauchère, J L

    1995-01-01

    The 29-kDa protein PEB4, a major antigen of Campylobacter jejuni, is present in all C. jejuni strains tested and elicits an antibody response in infected patients. By screening a lambda gt11 library of chromosomal DNA fragments of C. jejuni strain 81-176 in Escherichia coli Y1090 cells with antibody raised against purified PEB4, a recombinant phage with a 2-kb insert expressing an immunoreactive protein of 29 kDa was isolated. DNA sequence analysis revealed that the insert contains two complete open reading frames ORF-A and ORF-B. ORF-A (peb4A) encodes a 273-residue protein with a calculated molecular mass of 30,460 daltons. The deduced amino acid sequence, composition and pl of the recombinant mature protein are similar to those determined for purified PEB4. The first 21 residues resemble a signal peptide. Gene bank searches indicated 33.7% identity with protein export protein PrsA of Bacillus subtilis and 23.8% identity with protease maturation protein precursor PrtM of Lactococcus lactis. PCR experiments indicate that peb4A is highly conserved among C. jejuni strains. ORF-B begins 2 bp after the last codon of peb4A and encodes a putative protein of 353 residues with 63.4% identity with E. coli fructose 1,6-biphosphate aldolase. The sequence arrangement suggests that these two genes form an operon. PMID:8525063

  11. Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni.

    PubMed

    Kanungpean, Doungjit; Kakuda, Tsutomu; Takai, Shinji

    2011-05-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans and a commensal bacterium of the intestinal tracts of animals, especially poultry. Chemotaxis is an important determinant for chicken colonization of C. jejuni. Adaptation has a crucial role in the gradient-sensing mechanism that underlies chemotaxis. The genome sequence of C. jejuni reveals the presence of genes encoding putative adaptation proteins, CheB and CheR. In-frame deletions of cheB, cheR and cheBR were constructed and the chemosensory behaviour of the resultant mutants was examined on swarm plates. CheB and CheR proteins significantly influence chemotaxis but are not essential for this behaviour to occur. Increased mobility of two methyl-accepting chemotaxis proteins (MCPs), DocC and Tlp1, during SDS-PAGE was detected in the mutants lacking functional CheB in the presence of CheR, presumably resulting from stable methylation of receptors. In vitro studies using tissue culture revealed that deletion of cheR resulted in hyperadherent and hyperinvasive phenotypes, while deletion of cheB resulted in nonadherent, noninvasive phenotypes. Furthermore, the ΔcheBR mutant showed significantly reduced ability to colonize chick caeca. Our data suggest that modification of chemoreceptors by the CheBR system is involved in regulation of chemotaxis in C. jejuni although CheB is apparently not controlled by phosphorylation. PMID:21292743

  12. The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis.

    PubMed

    Turonova, Hana; Neu, Thomas R; Ulbrich, Pavel; Pazlarova, Jarmila; Tresse, Odile

    2016-05-01

    Campylobacter jejuni is responsible for the most common bacterial foodborne gastroenteritis. Despite its fastidious growth, it can survive harsh conditions through biofilm formation. In this work, fluorescence lectin-binding analysis was used to determine the glycoconjugates present in the biofilm matrix of two well-described strains. Screening of 72 lectins revealed strain-specific patterns with six lectins interacting with the biofilm matrix of both strains. The most common sugar moiety contained galactose and N-acetylgalactosamine. Several lectins interacted with N-acetylglucosamine and sialic acid, probably originated from the capsular polysaccharides, lipooligosaccharides and N-glycans of C. jejuni. In addition, glycoconjugates containing mannose and fucose were detected within the biofilm, which have not previously been found in the C. jejuni envelope. Detection of thioflavin T and curcumin highlighted the presence of amyloids in the cell envelope without association with specific cell appendages. The lectins ECA, GS-I, HMA and LEA constitute a reliable cocktail to detect the biofilm matrix of C. jejuni. PMID:27097059

  13. The polysaccharide capsule of Campylobacter jejuni modulates the host immune response.

    PubMed

    Maue, Alexander C; Mohawk, Krystle L; Giles, David K; Poly, Frédéric; Ewing, Cheryl P; Jiao, Yuening; Lee, Ginyoung; Ma, Zuchao; Monteiro, Mario A; Hill, Christina L; Ferderber, Jason S; Porter, Chad K; Trent, M Stephen; Guerry, Patricia

    2013-03-01

    Campylobacter jejuni is a major cause of bacterial diarrheal disease worldwide. The organism is characterized by a diversity of polysaccharide structures, including a polysaccharide capsule. Most C. jejuni capsules are known to be decorated nonstoichiometrically with methyl phosphoramidate (MeOPN). The capsule of C. jejuni 81-176 has been shown to be required for serum resistance, but here we show that an encapsulated mutant lacking the MeOPN modification, an mpnC mutant, was equally as sensitive to serum killing as the nonencapsulated mutant. A nonencapsulated mutant, a kpsM mutant, exhibited significantly reduced colonization compared to that of wild-type 81-176 in a mouse intestinal colonization model, and the mpnC mutant showed an intermediate level of colonization. Both mutants were associated with higher levels of interleukin 17 (IL-17) expression from lamina propria CD4(+) cells than from cells from animals infected with 81-176. In addition, reduced levels of Toll-like receptor 4 (TLR4) and TLR2 activation were observed following in vitro stimulation of human reporter cell lines with the kpsM and mpnC mutants compared to those with wild-type 81-176. The data suggest that the capsule polysaccharide of C. jejuni and the MeOPN modification modulate the host immune response. PMID:23250948

  14. Insights into the Mode of Action of Benzyl Isothiocyanate on Campylobacter jejuni

    PubMed Central

    Dufour, Virginie; Stahl, Martin; Rosenfeld, Eric; Stintzi, Alain

    2013-01-01

    Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death. PMID:24014524

  15. Role of Campylobacter jejuni Respiratory Oxidases and Reductases in Host Colonization▿

    PubMed Central

    Weingarten, Rebecca A.; Grimes, Jesse L.; Olson, Jonathan W.

    2008-01-01

    Campylobacter jejuni is the leading cause of human food-borne bacterial gastroenteritis. The C. jejuni genome sequence predicts a branched electron transport chain capable of utilizing multiple electron acceptors. Mutants were constructed by disrupting the coding regions of the respiratory enzymes nitrate reductase (napA::Cm), nitrite reductase (nrfA::Cm), dimethyl sulfoxide, and trimethylamine N-oxide reductase (termed Cj0264::Cm) and the two terminal oxidases, a cyanide-insensitive oxidase (cydA::Cm) and cbb3-type oxidase (ccoN::Cm). Each strain was characterized for the loss of the associated enzymatic function in vitro. The strains were then inoculated into 1-week-old chicks, and the cecal contents were assayed for the presence of C. jejuni 2 weeks postinoculation. cydA::Cm and Cj0264c::Cm strains colonized as well as the wild type; napA::Cm and nrfA::Cm strains colonized at levels significantly lower than the wild type. The ccoN::Cm strain was unable to colonize the chicken; no colonies were recovered at the end of the experiment. While there appears to be a role for anaerobic respiration in host colonization, oxygen is the most important respiratory acceptor for C. jejuni in the chicken cecum. PMID:18192421

  16. Intestinal colonization and competitive exclusion of Campylobacter fetus subsp. jejuni in young chicks.

    PubMed

    Soerjadi, A S; Snoeyenbos, G H; Weinack, O M

    1982-01-01

    Colonization of Campylobacter fetus subsp. jejuni was investigated in monoxenic and holoxenic chicks. In monoxenic chicks, major colonization was found in the crop and ceca, with populations in the ceca consistently reaching 10(9) colony-forming-units/ml of cecal contents over the 28-day test period. Bacteremia was found in most chicks, but no significant gross pathological lesions were detected. In holoxenic chicks, major colonization occurred only in the ceca, and no evidence of bacteremia was detected. Colonization by native gut microflora sharply reduced subsequent colonization by C. fetus subsp. jejuni. The protective mechanism is perhaps the same as that protective against paratyphoid salmonellae and pathogenic strains of Escherichia coli. PMID:7150145

  17. Serotyping of Campylobacter jejuni isolated from sporadic cases and outbreaks in British Columbia.

    PubMed Central

    McMyne, P M; Penner, J L; Mathias, R G; Black, W A; Hennessy, J N

    1982-01-01

    Campylobacter jejuni from sporadic cases and outbreaks of gastroenteritis were serotyped on the basis of heat-extracted soluble thermostable antigens identified with the use of the passive hemagglutination technique. A total of 168 isolates were separated into 45 different types. The largest proportion of the isolates fell into three serotypes, each with 11 to 12.5% of the total number. Three less frequently occurring serotypes each included approximately 5%, and the remaining 50% of the isolates were distributed among 39 other serotypes. In most cases, serotyping demonstrated that epidemiologically linked isolates were of the same serotype, but the outbreak strains could belong either to frequently or to infrequently isolated serotypes. The high correlation between clinical findings and serotyping results confirmed the applicability of the serotyping scheme in epidemiological investigations of C. jejuni infections. PMID:7119100

  18. Epidemiology of Campylobacter jejuni Outbreak in a Middle School in Incheon, Korea

    PubMed Central

    Kim, Na-Yeon; Cho, Nam-Gue; Kim, Jung-Hee; Kang, Young-Ah; Lee, Ha-Gyung

    2010-01-01

    On July 6, 2009, an outbreak of gastroenteritis occurred among middle school students in Incheon. An investigation to identify the source and describe the extent of the outbreak was conducted. A retrospective cohort study among students, teachers, and food handlers exposed to canteen food in the middle school was performed. Using self-administered questionnaires, information was collected concerning on symptoms, days that canteen food was consumed, and food items consumed. Stool samples were collected from 66 patients and 11 food handlers. The catering kitchen was inspected and food samples were taken. Of the 791 people who ate canteen food, 92 cases became ill, representing an attack rate of 11.6%. Thirty-one (40.3%) of the 77 stool specimens were positive for Campylobacter jejuni. Interviews with kitchen staff indicated the likelihood that undercooked chicken was provided. This is the first recognized major C. jejuni outbreak associated with contaminated chicken documented in Korea. PMID:21060748

  19. Campylobacter jejuni influences the expression of nutrient transporter genes in the intestine of chickens.

    PubMed

    Awad, Wageha A; Aschenbach, Jörg R; Ghareeb, Khaled; Khayal, Basel; Hess, Claudia; Hess, Michael

    2014-08-01

    The gastrointestinal tract represents the first barrier against pathogens. However, the interaction of Campylobacter with intestinal epithelial cells and its effects on the intestinal function of chickens are poorly studied. Therefore, the goal of the present study was to characterize the effects of C. jejuni oral infection on the mRNA expression of nutrient transporters in the intestine. Newly hatched specific pathogen-free (SPF) chickens were orally infected with C. jejuni (NCTC 12744; 1 × 10(8)CFU/bird) at 14 days of age. Quantitative RT-PCR analyses at 14 days-post infection (dpi) revealed that the relative gene expression of the sodium/glucose cotransporter (SGLT-1) and the peptide transporter (PepT-1) was down-regulated (P<0.05) in all investigated segments (duodenum, jejunum and cecum) of Campylobacter-infected birds, while the facilitated glucose transporter (GLUT-2) was down-regulated (P<0.05) in jejunal and cecal tissues only. Furthermore, down-regulation (P<0.05) of the cationic amino acid transporter (CAT-2) and the excitatory amino acid transporter (EAAT-3) was seen in the jejunum, and down-regulation (P<0.05) of the l-type amino acid transporter (y(+)LAT-2) was noticed in the duodenum of infected birds. The decreased expression of intestinal nutrient transporters coincided with a decrease (P<0.05) in body weight and body weight gain during a 2-week post infection period. For the first time, it can be concluded that nutrient transporter expression is compromised in the small and large intestine of Campylobacter-infected birds with negative consequences on growth performance. Furthermore, the down-regulation of mRNA expression of glucose and amino acid transporters may result in accumulation of nutrients in the intestinal lumen, which may favor C. jejuni replication and colonization. PMID:24834798

  20. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni.

    PubMed

    Caldwell, Dave Bryson; Wang, Ying; Lin, Jun

    2008-11-01

    Previous studies of macrolide resistance in Campylobacter were primarily focused on strains from various origins or used in vitro systems. In this study, we conducted both in vitro and in vivo experiments to examine the development, stability, and genetic basis of macrolide resistance in Campylobacter jejuni using erythromycin-resistant (Ery(r)) mutants derived from the same parent strain. Chickens inoculated with low-level Ery(r) mutants (MIC = 32 or 64 microg/ml) at 15 days old did not shed highly Ery(r) mutants (MIC > 512 microg/ml) after prolonged exposure to a low dose of tylosin. The low-level Ery resistance was not stable in vitro or in vivo in the absence of macrolide selection pressure. However, high-level Ery resistance displayed remarkable stability in vitro and in vivo. Ribosomal sequence analysis of 69 selected Ery(r) mutants showed that specific point mutations (A2074G or A2074C) occurred in all highly Ery(r) mutants. No mutations in ribosomal protein L4 were observed in any of the in vitro-selected Ery(r) mutants. However, three specific mutations in L4, G74D, G57D, and G57V, were widely found among in vivo-selected Ery(r) mutants. Insertion of three amino acids, TSH, at position 98 in ribosomal protein L22 was observed only in mutants selected in vitro. Inactivation of the CmeABC efflux pump dramatically reduced Ery MICs in Ery(r) mutants. Together, these findings suggest that multiple factors contribute to the emergence of highly Ery(r) Campylobacter in chicken, reveal resistance level-dependent stability of macrolide resistance in C. jejuni, and indicate that C. jejuni utilizes complex and different mechanisms to develop Ery resistance in vitro and in vivo. PMID:18779354

  1. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador.

    PubMed

    Graham, Jay P; Vasco, Karla; Trueba, Gabriel

    2016-06-01

    Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species. PMID:27043446

  2. Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway.

    PubMed

    Kapperud, G; Rosef, O

    1983-02-01

    Cloacal swabs from 540 wild-living birds were cultured for Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. The carrier rates detected were as follows: C. fetus subsp. jejuni, 28.4%; Yersinia spp., 1.2%; and Salmonella spp., 0.8%. All birds were apparently healthy when captured. C. fetus subsp. jejuni was isolated from 11 of the 40 bird species examined. Among birds inhabiting the city of Oslo, the highest isolation rate was found in crows (Corvus corone cornix) (89.8%), followed by gulls (Larus spp.) (50.0%) and domestic pigeons (Columba livia domesticus) (4.2%). The gulls and crows scavenge on refuse dumps. High carrier rates were also detected among the following birds from nonurban, coastal areas: puffin (Fratercula arctica) (51.3%), common tern (Sterna hirundo) (5.6%), common gull (Larus canus) (18.9%), black-headed gull (Larus ridibundus) (13.2%), and herring gull (Larus argentatus) (4.2%). The list of species harboring C. fetus subsp. jejuni also includes the Ural owl (Strix uralensis), goldeneye (Bucephala clangula), and reed bunting (Emberiza schoeniclus). The following five Yersinia strains were isolated: Y. kristensenii (two strains), Y. intermedia (two strains), and "Yersinia X2" (one strain). Four strains belonging to the genus Salmonella were isolated from three different species of gulls. These isolates were identified as S. typhimurium, S. indiana, and S. djugu. The results indicate that campylobacters are a normal component of the intestinal flora in several bird species, whereas Salmonella and Yersinia carriers are more sporadic. PMID:6338824

  3. A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni

    PubMed Central

    Reuter, Mark; Periago, Paula M.; Mulholland, Francis; Brown, Helen L.; van Vliet, Arnoud H. M.

    2015-01-01

    The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated “cell-train” morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively. PMID:26284050

  4. Molecular and Epidemiological Analysis of a Campylobacter jejuni Outbreak in Northern Italy in November 2013.

    PubMed

    Lucarelli, Claudia; Dionisi, Anna Maria; Trezzi, Livia; Farina, Claudio; Passera, Marco; Kärki, Tommi; D'Ancona, Fortunato; Luzzi, Ida

    2016-09-01

    Campylobacter spp. is the most common gastrointestinal pathogen worldwide with a very low reported incidence in Italy. In November of 2013, local and national public health authorities investigated an outbreak caused by Campylobacter jejuni among children in a kindergarten in Northern Italy. A case was defined as a child who had diarrhea with a laboratory-confirmed diagnosis of C. jejuni between 11 and 30 November. Stool samples from the kindergarten kitchen staff and environmental samples from the kitchen were examined for enteric pathogens. As food leftovers were not available, the menu logbook of the refectory was reviewed to identify a possible source of the outbreak. C. jejuni strains were tested for antimicrobial susceptibility and subtyped by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). We identified 20 cases among 247 schoolchildren (attack rate = 8%), all who reported having lunch in the kindergarten. The stools from the kitchen staff as well as the environmental samples were negative for enteric pathogens. The identified outbreak strains (n = 5) were sensitive to all of the antimicrobials tested; the first four strains showed an identical PFGE profile, whereas the fifth strain showed a PFGE pattern similarity of 89%. Using MLST, all five strains were assigned to a single sequence type (ST), ST451 (clonal complex, CC21); this was the first identification of ST and the third reported outbreak of C. jejuni in Italy. Molecular typing confirmed that most of the cases belonged to a clonal cluster supporting the hypothesis of a common source; however, the source was not identified. Due to a delayed start of the investigation, it was not possible to perform any microbiological evaluation of the food consumed. PMID:27455195

  5. Rapid identification of Campylobacter jejuni from poultry carcasses and slaughtering environment samples by real-time PCR.

    PubMed

    Ivanova, Mirena; Singh, Randhir; Dharmasena, Muthu; Gong, Chao; Krastanov, Albert; Jiang, Xiuping

    2014-06-01

    The objective of this study was to develop a real-time PCR assay for rapid identification of Campylobacter jejuni and to apply the method in analyzing samples from poultry processing. A C. jejuni-specific primer set targeting a portion of the C. jejuni hippuricase gene was developed. The specificity of the newly designed primer pair was verified using 5 C. jejuni strains and 20 other bacterial strains. Sensitivity was determined to be as low as 1 genome copy per reaction. A total of 73 samples were collected at different sites along the processing line during 2 visits to a poultry slaughterhouse and were examined by direct plating onto modified charcoal cefoperazone deoxycholate agar or after enrichment in Bolton broth followed by plating on modified charcoal cefoperazone deoxycholate agar. The newly developed real-time PCR assay was used to identify the presumptive colonies as belonging to C. jejuni. A real-time PCR assay targeting 16S ribosomal RNA was also applied to determine Campylobacter spp. prevalence. Results from the real-time PCR analysis indicated considerable variability in Campylobacter contamination, with incidence rates of 72.7 and 27.6% for sampling days A and B, respectively. Campylobacter was isolated from 100% of prescalded and preeviscerated carcasses on sampling day A. In contrast, on sampling day B, the highest number of Campylobacter-positive carcasses was recovered after evisceration (60%). The chilling process significantly reduced (P < 0.05) Campylobacter population, but the percentage of positive samples on sampling day A increased to 80%. All samples collected from the processing environment, except scalding tank 3 and the prechiller and chiller tanks, were 100% positive on day A, whereas no campylobacters were isolated from machinery on sampling day B. Our results revealed the widespread of C. jejuni in poultry processing and proved that the newly developed real-time PCR assay is a simple, specific, and inexpensive method for rapid C

  6. Campylobacter jejuni contamination of broiler carcasses: Population dynamics and genetic profiles at slaughterhouse level.

    PubMed

    Gruntar, Igor; Biasizzo, Majda; Kušar, Darja; Pate, Mateja; Ocepek, Matjaž

    2015-09-01

    Six slaughter batches deriving from six typical industrial broiler flocks were examined for the presence, quantity and genetic characteristics of contaminating Campylobacter jejuni (C. jejuni) during various stages of slaughtering and carcass processing. To assess the contamination dynamics of the carcasses, the analyses were always conducted on neck-skin samples from the same pre-selected and carefully marked carcasses in each batch. The skin samples were taken sequentially at three successive slaughter-line locations in the evisceration room, after three-day refrigeration and after three-day freezing procedure. Caecal samples from the same animals were also tested, as well as samples from the slaughterhouse environment before and after slaughtering. The samples were analysed by the ISO10272 isolation method; campylobacters from neck-skin samples were also quantified. Isolates were species-identified and genotyped by pulsed-field gel electrophoresis (PFGE). On average, the highest C. jejuni skin contamination was detected at the first sampling point (post-plucking), suggesting that the majority of Campylobacter contamination actually occurs before the entrance to the eviscerating room, probably during the preceding plucking stage. In two out of five positive batches, an additional increase in contamination was recorded after the evisceration step. An evident trend of increasing contamination level was detected when successive batches were compared at each of two initial sampling sites in the evisceration room, indicating an accumulation of contaminating C. jejuni at some point before the evisceration room. Three-day refrigeration and three-day freezing caused a 4.5- and 142-fold drop in mean C. jejuni CFU counts, respectively. All pre-slaughtering samples from the slaughterhouse environment were negative and all post-slaughtering samples, except water from the scalding tank, were positive. Pulsotypes were limited: altogether five different types were detected

  7. Campylobacter fetus subsp. jejuni as a cause of gastroenteritis in Jakarta, Indonesia.

    PubMed Central

    Ringertz, S; Rockhill, R C; Ringertz, O; Sutomo, A

    1980-01-01

    Campylobacter fetus subsp. jejuni was isolated from the feces of 15 out of 144 (10%) children (0 to 9 years old) and 4 out of 251 (2%) adults with gastroenteritis and was found together with another enteric pathogen in 2 of the children and in all 4 adults. It was isolated from 2 out of 7 (28%) children and 3 out of 160 (2%) adults with suspected typhoid fever. The bacterium was recovered from 3 out of 4 orphanage children with diarrhea and from 1 without symptoms and was isolated from only 1 child in a control group of 221 persons. PMID:7419706

  8. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children.

    PubMed

    Ramonaite, Sigita; Kudirkiene, Egle; Tamuleviciene, Egle; Leviniene, Giedra; Malakauskas, Alvydas; Gölz, Greta; Alter, Thomas; Malakauskas, Mindaugas

    2014-09-01

    This study aimed to investigate the prevalence of Campylobacter jejuni in potential contamination sources that are not regularly monitored such as free-living urban pigeons and crows, dogs, cats and urban environmental water and to assess the possible impact on the epidemiology of campylobacteriosis in children using multilocus sequence typing (MLST). Campylobacter spp. were detected in 36.2 % of faecal samples of free-living urban birds and in 40.4 % of environmental water samples. A low prevalence of Campylobacter spp. was detected in dogs and cats, with 7.9 and 9.1 %, respectively. Further identification of isolates revealed that environmental water and pet samples were mostly contaminated by other Campylobacter spp. than C. jejuni, whereas C. jejuni was the most prevalent species in faecal samples of free-living birds (35.4 %). This species was the dominant cause of campylobacteriosis in children (91.5 %). In addition, the diversity of C. jejuni MLST types in free-living birds and children was investigated. Clonal complex (CC) 179 was predominant among free-living urban birds; however, only two isolates from children were assigned to this CC. One dog and one child isolate were assigned to the same clonal complex (CC48) and sequence type (ST) 918. The dominant two clonal complexes among the child clinical isolates (CC353 and CC21) were not detected among C. jejuni strains isolated from environmental sources examined in this study. As only two CCs were shared by environmental and child C. jejuni isolates and a high number of novel alleles and STs were found in C. jejuni isolated from free-living urban birds and environmental water, there is probably only a limited link between urban environmental sources and campylobacteriosis in children, particularly in rather cold climatic conditions. PMID:24987101

  9. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    PubMed Central

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  10. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    PubMed

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  11. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 109 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome. PMID:26161743

  12. Multi-omics Approaches to Deciphering a Hypervirulent Strain of Campylobacter jejuni

    PubMed Central

    Wu, Zuowei; Sahin, Orhan; Shen, Zhangqi; Liu, Peng; Miller, William G.; Zhang, Qijing

    2013-01-01

    Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the United States and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the pathogenesis of this hypervirulent clone, we analyzed a clinical isolate (IA3902) of clone SA using multi-omics approaches. The genome of IA3902 contains a circular chromosome of 1,635,045 bp and a circular plasmid of 37,174 bp. Comparative genomic analysis revealed that IA3902 is most closely related to C. jejuni NCTC11168, which is a reference strain and was previously shown to be non-abortifacient in pregnant animals. Despite the high genomic synteny and sequence homology, there are 12 variable regions (VRs) and 8,696 single-nucleotide polymorphisms and indels between the two genomes. Notably, the variable genes in the capsular polysaccharides biosynthesis and O-linked glycosylation loci of IA3902 are highly homogenous to their counterparts in C. jejuni subsp. doylei and C. jejuni G1, which are known to be frequently associated with bacteremia. Transcriptomic and proteomic profiles were conducted to compare IA3902 with NCTC11168, which revealed that the pathways of energy generation, motility, and serine utilization were significantly up-regulated in IA3902, whereas the pathways of iron uptake and proline, glutamate, aspartate, and lactate utilization were significantly down-regulated. These results suggest that C. jejuni clone SA has evolved distinct genomic content and gene expression patterns that modulate surface polysacharide structures, motilitiy, and metabolic pathways. These changes may have contributed to its hyper-virulence in abortion induction. PMID:24201373

  13. Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth ▿

    PubMed Central

    Vegge, Christina S.; Brøndsted, Lone; Li, Yi-Ping; Bang, Dang D.; Ingmer, Hanne

    2009-01-01

    Campylobacter jejuni is a serious food-borne bacterial pathogen in the developed world. Poultry is a major reservoir, and C. jejuni appears highly adapted to the gastrointestinal tract of birds. Several factors are important for chicken colonization and virulence, including a taxis mechanism for environmental navigation. To explore the mechanism of chemotaxis in C. jejuni, we constructed mutants with deletions of five putative mcp (methyl-accepting chemotaxis protein) genes (tlp1, tlp2, tlp3, docB, and docC). Surprisingly, the deletions did not affect the chemotactic behavior of the mutants compared to that of the parental strain. However, the tlp1, tlp3, docB, and docC mutant strains displayed a 10-fold decrease in the ability to invade human epithelial and chicken embryo cells, hence demonstrating that the corresponding proteins affect the host interaction. l-Asparagine, formate, d-lactate, and chicken mucus were identified as new attractants of C. jejuni, and we observed that chemical substances promoting tactic attraction are all known to support the growth of this organism. The attractants could be categorized as carbon sources and electron donors and acceptors, and we furthermore observed a correlation between an attractant's potency and its efficiency as an energy source. The tactic attraction was inhibited by the respiratory inhibitors HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) and sodium azide, which significantly reduce energy production by oxidative phosphorylation. These findings strongly indicate that energy taxis is the primary force in environmental navigation by C. jejuni and that this mechanism drives the organism toward the optimal chemical conditions for energy generation and colonization. PMID:19542337

  14. Draft Genome Sequence of Lactobacillus crispatus JCM5810, Which Can Reduce Campylobacter jejuni Colonization in Chicken Intestine

    PubMed Central

    Wooten, Jessica; Liu, Xiaoji

    2016-01-01

    We present the 2.05-Mb draft genome sequence of Lactobacillus crispatus JCM5810, a chicken intestinal isolate with the ability to reduce Campylobacter jejuni colonization in chickens. The genome sequence will provide insights on the probiotic mechanisms of L. crispatus JCM5810. PMID:27081134

  15. Characterization of the Campylobacter jejuni cryptic plasmid pTIW94 recovered from wild birds in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete nucleotide sequence of a cryptic plasmid, pTIW94, recovered from several Campylobacter jejuni isolates from wild birds in the southeastern United States, was determined. All plasmids were circular molecules of 3865 nucleotides, with a G+C content of 31.0%, similar to that of Campylobac...

  16. Analysis of Campylobacter jejuni whole-genome DNA microarrays: Significance of prophage and hypervariable regions for discriminating isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is a leading cause of food borne illness in humans and improving our understanding of the epidemiology of this organism is essential. The objective of this study was to identify the genes that were most significant for discriminating isolates of C. jejuni by analyzing whole genome DNA ...

  17. Complete chemoenzymatic synthesis of the Forssman antigen using novel glycosyltransferases identified in Campylobacter jejuni and Pasteurella multocida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified an alpha1,4-galactosyltransferase (CgtD) and a beta1,3-N-acetylgalactosaminyltransferase (CgtE) in the lipooligosaccharide (LOS) locus of Campylobacter jejuni LIO87. Strains that carry these genes may have the capability of synthesizing mimics of the P blood group antigens of the ...

  18. ANTIMICROBIAL ACTIVITIES OF PHENOLIC BENZALDEHYDES AND BENZOIC ACIDS AGAINST CAMPYLOBACTER JEJUNI, ESCHERICHIA COLI, LISTERIA MONOCYTOGENES, AND SALMONELLA ENTERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the bactericidal activities of 70 benzaldehydes and benzoic acids substituted in the benzene ring with zero, one, two, or three hydroxy (OH) and/or methoxy (OCH3) groups in a pH 7 buffer against Escherichia coli O157:H7, Salmonella enterica, Campylobacter jejuni, and Listeria monocytog...

  19. Comparison of Molecular Methods and Traditional Plate Counting for Detecting Campylobacter Jejuni and Escherichia Coli from Environmental Samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accurate detection of pathogenic bacteria from environmental samples is vital from both agricultural and human health perspectives. The goal of this study was to compare the detection of Campylobacter jejuni and Escherichia coli from environmental samples using quantitative real-time PCR (QRT-P...

  20. DETECTION OF CAMPYLOBACTER FROM POULTRY CARCASSES AT SLAUGHTER AND DIFFERENTIATION OF CAMPYLOBACTER JEJUNI AND CAMPYLOBACTER COLI BY MULTIPLEX PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is a major food-borne pathogen responsible for acute gastroenteritis characterized by diarrhea, which is sometimes bloody, fever, cramps, and vomiting. Campylobacter species are carried in the intestinal tract of mammals and birds, and sources of human infection include contaminated wa...

  1. Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model

    PubMed Central

    Hofreuter, Dirk; Mohr, Juliane; Wensel, Olga; Rademacher, Sebastian; Schreiber, Kerstin; Schomburg, Dietmar; Gao, Beile; Galán, Jorge E.

    2012-01-01

    Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the in vitro and in vivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues. PMID:23226358

  2. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni.

    PubMed

    Moe, Kyaw Kyaw; Mimura, Junichiro; Ohnishi, Takahiro; Wake, Tomoya; Yamazaki, Wataru; Nakai, Masaaki; Misawa, Naoaki

    2010-04-01

    Many microorganisms produce extracellular polymers referred to collectively as "slime" or glycocalyx, and form biofilms on solid surfaces in natural ecosystems. Campylobacter jejuni, one of the most important foodborne pathogens, also has the ability to form biofilm on stainless steel, glass, or polyvinyl chloride in vitro. However, the issue of biofilm formation by Campylobacter species has not been extensively examined. The present study was performed to examine the mode of adhesion of C. jejuni to a smooth surface. When bacterial suspensions in Brucella broth were incubated in microplate wells with a glass coverslip, microcolonies 0.5~2 mm in diameter were formed on the coverslip within 2 hr from the start of incubation. These microcolonies gradually grew and formed a biofilm of net-like connections within 6 hr. Transmission electron microscopy indicated that massive amounts of extracellular material masked the cell surface, and this material bound ruthenium red, suggesting the presence of a polysaccharide moiety. Scanning electron microscopy indicated that the flagella acted as bridges, forming net-like connections between the organisms. To determine the genes associated with biofilm formation, aflagellate (flaA(-)) and flagellate but non-motile (motA(-)) mutants were constructed from strain 81-176 by natural transformation-mediated allelic exchange. The flaA(-) and motA(-) mutants did not form the biofilm exhibited by the wild-type strain. These findings suggest that flagella-mediated motility as well as flagella is required for biofilm formation in vitro. PMID:20009353

  3. Comparative Genotyping of Campylobacter jejuni Strains from Patients with Guillain-Barré Syndrome in Bangladesh

    PubMed Central

    Islam, Zhahirul; van Belkum, Alex; Wagenaar, Jaap A.; Cody, Alison J.; de Boer, Albert G.; Tabor, Helen; Jacobs, Bart C.; Talukder, Kaisar A.; Endtz, Hubert P.

    2009-01-01

    Background Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Methodology/Principal Findings C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex. Conclusion/Significance LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS strains

  4. In vitro susceptibility to antimicrobial agents and ultrastructural characteristics related to swimming motility and drug action in Campylobacter jejuni and C. coli.

    PubMed

    Yabe, Shizuka; Higuchi, Wataru; Takano, Tomomi; Razvina, Olga; Iwao, Yasuhisa; Isobe, Hirokazu; Yamamoto, Tatsuo

    2010-06-01

    Campylobacter jejuni has recently been noted as the most common cause of bacterial food-borne diseases in Japan. In this study, we examined in vitro susceptibility to 36 antimicrobial agents of 109 strains of C. jejuni and C. coli isolated from chickens and patients with enteritis or Guillain-Barré syndrome from 1996 to 2009. Among these agents, carbapenems (imipenem, meropenem, panipenem, and biapenem) showed the greatest activity [minimal inhibitory concentration (MIC)(90), 0.03-0.125 microg/ml]. This was followed by sitafloxacin (MIC(90), 0.25 microg/ml), furazolidone and azithromycin (MIC(90), 0.5 microg/ml), gentamicin and clindamycin (MIC(90), 1 microg/ml), and clavulanic acid (beta-lactamase inhibitor; MIC(90), 2 microg/ml). All or most strains were resistant to aztreonam, sulfamethoxazole, and trimethoprim. Marked resistance was also observed for levofloxacin and tetracyclines. Resistance was not present for macrolides and rare for clindamycin. C. jejuni (and C. coli) exhibited high swimming motility and possessed a unique end-side (cup-like) structure at both ends, in contrast to Helicobacter pylori and Vibrio cholerae O1 and O139. The morphology of C. jejuni (and C. coli) changed drastically after exposure to imipenem (coccoid formation), meropenem (bulking and slight elongation), and sitafloxacin (marked elongation), and exhibited reduced motility. In the HEp-2 cell adherence model, unusually elongated bacteria were also observed for sitafloxacin. The data suggest that although resistance to antimicrobial agents (e.g., levofloxacin) has continuously been noted, carbapenems, sitafloxacin, and others such as beta-lactamase inhibitors alone showed good in vitro activity and that C. jejuni (and C. coli) demonstrated a unique ultrastructural nature related to high swimming motility and drug action. PMID:20225076

  5. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales.

    PubMed

    Faber, Eugenia; Gripp, Eugenia; Maurischat, Sven; Kaspers, Bernd; Tedin, Karsten; Menz, Sarah; Zuraw, Aleksandra; Kershaw, Olivia; Yang, Ines; Rautenschlein, Silke; Josenhans, Christine

    2016-01-01

    The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal

  6. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales

    PubMed Central

    Faber, Eugenia; Gripp, Eugenia; Maurischat, Sven; Kaspers, Bernd; Tedin, Karsten; Menz, Sarah; Zuraw, Aleksandra; Kershaw, Olivia; Yang, Ines; Rautenschlein, Silke

    2015-01-01

    ABSTRACT The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the

  7. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD.

    PubMed

    Crespo, M D; Altermann, E; Olson, J; Miller, W G; Chandrashekhar, K; Kathariou, S

    2016-07-01

    In Campylobacter spp., resistance to the antimicrobials kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095nt) harboring tet(O) was identified in C. jejuni strain 11601MD, which was isolated from the jejunum of a turkey produced conventionally in North Carolina. Analysis of the p11601MD sequence revealed the presence of a high-GC content cassette with four genes that included tet(O) and a putative aminoglycoside transferase gene (aphA-3) highly similar to kanamycin resistance determinants. Several genes putatively involved in conjugative transfer were also identified on the plasmid. These findings will contribute to a better understanding of the distribution of potentially self-mobilizing plasmids harboring antibiotic resistance determinants in Campylobacter spp. from turkeys and other sources. PMID:27268853

  8. Antimicrobial resistance profiles and mechanisms of resistance in Campylobacter jejuni isolates from pets.

    PubMed

    Acke, Els; McGill, Kevina; Quinn, Teresa; Jones, Boyd R; Fanning, Seamus; Whyte, Paul

    2009-01-01

    The presence of antimicrobial resistance in 51 Campylobacter jejuni isolates obtained from cats and dogs was determined by E-testing. Resistance to nalidixic acid (37.3% of isolates), ciprofloxacin (19.6%), tetracycline (13.7%), ampicillin (13.7%), erythromycin (11.8%), and chloramphenicol (5.9%) was detected. Resistance to two antimicrobials or more was present in 31.4% of isolates, and one isolate was resistant to all six antimicrobials. Of the isolates with ciprofloxacin and/or nalidixic acid resistance, 54.5% had the gyrA substitution Thr-86-Ile on sequencing. The tet o gene was detected in 75.0% isolates with high-level resistance to tetracycline. With the observed antimicrobial resistance in C. jejuni isolates from pets in this study, and the detection of identical mechanisms for quinolone and tetracycline resistance in pets and humans, pets should be considered a potential source of (multi)resistant C. jejuni infections in humans. PMID:19580444

  9. Molecular Mechanisms and Potential Clinical Applications of Campylobacter jejuni Cytolethal Distending Toxin

    PubMed Central

    Lai, Cheng-Kuo; Chen, Yu-An; Lin, Chun-Jung; Lin, Hwai-Jeng; Kao, Min-Chuan; Huang, Mei-Zi; Lin, Yu-Hsin; Chiang-Ni, Chuan; Chen, Chih-Jung; Lo, U-Ging; Lin, Li-Chiung; Lin, Ho; Hsieh, Jer-Tsong; Lai, Chih-Ho

    2016-01-01

    Cytolethal distending toxin (CDT), a genotoxin produced by Campylobacter jejuni, is composed of three subunits: CdtA, CdtB, and CdtC. CdtB is a DNase that causes DNA double-strand breaks (DSB) in the nucleus resulting in cell cycle arrest at the G2/M stage and apoptosis. CdtA and CdtC bind to cholesterol-rich microdomains on the cytoplasmic membrane, a process required for the delivery of CdtB to cells. Although a unique motif associated with cholesterol-binding activity has been identified in other pathogens, the mechanism underlying the interaction between the CdtA and CdtC subunits and membrane cholesterol remains unclear. Also, the processes of cell uptake and delivery of CdtB in host cells and the translocation of CdtB into the nucleus are only partially understood. In this review, we focus on the underlying relationship among CDT, membrane cholesterol, and the intracellular trafficking pathway as a unique mechanism for C. jejuni-induced pathogenesis. Moreover, we discuss the clinical aspects of a possible therapeutic application of CDT in cancer therapy. Understanding the molecular mechanism of CDT-host interactions may provide insights into novel strategies to control C. jejuni infection and the development of potential clinical applications of CDT. PMID:26904508

  10. Genome and Proteome of Campylobacter jejuni Bacteriophage NCTC 12673▿†

    PubMed Central

    Kropinski, Andrew M.; Arutyunov, Denis; Foss, Mary; Cunningham, Anna; Ding, Wen; Singh, Amit; Pavlov, Andrey R.; Henry, Matthew; Evoy, Stephane; Kelly, John; Szymanski, Christine M.

    2011-01-01

    Campylobacter jejuni continues to be the leading cause of bacterial food-borne illness worldwide, so improvements to current methods used for bacterial detection and disease prevention are needed. We describe here the genome and proteome of C. jejuni bacteriophage NCTC 12673 and the exploitation of its receptor-binding protein for specific bacterial detection. Remarkably, the 135-kb Myoviridae genome of NCTC 12673 differs greatly from any other proteobacterial phage genome described (including C. jejuni phages CP220 and CPt10) and instead shows closest homology to the cyanobacterial T4-related myophages. The phage genome contains 172 putative open reading frames, including 12 homing endonucleases, no visible means of packaging, and a putative trans-splicing intein. The phage DNA appears to be strongly associated with a protein that interfered with PCR amplification and estimation of the phage genome mass by pulsed-field gel electrophoresis. Identification and analyses of the receptor-binding protein (Gp48) revealed features common to the Salmonella enterica P22 phage tailspike protein, including the ability to specifically recognize a host organism. Bacteriophage receptor-binding proteins may offer promising alternatives for use in pathogen detection platforms. PMID:21965409

  11. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.

    PubMed

    Linton, Dennis; Dorrell, Nick; Hitchen, Paul G; Amber, Saba; Karlyshev, Andrey V; Morris, Howard R; Dell, Anne; Valvano, Miguel A; Aebi, Markus; Wren, Brendan W

    2005-03-01

    We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering. PMID:15752194

  12. Global gene expression analysis of chicken caecal response to Campylobacter jejuni.

    PubMed

    Shaughnessy, Ronan G; Meade, Kieran G; McGivney, Beatrice A; Allan, Brenda; O'Farrelly, Cliona

    2011-07-15

    Campylobacter jejuni colonises the caecum of more than 90% of commercial chickens. Even though colonisation is asymptomatic, we hypothesised that it is mediated by activation of several biological pathways. We therefore used chicken-specific 20K oligonucleotide microarrays to examine global gene expression in C. jejuni-challenged birds. Microarray results demonstrate small but significant fold-changes in expression of 270 genes 20 h post-challenge, corresponding to a wide range of biological processes including cell growth, nutrient metabolism and immunological activity. Expression of NOX1 (2.3-fold) and VCAM1 (1.5-fold) were significantly increased in colonised birds (P<0.05), indicating oxidative burst and endothelial cell activation, respectively. Microarray results, supplemented by qRT-PCR analyses demonstrated increased TOPK (1.9-fold), IL17 (3.6-fold), IL21 (2.1-fold), IL7R (4-fold) and CTLA4 (2.5-fold) gene expression (P<0.05), which was suggestive of T cell mediated activity. Combined these results suggest that C. jejuni has nominal effects on global caecal gene expression in the chicken but significant changes detected are suggestive of a protective intestinal T cell response. PMID:21605915

  13. Antibacterial activity of three medicinal Thai plants against Campylobacter jejuni and other foodborne pathogens.

    PubMed

    Dholvitayakhun, Achara; Cushnie, T P Tim; Trachoo, Nathanon

    2012-01-01

    Leaves of Adenanthera pavonina, Moringa oleifera and Annona squamosa are used in traditional Thai medicine to treat dysentery and other diseases. This study investigated the antibacterial activity of these plants against six species of foodborne pathogen. Methods and solvents employed to extract active constituents were optimised using the disc diffusion assay. Phytochemical analysis of the optimised extracts was performed by thin layer chromatography (TLC). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined by broth microdilution. A. pavonina contained flavonoids, terpines and tannins, and was the most active extract against Campylobacter jejuni, inhibiting growth at 62.5-125 µg mL(-1). The A. squamosa extract contained flavonoids, terpines, tannins and alkaloids, and had the broadest spectrum of antibacterial activity, inhibiting Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and C. jejuni between 62.5 and 500 µg mL(-1). MBCs were 2- to 4-fold higher than MICs against C. jejuni and B. cereus, suggesting the extracts are bactericidal against these species. Negligible activity was detected from M. oleifera. The data presented here show that A. pavonina and A. squamosa could potentially be used in modern applications aimed at the treatment or prevention of foodborne diseases. PMID:21878033

  14. Flagellar Biosynthesis Exerts Temporal Regulation of Secretion of Specific Campylobacter jejuni Colonization and Virulence Determinants

    PubMed Central

    Barrero-Tobon, Angelica M.; Hendrixson, David R.

    2014-01-01

    Summary The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells, respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virluence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes. PMID:25041103

  15. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry.

    PubMed

    Cean, Ada; Stef, Lavinia; Simiz, Eliza; Julean, Calin; Dumitrescu, Gabi; Vasile, Aida; Pet, Elena; Drinceanu, Dan; Corcionivoschi, Nicolae

    2015-02-01

    This study was performed in order to determine whether human isolated probiotic bacteria can be effective in reducing Campylobacter jejuni infection of chicken intestinal cells, in vitro, and in decreasing its colonization abilities within the chicken gut. Our results show that the probiotic strains Lactobacillus paracasei J. R, L. rhamnosus 15b, L. lactis Y, and L. lactis FOa had a significant effect on C. jejuni invasion of chicken primary cells, with the strongest inhibitory effect detected when a combination of four was administered. In regard to the in vivo effect, using all four strains in one combination prevented mucus colonization in the duodenum and cecum. Moreover, the pathogen load in the lumen of these two compartments was significantly reduced. When probiotics were introduced during the early growth period, the presence of the pathogen in feces was increased (p>0.05), but when they were given during the last week of growth, there was no significant effect. In conclusion, our data indicate that these four new probiotic strains are able to cause modifications in the chicken intestinal mucosa and can reduce the ability of C. jejuni to invade, in vitro, and to colonize, in vivo. These probiotics are now proven to be effective even when introduced in broiler's feed 7 days before slaughter, which makes them cost-effective for the producers. PMID:25585278

  16. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells.

    PubMed

    van Alphen, Lieke B; Bleumink-Pluym, Nancy M C; Rochat, Klazina D; van Balkom, Bas W M; Wösten, Marc M S M; van Putten, Jos P M

    2008-01-01

    The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency. PMID:18052944

  17. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  18. Physiological Activity of Campylobacter jejuni Far below the Minimal Growth Temperature

    PubMed Central

    Hazeleger, Wilma C.; Wouters, Jeroen A.; Rombouts, Frank M.; Abee, Tjakko

    1998-01-01

    The behavior of Campylobacter jejuni at environmental temperatures was examined by determining the physiological activities of this human pathogen. The minimal growth temperatures were found to be 32 and 31°C for strains 104 and ATCC 33560, respectively. Both strains exhibited a sudden decrease in growth rate from the maximum to zero within a few degrees not only near the maximal growth temperature but also near the minimal growth temperature. This could be an indication that a temperature-dependent transition in the structure of a key enzyme(s) or regulatory compound(s) determines the minimal growth temperature. Oxygen consumption, catalase activity, ATP generation, and protein synthesis were observed at temperatures as low as 4°C, indicating that vital cellular processes were still functioning. PCR analysis showed that cold shock protein genes, which play a role in low-temperature adaptation in many bacteria, are not present in C. jejuni. The fact that chemotaxis and aerotaxis could be observed at all temperatures shows that the pathogen is able to move to favorable places at environmental temperatures, which may have significant implications for the survival of C. jejuni in the environment. PMID:9758819

  19. High-resolution melting system to perform multilocus sequence typing of Campylobacter jejuni.

    PubMed

    Lévesque, Simon; Michaud, Sophie; Arbeit, Robert D; Frost, Eric H

    2011-01-01

    Multi-locus sequence typing (MLST) has emerged as the state-of-the-art method for resolving bacterial population genetics but it is expensive and time consuming. We evaluated the potential of high resolution melting (HRM) to identify known MLST alleles of Campylobacter jejuni at reduced cost and time. Each MLST locus was amplified in two or three sub fragments, which were analyzed by HRM. The approach was investigated using 47 C. jejuni isolates, previously characterized by classical MLST, representing isolates from diverse environmental, animal and clinical sources and including the six most prevalent sequence types (ST) and the most frequent alleles. HRM was then applied to a validation set of 84 additional C. jejuni isolates from chickens; 92% of the alleles were resolved in 35 hours of laboratory time and the cost of reagents per isolate was $20 compared with $100 for sequence-based typing. HRM has the potential to complement sequence-based methods for resolving SNPs and to facilitate a wide range of genotyping studies. PMID:21297862

  20. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Enteritidis and Campylobacter jejuni are two major food-borne pathogens that are transmitted through poultry products. These pathogens colonize the chicken cecum leading, to contamination of carcasses during slaughter and subsequent processing operations. We investigated the antimicrobial...

  1. Production of a bacteriocin by a poultry derived Campylobacter jejuni isolate with antimicrobial activity against Clostridium perfringens and other Gram positive bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have purified a bacteriocin peptide (termed CUV-3), produced by a poultry cecal isolate of Campylobacter jejuni (strain CUV-3) with inhibitory activity against Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staphylococcus epidermidis and Listeria mon...

  2. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection.

    PubMed

    Ruiz-Palacios, Guillermo M; Cervantes, Luz Elena; Ramos, Pilar; Chavez-Munguia, Bibiana; Newburg, David S

    2003-04-18

    The most common cause of infant mortality is diarrhea; the most common cause of bacterial diarrhea is Campylobacter jejuni, which is also the primary cause of motor neuron paralysis. The first step in campylobacter pathogenesis is adherence to intestinal mucosa. We found that such binding was inhibited in vitro by human milk and, with high avidity, by alpha1,2-fucosylated carbohydrate moieties containing the H(O) blood group epitope (Fuc alpha 1,2Gal beta 1,4GlcNAc em leader ). In studies on the mechanism of adherence, campylobacter, which normally does not bind to Chinese hamster ovary cells, bound avidly when the cells were transfected with a human alpha1,2-fucosyltransferase gene that caused overexpression of H-2 antigen; binding was specifically inhibited by H-2 ligands (lectins Ulex europaeus and Lotus tetragonolobus and H-2 monoclonal antibody), H-2 mimetics, and human milk oligosaccharides. Human milk oligosaccharides inhibited campylobacter colonization of mice in vivo and human intestinal mucosa ex vivo. Campylobacter colonization of nursing mouse pups was inhibited if their dams had been transfected with a human alpha1,2-fucosyltransferase gene that caused expression of H(O) antigen in milk. We conclude that campylobacter binding to intestinal H-2 antigen is essential for infection. Milk fucosyloligosaccharides and specific fucosyl alpha1,2-linked molecules inhibit this binding and may represent a novel class of antimicrobial agents. PMID:12562767

  3. Evaluating 3 gas-delivery systems for culturing Campylobacter jejuni in a microaerophilic environment.

    PubMed

    Haines, M D; Eberle, K N; McDaniel, C D; Kiess, A S

    2011-10-01

    Campylobacter spp. require a microaerophilic environment (80% N(2), 10% CO(2), 5% H(2), and 5% O(2)) for growth. Since the late 1800s, several systems for creating and maintaining specific microbial atmospheres have been developed and applied. The objective of this study was to evaluate Campylobacter jejuni growth by means of 3 commonly used gas-delivery systems for generating a microaerophilic environment: automated, gas-generating sachet, and plastic storage bag. Pure culture C. jejuni cells were suspended in Brucella broth and spread onto campy cefex agar plates. For the automated gas-delivery system, plates were positioned in a Mart anaerobic jar and flushed with a microaerophilic gas mixture using an Anoxomat Mart II system (Mart Microbiology B. V., Netherlands). For the sachet samples, plates were placed in a Mart anaerobic jar and 3 Gaspak EZ campy sachets (Becton Dickinson and Company, Franklin Lakes, NJ) were activated to induce a microaerophilic gas environment. The plates placed in plastic storage bags were flushed with a microaerophilic gas mixture from a premixed tank. For all 3 systems, plates were placed in a low-temperature incubator at 42°C for 24 h. After 24 h, plates were removed from the incubator and colonies were counted. The entire experiment was repeated 5 times. Results indicated no significant difference in colony counts among the gas-delivery systems tested, but colonies grown under the sachet-generated environment were smaller than colonies in the other 2 methods. Smaller colonies could have resulted from the type of media used or the length of time the plates were incubated. In conclusion, all 3 gas-delivery methods were able to produce similar Campylobacter growth results. Initial and long-term costs of equipment, as well as laboratory space availability, may be influential when choosing a gas-delivery method for generating a microaerophilic environment. PMID:21934023

  4. Seroprevalence in Chickens against Campylobacter jejuni Flagellar Capping Protein (FliD) in Selected Areas of the United States.

    PubMed

    Yeh, H-Y; Hiett, K L; Line, J E; Jagne, J F; Lauer, D C

    2016-06-01

    Campylobacter jejuni is a causative pathogen of human acute bacterial gastroenteritis. Infected poultry products are regarded as a major source for human C. jejuni infection. The flagellar capping protein (FliD) is highly conserved among C. jejuni strains/isolates and is antigenic as analysed by immunoblot. In this study, we used the FliD protein as a probe to survey the prevalence of C. jejuni antibodies in chickens from two areas in the United States. A total of 394 samples were tested. Sera from layer breeders of 44-52 weeks of age tested 100% positive, while 4- to 6-week broilers from 22 premises showed 7-100% positivity. These results demonstrate that anti-FliD antibodies were prevalent in the poultry population in the areas of serum samples collected. PMID:26603949

  5. Pancreatic Amylase Is an Environmental Signal for Regulation of Biofilm Formation and Host Interaction in Campylobacter jejuni

    PubMed Central

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A.; Nair, Sean P.; Sadiq, Sohaib; Williams, Lisa K.; Trantham, Emma K.; Stephenson, Holly; Wren, Brendan W.; Bajaj-Elliott, Mona; Cogan, Tristan A.; Laws, Andrew P.; Wade, Jim; Dorrell, Nick

    2015-01-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. PMID:26438798

  6. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    PubMed

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. PMID:26438798

  7. Epidemiology of Campylobacter jejuni infections in Sweden, November 2011–October 2012: is the severity of infection associated with C. jejuni sequence type?

    PubMed Central

    Harvala, Heli; Rosendal, Thomas; Lahti, Elina; Engvall, Eva O.; Brytting, Maria; Wallensten, Anders; Lindberg, Ann

    2016-01-01

    Background Campylobacter jejuni is among the most frequent causes of bacterial gastroenteritis in Europe. Over 8,000 C. jejuni multilocus sequence typing sequence types (STs) have been described; ST-21 and ST-45 have been identified as the most frequent types in all human studies so far. In contrast to other STs, ST-22 has been associated with the Guillain–Barré syndrome and ST-677 was recently linked to severe systemic infections in Finland. We investigated risk factors associated with hospitalisation in individuals with C. jejuni infections acquired in Sweden. Methods A total of 1,075 individuals with domestically acquired C. jejuni infection diagnosed between November 2011 and October 2012 in Sweden were included in this retrospective cohort study. Typing data for the isolates as well as clinical data including hospitalisation dates and diagnosis codes for individuals with C. jejuni infection were obtained. Factors associated with hospitalisation and length of hospitalisation were investigated by multivariable analysis. Results A total of 289 individuals were hospitalised due to C. jejuni infection (26.8%); those with co-morbidities were over 14 times more likely to become hospitalised than those without (odds ratio [OR]: 14.39, 95% confidence interval [CI]: 6.84–30.26). Those with underlying co-morbidities were also hospitalised longer than those without (4.22 days vs. 2.86 days), although this was not statistically significant. C. jejuni ST-257 (OR: 2.38; CI: 1.08–5.23), but not ST-22 or ST-677, was significantly associated with hospitalisation. Conclusion ST-677 was not associated with increased hospitalisation or a longer hospital stay in our study whilst ST-257 was. However, individuals with C. jejuni infections were generally more frequently hospitalised than previously demonstrated; this requires further consideration including possible targeted interventions. PMID:27059819

  8. Survival of Cold-Stressed Campylobacter jejuni on Ground Chicken and Chicken Skin during Frozen Storage

    PubMed Central

    Bhaduri, Saumya; Cottrell, Bryan

    2004-01-01

    Campylobacter jejuni is prevalent in poultry, but the effect of combined refrigerated and frozen storage on its survival, conditions relevant to poultry processing and storage, has not been evaluated. Therefore, the effects of refrigeration at 4°C, freezing at −20°C, and a combination of refrigeration and freezing on the survival of C. jejuni in ground chicken and on chicken skin were examined. Samples were enumerated using tryptic soy agar containing sheep's blood and modified cefoperazone charcoal deoxycholate agar. Refrigerated storage alone for 3 to 7 days produced a reduction in cell counts of 0.34 to 0.81 log10 CFU/g in ground chicken and a reduction in cell counts of 0.31 to 0.63 log10 CFU/g on chicken skin. Declines were comparable for each sample type using either plating medium. Frozen storage, alone and with prerefrigeration, produced a reduction in cell counts of 0.56 to 1.57 log10 CFU/g in ground chicken and a reduction in cell counts of 1.38 to 3.39 log10 CFU/g on chicken skin over a 2-week period. The recovery of C. jejuni following freezing was similar on both plating media. The survival following frozen storage was greater in ground chicken than on chicken skin with or without prerefrigeration. Cell counts after freezing were lower on chicken skin samples that had been prerefrigerated for 7 days than in those that had been prerefrigerated for 0, 1, or 3 days. This was not observed for ground chicken samples, possibly due to their composition. C. jejuni survived storage at 4 and −20°C with either sample type. This study indicates that, individually or in combination, refrigeration and freezing are not a substitute for safe handling and proper cooking of poultry. PMID:15574906

  9. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers

    PubMed Central

    2012-01-01

    Background Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts), i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni) between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1) an infectious “sender” excretes the agent, after which (2) the agent is transported via some route to a susceptible “receiver”, and subsequently (3) the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3) was studied here by using acidification of the drinking water as a modulation mechanism. Results In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders), acidification of the drinking water of the susceptible animals (the receivers) or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. Conclusions The results of the experiments show a significant decrease in transmission rate (β) between the control groups and treatment groups (p < 0.01 for all groups) but not between different treatments; there is a significant negative interaction effect when both the sender and the receiver group receive acidified drinking water (p = 0.01). This negative interaction effect could be due to selection of bacteria already at the sender side thereby diminishing the effect of acidification at the receiver side. PMID:22831274

  10. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice

    PubMed Central

    Bereswill, Stefan; Alutis, Marie E.; Grundmann, Ursula; Fischer, André; Göbel, Ulf B.; Heimesaat, Markus M.

    2016-01-01

    Background Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. Methodology/Principal Findings To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81–176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. Conclusion/Significance We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the

  11. O-METHYL PHOSPHORAMIDATE MODIFICATIONS ON THE CAPSULAR POLYSACCHARIDE OF CAMPYLOBACTER JEJUNI ARE INVOLVED IN SERUM RESISTANCE, INFECTION, AND INSECTICIDAL ACTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is the most commonly reported cause of bacterial foodborne illness in North America. C. jejuni decorates its surface polysaccharides with a variety of variable phosphorylated structures, including O-methyl phosphoramidate (MeOPN) modifications on the capsular polysaccharide. Alt...

  12. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia

    PubMed Central

    Teh, Amy Huei Teen; Lee, Sui Mae

    2016-01-01

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. PMID:27151799

  13. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  14. Correlation between genotypic diversity, lipooligosaccharide gene locus class variation and Caco-2 invasion potential of Campylobacter jejuni from human and chicken meat origin: a contribution to virulotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni stemmed from its potential role in post-infection paralytic disorders. In this study we present PCR screening of five LOS locus classes (A, B, C, D, and E), for a collection of 117 C. jejuni strains from chicken m...

  15. Draft Genome Sequences of Three Multiantibiotic-Resistant Campylobacter jejuni Strains (2865, 2868, and 2871) Isolated from Poultry at Retail Outlets in Malaysia.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-01-01

    Campylobacter jejuni is a frequent cause of human bacterial gastrointestinal foodborne disease worldwide. Antibiotic resistance in this species is of public health concern. The draft genome sequences of three multiantibiotic-resistant C. jejuni strains (2865, 2868, and 2871) isolated from poultry at retail outlets in Malaysia are presented here. PMID:27151799

  16. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants.

    PubMed

    Brandl, Maria T; Haxo, Aileen F; Bates, Anna H; Mandrell, Robert E

    2004-02-01

    Campylobacter jejuni has been isolated previously from market produce and has caused gastroenteritis outbreaks linked to produce. We have tested the ability of this human pathogen to utilize organic compounds that are present in leaf and root exudates and to survive in the plant environment under various conditions. Carbon utilization profiles revealed that C. jejuni can utilize many organic acids and amino acids available on leaves and roots. Despite the presence of suitable substrates in the phyllosphere and the rhizosphere, C. jejuni was unable to grow on lettuce and spinach leaves and on spinach and radish roots of plants incubated at 33 degrees C, a temperature that is conducive to its growth in vitro. However, C. jejuni was cultured from radish roots and from the spinach rhizosphere for at least 23 and 28 days, respectively, at 10 degrees C. This enteric pathogen also persisted in the rhizosphere of spinach for prolonged periods of time at 16 degrees C, a temperature at which many cool-season crops are grown. The decline rate constants of C. jejuni populations in the spinach and radish rhizosphere were 10- and 6-fold lower, respectively, than on healthy spinach leaves at 10 degrees C. The enhanced survival of C. jejuni in soil and in the rhizosphere may be a significant factor in its contamination cycle in the environment and may be associated with the sporadic C. jejuni incidence and campylobacteriosis outbreaks linked to produce. PMID:14766604

  17. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments.

    PubMed

    Kurekci, Cemil; Padmanabha, Jagadish; Bishop-Hurley, Sharon L; Hassan, Errol; Al Jassim, Rafat A M; McSweeney, Christopher S

    2013-09-16

    The aim of this study was to examine the antimicrobial potential of three essential oils (EOs: tea tree oil, lemon myrtle oil and Leptospermum oil), five terpenoid compounds (α-bisabolol, α-terpinene, cineole, nerolidol and terpinen-4-ol) and polyphenol against two strains of Campylobacter jejuni (ACM 3393 and the poultry isolate C338), Campylobacter coli and other Gram negative and Gram positive bacteria. Different formulations of neem oil (Azadirachta indica) with these compounds were also tested for synergistic interaction against all organisms. Antimicrobial activity was determined by the use of disc diffusion and broth dilution assays. All EOs tested were found to have strong antimicrobial activity against Campylobacter spp. with inhibitory concentrations in the range 0.001-1% (v/v). Among the single compounds, terpinen-4-ol showed the highest activity against Campylobacter spp. and other reference strains. Based on the antimicrobial activity and potential commerciality of these agents, lemon myrtle oil, α-tops (α-terpineol+cineole+terpinen-4-ol) and terpinen-4-ol were also evaluated using an in vitro fermentation technique to test antimicrobial activity towards C. jejuni in the microbiota from the chicken-caecum. EO compounds (terpinen-4-ol and α-tops) were antimicrobial towards C. jejuni at high doses (0.05%) without altering the fermentation profile. EOs and terpenoid compounds can have strong anti-Campylobacter activity without adversely affecting the fermentation potential of the chicken-caeca microbiota. EOs and their active compounds may have the potential to control C. jejuni colonisation and abundance in poultry. PMID:24041998

  18. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins

    PubMed Central

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-01-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β-sandwich architecture. The structure suggests that Cj0090 may be involved in protein-protein interactions, consistent with a possible role for bacterial lipoproteins. PMID:22987763

  19. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins.

    PubMed

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-12-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β-sandwich architecture. The structure suggests that Cj0090 may be involved in protein-protein interactions, consistent with a possible role for bacterial lipoproteins. PMID:22987763

  20. Detection of Small Numbers of Campylobacter jejuni and Campylobacter coli Cells in Environmental Water, Sewage, and Food Samples by a Seminested PCR Assay

    PubMed Central

    Waage, Astrid S.; Vardund, Traute; Lund, Vidar; Kapperud, Georg

    1999-01-01

    A rapid and sensitive assay was developed for detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples. Water and sewage samples were filtered, and the filters were enriched overnight in a nonselective medium. The enrichment cultures were prepared for PCR by a rapid and simple procedure consisting of centrifugation, proteinase K treatment, and boiling. A seminested PCR based on specific amplification of the intergenic sequence between the two Campylobacter flagellin genes, flaA and flaB, was performed, and the PCR products were visualized by agarose gel electrophoresis. The assay allowed us to detect 3 to 15 CFU of C. jejuni per 100 ml in water samples containing a background flora consisting of up to 8,700 heterotrophic organisms per ml and 10,000 CFU of coliform bacteria per 100 ml. Dilution of the enriched cultures 1:10 with sterile broth prior to the PCR was sometimes necessary to obtain positive results. The assay was also conducted with food samples analyzed with or without overnight enrichment. As few as ≤3 CFU per g of food could be detected with samples subjected to overnight enrichment, while variable results were obtained for samples analyzed without prior enrichment. This rapid and sensitive nested PCR assay provides a useful tool for specific detection of C. jejuni or C. coli in drinking water, as well as environmental water, sewage, and food samples containing high levels of background organisms. PMID:10103261

  1. Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni.

    PubMed

    Zano, Stephen P; Pavlovsky, Alexander G; Viola, Ronald E

    2014-02-01

    S-Adenosylmethionine (AdoMet) participates in a wide range of methylation and other group-transfer reactions and also serves as the precursor for two groups of quorum-sensing molecules that function as regulators of the production of virulence factors in Gram-negative bacteria. The synthesis of AdoMet is catalyzed by AdoMet synthetases (MATs), a ubiquitous family of enzymes found in species ranging from microorganisms to mammals. The AdoMet synthetase from the bacterium Campylobacter jejuni (cjMAT) is an outlier among this homologous enzyme family, with lower sequence identity, numerous insertions and substitutions, and higher catalytic activity compared with other bacterial MATs. Alterations in the structure of this enzyme provide an explanation for its unusual dimeric quaternary structure relative to the other MATs. Taken together with several active-site substitutions, this new structure provides insights into its improved kinetic properties with alternative substrates. PMID:24531478

  2. Complete genome sequences of multidrug-resistant Campylobacter jejuni 14980A (turkey feces) and Campylobacter coli 14983A (housefly from turkey farm), harboring a novel gentamicin resistance mobile element.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug resistance (MDR) in foodborne pathogens is a major food safety and public health issue. Here we describe whole-genome sequences of two MDR strains of Campylobacter jejuni and Campylobacter coli from turkey feces and a housefly in a turkey farm. Both strains harbor a novel chromosomal genta...

  3. In Silico Analysis of the cadF Gene and Development of a Duplex Polymerase Chain Reaction for Species-Specific Identification of Campylobacter jejuni and Campylobacter coli

    PubMed Central

    Shams, Saeed; Bakhshi, Bita; Tohidi Moghadam, Tahereh

    2016-01-01

    Background Campylobacteriosis is a zoonotic infectious disease caused by Campylobacter jejuni and C. coli. The cadF gene is considered as a genus-specific gene while other genes are mainly used for discrimination at the species level. Objectives This study aimed to analyze the cadF gene and to develop a duplex PCR assay for simultaneous detection of C. coli and C. jejuni, the two commonly encountered species. Materials and Methods In silico analysis of the cadF gene was carried out by several software and available online tools. A duplex PCR optimized with specific primers was used for detection and differentiation of both species. To evaluate specificity and sensitivity of the test, a panel of different Campylobacter spp. together with several intestinal bacterial pathogens was tested. The limit of detection (LOD) of method was determined using serial dilutions of standard genomes. Results The analysis of the full size cadF gene indicated variations in this gene, which can be used to differentiate C. jejuni and C. coli. The duplex PCR designed in this study showed that it could simultaneously detect and differentiate both C. jejuni and C. coli with product sizes of 737 bp and 461 bp, respectively. This assay, with 100% specificity and sensitivity, had a limit of detection (LOD) of about 14 and 0.7 µg/mL for C. jejuni and C. coli, respectively. Conclusions In silico analysis of the cadF full-gene showed variations between the two species that can be used as a molecular target for differentiating C. jejuni and C. coli in a single-step duplex-PCR assay with high specificity and sensitivity. PMID:27127589

  4. A PCR-RFLP assay for the detection and differentiation of Campylobacter jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis.

    PubMed

    Kamei, Kazumasa; Asakura, Masahiro; Somroop, Srinuan; Hatanaka, Noritoshi; Hinenoya, Atsushi; Nagita, Akira; Misawa, Naoaki; Matsuda, Motoo; Nakagawa, Shinsaku; Yamasaki, Shinji

    2014-05-01

    Although Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of human gastrointestinal diseases, other Campylobacter species are also involved in human and animal infections. In this study, we developed a cytolethal distending toxin (cdt) gene-based PCR-RFLP assay for the detection and differentiation of C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis. Previously designed common primers, which can amplify the cdtB gene of C. jejuni, C. coli and C. fetus, were used for detecting seven Campylobacter species and differentiating between them by restriction digestion. The PCR-RFLP assay was validated with 277 strains, including 35 C. jejuni, 19 C. coli, 20 C. fetus, 24 C. hyointestinalis, 13 C. lari, 2 C. helveticus, 22 C. upsaliensis, 3 other Campylobacter spp. and 17 other species associated with human diseases. Sensitivity and specificity of the PCR-RFLP assay were 100 % except for C. hyointestinalis (88 % sensitivity). Furthermore, the PCR-RFLP assay successfully detected and differentiated C. jejuni, C. coli and C. fetus in clinical and animal samples. The results indicate that the PCR-RFLP assay is useful for the detection and differentiation of seven Campylobacter species important for human and animal diseases. PMID:24568882

  5. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria.

    PubMed

    Klein-Jöbstl, Daniela; Sofka, Dmitri; Iwersen, Michael; Drillich, Marc; Hilbert, Friederike

    2016-01-01

    Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves' feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic vs. conventional) and calf housing (place, and individual vs. group) were identified as significantly (p < 0.05) associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3%) were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%), followed by nalidixic acid (42.8%), and tetracycline (14.5%) was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for C. jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans. PMID:26870027

  6. High genetic similarity of ciprofloxacin-resistant Campylobacter jejuni in central Europe

    PubMed Central

    Kovač, Jasna; Čadež, Neža; Stessl, Beatrix; Stingl, Kerstin; Gruntar, Igor; Ocepek, Matjaž; Trkov, Marija; Wagner, Martin; Smole Možina, Sonja

    2015-01-01

    Campylobacteriosis is the leading zoonosis in the European Union with the majority of cases attributed to Campylobacter jejuni. Although the disease is usually self-limiting, some severe cases need to be treated with antibiotics, primarily macrolides and quinolones. However, the resistance to the latter is reaching alarming levels in most of the EU countries. To shed light on the expansion of antibiotic resistance in central Europe, we have investigated genetic similarity across 178 ciprofloxacin-resistant C. jejuni mostly isolated in Slovenia, Austria and Germany. We performed comparative genetic similarity analyses using allelic types of seven multilocus sequence typing housekeeping genes, and single nucleotide polymorphisms of a quinolone resistance determining region located within the DNA gyrase subunit A gene. This analysis revealed high genetic similarity of isolates from clonal complex ST-21 that carry gyrA allelic type 1 in all three of these central-European countries, suggesting these ciprofloxacin resistant isolates arose from a recent common ancestor and are spread clonally. PMID:26557112

  7. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni.

    PubMed

    Oh, Euna; Jeon, Byeonghwa

    2014-01-01

    Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni. PMID:24498070

  8. Economical, simple method for production of the gaseous environment required for cultivation of Campylobacter jejuni.

    PubMed Central

    Pennie, R A; Zunino, J N; Rose, C E; Guerrant, R L

    1984-01-01

    Campylobacter jejuni is an enteric pathogen recognized worldwide as a cause of diarrhea. Its isolation from stool samples requires a microaerophilic environment that heretofore has been expensive and cumbersome to create. An economical, portable, and simple method is described which involves the production of appropriate concentrations of oxygen and carbon dioxide. Inside a plastic bag are placed two cups, one containing fine steel wool (grade 0) previously soaked in a 2.5% aqueous solution of copper sulfate and the other containing an Alka-Seltzer tablet in tap water. As suggested by Jurgensen et al. (Rev. Bras. Pat. Clin. 18:58-63, 1982), we used the effervescent antacid to generate CO2. By plate counts, we found this method to be as reliable in the cultivation of 20 isolates of C. jejuni in pure and mixed fecal culture as the reference gas method (85% N2, 10% CO2, and 5% O2). Analyses of the gas mixture inside the bag after up to 24 h of incubation confirmed the creation of an atmosphere of reduced O2 and increased CO2 concentrations. This method is eminently suitable for field situations in which more costly supplies are not available. PMID:6436301

  9. Economical, simple method for production of the gaseous environment required for cultivation of Campylobacter jejuni.

    PubMed

    Pennie, R A; Zunino, J N; Rose, C E; Guerrant, R L

    1984-09-01

    Campylobacter jejuni is an enteric pathogen recognized worldwide as a cause of diarrhea. Its isolation from stool samples requires a microaerophilic environment that heretofore has been expensive and cumbersome to create. An economical, portable, and simple method is described which involves the production of appropriate concentrations of oxygen and carbon dioxide. Inside a plastic bag are placed two cups, one containing fine steel wool (grade 0) previously soaked in a 2.5% aqueous solution of copper sulfate and the other containing an Alka-Seltzer tablet in tap water. As suggested by Jurgensen et al. (Rev. Bras. Pat. Clin. 18:58-63, 1982), we used the effervescent antacid to generate CO2. By plate counts, we found this method to be as reliable in the cultivation of 20 isolates of C. jejuni in pure and mixed fecal culture as the reference gas method (85% N2, 10% CO2, and 5% O2). Analyses of the gas mixture inside the bag after up to 24 h of incubation confirmed the creation of an atmosphere of reduced O2 and increased CO2 concentrations. This method is eminently suitable for field situations in which more costly supplies are not available. PMID:6436301

  10. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway.

    PubMed

    Chen, Mark M; Weerapana, Eranthie; Ciepichal, Ewa; Stupak, Jacek; Reid, Christopher W; Swiezewska, Ewa; Imperiali, Barbara

    2007-12-18

    Campylobacter jejuni contains a general N-linked glycosylation pathway in which a heptasaccharide is sequentially assembled onto a polyisoprenyl diphosphate carrier and subsequently transferred to the asparagine side chain of an acceptor protein. The enzymes in the pathway function at a membrane interface and have in common amphiphilic membrane-bound polyisoprenyl-linked substrates. Herein, we examine the potential role of the polyisoprene component of the substrates by investigating the relative substrate efficiencies of polyisoprene-modified analogues in individual steps of the pathway. Chemically defined substrates for PglC, PglJ, and PglB are prepared via semisynthetic approaches. The substrates included polyisoprenols of varying length, double bond geometry, and degree of saturation for probing the role of the hydrophobic polyisoprene in substrate specificity. Kinetic analysis reveals that all three enzymes exhibit distinct preferences for the polyisoprenyl carrier whereby cis-double bond geometry and alpha-unsaturation of the native substrate are important features, while the precise polyisoprene length may be less critical. These findings suggest that the polyisoprenyl carrier plays a specific role in the function of these enzymes beyond a purely physical role as a membrane anchor. These studies underscore the potential of the C. jejuni N-linked glycosylation pathway as a system for investigating the biochemical and biophysical roles of polyisoprenyl carriers common to prokaryotic and eukaryotic glycosylation. PMID:18034500

  11. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.

    PubMed

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-04-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering. PMID:25833378

  12. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering

    PubMed Central

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-01-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering. PMID:25833378

  13. Serotyping of Campylobacter jejuni by slide agglutination based on heat-labile antigenic factors.

    PubMed Central

    Lior, H; Woodward, D L; Edgar, J A; Laroche, L J; Gill, P

    1982-01-01

    A serotyping scheme for Campylobacter jejuni was developed based on slide agglutination of live bacteria with whole cell antisera absorbed with homologous heated and heterologous unheated cross-reactive antigens. Among 815 isolates from human and nonhuman sources, 21 serogroups were recognized. Of the 615 isolates from human cases of gastroenteritis, 529 (86%) were typable; 455 strains agglutinated in 20 single antisera, whereas 74 isolates agglutinated in various pairs of antisera, allowing subdivision of some main serogroups into subserogroups. Of the 200 isolates of C. jejuni from nonhuman sources (chicken, swine, etc.), 166 (83%) were typable, 145 cultures agglutinated in various single antisera, and 21 strains agglutinated with different pairs of antisera. Among isolates from all sources, 8 serogroups (1, 2, 4, 5, 7, 8, 9, and 11) were encountered most frequently. Serogroups 1, 2, 4, 5, 7, 9, and 11 were most common among human isolates; the majority of the chicken and all of the swine isolates belonged to the same serogroups identified from human cases. Very good serological correlation was obtained in 20 family outbreaks and 4 community outbreaks. PMID:7096555

  14. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    SciTech Connect

    Su, Chih-Chia; Shi, Feng; Gu, Ruoyu; Li, Ming; McDermott, Gerry; Yu, Edward W.; Zhang, Qijing

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  15. Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni.

    PubMed

    Martínez-Rodriguez, A; Kelly, A F; Park, S F; Mackey, B M

    2004-02-01

    During the stationary phase of Campylobacter jejuni NCTC 11351 viable numbers fluctuate in a characteristic fashion. After reaching the maximum cell count (ca. 2 x 10(9) CFU/ml) in early stationary phase (denoted phase 1), viable numbers subsequently decrease to about 10(6) CFU/ml after 48 h and then increase again to about 10(8) CFU/ml (denoted phase 2) before decreasing once more to a value intermediate between the previous maximum and minimum values. To investigate whether the increase in viable numbers following the initial decline was due to the emergence of a new strain with a growth advantage in stationary phase analogous to the 'GASP' phenotype described in Escherichia coli [Science 259 (1993) 1757], we conducted mixed culture experiments with cells from the original culture and antibiotic-resistant marked organisms isolated from the re-growth phase. In many experiments of this type, strains isolated from phase 2 failed to out-compete the original strain and we have thus been unable to demonstrate a convincing GASP phenotype. However, strains isolated from phase 2 showed a much lower rate of viability loss in early stationary phase and a small increase in resistance to aeration, peroxide challenge and heat, indicating that the emergent strain was different from the parent. These results support the view that dynamic population changes occur during the stationary phase of C. jejuni that may play a role in the survival of this organism. PMID:14751687

  16. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni.

    PubMed

    Cwikla, C; Schmidt, K; Matthias, A; Bone, K M; Lehmann, R; Tiralongo, E

    2010-05-01

    The prevalence of gastric diseases is increasing with H. pylori, the causative agent of acute and chronic gastritis, being a major predisposing factor for peptic ulcer disease and gastric carcinoma. C. jejuni is the most common cause of enteric infections, particularly among children, resulting in severe diarrhoea. Increasing drug resistance of these bacteria against standard antibiotics, and the more widespread use of herbal medicines, favours investigations into additional anti-Helicobacter and anti-Campylobacter effects of phytotherapeutics that are already used for their beneficial effects on bowel and digestive functions. Twenty-one hydroethanol herbal extracts and four essential oils were screened for antibacterial activity using a modification of a previously described micro-dilution assay and compared with the inhibitory effects of antibiotics. The herbal extracts showing the highest growth inhibition of C. jejuni were Calendula officinalis, Matricaria recutita, Zingiber officinale, Salvia officinalis, Foeniculum vulgare and Silybum marianum. Agrimonia eupatoria, Hydrastis canadensis, Filipendula ulmaria and Salvia officinalis were the most active herbal extracts in inhibiting the growth of H. pylori. This study provides evidence for additional beneficial effects of phytotherapeutics marketed for their gastrointestinal effects and identifies new beneficial antibacterial effects for some herbal medicines not currently recommended for gastrointestinal problems. PMID:19653313

  17. Probiotics down-regulate flaA sigma28 promoter in Campylobacter jejuni.

    PubMed

    Ding, Wu; Wang, Haifeng; Griffiths, Mansel W

    2005-11-01

    Lactobacilli and bifidobacteria are important members of the gastrointestinal microflora of humans and animals and are thought to have positive effects on human health. Therefore, there is an increasing interest in using these microorganisms as probiotics to be incorporated into either fermented dairy products or tablets. However, convincing scientific data that support claims of their health benefits are scarce. The effect of cell-free extracts of milk fermented by 10 probiotic bacteria (five Bifidobacterium strains and five Lactobacillus strains) on the expression of the flaA gene of Campylobacter jejuni was assessed using a fusion between the flaA sigma28 promoter and a promoterless luxCDABE cassette carried on the plasmid pRYluxCDABE, which resulted in strains with quantifiable luminescence linked to flaA sigma28 promoter activity. Cell-free extracts of milk fermented by all of the tested probiotic strains inhibited the growth of the C. jejuni and down-regulatedflaA sigma28 promoter activity. Two nonprobiotic lactic acid bacterial strains, Lactococcus lactis and Streptococcus thermophilus, were less inhibitory. PMID:16300065

  18. Multilocus Sequence Typing and Antimicrobial Resistance of Campylobacter jejuni Isolated from Dairy Calves in Austria

    PubMed Central

    Klein-Jöbstl, Daniela; Sofka, Dmitri; Iwersen, Michael; Drillich, Marc; Hilbert, Friederike

    2016-01-01

    Human campylobacteriosis is primarily associated with poultry but also cattle. In this study, 55 Campylobacter jejuni strains isolated from 382 dairy calves’ feces were differentiated by multilocus sequence typing and tested for antimicrobial resistance. The most prevalent sequence type (ST) was ST883 (20.0%), followed by ST48 (14.5%), and ST50 (9.1%). In contrast to ST48 and ST50, ST883 has rarely been described in cattle previously. Furthermore, risk factor analysis was performed for the presence of the most prevalent STs in these calves. Multiple regression analysis revealed that the type of farm (organic vs. conventional) and calf housing (place, and individual vs. group) were identified as significantly (p < 0.05) associated with the presence of ST883 in calves, and ST50 was associated with calf diarrhea. Antimicrobial resistance was detected in 58.2% of the isolates. Most of the resistant isolates (81.3%) were resistant to more than one antimicrobial. Most frequently, resistance to ciprofloxacin (49.1%), followed by nalidixic acid (42.8%), and tetracycline (14.5%) was observed. The results of the present study support the hypothesis that dairy calves may serve as a potential reservoir for C. jejuni and pose a risk for transmission, including antimicrobial resistant isolates to the environment and to humans. PMID:26870027

  19. Molecular epidemiology of Campylobacter jejuni in a geographically isolated country with a uniquely structured poultry industry.

    PubMed

    Müllner, Petra; Collins-Emerson, Julie M; Midwinter, Anne C; Carter, Philip; Spencer, Simon E F; van der Logt, Peter; Hathaway, Steve; French, Nigel P

    2010-04-01

    In New Zealand the number of campylobacteriosis notifications increased markedly between 2000 and 2007. Notably, this country's poultry supply is different than that of many developed countries as the fresh and frozen poultry available at retail are exclusively of domestic origin. To examine the possible link between human cases and poultry, a sentinel surveillance site was established to study the molecular epidemiology of Campylobacter jejuni over a 3-year period from 2005 to 2008 using multilocus sequence typing. Studies showed that 60.1 to 81.4% of retail poultry carcasses from the major suppliers were contaminated with C. jejuni. Differences were detected in the probability and level of contamination and the relative frequency of genotypes for individual poultry suppliers and humans. Some carcasses were contaminated with isolates belonging to more than one sequence type (ST), and there was evidence of both ubiquitous and supplier-associated strains, an epidemiological pattern not recognized yet in other countries. The common poultry STs were also common in human clinical cases, providing evidence that poultry is a major contributor to human infection. Both internationally rare genotypes, such as ST-3069 and ST-474, and common genotypes, such as ST-45 and ST-48, were identified in this study. The dominant human sequence type in New Zealand, ST-474, was found almost exclusively in isolates from one poultry supplier, which provided evidence that C. jejuni has a distinctive molecular epidemiology in this country. These results may be due in part to New Zealand's geographical isolation and its uniquely structured poultry industry. PMID:20154115

  20. High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Huynh, Steven; Scott, Nichollas E.; Frirdich, Emilisa; Apel, Dmitry; Foster, Leonard J.; Parker, Craig T.

    2015-01-01

    ABSTRACT Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. PMID:26419875

  1. Campylobacter jejuni pdxA Affects Flagellum-Mediated Motility to Alter Host Colonization

    PubMed Central

    Asakura, Hiroshi; Hashii, Noritaka; Uema, Masashi; Kawasaki, Nana; Sugita-Konishi, Yoshiko; Igimi, Shizunobu; Yamamoto, Shigeki

    2013-01-01

    Vitamin B6 (pyridoxal-5'-phosphate, PLP) is linked to a variety of biological functions in prokaryotes. Here, we report that the pdxA (putative 4-hydroxy-L-threonine phosphate dehydrogenase) gene plays a pivotal role in the PLP-dependent regulation of flagellar motility, thereby altering host colonization in a leading foodborne pathogen, Campylobacter jejuni. A C. jejuni pdxA mutant failed to produce PLP and exhibited a coincident loss of flagellar motility. Mass spectrometric analyses showed a 3-fold reduction in the main flagellar glycan pseudaminic acid (Pse) associated with the disruption of pdxA. The pdxA mutant also exhibited reduced growth rates compared with the WT strain. Comparative metabolomic analyses revealed differences in respiratory/energy metabolism between WT C. jejuni and the pdxA mutant, providing a possible explanation for the differential growth fitness between the two strains. Consistent with the lack of flagellar motility, the pdxA mutant showed impaired motility-mediated responses (bacterial adhesion, ERK1/2 activation, and IL-8 production) in INT407 cells and reduced colonization of chickens compared with the WT strain. Overall, this study demonstrated that the pdxA gene affects the PLP-mediated flagellar motility function, mainly through alteration of Pse modification, and the disruption of this gene also alters the respiratory/energy metabolisms to potentially affect host colonization. Our data therefore present novel implications regarding the utility of PLP and its dependent enzymes as potent target(s) for the control of this pathogen in the poultry host. PMID:23936426

  2. Genetic Diversity and Antimicrobial Susceptibility of Campylobacter jejuni Isolates Associated with Sheep Abortion in the United States and Great Britain

    PubMed Central

    Wu, Zuowei; Sippy, Rachel; Plummer, Paul; Vidal, Ana; Newell, Diane; Zhang, Qijing

    2014-01-01

    Campylobacter infection is a leading cause of ovine abortion worldwide. Historically, genetically diverse Campylobacter fetus and Campylobacter jejuni strains have been implicated in such infections, but since 2003 a highly pathogenic, tetracycline-resistant C. jejuni clone (named SA) has become the predominant cause of sheep abortions in the United States. Whether clone SA was present in earlier U.S. abortion isolates (before 2000) and is associated with sheep abortions outside the United States are unknown. Here, we analyzed 54 C. jejuni isolates collected from U.S. sheep abortions at different time periods and compared them with 42 C. jejuni isolates associated with sheep abortion during 2002 to 2008 in Great Britain, using multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and array-based comparative genomic hybridization (CGH). Although clone SA (ST-8) was present in the early U.S. isolates, it was not as tetracycline resistant (19% versus 100%) or predominant (66% versus 91%) as it was in the late U.S isolates. In contrast, C. jejuni isolates from Great Britain were genetically diverse, comprising 19 STs and lacking ST-8. PFGE and CGH analyses of representative strains further confirmed the population structure of the abortion isolates. Notably, the Great Britain isolates were essentially susceptible to most tested antibiotics, including tetracycline, while the late U.S. isolates were universally resistant to this antibiotic, which could be explained by the common use of tetracyclines for control of sheep abortions in the United States but not in Great Britain. These results suggest that the dominance of clone SA in sheep abortions is unique to the United States, and the use of tetracyclines may have facilitated selection of this highly pathogenic clone. PMID:24648552

  3. Experimental Campylobacter jejuni infection in the chicken: an animal model of axonal Guillain-Barré syndrome.

    PubMed Central

    Li, C Y; Xue, P; Tian, W Q; Liu, R C; Yang, C

    1996-01-01

    OBJECTIVE: To develop and characterise an animal model of paralytic neuropathy after Campylobacter jejuni infection. Campylobacter infection precedes development of many cases of Guillain-Barré syndrome and is particularly associated with cases having prominent axonal degeneration. Understanding the pathogenesis of Guillain-Barré syndrome after C jejuni infection has been slowed by the lack of animal models. METHODS: A spontaneous paralytic neuropathy is described that developed in chickens from the farms of four patients with Guillain-Barré syndrome. The production of paralytic neuropathy in chickens experimentally fed Campylobacter jejuni isolated from one of these patients is reported. The sciatic nerves of the spontaneously paralysed chickens were examined pathologically in teased fibres, in plastic embedded sections, and by electron microscopy. Two large groups of chickens were then fed cultures of a C jejuni (Penner type O:19) isolated from one of these patients. RESULTS: The chickens with spontaneous paralysis had pathologically noninflammatory neuropathy. Pathology in the sciatic nerves ranged from no detectable changes to severe Wallerian-like degeneration. In the experimentally inoculated groups, an average of 33% of the chickens became paralysed. The median time after inoculation to paralysis was 12 days. The lesions found in the first few days of paralysis included nodal lengthening and paranodal demyelination. In those animals that survived for several days after onset of weakness, the pathology was dominated by extensive Wallerian-like degeneration. Animals that survived for weeks with no clinically apparent neuropathy had paranodal remyelination in some teased nerve fibres, reflecting earlier paranodal demyelination. CONCLUSION: Experimental inoculation with C jejuni may provide a new model for understanding some forms of Guillain-Barré syndrome. Images PMID:8795599

  4. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    PubMed

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  5. Membrane integrity of Campylobacter jejuni subjected to high pressure is pH-dependent

    NASA Astrophysics Data System (ADS)

    Lerasle, M.; Guillou, S.; Simonin, H.; Laroche, M.; de Lamballerie, M.; Federighi, M.

    2012-03-01

    Our study focuses on a foodborne pathogen, Campylobacter, which is responsible for the most frequent bacterial enteritis worldwide. Membrane integrity of Campylobacter jejuni NCTC 11168 cells treated at high pressure (300 MPa, 20°C, 10 min) at pH 7.0 and pH 5.6 was measured by fluorescence spectroscopy of propidium iodide (PI) uptake. The percentage of membrane-damaged cells by high pressure, in which PI is allowed to penetrate, was determined using two calibration methods based on the PI fluorescence signal obtained with cells killed either by a heat treatment (80°C for 15 min) or by a pressure treatment (400 MPa, 20°C, 10 min). Both calibrations were shown to be statistically different (P<0.05), particularly at acidic pH, suggesting that a difference in the penetration of PI into bacterial cells might depend on the mode of cell inactivation. These results corroborate the fact that the mechanism of microbial inactivation by high pressure is pH-dependent.

  6. Updated Campylobacter jejuni Capsule PCR Multiplex Typing System and Its Application to Clinical Isolates from South and Southeast Asia

    PubMed Central

    Poly, Frédéric; Serichantalergs, Oralak; Kuroiwa, Janelle; Pootong, Piyarat; Mason, Carl; Guerry, Patricia; Parker, Craig T.

    2015-01-01

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as the gold standard for C. jejuni typing. A preliminary multiplex PCR technique covering 17 serotypes was previously developed in order to replace this classic serotyping scheme. Here we report the completion of the multiplex PCR technology that is able to identify all the 47 Penner serotypes types known for C. jejuni. The number of capsule types represented within the 47 serotypes is 35. We have applied this method to a collection of 996 clinical isolates from Thailand, Cambodia and Nepal and were able to successfully determine capsule types of 98% of these. PMID:26630669

  7. Occupational Exposure to Swine, Poultry, and Cattle and Antibody Biomarkers of Campylobacter jejuni Exposure and Autoimmune Peripheral Neuropathy

    PubMed Central

    Vegosen, Leora; Breysse, Patrick N.; Agnew, Jacqueline; Gray, Gregory C.; Nachamkin, Irving; Sheikh, Kazim; Kamel, Freya; Silbergeld, Ellen

    2015-01-01

    Introduction Foodborne Campylobacter jejuni infection has been associated with an increased risk of autoimmune peripheral neuropathy, but risks of occupational exposure to C. jejuni have received less attention. This study compared anti-C. jejuni IgA, IgG, and IgM antibody levels, as well as the likelihood of testing positive for any of five anti-ganglioside autoantibodies, between animal farmers and non-farmers. Anti-C. jejuni antibody levels were also compared between farmers with different animal herd or flock sizes. The relationship between anti-C. jejuni antibody levels and detection of anti-ganglioside autoantibodies was also assessed. Methods Serum samples from 129 Agricultural Health Study swine farmers (some of whom also worked with other animals) and 46 non-farmers, all from Iowa, were analyzed for anti-C. jejuni antibodies and anti-ganglioside autoantibodies using ELISA. Information on animal exposures was assessed using questionnaire data. Anti-C. jejuni antibody levels were compared using Mann-Whitney tests and linear regression on log-transformed outcomes. Fisher’s Exact Tests and logistic regression were used to compare likelihood of positivity for anti-ganglioside autoantibodies. Results Farmers had significantly higher levels of anti-C. jejuni IgA (p < 0.0001) and IgG (p = 0.02) antibodies compared to non-farmers. There was no consistent pattern of anti-C. jejuni antibody levels based on animal herd or flock size. A higher percentage of farmers (21%) tested positive for anti-ganglioside autoantibodies compared to non-farmers (9%), but this difference was not statistically significant (p = 0.11). There was no significant association between anti-C. jejuni antibody levels and anti-ganglioside autoantibodies. Conclusions The findings provide evidence that farmers who work with animals may be at increased risk of exposure to C. jejuni. Future research should include longitudinal studies of exposures and outcomes, as well as studies of interventions

  8. Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells

    PubMed Central

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

    2012-01-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  9. Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni

    PubMed Central

    Zeng, Ximin; Gillespie, Barbara; Lin, Jun

    2015-01-01

    Beta-lactam antibiotics are an important class of antibiotics for treating bacterial infections. Despite prevalent β-lactam resistance in Campylobacter jejuni, the leading bacterial cause of human diarrhea in developed countries, molecular mechanism of β-lactam resistance in C. jejuni is still largely unknown. In this study, C. jejuni 81–176 was used for random transposon mutagenesis. Screening of a 2,800-mutant library identified 22 mutants with increased susceptibility to ampicillin. Of these mutants, two mutants contains mutations in Cj0843c (a putative lytic transglycosylase gene) and in its upstream gene Cj0844c, respectively. Complementation experiment demonstrated that the Cj0843 contributes to β-lactam resistance. The Cj0843c insertional mutation was subsequently introduced to diverse C. jejuni clinical strains for MIC test, showing that Cj0843c contributes to both intrinsic and acquired β-lactam resistance of C. jejuni. Consistent with this finding, inactivation of Cj0843c also dramatically reduced β-lactamase activity. Genomic examination and PCR analysis showed Cj0843c is widely distributed in C. jejuni. High purity recombinant Cj0843c was produced for generation of specific antiserum. The Cj0843 was localized in the periplasm, as demonstrated by immunoblotting using specific antibodies. Turbidimetric assay further demonstrated the capability of the purified Cj0843c to hydrolyze cell walls. Inactivation of Cj0843c also significantly reduced C. jejuni colonization in the intestine. Together, this study identifies a mechanism of β-lactam resistance in C. jejuni and provides insights into the role of cell wall metabolism in regulating β-lactamase activity. PMID:26635760

  10. Genotypic characterisation and cluster analysis of Campylobacter jejuni isolates from domestic pets, human clinical cases and retail food.

    PubMed

    Acke, Els; Carroll, Cyril; O'Leary, Aoife; McGill, Kevina; Kelly, Lorraine; Lawlor, Amanda; Madden, Robert H; Moran, Lynn; Scates, Pam; McNamara, Eleanor; Moore, John E; Jones, Boyd R; Fanning, Seamus; Whyte, Paul

    2011-01-01

    The genetic similarity of Campylobacter jejuni isolates from pets, compared to human clinical cases and retail food isolates collected in Ireland over 2001-2006 was investigated by cluster analysis of pulsed-field gel electrophoresis (PFGE) fingerprinting profiles. Comparison of the PFGE profiles of 60 pet isolates and 109 human isolates revealed that seven (4.1%) profiles were grouped in clusters including at least one human and one pet C. jejuni isolate. In total six (1.6%) of 60 pet and 310 food profiles were in clusters with at least one food and one pet C. jejuni isolate. The detection of only a small number of genetically indistinguishable isolates by PFGE profile cluster analysis from pets and from humans with enteritis in this study suggests that pets are unlikely to be an important reservoir for human campylobacteriosis in Ireland. However, genetically indistinguishable isolates were detected and C. jejuni from pets may circulate and may contribute to clinical infections in humans. In addition, contaminated food fed to pets may be a potential source of Campylobacter infection in pets, which may subsequently pose a risk to humans. PMID:21777493

  11. Typing of Campylobacter jejuni and Campylobacter coli isolated from live broilers and retail broiler meat by flaA-RFLP, MLST, PFGE and REP-PCR.

    PubMed

    Behringer, Megan; Miller, William G; Oyarzabal, Omar A

    2011-02-01

    We analyzed 100 Campylobacter spp. isolates (C. jejuni and C. coli) from Grenada, Puerto Rico and Alabama, which were collected from live broilers or retail broiler meat. We analyzed these isolates with four molecular typing methods: restriction fragment length polymorphism of the flaA gene (flaA-RFLP), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and automated repetitive extragenic palindromic polymerase chain reaction (REP-PCR) using the DiversiLab system. All methods performed similarly for the typing of C. jejuni and C. coli. The DNA extraction method appears to influence the results obtained with REP-PCR. This method was better for the typing of C. jejuni than C. coli, however both REP-PCR and flaA-RFLP generated types that were indistinguishable between C. jejuni and C. coli and appeared to be random, without any relationship to species, location, or source of isolates. PFGE and MLST generated typing results that had a better correlation with the geographic location of the isolates and showed higher concordance with the Wallace coefficient. The adjusted Rand coefficient did not show higher concordance among the methods, although the PFGE/MLST combination exhibited the highest concordance. PFGE and MLST revealed a better discriminatory power for C. coli isolates than REP-PCR or flaA-RFLP. The use of readily available online tools to calculate the confidence interval of the Simpson's index of diversity and the adjusted Rand and Wallace coefficients helped estimate the discriminatory power of typing methods. Further studies using different C. jejuni and C. coli strains may expand our understanding of the benefits and limitations of each of these typing methods for epidemiological studies of Campylobacter spp. PMID:21130125

  12. Phenotypes of Campylobacter jejuni luxS Mutants Are Depending on Strain Background, Kind of Mutation and Experimental Conditions

    PubMed Central

    Adler, Linda; Alter, Thomas; Sharbati, Soroush; Gölz, Greta

    2014-01-01

    Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for

  13. Diversity and relatedness of Shiga toxin-producing Escherichia coli and Campylobacter jejuni between farms in a dairy catchment.

    PubMed

    Irshad, H; Cookson, A L; Ross, C M; Jaros, P; Prattley, D J; Donnison, A; McBRIDE, G; Marshall, J; French, N P

    2016-05-01

    The aim of this study was to examine the population structure, transmission and spatial relationship between genotypes of Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni, on 20 dairy farms in a defined catchment. Pooled faecal samples (n = 72) obtained from 288 calves were analysed by real-time polymerase chain reaction (rtPCR) for E. coli serotypes O26, O103, O111, O145 and O157. The number of samples positive for E. coli O26 (30/72) was high compared to E. coli O103 (7/72), O145 (3/72), O157 (2/72) and O111 (0/72). Eighteen E. coli O26 and 53 C. jejuni isolates were recovered from samples by bacterial culture. E. coli O26 and C. jejuni isolates were genotyped using pulsed-field gel electrophoresis and multilocus sequence typing, respectively. All E. coli O26 isolates could be divided into four clusters and the results indicated that E. coli O26 isolates recovered from calves on the same farm were more similar than isolates recovered from different farms in the catchment. There were 11 different sequence types of C. jejuni isolated from the cattle and 22 from water. An analysis of the population structure of C. jejuni isolated from cattle provided evidence of clustering of genotypes within farms, and among groups of farms separated by road boundaries. PMID:26593403

  14. Effects of subtherapeutic administration of antimicrobial agents to beef cattle on the prevalence of antimicrobial resistance in Campylobacter jejuni and Campylobacter hyointestinalis.

    PubMed

    Inglis, G D; McAllister, T A; Busz, H W; Yanke, L J; Morck, D W; Olson, M E; Read, R R

    2005-07-01

    The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (> or =94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of

  15. Effects of Subtherapeutic Administration of Antimicrobial Agents to Beef Cattle on the Prevalence of Antimicrobial Resistance in Campylobacter jejuni and Campylobacter hyointestinalis†

    PubMed Central

    Inglis, G. D.; McAllister, T. A.; Busz, H. W.; Yanke, L. J.; Morck, D. W.; Olson, M. E.; Read, R. R.

    2005-01-01

    The influence of antimicrobial agents on the development of antimicrobial resistance (AMR) in Campylobacter isolates recovered from 300 beef cattle maintained in an experimental feedlot was monitored over a 315-day period (11 sample times). Groups of calves were assigned to one of the following antimicrobial treatments: chlortetracycline and sulfamethazine (CS), chlortetracycline alone (Ct), virginiamycin, monensin, tylosin phosphate, and no antimicrobial agent (i.e., control treatment). In total, 3,283 fecal samples were processed for campylobacters over the course of the experiment. Of the 2,052 bacterial isolates recovered, 92% were Campylobacter (1,518 were Campylobacter hyointestinalis and 380 were C. jejuni). None of the antimicrobial treatments decreased the isolation frequency of C. jejuni relative to the control treatment. In contrast, C. hyointestinalis was isolated less frequently from animals treated with CS and to a lesser extent from animals treated with Ct. The majority (≥94%) of C. jejuni isolates were sensitive to ampicillin, erythromycin, and ciprofloxacin, but more isolates with resistance to tetracycline were recovered from animals fed Ct. All of the 1,500 isolates of C. hyointestinalis examined were sensitive to ciprofloxacin. In contrast, 11%, 10%, and 1% of these isolates were resistant to tetracycline, erythromycin, and ampicillin, respectively. The number of animals from which C. hyointestinalis isolates with resistance to erythromycin and tetracycline were recovered differed among the antimicrobial treatments. Only Ct administration increased the carriage rates of erythromycin-resistant isolates of C. hyointestinalis, and the inclusion of CS in the diet increased the number of animals from which tetracycline-resistant isolates were recovered. The majority of C. hyointestinalis isolates with resistance to tetracycline were obtained from cohorts within a single pen, and most of these isolates were recovered from cattle during feeding of a

  16. Rapid Identification of Novel Immunodominant Proteins and Characterization of a Specific Linear Epitope of Campylobacter jejuni

    PubMed Central

    Hoppe, Sebastian; Bier, Frank F.; Nickisch-Rosenegk, Markus v.

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium’s pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify

  17. Oral Immunization with Cholera Toxin Provides Protection against Campylobacter jejuni in an Adult Mouse Intestinal Colonization Model

    PubMed Central

    Albert, M. John; Mustafa, Abu Salim; Islam, Anjum; Haridas, Shilpa

    2013-01-01

    ABSTRACT Immunity to Campylobacter jejuni, a major diarrheal pathogen, is largely Penner serotype specific. For broad protection, a vaccine should be based on a common antigen(s) present in all strains. In our previous study (M. J. Albert, S. Haridas, D. Steer, G. S. Dhaunsi, A. I. Smith, and B. Adler, Infect. Immun. 75:3070–3073, 2007), we demonstrated that antibody to cholera toxin (CT) cross-reacted with the major outer membrane proteins (MOMPs) of all Campylobacter jejuni strains tested. In the current study, we investigated whether immunization with CT protects against intestinal colonization by C. jejuni in an adult mouse model and whether the nontoxic subunit of CT (CT-B) is the portion mediating cross-reaction. Mice were orally immunized with CT and later challenged with C. jejuni strains (48, 75, and 111) of different serotypes. Control animals were immunized with phosphate-buffered saline. Fecal shedding of challenge organisms was studied daily for 9 days. Serum and fecal antibody responses were studied by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The cross-reactivity of rabbit CT-B antibody to MOMP was studied by immunoblotting. The reactivity of 21 overlapping 30-mer oligopeptides (based on MOMP’s sequence) against rabbit CT antibody was tested by ELISA. Test animals produced antibodies to CT and MMP in serum and feces and showed resistance to colonization, the vaccine efficacies being 49% (for strain 48), 37% (for strain 75), and 34% (for strain 111) (P, ≤0.05 to ≤0.001). One peptide corresponding to a variable region of MOMP showed significant reactivity. CT-B antibody cross-reacted with MOMP. Since CT-B is a component of oral cholera vaccines, it might be possible to control C. jejuni diarrhea with these vaccines. PMID:23653448

  18. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  19. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB

    PubMed Central

    2012-01-01

    Background Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. Results In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5) were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA). We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were subjected to cassette

  20. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source

    PubMed Central

    Di Giannatale, Elisabetta; Garofolo, Giuliano; Alessiani, Alessandra; Di Donato, Guido; Candeloro, Luca; Vencia, Walter; Decastelli, Lucia; Marotta, Francesca

    2016-01-01

    Food-borne campylobacteriosis is caused mainly by the handling or consumption of undercooked chicken meat or by the ingestion of contaminated raw milk. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritize food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to our understanding of their epidemiology and population structure. We molecularly characterized 56 Campylobacter jejuni isolates (31 from patients hospitalized with gastroenteritis, 17 from raw milk samples, and 8 from chicken samples) using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) in order to trace the source of the disease. We also used a population genetic approach to investigate the source of the human cases from six different reservoirs of infection. MLST identified 25 different sequence types and 11 clonal complexes (CCs) (21, 658, 206, 353, 443, 48, 61, 257, 1332, 354, 574) and these included several alleles not cited previously in the PubMLST international database. The most prevalent CCs were 21, 206, and 354. PFGE showed 34 pulsotypes divided between 28 different clusters. At the fine scale, by means of PFGE and MLST, only two human cases were linked to raw milk, while one case was linked to chicken meat. The investigation revealed the presence of several genotypes among the human isolates, which probably suggests multiple foci for the infections. Finally, the source attribution model we used revealed that most cases were attributed to chicken (69.75%) as the main reservoir in Italy, followed to a lesser extent by the following sources: cattle (8.25%); environment (6.28%); wild bird (7.37%); small ruminant (5.35%), and pork (2.98%). This study confirms the importance of correlating epidemiological investigations with molecular epidemiological data to better understand the dynamics of infection. PMID:27379033

  1. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source.

    PubMed

    Di Giannatale, Elisabetta; Garofolo, Giuliano; Alessiani, Alessandra; Di Donato, Guido; Candeloro, Luca; Vencia, Walter; Decastelli, Lucia; Marotta, Francesca

    2016-01-01

    Food-borne campylobacteriosis is caused mainly by the handling or consumption of undercooked chicken meat or by the ingestion of contaminated raw milk. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritize food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to our understanding of their epidemiology and population structure. We molecularly characterized 56 Campylobacter jejuni isolates (31 from patients hospitalized with gastroenteritis, 17 from raw milk samples, and 8 from chicken samples) using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) in order to trace the source of the disease. We also used a population genetic approach to investigate the source of the human cases from six different reservoirs of infection. MLST identified 25 different sequence types and 11 clonal complexes (CCs) (21, 658, 206, 353, 443, 48, 61, 257, 1332, 354, 574) and these included several alleles not cited previously in the PubMLST international database. The most prevalent CCs were 21, 206, and 354. PFGE showed 34 pulsotypes divided between 28 different clusters. At the fine scale, by means of PFGE and MLST, only two human cases were linked to raw milk, while one case was linked to chicken meat. The investigation revealed the presence of several genotypes among the human isolates, which probably suggests multiple foci for the infections. Finally, the source attribution model we used revealed that most cases were attributed to chicken (69.75%) as the main reservoir in Italy, followed to a lesser extent by the following sources: cattle (8.25%); environment (6.28%); wild bird (7.37%); small ruminant (5.35%), and pork (2.98%). This study confirms the importance of correlating epidemiological investigations with molecular epidemiological data to better understand the dynamics of infection. PMID:27379033

  2. Resistance of Campylobacter jejuni Isolated from Layer Farms in Northern Jordan Using Microbroth Dilution and Disc Diffusion Techniques.

    PubMed

    Al-Natour, Mohammad Q; Alaboudi, Akram R; Osaili, Tareq M; Obaidat, Mohammad M

    2016-07-01

    Campylobacter jejuni is an important pathogen of significant public health importance. This pathogen is associated with human infection and has been isolated from mammals and birds. Ninety-two cloacal C. jejuni isolates were identified from 35 layer farms in Northern Jordan. Antimicrobial susceptibility was determined using minimal inhibitory concentration (MIC) and disc diffusion techniques with variable suggested breakpoints. Using MIC and EUCAST cut-off values, the study revealed a significantly high resistance level (100%) among the layers' isolates against ciprofloxacin and tetracycline. A relatively high resistance (41%) toward gentamicin and amoxicillin and low resistance to nalidixic acid (21%), erythromycin (14%), and florfenicol (6.5%) were also found. This high level of resistance may indicate abuses in the handling of antibiotics, which may require stricter control in the local layer industry. A good agreement between the 2 techniques used was demonstrated and the disc diffusion technique could be used as a rapid screening test for antimicrobial susceptibility of C. jejuni to many antibiotics using specific Campylobacter breakpoints. PMID:27300500

  3. The study of infectious intestinal disease in England: risk factors for cases of infectious intestinal disease with Campylobacter jejuni infection.

    PubMed Central

    Rodrigues, L. C.; Cowden, J. M.; Wheeler, J. G.; Sethi, D.; Wall, P. G.; Cumberland, P.; Tompkins, D. S.; Hudson, M. J.; Roberts, J. A.; Roderick, P. J.

    2001-01-01

    This is a case-control study aimed at identifying risk factors for intestinal infection with Campylobacter jejuni. Cases were defined as subjects with diarrhoea occurring in community cohorts or presenting to General Practitioners (GPs) with Campylobacter jejuni in stools. Controls were selected from GP lists or cohorts, matched by age, sex, and GP practice. Travel abroad and consumption of chicken in a restaurant were statistically significantly associated with being a case. There was no statistically significant risk associated with consumption of chicken other than in restaurants nor with reported domestic kitchen hygiene practices. Consumption of some foods was associated with a lower risk of being a case. Most cases remained unexplained. We suggest that infection with low numbers of micro-organisms, and individual susceptibility may play a greater role in the causation of campylobacter infection than previously thought. It is possible that in mild, sporadic cases infection may result from cross contamination from kitchen hygiene practices usually regarded as acceptable. Chicken may be a less important vehicle of infection for sporadic cases than for outbreaks, although its role as a source of infection in both settings requires further clarification in particular in relation to the effect of domestic hygiene practices. The potential effect of diet in reducing the risk of campylobacteriosis requires exploration. PMID:11693495

  4. Human antibody response to outer membrane proteins of Campylobacter jejuni during infection.

    PubMed Central

    Mills, S D; Bradbury, W C

    1984-01-01

    Two techniques were used to isolate outer membrane proteins from Campylobacter jejuni, EDTA-lysozyme extraction and sodium-N-lauroylsarcosinate (Sarkosyl) solubilization. The protein profiles of the two preparations were similar, with a few additional bands in the EDTA-lysozyme preparations. The major outer membrane protein was 43,000 (43K) daltons, and there were 8 to 10 minor bands ranging from 92K to 14K daltons. There was no difference in the protein profile of a strain causing an infection (strain 17) and the resulting stool isolate (strain 17J). Sera collected before the infection and during the acute and convalescent stages were used with Western blotting and immunoautoradiographic techniques to determine the antigenicity of outer membrane proteins. A number of antigenic proteins were detected before the infection by their reaction with preinfection serum (61K, 51K, 43K, 40K, 34K, and 31K daltons), and three additional bands appeared during the infection when acute and convalescent sera were used (92K, 56K, and 19K daltons). Furthermore, an area of the gel at less than 14.4K daltons that did not stain with Coomassie brilliant blue became visible in the immune blots when the convalescent serum was used. Images PMID:6198286

  5. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni.

    PubMed

    Glover, Kerney Jebrell; Weerapana, Eranthie; Numao, Shin; Imperiali, Barbara

    2005-12-01

    The gram-negative bacterium Campylobacter jejuni has a general N-linked glycosylation pathway encoded by the pgl gene cluster. One of the proteins in this cluster, PgIB, is thought to be the oligosaccharyl transferase due to its significant homology to Stt3p, a subunit of the yeast oligosaccharyl transferase complex. PgIB has been shown to be involved in catalyzing the transfer of an undecaprenyl-linked heptasaccharide to the asparagine side chain of proteins at the Asn-X-Ser/Thr motif. Using a synthetic disaccharide glycan donor (GaINAc-alpha1,3-bacillosamine-pyrophosphate-undecaprenyl) and a peptide acceptor substrate (KDFNVSKA), we can observe the oligosaccharyl transferase activity of PgIB in vitro. Furthermore, the preparation of additional undecaprenyl-linked glycan variants reveals the ability of PgIB to transfer a wide variety of saccharides. With the demonstration of PgIB activity in vitro, fundamental questions surrounding the mechanism of N-linked glycosylation can now be addressed. PMID:16356848

  6. A novel DNA-binding protein from Campylobacter jejuni bacteriophage NCTC12673.

    PubMed

    Arutyunov, Denis; Szymanski, Christine M

    2015-11-01

    We previously suggested that the double-stranded genomic DNA of Campylobacter jejuni bacteriophage NCTC12673 was complexed with proteins. Mass spectrometry of peptides obtained from tryptic digests of purified phage DNA indicated that phage protein Gp001 co-purified with the DNA. Gp001 is an acidic protein that lacks any obvious homology or conserved domains found in known DNA-binding proteins. The DNA-binding ability of recombinant Gp001 was examined using an electrophoretic mobility shift assay. Slow DNA-Gp001 complex formation was observed at pH 5.5, but not at neutral or basic pH. This nucleoprotein complex had difficulty entering agarose gels used in the assay while proteinase K pretreatment released the DNA from the complex. No mobility shift was observed when the DNA was immediately subjected to electrophoresis after mixing with Gp001, even if both components were separately pre-incubated at pH 5.5. The complexed DNA was unable to transform chemically competent Escherichia coli cells and was less susceptible to degradation by nucleases. The formation of Gp001-DNA complexes at low pH may provide a mechanism for maintaining DNA integrity while the phage pursues its host through the gastrointestinal tract. Also, this feature can potentially be used to improve DNA delivery protocols applied in gene therapy. PMID:26363017

  7. Crystal Structure and Catalytic Mechanism of PglD from Campylobacter jejuni

    SciTech Connect

    Olivier, N.; Imperiali, B

    2008-01-01

    The carbohydrate 2, 4-diacetamido-2, 4, 6-trideoxy-{alpha}-d-glucopyranose (BacAc2) is found in a variety of eubacterial pathogens. In Campylobacter jejuni, PglD acetylates the C4 amino group on UDP-2-acetamido-4-amino-2, 4, 6-trideoxy-a-d-glucopyranose (UDP-4-amino-sugar) to form UDP-BacAc2. Sequence analysis predicts PglD to be a member of the left-handed {Beta} helix family of enzymes. However, poor sequence homology between PglD and left-handed {Beta} helix enzymes with existing structural data precludes unambiguous identification of the active site. The co-crystal structures of PglD in the presence of citrate, acetyl coenzyme A, or the UDP-4-amino-sugar were solved. The biological assembly is a trimer with one active site formed between two protomers. Residues lining the active site were identified, and results from functional assays on alanine mutants suggest His-125 is critical for catalysis, whereas His-15 and His-134 are involved in substrate binding. These results are discussed in the context of implications for proteins homologous to PglD in other pathogens.

  8. Evaluation of Phenotypic and Genotypic Methods for Subtyping Campylobacter jejuni Isolates from Humans, Poultry, and Cattle

    PubMed Central

    Nielsen, Eva Møller; Engberg, Jørgen; Fussing, Vivian; Petersen, Lise; Brogren, Carl-Henrik; On, Stephen L. W.

    2000-01-01

    Six methods for subtyping of Campylobacter jejuni were compared and evaluated with a collection of 90 isolates from poultry, cattle, and sporadic human clinical cases as well as from a waterborne outbreak. The applied methods were Penner heat-stable serotyping; automated ribotyping (RiboPrinting); random amplified polymorphic DNA typing (RAPD); pulsed-field gel electrophoresis (PFGE); restriction fragment length polymorphisms of the flagellin gene, flaA (fla-RFLP); and denaturing gradient gel electrophoresis of flaA (fla-DGGE). The methods were evaluated and compared on the basis of their abilities to identify isolates from one outbreak and discriminate between unrelated isolates and the agreement between methods in identifying clonal lines. All methods identified the outbreak strain. For a collection of 80 supposedly unrelated isolates, RAPD and PFGE were the most discriminatory methods, followed by fla-RFLP and RiboPrinting. fla-DGGE and serotyping were the least discriminative. All isolates included in this study were found to be typeable by each of the methods. Thirteen groups of potentially related isolates could be identified using a criterion that at least four of the methods agreed on clustering of isolates. None of the subtypes could be related to only one source; rather, these groups represented isolates from different sources. Furthermore, in two cases isolates from cattle and human patients were found to be identical according to all six methods. PMID:11015406

  9. Packaging of Campylobacter jejuni into Multilamellar Bodies by the Ciliate Tetrahymena pyriformis.

    PubMed

    Trigui, Hana; Paquet, Valérie E; Charette, Steve J; Faucher, Sébastien P

    2016-05-01

    Campylobacter jejuniis the leading cause of bacterial gastroenteritis worldwide. Transmission to humans occurs through consumption of contaminated food or water. The conditions affecting the persistence ofC. jejuniin the environment are poorly understood. Some protozoa package and excrete bacteria into multilamellar bodies (MLBs). Packaged bacteria are protected from deleterious conditions, which increases their survival. We hypothesized thatC. jejunicould be packaged under aerobic conditions by the amoebaAcanthamoeba castellaniior the ciliateTetrahymena pyriformis, both of which are able to package other pathogenic bacteria.A. castellaniidid not produce MLBs containingC. jejuni In contrast, when incubated withT. pyriformis,C. jejuniwas ingested, packaged in MLBs, and then expelled into the milieu. The viability of the bacteria inside MLBs was confirmed by microscopic analyses. The kinetics ofC. jejuniculturability showed that packaging increased the survival ofC. jejuniup to 60 h, in contrast to the strong survival defect seen in ciliate-free culture. This study suggests thatT. pyriformismay increase the risk of persistence ofC. jejuniin the environment and its possible transmission between different reservoirs in food and potable water through packaging. PMID:26921427

  10. Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.

    PubMed

    Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H

    2013-01-01

    Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. PMID:23103756

  11. High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168

    PubMed Central

    Lango-Scholey, Lea; Aidley, Jack; Woodacre, Alexandra; Jones, Michael A.

    2016-01-01

    Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method—the 28-locus-CJ11168 PV-analysis assay—for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species. PMID:27466808

  12. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine.

    PubMed

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G; Labbate, Maurizio; Djordjevic, Steven P; Larsen, Martin R; Szymanski, Christine M; Cordwell, Stuart J

    2012-08-24

    Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions. PMID:22761430

  13. High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168.

    PubMed

    Lango-Scholey, Lea; Aidley, Jack; Woodacre, Alexandra; Jones, Michael A; Bayliss, Christopher D

    2016-01-01

    Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method-the 28-locus-CJ11168 PV-analysis assay-for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species. PMID:27466808

  14. Inactivation of the LysR regulator Cj1000 of Campylobacter jejuni affects host colonization and respiration.

    PubMed

    Dufour, Virginie; Li, Jennifer; Flint, Annika; Rosenfeld, Eric; Rivoal, Katell; Georgeault, Sylvie; Alazzam, Bachar; Ermel, Gwennola; Stintzi, Alain; Bonnaure-Mallet, Martine; Baysse, Christine

    2013-06-01

    Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways. PMID:23558264

  15. Cloning, sequencing, and expression of a gene from Campylobacter jejuni encoding a protein (Omp18) with similarity to peptidoglycan-associated lipoproteins.

    PubMed Central

    Konkel, M E; Mead, D J; Cieplak, W

    1996-01-01

    A Campylobacter jejuni genomic plasmid library was screened with antiserum generated against whole C. jejuni, revealing two immunoreactive clones. Sequence analysis of the recombinant plasmids revealed a common open reading frame of 498 nucleotides encoding a protein of 165 amino acids with a calculated molecular mass of 18,018 Da. The recombinant product partitioned to the outer membrane fractions of Escherichia coli transformants and has been designated Omp18. The deduced amino acid sequence of the cloned C. jejuni gene exhibits considerable similarity to peptidoglycan-associated lipoproteins from other gram-negative bacteria. PMID:8613402

  16. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  17. Rapid detection of mutations associated with resistance to erythromycin in Campylobacter jejuni/coli by PCR and line probe assay.

    PubMed

    Niwa, H; Chuma, T; Okamoto, K; Itoh, K

    2001-10-01

    Mutation of 23S rDNA is one of the mechanisms of erythromycin resistance. PCR and line probe assay (PCR-LiPA) with ten oligonucleotide probes were developed to detect the mutations associated with macrolide resistance at positions of 2072, 2073 and 2074 in 23S rDNA of Campylobacter jejuni/coli. A2074-->G mutation was detected in 12 of 25 isolates, which were resistant to erythromycin. No other mutations in 23S rDNA were detected. The rest of the strains were susceptible to erythromycin and no mutation in 23S rDNA was detected. Six laboratory induced erythromycin resistant mutants had no mutations in 23S rDNA. PCR-LiPA is a useful and rapid method to detect mutations in 23S rDNA associated with erythromycin resistance in C. jejuni/coli. PMID:11691569

  18. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  19. Campylobacter jejuni Increases Flagellar Expression and Adhesion of Noninvasive Escherichia coli: Effects on Enterocytic Toll-Like Receptor 4 and CXCL-8 Expression

    PubMed Central

    Reti, Kristen L.; Tymensen, Lisa D.; Davis, Shevaun P.; Amrein, Matthias W.

    2015-01-01

    Campylobacter jejuni is the most common cause of bacterium-induced gastroenteritis, and while typically self-limiting, C. jejuni infections are associated with postinfectious intestinal disorders, including flares in patients with inflammatory bowel disease and postinfectious irritable bowel syndrome (PI-IBS), via mechanisms that remain obscure. Based on the hypothesis that acute campylobacteriosis may cause pathogenic microbiota dysbiosis, we investigated whether C. jejuni may activate dormant virulence genes in noninvasive Escherichia coli and examined the epithelial pathophysiological consequences of these alterations. Microarray and quantitative real-time PCR analyses revealed that E. coli adhesin, flagellum, and hemolysin gene expression were increased when E. coli was exposed to C. jejuni-conditioned medium. Increased development of bacterial flagella upon exposure to live C. jejuni or C. jejuni-conditioned medium was observed under transmission electron microscopy. Atomic force microscopy demonstrated that the forces of bacterial adhesion to colonic T84 enterocytes, and the work required to rupture this adhesion, were significantly increased in E. coli exposed to C. jejuni-conditioned media. Finally, C. jejuni-modified E. coli disrupted TLR4 gene expression and induced proinflammatory CXCL-8 gene expression in colonic enterocytes. Together, these data suggest that exposure to live C. jejuni, and/or to its secretory-excretory products, may activate latent virulence genes in noninvasive E. coli and that these alterations may directly trigger proinflammatory signaling in intestinal epithelia. These observations shed new light on mechanisms that may contribute, at least in part, to postcampylobacteriosis inflammatory disorders. PMID:26371123

  20. Campylobacter jejuni increases flagellar expression and adhesion of noninvasive Escherichia coli: effects on enterocytic Toll-like receptor 4 and CXCL-8 expression.

    PubMed

    Reti, Kristen L; Tymensen, Lisa D; Davis, Shevaun P; Amrein, Matthias W; Buret, Andre G

    2015-12-01

    Campylobacter jejuni is the most common cause of bacterium-induced gastroenteritis, and while typically self-limiting, C. jejuni infections are associated with postinfectious intestinal disorders, including flares in patients with inflammatory bowel disease and postinfectious irritable bowel syndrome (PI-IBS), via mechanisms that remain obscure. Based on the hypothesis that acute campylobacteriosis may cause pathogenic microbiota dysbiosis, we investigated whether C. jejuni may activate dormant virulence genes in noninvasive Escherichia coli and examined the epithelial pathophysiological consequences of these alterations. Microarray and quantitative real-time PCR analyses revealed that E. coli adhesin, flagellum, and hemolysin gene expression were increased when E. coli was exposed to C. jejuni-conditioned medium. Increased development of bacterial flagella upon exposure to live C. jejuni or C. jejuni-conditioned medium was observed under transmission electron microscopy. Atomic force microscopy demonstrated that the forces of bacterial adhesion to colonic T84 enterocytes, and the work required to rupture this adhesion, were significantly increased in E. coli exposed to C. jejuni-conditioned media. Finally, C. jejuni-modified E. coli disrupted TLR4 gene expression and induced proinflammatory CXCL-8 gene expression in colonic enterocytes. Together, these data suggest that exposure to live C. jejuni, and/or to its secretory-excretory products, may activate latent virulence genes in noninvasive E. coli and that these alterations may directly trigger proinflammatory signaling in intestinal epithelia. These observations shed new light on mechanisms that may contribute, at least in part, to postcampylobacteriosis inflammatory disorders. PMID:26371123

  1. [Antimicrobial Susceptibility and Resistance Mutations in Campylobacter jejuni and C. coli Isolates from Human and Meat Sources].

    PubMed

    Oishi, Akira; Murakami, Koichi; Etoh, Yoshiki; Sera, Nobuyuki; Horikawa, Kazumi

    2015-03-01

    Recently, there has been a marked increase in the number of reports of fluoroquinolone-resistant Campylobacter jejuni and Campylobacter coli. The aim of this study was to evaluate the prevalence of antimicrobial resistance and its genetic determinants in Campylobacter species isolated from meat and human subjects in Fukuoka Prefecture, Japan. Between 2011 and 2013, 55 and 64 isolates were collected from meat (chicken meat and beef liver) and humans, respectively, in this prefecture. Antimicrobial susceptibility tests were conducted using the agar dilution method in accordance with the Clinical and Laboratory Standards Institute guidelines, using the following 11 antimicrobial agents : cephalexin, cefoxitin, nalidixic acid, ciprofloxacin, levofloxacin, tetracycline, minocycline, ampicillin, streptomycin, kanamycin and erythromycin. The susceptibility rates of the isolates to three quinolones (nalidixic acid, ciprofloxacin, levofloxacin) were 43.7%, 41.2%, 40.3%, respectively. All the isolates were multidrug resistant. Whereas 46.9%-51.6% of the human isolates were resistant to one or more of the quinolones, only 32.7%-34.5% of the meat isolates were resistant to one or more of the drugs. DNA sequencing showed that of the 50 quinolone resistant isolates 44 had position 86 isoleucine (Ile) substituted for threonine (Thr) in the GyrA protein (Thr86Ile). This amino acid substitution resulted from ACA to ATA and ACT to ATT mutations of codon 86 in C. jejuni and C. coli, respectively. Furthermore, two of the four C. jejuni isolates lacking the Thr86Ile mutation had combined Ser22Gly-Asn203Ser substitutions, while the remaining two isolates had combined Ser22Gly-Asn203Ser-Ala 206Val substitutions. These four isolates also had cmeABC sequences that differed from the quinolone sensitive C. jejuni ATCC33560(T) strain. In conclusion, C. jejuni and C. coli have relatively high quinolone resistance, and are resistant to other antibiotics. The new combination of amino acid

  2. N-Glycosylation with synthetic undecaprenyl pyrophosphate-linked oligosaccharide to oligopeptides by PglB oligosaccharyltransferase from Campylobacter jejuni.

    PubMed

    Ishiwata, Akihiro; Taguchi, Yuya; Lee, Yong Joo; Watanabe, Taisuke; Kohda, Daisuke; Ito, Yukishige

    2015-03-23

    The oligosaccharyltransferase PglB from Campylobacter jejuni catalyses the N-glycosylation reaction with undecaprenyl-pyrophosphate-linked Glc1 GalNAc5 Bac1 (Und-PP-Glc1 GalNAc5 Bac1 ). Experiments using chemically synthesized donors coupled to fluorescently tagged peptides confirmed that biosynthetic intermediate Und-PP-Bac1 and Und-PP-GalNAc2 Bac1 are transferred efficiently to the Asn residue in the consensus sequence (D/E-X'-N-X-T/S, X',X≠P). The products were analyzed in detail by tandem MS to confirm their chemical structures. PMID:25688550

  3. Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

    PubMed Central

    Connell, Sarah; Meade, Kieran G.; Allan, Brenda; Lloyd, Andrew T.; Kenny, Elaine; Cormican, Paul; Morris, Derek W.; Bradley, Daniel G.; O'Farrelly, Cliona

    2012-01-01

    Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general

  4. The use of FTA cards for transport and detection of gyrA mutation of Campylobacter jejuni from poultry.

    PubMed

    Sierra-Arguello, Y M; Faulkner, O; Tellez, G; Hargis, B M; Pinheiro do Nascimento, V

    2016-04-01

    The purpose of the present study was to evaluate a technique involving the use of commercially available FTA classic card (Whatman) for transporting and detection of DNA to use in PCR analysis and genetic sequencing of Campylobacter jejuni of poultry origin. Fifty isolates of Campylobacter jejuni were obtained from broiler carcasses in Rio Grande do Sul, Brazil. Antimicrobial susceptibility testing to ciprofloxacin revealed that all 50 isolates were resistant to ciprofloxacin. Each isolate was transferred to Brucella broth tubes and incubated overnight at 41.5°C. Cell cultures were diluted to match a McFarland Turbidity Standard 0.5, and 110 μL of the cell suspension were applied to one circle on Whatman FTA classic cards. The samples were then covered and allowed to dry at room temperature. Cards were identified and stored at room temperature until further use (3 mo after collection). FTA cards were shipped for analysis to the Department of Poultry Science, University of Arkansas. Amplification of the Campylobacter gyrA gene was successful and demonstrated strong bands for a large amplicon for all 50 samples preserved on FTA cards. Mutations present in each gene were confirmed by DNA sequencing. Then, 7 samples were chosen for the sequencing. The detection of a mutation regarding ciprofloxacin-resistant isolates revealed that 7 samples had a mutation in the gyrA gene. In conclusion, the characteristics of the profiles suggest that the DNA has maintained its integrity after 3 mo of storage at room temperature and is a suitable template for PCR and sequencing from Campylobacter samples. The application of this technology has potential in numerous methodologies, especially when working in remote areas and in developing countries where access to laboratory facilities and equipment is limited. PMID:26769268

  5. Ferrous Campylobacter jejuni truncated hemoglobin P displays an extremely high reactivity for cyanide - a comparative study.

    PubMed

    Bolli, Alessandro; Ciaccio, Chiara; Coletta, Massimo; Nardini, Marco; Bolognesi, Martino; Pesce, Alessandra; Guertin, Michel; Visca, Paolo; Ascenzi, Paolo

    2008-02-01

    Campylobacter jejuni hosts two hemoglobins (Hbs). The Camplylobacter jejuni single-domain Hb (called Cgb) is homologous to the globin domain of flavohemoglobin, and it has been proposed to protect the bacterium against nitrosative stress. The second Hb is called Ctb (hereafter Cj-trHbP), belongs to truncated Hb group III, and has been hypothesized to be involved in O(2) chemistry. Here, the kinetics and thermodynamics of cyanide binding to ferric and ferrous Cj-trHbP [Cj-trHbP(III) and Cj-trHbP(II), respectively] are reported and analyzed in parallel with those of related heme proteins, with particular reference to those from Mycobacterium tuberculosis. The affinity of cyanide for Cj-trHbP(II) is higher than that reported for any known (in)vertebrate globin by more than three orders of magnitude (K = 1.2 x 10(-6) m). This can be fully attributed to the highest (ever observed for a ferrous Hb) cyanide-binding association rate constant (k(on) = 3.3 x 10(3) m(-1).s(-1)), even though the binding process displays a rate-limiting step (k(max) = 9.1 s(-1)). Cj-trHbP(III) shows a very high affinity for cyanide (L = 5.8 x 10(-9) m); however, cyanide association kinetics are independent of cyanide concentration, displaying a rate-limiting step (l(max) = 2.0 x 10(-3) s(-1)). Values of the first-order rate constant for cyanide dissociation from Cj-trHbP(II)-cyanide and Cj-trHbP(III)-cyanide (k(off) =5.0 x 10(-3) s(-1) and l(off) > or = 1 x 10(-4) s(-1), respectively) are similar to those reported for (in)vertebrate globins. The very high affinity of cyanide for Cj-trHbP(II), reminiscent of that of horseradish peroxidase(II), suggests that this globin may participate in cyanide detoxification. PMID:18190529

  6. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O.

    PubMed

    Scott, Nichollas E; Marzook, N Bishara; Cain, Joel A; Solis, Nestor; Thaysen-Andersen, Morten; Djordjevic, Steven P; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2014-11-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis. C. jejuni encodes a protein glycosylation (Pgl) locus responsible for the N-glycosylation of membrane-associated proteins. We examined two variants of the genome sequenced strain NCTC11168: O, a representative of the original clinical isolate, and GS, a laboratory-adapted relative of O. Comparative proteomics by iTRAQ and two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS) allowed the confident identification of 1214 proteins (73.9% of the predicted C. jejuni proteome), of which 187 were present at statistically significant altered levels of abundance between variants. Proteins associated with the O variant included adhesins (CadF and FlpA), proteases, capsule biosynthesis, and cell shape determinants as well as six proteins encoded by the Pgl system, including the PglK flippase and PglB oligosaccharyltransferase. Lectin blotting highlighted specific glycoproteins more abundant in NCTC11168 O, whereas others remained unaltered. Hydrophilic interaction liquid chromatography (HILIC) and LC-MS/MS identified 30 completely novel glycosites from 15 proteins. A novel glycopeptide from a 14 kDa membrane protein (Cj0455c) was identified that did not contain the C. jejuni N-linked sequon D/E-X-N-X-S/T (X ≠ Pro) but that instead contained a sequon with leucine at the -2 position. Occupied atypical sequons were also observed in Cj0958c (OxaA; Gln at the -2 position) and Cj0152c (Ala at the +2 position). The relative O and GS abundances of 30 glycopeptides were determined by label-free quantitation, which revealed a >100-fold increase in the atypical glycopeptide from Cj0455c in isolate O. Our data provide further evidence for the importance of the Pgl system in C. jejuni. PMID:25093254

  7. Prediction of CTL epitope, in silico modeling and functional analysis of cytolethal distending toxin (CDT) protein of Campylobacter jejuni

    PubMed Central

    2014-01-01

    Background Campylobacter jejuni is a potent bacterial pathogen culpable for diarrheal disease called campylobacteriosis. It is realized as a major health issue attributable to unavailability of appropriate vaccines and clinical treatment options. As other pathogens, C. jejuni entails host cellular components of an infected individual to disseminate this disease. These host–pathogen interfaces during C. jejuni infection are complex, vibrant and involved in the nicking of host cell environment, enzymes and pathways. Existing therapies are trusted only on a much smaller number of drugs, most of them are insufficient because of their severe host toxicity or drug-resistance phenomena. To find out remedial alternatives, the identification of new biotargets is highly anticipated. Understanding the molecules involved in pathogenesis has the potential to yield new and exciting strategies for therapeutic intervention. In this direction, advances in bioinformatics have opened up new possibilities for the rapid measurement of global changes during infection and this could be exploited to understand the molecular interactions involved in campylobacteriosis. Methods In this study, homology modeling, epitope prediction and identification of ligand binding sites has been explored. Further attempt to generate strapping 3D model of cytolethal distending toxin protein from C. jejuni have been described for the first time. Results CDT protein isolated from C. jejuni was analyzed using various bioinformatics and immuno-informatics tools including sequence and structure tools. A total of fifty five antigenic determinants were predicted and prediction results of CTL epitopes revealed that five MHC ligand are found in CDT. The three potential pocket binding site are found in the sequence that can be useful for drug designing. Conclusions This model, we hope, will be of help in designing and predicting novel CDT inhibitors and vaccine candidates. PMID:24552167

  8. A poultry-intestinal isolate of Campylobacter jejuni produces a bacteriocin (CUV-3) active against a range of Gram positive bacterial pathogens including Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated bacteriocin, CUV-3, produced by a poultry cecal isolate of Campylobacter jejuni strain CUV-3 had inhibitory activity against several Gram positive bacteria including Clostridium perfringens (38 strains), Staphylococcus aureus, Staph.epidermidis and Listeria monocytogenes. The pept...

  9. Genotyping Campylobacter jejuni by comparative genome indexing: an evaluation with pulsed-field gel electrophoresis and flaA SVR sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: Comparative genome indexing (CGI) using whole-genome DNA microarrays was evaluated as a means of genotying Campylobacter jejuni relative to two standard methods, pulsed-field gel electrophoresis (PFGE) and flaA short variable region sequencing (flaA SVR typing). Methods and Results: Thirty-six...

  10. Prevalence and molecular analyses of Campylobacter jejuni and Salmonella spp. in co-grazing small ruminants and wild-living birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 689 co-grazing small ruminants along with 446 wild-living birds were tested during two springs and autumns under two management systems at two Mid-Atlantic locations (~187 km in aerial distance) of the U.S. Fecal shedding of Campylobacter jejuni and Salmonella were, respectively, detected...

  11. The role of poultry and meats in the etiology of Campylobacter jejuni/coli enteritis.

    PubMed Central

    Harris, N V; Weiss, N S; Nolan, C M

    1986-01-01

    To determine the role of meats as possible sources of infection leading to Campylobacter jejuni/coli (CJC) enteritis, 218 cases and 526 controls were selected from the King County Group Health Cooperative (GHC) population from April 1982 through September 1983. All subjects were interviewed regarding food consumption one week prior to case onset. Consumption of chicken and cornish game hen were both associated with more than a doubling of the risk of CJC enteritis: for chicken (relative risk = 2.4, 95% CI = 1.6-3.6), and for game hen, (RR = 3.3, 95% CI = 1.1-9.8). The consumption of raw or rare chicken was even more strongly associated (RR = 7.6, 95% CI = 2.1-27.6). Strains of CJC bearing R factors for tetracycline were equally as likely as tetracycline-susceptible strains to have been acquired from chicken and game hens. Processed turkey sandwich meats (RR = 1.7, 95% CI = 1.0-2.9) raw or rare fish (RR = 4.0, 95% CI = 1.1-14.5) and shellfish (RR = 1.5, 95% CI = 1.1-2.1) were the only other meats reported to have been eaten significantly (p less than .05) more often by cases than by controls. These data along with the results of bacteriologic sampling of meats from King County retail food markets during the same period suggest that ingestion of contaminated chicken is a primary source of CJC enteritis, contributing to approximately half of the cases. PMID:3953917

  12. Crystal Structure of the Transcriptional Regulator CmeR From Campylobacter Jejuni

    SciTech Connect

    Gu, R.; Su, C.-C.; Shi, F.; McDermott, G.; Zhang, Q.; Yu, E.W.

    2009-06-01

    The CmeABC multidrug efflux pump, which belongs to the resistance-nodulation-division (RND) family, recognizes and extrudes a broad range of antimicrobial agents and is essential for Campylobacter jejuni colonization of the animal intestinal tract by mediating the efflux of bile acids. The expression of CmeABC is controlled by the transcriptional regulator CmeR, whose open reading frame is located immediately upstream of the cmeABC operon. To understand the structural basis of CmeR regulation, we have determined the crystal structure of CmeR to 2.2 {angstrom} resolution, revealing a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators. Unlike the rest of the TetR regulators, CmeR has a large center-to-center distance (54 {angstrom}) between two N termini of the dimer, and a large flexible ligand-binding pocket in the C-terminal domain. Each monomer forms a 20 {angstrom} long tunnel-like cavity in the ligand-binding domain of CmeR and is occupied by a fortuitous ligand that is identified as glycerol. The binding of glycerol to CmeR induces a conformational state that is incompatible with target DNA. As glycerol has a chemical structure similar to that of potential ligands of CmeR, the structure obtained mimics the induced form of CmeR. These findings reveal novel structural features of a TetR family regulator, and provide new insight into the mechanisms of ligand binding and CmeR regulation.

  13. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells

    PubMed Central

    Neal-McKinney, Jason M.; Konkel, Michael E.

    2012-01-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute C. jejuni-mediated disease (campylobacteriosis) involves C. jejuni invasion of host epithelial cells using adhesins (e.g., CadF and FlpA) and secreted proteins [e.g., the Campylobacter invasion antigens (Cia)]. The genes encoding the Cia proteins are up-regulated upon co-culture of C. jejuni with epithelial cells. One of the Cia proteins, CiaC, is required for maximal invasion of host cells by C. jejuni. Previous work has also revealed that CiaC is, in part, responsible for host cell cytoskeletal rearrangements that result in membrane ruffling. This study was performed to test the hypothesis that CiaC is delivered to the cytosol of host cells. To detect the delivery of CiaC into cultured epithelial cells, we used the adenylate cyclase domain (ACD) of Bordetella pertussis CyaA as a reporter. In this study, we found that export and delivery of the C. jejuni Cia proteins into human INT 407 epithelial cells required a functional flagellar hook complex composed of FlgE, FlgK, and FlgL. Assays performed with bacterial culture supernatants supported the hypothesis that CiaC delivery requires bacteria-host cell contact. We also found that CiaC was delivered to host cells by cell-associated (bound) bacteria, as judged by experiments performed with inhibitors that specifically target the cell signaling pathways utilized by C. jejuni for cell invasion. Interestingly, the C. jejuni flgL mutant, which is incapable of exporting and delivering the Cia proteins, did not induce INT 407 cell membrane ruffles. Complementation of the flgL mutant with plasmid-encoded flgL restored the motility and membrane ruffling. These data support the hypothesis that the C. jejuni Cia proteins, which are exported from the flagellum, are delivered to the cytosol of host cells. PMID:22919623

  14. Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro

    PubMed Central

    Pina-Mimbela, Ruby; Madrid, Jesús Arcos; Kumar, Anand; Torrelles, Jordi B; Rajashekara, Gireesh

    2015-01-01

    Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection. PMID:26714783

  15. Comprehensive mapping of O‐glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach

    PubMed Central

    Ulasi, Gloria N.; Creese, Andrew J.; Hui, Sam Xin; Penn, Charles W.

    2015-01-01

    Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs. PMID:25884275

  16. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU

    PubMed Central

    CABALLERO, Moisés; RIVERA, Isabel; JARA, Luis M.; ULLOA-STANOJLOVIC, Francisco M.; SHIVA, Carlos

    2015-01-01

    SUMMARY Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coliwere isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents. PMID:26603225

  17. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU.

    PubMed

    Caballero, Moisés; Rivera, Isabel; Jara, Luis M; Ulloa-Stanojlovic, Francisco M; Shiva, Carlos

    2015-01-01

    Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coli were isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents. PMID:26603225

  18. A Charcoal- and Blood-Free Enrichment Broth for Isolation and PCR Detection of Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. is a Gram negative bacterium and is the major cause of foodborne gastroenteritis worldwide. The microaerophilic nature of Campylobacter and its requirement of ~5% O2 for growth have complicated its recovery from foods. This is achieved with the addition to the enrichment media of ...

  19. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization

    PubMed Central

    Fields, Joshua A.; Li, Jiaqi; Gulbronson, Connor J.; Hendrixson, David R.

    2016-01-01

    Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5’ end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis. PMID:27257952

  20. The influence of feeding crimped kernel maize silage on growth performance and intestinal colonization with Campylobacter jejuni of broilers.

    PubMed

    Ranjitkar, Samir; Engberg, Ricarda Margarete

    2016-04-01

    An infection trial and a production trial over 35 days were conducted in parallel to study the influence of feeding crimped kernel maize silage (CKMS) on the intestinal Campylobacter jejuni colonization and broiler performance, respectively. The CKMS was used at dietary inclusion levels of 15% and 30% in maize-based diets. Broilers were orally inoculated with 2 × 10(5) log cfu/ml C. jejuni on day 14. Four birds from each pen were randomly selected and killed by cervical dislocation on days 3, 6, 9, 14 and 21 post infection and intestinal contents from ileum, caeca and rectum as well as liver samples were taken. Body weight and feed consumption of broilers were registered on days 13, 22 and 35. On day 35, litter dry matter (DM) was measured and the condition of the foot pads was evaluated. There was no significant effect of CKMS on the colonization of C. jejuni. Body weight of the broilers supplemented with 15% CKMS was comparable with the control maize-based feed, whereas addition of 30% CKMS reduced broiler body weight (P < 0.001). However, DM intake and feed conversion ratio were the same in all three dietary treatments. Furthermore, the foot pad condition of broilers significantly improved with the inclusion of CKMS on broiler diets as a result of a higher DM content in the litter material. It is concluded that CKMS did not influence intestinal Campylobacter colonization, but improved the foot pad health of broilers. PMID:27100153

  1. Eugenol wash and chitosan based coating reduces Campylobacter jejuni counts on poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter, a leading cause of foodborne illness globally in humans, is strongly associated with the consumption of contaminated poultry products. Unfortunately, current strategies to reduce Campylobacter counts in poultry have had limited success. Our study investigated the efficacy of eugenol ...

  2. Typing of Campylobacter jejuni Isolated from Turkey by Genotypic Methods, Antimicrobial Susceptibility, and Virulence Gene Patterns: A Retrospective Study.

    PubMed

    Manfreda, Gerardo; Parisi, Antonio; De Cesare, Alessandra; Mion, Domenico; Piva, Silvia; Zanoni, Renato G

    2016-02-01

    In this retrospective study, typing ability, discriminatory power, and concordance between typing results obtained on 123 Campylobacter jejuni turkey isolates, collected in 1998, within 14 different farms, applying multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), antibiotic resistance profile, and virulence gene pattern, were assessed and compared. Overall, 33 sequence types, 28 pulsotypes, 10 resistotypes, and 5 pathotypes were identified. MLST and PFGE showed the better discriminatory ability (i.e., Simpson's diversity index >0.90) as well as unidirectional (i.e., Wallace and adjusted Wallace coefficients >0.86) and bidirectional (i.e., adjusted Rand coefficient >0.60) concordance. Moreover, both methods showed a good unidirectional and bidirectional concordance with the resistotype. On the contrary, the congruence of both genotyping methods and resistotype with the pathotype seemed due to chance alone. A clonal relationship was identified among 66.7% of the isolates. Furthermore, 59.7% of the investigated isolates were resistant to two or more antimicrobials and 92% to tetracycline. All the isolates harbored cadF and pldA genes, whereas a flaA gene product and a cdtB gene product were amplified from 85.4% and 79.7% of the isolates, respectively, using the primers designed by Bang et al. (2003). The results of this study clarify the level of genetic diversity among the C. jejuni originating from turkeys. MLST level of correlation with PFGE, resistotype, and pathotype is assessed. This result supports the selection of type and number of typing methods to use in epidemiological studies. Finally, the identification of clonal complexes (i.e., groups of profiles differing by no more than one gene from at least one other profile of the group using the entire Campylobacter MLST database) shared between turkey and human isolates suggests that turkeys could be a possible source of Campylobacter infection. PMID:26693797

  3. Detection of live/dead Campylobacter jejuni cells by real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is the leading cause of food-borne illness and is frequently associated with undercooked chicken. Campylobacters are difficult to isolate and cultivate in the laboratory due to their preference for oxygen levels below that of the air. With the high prevalence of Campylobacter in food...

  4. Gene Expression Profile of Campylobacter jejuni in Response to Chicken Weep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. are one of the most common causes of foodborne bacterial gastroenteritis. Handling and consumption of raw poultry products are considered to be a major source of Campylobacter induced disease in humans. There is a high incidence of Campylobacter-positive poultry carcasses, even ...

  5. Differential carbon source utilization by Campylobacter jejuni strain 11168 in response to growth temperature variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. readily colonize the intestinal tracts of both human and avian species. While most often a commensal organism in birds, campylobacters remain the leading cause of bacterial gastroenteritis in humans. The association of campylobacters with poultry is well established as a primary...

  6. Transducer like proteins of Campylobacter jejuni 81-176: role in chemotaxis and colonization of the chicken gastrointestinal tract.

    PubMed

    Chandrashekhar, Kshipra; Gangaiah, Dharanesh; Pina-Mimbela, Ruby; Kassem, Issmat I; Jeon, Byeong H; Rajashekara, Gireesh

    2015-01-01

    Transducer Like Proteins (Tlps), also known as methyl accepting chemotaxis proteins (MCP), enable enteric pathogens to respond to changing nutrient levels in the environment by mediating taxis toward or away from specific chemoeffector molecules. Despite recent advances in the characterization of chemotaxis responses in Campylobacter jejuni, the impact of Tlps on the adaptation of this pathogen to disparate niches and hosts is not fully characterized. The latter is particularly evident in the case of C. jejuni 81-176, a strain that is known to be highly invasive. Furthermore, the cytoplasmic group C Tlps (Tlp5, 6, and 8) were not extensively evaluated. Here, we investigated the role of C. jejuni 81-176 Tlps in chemotaxis toward various substrates, biofilm formation, in vitro interaction with human intestinal cells, and chicken colonization. We found that the Δtlp6 and Δtlp10 mutants exhibited decreased chemotaxis toward aspartate, whereas the Δtlp6 mutant displayed a decreased chemotaxis toward Tri-Carboxylic Acid (TCA) cycle intermediates such as pyruvate, isocitrate, and succinate. Our findings also corroborated that more than one Tlp is involved in mediating chemotaxis toward the same nutrient. The deletion of tlps affected important phenotypes such as motility, biofilm formation, and invasion of human intestinal epithelial cells (INT-407). The Δtlp8 mutant displayed increased motility in soft agar and showed decreased biofilm formation. The Δtlp8 and Δtlp9 mutants were significantly defective in invasion in INT-407 cells. The Δtlp10 mutant was defective in colonization of the chicken proximal and distal gastrointestinal tract, while the Δtlp6 and Δtlp8 mutants showed reduced colonization of the duodenum and jejunum. Our results highlight the importance of Tlps in C. jejuni's adaptation and pathobiology. PMID:26075188

  7. Transducer like proteins of Campylobacter jejuni 81-176: role in chemotaxis and colonization of the chicken gastrointestinal tract

    PubMed Central

    Chandrashekhar, Kshipra; Gangaiah, Dharanesh; Pina-Mimbela, Ruby; Kassem, Issmat I.; Jeon, Byeong H.; Rajashekara, Gireesh

    2015-01-01

    Transducer Like Proteins (Tlps), also known as methyl accepting chemotaxis proteins (MCP), enable enteric pathogens to respond to changing nutrient levels in the environment by mediating taxis toward or away from specific chemoeffector molecules. Despite recent advances in the characterization of chemotaxis responses in Campylobacter jejuni, the impact of Tlps on the adaptation of this pathogen to disparate niches and hosts is not fully characterized. The latter is particularly evident in the case of C. jejuni 81-176, a strain that is known to be highly invasive. Furthermore, the cytoplasmic group C Tlps (Tlp5, 6, and 8) were not extensively evaluated. Here, we investigated the role of C. jejuni 81-176 Tlps in chemotaxis toward various substrates, biofilm formation, in vitro interaction with human intestinal cells, and chicken colonization. We found that the Δtlp6 and Δtlp10 mutants exhibited decreased chemotaxis toward aspartate, whereas the Δtlp6 mutant displayed a decreased chemotaxis toward Tri-Carboxylic Acid (TCA) cycle intermediates such as pyruvate, isocitrate, and succinate. Our findings also corroborated that more than one Tlp is involved in mediating chemotaxis toward the same nutrient. The deletion of tlps affected important phenotypes such as motility, biofilm formation, and invasion of human intestinal epithelial cells (INT-407). The Δtlp8 mutant displayed increased motility in soft agar and showed decreased biofilm formation. The Δtlp8 and Δtlp9 mutants were significantly defective in invasion in INT-407 cells. The Δtlp10 mutant was defective in colonization of the chicken proximal and distal gastrointestinal tract, while the Δtlp6 and Δtlp8 mutants showed reduced colonization of the duodenum and jejunum. Our results highlight the importance of Tlps in C. jejuni's adaptation and pathobiology. PMID:26075188

  8. Application of the 5′-Nuclease PCR Assay in Evaluation and Development of Methods for Quantitative Detection of Campylobacter jejuni

    PubMed Central

    Nogva, Hege Karin; Bergh, Anette; Holck, Askild; Rudi, Knut

    2000-01-01

    Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5′-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejuni tested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria. PMID:10966425

  9. Complete genomic sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with Guillain-Barré Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An infection with Campylobacter jejuni subsp. jejuni (Cjj) is a leading cause of foodborne gastroenteritis in humans and also the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the complete genomic sequences of Cjj HS:41 strains RM3196 (233.94) and RM3197 (308...

  10. Pseudaminic Acid on Campylobacter jejuni Flagella Modulates Dendritic Cell IL-10 Expression via Siglec-10 Receptor: A Novel Flagellin-Host Interaction

    PubMed Central

    Stephenson, Holly N.; Mills, Dominic C.; Jones, Hannah; Milioris, Enea; Copland, Alastair; Dorrell, Nick; Wren, Brendan W.; Crocker, Paul R.; Escors, David; Bajaj-Elliott, Mona

    2014-01-01

    Introduction. Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. At present the identity of host-pathogen interactions that promote successful bacterial colonisation remain ill defined. Herein, we aimed to investigate C. jejuni-mediated effects on dendritic cell (DC) immunity. Results. We found C. jejuni to be a potent inducer of human and murine DC interleukin 10 (IL-10) in vitro, a cellular event that was MyD88- and p38 MAPK-signalling dependent. Utilizing a series of C. jejuni isogenic mutants we found the major flagellin protein, FlaA, modulated IL-10 expression, an intriguing observation as C. jejuni FlaA is not a TLR5 agonist. Further analysis revealed pseudaminic acid residues on the flagella contributed to DC IL-10 expression. We identified the ability of both viable C. jejuni and purified flagellum to bind to Siglec-10, an immune-modulatory receptor. In vitro infection of Siglec-10 overexpressing cells resulted in increased IL-10 expression in a p38-dependent manner. Detection of Siglec-10 on intestinal CD11c+ CD103+ DCs added further credence to the notion that this novel interaction may contribute to immune outcome during human infection. Conclusions. We propose that unlike the Salmonella Typhimurium flagella-TLR5 driven pro-inflammatory axis, C. jejuni flagella instead promote an anti-inflammatory axis via glycan-Siglec-10 engagement. PMID:24823621

  11. Prevalence, antibiogram, and cdt genes of toxigenic Campylobacter jejuni in salad style vegetables (ulam) at farms and retail outlets in Terengganu.

    PubMed

    Khalid, Mohd Ikhsan; Tang, John Yew Huat; Baharuddin, Nabila Huda; Rahman, Nasiha Shakina; Rahimi, Nurul Faizzah; Radu, Son

    2015-01-01

    The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets. PMID:25581179

  12. Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni.

    PubMed

    Nishiyama, Keita; Nakazato, Akiko; Ueno, Shintaro; Seto, Yasuyuki; Kakuda, Tsutomu; Takai, Shinji; Yamamoto, Yuji; Mukai, Takao

    2015-11-01

    Campylobacter jejuni, one of the most common causes of gastroenteritis worldwide, is transmitted to humans through poultry. We previously reported that Lactobacillus gasseri SBT2055 (LG2055) reduced C. jejuni infection in human epithelial cells in vitro and inhibited pathogen colonization of chickens in vivo. This suggested that the LG2055 adhesion and/or co-aggregation phenotype mediated by cell-surface aggregation-promoting factors (APFs) may be important for the competitive exclusion of C. jejuni. Here, we show that cell surface-associated APF1 promoted LG2055 self-aggregation and adhesion to human epithelial cells and exhibited high affinity for the extracellular matrix component fibronectin. These effects were absent in the apf1 knockout mutant, indicating the role of APF1 in LG2055-mediated inhibition of C. jejuni in epithelial cells and chicken colonization. Similar to APF1, APF2 promoted the co-aggregation of LG2055 and C. jejuni but did not inhibit C. jejuni infection. Our data suggest a pivotal role for APF1 in mediating the interaction of LG2055 with human intestinal cells and in inhibiting C. jejuni colonization of the gastrointestinal tract. We thus provide new insight into the health-promoting effects of probiotics and mechanisms of competitive exclusion in poultry. Further research is needed to determine whether the probiotic strains reach the epithelial surface. PMID:26239091

  13. Nitrosylation Mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni Truncated Hemoglobins N, O, and P

    PubMed Central

    Ascenzi, Paolo; di Masi, Alessandra; Tundo, Grazia R.; Pesce, Alessandra; Visca, Paolo; Coletta, Massimo

    2014-01-01

    Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo. PMID:25051055

  14. Nitrosylation mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni truncated hemoglobins N, O, and P.

    PubMed

    Ascenzi, Paolo; di Masi, Alessandra; Tundo, Grazia R; Pesce, Alessandra; Visca, Paolo; Coletta, Massimo

    2014-01-01

    Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tuberculosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo. PMID:25051055

  15. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA).

    PubMed Central

    Uyttendaele, M; Schukkink, R; van Gemen, B; Debevere, J

    1995-01-01

    An assay to detect Campylobacter jejuni in foods that uses a short selective enrichment culture, a simple and rapid isolation procedure, NASBA amplification of RNA, and a nonradioactive in solution hybridization was studied. The presence of high numbers of indigenous flora affected the sensitivity of the assay. However, detection of C. jejuni was possible up to a ratio of indigenous flora to C. jejuni of 10,000:1. Interference by food components was eliminated by centrifugation following the enrichment step. Fourteen food samples artificially inoculated with C. jejuni (1 to 1,000 CFU/10 g) were analyzed with the NASBA assay and the conventional culture method with Campylobacter charcoal differential agar (CCDA). A few false-negative results were obtained by both NASBA (1.42%) and CCDA (2.86%) isolation. Yet the use of enrichment culture and NASBA shortened the analysis time from 6 days to 26 h. The relative simplicity and rapidity of the NASBA assay make it an attractive alternative for detection of C. jejuni in food samples. PMID:7747955

  16. The Bacteriophage Carrier State of Campylobacter jejuni Features Changes in Host Non-coding RNAs and the Acquisition of New Host-derived CRISPR Spacer Sequences

    PubMed Central

    Hooton, Steven P. T.; Brathwaite, Kelly J.; Connerton, Ian F.

    2016-01-01

    Incorporation of self-derived CRISPR DNA protospacers in Campylobacter jejuni PT14 occurs in the presence of bacteriophages encoding a CRISPR-like Cas4 protein. This phenomenon was evident in carrier state infections where both bacteriophages and host are maintained for seemingly indefinite periods as stable populations following serial passage. Carrier state cultures of C. jejuni PT14 have greater aerotolerance in nutrient limited conditions, and may have arisen as an evolutionary response to selective pressures imposed during periods in the extra-intestinal environment. A consequence of this is that bacteriophage and host remain associated and able to survive transition periods where the chances of replicative success are greatly diminished. The majority of the bacteriophage population do not commit to lytic infection, and conversely the bacterial population tolerates low-level bacteriophage replication. We recently examined the effects of Campylobacter bacteriophage/C. jejuni PT14 CRISPR spacer acquisition using deep sequencing strategies of DNA and RNA-Seq to analyze carrier state cultures. This approach identified de novo spacer acquisition in C. jejuni PT14 associated with Class III Campylobacter phages CP8/CP30A but spacer acquisition was oriented toward the capture of host DNA. In the absence of bacteriophage predation the CRISPR spacers in uninfected C. jejuni PT14 cultures remain unchanged. A distinct preference was observed for incorporation of self-derived protospacers into the third spacer position of the C. jejuni PT14 CRISPR array, with the first and second spacers remaining fixed. RNA-Seq also revealed the variation in the synthesis of non-coding RNAs with the potential to bind bacteriophage genes and/or transcript sequences. PMID:27047470

  17. Genetic Diversity of Campylobacter jejuni and Campylobacter coli Isolates from Conventional Broiler Flocks and the Impacts of Sampling Strategy and Laboratory Method.

    PubMed

    Vidal, A B; Colles, F M; Rodgers, J D; McCarthy, N D; Davies, R H; Maiden, M C J; Clifton-Hadley, F A

    2016-04-15

    The genetic diversity ofCampylobacter jejuniandCampylobacter coliisolates from commercial broiler farms was examined by multilocus sequence typing (MLST), with an assessment of the impact of the sample type and laboratory method on the genotypes ofCampylobacterisolated. A total of 645C. jejuniand 106C. coliisolates were obtained from 32 flocks and 17 farms, with 47 sequence types (STs) identified. TheCampylobacter jejuniisolates obtained by different sampling approaches and laboratory methods were very similar, with the same STs identified at similar frequencies, and had no major effect on the genetic profile ofCampylobacterpopulation in broiler flocks at the farm level. ForC. coli, the results were more equivocal. While some STs were widely distributed within and among farms and flocks, analysis of molecular variance (AMOVA) revealed a high degree of genetic diversity among farms forC. jejuni, where farm effects accounted for 70.5% of variance, and among flocks from the same farm (9.9% of variance forC. jejuniand 64.1% forC. coli). These results show the complexity of the population structure ofCampylobacterin broiler production and that commercial broiler farms provide an ecological niche for a wide diversity of genotypes. The genetic diversity ofC. jejuniisolates among broiler farms should be taken into account when designing studies to understandCampylobacterpopulations in broiler production and the impact of interventions. We provide evidence that supports synthesis of studies onC. jejunipopulations even when laboratory and sampling methods are not identical. PMID:26873321

  18. Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry

    PubMed Central

    Humphrey, Suzanne; Lacharme-Lora, Lizeth; Chaloner, Gemma; Gibbs, Kirsty; Humphrey, Tom; Williams, Nicola; Wigley, Paul

    2015-01-01

    Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health. PMID:26496441

  19. Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry.

    PubMed

    Humphrey, Suzanne; Lacharme-Lora, Lizeth; Chaloner, Gemma; Gibbs, Kirsty; Humphrey, Tom; Williams, Nicola; Wigley, Paul

    2015-01-01

    Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health. PMID:26496441

  20. Structural context for protein N-glycosylation in bacteria: The structure of PEB3, an adhesin from Campylobacter jejuni.

    PubMed

    Rangarajan, Erumbi S; Bhatia, Smita; Watson, David C; Munger, Christine; Cygler, Miroslaw; Matte, Allan; Young, N Martin

    2007-05-01

    Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state. PMID:17456748

  1. Structural Context for Protein N-glycosylation in Bacteria: The Structure of PEB3, an Adhesin from Campylobacter Jejuni

    SciTech Connect

    Rangarajan,E.; Bhatia, S.; Watson, D.; Munger, C.; Cygler, M.; Matte, A.; Young, N.

    2007-01-01

    Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.

  2. Development and Validation of a Comparative Genomic Fingerprinting Method for High-Resolution Genotyping of Campylobacter jejuni

    PubMed Central

    Ross, Susan L.; Mutschall, Steven K.; MacKinnon, Joanne M.; Roberts, Michael J.; Buchanan, Cody J.; Kruczkiewicz, Peter; Jokinen, Cassandra C.; Thomas, James E.; Nash, John H. E.; Gannon, Victor P. J.; Marshall, Barbara; Pollari, Frank; Clark, Clifford G.

    2012-01-01

    Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpson's index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations. PMID:22170908

  3. Genetic diversity of Campylobacter jejuni isolates from Korea and travel-associated cases from east and southeast Asian countries.

    PubMed

    Cha, Injun; Kim, Nan-Ok; Nam, Jung-Gu; Choi, Eun-Suk; Chung, Gyung Tae; Kang, Yeon-Ho; Hong, Sahyun

    2014-01-01

    Forty domestic and travel-associated Campylobacter jejuni isolates were analyzed by profiling 7 pathogenic genes (cdtB, cadF, Cj0131, ciaB, racR, wlaN, and virB11) along with multilocus sequence typing (MLST) and antimicrobial susceptibility testing. cdtB, cadF, and Cj0131 were present in all isolates, whereas virB11 was not detected in either domestic or travel-associated isolates. ciaB was present in all domestic isolates and 94% of travel-associated isolates. The respective detection rates of racR and wlaN in domestic and travel-associated isolates were 94% and 71% and 35.3% and 23%, respectively. MLST analyses of the 40 isolates generated 25 different sequence types (STs). ST-443 (12 isolates) and ST-21 (8 isolates) were dominant among the domestic isolates; however, STs varied among travel-associated isolates. Nalidixic acid, tetracycline, and ciprofloxacin resistance rates of the 40 isolates were 100% (40/40), 95% (38/40), and 88% (35/40), respectively. Domestic isolates exhibited 2-fold higher ciprofloxacin, telithromycin, and chloramphenicol resistance rates than travel-associated isolates. These results indicate a diverse genetic background for travel-associated C. jejuni and suggest that this pathogen may be an important emerging public health threat to travelers. PMID:25410568

  4. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    PubMed

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. PMID:26749466

  5. Colonic Expression of Genes Encoding Inflammatory Mediators and Gelatinases During Campylobacter Jejuni Infection of Conventional Infant Mice

    PubMed Central

    Heimesaat, Markus M.; Grundmann, Ursula; Alutis, Marie E.; Fischer, André; Göbel, Ulf B.; Bereswill, Stefan

    2016-01-01

    Within 1 week following peroral Campylobacter jejuni infection, infant mice develop acute enteritis resolving thereafter. We here assessed colonic expression profiles of mediators belonging to the IL-23/IL-22/IL-18 axis and of matrix-degrading gelatinases MMP-2 and MMP-9 at day 6 post C. jejuni strain 81-176 infection. Whereas the pathogen readily colonized the intestines of infant IL-18–/– mice only, colonic mucin-2 mRNA, a pivotal mucus constituent, was downregulated in IL-22–/– mice and accompanied by increased expression of pro-inflammatory cytokines including IFN-γ, TNF, IL-17A, and IL-1β. Furthermore, in both naive and infected IL-22–/– mice, colonic expression of IL-23p19 and IL-18 was lower as compared to wildtype mice, whereas, conversely, colonic IL-22 mRNA levels were lower in IL-18–/– and colonic IL-18 expression lower in IL-23p19–/– as compared to wildtype mice. Moreover, colonic expression of MMP-2 and MMP-9 and their endogenous inhibitor TIMP-1 were lower in IL-22–/– as compared to wildtype mice at day 6 postinfection. In conclusion, mediators belonging of the IL-23/IL-22/IL-18 axis as well as the gelatinases MMP-2 and MMP-9 are involved in mediating campylobacteriosis of infant mice in a differentially regulated fashion. PMID:27429796

  6. Molecular Mimicry: Sensitization of Lewis Rats With Campylobacter jejuni Lipopolysaccharides Induces Formation of Antibody Toward GD3 Ganglioside

    PubMed Central

    Usuki, Seigo; Thompson, Stuart A.; Rivner, Michael H.; Taguchi, Kyoji; Shibata, Keiko; Ariga, Toshio; Yu, Robert K.

    2009-01-01

    Recently we have reported cases of demyelinating inflammatory neuropathy showing elevated titers of anti-GD3 antibodies, which occurs rarely in Guillain-Barré syndrome. To examine the correlation between the anti-GD3 antibody titer and Campylobacter jejuni infection, we sensitized female Lewis rats with lipopolysaccharides (LPSs) from serotype HS19 of C. jejuni and examined changes in nerve conduction velocity and nerve conduction block (P/D ratio). After 16 weeks of sensitization, animals revealed decreases of nerve conduction velocity and conduction block (P/D ratio) and high titer of anti-GD3 antibodies. These anti-GD3 antibodies also blocked transmission in neuromuscular junctions of spinal cord-muscle cells cocultures. The GD3 epitope was verified to be located on the Schwann cell surface and nodes of Ranvier in rat sciatic nerve. To determine the target epitope for GD3 antibodies in causing nerve dysfunction, the LPS fraction containing the GD3 epitope was purified from the total LPS by using an anti-GD3 monoclonal antibody-immobilized affinity column. Subsequently, chemical analysis of the oligosaccharide portion was performed and confirmed the presence of a GD3-like epitope as having the following tetrasaccharide structure: NeuAcα2-8NeuAc2-3Galβ1-4Hep. Our data thus support the possibility of a contribution of GD3 mimicry as a potential pathogenic mechanism of peripheral nerve dysfunction. PMID:16342208

  7. Crystallographic study of the phosphoethanolamine transferase EptC required for polymyxin resistance and motility in Campylobacter jejuni

    PubMed Central

    Fage, Christopher D.; Brown, Dusty B.; Boll, Joseph M.; Keatinge-Clay, Adrian T.; Trent, M. Stephen

    2014-01-01

    The foodborne enteric pathogen Campylobacter jejuni decorates a variety of its cell-surface structures with phosphoethanolamine (pEtN). Modifying lipid A with pEtN promotes cationic antimicrobial peptide resistance, whereas post-translationally modifying the flagellar rod protein FlgG with pEtN promotes flagellar assembly and motility, which are processes that are important for intestinal colonization. EptC, the pEtN transferase required for all known pEtN cell-surface modifications in C. jejuni, is a predicted inner-membrane metalloenzyme with a five-helix N-terminal transmembrane domain followed by a soluble sulfatase-like catalytic domain in the periplasm. The atomic structure of the catalytic domain of EptC (cEptC) was crystallized and solved to a resolution of 2.40 Å. cEptC adopts the α/β/α fold of the sulfatase protein family and harbors a zinc-binding site. A phosphorylated Thr266 residue was observed that was hypothesized to mimic a covalent pEtN–enzyme intermediate. The requirement for Thr266 as well as the nearby residues Asn308, Ser309, His358 and His440 was ascertained via in vivo activity assays on mutant strains. The results establish a basis for the design of pEtN transferase inhibitors. PMID:25286856

  8. Proteomic Analyses of a Robust versus a Poor Chicken Gastrointestinal Colonizing Isolate of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain un...

  9. Phenotypic and Genotypic Evidence for L-fucose Utilization by Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter remains among the leading causes of bacterial food-borne illness. The current understanding of Campylobacter physiology suggests that it is asaccharolytic and is unable to catabolize exogenous carbohydrates. Contrary to this paradigm, we provide evidence for L-fucose utilization by C....

  10. The impact of the LuxS mutation on phenotypic expression of factors critical for Campylobacter jejuni colonization.

    PubMed

    Mou, Kathy T; Plummer, Paul J

    2016-08-30

    Studies have collectively shown the wide impact that luxS mutation has on the expression and function of various aspects of Campylobacter jejuni virulence. Previous work from our group demonstrated that LuxS mutagenesis negatively impacts colonization of the gastrointestinal tract of several host species. To determine what is responsible for the colonization defect, we used a mechanistic approach to understand how the luxS mutation affects the expression of key physiologic factors important to the colonization ability of C. jejuni. This included expression of genes from the CmeABC efflux system, cell morphology, and motility through mucin substrate between wildtype, luxS mutant, and luxS complement of the C. jejuni strains 11168 and/or IA3902. We also measured and compared the activated methyl cycle (AMC) metabolite levels of the IA3902 luxS mutant to wildtype. Results showed that mutagenesis of the luxS gene completely disrupted the AMC with altered concentrations of AMC metabolites both upstream and downstream of LuxS. Multidrug efflux pump genes cmeABC and cmeR showed no significant changes in expression levels within the luxS mutant. Though motility through mucin was not completely unaffected by the luxS mutation, the lack of differences in cell morphology between wildtype and luxS mutant suggest that morphology is not responsible for the slight changes in mucin penetration observed in one of our luxS mutants. Though additional studies are warranted, these findings suggest that the CmeABC multi-drug efflux pump, cell morphology and mucin penetration are not major mechanisms responsible for the luxS mutant's colonization defect in its host. PMID:27527763

  11. Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product.

    PubMed

    Raines, Daniel J; Moroz, Olga V; Blagova, Elena V; Turkenburg, Johan P; Wilson, Keith S; Duhme-Klair, Anne-K

    2016-05-24

    To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) complex of the tetradentate enterobactin hydrolysis product bis(2,3-dihydroxybenzoyl-l-Ser) (H5-bisDHBS) (Kd = 10.1 ± 3.8 nM). The protein selects Λ-configured [Fe(bisDHBS)](2-) from a pool of diastereomeric Fe(III)-bisDHBS species that includes complexes with metal-to-ligand ratios of 1:1 and 2:3. Cocrystal structures show that, in addition to electrostatic interactions and hydrogen bonding, [Fe(bisDHBS)](2-) binds through coordination of His227 and Tyr288 to the iron center. Similar binding is observed for the Fe(III) complex of the bidentate hydrolysis product 2,3-dihydroxybenzoyl-l-Ser, [Fe(monoDHBS)2](3-) The mutation of His227 and Tyr288 to noncoordinating residues (H227L/Y288F) resulted in a substantial loss of affinity for [Fe(bisDHBS)](2-) (Kd ∼ 0.5 ± 0.2 µM). These results suggest a previously unidentified role for CeuE within the Fe(III) uptake system of C. jejuni, provide a molecular-level understanding of the underlying binding pocket adaptations, and rationalize reports on the use of enterobactin hydrolysis products by C. jejuni, Vibrio cholerae, and other bacteria with homologous periplasmic binding proteins. PMID:27162326

  12. The Role of IL-23, IL-22, and IL-18 in Campylobacter Jejuni Infection of Conventional Infant Mice

    PubMed Central

    Heimesaat, Markus M.; Alutis, Marie E.; Grundmann, Ursula; Fischer, André; Göbel, Ulf B.; Bereswill, Stefan

    2016-01-01

    We have recently shown that, within 1 week following peroral Campylobacter jejuni infection, conventional infant mice develop self-limiting enteritis. We here investigated the role of IL-23, IL-22, and IL-18 during C. jejuni strain 81-176 infection of infant mice. The pathogen efficiently colonized the intestines of IL-18–/– mice only, but did not translocate to extra-intestinal compartments. At day 13 postinfection (p.i.), IL-22–/– mice displayed lower colonic epithelial apoptotic cell numbers as compared to wildtype mice, whereas, conversely, colonic proliferating cells increased in infected IL-22–/– and IL-18–/– mice. At day 6 p.i., increases in neutrophils, T and B lymphocytes were less pronounced in gene-deficient mice, whereas regulatory T cell numbers were lower in IL-23p19–/– and IL-22–/– as compared to wildtype mice, which was accompanied by increased colonic IL-10 levels in the latter. Until then, colonic pro-inflammatory cytokines including TNF, IFN-γ, IL-6, and MCP-1 increased in IL-23p19–/– mice, whereas IL-18–/– mice exhibited decreased cytokine levels and lower colonic numbers of T and B cell as well as of neutrophils, macrophages, and monocytes as compared to wildtype controls. In conclusion, IL-23, IL-22, and IL-18 are differentially involved in mediating C. jejuni-induced immunopathology of conventional infant mice. PMID:27429795

  13. Bacteria in an intense competition for iron: Key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product

    PubMed Central

    Raines, Daniel J.; Moroz, Olga V.; Blagova, Elena V.; Turkenburg, Johan P.; Wilson, Keith S.

    2016-01-01

    To acquire essential Fe(III), bacteria produce and secrete siderophores with high affinity and selectivity for Fe(III) to mediate its uptake into the cell. Here, we show that the periplasmic binding protein CeuE of Campylobacter jejuni, which was previously thought to bind the Fe(III) complex of the hexadentate siderophore enterobactin (Kd ∼ 0.4 ± 0.1 µM), preferentially binds the Fe(III) complex of the tetradentate enterobactin hydrolysis product bis(2,3-dihydroxybenzoyl-l-Ser) (H5-bisDHBS) (Kd = 10.1 ± 3.8 nM). The protein selects Λ-configured [Fe(bisDHBS)]2− from a pool of diastereomeric Fe(III)-bisDHBS species that includes complexes with metal-to-ligand ratios of 1:1 and 2:3. Cocrystal structures show that, in addition to electrostatic interactions and hydrogen bonding, [Fe(bisDHBS)]2− binds through coordination of His227 and Tyr288 to the iron center. Similar binding is observed for the Fe(III) complex of the bidentate hydrolysis product 2,3-dihydroxybenzoyl-l-Ser, [Fe(monoDHBS)2]3−. The mutation of His227 and Tyr288 to noncoordinating residues (H227L/Y288F) resulted in a substantial loss of affinity for [Fe(bisDHBS)]2− (Kd ∼ 0.5 ± 0.2 µM). These results suggest a previously unidentified role for CeuE within the Fe(III) uptake system of C. jejuni, provide a molecular-level understanding of the underlying binding pocket adaptations, and rationalize reports on the use of enterobactin hydrolysis products by C. jejuni, Vibrio cholerae, and other bacteria with homologous periplasmic binding proteins. PMID:27162326

  14. Effect of refrigerated and frozen storage on the survival of Campylobacter jejuni in cooked chicken meat breast.

    PubMed

    Eideh, Ala'a M F; Al-Qadiri, Hamzah M

    2011-01-01

    This experimental work aimed to examine the survivability of Campylobacter jejuni in cooked chicken breast under several conditions: storage for 1, 3, and 7 d at refrigerated temperatures (4 °C) and for 20 d at frozen temperatures (-18 °C). In addition, storage at ambient temperature (26 to 28 °C) was involved. Chicken samples were inoculated with a mixed culture of C. jejuni strains (ATCC: 29428 and 33219) of known concentrations (50 and 500 CFU/g). Bacterial cells were recovered and enumerated using standard procedure (Preston method). Bacteria were not detected in the majority of samples stored at ambient temperature. Refrigeration reduced survivals in 95, 90, and 77.5% for samples inoculated with 500 CFU/g and kept for 1, 3, and 7 d, respectively. The maximum reduction reached 1 log(10) cycle for all refrigeration durations. It was observed that bacteria died in 17.5% of samples kept for 7 d at 4 °C. However, survivors in samples inoculated with 50 CFU/g were not detected in 50, 65, and 55% of samples kept for 1, 3, and 7 d, respectively. Freezing rendered survivors not detectable in 70% of samples inoculated with 50 CFU/g, while survived viable counts were reduced in 92.5% of samples inoculated with 500 CFU/g. These findings suggested that C. jejuni could be killed or just sublethally injured with or without reduction in viable counts under the investigated storage temperatures, which may indicate the ability of this bacterium to survive in chicken meat stored under refrigerated and frozen conditions. PMID:21535688

  15. Contribution of TAT System Translocated PhoX to Campylobacter jejuni Phosphate Metabolism and Resilience to Environmental Stresses

    PubMed Central

    Drozd, Mary; Gangaiah, Dharanesh; Liu, Zhe; Rajashekara, Gireesh

    2011-01-01

    Campylobacter jejuni is a common gastrointestinal pathogen that colonizes food animals; it is transmitted via fecal contamination of food, and infections in immune-compromised people are more likely to result in serious long-term illness. Environmental phosphate is likely an important sensor of environmental fitness and the ability to obtain extracellular phosphate is central to the bacteria's core metabolic responses. PhoX is the sole alkaline phosphatase in C. jejuni, a substrate of the TAT transport system. Alkaline phosphatases mediate the hydrolytic removal of inorganic phosphate (Pi) from phospho-organic compounds and thereby contribute significantly to the polyphosphate kinase 1 (ppk1) mediated formation of poly P, a molecule that regulates bacterial response to stresses and virulence. Similarly, deletion of the tatC gene, a key component of the TAT system, results in diverse phenotypes in C. jejuni including reduced stress tolerance and in vivo colonization. Therefore, here we investigated the contribution of phoX in poly P synthesis and in TAT-system mediated responses. The phoX deletion mutant showed significant decrease (P<0.05) in poly P accumulation in stationary phase compared to the wild-type, suggesting that PhoX is a major contributor to the inorganic phosphate pool in the cell which is essential for poly P synthesis. The phoX deletion is sufficient for a nutrient stress defect similar to the defect previously described for the ΔtatC mutant. Additionally, the phoX deletion mutant has increased resistance to certain antimicrobials. The ΔphoX mutant was also moderately defective in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. Further, the ΔphoX mutant produced increased biofilm that can be rescued with 1 mM inorganic phosphate. The qRT-PCR of the ΔphoX mutant revealed transcriptional changes that suggest potential mechanisms for the increased biofilm phenotype. PMID:22028859

  16. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  17. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  18. High-Throughput Sequencing of Campylobacter jejuni Insertion Mutant Libraries Reveals mapA as a Fitness Factor for Chicken Colonization

    PubMed Central

    Johnson, Jeremiah G.; Livny, Jonathan

    2014-01-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture. PMID:24633877

  19. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin’s Lymphoma: Case Report and Literature Review of a Difficult Diagnosis

    PubMed Central

    Gallo, Maria Teresa; Di Domenico, Enea Gino; Toma, Luigi; Marchesi, Francesco; Pelagalli, Lorella; Manghisi, Nicola; Ascenzioni, Fiorentina; Prignano, Grazia; Mengarelli, Andrea; Ensoli, Fabrizio

    2016-01-01

    Campylobacter jejuni (C. jejuni) bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin’s lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy. PMID:27077849

  20. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin's Lymphoma: Case Report and Literature Review of a Difficult Diagnosis.

    PubMed

    Gallo, Maria Teresa; Di Domenico, Enea Gino; Toma, Luigi; Marchesi, Francesco; Pelagalli, Lorella; Manghisi, Nicola; Ascenzioni, Fiorentina; Prignano, Grazia; Mengarelli, Andrea; Ensoli, Fabrizio

    2016-01-01

    Campylobacter jejuni (C. jejuni) bacteremia is difficult to diagnose in individuals with hematological disorders undergoing chemotherapy. The cause can be attributed to the rarity of this infection, to the variable clinical presentation, and to the partial overlapping symptoms underlying the disease. Here, we report a case of a fatal sepsis caused by C. jejuni in a 76-year-old Caucasian man with non-Hodgkin's lymphoma. After chemotherapeutic treatment, the patient experienced fever associated with severe neutropenia and thrombocytopenia without hemodynamic instability, abdominal pain, and diarrhea. The slow growth of C. jejuni in the blood culture systems and the difficulty in identifying it with conventional biochemical phenotyping methods contributed to the delay of administering a targeted antimicrobial treatment, leading to a fatal outcome. Early recognition and timely intervention are critical for the successful management of C. jejuni infection. Symptoms may be difficult to recognize in immunocompromised patients undergoing chemotherapy. Thus, it is important to increase physician awareness regarding the clinical manifestations of C. jejuni to improve therapeutic efficacy. Moreover, the use of more aggressive empirical antimicrobial treatments with aminoglycosides and/or carbapenems should be considered in immunosuppressed patients, in comparison to those currently indicated in the guidelines for cancer-related infections supporting the use of cephalosporins as monotherapy. PMID:27077849

  1. Prevalence of Campylobacter jejuni and Campylobacter coli in Market-Weight Turkeys On-Farm and at Slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To monitor the effects of feed withdrawal on the prevalence of Campylobacter, market weight turkeys from six farms were examined before and after perimarketing events (feed withdrawal, transport, and holding at the slaughterhouse). Prior to transport, birds (n = 30/farm) were slaughtered on-farm an...

  2. DNA identification and characterization of Campylobacter jejuni and Campylobacter coli isolated from cecal samples of chickens in Grenada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To speciate Campylobacter strains from the ceca of chickens in Grenada by PCR and to evaluate DNA-based typing methods for the characterization of these isolates. Isolates were speciated with two multiplex PCR assays and were typed with flaA-RFLP, PFGE and MLST. Results confirmed that C. coli strain...

  3. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    PubMed Central

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen. PMID:26217332

  4. De Novo Asymmetric Synthesis of a 6-O-Methyl-d-glycero-l-gluco-heptopyranose-Derived Thioglycoside for the Preparation of Campylobacter jejuni NCTC11168 Capsular Polysaccharide Fragments.

    PubMed

    Ashmus, Roger A; Jayasuriya, Anushka B; Lim, Ying-Jie; O'Doherty, George A; Lowary, Todd L

    2016-04-01

    An enantioselective de novo synthesis of a thioglycoside derivative of the 6-O-methyl-d-glycero-l-gluco-heptopyranose residue found in the Campylobacter jejuni NCTC11168 (HS:2) capsular polysaccharide is reported. The compound is obtained from a furfural-derived chiral diol in 11 steps. Notably, compared to the only previous synthesis of this molecule, this approach significantly reduces the number of purification steps required to obtain the target. PMID:26982173

  5. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays

    PubMed Central

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-01-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains. PMID:26221965

  6. Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni.

    PubMed

    Reuter, Mark; van Vliet, Arnoud H M

    2013-01-01

    The coupling of environmental sensing to flagella-mediated directed motility allows bacteria to move to optimum environments for growth and survival, either by sensing external stimuli (chemotaxis) or monitoring internal metabolic status (energy taxis). Sensing is mediated by transducer-like proteins (Tlp), either located in the membrane or in the cytoplasm, which commonly influence motility via the CheA-CheY chemotaxis pathway. In this study we have investigated the role of PAS-domain-containing intracellular Tlp-sensors in energy taxis of the food-borne pathogen Campylobacter jejuni, using plate- and tube-based assays utilising the conversion of the redox indicator dyes triphenyl tetrazolium chloride (TTC) and resazurin. Inactivation of the genes encoding the Campylobacter Energy Taxis system (CetA (Tlp9) and CetB (Aer2)) in C. jejuni strain NCTC 11168 resulted in reduced taxis. Inactivation of the cj1191c gene, encoding the CetB homolog CetC (Aer1), did not affect taxis per se, but the cetC gene complemented a cetB mutant in trans, indicating that CetC can form a functional signal transduction complex with CetA in the absence of CetB. Inactivation of both CetB and CetC resulted in greatly reduced taxis confirming the role of CetC in energy taxis. Inactivation of the cj1110c gene, encoding Tlp8 (CetZ), a cytoplasmic sensor with two PAS-domains, resulted in increased taxis, a phenotype opposite to that of CetAB. Inactivation of the cheA gene resulted in the same overall phenotype as the cetAB mutant in both wild-type and cetZ backgrounds, suggesting that both systems use the CheA system for signal transduction. Absence of both CetAB and CetZ resulted in the cetAB taxis phenotype, suggesting that CetZ is subordinate to CetAB. In conclusion, we present evidence that C. jejuni balances the input from two counteracting PAS-domain-containing sensory systems to position itself for optimal usage of energy resources. PMID:23382896

  7. Signal Balancing by the CetABC and CetZ Chemoreceptors Controls Energy Taxis in Campylobacter jejuni

    PubMed Central

    Reuter, Mark; van Vliet, Arnoud H. M.

    2013-01-01

    The coupling of environmental sensing to flagella-mediated directed motility allows bacteria to move to optimum environments for growth and survival, either by sensing external stimuli (chemotaxis) or monitoring internal metabolic status (energy taxis). Sensing is mediated by transducer-like proteins (Tlp), either located in the membrane or in the cytoplasm, which commonly influence motility via the CheA-CheY chemotaxis pathway. In this study we have investigated the role of PAS-domain-containing intracellular Tlp-sensors in energy taxis of the food-borne pathogen Campylobacter jejuni, using plate- and tube-based assays utilising the conversion of the redox indicator dyes triphenyl tetrazolium chloride (TTC) and resazurin. Inactivation of the genes encoding the Campylobacter Energy Taxis system (CetA (Tlp9) and CetB (Aer2)) in C. jejuni strain NCTC 11168 resulted in reduced taxis. Inactivation of the cj1191c gene, encoding the CetB homolog CetC (Aer1), did not affect taxis per se, but the cetC gene complemented a cetB mutant in trans, indicating that CetC can form a functional signal transduction complex with CetA in the absence of CetB. Inactivation of both CetB and CetC resulted in greatly reduced taxis confirming the role of CetC in energy taxis. Inactivation of the cj1110c gene, encoding Tlp8 (CetZ), a cytoplasmic sensor with two PAS-domains, resulted in increased taxis, a phenotype opposite to that of CetAB. Inactivation of the cheA gene resulted in the same overall phenotype as the cetAB mutant in both wild-type and cetZ backgrounds, suggesting that both systems use the CheA system for signal transduction. Absence of both CetAB and CetZ resulted in the cetAB taxis phenotype, suggesting that CetZ is subordinate to CetAB. In conclusion, we present evidence that C. jejuni balances the input from two counteracting PAS-domain-containing sensory systems to position itself for optimal usage of energy resources. PMID:23382896

  8. Calcium and protein kinase C play an important role in Campylobacter jejuni-induced changes in Na+ and Cl- transport in rat ileum in vitro.

    PubMed

    Kanwar, R K; Ganguly, N K; Kumar, L; Rakesh, J; Panigrahi, D; Walia, B N

    1995-04-24

    The pathophysiological mechanism of Campylobacter jejuni (enterotoxigenic) induced secretory diarrhoea remains least understood. To investigate the mechanism(s) involved, the unidirectional fluxes of Na+ and Cl- were measured across the C. jejuni live culture infected and control (non infected) rat ileum (unstriped), in vitro by Ussing technique under short circuit conditions, in the presence or absence of: Ca2+ ionophore A23187 (5 microM), 1-verapamil (100 microM), calmodulin (CaM) antagonist W-7 (100 microM), dantrolene (25 microM), protein kinase C (PKC) activator PMA (100 ng/ml) and H-7 (60 microM), selective inhibitor of PKC. There was net absorption of Na+ and enhanced Cl- secretion in infected animals while in control animals there was net absorption of Na+ and marginal secretion Cl-.Ca2+ ionophore A23187 mimicked the effects of C. jejuni infection whereas 1-verapamil had significant antisecretory effect on Na+ and Cl- secretion in infected animals. In vitro measurement of undirectional 45Ca fluxes in Ussing chamber experiments revealed net absorption of Ca2+ in infected rat ileum as compared to net secretion of Ca2+ in control rat ileum. These observations clearly indicate that there is increased stimulation of Ca2+ uptake from extracellular milieu to the enterocytes during C. jejuni-induced diarrhoea. The intracellular calcium levels (Ca2+]i (as measured by fluorescent probe Fura-2AM) were found to be raised significantly (P < 0.0001) in enterocytes isolated from C. jejuni infected ileum as compared to the enterocytes from control ileum. The observed increase in [Ca2+]i in enterocytes isolated from C. jejuni live culture supernatant treated rat ileum further shows the involvement of enterotoxin in diarrhoeal process. Dantrolene decreased significantly C. jejuni-induced net Na+ and Cl- secretion but it could not reverse it to absorption suggesting the partial involvement of Ca2+ mobilised from intracellular stores in mediating secretion. W-7 failed to

  9. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein

    PubMed Central

    Hooton, Steven P. T.; Connerton, Ian F.

    2015-01-01

    Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs) and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5′-3′ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesize that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation. PMID:25601859

  10. The effects of temperature and innate immunity on transmission of Campylobacter jejuni (Campylobacterales: Campylobacteraceae) between life stages of Musca domestica (Diptera: Muscidae).

    PubMed

    Bahrndorff, S; Gill, C; Lowenberger, C; Skovgård, H; Hald, B

    2014-05-01

    The house fly (Musca domestica L.) is a well-established vector of human pathogens, including Campylobacter spp., which can cause infection of broiler chicken flocks, and through contaminated broiler meat can cause outbreaks of campylobacteriosis in humans. We investigated whether Campylobacter jejuni (Jones) could be transferred between life stages of M. domestica (larvae-pupae-adults) and determined bacterial counts of C. jejuni at different time points after bacterial exposure. C. jejuni was transmitted from infected larvae to pupae, but not to the adult stage. Infected larvae maintained at 25 degrees C had mean bacterial numbers of 6.5 +/- 0.2 SE log10 (colony forming units [CFU]/g) that subsequently dropped to 3.6 +/- 0.3 SE log10 (CFU/g) 8 h after infection. Pupae originating from infected larvae contained mean bacterial numbers of 5.3 +/- 0.1 SE log10 (CFU/g), and these numbers dropped to 4.8 +/- 0.1 SE log10 (CFU/g) 24 h after pupation. The decline in C. jejuni numbers during pupal development coincided with increased expression of antimicrobial peptides, including cecropin, diptericin, attacin, and defensin, in the larva-pupa transition stage and a later second peak in older pupae (4 or 48 h). Conversely, there was a reduced expression of the digestive enzyme, lysozyme, in pupae and adults compared with larvae. PMID:24897861

  11. Use of pulsed-field agarose gel electrophoresis to size genomes of Campylobacter species and to construct a SalI map of Campylobacter jejuni UA580.

    PubMed

    Chang, N; Taylor, D E

    1990-09-01

    To determine the physical length of the chromosome of Campylobacter jejuni, the genome was subjected to digestion by a series of restriction endonucleases to produce a small number of large restriction fragments. These fragments were then separated by pulsed-field gel electrophoresis with the contour-clamped homogeneous electric field system. The DNA of C. jejuni, with its low G+C content, was found to have no restriction sites for enzymes NotI and SfiI, which cut a high-G+C regions. Most of the restriction enzymes that were used resulted in DNA fragments that were either too numerous or too small for genome size determination, with the exception of the enzymes SalI (5' ... G decreases TCGAG ... 3'), SmaI (5' .... CCC decreases GGG .... 3'), and KpnI (5' ... GGTAC decreases C .... 3'). With SalI, six restriction fragments with average values of 48.5, 80, 110, 220, 280, and 980 kilobases (kb) were obtained when calibrated with both a lambda DNA ladder and yeast Saccharomyces cerevisiae chromosome markers. The sum of these fragments yielded an average genome size of 1.718 megabases (Mb). With SmaI, nine restriction fragments with average values ranging from 39 to 371 kb, which yielded an average genome size of 1.726 Mb were obtained. With KpnI, 11 restriction fragments with sizes ranging from 35 to 387.5 kb, which yielded an average genome size of 1.717 Mb were obtained. A SalI restriction map was derived by partial digestion of the C. jejuni DNA. The genome sizes of C. laridis, C. coli, and C. fetus were also determined with the contour-clamped homogeneous electric field system by SalI, SmaI, and KpnI digestion. Average genome sizes were found to be 1.714 Mb for C. coli, 1.267 Mb for C. fetus subsp. fetus, and 1.451 Mb for C. laridis. PMID:2168376

  12. Correlation between Genotypic Diversity, Lipooligosaccharide Gene Locus Class Variation, and Caco-2 Cell Invasion Potential of Campylobacter jejuni Isolates from Chicken Meat and Humans: Contribution to Virulotyping▿

    PubMed Central

    Habib, Ihab; Louwen, Rogier; Uyttendaele, Mieke; Houf, Kurt; Vandenberg, Olivier; Nieuwenhuis, Edward E.; Miller, William G.; van Belkum, Alex; De Zutter, Lieven

    2009-01-01

    Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40). We correlated LOS classes with clonal complexes (CC) assigned by multilocus sequence typing (MLST). Finally, we evaluated the invasion potential of a panel of 52 of these C. jejuni isolates for Caco-2 cells. PCR screening showed that 87.1% (101/116) of isolates could be assigned to LOS class A, B, C, D, or E. Concordance between LOS classes and certain MLST CC was revealed. The majority (85.7% [24/28]) of C. jejuni isolates grouped in CC-21 were shown to express LOS locus class C. The invasion potential of C. jejuni isolates possessing sialylated LOS (n = 29; classes A, B, and C) for Caco-2 cells was significantly higher (P < 0.0001) than that of C. jejuni isolates with nonsialylated LOS (n = 23; classes D and E). There was no significant difference in invasiveness between chicken meat and human isolates. However, C. jejuni isolates assigned to CC-206 (correlated with LOS class B) or CC-21 (correlated with LOS class C) showed statistically significantly higher levels of invasion than isolates from other CC. Correlation between LOS classes and CC was further confirmed by pulsed-field gel electrophoresis. The present study reveals a correlation between genotypic diversity and LOS locus classes of C. jejuni. We showed that simple PCR screening for C. jejuni LOS classes could reliably predict certain MLST CC and add to the interpretation of molecular-typing results. Our study corroborates that sialylation of LOS is advantageous for C. jejuni fitness and virulence in different hosts. The modulation of cell surface carbohydrate structure could enhance the ability of C. jejuni to adapt to or survive

  13. Development of predictive models for the survival of Campylobacter jejuni (ATCC 43051) on cooked chicken breast patties and in broth as a function of temperature.

    PubMed

    Yoon, K S; Burnette, C N; Oscar, T P

    2004-01-01

    The objective of this study was to model the kinetics of the survival of Campylobacter jejuni on cooked chicken breast patties and in broth as a function of temperature. Both patties and broth were inoculated with 10(6) stationary-phase cells of a single strain of C. jejuni (ATCC 43051) and incubated at constant temperatures from 4 to 30 degrees C in 2 degrees C increments under aerobic conditions. In most cases, a three-phase linear model fit the primary survival curves well (r2 = 0.97 to 0.99) at all incubation temperatures regardless of model medium, indicating the presence of a resistant subpopulation of C. jejuni that would not be eliminated without thermal processing. Secondary models predicting lag time (LT) and specific death rate (SDR) as functions of temperature were also developed. The Davey and Boltzmann models were identified as appropriate secondary models for LT and SDR, respectively, on the basis of goodness of fit (Boltzmann model, r2 = 0.96; Davey model, r2 = 0.93) and prediction bias and accuracy factor tests. The results obtained indicate that C. jejuni can survive well at both refrigeration and ambient temperatures regardless of model medium. Reduced survival of C. jejuni, characterized by shorter lag times and faster death rates, was observed both on patties and in broth at ambient temperatures. In addition, the average maximum reduction of C. jejuni at 4 to 30 degrees C was 1.5 log units regardless of storage temperature or model medium. These findings suggest that C. jejuni found on contaminated poultry products has the potential to survive under conditions that are not permissive for growth and thus could cause foodborne illness if the poultry is not sufficiently cooked. PMID:14717353

  14. Cj1386, an Atypical Hemin-Binding Protein, Mediates Hemin Trafficking to KatA in Campylobacter jejuni

    PubMed Central

    Flint, Annika

    2014-01-01

    Catalase enzymes detoxify H2O2 by the dismutation of H2O2 into O2 and H2O through the use of hemin cofactors. While the structure and biochemical properties of catalase enzymes have been well characterized over many decades of research, it remained unclear how catalases acquire hemin. We have previously reported that Cj1386 is essential for ensuring proper hemin content in Campylobacter jejuni catalase (KatA) (A. Flint, Y. Q. Sun, and A. Stintzi, J Bacteriol 194:334–345, 2012). In this report, an in-depth molecular characterization of Cj1386 was performed to elucidate the mechanistic details of this association. Coimmunoprecipitation assays revealed that KatA-Cj1386 transiently interact in vivo, and UV-visible spectroscopy demonstrated that purified Cj1386 protein binds hemin. Furthermore, hemin titration experiments determined that hemin binds to Cj1386 in a 1:1 ratio with hexacoordinate hemin binding. Mutagenesis of potential hemin-coordinating residues in Cj1386 showed that tyrosine 57 was essential for hemin coordination when Cj1386 was overexpressed in Escherichia coli. The importance of tyrosine 57 in hemin trafficking in vivo was confirmed by introducing the cj1386Y57A allele into a C. jejuni Δcj1386 mutant background. The cj1386Y57A mutation resulted in increased sensitivity toward H2O2 relative to the wild type, suggesting that KatA was not functional in this strain. In support of this finding, KatA immunoprecipitated from the Δcj1386+cj1386Y57A mutant had significantly reduced hemin content compared to that of the cj1386WT background. Overall, these findings indicate that Cj1386 is involved in directly trafficking hemin to KatA and that tyrosine 57 plays a key role in this function. PMID:25548249

  15. Effect of oxygen stress on growth and survival of Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes under different storage conditions.

    PubMed

    Al-Qadiri, Hamzah; Sablani, Shyam S; Ovissipour, Mahmoudreza; Al-Alami, Nivin; Govindan, Byju; Rasco, Barbara

    2015-04-01

    This study investigated the growth and survival of three foodborne pathogens (Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes) in beef (7% fat) and nutrient broth under different oxygen levels. Samples were tested under anoxic (<0.5%), microoxic (6 to 8%), and oxic (20%) conditions during storage at 7 °C for 14 days and at 22 °C for 5 days. Two initial inoculum concentrations were used (1 and 2 log CFU per g of beef or per ml of broth). The results show that C. perfringens could grow in beef at 22 °C, with an increase of approximately 5 log under anoxic conditions and a 1-log increase under microoxic conditions. However, C. perfringens could not survive in beef held at 7 °C under microoxic and oxic storage conditions after 14 days. In an anoxic environment, C. perfringens survived in beef samples held at 7 °C, with a 1-log reduction. A cell decline was observed at 2 log under these conditions, with no surviving cells at the 1-log level. However, the results show that C. jejuni under microoxic conditions survived with declining cell numbers. Significant increases in L. monocytogenes (5 to 7 log) were observed in beef held at 22 °C for 5 days, with the lowest levels recovered under anoxic conditions. L. monocytogenes in refrigerated storage increased by a factor of 2 to 4 log. It showed the greatest growth under oxic conditions, with significant growth under anoxic conditions. These findings can be used to enhance food safety in vacuum-packed and modified atmosphere-packaged food products. PMID:25836393

  16. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing.

    PubMed

    Kovanen, Sara; Kivistö, Rauni; Llarena, Ann-Katrin; Zhang, Ji; Kärkkäinen, Ulla-Maija; Tuuminen, Tamara; Uksila, Jaakko; Hakkinen, Marjaana; Rossi, Mirko; Hänninen, Marja-Liisa

    2016-06-01

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis and chicken is considered a major reservoir and source of human campylobacteriosis. In this study, we investigated temporally related Finnish human (n=95), chicken (n=83) and swimming water (n=20) C. jejuni isolates collected during the seasonal peak in 2012 using multilocus sequence typing (MLST) and whole-genome MLST (wgMLST). Our objective was to trace domestic human C. jejuni infections to C. jejuni isolates from chicken slaughter batches and swimming water. At MLST level, 79% of the sequence types (STs) of the human isolates overlapped with chicken STs suggesting chicken as an important reservoir. Four STs, the ST-45, ST-230, ST-267 and ST-677, covered 75% of the human and 64% of the chicken isolates. In addition, 50% of the swimming water isolates comprised ST-45, ST-230 and ST-677. Further wgMLST analysis of the isolates within STs, accounting their temporal relationship, revealed that 22 of the human isolates (24%) were traceable back to C. jejuni positive chicken slaughter batches. None of the human isolates were traced back to swimming water, which was rather sporadically sampled. The highly discriminatory wgMLST, together with the patient background information and temporal relationship data with possible sources, offers a new, accurate approach to trace back the origin of domestic campylobacteriosis. Our results suggest that potentially a substantial proportion of campylobacteriosis cases during the seasonal peak most probably are due to other sources than chicken meat consumption. These findings warrant further wgMLST-based studies to reassess the role of other reservoirs in the Campylobacter epidemiology both in Finland and elsewhere. PMID:27041390

  17. Gene Expression Profiling of the Local Cecal Response of Genetic Chicken Lines That Differ in Their Susceptibility to Campylobacter jejuni Colonization

    PubMed Central

    Kogut, Michael H.; Chiang, Hsin-I; Wang, Ying; Genovese, Kenneth J.; He, Haiqi; Zhou, Huaijun

    2010-01-01

    Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were

  18. Functional and Bioinformatics Analysis of Two Campylobacter jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA

    PubMed Central

    Grabowska, Anna D.; Wywiał, Ewa; Dunin-Horkawicz, Stanislaw; Łasica, Anna M.; Wösten, Marc M. S. M.; Nagy-Staroń, Anna; Godlewska, Renata; Bocian-Ostrzycka, Katarzyna; Pieńkowska, Katarzyna; Łaniewski, Paweł; Bujnicki, Janusz M.; van Putten, Jos P. M.; Jagusztyn-Krynicka, E. Katarzyna

    2014-01-01

    Background Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether

  19. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    SciTech Connect

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.

  20. Analysis of co-evolving genes in campylobacter jejuni and C. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The population structure of Campylobacter has been frequently studied by MLST, for which fragments of housekeeping genes are compared. We wished to determine if the used MLST genes are representative of the complete genome. Methods: A set of 1029 core gene families (CGF) was identifie...

  1. Darkling beetles (Alphitobius diaperinus) and their larvae as potential vectors for the transfer of Campylobacter jejuni and Salmonella enterica serovar paratyphi B variant Java between successive broiler flocks.

    PubMed

    Hazeleger, Wilma C; Bolder, Nico M; Beumer, Rijkelt R; Jacobs-Reitsma, Wilma F

    2008-11-01

    Broiler flocks often become infected with Campylobacter and Salmonella, and the exact contamination routes are still not fully understood. Insects like darkling beetles and their larvae may play a role in transfer of the pathogens between consecutive cycles. In this study, several groups of beetles and their larvae were artificially contaminated with a mixture of Salmonella enterica serovar Paratyphi B Variant Java and three C. jejuni strains and kept for different time intervals before they were fed to individually housed chicks. Most inoculated insects were positive for Salmonella and Campylobacter just before they were fed to the chicks. However, Campylobacter could not be isolated from insects that were kept for 1 week before they were used to mimic an empty week between rearing cycles. All broilers fed insects that were inoculated with pathogens on the day of feeding showed colonization with Campylobacter and Salmonella at levels of 50 to 100%. Transfer of both pathogens by groups of insects that were kept for 1 week before feeding to the chicks was also observed, but at lower levels. Naturally contaminated insects that were collected at a commercial broiler farm colonized broilers at low levels as well. In conclusion, the fact that Salmonella and Campylobacter can be transmitted via beetles and their larvae to flocks in successive rearing cycles indicates that there should be intensive control programs for exclusion of these insects from broiler houses. PMID:18791034

  2. Detection of Campylobacter species using monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  3. Role of the Distal Hydrogen-Bonding Network in Regulating Oxygen Affinity in the Truncated Hemoglobin III from Campylobacter jejuni

    PubMed Central

    Mañez, Pau Arroyo; Lu, Changyuan; Boechi, Leonardo; Martí, Marcelo A.; Shepherd, Mark; Wilson, Jayne Louise; Poole, Robert K.; Luque, F. Javier; Yeh, Syun-Ru; Estrin, Darío A.

    2015-01-01

    Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8WF mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O2 adduct of the G8WF mutant, with respect to those of the wild-type protein and the previously studied E7HL and/or B10YF mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues. PMID:21476539

  4. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni.

    PubMed

    Young, N Martin; Brisson, Jean-Robert; Kelly, John; Watson, David C; Tessier, Luc; Lanthier, Patricia H; Jarrell, Harold C; Cadotte, Nicolas; St Michael, Frank; Aberg, Erika; Szymanski, Christine M

    2002-11-01

    Mass spectrometry investigations of partially purified Campylobacter jejuni protein PEB3 showed it to be partially modified with an Asn-linked glycan with a mass of 1406 Da and composed of one hexose, five N-acetylhexosamines and a species of mass 228 Da, consistent with a trideoxydiacetamidohexose. By means of soybean lectin affinity chromatography, a mixture of glycoproteins was obtained from a glycine extract, and two-dimensional gel proteomics analysis led to the identification of at least 22 glycoproteins, predominantly annotated as periplasmic proteins. Glycopeptides were prepared from the glycoprotein mixture by Pronase digestion and gel filtration. The structure of the glycan was determined by using nano-NMR techniques to be GalNAc-alpha1,4-GalNAc-alpha1,4-[Glcbeta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac-beta1,N-Asn-Xaa, where Bac is bacillosamine, 2,4-diacetamido-2,4,6-trideoxyglucopyranose. Protein glycosylation was abolished when the pglB gene was mutated, providing further evidence that the enzyme encoded by this gene is responsible for formation of the glycopeptide N-linkage. Comparison of the pgl locus with that of Neisseria meningitidis suggested that most of the homologous genes are probably involved in the biosynthesis of bacillosamine. PMID:12186869

  5. Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni.

    PubMed

    Elliott, Kathryn T; Dirita, Victor J

    2008-09-01

    The energy taxis receptor Aer, in Escherichia coli, senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins Per, ARNT and Sim, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB. PMID:18631239

  6. Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response

    PubMed Central

    Reid, William D. K.; Close, Andrew J.; Humphrey, Suzanne; Chaloner, Gemma; Lacharme-Lora, Lizeth; Rothwell, Lisa; Kaiser, Pete; Williams, Nicola J.; Humphrey, Tom J.; Wigley, Paul; Rushton, Stephen P.

    2016-01-01

    Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM). SEM provides a framework by which cytokine interdependencies, based on prior knowledge, can be tested. In both breeds important cytokines including pro-inflammatory interleukin (IL)-1β, , IL-4, IL-17A, interferon (IFN)-γ and anti-inflammatory IL-10 and transforming growth factor (TGF)-β4 were expressed post-challenge. The SEM revealed a putative regulatory pathway illustrating a T helper (Th)17 response and regulation of IL-10, which is breed-dependent. The prominence of the Th17 pathway indicates the cytokine response aims to limit the invasion or colonization of an extracellular bacterial pathogen but the time-dependent nature of the response differs between breeds. PMID:27069644

  7. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.

    PubMed

    Mittelstädt, Gerd; Moggré, Gert-Jan; Panjikar, Santosh; Nazmi, Ali Reza; Parker, Emily J

    2016-08-01

    Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. PMID:27191057

  8. Analysis of the Activity and Regulon of the Two-Component Regulatory System Composed by Cjj81176_1484 and Cjj81176_1483 of Campylobacter jejuni

    PubMed Central

    Luethy, Paul M.; Huynh, Steven; Parker, Craig T.

    2015-01-01

    ABSTRACT Campylobacter jejuni is a leading cause of bacterial diarrheal disease and a frequent commensal of the intestinal tract in poultry and other animals. For optimal growth and colonization of hosts, C. jejuni employs two-component regulatory systems (TCSs) to monitor environmental conditions and promote proper expression of specific genes. We analyzed the potential of C. jejuni Cjj81176_1484 (Cjj1484) and Cjj81176_1483 (Cjj1483) to encode proteins of a cognate TCS that influences expression of genes possibly important for C. jejuni growth and colonization. Transcriptome analysis revealed that the regulons of the Cjj81176_1484 (Cjj1484) histidine kinase and the Cjj81176_1483 (Cjj1483) response regulator contain many common genes, suggesting that these proteins likely form a cognate TCS. We found that this TCS generally functions to repress expression of specific proteins with roles in metabolism, iron/heme acquisition, and respiration. Furthermore, the TCS repressed expression of Cjj81176_0438 and Cjj81176_0439, which had previously been found to encode a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract. However, the TCS and other specific genes whose expression is repressed by the TCS were not required for colonization of chicks. We observed that the Cjj1483 response regulator binds target promoters in both unphosphorylated and phosphorylated forms and influences expression of some specific genes independently of the Cjj1484 histidine kinase. This work further expands the signaling mechanisms of C. jejuni and provides additional insights regarding the complex and multifactorial regulation of many genes involved in basic metabolism, respiration, and nutrient acquisition that the bacterium requires for optimal growth in different environments. IMPORTANCE Bacterial two-component regulatory systems (TCSs) link environmental cues to expression of specific genes that enable optimal bacterial growth or colonization of

  9. Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings.

    PubMed

    Craven, S E; Stern, N J; Line, E; Bailey, J S; Cox, N A; Fedorka-Cray, P

    2000-01-01

    Several methods were evaluated for collecting fecal and intestinal samples from wild birds found near broiler chicken houses. A few intestinal samples and cloacal swabs were obtained from European starlings and house sparrows. Most of the samples collected consisted of wild bird droppings found on or near the houses. Samples were collected from each of four farms of a broiler integrator during a grow-out cycle: a cycle in the summer for farm A, fall for farm B, and spring, summer, fall, and winter for farms C and D. Of the 25 wild bird intestinal and fecal samples collected from a broiler house on farm A during a grow-out cycle in July-August 1997, 24% were positive for Salmonella spp., 4% for Campylobacter jejuni, and 28% for Clostridium perfringens. Of the nine fecal samples collected from broiler house B in a grow-out cycle in September-November 1997, 33% were positive for Salmonella spp., 11% for C. jejuni, and 22% for C. perfringens. For farms C and D, of the 23 samples collected in March-April 1998, 0 were positive for Salmonella spp., 11% for C. jejuni, and 52% for C. perfringens; of 27 samples collected in June-July 1998, 4% were positive for Salmonella spp., 0 for C. jejuni, and 13% for C. perfringens; of 24 samples collected in August-October 1998, 14% were positive for Salmonella spp., 5% for C. jejuni, and 4% for C. perfringens; of 14 samples collected December 1998-January 1999, 0 were positive for Salmonella, 50% for C. jejuni, and 14% for C. perfringens. The incidence of these bacterial enteropathogens in wild birds near the broiler chicken houses suggests that wild birds that gain entry to poultry grow-out houses have the potential to transmit these pathogens to poultry. PMID:11007026

  10. Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization

    PubMed Central

    Bayliss, Christopher D.; Bidmos, Fadil A.; Anjum, Awais; Manchev, Vladimir T.; Richards, Rebecca L .; Grossier, Jean-Philippe; Wooldridge, Karl G.; Ketley, Julian M.; Barrow, Paul A.; Jones, Michael A.; Tretyakov, Michael V.

    2012-01-01

    Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen. PMID:22434884

  11. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

    PubMed Central

    Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899

  12. Whole-Genome Sequencing of a Campylobacter jejuni Strain Isolated from Retail Chicken Meat Reveals the Presence of a Megaplasmid with Mu-Like Prophage and Multidrug Resistance Genes

    PubMed Central

    Marasini, Daya

    2016-01-01

    Genome sequencing of Campylobacter jejuni strain T1-21 isolated from retail chicken meat revealed the presence of a chromosome of 1,565,978 bp and a megaplasmid of 82,732 bp that contains Mu-like prophage and multidrug resistance genes. This is the first reported sequence of a Campylobacter megaplasmid >55 kb. PMID:27231378

  13. Whole-Genome Sequencing of a Campylobacter jejuni Strain Isolated from Retail Chicken Meat Reveals the Presence of a Megaplasmid with Mu-Like Prophage and Multidrug Resistance Genes.

    PubMed

    Marasini, Daya; Fakhr, Mohamed K

    2016-01-01

    Genome sequencing of Campylobacter jejuni strain T1-21 isolated from retail chicken meat revealed the presence of a chromosome of 1,565,978 bp and a megaplasmid of 82,732 bp that contains Mu-like prophage and multidrug resistance genes. This is the first reported sequence of a Campylobacter megaplasmid >55 kb. PMID:27231378

  14. Application of protein purification methods for the enrichment of a cytotoxin from Campylobacter jejuni

    PubMed Central

    2012-01-01

    Background Campylobater jejuni, a major foodborne diarrhoeal pathogen is reported to produce a number of cytotoxins of which only a cytolethal distending toxin (CDT) has been characterised so far. One or more additional cytotoxins other than CDT, including a Chinese hamster ovary (CHO) cell active, Vero cell inactive cytotoxin, may mediate inflammatory diarrhoea. Our objective was to develop a method to enrich and thus partially characterise this cytotoxin, as a pathway to the eventual identification and characterisation of the toxin. Results A number of biochemical methods including cation- and anion-exchange chromatography were evaluated to enrich the cytotoxin from a cell lysate of a known cytotoxin-producing C. jejuni, C31. The cytotoxin in crude lysate was initially prepared by size-exclusion desalting and then subjected to high pressure liquid chromatography (HPLC) ion-exchange fractionation. One pooled fraction (pool B) was cytotoxic for CHO cells equivalent to crude toxin (tissue culture infectivity dose 50 [TCID50] of 1–2 μg/ml). The proteins of pool B were identified by mass spectrometry (MS) after separation by SDS-PAGE and trypsin digestion. Also, pool B was directly digested with trypsin and then subjected to liquid chromatography tandem mass spectrometry (LCMS) analysis for identification of lesser abundant proteins in the fraction. A total of 41 proteins were found in the fraction, which included enzymes involved in metabolic and transport functions. Eighteen non-cytoplasmic proteins including 2 major antigenic peptide proteins (PEB2 and PEB3) and 3 proteins of unknown function were also identified in the screen. Cytotoxicity in pool B was trypsin-sensitive indicating its protein nature. The cytotoxic activity was heat-stable to 50°C, and partially inactivated at 60-70°C. The pool B fraction also induced fluid accumulation in the adult rabbit ileal loop assay with cytotoxicity for mucosa confirming the presence of the cytotoxin. Conclusions We

  15. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  16. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  17. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination.

    PubMed

    Peyrat, M B; Soumet, C; Maris, P; Sanders, P

    2008-05-31

    Campylobacters are a primary cause of human bacterial enteritis worldwide. They are usually considered susceptible to the disinfectant molecules used in the food industry. The purpose of this study was to see if campylobacters could survive cleaning and disinfection in poultry slaughterhouses and whether the strains recovered could contaminate carcasses during processing. Samples obtained from the environment before and after cleaning and disinfection (transport crates, processing equipment surfaces, scald tank water) and from birds (fresh droppings, neck skins) were collected during 7 investigations in 4 different slaughterhouses. Out of 41 samples collected, 30 Campylobacter jejuni strains were recovered from the surfaces of processing equipment before cleaning and disinfection procedures in three slaughterhouses and 9 C. jejuni out of 51 samples collected were found after cleaning. The study was then focused on one slaughterhouse to trace passage of the pathogen on poultry carcasses. The antimicrobial resistance phenotypes (P) (minimum inhibitory concentration, MIC) of the C. jejuni isolates collected in this slaughterhouse were determined. Nine phenotypes could be distinguished. Three of these were of interest as they were found in isolates recovered after cleaning and disinfection procedures. The genotypes (G) were determined by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) of isolates with one of the three ph