Sample records for canadian arctic gas

  1. VLF propagation measurements in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Lauber, Wilfred R.; Bertrand, Jean M.

    1993-05-01

    For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard icebreaker, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.

  2. Safeguarding Canadian Arctic Sovereignty Against Conventional Threats

    DTIC Science & Technology

    2009-06-01

    The effects of climate change as well as national interests over control of vast amounts of natural resources in the Arctic seem to be...Canadian Sovereignty, Climate Change, Military Capabilities for Arctic Operations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...THREATS, by MAJ Dave Abboud, Canadian Forces, 95 pages. The effects of climate change as well as national interests over control of vast amounts of

  3. Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.

    2009-02-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.

  4. The Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.

    2009-05-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.

  5. Atmospheric mercury in the Canadian Arctic. Part II: insight from modeling.

    PubMed

    Dastoor, Ashu; Ryzhkov, Andrew; Durnford, Dorothy; Lehnherr, Igor; Steffen, Alexandra; Morrison, Heather

    2015-03-15

    A review of mercury in the Canadian Arctic with a focus on field measurements is presented in part I (see Steffen et al., this issue). Here we provide insights into the dynamics of mercury in the Canadian Arctic from new and published mercury modeling studies using Environment Canada's mercury model. The model simulations presented in this study use global anthropogenic emissions of mercury for the period 1995-2005. The most recent modeling estimate of the net gain of mercury from the atmosphere to the Arctic Ocean is 75 Mg year(-1) and the net gain to the terrestrial ecosystems north of 66.5° is 42 Mg year(-1). Model based annual export of riverine mercury from North American, Russian and all Arctic watersheds to the Arctic Ocean are in the range of 2.8-5.6, 12.7-25.4 and 15.5-31.0 Mg year(-1), respectively. Analysis of long-range transport events of Hg at Alert and Little Fox Lake monitoring sites indicates that Asia contributes the most ambient Hg to the Canadian Arctic followed by contributions from North America, Russia, and Europe. The largest anthropogenic Hg deposition to the Canadian Arctic is from East Asia followed by Europe (and Russia), North America, and South Asia. An examination of temporal trends of Hg using the model suggests that changes in meteorology and changes in anthropogenic emissions equally contribute to the decrease in surface air elemental mercury concentrations in the Canadian Arctic with an overall decline of ~12% from 1990 to 2005. A slow increase in net deposition of Hg is found in the Canadian Arctic in response to changes in meteorology. Changes in snowpack and sea-ice characteristics and increase in precipitation in the Arctic related with climate change are found to be primary causes for the meteorology-related changes in air concentrations and deposition of Hg in the region. The model estimates that under the emissions reduction scenario of worldwide implementation of the best emission control technologies by 2020, mercury

  6. Science Traverses in the Canadian High Arctic

    NASA Technical Reports Server (NTRS)

    Williamson, Marie-Claude

    2012-01-01

    The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.

  7. Helicobacter pylori infection in Canadian and related Arctic Aboriginal populations

    PubMed Central

    Goodman, Karen J; Jacobson, Kevan; van Zanten, Sander Veldhuyzen

    2008-01-01

    In 2006, the Canadian Helicobacter Study Group identified Aboriginal communities among Canadian population groups most at risk of Helicobacter pylori-associated disease. The objective of this systematic review was to summarize what is known about the H pylori-associated disease burden in Canadian and related Arctic Aboriginal populations to identify gaps in knowledge. Six health literature databases were systematically searched to identify reports on H pylori prevalence in Canadian population groups, or any topic related to H pylori in Canadian Aboriginals, Alaska Natives or Aboriginals of other Arctic regions. Identified reports were organized by subtopic and summarized in narrative form. Key data from studies of H pylori prevalence in defined populations were summarized in tabular form. A few Arctic Aboriginal communities were represented in the literature: two Canadian Inuit; one Canadian First Nation; two Greenland Inuit; one Russian Chutkotka Native; and several Alaska Native studies. These studies uniformly showed elevated H pylori prevalence; a few studies also showed elevated occurrence of H pylori-related diseases and high rates of treatment failure. Based on the evidence, it would be warranted for clinicians to relax the criteria for investigating H pylori and related diseases in patients from Arctic Aboriginal communities, and to pursue post-therapy confirmation of eradication. Additional community-based research is needed to develop public health policies for reducing H pylori-associated health risks in such communities. PMID:18354758

  8. Mercury in the Canadian Arctic terrestrial environment: an update.

    PubMed

    Gamberg, Mary; Chételat, John; Poulain, Alexandre J; Zdanowicz, Christian; Zheng, Jiancheng

    2015-03-15

    Contaminants in the Canadian Arctic have been studied over the last twenty years under the guidance of the Northern Contaminants Program. This paper provides the current state of knowledge on mercury (Hg) in the Canadian Arctic terrestrial environment. Snow, ice, and soils on land are key reservoirs for atmospheric deposition and can become sources of Hg through the melting of terrestrial ice and snow and via soil erosion. In the Canadian Arctic, new data have been collected for snow and ice that provide more information on the net accumulation and storage of Hg in the cryosphere. Concentrations of total Hg (THg) in terrestrial snow are highly variable but on average, relatively low (<5 ng L(-1)), and methylmercury (MeHg) levels in terrestrial snow are also generally low (<0.1 ng L(-1)). On average, THg concentrations in snow on Canadian Arctic glaciers are much lower than those reported on terrestrial lowlands or sea ice. Hg in snow may be affected by photochemical exchanges with the atmosphere mediated by marine aerosols and halogens, and by post-depositional redistribution within the snow pack. Regional accumulation rates of THg in Canadian Arctic glaciers varied little during the past century but show evidence of an increasing north-to-south gradient. Temporal trends of THg in glacier cores indicate an abrupt increase in the early 1990 s, possibly due to volcanic emissions, followed by more stable, but relatively elevated levels. Little information is available on Hg concentrations and processes in Arctic soils. Terrestrial Arctic wildlife typically have low levels of THg (<5 μg g(-1) dry weight) in their tissues, although caribou (Rangifer tarandus) can have higher Hg because they consume large amounts of lichen. THg concentrations in the Yukon's Porcupine caribou herd vary among years but there has been no significant increase or decrease over the last two decades. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Television Effects on Canadian Arctic High School Students.

    ERIC Educational Resources Information Center

    Coldevin, Gary O.

    The purpose of this study was to contrast and compare television effects across three types of students at a high school in the Canadian Arctic--Euro-Canadian students, Inuit students resident in Frobisher Bay, and Inuit students from isolated settlements. Television had recently been introduced to the area by means of a satellite re-broadcast…

  10. The Arctic--A Global Hot Spot: Resources for Teaching the Geography of the Contemporary Canadian Arctic

    ERIC Educational Resources Information Center

    Arntzen, Betsy; Sotherden, Amy

    2011-01-01

    Canadian geography is a fascinating topic, particularly the Canadian North. The North is central to Canadian identity as can be seen by the choice of the far north "inukshuk" standing stones as the emblem for the 2010 Winter Olympics held in Vancouver, southern British Columbia. Canada's Arctic is receiving increasing attention by media,…

  11. Impacts of Canadian and global black carbon shipping emissions on Arctic climate

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; von Salzen, K.

    2017-12-01

    Shipping activities have increased across the Arctic and are projected to continue to increase in the future. In this study we compare the climate impacts of Canadian and global shipping black carbon (BC) emissions on the Arctic using the Canadian Center for Climate Modelling and Analysis Earth System Model (CanESM4.1). The model simulations are performed with and without shipping emissions at T63 (128 x 64) spectral resolution. Results indicate that shipping activities enhance BC concentrations across the area close to the shipping emissions, which causes increased absorption of solar radiation (direct effect). An impact of shipping on temperatures is simulated across the entire Arctic, with maximum warming in fall and winter seasons. Although global mean temperature changes are very similar between the two simulations, increase in Canadian BC shipping emissions cause warmer Arctic land surface temperature in summer due to the direct radiative effects of aerosol.

  12. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  13. Brewer spectrophotometer measurements in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, W. F. J.

    1988-01-01

    In the winters of 1987 and 1988 measurements were conducted with the Brewer Spectrophotometer at Alert (82.5 N) and Resolute (74.5 N). The measurements were conducted as part of our Canadian Program to search for an Arctic Ozone Hole (CANOZE). Ozone measurements were conducted in the months of December, January and February using the moon as a light source. The total ozone measurements will be compared with ozonesonde profiles, from ECC sondes, flown once per week from Alert and Resolute. A modified Brewer Spectrophotometer was used in a special study to search for chlorine dioxide at Alert in March 1987. Ground based observations at Saskatoon in February and at Alert in March 1987 failed to detect any measureable chlorine dioxide. Interference from another absorbing gas, which we speculate may be nitrous acid, prevented the measurements at the low levels of chlorine dioxide detected in the Southern Hemisphere by Solomon et al.

  14. Pollution in the Summertime Canadian High Arctic observed during NETCARE 2014: Investigation of origin and composition

    NASA Astrophysics Data System (ADS)

    Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan

    2015-04-01

    The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources

  15. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic

    USDA-ARS?s Scientific Manuscript database

    Climate warming is modifying host-parasite interactions in the Arctic. Invasion of an arctic island by protostrongylid nematodes appears mediated by sporadic dispersal of muskoxen and seasonal migration by caribou from the Canadian mainland. A newly permissive environment likely facilitated initial ...

  16. Persistent maritime traffic monitoring for the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Ulmke, M.; Battistello, G.; Biermann, J.; Mohrdieck, C.; Pelot, R.; Koch, W.

    2017-05-01

    This paper presents results of the Canadian-German research project PASSAGES (Protection and Advanced Surveillance System for the Arctic: Green, Efficient, Secure)1 on an advanced surveillance system for safety and security of maritime operations in Arctic areas. The motivation for a surveillance system of the Northwest Passage is the projected growth of maritime traffic along Arctic sea routes and the need for securing Canada's sovereignty by controlling its arctic waters as well as for protecting the safety of international shipping and the intactness of the arctic marine environment. To ensure border security and to detect and prevent illegal activities it is necessary to develop a system for surveillance and reconnaissance that brings together all related means, assets, organizations, processes and structures to build one homogeneous and integrated system. The harsh arctic conditions require a new surveillance concept that fuses heterogeneous sensor data, contextual information, and available pre-processed surveillance data and combines all components to efficiently extract and provide the maximum available amount of information. The fusion of all these heterogeneous data and information will provide improved and comprehensive situation awareness for risk assessment and decision support of different stakeholder groups as governmental authorities, commercial users and Northern communities.

  17. Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic.

    PubMed

    Gamberg, Mary; Braune, Birgit; Davey, Eric; Elkin, Brett; Hoekstra, Paul F; Kennedy, David; Macdonald, Colin; Muir, Derek; Nirwal, Amar; Wayland, Mark; Zeeb, Barbara

    2005-12-01

    Contaminants in the Canadian Arctic have been studied over the last twelve years under the guidance of the Northern Contaminants Program. This paper summarizes results from that program from 1998 to 2003 with respect to terrestrial animals in the Canadian Arctic. The arctic terrestrial environment has few significant contaminant issues, particularly when compared with freshwater and marine environments. Both current and historical industrial activities in the north may have a continuing effect on biota in the immediate area, but effects tend to be localized. An investigation of arctic ground squirrels at a site in the Northwest Territories that had historically received applications of DDT concluded that DDT in arctic ground squirrels livers was the result of contamination and that this is an indication of the continuing effect of a local point source of DDT. Arsenic concentrations were higher in berries collected from areas around gold mines in the Northwest Territories than from control sites, suggesting that gold mining may significantly affect arsenic levels in berries in the Yellowknives Dene traditional territory. Although moose and caribou from the Canadian Arctic generally carry relatively low contaminant burdens, Yukon moose had high renal selenium concentrations, and moose and some woodland caribou from the same area had high renal cadmium levels, which may put some animals at risk of toxicological effects. Low hepatic copper levels in some caribou herds may indicate a shortage of copper for metabolic demands, particularly for females. Similarities in patterns of temporal fluctuations in renal element concentrations for moose and caribou suggest that environmental factors may be a major cause of fluctuations in renal concentrations of some elements. Concentrations of persistent organochlorines and metals in beaver and muskrat from the Northwest Territories, and carnivores from across the Canadian Arctic were very low and considered normal for terrestrial

  18. New vascular plant records for the Canadian Arctic Archipelago

    PubMed Central

    Gillespie, Lynn J.; Saarela, Jeffery M.; Sokoloff, Paul C.; Bull, Roger D.

    2015-01-01

    Abstract The Canadian Arctic Archipelago is a vast region of approximately 1,420,000 km2, with a flora characterized by low species diversity, low endemicity, and little influence by alien species. New records of vascular plant species are documented here based on recent fieldwork on Victoria and Baffin Islands; additional records based on recent literature sources are mentioned. This paper serves as an update to the 2007 publication Flora of the Canadian Arctic Archipelago, and brings the total number of vascular plants for the region to 375 species and infraspecific taxa, an increase of 7.7%. Three families (Amaranthaceae, Juncaginaceae, Pteridaceae) and seven genera (Cherleria L., Cryptogramma R. Br., Platanthera Rich., Sabulina Rchb., Suaeda Forssk. ex J.F. Gmel., Triglochin L., Utricularia L.) are added to the flora, and one genus is deleted (Minuartia L.). Five species are first records for Nunavut (Arenaria longipedunculata Hultén, Cryptogramma stelleri (S.G. Gmel.) Prantl, Puccinellia banksiensis Consaul, Saxifraga eschscholtzii Sternb., Utricularia ochroleuca R.W. Hartm.) PMID:26311505

  19. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    NASA Astrophysics Data System (ADS)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  20. Fast ice in the Canadian Arctic: Climatology, Atmospheric Forcing and Relation to Bathymetry

    NASA Astrophysics Data System (ADS)

    Galley, R. J.; Barber, D. G.

    2010-12-01

    Mobile sea ice in the northern hemisphere has experienced significant reductions in both extent and thickness over the last thirty years, and global climate models agree that these decreases will continue. However, the Canadian Arctic Archipelago (CAA) creates a much different icescape than in the central Arctic Ocean due to its distinctive topographic, bathymetric and climatological conditions. Of particular interest is the continued viability of landfast sea ice as a means of transportation and platform for transportation and hunting for the Canadian Inuit that reside in the region, as is the possibility of the Northwest Passage becoming a viable shipping lane in the future. Here we determine the climatological average landfast ice conditions in the Canadian Arctic Archipelago over the last 27 years, we investigate variability and trends in these landfast ice conditions, and we attempt to elucidate the physical parameters conducive to landfast sea ice formation in sub-regions of the CAA during different times of the year. We use the Canadian Ice Service digital sea ice charts between 1983 and 2009 on a 2x2km grid to determine the sea ice concentration-by-type and whether the sea ice in a grid cell was landfast on a weekly, bi-weekly or monthly basis depending on the time of year. North American Regional Reanalysis (NARR) atmospheric data were used in this work, including air temperature, surface level pressure and wind speed and direction. The bathymetric data employed was from the International Bathymetric Chart of the Arctic Ocean. Results indicate that the CAA sea ice regime is not climatologically analogous to the mobile sea ice of the central Arctic Ocean. The sea ice and the atmospheric and bathymetric properties that control the amount and timing of landfast sea ice within the CAA are regionally variable.

  1. Literacy Lives Here: Using Video and Dialogue to Promote and Celebrate Adult and Literacy Education in the Canadian Western Arctic

    ERIC Educational Resources Information Center

    Robinson, Suzanne

    2009-01-01

    The Canadian North, one of the most isolated parts of the world, has been subject to increased scrutiny as a source of untapped oil and gas, a global warming harbinger and casualty, and a center of international sovereignty debate. What is often forgotten is that in addition to a resource bed and a border, the Arctic is first a homeland--a…

  2. An Integrated Bathymetric and Topographic Digital Terrain Model of the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Alm, G.; Macnab, R.; Jakobsson, M.; Kleman, J.; McCracken, M.

    2002-12-01

    Currently, the International Bathymetric Chart of the Arctic Ocean (IBCAO) [Jakobsson et al. 2000], contains the most up-to-date digital bathymetric model of the entire Canadian Arctic Archipelago. IBCAO is a seamless bathymetric/topographic Digital Terrain Model (DTM) that incorporates three primary data sets: all available bathymetric data at the time of compilation; the US Geological Survey GTOPO30 topographic data; and the World Vector Shoreline for coastline representation. The horizontal grid cell size is 2.5 x 2.5 km on a Polar Stereographic projection, which is adequate for regional visualization and analysis, but which may not be sufficient for certain geoscientific and oceanographic applications. However, the database that was constructed during the IBCAO project holds bathymetric data of a high quality throughout most of the Canadian Arctic Archipelago, justifying a compilation resolution that is better than 2.5 x 2.5 km. This data is primarily from historical hydrographic surveys that were carried out by the Canadian Hydrographic Survey (CHS). The construction of a higher resolution bathymetry/topography DTM of the Canadian Arctic Archipelago (complete with an error estimation of interpolated grid cells) requires a consideration of historical metadata which contains detailed descriptions of horizontal and vertical datums, positioning systems, and the depth sounding systems that were deployed during individual surveys. A significant portion of this metadata does not exist in digital form; it was not available during the IBCAO compilation, although due to the relatively low resolution of the original DTM (2.5 x 2.5 km), its absence was considered a lesser problem. We have performed "data detective" work and have extracted some of the more crucial metadata from CHS archives and are thus able to present a preliminary version of a seamless Digital Terrain Model of the Canadian Arctic Archipelago. This represents a significant improvement over the original

  3. Modern pollen data from the Canadian Arctic, 1972-1973

    NASA Astrophysics Data System (ADS)

    Nichols, Harvey; Stolze, Susann

    2017-05-01

    This data descriptor reports results of a 1972-73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples.

  4. Modern pollen data from the Canadian Arctic, 1972-1973.

    PubMed

    Nichols, Harvey; Stolze, Susann

    2017-05-16

    This data descriptor reports results of a 1972-73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples.

  5. Arctic Oil and Natural Gas Potential

    EIA Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  6. Environmental Drivers of the Canadian Arctic Megabenthic Communities

    PubMed Central

    Roy, Virginie; Iken, Katrin; Archambault, Philippe

    2014-01-01

    Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities. PMID:25019385

  7. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  8. Insights into aerosols, chemistry, and clouds from NETCARE: Observations from the Canadian Arctic in summer 2014

    NASA Astrophysics Data System (ADS)

    Abbatt, J.

    2015-12-01

    The Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (or NETCARE) was established in 2013 to study the interactions between aerosols, chemistry, clouds and climate. The network brings together Canadian academic and government researchers, along with key international collaborators. Attention is being given to observations and modeling of Arctic aerosol, with the goal to understand underlying processes and so improve predictions of aerosol climate forcing. Motivation to understand the summer Arctic atmosphere comes from the retreat of summer sea ice and associated increase in marine influence. To address these goals, a suite of measurements was conducted from two platforms in summer 2014 in the Canadian Arctic, i.e. an aircraft-based campaign on the Alfred Wegener Institute POLAR 6 and an ocean-based campaign from the CGCS Amundsen icebreaker. NETCARE-POLAR was based out of Resolute Bay, Nunavut during an initial period of little transport and cloud-free conditions and a later period characterized by more transport with potentially biomass burning influence. Measurements included particle and cloud droplet numbers and size distributions, aerosol composition, cloud nuclei, and levels of gaseous tracers. Ultrafine particle events were more frequently observed in the marine boundary layer than above, with particle growth observed in some cases to cloud condensation nucleus sizes. The influence of biological processes on atmospheric constituents was also assessed from the ship during NETCARE-AMUNDSEN, as indicated by high measured levels of gaseous ammonia, DMS and oxygenated VOCs, as well as isolated particle formation and growth episodes. The cruise took place in Baffin Bay and through the Canadian archipelago. Interpretation of the observations from both campaigns is enhanced through the use of chemical transport and particle dispersion models. This talk will provide an overview of NETCARE Arctic observational and

  9. Modern pollen data from the Canadian Arctic, 1972–1973

    PubMed Central

    Nichols, Harvey; Stolze, Susann

    2017-01-01

    This data descriptor reports results of a 1972–73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples. PMID:28509898

  10. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    PubMed

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  12. Paleoeskimo Demographic History in the Canadian Arctic (ca. 4800-800 B.P.) and its Relationship to Mid-Late Holocene Climate Variability.

    NASA Astrophysics Data System (ADS)

    Savelle, J. M.

    2014-12-01

    Paleoeskimos were the first occupants of the central and eastern Canadian Arctic, spreading east from the Bering Strait region beginning approximately 4800 B.P., and occupied much of the Canadian Arctic through to their eventual disappearance ca. 800 B.P. Extensive regional archaeological site surveys throughout this area by the author and Arthur S. Dyke indicate that Paleoskimo populations underwent a series of population 'boom' (rapid expansion) and 'bust' (population declines and local extinctions) over the 4,000 year occupation history, including in the purported stable 'core area' of Foxe Basin. In this paper, we examine the contemporaneity of the local boom and bust cycles in a pan-Canadian Arctic context, and in turn examine the relationship of these cycles to mid-late Holocene climate variability.

  13. Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974-2009

    NASA Astrophysics Data System (ADS)

    Giesbrecht, K. E.; Miller, L. A.; Davelaar, M.; Zimmermann, S.; Carmack, E.; Johnson, W. K.; Macdonald, R. W.; McLaughlin, F.; Mucci, A.; Williams, W. J.; Wong, C. S.; Yamamoto-Kawai, M.

    2014-03-01

    We have assembled and conducted primary quality control on previously publicly unavailable water column measurements of the dissolved inorganic carbon system and associated biogeochemical parameters (oxygen, nutrients, etc.) made on 26 cruises in the subarctic and Arctic regions dating back to 1974. The measurements are primarily from the western side of the Canadian Arctic, but also include data that cover an area ranging from the North Pacific to the Gulf of St. Lawrence. The data were subjected to primary quality control (QC) to identify outliers and obvious errors. This data set incorporates over four thousand individual measurements of total inorganic carbon (TIC), alkalinity, and pH from the Canadian Arctic over a period of more than 30 years and provides an opportunity to increase our understanding of temporal changes in the inorganic carbon system in northern waters and the Arctic Ocean. The data set is available for download on the CDIAC (Carbon Dioxide Information Analysis Center) website: Arctic_Database/"target="_blank">http://cdiac.ornl.gov/ftp/oceans/IOS_Arctic_Database/ (doi:10.3334/CDIAC/OTG.IOS_ARCT_CARBN).

  14. Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere

    NASA Astrophysics Data System (ADS)

    Köllner, Franziska; Schneider, Johannes; Willis, Megan D.; Klimach, Thomas; Helleis, Frank; Bozem, Heiko; Kunkel, Daniel; Hoor, Peter; Burkart, Julia; Leaitch, W. Richard; Aliabadi, Amir A.; Abbatt, Jonathan P. D.; Herber, Andreas B.; Borrmann, Stephan

    2017-11-01

    Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50-3000 m) were conducted in July 2014 in the Canadian high Arctic during an aircraft-based measurement campaign (NETCARE 2014). We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200-1000 nm) to identify different particle types and their mixing states. On the basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). Two main pieces of evidence suggest that these TMA-containing particles originated from emissions within the Arctic boundary layer. First, the maximum fraction of particulate TMA occurred in the Arctic boundary layer. Second, compared to particles observed aloft, TMA particles were smaller and less oxidized. Further, air mass history analysis, associated wind data and comparison with measurements of methanesulfonic acid give evidence of a marine-biogenic influence on particulate TMA. Moreover, the external mixture of TMA-containing particles and sodium and chloride (Na / Cl-) containing particles, together with low wind speeds, suggests particulate TMA results from secondary conversion of precursor gases released by the ocean. In contrast to TMA-containing particles originating from inner-Arctic sources, particles with biomass burning markers (such as levoglucosan and potassium) showed a higher fraction at higher altitudes, indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for composition and growth of summertime Arctic aerosol.

  15. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  16. Assessment of undiscovered oil and gas in the arctic

    USGS Publications Warehouse

    Gautier, Donald L.; Bird, Kenneth J.; Charpentier, Ronald R.; Grantz, Arthur; Houseknecht, David W.; Klett, Timothy R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, Christopher J.; Schuenemeyer, John H.; Sorensen, Kai; Tennyson, Marilyn E.; Valin, Zenon C.; Wandrey, Craig J.

    2009-01-01

    Among the greatest uncertainties in future energy supply and a subject of considerable environmental concern is the amount of oil and gas yet to be found in the Arctic. By using a probabilistic geology-based methodology, the United States Geological Survey has assessed the area north of the Arctic Circle and concluded that about 30% of the world’s undiscovered gas and 13% of the world’s undiscovered oil may be found there, mostly offshore under less than 500 meters of water. Undiscovered natural gas is three times more abundant than oil in the Arctic and is largely concentrated in Russia. Oil resources, although important to the interests of Arctic countries, are probably not sufficient to substantially shift the current geographic pattern of world oil production.

  17. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  18. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    PubMed

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  19. Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Gourdal, Margaux; Lizotte, Martine; Massé, Guillaume; Gosselin, Michel; Poulin, Michel; Scarratt, Michael; Charette, Joannie; Levasseur, Maurice

    2018-05-01

    Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit ( < 0.01 nmol L-1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ˜ 3 up to ˜ 6 nmol L-1 (avg. 3.7 ± 1.6 nmol L-1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.

  20. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic.

    PubMed

    Halliday, William D; Insley, Stephen J; Hilliard, R Casey; de Jong, Tyler; Pine, Matthew K

    2017-10-15

    As the Arctic warms and sea ice decreases, increased shipping will lead to higher ambient noise levels in the Arctic Ocean. Arctic marine mammals are vulnerable to increased noise because they use sound to survive and likely evolved in a relatively quiet soundscape. We model vessel noise propagation in the proposed western Canadian Arctic shipping corridor in order to examine impacts on marine mammals and marine protected areas (MPAs). Our model predicts that loud vessels are audible underwater when >100km away, could affect marine mammal behaviour when within 2km for icebreakers vessels, and as far as 52km for tankers. This vessel noise could have substantial impacts on marine mammals during migration and in MPAs. We suggest that locating the corridor farther north, use of marine mammal observers on vessels, and the reduction of vessel speed would help to reduce this impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lidar Atmospheric Observatory in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Ulitsky, Arkady; Wang, Tin-Yu; Flood, Martin; Smith, Brent

    1992-01-01

    During the last decade there have been growing concerns about a broad variety of atmospheric properties. Among these, a depletion of the stratospheric ozone layer has attracted considerable attention from the general public, politicians and scientists due to its vital impact for the entire global biosphere. One of the major warning signs was the discovery of the 'ozone hole' in the Antarctic region where the concentration of the ozone in the stratosphere was significantly reduced. At present the stratospheric ozone layer in this region is being continuously monitored by groups of scientists from around the world and numerous observations of the ozone layer on the global scale have clearly demonstrated the process of ozone depletion. Recent observations by NASA have shown significant depletion in the Arctic region. This paper provides an initial description of two lidars that are planned to be installed in a new observatory for atmospheric studies in the Canadian Arctic. This observatory is being constructed under the supervision of the Atmospheric Environment Services (AES) of Canada as a part of Green Plan - an initiative of the Federal Government of Canada. The station is located at Eureka on Ellesmere Island at a latitude of 80 degrees N and a longitude of 86 degrees W.

  2. Sea-level Fingerprinting, Vertical Crustal Motion from GIA, and Projections of Relative Sea-level Change in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    James, Thomas; Simon, Karen; Forbes, Donald; Dyke, Arthur; Mazzotti, Stephane

    2010-05-01

    We present projections of relative sea-level rise in the 21st century for communities in the Canadian Arctic. First, for selected communities, we determine the sea-level fingerprinting response from Antarctica, Greenland, and mountain glaciers and ice caps. Then, for various published projections of global sea-level change in the 21st century, we determine the local amount of "absolute" sea-level change. We next determine the vertical land motion arising from glacial isostatic adjustment (GIA) and incorporate this into the estimates of absolute sea-level change to obtain projections of relative sea-level change. The sea-level fingerprinting effect is especially important in the Canadian Arctic owing to proximity to Arctic ice caps and especially to the Greenland ice sheet. Its effect is to reduce the range of projected relative sea-level change compared to the range of global sea-level projections. Vertical crustal motion is assessed through empirically derived regional isobases, the Earth's predicted response to ice-sheet loading and unloading by the ICE-5G ice sheet reconstruction, and Global Positioning System vertical velocities. Owing to the large rates of crustal uplift from glacial isostatic adjustment across a large region of central Arctic Canada, many communities are projected to experience relative sea-level fall despite projections of global sea-level rise. Where uplift rates are smaller, such as eastern Baffin Island and the western Canadian Arctic, sea-level is projected to rise.

  3. Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater

    NASA Astrophysics Data System (ADS)

    Irish, Victoria E.; Elizondo, Pablo; Chen, Jessie; Chou, Cédric; Charette, Joannie; Lizotte, Martine; Ladino, Luis A.; Wilson, Theodore W.; Gosselin, Michel; Murray, Benjamin J.; Polishchuk, Elena; Abbatt, Jonathan P. D.; Miller, Lisa A.; Bertram, Allan K.

    2017-09-01

    The sea-surface microlayer and bulk seawater can contain ice-nucleating particles (INPs) and these INPs can be emitted into the atmosphere. Our current understanding of the properties, concentrations, and spatial and temporal distributions of INPs in the microlayer and bulk seawater is limited. In this study we investigate the concentrations and properties of INPs in microlayer and bulk seawater samples collected in the Canadian Arctic during the summer of 2014. INPs were ubiquitous in the microlayer and bulk seawater with freezing temperatures in the immersion mode as high as -14 °C. A strong negative correlation (R = -0. 7, p = 0. 02) was observed between salinity and freezing temperatures (after correction for freezing depression by the salts). One possible explanation is that INPs were associated with melting sea ice. Heat and filtration treatments of the samples show that the INPs were likely heat-labile biological materials with sizes between 0.02 and 0.2 µm in diameter, consistent with previous measurements off the coast of North America and near Greenland in the Arctic. The concentrations of INPs in the microlayer and bulk seawater were consistent with previous measurements at several other locations off the coast of North America. However, our average microlayer concentration was lower than previous observations made near Greenland in the Arctic. This difference could not be explained by chlorophyll a concentrations derived from satellite measurements. In addition, previous studies found significant INP enrichment in the microlayer, relative to bulk seawater, which we did not observe in this study. While further studies are needed to understand these differences, we confirm that there is a source of INP in the microlayer and bulk seawater in the Canadian Arctic that may be important for atmospheric INP concentrations.

  4. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends.

    PubMed

    Braune, B M; Outridge, P M; Fisk, A T; Muir, D C G; Helm, P A; Hobbs, K; Hoekstra, P F; Kuzyk, Z A; Kwan, M; Letcher, R J; Lockhart, W L; Norstrom, R J; Stern, G A; Stirling, I

    2005-12-01

    This review summarizes and synthesizes the significant amount of data which was generated on mercury (Hg) and persistent organic pollutants (POPs) in Canadian Arctic marine biota since the first Canadian Arctic Contaminants Assessment Report (CACAR) was published in 1997. This recent body of work has led to a better understanding of the current levels and spatial and temporal trends of contaminants in biota, including the marine food species that northern peoples traditionally consume. Compared to other circumpolar countries, concentrations of many organochlorines (OCs) in Canadian Arctic marine biota are generally lower than in the European Arctic and eastern Greenland but are higher than in Alaska, whereas Hg concentrations are substantially higher in Canada than elsewhere. Spatial coverage of OCs in ringed seals, beluga and seabirds remains a strength of the Arctic contaminant data set for Canada. Concentrations of OCs in marine mammals and seabirds remain fairly consistent across the Canadian Arctic although subtle differences from west to east and south to north are found in the proportions of various chemicals. The most significant development since 1997 is improvement in the temporal trend data sets, thanks to the use of archived tissue samples from the 1970s and 1980s, long-term studies using archeological material, as well as the continuation of sampling. These data cover a range of species and chemicals and also include retrospective studies on new chemicals such as polybrominated diphenyl ethers. There is solid evidence in a few species (beluga, polar bear, blue mussels) that Hg at some locations has significantly increased from pre-industrial times to the present; however, the temporal trends of Hg over the past 20-30 years are inconsistent. Some animal populations exhibited significant increases in Hg whereas others did not. Therefore, it is currently not possible to determine if anthropogenic Hg is generally increasing in Canadian Arctic biota. It is

  5. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992-2014)

    NASA Astrophysics Data System (ADS)

    Kwok, Ron

    2015-09-01

    After the summer of 2013, a convergence-induced tail in the thickness distribution of the ice cover is found along the Arctic coasts of Greenland and Canadian Arctic Archipelago. Prompted by this, a normalized ice convergence index (ICI) is introduced to examine the variability and extremes in convergence in a 23 year record (1992-2014) of monthly ice drift. Large-scale composites of circulation patterns, characteristic of regional convergence and divergence, are examined. Indeed, the ICI shows the June 2013 convergence event to be an extreme (i.e., ICI > 2). Furthermore, there is a cluster of 9 months over a 17 month period with positive ICIs (i.e., >1) following the record summer minimum ice extent (SMIE) in 2012; the imprint of ice dynamics from this cluster of positive ICIs likely contributed to higher SMIEs in 2013 and 2014. The impact of convergence on SMIE is discussed, and the increase in Arctic ice volume in 2013 is underscored.

  6. Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.

    2009-12-01

    Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs

  7. Monitoring Arctic Sea ice using ERTS imagery. [Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Bowley, C. J.

    1974-01-01

    Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and other minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft.

  8. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    NASA Astrophysics Data System (ADS)

    Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2017-11-01

    The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes

  9. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wood, Kevin

    The widely perceived failure of 19th-century expeditions to find and transit the Northwest Passage in the Canadian Arctic is often attributed to extraordinary cold climatic conditions associated with the “Little Ice Age” evident in proxy records. However, examination of 44 explorers' logs for the western Arctic from 1818 to 1910 reveals that climate indicators such as navigability, the distribution and thickness of annual sea ice, monthly surface air temperature, and the onset of melt and freeze were within the present range of variability.The quest for the Northwest Passage through the Canadian archipelago during the 19th century is frequently seen as a vain and tragic failure. Polar exploration during the Victorian era seems to us today to have been a costly exercise in heroic futility, which in many respects it was. This perspective has been reinforced since the 1970s, when paleoclimate reconstructions based on Arctic ice core stratigraphy appeared to confirm the existence of exceptionally cold conditions consistent with the period glaciologists had termed the “Little Ice Age” (Figure 1a), with temperatures more than one standard deviation colder relative to an early 20th-century mean [Koerner, 1977; Koerner and Fisher, 1990; Overpeck et al., 1998]. In recent years, the view of the Little Ice Age as a synchronous worldwide and prolonged cold epoch that ended with modern warming has been questioned [Bradley and Jones, 1993; Jones and Briffa, 2001 ;Ogilvie, 2001].

  10. Impacts and Questions Regarding Future Sea Ice Conditions in the Canadian Arctic: Perspectives of the Canadian Ice Service

    NASA Astrophysics Data System (ADS)

    Wilson, K. J.; de Abreu, R.; Falkingham, J.

    2006-12-01

    The Canadian Ice Service (CIS) is responsible for monitoring and reporting sea ice conditions to support marine shipping and other maritime activities in Canada's Arctic. The location, concentration and movement of perennial (old) ice is the primary control on the level and type of shipping allowable and feasible in Canadian waters. As such, the likelihood and timing of a transition from a perennial ice regime to a seasonal one is of high interest to CIS marine clients. This presentation will review the kinds of questions we are being asked about future sea ice conditions, how we are responding to them given our current understanding, and what we base these responses on. This presentation will highlight the importance of climate change science, as well as present the type of science still needed.

  11. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G

    2015-03-03

    Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic.

  12. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  13. The distribution of methylated sulfur compounds, DMS and DMSP, in Canadian subarctic and Arctic marine waters during summer 2015

    NASA Astrophysics Data System (ADS)

    Jarníková, Tereza; Dacey, John; Lizotte, Martine; Levasseur, Maurice; Tortell, Philippe

    2018-04-01

    We present seawater concentrations of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) measured across a transect from the Labrador Sea to the Canadian Arctic Archipelago during summer 2015. Using an automated ship-board gas chromatography system and a membrane-inlet mass spectrometer, we measured a wide range of DMS (˜ 1 to 18 nM) and DMSP (˜ 1 to 150 nM) concentrations. The highest DMS and DMSP concentrations occurred in a localized region of Baffin Bay, where surface waters were characterized by high chlorophyll a (chl a) fluorescence, indicative of elevated phytoplankton biomass. Across the full sampling transect, there were only weak relationships between DMS(P), chl a fluorescence and other measured variables, including positive relationships between DMSP : chl a ratios and several taxonomic marker pigments, and elevated DMS(P) concentrations in partially ice-covered areas. Our high spatial resolution measurements allowed us to examine DMS variability over small scales (< 1 km), documenting strong DMS concentration gradients across surface hydrographic frontal features. Our new observations fill in an important observational gap in the Arctic Ocean and provide additional information on sea-air DMS fluxes from this ocean region. In addition, this study constitutes a significant contribution to the existing Arctic DMS(P) dataset and provides a baseline for future measurements in the region.

  14. Canadian oil and gas taxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, C.; Scarfe, B.

    1985-01-01

    The taxation of Canadian oil and gas production has occasioned significant conflict between the federal government and the provinces, which own most of the petroleum resources. During the upheaval of the world oil market in the 1970s, such conflict became overt, with claims and counterclaims on perceived economic rents. In contrast, the 1950s and 1960s had been relatively quiet, with quite straightforward taxation regimes requiring only a little federal-provincial policy coordination. Federal policies were then preoccupied with encouraging market growth, with scant attention to pricing and revenue shares, the issues that have dominated federal and provincial energy policy in themore » 1970s and the 1980s. The authors begin by outlining the tax and royalty systems imposed by the federal government and by the government of Alberta, which accounts for some 85% of Canadian oil and gas output. They use the term system here in a broad sense to include all revenue-collecting devices and direct subsidies. Then they analyze the nature, problems, and efficiency of these regimes, especially as devices to collect economic rent. A final section speculates about the future evolution of Canadian oil and gas taxation. 13 references, 4 tables.« less

  15. Profile of persistent chlorinated contaminants, including selected chiral compounds, in wolverine (Gulo gulo) livers from the Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; Wong, C S; Williamson, M; Elkin, B; Muir, D C G

    2003-11-01

    Wolverines (Gulo gulo) are circumpolar omnivores that live throughout the alpine and arctic tundra ecosystem. Wolverine livers were collected at Kugluktuk (Coppermine), NU (n=12) in the western Canadian Arctic to report, for the first time, the residue patterns of persistent organochlorine contaminants (OCs) in this species. The enantiomer fractions (EFs) of several chiral OCs, including PCB atropisomers, in wolverines were also determined. Results were compared to OC concentrations and EFs of chiral contaminants in arctic fox (Alopex lagopus) from Ulukhaqtuuq (Holman), NT (n=20); a closely related species that scavenges the marine and terrestrial arctic environment. The rank order of hepatic concentrations for sum ( summation operator ) OC groups in wolverines were polychlorinated biphenyls ( summation operator PCB)>chlordane-related components ( summation operator CHLOR)>DDT-related compounds ( summation operator DDT)>hexachlorocyclohexane isomers ( summation operator HCHs). The most abundant OC analytes detected in wolverine liver were PCB-153, PCB-180, and oxychlordane (OXY). Wolverine age and gender did not influence OC concentrations, which were comparable to lipid-normalized values in arctic fox. The EFs of several chiral OCs (alpha-HCH, cis- and trans-chlordane, OXY, heptachlor exo-epoxide) and PCB atropisomers (PCB-136, 149) were nonracemic in arctic fox and wolverine liver and similar to those previously calculated in arctic fox and polar bears from Iceland and the Canadian Arctic. Results suggest that these species have similar ability to biotransform OCs. As well, contaminant profiles suggest that terrestrial mammals do not represent the major source of OC exposure to wolverines and that wolverines are scavenging more contaminated prey items, such as marine mammals. While summation operator PCB did not exceed the concentrations associated with mammalian reproductive impairment, future research is required to properly evaluate the potential affect of

  16. Remarkable separability of the circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-12-01

    Arctic sea ice loss has an important effect on local climate through increases in ocean to atmosphere heat flux and associated feedbacks, and may influence midlatitude climate by changing large-scale circulation that can enhance or counter changes that are due to greenhouse gases. The extent to which climate change in a warming world can be understood as greenhouse gas-induced changes that are modulated by Arctic sea ice loss depends on how additive the responses to the separate influences are. Here we use a novel sea ice nudging methodology in the Canadian Earth System Model, which has a fully coupled ocean, to isolate the effects of Arctic sea ice loss and doubled atmospheric carbon dioxide (CO2) to determine their additivity and sensitivity to mean state. We find that the separate effects of Arctic sea ice loss and doubled CO2 are remarkably additive and relatively insensitive to mean climate state. This separability is evident in several thermodynamic and dynamic fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. In this model, Arctic sea ice loss enhances the CO2-induced surface air temperature changes nearly everywhere and zonal wind changes over the Pacific sector, whereas sea ice loss counters CO2-induced sea level pressure changes nearly everywhere over land and zonal wind changes over the Atlantic sector. This separability of the response to Arctic sea ice loss from the response to CO2 doubling gives credence to the body of work in which Arctic sea ice loss is isolated from the forcing that modified it, and might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  17. The Canadian experience in frontier environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.H.

    1991-03-01

    Early Canadian frontier exploration (from 1955 onshore and from 1966 for offshore drilling) caused insignificant public concern. The 1967-1968 Torrey Canyon Tanker and Santa Barbara disasters roused public opinion and governments. In Canada, 1969-1970 Arctic gas blowouts, a tanker disaster, and damage to the 'Manhattan' exacerbated concerns and resulted in new environmental regulatory constraints. From 1970, the Arctic Petroleum Operations Association learned to operate safely with environmental responsibility. It studied physical environment for design criteria, and the biological and human environment to ameliorate impact. APOA's research projects covered sea-ice, permafrost, sea-bottom, oil-spills, bird and mammal migration, fish habitat, food chains,more » oceanography, meteorology, hunters'/trappers' harvests, etc. In 1971 Eastcoast Petroleum Operators' Association and Alaska Oil and Gas Association followed APOA's cooperative research model. EPOA stressed icebergs and fisheries. Certain research was handled by the Canadian Offshore Oil Spill Research Association. By the mid-1980s these associations had undertaken $70,000,000 of environmental oriented research, with equivalent additional work by member companies on specific needs and similar sums by Federal agencies often working with industry on complementary research. The frontier associations then merged with the Canadian Petroleum Association, already active environmentally in western Canada. Working with government and informing environmental interest groups, the public, natives, and local groups, most Canadian frontier petroleum operations proceeded with minimal delay and environmental disturbance.« less

  18. Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; Elkin, B; Armstrong, F A J; Muir, D C G

    2003-06-20

    Arctic fox (Alopex lagopus) and wolverine (Gulo gulo) tissues were collected in the Canadian Arctic from 1998 to 2001 and analyzed for various essential and non-essential elements. Several elements (Ag, Al, As, B, Ba, Be, Co, Cr, Mo, Ni, Sb, Sn, Sr, Tl, U and V) were near or below the detection limits in >95% arctic fox and wolverine samples. Concentrations of Cd, Cu, Fe, total Hg (THg), Mn, Pb, Se and Zn were quantifiable in >50% of the samples analyzed and reported herein. Hepatic elemental concentrations were not significantly different among arctic foxes collected at Ulukhaqtuuq (Holman), NT (n=13) and Arviat, NU (n=50), but were significantly greater than concentrations found in wolverine liver from Kugluktuk (Coppermine), NU (n=12). The mean (+/-1 S.E.) concentrations of Cd in kidney were also significantly greater in arctic fox (1.08+/-0.19 microg g(-1) wet wt.) than wolverine (0.67+/-0.18 microg g(-1) wet wt.). However, mean hepatic Cu concentrations (Ulukhaqtuuq: 5.5+/-0.64; Arviat: 7.1+/-0.49 microg g(-1) wet wt.) in arctic foxes were significantly lower than in wolverines (32+/-3.3 microg g(-1) wet wt.). Hepatic total Hg (THg) concentrations in arctic fox from this study were not significantly different from specimens collected in 1973, suggesting that THg concentrations have not changed dramatically over the past 30 years. The mono-methylmercury (MeHg) concentrations in selected (n=10) arctic fox liver samples from Arviat (0.14+/-0.07 microg g(-1) wet wt.) comprised 14% of THg. While the molar concentrations of THg were correlated with Se in arctic foxes and wolverines, the hepatic Hg/Se molar ratios were consistently lower than unity; suggesting that Se-mediated detoxification pathways of Hg are not overwhelmed at current exposure.

  19. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    PubMed

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  20. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    NASA Astrophysics Data System (ADS)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.

  1. Chapter 9: Oil and gas resource potential north of the Arctic Circle

    USGS Publications Warehouse

    Gautier, D.L.; Bird, K.J.; Charpentier, R.R.; Grantz, A.; Houseknecht, D.W.; Klett, T.R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, C.J.; Schuenemeyer, J.H.; Sorensen, K.; Tennyson, Marilyn E.; Valin, Z.C.; Wandrey, C.J.

    2011-01-01

    The US Geological Survey recently assessed the potential for undiscovered conventional petroleumin the Arctic. Using a new map compilation of sedimentary elements, the area north of the Arctic Circle was subdivided into 70 assessment units, 48 of which were quantitatively assessed. The Circum-Arctic Resource Appraisal (CARA) was a geologically based, probabilistic study that relied mainly on burial history analysis and analogue modelling to estimate sizes and numbers of undiscovered oil and gas accumulations. The results of the CARA suggest the Arctic is gas-prone with an estimated 770-2990 trillion cubic feet of undiscovered conventional natural gas, most of which is in Russian territory. On an energy-equivalent basis, the quantity of natural gas ismore than three times the quantity of oil and the largest undiscovered gas eld is expected to be about 10 times the size of the largest undiscovered oil eld. In addition to gas, the gas accumulationsmay contain an estimated 39 billion barrels of liquids. The South Kara Sea is themost prospective gas assessment unit, but giant gas elds containingmore than 6 trillion cubic feet of recoverable gas are possible at a 50%chance in 10 assessment units. Sixty per cent of the estimated undiscovered oil resource is in just six assessment units, of which the Alaska Platform, with 31%of the resource, is the most prospective. Overall, the Arctic is estimated to contain between 44 and 157 billion barrels of recoverable oil. Billion barrel oil elds are possible at a 50%chance in seven assessment units.Undiscovered oil resources could be signicant to the Arctic nations, but are probably not sufcient to shift the world oil balance away from the Middle East. ?? 2011 The Geological Society of London.

  2. Resource utilisation by deep-sea megabenthos in the Canadian High Arctic (Baffin Bay and Parry Channel)

    NASA Astrophysics Data System (ADS)

    Bourgeois, Solveig; Witte, Ursula; Harrison, Ailish M.; Makela, Anni; Kazanidis, Georgios; Archambault, Philippe

    2016-04-01

    Ongoing climate change in the Arctic is causing drastic alteration of the Arctic marine ecosystem functioning, such as shifts in patterns of primary production, and modifying the present tight pelagic-benthic coupling. Subsequently benthic communities, which rely upon organic matter produced in the top layers of the Ocean, will also be affected by these changes. The benthic megafaunal communities play a significant role in ecological processes and ecosystem functioning (i.e. organic matter recycling, bioturbation, food source for the higher trophic levels…). Yet, information is scarce regarding the main food sources for dominant benthic organisms, and therefore the impact of the ongoing changes is difficult to assess. The goal of this study is to investigate the preferential feeding of different carbon sources by megabenthic organisms in the Canadian High Arctic and to identify environmental drivers which explain the observed trends. In summer 2013, benthic megafauna was collected at 9 stations spread along latitudinal (58 to 81°N) and longitudinal (62 to 114°W) transects in the Baffin Bay and Parry Channel, respectively. Carbon and nitrogen bulk stable isotope analyses (δ13C and δ15N) were performed on several species divided into groups according to their feeding type. This study highlights distinct trends in δ13C values of benthic organisms suggesting the importance of both phytoplankton and ice algae as carbon sources for megafauna in the Canadian High Arctic. The importance of physical and biological parameters as drivers of food web structure will be furthermore discussed.

  3. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    PubMed

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  4. A Preliminary Teleseismic Investigation of the Crust and Mantle Lithosphere Obtained from BISN in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.

    2016-12-01

    The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on

  5. Regional Modelling of Air Quality in the Canadian Arctic: Impact of marine shipping and North American wild fire emissions

    NASA Astrophysics Data System (ADS)

    Gong, W.; Beagley, S. R.; Zhang, J.; Cousineau, S.; Sassi, M.; Munoz-Alpizar, R.; Racine, J.; Menard, S.; Chen, J.

    2015-12-01

    Arctic atmospheric composition is strongly influenced by long-range transport from mid-latitudes as well as processes occurring in the Arctic locally. Using an on-line air quality prediction model GEM-MACH, simulations were carried out for the 2010 northern shipping season (April - October) over a regional Arctic domain. North American wildfire emissions and Arctic shipping emissions were represented, along with other anthropogenic and biogenic emissions. Sensitivity studies were carried out to investigate the principal sources and processes affecting air quality in the Canadian Northern and Arctic regions. In this paper, we present an analysis of sources, transport, and removal processes on the ambient concentrations and atmospheric loading of various pollutants with air quality and climate implications, such as, O3, NOx, SO2, CO, and aerosols (sulfate, black carbon, and organic carbon components). Preliminary results from a model simulation of a recent summertime Arctic field campaign will also be presented.

  6. Undiscovered Arctic gas hydrates: permafrost relationship and resource evaluation.

    NASA Astrophysics Data System (ADS)

    Cherkashov, G. A.; Matveeva, T.

    2011-12-01

    Though ice-core studies show that multidecadal-scale methane variability is only weakly correlated with reconstructed temperature variations (Mitchell et al., 2010) methane emission to the atmosphere still consider as the most significant contributions to the global warming processes. Pockmarks, seeps, mud volcanoes and other features associated with methane fluxes from the seabed have been widely reported, particularly during the last three decades. On continental margins, seepage of hydrocarbon gases from shallow sedimentary layers is a common phenomenon, resulting either from in situ formation of gases (mainly methane) by bacterial decomposition of organic matter within rapidly accumulated upper sediments or from upward migration of gases formed at greater depths. Furthermore, processes associated with seabed fluid flow have been shown to affect benthic ecology and to supply methane to the hydrosphere and the atmosphere (Judd, 2003; Hovland and Judd, 2007). The most recent investigations testified that revaluation of the role of gas seeps and related gas hydrate formation processes in the Arctic environment is necessary for the understanding of global methane balance and global climate changes (Westbrook et al., 2009; Shahova and Semiletov, 2010). With respect to gas hydrate formation, due to the presence of relict permafrost the Arctic submarine environment holds a specific place that is distinct from the rest of the Ocean. Submarine gas hydrates in the Arctic may be confined to (1) relict permafrost occurrences on the shelf; (2) concentrated methane infiltration toward the seafloor (shallow-seated gas hydrates); (3) dissipated methane infiltration from great depths (deep-seated gas hydrates). Permafrost-related or cryogenic gas hydrates form due to exogenous cooling of sediment (intra- and sub-permafrost gas hydrates). It is also suggested that some parts of hydrates may be preserved owing to a self-preservation effect above the gas hydrate stability zone

  7. Review of technology for Arctic offshore oil and gas recovery. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  8. Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.

    2017-09-01

    Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc < 0.01, 5-yr filter) and snowfall (r = 0.65, pc < 0.01, 5-yr filter) for the western Canadian High Arctic over the last

  9. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  10. A regional-scale estimation of ice wedge ice volumes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.

    2016-12-01

    Ice wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of ice wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of ice wedge ice for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of ice wedge volume have been tested, including trough width being representative of ice wedge width, and ice wedge ice content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of ice wedge dynamics, as subsidence from ice wedge melt-out could lead to large scale landscape change.

  11. Sources of Dimethyl Sulfide in the Canadian Arctic Archipelago and Baffin Bay

    NASA Astrophysics Data System (ADS)

    Mungall, E. L.; Croft, B.; Lizotte, M.; Thomas, J. L.; Murphy, J. G.; Levasseur, M.; Martin, R.; Wentzell, J. J. B.; Liggio, J.; Abbatt, J.

    2015-12-01

    Dimethyl sulfide plays a major role in the global sulfur cycle, meaning that it is important to the formation of sulfate aerosol and thus to cloud condensation nuclei populations and cloud formation. The summertime Arctic atmosphere sometimes resides in a cloud condensation nuclei limited regime, making it very susceptible to changes in their number. Despite the interest generated by this situation, dimethyl sulfide has only rarely been measured in the summertime Arctic. This work presents the first high time resolution (10 Hz) DMS mixing ratio measurements for the Eastern Canadian Archipelago and Baffin Bay in summer performed on an icebreaker cruise as one component of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments (NETCARE). Measured mixing ratios ranged from below the detection limit of 4 pptv to 1155 pptv with a median value of 186 pptv. We used transfer velocity parameterizations from the literature to generate the first flux estimates for this region in summer, which ranged from 0.02-12 μmol m-2 d-1. DMS has a lifetime against OH oxidation of 1-2 days, allowing both local sources and transport to play roles in its atmospheric mixing ratio. Through air mass trajectory analysis using FLEXPART-WRF and chemical transport modeling using GEOS-Chem, we have identified the relative contributions of local sources (Lancaster Sound and Baffin Bay) as well as transport from further afield (the Hudson Bay System and the Beaufort Sea) and find that the local sources dominate. GEOS-Chem is able to reproduce the major features of the measured time series, but is biased low overall (median 72 pptv). We discuss non-marine sources that could account for this low bias and estimate the possible contributions to DMS mixing ratios from lakes, biomass burning, melt ponds and coastal tundra. Our results show that local marine sources of DMS dominate the summer Arctic atmosphere, but that non-local and possibly non

  12. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.

    PubMed

    Martin, Jonathan W; Smithwick, Marla M; Braune, Birgit M; Hoekstra, Paul F; Muir, Derek C G; Mabury, Scott A

    2004-01-15

    Recently it was discovered that humans and animals from various urban and remote global locations contained a novel class of persistent fluorinated contaminants, the most pervasive of which was perfluorooctane sulfonate (PFOS). Lower concentrations of perfluorooctanoate, perfluorohexane sulfonate, and heptadecafluorooctane sulfonamide have also been detected in various samples. Although longer perfluoroalkyl carboxylates (PFCAs) are used in industry and have been detected in fish following a spill of aqueous film forming foam, no studies have been conducted to examine the widespread occurrence of long-chain PFCAs (e.g., CF3(CF2)xCOO-, where x > 6). To provide a preliminary assessment of fluorinated contaminants, including PFCAs, in the Canadian Arctic, polar bears, ringed seals, arctic fox, mink, common loons, northern fulmars, black guillemots, and fish were collected at various locations in the circumpolar region. PFOS was the major contaminant detected in most samples and in polar bear liver was the most prominent organohalogen (mean PFOS = 3.1 microg/g wet weight) compared to individual polychlorinated biphenyl congeners, chlordane, or hexachlorocyclohexane-related chemicals in fat. Using two independent mass spectral techniques, it was confirmed that all samples also contained ng/g concentrations of a homologous series of PFCAs, ranging in length from 9 to 15 carbons. Sum concentrations of PFCAs (sum(PFCAs)) were lower than total PFOS equivalents (sum(PFOS)) in all samples except for mink. In mink, perfluorononanoate (PFNA) concentrations exceeded PFOS concentrations, indicating that PFNA and other PFCAs should be considered in future risk assessments. Mammals feeding at higher trophic levels had greater concentrations of PFOS and PFCAs than mammals feeding at lower trophic positions. In general, odd-length PFCAs exceeded the concentration of even-length PFCAs, and concentrations decreased with increasing chain length in mammals. PFOS and PFCA concentrations

  13. Reconstruction of Centennial and Millennial-scale Climate and Environmental Variability during the Holocene in the Central Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Rolland, N.; Porinchu, D.; MacDonald, G.; Moser, K.

    2007-12-01

    The Arctic and sub-Arctic regions are experiencing dramatic changes in surface temperature, sea-ice extent, glacial melt, river discharge, soil carbon storage and snow cover. According to the IPCC high latitude regions are expected to warm between 4°C and 7°C over the next 100 years. The magnitude of warming and the rate at which it occurs will dwarf any previous warming episodes experienced by latitude regions over the last 11,000 years. It is critical that we improve our understanding of how the Arctic and sub-Arctic regions responded to past periods of warming, especially in light of the changes these regions will be experiencing over the next 100 years. One of the lines of evidence increasingly utilized in multi-proxy paleolimnological research is the Chironomidae (Insecta: Diptera). Also known as non-biting midge flies, chironomids are ubiquitous, frequently the most abundant insects found in freshwater ecosystems and very sensitive to environmental conditions. This research uses Chironomidae to quantitatively characterize climate and environmental conditions of the continental interior of Arctic Canada during the Holocene. Spanning four major vegetation zones (boreal forest, forest-tundra, birch tundra and herb tundra), the surface samples of 80 lakes recovered from the central Canadian Arctic were used to assess the relationship of 22 environmental variables with the chironomid distribution. Redundancy analysis (RDA) identified four variables, total Kjeldahl nitrogen (TKN), pH, summer surface water temperature (SSWT) and depth, which best explain the variance in the distribution of chironomids within these ecoregions. In order to provide new quantitative estimates of SSWT, a 1-component weighted average partial least square (WA-PLS) model was developed (r2jack = 0.76, RMSEP = 1.42°C) and applied downcore in two low arctic continental Nunavut lakes located approximately 50 km and 200 km north of modern treeline. This robust midge-inferred temperature

  14. Concentrations of mercury in tissues of beluga whales (Delphinapterus leucas) from several communities in the Canadian Arctic from 1981 to 2002.

    PubMed

    Lockhart, W L; Stern, G A; Wagemann, R; Hunt, R V; Metner, D A; DeLaronde, J; Dunn, B; Stewart, R E A; Hyatt, C K; Harwood, L; Mount, K

    2005-12-01

    Beluga whales have been hunted for food by Native People in the Canadian Arctic since prehistoric time. Here we report the results of analyses of total mercury in samples of liver, kidney, muscle and muktuk from collections over the period 1981-2002. We compare these results with human consumption guidelines and examine temporal and geographic variation. Liver has been analyzed more frequently than other organs and it has been used as the indicator organ. Mercury accumulates in the liver of the whales over time so that the whale ages are usually linked statistically to their levels of mercury in liver. Virtually all the samples of 566 animals analyzed contained mercury in liver at concentrations higher than the Canadian consumption guideline of 0.5 microg g-1 (wet weight) for fish. (There is no regulatory guideline for concentrations in marine mammals in Canada.) Samples from locations in the Mackenzie Delta in the western Canadian Arctic and from Pangnirtung in the eastern Canadian Arctic were obtained more often than from other location and these offered the best chances to determine whether levels have changed over time. Statistical outlier points were removed and the regressions of (ln) mercury in liver on age were used to calculate the level of mercury in whales of age 13.1 years in order to compare age-adjusted levels at different locations. These age-adjusted levels and also the slopes of regressions suggested that levels have increased in the Mackenzie Delta over the sampling period although not in a simple linear fashion. Other locations had fewer collections, generally spread over fewer years. Some of them indicated differences between sampling times but we could not establish whether these differences were simply temporal variation or whether they were segments of a consistent trend. For example, the levels in whales from Arviat were considerably higher in 1999 than in 1984 but we have only two samples. Similarly, samples from Iqaluit in 1994 exceeded

  15. Implications of the nutrition transition for vitamin D intake and status in Aboriginal groups in the Canadian Arctic.

    PubMed

    El Hayek Fares, Jessy; Weiler, Hope A

    2016-09-01

    Aboriginal Canadians have low intakes of vitamin D and are shifting away from consumption of traditional foods. Higher body mass index, skin pigmentation, and geographic latitude of residence further predispose Canadian Aboriginal populations to low vitamin D status. Low vitamin D status could compromise bone health and other health outcomes. Studies assessing vitamin D status of different Aboriginal groups are limited. The aim of this review is to examine the literature on vitamin D status and intakes of Canadian Aboriginal populations living in the Arctic. PubMed was searched for relevant articles published from 1983 to 2013. The prevalence of 25-hydroxy vitamin D deficiency ranged from 13.9% to 76.0% among children and adults in the summer. Furthermore, mean vitamin D intakes among all age groups were below the estimated average requirement. As vitamin D deficiency has been recently associated with chronic diseases, and Aboriginal populations living in the Arctic are at high risk for low vitamin D status, their vitamin D status should be assessed regularly across seasons. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  17. DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species.

    PubMed

    Saarela, Jeffery M; Sokoloff, Paul C; Gillespie, Lynn J; Consaul, Laurie L; Bull, Roger D

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA-trnH, psbK-psbI, atpF-atpH) collected for a subset of Poa and Puccinellia species, only atpF-atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species.

  18. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.

    PubMed

    Girard, Catherine; Leclerc, Maxime; Amyot, Marc

    2016-04-05

    Permafrost thaw ponds of the warming Eastern Canadian Arctic are major landscape constituents and often display high levels of methylmercury (MeHg). We examined photodegradation potentials in high-dissolved organic matter (DOC) thaw ponds on Bylot Island (BYL) and a low-DOC oligotrophic lake on Cornwallis Island (Char Lake). In BYL, the ambient MeHg photodemethylation (PD) rate over 48 h of solar exposure was 6.1 × 10(-3) m(2) E(-1), and the rate in MeHg amended samples was 9.3 × 10(-3) m(2) E(-1). In contrast, in low-DOC Char Lake, PD was only observed in the first 12 h, which suggests that PD may not be an important loss process in polar desert lakes. Thioglycolic acid addition slowed PD, while glutathione and chlorides did not impact northern PD rates. During an ecosystem-wide experiment conducted in a covered BYL pond, there was neither net MeHg increase in the dark nor loss attributable to PD following re-exposure to sunlight. We propose that high-DOC Arctic thaw ponds are more prone to MeHg PD than nearby oligotrophic lakes, likely through photoproduction of reactive species rather than via thiol complexation. However, at the ecosystem level, these ponds, which are widespread through the Arctic, remain likely sources of MeHg for neighboring systems.

  19. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.

    2016-12-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  20. Respiratory function impairment and cardiopulmonary consequences in long-time residents of the Canadian Arctic.

    PubMed Central

    Schaefer, O; Eaton, R D; Timmermans, F J; Hildes, J A

    1980-01-01

    Spirometry, roentgenography and electrocardiography were performed during community health surveys in 1976-78 in 176 Inuit and other long-time residents of the northeastern (Arctic Bay) and western (Inuvik) Canadian Arctic, and the results were related to age, ethnic origin, occupation and history of climatic exposure, smoking and hospitalization for tuberculosis. In Arctic Bay the young men showed excellent respiratory function, normal-sized pulmonary arteries and normal electrocardiograms, but abnormalities of all three types were increasingly frequent and severe after age 25. The forced mid-expiratory flow (FMF) fell to less than 50% of the norm by age 40, and dilatation of the pulmonary artery, hypertrophy of the right ventricle, right bundle branch block and a pseudoinfarction pattern on the ECG were frequently associated. In contrast, the men in Inuvik, an urbanized centre, maintained above normal respiratory function until age 40, and the FMF and pulmonary artery diameter remained normal in the older men except for Inuit and white trappers over 60 years old who had run fox trap lines along the Arctic coast in the 1920s and 30s. These data suggest that inhalation of extremely cold air at maximum ventilation may be a prime factor in the chronic obstructive lung disease of Inuit hunters, whereas smoking has only a minor role and hospitalization for tuberculosis appears to protect from rather than contribute to this disorder. PMID:7448675

  1. Respiratory function impairment and cardiopulmonary consequences in long-time residents of the Canadian Arctic.

    PubMed

    Schaefer, O; Eaton, R D; Timmermans, F J; Hildes, J A

    1980-11-22

    Spirometry, roentgenography and electrocardiography were performed during community health surveys in 1976-78 in 176 Inuit and other long-time residents of the northeastern (Arctic Bay) and western (Inuvik) Canadian Arctic, and the results were related to age, ethnic origin, occupation and history of climatic exposure, smoking and hospitalization for tuberculosis. In Arctic Bay the young men showed excellent respiratory function, normal-sized pulmonary arteries and normal electrocardiograms, but abnormalities of all three types were increasingly frequent and severe after age 25. The forced mid-expiratory flow (FMF) fell to less than 50% of the norm by age 40, and dilatation of the pulmonary artery, hypertrophy of the right ventricle, right bundle branch block and a pseudoinfarction pattern on the ECG were frequently associated. In contrast, the men in Inuvik, an urbanized centre, maintained above normal respiratory function until age 40, and the FMF and pulmonary artery diameter remained normal in the older men except for Inuit and white trappers over 60 years old who had run fox trap lines along the Arctic coast in the 1920s and 30s. These data suggest that inhalation of extremely cold air at maximum ventilation may be a prime factor in the chronic obstructive lung disease of Inuit hunters, whereas smoking has only a minor role and hospitalization for tuberculosis appears to protect from rather than contribute to this disorder.

  2. Silurian pinnacle reefs of the Canadian Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Freitas, T.A.; Dixon, O.A.; Mayr, U.

    1993-04-01

    Pinnacle reefs are commonly an attractive target for oil exploration because they are usually porous carbonate bodies entombed in impervious, deep-water shales that provide both the source and the seal for hydrocarbons. Silurian pinnacle reefs, the first described in the Canadian Arctic Archipelago, are exposed on Ellesmere and Devon Islands. Two main reef trends occur, one of early middle Llandovery to middle Ludlow age and a second of middle Ludlow to Late Silurian or Early Devonian age. Reefs of both phases contain lime mudstone cores: some are stromatactoid-rich and others consist predominantly of microbialite-rich lime mudstone or microbial boundstone. Faciesmore » sequences of both reef phases show evidence of upward-shallowing overall, but, in the older reefs, isochronous capping facies are dominated either by coral-mirian or by stromatoporoid boundstone and floatstone. This difference perhaps reflects variation in wave stress and apparent ability of a few corals,thickly encrusted by or associated with microbial boundstone and skeletal algae, to withstand greater wave energy than a stromatoporoid-coral-rich reef community. These reefs constitute one of the bright prospects of hydrocarbon exploration in rocks of the Franklinian succession. 43 refs., 9 figs.« less

  3. Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web.

    PubMed

    Tomy, Gregg T; Pleskach, Kerri; Ferguson, Steve H; Hare, Jonathon; Stern, Gary; Macinnis, Gordia; Marvin, Chris H; Loseto, Lisa

    2009-06-01

    The trophodynamics of per- and polyfluorinated compounds and bromine-based flame retardants were examined in components of a marine food web from the western Canadian Arctic. The animals studied and their relative trophic status in the food web, established using stable isotopes of nitrogen (delta15N), were beluga (Delphinapterus leucas) > ringed seal (Phoca hispida) > Arctic cod (Boreogadus saida) > Pacific herring (Clupea pallasi) approximately equal to Arctic cisco (Coregonus autumnalis) > pelagic amphipod (Themisto libellula) > Arctic copepod (Calanus hyperboreus). For the brominated diphenyl ethers, the lipid adjusted concentrations of the seven congeners analyzed (Sigma7BDEs: -47, -85, -99, -100, -153, -154, and -209) ranged from 205.4 +/- 52.7 ng/g in Arctic cod to 2.6 +/- 0.4 ng/g in ringed seals. Mean Sigma7BDEs concentrations in Arctic copepods, 16.4 ng/g (n = 2, composite sample), were greater than those in the top trophic level (TL) marine mammals and suggests that (i) Arctic copepods are an important dietary component that delivers BDEs to the food web and (ii) because these compounds are bioaccumulative, metabolism and depletion of BDE congeners in top TL mammals is an important biological process. There were differences in the concentration profiles of the isomers of hexabromocyclododecane (HBCD) in the food web. The most notable difference was observed for beluga, where the alpha-isomer was enriched (accounting for approximately 90% of the SigmaHBCD body burden), relative to its primary prey species, Arctic cod, where the alpha-isomer accounted for only 20% of the SigmaHBCD body burden (beta: 4% and gamma: 78%). For the C8-C11 perfluorinated carboxylic acids, the trophic magnification factors (TMFs) were all greater than unity and increased with increasing carbon chain length. PFOS and its neutral precursor, PFOSA, also had TMF values greater than one. There were also pronounced differences in the PFOSA to PFOS ratio in ringed seal (0.04) and in

  4. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  5. Inuit Student Teachers' Agency, Positioning and Symbolic Action: Reflections from a "Qallunaat" on Music Teaching in the Canadian Arctic

    ERIC Educational Resources Information Center

    Russell, Joan

    2006-01-01

    This article examines how three Inuit student teachers in the Nunavut Teacher Education Program invested their "social and cultural capital" during a music course for classroom teachers, which the author taught in the Canadian Arctic. She describes how, through the musical games they invented for use in Inuit classrooms, these students…

  6. The Pliocene High Arctic terrestrial palaeoenvironmental record and the development of the western Canadian Arctic coastal plain

    NASA Astrophysics Data System (ADS)

    Rybczynski, N.; Braschi, L.; Gosse, J. C.; Kennedy, C.; Fraser, D.; Lakeman, T.

    2013-12-01

    The Pliocene fossil record of the High Arctic is represented by a collection of sites that occur across the Canadian Arctic Archipelago (CAA), with deposits in the west comprising a 1200 km-long dissected clastic wedge (Beaufort Formation) and those in the east represented by high terrace gravel deposits. Fossil material from these sites is often very well preserved and provides evidence of a boreal-type forest. In the eastern Arctic our research sites includes the Fyles Leaf Bed (FLB) and the Beaver Pond (BP) sites, on west central Ellesmere Island. These are about 10 km apart and preserve evidence of forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Although modern camels live in open habitats, biogeographic and comparative dental evidence, in combination, suggest that the North American Arctic camels were browsers, and therefore forest-dwelling. Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The Beaufort Formation, located in the Western CAA, was formed by a regional northwesterly flowing braided fluvial system. The Beaufort Formation appears to have filled at least the western portions of the 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Formation, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse

  7. Oil and gas fields in East Coast and Arctic basins of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneley, R.A.

    1984-09-01

    The East Coast and Arctic basins of Canada have been under serious hydrocarbon exploration for over 20 years. Although the density of drilling is low, extensive seismic control has outlined a high proportion of the structures in these basins and the stratigraphic framework of the basins is known. From west to east, the basins include the Beaufort basin, the Sverdrup basin of the high Arctic and the adjacent Parry Island foldbelt, the rift basins of Baffin Bay, and the continental-margin basins offshore Labrador, the Grand Banks and the Scotian Shelf. Each of these basins contains oil and gas fields thatmore » typify, to some degree, the pools that may be anticipated in undrilled structures. Surprises, both good and bad, await the explorer. The physical environment of these Canadian basins ranges from severe to almost impossible. As exploration has proceeded, great strides have been made in coping with the physical environment; however, the costs are becoming increasingly onerous, and the appreciation is growing regarding the cost, risk and time that will be involved in developing production from those resources. Even from a national sense of supply security, the vast reserves of oil in the tar sands and in-situ recovery deposits of heavy oil in western Canada will provide a competitive ceiling that will limit future development of frontier basins to those where production costs are not significantly higher than those of the tar sands.« less

  8. Arctic marine ecosystem contamination.

    PubMed

    Muir, D C; Wagemann, R; Hargrave, B T; Thomas, D J; Peakall, D B; Norstrom, R J

    1992-07-15

    The current state of knowledge of levels, spatial and temporal trends of contaminants in the Arctic marine ecosystem varies greatly among pollutants and among environmental compartments. Levels of polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and some heavy metals such as mercury and lead, in Arctic marine mammals and fish are relatively well documented because of the need for comparisons with biota in more polluted environments and interest in the contamination of native diets. Levels of heavy metals, alkanes, polyaromatic hydrocarbons (PAH) and OCs in the Arctic Ocean are comparable to uncontaminated ocean waters in the mid-latitudes. But concentrations of alpha- and gamma-hexachlorocyclohexane (HCHs) are higher in northern waters far removed from local sources, possibly because lower water temperature reduces transfer to the atmosphere. Bioaccumulation of OCs and heavy metals in Arctic marine food chains begins with epontic ice algae or phytoplankton in surface waters. Polychlorinated camphenes (PCC), PCBs, DDT- and chlordane-related compounds are the major OCs in marine fish, mammals and seabirds. Mean concentrations of most PCBs and OC pesticides in ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic are quite similar indicating a uniform geographic distribution of contamination, although alpha-HCH showed a distinct latitudinal gradient in bears due to higher levels in zones influenced by continental runoff. Ringed seals from Spitzbergen have higher levels of PCBs, total DDT and polychlorinated dioxins/furans (PCDD/PCDFs). In contrast to other OCs, PCDD/PCDFs in Canadian Arctic ringed seals and polar bears were higher in the east/central Arctic than at more southerly locations. Remarkably high cadmium levels are found in kidney and liver of narwhal (Monodons monoceros) from western Baffin Bay (mean of 63.5 micrograms g-1) and western Greenland waters (median of 39.5 micrograms g-1). Mercury

  9. Characterizing aerosol transport into the Canadian High Arctic using aerosol mass spectrometry and Lagrangian modelling

    NASA Astrophysics Data System (ADS)

    Kuhn, T.; Damoah, R.; Bacak, A.; Sloan, J. J.

    2010-05-01

    We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is therefore well suited as a receptor site to study the long range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average -40 °C in the winter and can be as low as -55 °C. Selected AMS measurements of aerosol mass concentration, size, and chemical composition recorded during the months of August, September and October 2006 will be reported. During this period, sulfate was at most times the predominant aerosol component with on average 0.115 μg m-3 (detection limit 0.003 μg m-3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m-3 detection limit (0.04 μg m-3). The nitrate component, which averaged 0.007 μg m-3, was above its detection limit (0.002 μg m-3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m-3, which was approximately equal to its detection limit. A few episodes having increased mass concentrations and lasting from several hours to several days are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short term episodes provide

  10. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges

    NASA Astrophysics Data System (ADS)

    Agnan, Yannick; Douglas, Thomas A.; Helmig, Detlev; Hueber, Jacques; Obrist, Daniel

    2018-06-01

    In the Arctic, the snowpack forms the major interface between atmospheric and terrestrial cycling of mercury (Hg), a global pollutant. We investigated Hg dynamics in an interior Arctic tundra snowpack in northern Alaska during two winter seasons. Using a snow tower system to monitor Hg trace gas exchange, we observed consistent concentration declines of gaseous elemental Hg (Hg0gas) from the atmosphere to the snowpack to soils. The snowpack itself was unlikely a direct sink for atmospheric Hg0gas. In addition, there was no evidence of photochemical reduction of HgII to Hg0gas in the tundra snowpack, with the exception of short periods during late winter in the uppermost snow layer. The patterns in this interior Arctic snowpack thus differ substantially from observations in Arctic coastal and temperate snowpacks. We consistently measured low concentrations of both total and dissolved Hg in snowpack throughout the two seasons. Chemical tracers showed that Hg was mainly associated with local mineral dust and regional marine sea spray inputs. Mass balance calculations show that the snowpack represents a small reservoir of Hg, resulting in low inputs during snowmelt. Taken together, the results from this study suggest that interior Arctic snowpacks are negligible sources of Hg to the Arctic.

  11. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p < 0.001, N = 38), suggesting that BP was subject to bottom-up control by carbon supply. Integrated BP data showed three distinct periods: fall-winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  12. Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.

  13. Landfast ice thickness in the Canadian Arctic Archipelago from observations and models

    NASA Astrophysics Data System (ADS)

    Howell, Stephen E. L.; Laliberté, Frédéric; Kwok, Ron; Derksen, Chris; King, Joshua

    2016-07-01

    Observed and modelled landfast ice thickness variability and trends spanning more than 5 decades within the Canadian Arctic Archipelago (CAA) are summarized. The observed sites (Cambridge Bay, Resolute, Eureka and Alert) represent some of the Arctic's longest records of landfast ice thickness. Observed end-of-winter (maximum) trends of landfast ice thickness (1957-2014) were statistically significant at Cambridge Bay (-4.31 ± 1.4 cm decade-1), Eureka (-4.65 ± 1.7 cm decade-1) and Alert (-4.44 ± 1.6 cm -1) but not at Resolute. Over the 50+-year record, the ice thinned by ˜ 0.24-0.26 m at Cambridge Bay, Eureka and Alert with essentially negligible change at Resolute. Although statistically significant warming in spring and fall was present at all sites, only low correlations between temperature and maximum ice thickness were present; snow depth was found to be more strongly associated with the negative ice thickness trends. Comparison with multi-model simulations from Coupled Model Intercomparison project phase 5 (CMIP5), Ocean Reanalysis Intercomparison (ORA-IP) and Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) show that although a subset of current generation models have a "reasonable" climatological representation of landfast ice thickness and distribution within the CAA, trends are unrealistic and far exceed observations by up to 2 orders of magnitude. ORA-IP models were found to have positive correlations between temperature and ice thickness over the CAA, a feature that is inconsistent with both observations and coupled models from CMIP5.

  14. A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic.

    PubMed

    Delaforge, Aurélie; Suárez-Morales, Eduardo; Walkusz, Wojciech; Karley Campbell; Mundy, C J

    2017-01-01

    A new species of monstrilloid copepod, Monstrillopsis planifrons sp. n. , is described from an adult female that was collected beneath snow-covered sea ice during the 2014 Ice Covered Ecosystem - CAMbridge bay Process Study (ICE-CAMPS) in Dease Strait of the Canadian Arctic Archipelago. Currently, up to six species of this order are known to occur in polar latitudes. The new species described herein shares similarities with Monstrillopsis dubia (Scott, 1904) but differs in its body proportions and cephalothorax ornamentation; the cephalothorax is covered by minute scattered papillae on dorsal and ventral surfaces; this species has a reduced fifth leg endopod, fifth leg exopod armed with three setae, antennule with fused segments 3-4, and the genital double-somite bears unique posterolateral processes. This is the second species of this genus recorded in the Arctic, after Monstrillopsis ferrarii (Suárez-Morales & Ivanenko, 2004), described from the White Sea, and is the first record of Monstrillopsis in Canadian waters. With the addition of this new species and the recognition of Monstrillopsis bernardensis comb. nov. as a member of this genus, the number of nominal species is now 15. Overall, this genus has a tendency to be distributed in temperate and cold waters, while only three species have been found in tropical and subtropical latitudes.

  15. Persistent organic pollutant and mercury concentrations in eggs of ground-nesting marine birds in the Canadian high Arctic.

    PubMed

    Peck, Liam E; Gilchrist, H Grant; Mallory, Conor D; Braune, Birgit M; Mallory, Mark L

    2016-06-15

    We collected eggs of eight marine bird species from several colony sites in the Canadian high Arctic located at approximately 76°N and analyzed them for concentrations of legacy persistent organic pollutants (POPs) and mercury. We provide the first report on concentrations of POPs in eggs of three Arctic species (Thayer's gull Larus thayeri, Sabine's gull Xema sabini, Ross's Gull Rhodostethia rosea), and we found significant differences in each of the POP profiles among the five species with sufficient data for statistical comparisons (Thayer's gull, black guillemot Cepphus grylle, Sabine's gull, Arctic tern Sterna paradisaea and common eider Somateria mollissima borealis). The Ross's Gull had unexpectedly high POP concentrations relative to the other species examined, although this was based on a single egg, while glaucous gull Larus hyperboreus eggs from our sampling location had very low POPs. Sabine's gulls had the lowest Hg of the eggs studied, consistent with their low trophic position, but concentrations of their legacy POPs were higher than expected. We also noted that total hexachlorocyclohexanes were higher than reported elsewhere in the circumpolar Arctic in three species. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ingested plastic in a diving seabird, the thick-billed murre (Uria lomvia), in the eastern Canadian Arctic.

    PubMed

    Provencher, Jennifer F; Gaston, Anthony J; Mallory, Mark L; O'hara, Patrick D; Gilchrist, H Grant

    2010-09-01

    Plastic debris has become ubiquitous in the marine environment and seabirds may ingest debris which can have deleterious effects on their health. In the North Atlantic Ocean, surface feeding seabirds typically ingest high levels of plastic, while the diving auks which feed in the water column typically have much lower levels. We examined 186 thick-billed murres from five colonies in the eastern Canadian Arctic for ingested plastic debris. Approximately 11% of the birds had at least one piece of plastic debris in their gastrointestinal tracts, with debris dominated by user plastics. This is the first report of ingested plastics in an auk species in Canada's Arctic, and the highest incidence of plastic ingestion to date for thick-billed murres (Uria lomvia). Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Household Crowding and Food Insecurity Among Inuit Families With School-Aged Children in the Canadian Arctic

    PubMed Central

    Muckle, Gina; Dewailly, Éric; Jacobson, Joseph L.; Jacobson, Sandra W.; Ayotte, Pierre; Riva, Mylène

    2015-01-01

    Objectives. We examined the relation of household crowding to food insecurity among Inuit families with school-aged children in Arctic Quebec. Methods. We analyzed data collected between October 2005 and February 2010 from 292 primary caregiver–child dyads from 14 Inuit communities. We collected information about household conditions, food security, and family socioeconomic characteristics by interviews. We used logistic regression models to examine the association between household crowding and food insecurity. Results. Nearly 62% of Inuit families in the Canadian Arctic resided in more crowded households, placing them at risk for food insecurity. About 27% of the families reported reducing the size of their children’s meals because of lack of money. The likelihood of reducing the size of children’s meals was greater in crowded households (odds ratio = 3.73; 95% confidence interval = 1.96, 7.12). After we adjusted for different socioeconomic characteristics, results remained statistically significant. Conclusions. Interventions operating across different levels (community, regional, national) are needed to ensure food security in the region. Targeting families living in crowded conditions as part of social and public health policies aiming to reduce food insecurity in the Arctic could be beneficial. PMID:25602890

  18. Household crowding and food insecurity among Inuit families with school-aged children in the Canadian Arctic.

    PubMed

    Ruiz-Castell, Maria; Muckle, Gina; Dewailly, Éric; Jacobson, Joseph L; Jacobson, Sandra W; Ayotte, Pierre; Riva, Mylène

    2015-03-01

    We examined the relation of household crowding to food insecurity among Inuit families with school-aged children in Arctic Quebec. We analyzed data collected between October 2005 and February 2010 from 292 primary caregiver-child dyads from 14 Inuit communities. We collected information about household conditions, food security, and family socioeconomic characteristics by interviews. We used logistic regression models to examine the association between household crowding and food insecurity. Nearly 62% of Inuit families in the Canadian Arctic resided in more crowded households, placing them at risk for food insecurity. About 27% of the families reported reducing the size of their children's meals because of lack of money. The likelihood of reducing the size of children's meals was greater in crowded households (odds ratio=3.73; 95% confidence interval=1.96, 7.12). After we adjusted for different socioeconomic characteristics, results remained statistically significant. Interventions operating across different levels (community, regional, national) are needed to ensure food security in the region. Targeting families living in crowded conditions as part of social and public health policies aiming to reduce food insecurity in the Arctic could be beneficial.

  19. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008

    NASA Astrophysics Data System (ADS)

    Tivy, Adrienne; Howell, Stephen E. L.; Alt, Bea; McCourt, Steve; Chagnon, Richard; Crocker, Greg; Carrieres, Tom; Yackel, John J.

    2011-03-01

    The Canadian Ice Service Digital Archive (CISDA) is a compilation of weekly ice charts covering Canadian waters from the early 1960s to present. The main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies before trends and variability in summer averaged sea ice cover are investigated. These data revealed that between 1968 and 2008, summer sea ice cover has decreased by 11.3% ± 2.6% decade-1 in Hudson Bay, 2.9% ± 1.2% decade-1 in the Canadian Arctic Archipelago (CAA), 8.9% ± 3.1% decade-1 in Baffin Bay, and 5.2% ± 2.4% decade-1 in the Beaufort Sea with no significant reductions in multiyear ice. Reductions in sea ice cover are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and they are consistently greater than the pan-Arctic change by up to ˜0.2°C decade-1. Within the CAA and Baffin Bay, the El Niño-Southern Oscillation index correlates well with multiyear ice coverage (positive) and first-year ice coverage (negative) suggesting that El Niño episodes precede summers with more multiyear ice and less first-year ice. Extending the trend calculations back to 1960 along the major shipping routes revealed significant decreases in summer sea ice coverage ranging between 11% and 15% decade-1 along the route through Hudson Bay and 6% and 10% decade-1 along the southern route of the Northwest Passage, the latter is linked to increases in SAT. Between 1960 and 2008, no significant trends were found along the northern western Parry Channel route of the Northwest Passage.

  20. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine... Environmental Impact Statement (DEIS) for the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on... Web page at: http://www.nmfs.noaa.gov/pr/permits/eis/arctic.htm . FOR FURTHER INFORMATION CONTACT...

  1. Socioeconomic and Cultural Correlates of Diet Quality in the Canadian Arctic: Results from the 2007-2008 Inuit Health Survey.

    PubMed

    Galloway, Tracey; Johnson-Down, Louise; Egeland, Grace M

    2015-09-01

    We examined the impact of socioeconomic and cultural factors on dietary quality in adult Inuit living in the Canadian Arctic. Interviews and a 24-h dietary recall were administered to 805 men and 1292 women from Inuit regions in the Canadian Arctic. We examined the effect of age, sex, education, income, employment, and cultural variables on respondents' energy, macronutrient intake, sodium/potassium ratio, and healthy eating index. Logistic regression was used to assess the impact of socioeconomic status (SES) on diet quality indicators. Age was positively associated with traditional food (TF) consumption and greater energy from protein but negatively associated with total energy and fibre intake. Associations between SES and diet quality differed considerably between men and women and there was considerable regional variability in diet quality measures. Age and cultural variables were significant predictors of diet quality in logistic regression. Increased age and use of the Inuit language in the home were the most significant predictors of TF consumption. Our findings are consistent with studies reporting a nutrition transition in circumpolar Inuit. We found considerable variability in diet quality and complex interaction between SES and cultural variables producing mixed effects that differ by age and gender.

  2. A new species of Monstrillopsis (Crustacea, Copepoda, Monstrilloida) from the lower Northwest Passage of the Canadian Arctic

    PubMed Central

    Delaforge, Aurélie; Suárez-Morales, Eduardo; Walkusz, Wojciech; Karley Campbell; Mundy, C. J.

    2017-01-01

    Abstract A new species of monstrilloid copepod, Monstrillopsis planifrons sp. n., is described from an adult female that was collected beneath snow-covered sea ice during the 2014 Ice Covered Ecosystem – CAMbridge bay Process Study (ICE-CAMPS) in Dease Strait of the Canadian Arctic Archipelago. Currently, up to six species of this order are known to occur in polar latitudes. The new species described herein shares similarities with Monstrillopsis dubia (Scott, 1904) but differs in its body proportions and cephalothorax ornamentation; the cephalothorax is covered by minute scattered papillae on dorsal and ventral surfaces; this species has a reduced fifth leg endopod, fifth leg exopod armed with three setae, antennule with fused segments 3–4, and the genital double-somite bears unique posterolateral processes. This is the second species of this genus recorded in the Arctic, after Monstrillopsis ferrarii (Suárez-Morales & Ivanenko, 2004), described from the White Sea, and is the first record of Monstrillopsis in Canadian waters. With the addition of this new species and the recognition of Monstrillopsis bernardensis comb. nov. as a member of this genus, the number of nominal species is now 15. Overall, this genus has a tendency to be distributed in temperate and cold waters, while only three species have been found in tropical and subtropical latitudes. PMID:29118635

  3. A Community-Based, Environmental Chronic Disease Prevention Intervention to Improve Healthy Eating Psychosocial Factors and Behaviors in Indigenous Populations in the Canadian Arctic

    ERIC Educational Resources Information Center

    Mead, Erin L.; Gittelsohn, Joel; Roache, Cindy; Corriveau, André; Sharma, Sangita

    2013-01-01

    Diet-related chronic diseases are highly prevalent among indigenous populations in the Canadian Arctic. A community-based, multi-institutional nutritional and lifestyle intervention--Healthy Foods North--was implemented to improve food-related psychosocial factors and behaviors among Inuit and Inuvialuit in four intervention communities (with two…

  4. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration

    PubMed Central

    Serov, Pavel; Mienert, Jürgen; Patton, Henry; Portnov, Alexey; Silyakova, Anna; Panieri, Giuliana; Carroll, Michael L.; Carroll, JoLynn; Andreassen, Karin; Hubbard, Alun

    2017-01-01

    Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming. PMID:28584081

  5. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  6. The Unexpected Re-Growth of Ice-Entombed Bryophytes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    La Farge, C.

    2014-12-01

    The rapid retreat of glaciers and ice caps throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based ice. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little Ice Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little Ice Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial margins. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau ice caps on Baffin Island, Nunavut, where ice retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their

  7. Remagnetization and Cementation of Unconsolidated Sediments in the Mallik 5L-38 Well (Canadian Arctic) by Solute Exclusion During Gas Hydrate Formation

    NASA Astrophysics Data System (ADS)

    Hamilton, T. S.; Enkin, R. J.; Esteban, L.

    2007-05-01

    Bulk magnetic properties provide a sensitive measure of sedimentary diagenesis related to the stability and growth of gas hydrates. The deposit at Mallik (Mackenzie Delta, Canadian Arctic) occurs in unconsolidated Tertiary sands, but is absent in interstratified silt layers. A detailed sampling of the JAPEX/JNOC/GSC Mallik 5L-38 core tested the use of magnetic properties for detecting diagenetic changes related to the hydrate. Petrographic studies reveal that the sands are well sorted and clean, with quartz > chert >> muscovite and little fines content. Excepting a few rare bands of indurated dolomite in the midst of the gas hydrate zone, there is little or no cementation in the sands. Detrital magnetite is the dominant magnetic mineral, comprising up to a few percent of the sand grain population. In contrast, the muddier layers have a somewhat different detrital grain composition, richer in lithic (sedimentary and metamorphic) grains, feldspar, and clays. They are extensively diagenetically altered (to as much as 30- 40%) and cemented with carbonates, clays, chlorite and the iron sulphide greigite (the dominant magnetic mineral). The greigite is recognized by its isotropic creamy-white reflectance, cubic to prismatic habit, and characteristic tarnish to faintly bluish bireflectant mackinawite. Habits range from disseminated cubes and colliform masses to inflationary massive sulphide veins and clots. Rare detrital grains of magnetite were observed among the silt grains, but never in a reaction relationship or overgrown. Instead the greigite has nucleated separately, in tensional fractures and granular masses up to 4 mm across. In this particular sediment sequence, being so quartz and chert rich, there is insufficient local source for the introduced cements (calcite, dolomite, greigite, clays, jarosite), so ions must have been introduced by fluid flow. Magnetic studies reveal a bi-modal character related to the lithology (sands versus silts) and their magnetic

  8. Food expenditure patterns in the Canadian Arctic show cause for concern for obesity and chronic disease.

    PubMed

    Pakseresht, Mohammadreza; Lang, Rosalyn; Rittmueller, Stacey; Roache, Cindy; Sheehy, Tony; Batal, Malek; Corriveau, Andre; Sharma, Sangita

    2014-04-17

    Little is understood about the economic factors that have influenced the nutrition transition from traditional to store-bought foods that are typically high in fat and sugar amongst people living in the Canadian Arctic. This study aims to determine the pattern of household food expenditure in the Canadian Arctic. Local food prices were collected over 12 months in six communities in Nunavut and the Northwest Territories. Dietary intake data were collected from 441 adults using a validated quantitative food frequency questionnaire. Money spent on six food groups was calculated along with the cost of energy and selected nutrients per person. Participants spent approximately 10% of total food expenditure on each of the food groups of fruit/vegetables, grains and potatoes, and dairy, 17% on traditional meats (e.g. caribou, goose, char, and seal liver), and 20% on non-traditional meats (e.g. beef, pork, chicken, fish, and processed meats). Non-nutrient-dense foods (NNDF) accounted for 34% of food expenditure. Younger participants (<30 years) spent more on NNDF and less on traditional meats compared with the older age groups. Participants with higher levels of formal education spent more on fruit and vegetables and less on traditional meats, when compared with participants with lower levels of formal education. Participants spent most household income on NNDF, a possible consequence of generation discrepancy between younger and older participants. The tendency toward NNDF, particularly among youth, should be addressed with an assessment of predictive factors and the development of targeted approaches to population-based interventions.

  9. Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Shanahan, Timothy M.; Hughen, Konrad A.; Ampel, Linda; Sauer, Peter E.; Fornace, Kyrstin

    2013-10-01

    The hydrogen isotope composition of plant waxes preserved in lacustrine sediments is a potentially valuable tool for reconstructing paleoenvironmental changes in the Arctic. However, in contrast to the mid- and low-latitudes, significantly less effort has been directed towards understanding the factors controlling D/H fractionation in high latitude plant waxes and the impact of these processes on the interpretation of sedimentary leaf wax δD records. To better understand these processes, we examined the D/H ratios of long chain fatty acids in lake surface sediments spanning a temperature and precipitation gradient on Baffin Island in the eastern Canadian Arctic. D/H ratios of plant waxes increase with increasing temperature and aridity, with values ranging from -240‰ to -160‰ over the study area. Apparent fractionation factors between n-alkanoic acids in Arctic lake sediments and precipitation(εFA-ppt) are less negative than those of mid-latitude lakes and modern plants by 25‰ to 65‰, consistent with n-alkane data from modern Arctic plants (Yang et al., 2011). Furthermore, εFA-ppt values from Arctic lakes become systematically more positive with increasing evaporation, in contrast to mid-latitude sites, which show little to no change in fractionation with aridity. These data are consistent with enhanced water loss and isotope fractionation at higher latitude in the Arctic summer, when continuous sunlight supports increased daily photosynthesis. The dominant control on δDFA variations on Baffin Island is temperature. However, changing εFA-ppt result in steeper δDFA-temperature relationships than observed for modern precipitation. The application of this δDFA-based paleotemperature calibration to existing δDFA records from Baffin Island produces much more realistic changes in late Holocene temperature and highlights the importance of these effects in influencing the interpretation of Arctic δDFA records. A better understanding of the controls on

  10. Persistent organic pollutants and diabetes among Inuit in the Canadian Arctic.

    PubMed

    Singh, Kavita; Chan, Hing Man

    2017-04-01

    Type 2 diabetes is a chronic metabolic disease that is of increasing concern in Inuit communities. Behavioural factors such as physical inactivity and poor diet are well-known risk factors. Exposure to persistent organic pollutants (POPs) has emerged as an additional factor in the pathogenesis of diabetes. In this study, association between polychlorinated biphenyls (PCBs) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) with diabetes in Canadian Inuit was examined. Data from the Adult Inuit Health Survey (2007-2008) of Inuit participants from the Canadian Arctic were analyzed. Self-reported diabetes (excluding gestational diabetes) and clinical measurement of fasting glucose were examined as outcomes. Association with individual PCB congeners, sum of dioxin-like PCBs (∑DL-PCB), non-dioxin-like PCBs (∑NDL-PCB), total PCBs (∑PCB), and p,p'-DDE were investigated using multiple regression models adjusted for confounding factors. Using different methods to incorporate serum lipids, highest vs. lowest quartile exposures to PCB-105, PCB-118, PCB-153, PCB-156, PCB-170, PCB-180, PCB-183, ∑PCB, and p,p'-DDE were associated with increased risk of diabetes. For these PCBs, odds ratios (ORs) ranged from 1.9-3.5 (lower 95% CI: 0.8-1.4, upper 95% CI: 4.4-9.0) and for p,p'-DDE the OR was 2.5 (lower 95% CI: 1.1-1.2, upper 95% CI: 5.9-6.0). The highest vs. lowest quartile exposure to most PCBs and p,p'-DDE were associated with an increase of fasting glucose by 3-7%. PCBs and p,p'-DDE were associated with increased risk of diabetes and higher fasting glucose level in a cross-sectional survey of Canadian Inuit. Cause-effect relationships of PCBs and p,p'-DDE with diabetes and diabetes-related outcomes need to be further investigated in a cohort study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  12. The freshwater export from the Arctic Ocean and the circulation of liquid freshwater around Greenland - constraints, interactions & consequences

    NASA Astrophysics Data System (ADS)

    Rudels, Bert

    2010-05-01

    The freshwater added to the Arctic Ocean is stored as sea ice and as liquid freshwater residing primarily in the upper layers. This allows for simple zero order estimates of the liquid freshwater content and export based on rotationally controlled baroclinic flow. At present the freshwater outflow occurs on both sides of Greenland. In Fram Strait the sea ice export in the East Greenland Current is significantly larger than the liquid freshwater outflow, while the liquid freshwater export dominates in the Canadian Arctic Archipelago. Although the outflow in the upper layer and the freshwater export respond to short periodic wind events and longer periodic atmospheric circulation patterns, the long-term trend is controlled by the net freshwater supply - the freshwater input minus the ice export. As the ice formation and ice export are expected to diminish in a warmer climate the Canadian Arctic Archipelago, comprising several passages, should gradually carry more of the total Arctic Ocean freshwater outflow. However, the channels in the Canadian Arctic Archipelago discharge into the restricted Baffin, which also receives a part of the Fram Strait freshwater export via the West Greenland Current. In a situation with increased glacial melting and freshwater discharge from Greenland the density of the upper layer in Baffin Bay may decrease considerably. This would reduce the sea level difference between the Arctic Ocean and Baffin Bay and thus weaken the outflow through the Canadian Arctic Archipelago, in extreme cases perhaps even reverse the flow. This would shift the main Arctic Ocean liquid freshwater export from The Canadian Arctic Archipelago to Fram Strait. The zero order dynamics of the exchanges through the Canadian Arctic Archipelago and Baffin Bay are described and the possibility for a weakening of the outflow is examined.

  13. Determining diatom ecotones and their relationship to terrestrial ecoregion designations in the central Canadian Arctic Islands.

    PubMed

    Antoniades, Dermot; Douglas, Marianne S V; Michelutti, Neal; Smol, John P

    2014-08-01

    Ecotones are key areas for the detection of global change because many are predicted to move with shifts in climate. Prince of Wales Island, in the Canadian Arctic Archipelago, spans the transition between mid- to high-Arctic ecoregions. We analyzed limnological variables and recent diatom assemblages from its lakes and ponds to determine if assemblages reflected this ecotone. Limnological gradients were short, and water chemistry explained 20.0% of diatom variance in a redundancy analysis (RDA), driven primarily by dissolved organic carbon, Ca and SO4 . Most taxa were small, benthic forms; key taxa such as planktonic Cyclotella species were restricted to the warmer, southern portion of the study area, while benthic Staurosirella were associated with larger, ice-dominated lakes. Nonetheless, there were no significant changes in diatom assemblages across the mid- to high-Arctic ecoregion boundary. We combined our data set with one from nearby Cornwallis Island to expand the study area and lengthen its environmental gradients. Within this expanded data set, 40.6% of the diatom variance was explained by a combination of water chemistry and geographic variables, and significant relationships were revealed between diatom distributions and key limnological variables, including pH, specific conductivity, and chl-a. Using principal coordinates analysis, we estimated community turnover with latitude and applied piecewise linear regression to determine diatom ecotone positions. A pronounced transition was present between Prince of Wales Island and the colder, more northerly Cornwallis Island. These data will be important in detecting any future northward ecotone movement in response to predicted Arctic climate warming in this highly sensitive region. © 2014 Phycological Society of America.

  14. Assessing determinants of maternal blood concentrations for persistent organic pollutants and metals in the eastern and western Canadian Arctic.

    PubMed

    Curren, Meredith S; Liang, Chun Lei; Davis, Karelyn; Kandola, Kami; Brewster, Janet; Potyrala, Mary; Chan, Hing Man

    2015-09-15

    Aboriginal peoples in the Canadian Arctic are exposed to persistent organic pollutants (POPs) and metals mainly through their consumption of a traditional diet of wildlife items. Recent studies indicate that many human chemical levels have decreased in the north, likely due to a combination of reduced global chemical emissions, dietary shifts, and risk mitigation efforts by local health authorities. Body burdens for chemicals in mothers can be further offset by breastfeeding, parity, and other maternal characteristics. We have assessed the impact of several dietary and maternal covariates following a decade of awareness of the contaminant issue in northern Canada, by performing multiple stepwise linear regression analyses from blood concentrations and demographic variables for 176 mothers recruited from Nunavut and the Northwest Territories during the period 2005-2007. A significant aboriginal group effect was observed for the modeled chemicals, except for lead and cadmium, after adjusting for covariates. Further, blood concentrations for POPs and metals were significantly associated with at least one covariate of older age, fewer months spent breastfeeding, more frequent eating of traditional foods, or smoking during pregnancy. Cadmium had the highest explained variance (72.5%) from just two significant covariates (current smoking status and parity). Although Inuit participants from the Northwest Territories consumed more traditional foods in general, Inuit participants from coastal communities in Nunavut continued to demonstrate higher adjusted blood concentrations for POPs and metals examined here. While this is due in part to a higher prevalence of marine mammals in the eastern Arctic diet, it is possible that other aboriginal group effects unrelated to diet may also contribute to elevated chemical body burdens in Canadian Arctic populations. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    NASA Astrophysics Data System (ADS)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent

  16. Gut Microbiome of the Canadian Arctic Inuit

    PubMed Central

    Tromas, Nicolas; Amyot, Marc

    2017-01-01

    ABSTRACT Diet is a major determinant of community composition in the human gut microbiome, and “traditional” diets have been associated with distinct and highly diverse communities, compared to Western diets. However, most traditional diets studied have been those of agrarians and hunter-gatherers consuming fiber-rich diets. In contrast, the Inuit of the Canadian Arctic have been consuming a traditional diet low in carbohydrates and rich in animal fats and protein for thousands of years. We hypothesized that the Inuit diet and lifestyle would be associated with a distinct microbiome. We used deep sequencing of the 16S rRNA gene to compare the gut microbiomes of Montrealers with a Western diet to those of the Inuit consuming a range of traditional and Western diets. At the overall microbial community level, the gut microbiomes of Montrealers and Inuit were indistinguishable and contained similar levels of microbial diversity. However, we observed significant differences in the relative abundances of certain microbial taxa down to the subgenus level using oligotyping. For example, Prevotella spp., which have been previously associated with high-fiber diets, were enriched in Montrealers and among the Inuit consuming a Western diet. The gut microbiomes of Inuit consuming a traditional diet also had significantly less genetic diversity within the Prevotella genus, suggesting that a low-fiber diet might not only select against Prevotella but also reduce its diversity. Other microbes, such as Akkermansia, were associated with geography as well as diet, suggesting limited dispersal to the Arctic. Our report provides a snapshot of the Inuit microbiome as Western-like in overall community structure but distinct in the relative abundances and diversity of certain genera and strains. IMPORTANCE Non-Western populations have been shown to have distinct gut microbial communities shaped by traditional diets. The hitherto-uncharacterized microbiome of the Inuit may help us to

  17. Benthic macroinfaunal community structure, resource utilisation and trophic relationships in two Canadian Arctic Archipelago polynyas

    PubMed Central

    Witte, Ursula; Archambault, Philippe

    2017-01-01

    Climate change driven alterations to patterns of Arctic marine primary production, with increasing phytoplankton- and decreasing ice algal production, have the potential to change the resource utilisation and trophic structure of the benthic communities relying on the algae for food. To predict the benthic responses to dietary changes, we studied the macroinfaunal community compositions, and used the faunal δ13C and δ15N signatures to investigate their main food sources and trophic positions in North Water (NOW) and Lancaster Sound (LS) polynyas in the Canadian Arctic Archipelago. Macroinfaunal density (10 952 ind. m-2) and biomass (3190 mg C m-2) recorded in NOW were higher than previously found in the Arctic at depths >500m, and significantly higher than in LS (8355 ind. m-2 and 2110 mg C m-2). This was attributed to higher particulate organic matter fluxes to seafloor in NOW. Polychaetes were significant taxa at both sites in terms of density and biomass, and in addition crustacean density in NOW and bivalve density in LS were high. Facultative filter and surface deposit feeders were highly prevalent at both sites, suggesting feeding plasticity is a successful strategy for accessing different food sources. The macrofaunal δ13C signatures reflected the signatures of pelagic particulate organic matter at the sites, and an isotope mixing model confirmed phytoplankton as the main food source for most taxa and feeding guilds. The food web length in LS was longer than in NOW (3.2 vs. 2.8 trophic levels). This was attributed to a larger reliance on reworked organic matter by the benthic community in LS, whereas the high export fluxes at the highly productive NOW resulted in higher rates of selective consumption of fresh algal matter. Despite studies suggesting that loss of ice algae from consumer diets in the Arctic might have a negative impact on the benthos, this study suggests that Arctic macrobenthic communities thrive using phytoplankton as their main food

  18. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard.

    PubMed

    Muir, Derek C G; Backus, Sean; Derocher, Andrew E; Dietz, Rune; Evans, Thomas J; Gabrielsen, Geir W; Nagy, John; Norstrom, Ross J; Sonne, Christian; Stirling, Ian; Taylor, Mitch K; Letcher, Robert J

    2006-01-15

    Polybrominated diphenyl ethers (PBDEs) were determined in adipose tissue of adult and subadult female polar bears sampled between 1999 and 2002 from sub-populations in Arctic Canada, eastern Greenland, and Svalbard, and in males and females collected from 1994 to 2002 in northwestern Alaska. Only 4 congeners (BDE47, 99, 100, and 153) were consistently identified in all samples. BDE47 was the major PBDE congener representing from 65% to 82% of the sum (sigma) PBDEs. Age was not a significant covariate for individual PBDEs or sigmaPBDE. Higher proportions of BDE 99, 100, and 153 were generally found in samples from the Canadian Arctic than from Svalbard or the Bering-Chukchi Sea area of Alaska. Geometric mean sigmaPBDE concentrations were highest for female polar bear fat samples collected from Svalbard (50 ng/g lipid weight (lw)) and East Greenland (70 ng/g lw). Significantly lower sigmaPBDE concentrations were found in fat of bears from Canada and Alaska (means ranging from 7.6 to 22 ng/g lw).

  19. A Pliocene chronostratigraphy for the Canadian western and high Arctic

    NASA Astrophysics Data System (ADS)

    Gosse, John; Braschi, Lea; Rybczynski, Natalia; Lakeman, Thomas; Zimmerman, Susan; Finkel, Robert; Barendregt, Rene; Matthews, John

    2014-05-01

    The Beaufort Formation comprises an extensive (1200 km long, more than 1 km thick) clastic wedge that formed during the Pliocene along the western Canadian Arctic Archipelago (CAA). In the western Arctic, the Ballast Brook (BB) site on Banks Is. exposes more than 20 km of section through the sandy and pebble sandy braided stream deposits with detrital organic beds. Farther north, Beaufort Fm fluvial and estuarine facies have been examined on Meighen Is. In the high Arctic, high terrace gravels (450 m high surface) at the Fyles Leaf Bed (FLB) and Beaver Pond (BP) sites on Ellesmere Is. are not considered part of the Beaufort Fm but have similar paleoenvironmental records. Fossil plant and faunal material from these sediments is often very well preserved and provides evidence of a boreal-type forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The paleoenvironmental records from the Beaufort Fm in the western CAA sites have revealed a similar ecosystem with noteworthy differences in MAT and perhaps seasonality. New burial ages from Meighen Is. indicate a maximum age of 6.1 Ma, consistent with yet much older than previous age estimates, but supportive of paleomagnetic and biostratigraphy at the same location. The age differences may account for some of the interpreted variations in paleoenvironments, in addition to spatial differences in

  20. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing.

    PubMed

    Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis

    2013-07-01

    This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.

  1. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  2. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  3. Determination of monomethylmercury and dimethylmercury in the Arctic marine boundary layer.

    PubMed

    Baya, Pascale A; Gosselin, Michel; Lehnherr, Igor; St Louis, Vincent L; Hintelmann, Holger

    2015-01-06

    Our understanding of the biogeochemical cycling of monomethylmercury (MMHg) in the Arctic is incomplete because atmospheric sources and sinks of MMHg are still unclear. We sampled air in the Canadian Arctic marine boundary layer to quantify, for the first time, atmospheric concentrations of methylated Hg species (both MMHg and dimethylmercury (DMHg)), and, estimate the importance of atmospheric deposition as a source of MMHg to Arctic land- and sea-scapes. Overall atmospheric MMHg and DMHg concentrations (mean ± SD) were 2.9 ± 3.6 and 3.8 ± 3.1 (n = 37) pg m(-3), respectively. Concentrations of methylated Hg species in the marine boundary layer varied significantly among our sites, with a predominance of MMHg over Hudson Bay (HB), and DMHg over Canadian Arctic Archipelago (CAA) waters. We concluded that DMHg is of marine origin and that primary production rate and sea-ice cover are major drivers of its concentration in the Canadian Arctic marine boundary layer. Summer wet deposition rates of atmospheric MMHg, likely to be the product of DMHg degradation in the atmosphere, were estimated at 188 ± 117.5 ng m(-2) and 37 ± 21.7 ng m(-2) for HB and CAA, respectively, sustaining MMHg concentrations available for biomagnification in the pelagic food web.

  4. Periglacial Landscape Stabilization Following Rapid Permafrost Degradation by Thermo-erosion, Bylot Island, Nunavut, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Perreault, N.; Levesque, E.

    2010-12-01

    and the subsequent colonization of stabilized slopes by vegetation changed the thermal properties of the soil which resulted in a thinning of the active layer and ground ice aggradation in the upper part of the permafrost. These negative feedback effects contributed to permafrost recovery and ground ice aggradation. The latent heat of this ice-rich zone will act as a buffer to global warming and contributes to the long-term stability of the gullies in the new periglacial landscape. Fortier, D., Allard, M. 2004. Late Holocene Syngenetic Ice-wedge Polygons Development, Bylot Island, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences, 41: 997-1012. Fortier, D., Allard, M., Shur, Y. 2007. Observation of Rapid Drainage System Development by Thermal Erosion of Ice Wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes, 18: 229-243. Godin, E., Fortier, D. (in press) Geomorphology of thermo-erosion gullies - case study from Bylot Island, Nunavut, Canada. Proceedings 6th Canadian Permafrost Conference and 63rd Canadian Geotechnical Conference, Calgary, October 2010.

  5. Mercury and persistent organic pollutants in native and invading forage species of the Canadian Arctic: Consequences for food web dynamics.

    PubMed

    Pedro, Sara; Fisk, Aaron T; Tomy, Gregg T; Ferguson, Steven H; Hussey, Nigel E; Kessel, Steven T; McKinney, Melissa A

    2017-10-01

    Contaminant dynamics within Arctic marine food webs may be altered through the climate-driven northward invasions of temperate/boreal species. Here, we compare tissue concentrations of total mercury (THg) and legacy and emerging persistent organic pollutants (POPs) in native versus invading forage species sampled from 2012 to 2014 near Arviat, Clyde River, and Resolute Bay, NU, representing, low, mid- and high eastern Canadian Arctic regions, respectively. Concentrations of THg, legacy Σ-polychlorinated biphenyls (ΣPCB) and Σ-organochlorine (ΣOC) pesticides were detected in all forage species, whereas emerging halogenated flame retardants were detected in only a few individuals. Concentrations of major contaminant groups among regions did not vary for Arctic cod (Boreogadus saida), while for sculpin (Cottoidea) there was no clear latitudinal trend. Thus, considering interspecific variation, native sculpin and northern shrimp (Pandalus borealis) had the highest overall concentrations of THg (0.17 ± 0.02 and 0.21 ± 0.01 μg g -1 wet weight, respectively), ΣPCB (322 ± 35 and 245 ± 25 ng g -1 lipid weight (lw), respectively), and ΣOC (413 ± 38 and 734 ± 64 ng g -1 lw, respectively). Comparing the keystone native species, Arctic cod, to its 'replacement' species, capelin (Mallotus villosus) and sandlance (Ammodytes spp.), THg concentrations were higher in Arctic cod compared to capelin (p < 0.001), which was partly explained by differences in fish length. Conversely, capelin and sandlance had higher concentrations of most POPs than Arctic cod (p < 0.02). Neither feeding habitat (based on δ 13 C), trophic position (based on δ 15 N), nor fish length significantly explained these differences in POPs between Arctic cod, capelin and sandlance. Higher POPs concentrations, as well as variation in congener/compound patterns, in capelin and sandlance relative to Arctic cod seem, therefore, more likely related to a more "temperate

  6. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    PubMed Central

    Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Abstract Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state‐of‐the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin. PMID:27818853

  7. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments.

    PubMed

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T; Platov, Gennady A; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C; Nurser, A J George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  8. Review of technology for Arctic offshore oil and gas recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less

  9. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    PubMed

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Observing and Simulating Diapycnal Mixing in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hughes, K.; Klymak, J. M.; Hu, X.; Myers, P. G.; Williams, W. J.; Melling, H.

    2016-12-01

    High-spatial-resolution observations in the central Canadian Arctic Archipelago are analysed in conjunction with process-oriented modelling to estimate the flow pathways among the constricted waterways, understand the nature of the hydraulic control(s), and assess the influence of smaller scale (metres to kilometres) phenomena such as internal waves and topographically induced eddies. The observations repeatedly display isopycnal displacements of 50 m as dense water plunges over a sill. Depth-averaged turbulent dissipation rates near the sill estimated from these observations are typically 10-6-10-5 W kg-1, a range that is three orders of magnitude larger than that for the open ocean. These and other estimates are compared against a 1/12° basin-scale model from which we estimate diapycnal mixing rates using a volume-integrated advection-diffusion equation. Much of the mixing in this simulation is concentrated near constrictions within Barrow Strait and Queens Channel, the latter being our observational site. This suggests the model is capable of capturing topographically induced mixing. However, such mixing is expected to be enhanced in the presence of tides, a process not included in our basin scale simulation or other similar models. Quantifying this enhancement is another objective of our process-oriented modelling.

  11. Aerosol Size and Chemical Composition in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  12. The application of ERTS imagery to monitoring Arctic sea ice. [mapping ice in Bering Sea, Beaufort Sea, Canadian Archipelago, and Greenland Sea

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator); Bowley, C. J.

    1974-01-01

    The author has identified the following significant results. Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS-1 imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft. The results of the investigation demonstrate that ERTS-1 imagery has substantial practical application for monitoring arctic sea ice. Ice features as small as 80-100 m in width can be detected, and the combined use of the visible and near-IR imagery is a powerful tool for identifying ice types. Sequential ERTS-1 observations at high latitudes enable ice deformations and movements to be mapped. Ice conditions in the Bering Sea during early March depicted in ERTS-1 images are in close agreement with aerial ice observations and photographs.

  13. Mapping human dimensions of climate change research in the Canadian Arctic.

    PubMed

    Ford, James D; Bolton, Kenyon; Shirley, Jamal; Pearce, Tristan; Tremblay, Martin; Westlake, Michael

    2012-12-01

    This study maps current understanding and research trends on the human dimensions of climate change (HDCC) in the eastern and central Canadian Arctic. Developing a systematic literature review methodology, 117 peer reviewed articles are identified and examined using quantitative and qualitative methods. The research highlights the rapid expansion of HDCC studies over the last decade. Early scholarship was dominated by work documenting Inuit observations of climate change, with research employing vulnerability concepts and terminology now common. Adaptation studies which seek to identify and evaluate opportunities to reduce vulnerability to climate change and take advantage of new opportunities remain in their infancy. Over the last 5 years there has been an increase social science-led research, with many studies employing key principles of community-based research. We currently have baseline understanding of climate change impacts, adaptation, and vulnerability in the region, but key gaps are evident. Future research needs to target significant geographic disparities in understanding, consider risks and opportunities posed by climate change outside of the subsistence hunting sector, complement case study research with regional analyses, and focus on identifying and characterizing sustainable and feasible adaptation interventions.

  14. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  15. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: results from a decade of monitoring.

    PubMed

    Hung, H; Blanchard, P; Halsall, C J; Bidleman, T F; Stern, G A; Fellin, P; Muir, D C G; Barrie, L A; Jantunen, L M; Helm, P A; Ma, J; Konoplev, A

    2005-04-15

    The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island, Russia and Amderma, Russia. Selected POPs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides, were analyzed in both the gas and particulate phases. This paper summarizes results obtained from this project in the past 5 years. Temporal trends were developed for atmospheric PCBs and OCs observed at Alert using a digital filtration (DF) technique. It was found that trends developed with 5 years of data (1993-1997) did not differ significantly from those determined with 7 years of data (1993-1999). This implies that with the DF technique, long-term trends can still be developed with less than 10 years of data. An acceleration in decline of OC and PCB air concentrations was noted in 1999 for some compounds, although the reason is unknown. Monitoring efforts must continue to assess the effect of this decline on the long-term trends of POPs in the Canadian Arctic. Occasional high trans-/cis-chlordane ratios and heptachlor air concentrations measured at Alert between 1995 and 1997 suggests sporadic fresh usage of chlordane-based pesticides. However, significant decreasing trends of chlordanes along with their chemical signatures has provided evidence that emission of old soil residues is replacing new usage as an important source to the atmosphere. Measurements of OC air concentrations conducted at Kinngait in 1994-1995 and 2000-2001 indicated faster OC removal at this location than at Alert. This may be attributed to the proximity of Kinngait to temperate regions where both biotic and abiotic degradation rates are faster. The PAH concentrations observed

  16. Distribution and diet of larval and juvenile Arctic cod ( Boreogadus saida) in the shallow Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Walkusz, Wojciech; Paulic, Joclyn E.; Williams, William J.; Kwasniewski, Slawomir; Papst, Michael H.

    2011-02-01

    The distribution and diet of larval and juvenile Arctic cod ( Boreogadus saida) were studied during summer 2005 in the coastal Canadian Beaufort Sea. A total of 275 individuals were captured and the highest abundance was observed at station depths of 20-30 m. This corresponds well with the location of the frontal zone where the Mackenzie River plume water and open sea water meet. Diet examinations were performed on 220 Arctic cod, which were found undamaged from sampling. We observed a gradual decrease in prey number per fish and increase in prey size as larvae grew which corresponded to a shift from Rotifera and nauplii towards larger copepodid stages. However, at all sizes, the larvae remain generalists and feed on a broad range of organisms. Environmental changes due to climate warming could have a two-fold impact on fish larvae feeding in the studied region. First, the potential for increased primary production may lead to increased zooplankton production that may impact the feeding and nutrition positively. On the other hand, greater discharge of turbid water from the Mackenzie River may reduce light penetration in the water column that may negatively influence the ability of visual predators to successively forage.

  17. Arctic terrestrial ecosystem contamination.

    PubMed

    Thomas, D J; Tracey, B; Marshall, H; Norstrom, R J

    1992-07-15

    Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen----reindeer----human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 micrograms.g-1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO2 and H2SO4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.

  18. Enhanced sea-ice export from the Arctic during the Younger Dryas.

    PubMed

    Not, Christelle; Hillaire-Marcel, Claude

    2012-01-31

    The Younger Dryas cold spell of the last deglaciation and related slowing of the Atlantic meridional overturning circulation have been linked to a large array of processes, notably an influx of fresh water into the North Atlantic related to partial drainage of glacial Lake Agassiz. Here we observe a major drainage event, in marine sediment cores raised from the Lomonosov Ridge, in the central Arctic Ocean marked by a pulse in detrital dolomitic-limestones. This points to an Arctic-Canadian sediment source area with about fivefold higher Younger Dryas ice-rafting deposition rate, in comparison with the Holocene. Our findings thus support the hypothesis of a glacial drainage event in the Canadian Arctic area, at the onset of the Younger Dryas, enhancing sea-ice production and drifting through the Arctic, then export through Fram Strait, towards Atlantic meridional overturning circulation sites of the northern North Atlantic.

  19. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  20. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; O'Hara, T M; Elkin, B; Solomon, K R; Muir, D C G

    2003-01-01

    Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (delta 13C) and nitrogen (delta 15N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by delta 15N) is positively correlated with increasing delta 13C values, suggesting that Arctic fox with a predominantly marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (Sigma PCB) > chlordane-related compounds (Sigma CHLOR) > hexachlorocyclohexane (Sigma HCH) > total toxaphene (TOX) > or = chlorobenzenes (Sigma ClBz) > DDT-related isomers (Sigma DDT). In liver, Sigma CHLOR was the most abundant OC group, followed by Sigma PCB > TOX > Sigma HCH > Sigma ClBz > Sigma DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of delta 15N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While Sigma PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  1. Future human health research directions for the Canadian Northern Contaminants Program.

    PubMed

    Donaldson, Shawn G; Curren, Meredith S; Adlard, Bryan; Provost, Jonathan; Leech, Tara; Tikhonov, Constantine; Feeley, Mark; Tomlinson, Scott; Shearer, Russel

    2013-01-01

    Studies conducted in the mid-1980s and early 1990s demonstrated that persistent organic pollutants (POPs) and metals were reaching the Arctic ecosystem at unexpectedly high levels, many of which had no Arctic or Canadian sources. Epidemiological and toxicological studies in Canada and in other countries have found that these contaminants may pose a risk to human health. The objective of this paper is to provide the foundation for the discussion on future northern human health research under the Northern Contaminants Program (NCP) in Canada. This short discussion of human health priorities will help guide a path forward for future northern human health research in Canada to address on-going and new health concerns related to contaminants exposure in the Canadian Arctic.

  2. Future human health research directions for the Canadian Northern Contaminants Program

    PubMed Central

    Donaldson, Shawn G.; Curren, Meredith S.; Adlard, Bryan; Provost, Jonathan; Leech, Tara; Tikhonov, Constantine; Feeley, Mark; Tomlinson, Scott; Shearer, Russel

    2013-01-01

    Studies conducted in the mid-1980s and early 1990s demonstrated that persistent organic pollutants (POPs) and metals were reaching the Arctic ecosystem at unexpectedly high levels, many of which had no Arctic or Canadian sources. Epidemiological and toxicological studies in Canada and in other countries have found that these contaminants may pose a risk to human health. The objective of this paper is to provide the foundation for the discussion on future northern human health research under the Northern Contaminants Program (NCP) in Canada. This short discussion of human health priorities will help guide a path forward for future northern human health research in Canada to address on-going and new health concerns related to contaminants exposure in the Canadian Arctic. PMID:24282784

  3. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V. P.; Kopeikin, V. M.; Novigatsky, A. N.

    2013-09-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions") which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper). We have calculated daily residential combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic

  4. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya.

    PubMed

    Lebedev, A T; Mazur, D M; Polyakova, O V; Kosyakov, D S; Kozhevnikov, A Yu; Latkin, T B; Andreeva Yu, I; Artaev, V B

    2018-04-18

    Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ice-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial ice masses

    NASA Astrophysics Data System (ADS)

    Wohlleben, Trudy M. H.

    Canadian High Arctic terrestrial ice masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/ice-albedo feedback (where area changes in snow and/or ice cause changes in surface albedo and surface air temperatures, leading to further area changes in snow/ice); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial ice masses cause changes to atmospheric circulation and precipitation patterns, leading to further ice thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial ice masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for ice flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/ice-albedo feedback can locally exceed that of sea ice on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and ice cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon Ice Cap, observed mass gains in the northwest sector of the ice cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the

  6. JAMSTEC Compact Arctic Drifter (J-CAD): A new Generation drifting buoy to observe the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Kiyoshi; Hosono, Masuo; Shimada, Koji; Kikuchi, Takashi; Nishino, Shigeto

    The Arctic Ocean is one of the most sensitive regions to the earth environment changes. Japan Marine Science and Technology Center developed a new drift buoy to observe the Arctic Ocean. The name of the buoy is J-CAD (JAMSTEC Compact Arctic Drifter). From 1991 to 1993, JAMSTEC developed Ice-Ocean Environmental Buoy (IOEB) as a buoy to observe the Arctic Ocean in cooperation with Woods Hole Oceanographic Institution. The J-CAD is the buoy, which adopted the latest technology based on the knowledge and experience of IOEB development. The J-CAD was designed and developed by JAMSTEC and made by a Canadian Company MetOcean. JAMSTEC did design and development, and a Canadian company Met-Ocean made the J-CAD. It acquires meteorological and oceanographic data of the Arctic Ocean, and transmits the data that it measured via satellite. It dose also store the data inside its memory. An Inductive Modem system, which was developed by Sea-Bird Electronics, Inc. in the United States, was adopted in the underwater transmission system that data on each ocean sensor were collected. An ORBCOMM communication system was adopted for the satellite data transmission. J-CAD-1 was installed at 89°41'N 130°20'W on April 24, 2000, and the observation was started. August 1st was the day when 100 days have passed since the J-CAD-1 was installed on the North Pole. And now, the distance J-CAD-1 has covered exceeds 400 km, and it has transmitted data more than 500 k byte. A part of the data is introduced to the public in the homepage (http://w3.jamstec.go.jp: 8338) of the Arctic research group of JAMSTEC.

  7. Why models struggle to capture Arctic Haze: the underestimated role of gas flaring and domestic combustion emissions

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.

    2013-04-01

    Arctic Haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from domestic combustion. We have calculated daily domestic combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to domestic combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic BC surface concentrations due to domestic combustion by 68% when using daily emissions. A large part (93%) of this

  8. Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the western Canadian Arctic.

    PubMed

    Lemes, Marcos; Wang, Feiyue; Stern, Gary A; Ostertag, Sonja K; Chan, Hing Man

    2011-12-01

    Monitoring data have shown that the total monomethylmercury (CH(3) Hg(+) and its complexes; collectively referred as MeHg hereafter) concentrations in Arctic marine mammals have remained very high in recent decades. Toward a better understanding of the metabolic and toxicological implications of these high levels of MeHg, we report here on the molecular forms of MeHg in the muscle, brain, liver, and kidneys of 10 beluga whales from the western Canadian Arctic. In all tissues analyzed, monomethylmercury was found to be dominated by methylmercuric cysteinate, a specific form of MeHg believed to be able to transport across the blood-brain barrier. Another MeHg-thiol complex, methylmercuric glutathionate, was also detected in the muscle and, to a much lesser extent, in the liver and brain tissues. Furthermore, a profound inorganic Hg peak was detected in the liver and brain tissues, which showed the same retention time as a selenium (Se) peak, suggesting the presence of an Hg-Se complex, most likely an inorganic Hg complex with a selenoamino acid. These results provide the first analytical support that the binding of MeHg with glutathione and Se may have protected beluga whales from the toxic effect of high concentrations of MeHg in their body. Copyright © 2011 SETAC.

  9. Arctic Refuge coastal plain terrestrial wildlife research summaries

    USGS Publications Warehouse

    Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    In 1980, when the U.S. Congress enacted the Alaska National Interest Lands Conservation Act (ANILCA), it also mandated a study of the coastal plain of the Arctic National Wildlife Refuge. Section 1002 of ANILCA stated that a comprehensive inventory of fish and wildlife resources would be conducted on 1.5 million acres of the Arctic Refuge coastal plain (1002 Area). Potential petroleum reserves in the 1002 Area were also to be evaluated from surface geological studies and seismic exploration surveys. Results of these studies and recommendations for future management of the Arctic Refuge coastal plain were to be prepared in a report to Congress.In 1987, the Department of the Interior published the Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment - Report and Recommendations to the Congress of the United States and Final Environmental Impact Statement. This report to Congress identified the potential for oil and gas production (updated* most recently by the U.S. Geological Survey in 2001), described the biological resources, and evaluated the potential adverse effects to fish and wildlife resources. The 1987 report analyzed the potential environmental consequences of five management alternatives for the coastal plain, ranging from wilderness designation to opening the entire area to lease for oil and gas developement. The report's summary recommended opening the 1002 Area to an orderly oil and gas leasing program, but cautioned that adverse effects to some wildlife populations were possible.Congress did not act on this recommendation nor any other alternative for the 1002 Area, and scientists continued studies of key wildlife species and habitats on the coastal plain of the Arctic Refuge and surrounding areas. This report contains updated summaries of those scientific investigations of caribou, muskoxen, predators (grizzly bears, wolves, golden eagles), polar bears, snow geese, and their wildlife habitats.Contributions to this report were

  10. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions.

    PubMed

    Mansfield, K L; Racloz, V; McElhinney, L M; Marston, D A; Johnson, N; Rønsholt, L; Christensen, L S; Neuvonen, E; Botvinkin, A D; Rupprecht, C E; Fooks, A R

    2006-03-01

    We report a molecular epidemiological study of rabies in Arctic countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from domestic animals (dogs/cats) and from two human cases were investigated. The resulting 400 bp N-gene sequences were compared with isolates representing neighbouring Arctic or Baltic countries from North America, the former Soviet Union and Europe. Phylogenetic analysis demonstrated similarities between sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating in the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group was differentiated into two lineages, Arctic 1 and Arctic 2, with good bootstrap support. Arctic 1 is mainly comprised of Canadian isolates with a single fox isolate from Maine in the USA. Arctic 2 was further divided into sub-lineages: 2a/2b. Arctic 2a comprises isolates from the Arctic regions of Yakutia in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders.

  11. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  12. Can Canada Avoid Arctic Militarization?

    DTIC Science & Technology

    2014-05-20

    William Barr. Calgary, AB: University of Alberta Press, 2004. Dolata-Kreutzkamp, Petra . “Canada’s Arctic Policy: Transcending the Middle Power Model?” In... Martin . “Due North”, Canadian Military Journal, 8, no. 1 (Spring 2007): 103-4. http://www.journal.forces.gc.ca/vo8/no1/doc/shadwick-eng.pdf

  13. Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.

    PubMed

    St Louis, Vincent L; Derocher, Andrew E; Stirling, Ian; Graydon, Jennifer A; Lee, Caroline; Jocksch, Erin; Richardson, Evan; Ghorpade, Sarah; Kwan, Alvin K; Kirk, Jane L; Lehnherr, Igor; Swanson, Heidi K

    2011-07-15

    Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ∼ 4.7 and ∼ 4.0 trophic levels long, whereas in WHB they are only ∼ 3.6 and ∼ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ∼ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western

  14. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.

    2018-03-01

    Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.

  15. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights.

    PubMed

    Mallory, Mark L; Braune, Birgit M

    2012-07-01

    Levels and trends of persistent organic pollutants and trace elements in seabirds breeding in the vast Canadian Arctic have been monitored since 1975. Data from this monitoring have indicated both spatial and temporal variation across the region, attributable in part to differences in species' diets, differences in regional deposition patterns, and unidirectional trends in contaminants reaching this area from emissions in temperate and tropical areas to the south. Seabird tissues have served as effective biomonitors to examine this variation, and national and international collaboration in this monitoring effort has promoted valuable synthetic assessments of spatial and temporal patterns in Arctic contaminants. Here we review the history of the monitoring program, the critical role played by Environment Canada's National Wildlife Specimen Bank, and we summarize important spatial and temporal trends in various contaminants in Canadian Arctic seabirds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Mercury trends in ringed seals (Phoca hispida) from the western Canadian Arctic since 1973: associations with length of ice-free season.

    PubMed

    Gaden, A; Ferguson, S H; Harwood, L; Melling, H; Stern, G A

    2009-05-15

    We examined a unique time series of ringed seal (Phoca hispida) samples collected from a single location in the western Canadian Arctic between 1973 and 2007 to test for changes in total mercury (THg) in muscle tissue associated with (1) year and (2) length of ice-free season. We found no temporal trend with muscle THg whereas a curvilinear relationship existed with the length of ice-free season: seals attaimed higher THg in short (2 months) and long (5 months) ice-free seasons. delta 15N and delta13C in muscle tissue did not illustrate significant trends with ice-free days. We estimated that the turnover time of THg in muscle was about twice as long as stable isotope turnover in muscle, possibly explaining the lack of trend with stable isotopes in association with ice-free duration. Our discussion explains how summer environmental conditions may influence the composition of prey (mercury exposure) available to ringed seals. Results offer insight into how marine mammals may respond to directional changes in the Arctic ice-free season.

  17. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  18. Predicting the Arctic Ocean Environment in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Popova, Ekaterina; Yool, Andrew; Nurser, George

    2015-04-01

    Recent environmental changes in the Arctic have clearly demonstrated that climate change is faster and more vigorously in the Polar Regions than anywhere else. Significantly, change in the Arctic Ocean (AO) environment presents a variety of impacts, from ecological to social-economic and political. Mitigation of this change and adaptation to it requires detailed and robust environmental predictions. Here we present a detailed projection of ocean circulation and sea ice from the present until 2099, based on an eddy-permitting high-resolution global simulation of the NEMO ¼ degree ocean model. The model is forced at the surface with HadGEM2-ES atmosphere model output from the UK Met. Office IPCC Assessment Report 5 (AR5) Representative Concentration Pathways 8.5 (RCP8.5) scenario. The HadGEM2-ES simulations span 1860-2099 and are one of an ensemble of runs performed for the Coupled Model Intercomparison Project 5 (CMIP5) and IPCC AR5. Between 2000-2009 and 2090-2099 the AO experiences a significant warming, with sea surface temperature increasing on average by about 4° C, particularly in the Barents and Kara Seas, and in the Greenland Sea and Hudson Bay. By the end of the simulation, Arctic sea ice has an average annual thickness of less than 10 cm in the central AO, and less than 0.5 m in the East-Siberian Sea and Canadian Archipelago, and disappears entirely during the Arctic summer. In summer, opening of large areas of the Arctic Ocean to the wind and surface waves leads to the Arctic pack ice cover evolving into the Marginal Ice Zone (MIZ). In winter, sea ice persists until the 2030s; then it sharply declines and disappears from the Central Arctic Ocean by the end of the 21st century, with MIZ provinces remaining in winter along the Siberian, Alaskan coasts and in the Canadian Arctic Archipelago. Analysis of the AO circulation reveals evidence of (i) the reversal of the Arctic boundary currents in the Canadian Basin, from a weak cyclonic current in 2040-2049 to

  19. Freshwater Export from the Arctic Ocean and its Downstream Effect on Labrador Sea Deep Convection in a High-Resolution Numerical Model

    DTIC Science & Technology

    2010-12-01

    Arctic has been observed in the northern Canadian Arctic Archipelago ( Bourke and McLaren 1992). There, thick multiyear ice of Arctic origin encounters...Affairs, 87(2), 63-77. 172 Bourke , R. H., and A. S. McLaren, 1992: Contour mapping of Arctic Basin ice draft and roughness parameters. J. Geophys

  20. A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.

    2016-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].

  1. Effects of shipping on marine acoustic habitats in Canadian Arctic estimated via probabilistic modeling and mapping.

    PubMed

    Aulanier, Florian; Simard, Yvan; Roy, Nathalie; Gervaise, Cédric; Bandet, Marion

    2017-12-15

    Canadian Arctic and Subarctic regions experience a rapid decrease of sea ice accompanied with increasing shipping traffic. The resulting time-space changes in shipping noise are studied for four key regions of this pristine environment, for 2013 traffic conditions and a hypothetical tenfold traffic increase. A probabilistic modeling and mapping framework, called Ramdam, which integrates the intrinsic variability and uncertainties of shipping noise and its effects on marine habitats, is developed and applied. A substantial transformation of soundscapes is observed in areas where shipping noise changes from present occasional-transient contributor to a dominant noise source. Examination of impacts on low-frequency mammals within ecologically and biologically significant areas reveals that shipping noise has the potential to trigger behavioral responses and masking in the future, although no risk of temporary or permanent hearing threshold shifts is noted. Such probabilistic modeling and mapping is strategic in marine spatial planning of this emerging noise issues. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. The nature and fate of natural resins in the geosphere VI. Analysis of fossil resins from Axel Heiberg Island Canadian Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.B.; LePage, B.A.

    1995-06-01

    Ambers are well known and abundant in terrestrial sediments all over the world; however, due largely to the absence of definite morphological characteristics, the precise botanical origin of most amber samples, are at best, often a matter of speculation. This has severely restricted the usefulness of amber in paleobotanical and paleoecological interpretations. The molecular composition and structural characteristics of fossil resins however, may preserve evidence of their botanical origin, which could be of great value in both geochemical, paleobotanical, and paleoenvironmental studies. The remains of a number of exceptionally well-preserved Taxodiaceae-dominated swamp-forest communities have been identified in the sediments ofmore » the middle Eocene (45 million years old) Buchanan Lake Formation of Axel Heiberg Island, Canadian Arctic Archipelago. The amber collected from these ancient in situ forests provides a unique opportunity to characterize these resins chemically and taxonomically. Resinite associated with Metasequoia, Pinus and Pseudolarix has been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry. This method provides a direct analysis of the molecular structure and composition of the resin. In several cases, both bled resin and cone-resin samples have been characterized. The results of these analyses are presented and discussed. The implications of these results for the botanical origins of other ambers represented in the fossil record (including succinite) will also be discussed.« less

  3. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  4. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2 specification

    NASA Astrophysics Data System (ADS)

    Themens, David; Thayyil Jayachandran, P.

    2017-04-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes (Themens et al. 2014, Themens et al. 2016). These inaccuracies are believed to stem from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. For this purpose, we here introduce the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM), which incorporates all of the above datasets, as well as the older observation records, into a new climatological representation of the high latitude ionosphere. In this presentation, we introduce the NmF2 and hmF2 portions of the model, focusing on both climatological and storm-time representations, and present a validation of the new model with respect to ionosonde observations from four high latitude stations. A comparison with respect to IRI performance is also presented, where we see improvements by up to 70% in the representation of peak electron density through using the new E-CHAIM model. In terms of RMS errors, the E-CHAIM model is shown to represent a near-universal improvement over the IRI, sometimes by more than 1 MHz in foF2. For peak height, the E-CHAIM model demonstrates overall RMS errors of 13km at each test site compared to values of 18-35km for the IRI, depending on location. Themens, D.R., P. T. Jayachandran, et al. (2014). J. Geophys. Res. Space

  5. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  6. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    EIA Publications

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  7. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    NASA Technical Reports Server (NTRS)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  8. U.S. Geological Survey circum-arctic resource appraisal

    USGS Publications Warehouse

    Gautier, D.L.

    2011-01-01

    Among the greatest uncertainties in future energy supply is the amount of oil and gas yet to be found in the Arctic. Using a probabilistic geology-based methodology, the U.S. Geological Survey has assessed the area north of the Arctic Circle. The Circum-Arctic Resource Appraisal (CARA) consists of three parts: (1) Mapping the sedimentary sequences of the Arctic (Grantz and others 2009), (2) Geologically based estimation of undiscovered technically recoverable petroleum (Gautier and others 2009, discussed in this presentation) and (3) Economic appraisal of the cost of delivering the undiscovered resources to major markets (also reported at this conference by White and others). We estimate that about 30% of the world's undiscovered gas and about 13% of the world's undiscovered oil may be present in the Arctic, mostly offshore under less than 500m of water. Billion BOE-plus accumulations of gas and oil are predicted at a 50% probability in the Kara Sea, Barents Sea, offshore East and West Greenland, Canada, and Alaska. On a BOE basis, undiscovered natural gas is three times more abundant than oil in the Arctic and is concentrated in Russian territory. Oil resources, while critically important to the interests of Arctic countries, are probably not sufficient to significantly shift the current geographic patterns of world oil production. Copyright 2011, Offshore Technology Conference.

  9. Endoparasites in the feces of arctic foxes in a terrestrial ecosystem in Canada

    PubMed Central

    Elmore, Stacey A.; Lalonde, Laura F.; Samelius, Gustaf; Alisauskas, Ray T.; Gajadhar, Alvin A.; Jenkins, Emily J.

    2013-01-01

    The parasites of arctic foxes in the central Canadian Arctic have not been well described. Canada’s central Arctic is undergoing dramatic environmental change, which is predicted to cause shifts in parasite and wildlife species distributions, and trophic interactions, requiring that baselines be established to monitor future alterations. This study used conventional, immunological, and molecular fecal analysis techniques to survey the current gastrointestinal endoparasite fauna currently present in arctic foxes in central Nunavut, Canada. Ninety-five arctic fox fecal samples were collected from the terrestrial Karrak Lake ecosystem within the Queen Maud Gulf Migratory Bird Sanctuary. Samples were examined by fecal flotation to detect helminths and protozoa, immunofluorescent assay (IFA) to detect Cryptosporidium and Giardia, and quantitative PCR with melt-curve analysis (qPCR-MCA) to detect coccidia. Positive qPCR-MCA products were sequenced and analyzed phylogenetically. Arctic foxes from Karrak Lake were routinely shedding eggs from Toxascaris leonina (63%). Taeniid (15%), Capillarid (1%), and hookworm eggs (2%), Sarcocystis sp. sporocysts 3%), and Eimeria sp. (6%), and Cystoisospora sp. (5%) oocysts were present at a lower prevalence on fecal flotation. Cryptosporidium sp. (9%) and Giardia sp. (16%) were detected by IFA. PCR analysis detected Sarcocystis (15%), Cystoisospora (5%), Eimeria sp., and either Neospora sp. or Hammondia sp. (1%). Through molecular techniques and phylogenetic analysis, we identified two distinct lineages of Sarcocystis sp. present in arctic foxes, which probably derived from cervid and avian intermediate hosts. Additionally, we detected previously undescribed genotypes of Cystoisospora. Our survey of gastrointestinal endoparasites in arctic foxes from the central Canadian Arctic provides a unique record against which future comparisons can be made. PMID:24533320

  10. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    NASA Astrophysics Data System (ADS)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  11. Suicidality in a Sample of Arctic Households

    ERIC Educational Resources Information Center

    Haggarty, John M.; Cernovsky, Zack; Bedard, Michel; Merskey, Harold

    2008-01-01

    We investigated the association of suicidal ideation and behavior with depression, anxiety, and alcohol abuse in a Canadian Arctic Inuit community. Inuit (N = 111) from a random sample of households completed assessments of anxiety and depression, alcohol abuse, and suicidality. High rates of suicidal ideation within the past week (43.6%), and…

  12. Reconstructing decades of glacial mass loss in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Lhermitte, Stef; Wouters, Bert; van den Broeke, Michiel

    2017-04-01

    The Canadian Arctic Archipelago (CAA) comprises multiple small glaciers and ice caps mostly concentrated on Ellesmere and Baffin Islands situated in the north (NCAA) and south (SCAA) of the archipelago, respectively. Because they cover a relatively small area and show complex geometries, current regional climate models, generally running at 5 to 20 km horizontal resolution, struggle to accurately resolve surface mass change patterns. Here, we present a 58-year (1958-2015) reconstruction of daily, 1 km surface mass balance (SMB) of the CAA, statistically downscaled from the output of the regional climate model RACMO2.3 at 11 km. By correcting for biases in elevation and ice albedo, the downscaling method significantly improves mass loss estimates over narrow outlet glaciers and isolated ice fields through better resolved marginal meltwater runoff. During the last two decades, CAA glaciers have experienced warmer conditions (+1.1°C) resulting in continued mass loss. NCAA and SCAA mass loss accounted for -24.7 ± 18.0 Gt yr-1 and -21.9 ± 8.2 Gt yr-1 respectively, almost tripling (-8.4 Gt yr-1) and doubling (-11.8 Gt yr-1) the 1958-1995 average. Following the recent warming, enhanced meltwater production reduced the refreezing capacity of inland firn layers by about 6%. While the interior of NCAA ice caps can still buffer most of the additional melt, the lack of a perennial firn area over low-lying SCAA glaciers caused uninterrupted mass loss since the 1980s, which, in the absence of significant refreezing capacity, indicates inevitable disappearance of these highly sensitive glaciers.

  13. Analysis of Surface Fluxes at Eureka Climate Observatory in Arctic

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Albee, Robert; Fairall, Christopher; Hare, Jeffrey; Persson, Ola; Uttal, Taneil

    2010-05-01

    The Arctic region is experiencing unprecedented changes associated with increasing average temperatures (faster than the pace of the globally-averaged increase) and significant decreases in both the areal extent and thickness of the Arctic pack ice. These changes are early warning signs of shifts in the global climate system that justifies increased scientific focus on this region. The increase in atmospheric carbon dioxide has raised concerns worldwide about future climate change. Recent studies suggest that huge stores of carbon dioxide (and other climate relevant compounds) locked up in Arctic soils could be unexpectedly released due to global warming. Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. In this study we analyze variability of turbulent fluxes including water vapor and carbon dioxide transfer based on long-term measurements made at Eureka observatory (80.0 N, 85.9 W) located near the coast of the Arctic Ocean (Canadian territory of Nunavut). Turbulent fluxes and mean meteorological data are continuously measured and reported hourly at various levels on a 10-m flux tower. Sonic anemometers are located at 3 and 8 m heights while high-speed Licor 7500 infrared gas analyzer (water moisture and carbon dioxide measurements) at 7.5 m height. According to our data, that the sensible heat flux, carbon dioxide and water vapor fluxes exhibited clear diurnal cycles in Arctic summer. This behavior is similar to the diurnal variation of the fluxes in mid-latitudes during the plants growing season, with

  14. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    NASA Astrophysics Data System (ADS)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  15. Sources of Uncertainty in Modelling mid-Pliocene Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Dolan, A. M.; Haywood, A.; Howell, F.; Prescott, C.; Pope, J. O.; Hill, D. J.; Voss, J.

    2016-12-01

    The mid-Pliocene Warm Period (mPWP) is an interval between 3.264 and 3.205 million years ago, which has globally warmer temperatures (Haywood et al., 2013) accompanied by levels of CO2 above pre-Industrial ( 400 ppmv; e.g. Bartoli et al. 2011; Badger et al., 2013). Arctic amplification of temperatures is a major characteristic of all proxy-based reconstructions of the mPWP in terms of both oceanic (Dowsett et al., 2010) and land warming (Salzmann et al., 2013). For example, evidence of fossilised forests in the Canadian high-Arctic show summer temperatures of up to 16°C warmer than present (Csank et al., 2010). Also, summer temperatures estimates based on pollen reconstructions at Lake El'gygytgyn in North East Russia are up to 6°C warmer than present day (Brigham-Grette et al., 2013). Nevertheless, results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) suggest that climate models may underestimate the degree of Arctic amplification suggested by proxy records (Haywood et al., 2013). Here we use a large ensemble of experiments performed with the HadCM3 climate model to explore relative sources of uncertainty in the simulations of Arctic amplification. Within this suite of over 150 simulations, we consider; (i) a range of mPWP-specific orbital configurations to quantify the influence of temporal variability, (ii) a range of CO2 scenarios to take into account uncertainties in this particular greenhouse gas forcing, (iii) a perturbed physics ensemble to investigate parametric uncertainty within the HadCM3 climate model, and also (iv) a number of experiments with altered palaeogeographies (including changes to topography and ice sheets) to assess the impact of different boundary condition realisations on our simulation of Arctic amplification. We also incorporate results from the PlioMIP project to allude to the effect of structural uncertainty on Arctic warming. Following methods used in Yoshimori et al. (2013) and Laine et al. (2016

  16. A regional approach to plant DNA barcoding provides high species resolution of sedges (Carex and Kobresia, Cyperaceae) in the Canadian Arctic Archipelago.

    PubMed

    Clerc-Blain, Jessica L E; Starr, Julian R; Bull, Roger D; Saarela, Jeffery M

    2010-01-01

    Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world's some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth's landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies. © 2009 Blackwell Publishing Ltd.

  17. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  18. Canadian snow and sea ice: historical trends and projections

    NASA Astrophysics Data System (ADS)

    Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.

  19. Methodology for assessment of undiscovered oil and gas resources for the 2008 Circum-Arctic Resource Appraisal

    USGS Publications Warehouse

    Charpentier, Ronald R.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The methodological procedures used in the geologic assessments of the 2008 Circum-Arctic Resource Appraisal (CARA) were based largely on the methodology developed for the 2000 U.S. Geological Survey World Petroleum Assessment. The main variables were probability distributions for numbers and sizes of undiscovered accumulations with an associated risk of occurrence. The CARA methodology expanded on the previous methodology in providing additional tools and procedures more applicable to the many Arctic basins that have little or no exploration history. Most importantly, geologic analogs from a database constructed for this study were used in many of the assessments to constrain numbers and sizes of undiscovered oil and gas accumulations.

  20. Is there a see-saw over an ice-free Arctic Ocean?

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; Yang, Shuting; Langen, Peter; Rodehacke, Christian; Mottram, Ruth; Hesselbjerg Christensen, Jens

    2017-04-01

    The "see-saw" in winter temperatures between western Greenland and the Canadian Arctic on one side and northern Europe on the other has been described by Loewe already in 1937, but actually this behaviour was at least known since the Danish colonization of Greenland in the early 18th century. The see-saw is associated with pressure anomalies not only near the region of interest, but as remote as the Mediterranean and the North Pacific. Recent research has pointed out the role of sea ice in maintaining the see-saw in either its warm or its cold phase over extended periods, which strongly affects European winter temperatures. What would happen to the seesaw if Arctic sea ice were to disappear suddenly? In the framework of the FP7-funded project ice2ice, we try to answer this and related questions. We have conducted a very long global simulation with a global climate model interactively coupled to a Greenland ice sheet component, covering the period 1850-3250 at a horizontal resolution of approximately 125 km. Up to 2005, the forcing is from observed greenhouse gas concentrations, and from 2006 onward it follows the extended RCP8.5 scenario, in which greenhouse gas concentrations continue to increase and eventually level out around 2250. With such a strong forcing, all Arctic sea ice has completely disappeared by roughly the same time, and the surface mass balance of the Greenland Ice Sheet becomes strongly negative. We investigate how the see-saw behaves in such an ice-free world and which implications circulation changes have in the Arctic and over Europe. To further elucidate the role of sea ice distribution on the atmospheric flow and the role of surface fluxes in maintaining the Greenland-European see-saw, we intend at a later time to expand our analysis to include a contrasting simulation with both western Greenland and northern Europe covered by ice during the Last Glacier Maximum.

  1. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  2. Paleoclimatic significance of insoluble microparticle records from Canadian Arctic and Greenland ice cores

    NASA Astrophysics Data System (ADS)

    Zdanowicz, Christian Michel

    1999-10-01

    The past and present variability of climate in the Arctic region is investigated using ice core records of atmospheric dust (microparticles) and volcanic aerosols developed from the Canadian Arctic and Greenland. A high- resolution, 10 4-year long proxy record of atmospheric dust deposition is developed from an ice core (P95) drilled through the Penny Ice Cap, Baffin Island. Snowpit studies indicate that dust deposited on the Penny Ice Cap are representative of background mineral aerosol, and demonstrate that the variability of dust fallout is preserved in the P95 core at multi-annual to longer time scales. The P95 dust record reveals a significant increase in dust deposition on the Penny Ice Cap between ca 7500-5000 yr ago. This increase was driven by early to mid-/late Holocene transformations in the Northern Hemisphere landscape (ice cover retreat, postglacial land emergence) and climate (transition to colder, drier conditions) that led to an expansion of sources and enhanced eolian activity. Comparison between dust records in the P95 and GISP2 (Greenland) ice cores shows an increasing divergence between the two records beginning ca 7500 years ago. The effects of Northern Hemisphere atmospheric circulation and snow cover extent on atmospheric dust deposition in the Arctic are evaluated by comparing the P95 dust record with observational data. Changes in dust deposition are strongly linked to modes of the Northern Hemisphere winter circulation. Most prominently, an inverse relationship between the P95 dust record and the intensity of the winter Siberian High accounts for over 50% of the interannual variance of these two parameters over the period 1899-1995. On inter- to multi- annual time scales, the P95 dust record is significantly anticorrelated with variations in spring, and to a lesser extent fall, snow cover extent in the mid-latitude interior regions of Eurasia and North America. These relationships account for an estimated 10 to 20% of variance in the P95

  3. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic.

    PubMed

    Iverson, Samuel A; Gilchrist, H Grant; Smith, Paul A; Gaston, Anthony J; Forbes, Mark R

    2014-03-22

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears' ability to meet their energetic demands. In this study, we examined polar bears' use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010-2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator-prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems.

  4. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic

    PubMed Central

    Iverson, Samuel A.; Gilchrist, H. Grant; Smith, Paul A.; Gaston, Anthony J.; Forbes, Mark R.

    2014-01-01

    Northern polar regions have warmed more than other parts of the globe potentially amplifying the effects of climate change on biological communities. Ice-free seasons are becoming longer in many areas, which has reduced the time available to polar bears (Ursus maritimus) to hunt for seals and hampered bears’ ability to meet their energetic demands. In this study, we examined polar bears’ use of an ancillary prey resource, eggs of colonial nesting birds, in relation to diminishing sea ice coverage in a low latitude region of the Canadian Arctic. Long-term monitoring reveals that bear incursions onto common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) nesting colonies have increased greater than sevenfold since the 1980s and that there is an inverse correlation between ice season length and bear presence. In surveys encompassing more than 1000 km of coastline during years of record low ice coverage (2010–2012), we encountered bears or bear sign on 34% of eider colonies and estimated greater egg loss as a consequence of depredation by bears than by more customary nest predators, such as foxes and gulls. Our findings demonstrate how changes in abiotic conditions caused by climate change have altered predator–prey dynamics and are leading to cascading ecological impacts in Arctic ecosystems. PMID:24500172

  5. A Uranium-Lead Chronology of Speleothem Deposition in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gambino, C.; Shakun, J. D.; McGee, D.; Ramezani, J.; Khadivi, S.; Wong, C. I.

    2017-12-01

    The Artic is one of the fastest warming regions on the planet. Currently much of the Arctic is covered by permafrost, which contains approximately 1,700 gigatons of organic carbon. Permafrost thaw could release a substantial amount of this carbon as greenhouse gases into the atmosphere through microbial decomposition, potentially dramatically amplifying anthropogenic warming. However, the risk of permafrost thaw is uncertain, with models exhibiting a wide range of possibilities. Assessing the stability of permafrost during past interglacial periods enables evaluation of the sensitivity of permafrost to warming. Cave mineral deposits (speleothems) in areas currently covered with permafrost can act as a proxy for past permafrost thaw, as liquid water is one criteria of speleothem growth and thus implies thawed ground conditions. Previous uranium-thorium (U-Th) dating of speleothems (n=67) from a wide range of latitudes and permafrost zones across the southern Canadian Rockies, Northwest Territories, and the northern Yukon suggest deposition during Marine Isotope Stage (MIS) 11 and 13. The majority of U-Th dates of these speleothems, however, exceed the U-Th dating limit of 600 ka. In this study, we apply uranium-lead (U-Pb) geochronology to several of these speleothems to extend the records of speleothem growth further back in time. Initial results include a U-Pb age of 428 ± 14 ka that replicates a previous U-Th age of 416.8 ± 7.9 ka, and U-Pb ages on two other speleothems of 870 ± 100 ka and 1502 ± 30 ka. The results of currently in progress U-Pb analyses and a comparison of results with paleo-temperature and ice volume reconstructions will also be presented.

  6. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  7. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Examining the complex Arctic biological-climatologic-hydrologic system

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.

    2012-12-01

    Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet

  8. Landscape and hydrologic changes in the permafrost regions of the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Marsh, P.

    2012-12-01

    The Western Canadian Arctic, in the vicinity of the Mackenzie River Delta, is characterized by long cold winters, short summers, low precipitation, thin organic soils, and ice-rich continuous permafrost. Over the last few decades, this region has undergone dramatic changes in climate, with warming air temperature and decreasing winter and summer precipitation. This has resulted in various landscape changes, including the warming of the upper layers of the permafrost, deepening of the active layer, drainage of permafrost affected lakes, an ongoing change from tundra to shrub tundra, and earlier spring breakup of streams, rivers and lakes. However, interactions between climate, hydrology, snow, and vegetation greatly affect both the spatial and temporal changes to the permafrost and hydrology of this region. Knowledge of these changes is important to the understanding of methane dynamics in this permafrost landscape, and for predicting future changes. Two examples of observed landscape change will be discussed. First, ground based observations and analysis of air photo images has demonstrated that shrub expansion is not uniform across the landscape, but instead is characterized by shrub patches of varying size. This patchiness is likely related to existing variations in soil temperature and moisture, active layer depth, snowcover, and tundra fires. As shrub patches further develop, they impact soil temperature and active layer depth. For example, small patches of shrubs typically have snow depths that are deeper than surrounding tundra areas due to the accumulation of blowing snow, and as a result have much warmer soil temperatures and deeper active layers. In contrast to these small shrub patches, large shrub patches have snow depths only slightly larger than found in the surrounding tundra and therefore only slightly warmer winter soil temperatures. However, shading of the surface during the summer may result in cooler summer soil temperatures. The overall effect

  9. Mercury genomics in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bowman, K.; Lamborg, C. H.; Collins, E.; Hammerschmidt, C. R.; Agather, A. M.

    2017-12-01

    Methyl-mercury production in the ocean is likely dependent on microbial activity, however, methylation pathways remain elusive. In the Arctic, high concentrations of methyl-mercury are found in top predator marine mammals and seabirds. As a result of seafood consumption, pregnant women and women of child-bearing age in the Arctic often have blood Hg concentrations that exceed U.S. and Canadian safety guidelines. To understand the chemical cycling of mercury in the Arctic Ocean we participated in the 2015 U.S. GEOTRACES Arctic expedition (GN01) to measure Hg speciation in the water column of the Bering Sea, Makarov basin, and Canada basin between Dutch Harbor, Alaska and the North Pole. At select stations, seawater was filtered through 0.22 µm Sterivex filters and genomic DNA was collected using a phenol-chloroform extraction. Broad-range degenerate PCR primers were used to detect the presence of hgcAB, and clade-specific degenerate quantitative PCR primers were used to determine the abundance of hgcA. Metagenomic sequencing was done at three stations to identify taxonomic and functional groups, and to search for hgcA-like genes that the PCR primers may have missed.

  10. Spatial variability of the Arctic Ocean's double-diffusive staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.

    2017-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.

  11. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2017-01-05

    challenges to exploration. Additionally, any discovery of new oil and gas deposits far from existing storage, pipelines , and shipping facilities...Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas , and minerals. Warming that causes...permafrost to melt could pose challenges to onshore exploration activities. Increased oil and gas exploration and tourism (cruise ships) in the Arctic

  12. Influence of sea ice on Arctic precipitation

    PubMed Central

    Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  13. Factors Driving Potential Ammonia Oxidation in Canadian Arctic Ecosystems: Does Spatial Scale Matter?

    PubMed Central

    Banerjee, Samiran

    2012-01-01

    Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570

  14. The Economic and Social Impact of the Arctic Co-operative Movement on the Canadian Eskimo.

    ERIC Educational Resources Information Center

    Jensen, Kenneth D.

    Canada's Arctic co-operatives are designed to provide a means of encouraging Eskimos to participate directly in the economic development of the Arctic through the promotion of cooperative ownership and enterprise. They also seek to provide a method of maximizing economic returns in Arctic communities from local businesses and enterprise. Backed by…

  15. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

    USGS Publications Warehouse

    Phillips, R.L.; Grantz, A.

    2001-01-01

    The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during

  16. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion

  17. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2016-12-07

    permafrost to melt could pose challenges to onshore exploration activities. Increased oil and gas exploration and tourism (cruise ships) in the Arctic...the Northwest Passage and the Northern Sea Route, extraction of potential oil and gas resources, and expanded fishing and tourism (Figure 3...not occurred in the Arctic region, 133 recent economic activity, such as oil and gas exploration and tourism (cruise ships), increases the risk of oil

  18. Hospital admissions for lower respiratory tract infections among infants in the Canadian Arctic: a cohort study

    PubMed Central

    Banerji, Anna; Panzov, Val; Young, Michael; Robinson, Joan; Lee, Bonita; Moraes, Theo; Mamdani, Muhammad; Giles, B. Louise; Jiang, Depeng; Bisson, Danny; Dennis, Marguerite; Morel, Johanne; Hall, Judith; Hui, Charles; Paes, Bosco; Mahony, James B.

    2016-01-01

    Background: It is unknown whether this burden of disease of lower respiratory tract infections is comparable across the Canadian Arctic. The objectives of this surveillance study were to compare the rates of hospital admission for lower respiratory tract infection and the severity of infection across Arctic Canada, and to describe the responsible viruses. Methods: We performed a prospective multicentre surveillance study of infants less than 1 year of age admitted in 2009 with lower respiratory tract infection to all hospitals (5 regional, 4 tertiary) in the Northwest Territories, Nunavut and Nunavik to assess for regional differences. Nasopharyngeal aspirates were processed by means of a polymerase chain reaction respiratory viral panel, testing for 20 respiratory viruses and influenza A (H1N1). The role of coinfection was assessed by means of regression analysis for length of stay (short: < 7 d; long: > 14 d). Outcomes compared included rates of lower respiratory tract infection, respiratory syncytial virus infection, transfer to tertiary hospital and severe lower respiratory tract infection (respiratory failure, intubation and mechanical ventilation, and/or cardiopulmonary resuscitation). Results: There were 348 admissions for lower respiratory tract infection in the population of interest in 2009. Rates of admission per 1000 live births varied significantly, from 39 in the Northwest Territories to 456 in Nunavik (p < 0.001). The rates of tertiary admissions and severe lower respiratory tract infection per 1000 live births in the Northwest Territories were 5.6 and 1.4, respectively, compared to 55.9 and 17.1, respectively, in Nunavut and 52.0 and 20.0, respectively, in Nunavik (p ≤ 0.001). Respiratory syncytial virus was the most common virus identified (124 cases [41.6% of those tested]), and coinfection was detected in 51 cases (41.1%) of infection with this virus. Longer length of stay was associated with coinfection (odds ratio [OR] 2.64) and underlying

  19. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE PAGES

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; ...

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  20. Gray whale sightings in the Canadian Beaufort Sea, September 2014

    NASA Astrophysics Data System (ADS)

    Iwahara, Yuka; Fujiwara, Amane; Ito, Keizo; Miyashita, Kazushi; Mitani, Yoko

    2016-06-01

    Gray whales (Eschrichtius robustus) are distributed within the productive neritic and estuarine waters of the North Pacific Ocean, the Bering Sea, and adjacent waters of the Arctic Ocean. They migrate to high-latitude feeding grounds each spring. Their main feeding grounds in the Arctic include the Chirikov Basin, the northeastern Chukchi Sea from Pt. Hope to Cape Lisburne and Pt. Lay to Pt. Barrow, and the northwestern Chukchi Sea along the Chukotka coast. Although sightings are rare in the Canadian Beaufort Sea, we observed three gray whales in two groups in this area in September 2014. A mud plume was observed near one of the whales, suggesting the animal had been feeding. In the Alaskan Beaufort Sea, large-scale monitoring of the distributions of marine mammals has been continuously conducted since 1979; however, there has been less monitoring in the Canadian Beaufort Sea. Therefore, it is necessary to record opportunistic sightings, such as those described here.

  1. 3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data

    NASA Astrophysics Data System (ADS)

    Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.

    2016-12-01

    The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.

  2. New Insights into Arctic Tectonics: Uranium-Lead, (Uranium-Thorium)/Helium, and Hafnium Isotopic Data from the Franklinian Basin, Canadian Arctic Islands

    NASA Astrophysics Data System (ADS)

    Anfinson, Owen Anthony

    More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages

  3. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  4. Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways

    DOE PAGES

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran; ...

    2016-12-26

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  5. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  6. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    PubMed Central

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-01-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962

  7. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  8. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming.

    PubMed

    Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  9. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  10. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra

    PubMed Central

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-01-01

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  11. Arctic Alaska and Icebreaking: An Assessment of Future Requirements for the United States Coast Guard.

    DTIC Science & Technology

    1981-03-01

    Extraction in the Arctic," Polar Record, v. 19, January 1978. 96. Mohl, Bertel, " Marine Mammals and Noise ," Canadian Arctic Resources Committee...unnatural sound can adversely affect wildlife. Research indicates that marine mammals rely exclusively on auditory sensations for long range...seriously disrupt the lives of a variety of marine mammal species (Ref. 961. The problem is exacerbated by a lack of reliable information. It is

  12. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    USGS Publications Warehouse

    Winters, W.J.

    1999-01-01

    A 1150 m deep gas hydrate research well was drilled in the Canadian Arctic in February and March 1998 to investigate the interaction between the presence of gas hydrate and the natural conditions presented by the host sediments. Profiles of the following measured and derived properties are presented from that investigation: water content, sediment wet bulk density, grain size, porosity, gas hydrate quantity, and salinity. These data indicate that the greatest concentration of gas hydrate is located within sand and gravel deposits between 897 m and 922 m. American Society for Testing and Materials 1997: Standard test method for specific gravity of soil solids by gas pycnometer D 5550-94; in American Society for Testing and Materials, Annual Book of ASTM Standards, v. 04.09, Soil and Rock, West Conshohocken, Pennsylvania, p. 380-383.

  13. Spatial trends and factors affecting variation of organochlorine contaminants levels in Canadian Arctic beluga (Delphinapterus leucas).

    PubMed

    Stern, G A; Macdonald, C R; Armstrong, D; Dunn, B; Fuchs, C; Harwood, L; Muir, D C G; Rosenberg, B

    2005-12-01

    Organochlorine pesticides and PCBs were analysed in blubber from beluga (Delphinapterus leucas), or white whales, collected at 15 sites in the Canadian Arctic between 1993 and 2001. The objective of the study was to define and interpret the spatial trends of major organic contaminants in northern beluga in terms of sources and transport pathways, and the biological factors influencing accumulation. When compared on a lipid weight basis, the concentrations of beta-HCH, cis-CHL and SigmaCHL, cis-nonachlor, heptachlor epoxide and p,p'-DDT were significantly higher in males than females at all five sites in the eastern Arctic where the two sexes were harvested. The differences were attributed to losses from the females during fetal development and lactation as reported in previous studies. Major compounds increased with age in males at most sites, however the lack of a significant increase with age at some sites was in part due to high organochlorine concentrations in young year classes (2-5 years), particularly at eastern sites such as Iqaluit and Pangnirtung. Lower concentrations of SigmaHCH and SigmaDDT compounds in young males in 2001 relative to 1995 at Hendrickson Island could be due to declining levels in the environment, changes in the diet, or differences in organochlorine loads transferred from the female after birth. Age-corrected least square mean concentrations in males showed significantly higher levels of many compounds, such as p,p'-DDE and SigmaCHB, at south Baffin Island sites than those in the west. Two notable exceptions were HCBz and beta-HCH which were higher in the west. Methoxyclor was detected in males at Sanikiluaq (58 ng g-1) and in both sexes at Kimmirut, but at no other sites. Principal component analysis grouped the 16 sites into five major groupings based on the similarity of normalised organochlorine pesticide and PCB levels. Sites from the western Arctic were grouped by higher proportions of HCBz, beta-HCH and gamma-HCH and higher

  14. Freshwater fluxes into the subpolar North Atlantic from secular trends in Arctic land ice mass balance

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Enderlin, E. M.; Howat, I. M.; Wouters, B.; van den Broeke, M.

    2015-12-01

    Freshwater fluxes (FWF) from river runoff and precipitation minus evaporation for the pan Arctic seas are relatively well documented and prescribed in ocean GCMs. Fluxes from Greenland and Arctic glaciers and ice caps on the other hand are generally ignored, despite their potential impacts on ocean circulation and marine biology and growing evidence for changes to the hydrography of parts of the subpolar North Atlantic. In a previous study we determined the FWF from Greenland for the period 1958-2010 using a combination of observations and regional climate modeling. Here, we update the analysis with data from new satellite observations to extend the record both in space and time. The new FWF estimates cover the period 1958-2014 and include the Canadian, Russian and Norwegian Arctic (Svalbard) in addition to the contributions from Greenland. We combine satellite altimetry (including CryoSat 2) with grounding line flux data, regional climate modeling of surface mass balance and gravimetry to produce consistent estimates of solid ice and liquid FWF into the Arctic and North Atlantic Oceans. The total cumulative FWF anomaly from land ice mass loss started to increase significantly in the mid 1990s and now exceeds 5000 km^3, a value that is about half of the Great Salinity Anomaly of the 1970s. The majority of the anomaly is entering two key areas of deep water overturning in the Labrador and Irminger Seas, at a rate that has been increasing steadily over the last ~20 years. Since the mid 2000s, however, the Canadian Arctic archipelago has been making a significant contribution to the FW anomaly entering Baffin Bay. Tracer experiments with eddy-permitting ocean GCMs suggest that the FW input from southern Greenland and the Canadian Arctic should accumulate in Baffin Bay with the potential to affect geostrophic circulation, stratification in the region and possibly the strength of the Atlantic Meridional Overturning Circulation. We also examine the trajectory of

  15. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  16. Arctic summertime measurements of ammonia in the near-surface atmosphere

    NASA Astrophysics Data System (ADS)

    Moravek, A.; Murphy, J. G.; Wentworth, G.; Croft, B.; Martin, R.

    2016-12-01

    Measurements of gas-phase ammonia (NH3) in the summertime Arctic are rare, despite the impact NH3 can have on new particle formation rates and nitrogen deposition. The presence of NH3 can also increase the ratio of particulate-phase ammonium (NH4+) to non-sea salt sulphate (nss-SO42-) which decreases particle acidity. Known regional sources of NH3in the Arctic summertime include migratory seabird colonies and northern wildfires, whereas the Arctic Ocean is a net sink. In the summer of 2016, high time resolution measurements were collected in the Arctic to improve our understanding of the sources, sinks and impacts of ammonia in this remote region. A four week study was conducted at Alert, Canada (82.5º N, 62.3 º W) from June 23 to July 19, 2016 to examine the magnitude and sources of NH3 and SO42-. The Ambient Ion Monitor-Ion Chromatography system (AIM-IC) provided on-line, hourly averaged measurements of NH3, NH4+, SO42- and Na+. Measurements of NH3 ranged between 50 and 700 pptv (campaign mean of 240 pptv), consistent with previous studies in the summertime Arctic boundary layer. Levels of NH4+ and nss-SO42- were near or below detection limits ( 20 ng m-3) for the majority of the study. Tundra and lake samples were collected to investigate whether these could be important local sources of NH3 at Alert. These surface samples were analyzed for NH4+, pH and temperature and a compensation point (χ) for each sample was calculated to determine if these surface reservoirs can act as net NH3 sources. Precipitation samples were also collected throughout the study to better constrain our understanding of wet NH4+deposition in the summertime Arctic. From mid-July through August, 2016, NH3 was measured continuously using a laser spectroscopy technique onboard the Canadian Coast Guard Ship Amundsen in the eastern Arctic Ocean. Ocean-atmosphere exchange of NH3 was quantified using measurements of sea surface marine NH4+ concentrations. In addition, wet deposition of

  17. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Segal, Rebecca A.; Lantz, Trevor C.; Kokelj, Steven V.

    2016-03-01

    Climate change is increasing the frequency and intensity of thermokarst, but the influences of regional climate and physiography remain poorly understood. Retrogressive thaw slumping is one of the most dynamic forms of thermokarst and affects many areas of glaciated terrain across northwestern Canada. In this study, we used airphotos and satellite imagery to investigate the influence of climate and landscape factors on thaw slump dynamics. We assessed slump size, density, and growth rates in four regions of ice-rich terrain with contrasting climate and physiographic conditions: the Jesse Moraine, the Tuktoyaktuk Coastlands, the Bluenose Moraine, and the Peel Plateau. Observed increases in: (1) the area impacted by slumps (+2 to +407%), (2) average slump sizes (+0.31 to +1.82 ha), and (3) slump growth rates (+169 to +465 m2 yr-1) showed that thermokarst activity is rapidly accelerating in ice-rich morainal landscapes in the western Canadian Arctic, where slumping has become a dominant driver of geomorphic change. Differences in slump characteristics among regions indicate that slump development is strongly influenced by topography, ground ice conditions, and Quaternary history. Observed increases in slump activity occurred in conjunction with increases in air temperature and precipitation, but variation in slump activity among the four regions suggests that increased precipitation has been an important driver of change. Our observation that the most rapid intensification of slump activity occurred in the coldest environment (the Jesse Moraine on Banks Island) indicates that ice-cored landscapes in cold permafrost environments are highly vulnerable to climate change.

  18. Arctic biogeography: The paradox of the marine benthic fauna and flora.

    PubMed

    Dunton, K

    1992-06-01

    The marine benthic fauna and flora that inhabit the shallow arctic sublittoral zone comprise a relatively young marine assemblage characterized by species of either Pacific or Atlantic affinity and notably few endemics. The young character of nearshore arctic communities, as well as their biogeographical composition, is largely a product of the Pleistocene glaciation. However, analysis of more recent collections and comparison between the origins of the benthic fauna and flora present some interesting paradoxes to biogeographers. One enigma is the low frequency of algal species with Pacific affinities in the Arctic, especially in the Chukchi, Beaufort and East Siberian Seas of the Eastern Arctic, which receive direct inputs of northward-flowing Pacific waters. In contrast, animal species with Pacific affinities are found throughout the nearshore regions of the Arctic, reaching their highest frequency in the marginal seas between the New Siberian Islands and the Canadian Archipelago. Organization of published and unpublished data, additional field collections, and the use of cladistics and molecular DNA techniques by systematists are a high priority for future research in reconstructing the evolution of the arctic biotic assemblage. Copyright © 1992. Published by Elsevier Ltd.

  19. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-06-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned distillate fuel with 1.5 wt % sulfur. Emissions were studied via plume intercepts using the Polar 6 aircraft measurements, an analytical plume dispersion model, and using the FLEXPART-WRF Lagrangian particle dispersion model. The first plume intercept by the research aircraft was carried out on 19 July 2014 during the operation of the Amundsen in the open water. The second and third plume intercepts were carried out on 20 and 21 July 2014 when the Amundsen had reached the ice edge and operated under ice-breaking conditions. Typical of Arctic marine navigation, the engine load was low compared to cruising conditions for all of the plume intercepts. The measured species included mixing ratios of CO2, NOx, CO, SO2, particle number concentration (CN), refractory black carbon (rBC), and cloud condensation nuclei (CCN). The results were compared to similar experimental studies in mid-latitudes. Plume expansion rates (γ) were calculated using the analytical model and found to be γ = 0.75 ± 0.81, 0.93 ± 0.37, and 1.19 ± 0.39 for plumes 1, 2, and 3, respectively. These rates were smaller than prior studies conducted at mid-latitudes, likely due to polar boundary layer dynamics, including reduced turbulent mixing compared to mid-latitudes. All emission factors were in agreement with prior

  20. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    PubMed

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. A Meteoric Water Budget for the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Alkire, Matthew B.; Morison, James; Schweiger, Axel; Zhang, Jinlun; Steele, Michael; Peralta-Ferriz, Cecilia; Dickinson, Suzanne

    2017-12-01

    A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003-2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5-7 years), Eastern Arctic (3-4 years), and Lincoln Sea (1-2 years). The MW content over the Siberian shelves was estimated (˜14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3,237 ± 1,370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1,182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).

  2. Impact of aerosol emission controls on future Arctic sea ice cover

    NASA Astrophysics Data System (ADS)

    Gagné, M.-Ã..; Gillett, N. P.; Fyfe, J. C.

    2015-10-01

    We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.

  3. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  4. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    PubMed

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  5. Transient sensitivities of sea ice export through the Canadian Arctic Archipelago inferred from a coupled ocean/sea-ice adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Losch, M.; Menemenlis, D.; Campin, J.; Hill, C.

    2008-12-01

    The sensitivity of sea-ice export through the Canadian Arctic Archipelago (CAA), measured in terms of its solid freshwater export through Lancaster Sound, to changes in various elements of the ocean and sea-ice state, and to elements of the atmospheric forcing fields through time and space is assessed by means of a coupled ocean/sea-ice adjoint model. The adjoint model furnishes full spatial sensitivity maps (also known as Lagrange multipliers) of the export metric to a variety of model variables at any chosen point in time, providing the unique capability to quantify major drivers of sea-ice export variability. The underlying model is the MIT ocean general circulation model (MITgcm), which is coupled to a Hibler-type dynamic/thermodynamic sea-ice model. The configuration is based on the Arctic face of the ECCO3 high-resolution cubed-sphere model, but coarsened to 36-km horizontal grid spacing. The adjoint of the coupled system has been derived by means of automatic differentiation using the software tool TAF. Finite perturbation simulations are performed to check the information provided by the adjoint. The sea-ice model's performance in the presence of narrow straits is assessed with different sea-ice lateral boundary conditions. The adjoint sensitivity clearly exposes the role of the model trajectory and the transient nature of the problem. The complex interplay between forcing, dynamics, and boundary condition is demonstrated in the comparison between the different calculations. The study is a step towards fully coupled adjoint-based ocean/sea-ice state estimation at basin to global scales as part of the ECCO efforts.

  6. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  7. Tammarniit (Mistakes): Inuit Relocation in the Eastern Arctic, 1939-63.

    ERIC Educational Resources Information Center

    Tester, Frank James; Kulchyski, Peter

    Between 1939 and 1963, the Canadian federal government embarked on a program of relocation and relief in the Eastern Arctic that dramatically altered the lives of Inuit living there. This book begins with an account of the debate over whether Inuit are Indians and, therefore, which branch of government should be responsible for them. It then…

  8. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  9. Seafloor features delineate Late Wisconsinan ice stream configurations in eastern Parry Channel, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.

    2017-03-01

    Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream

  10. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  11. Behavioral Ecology of Narwhals in a Changing Arctic

    DTIC Science & Technology

    2013-09-30

    What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual sea ice and purported...increase in killer whales in the Canadian Arctic, do killer whale catch and observation data from West Greenland follow this trend and have narwhals been...sampling in the Northeast Atlantic have documented killer whales (Orcinus orca), the largest delphinid, produce whistles with the highest

  12. New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology

    USGS Publications Warehouse

    Miller, E.L.; Toro, J.; Gehrels, G.; Amato, J.M.; Prokopiev, A.; Tuchkova, M.I.; Akinin, V.V.; Dumitru, T.A.; Moore, Thomas E.; Cecile, M.P.

    2006-01-01

    To test existing models for the formation of the Amerasian Basin, detrital zircon suites from 12 samples of Triassic sandstone from the circum-Arctic region were dated by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS). The northern Verkhoyansk (NE Russia) has Permo-Carboniferous (265-320 Ma) and Cambro-Silurian (410-505 Ma) zircon populations derived via river systems from the active Baikal Mountain region along the southern Siberian craton. Chukotka, Wrangel Island (Russia), and the Lisburne Hills (western Alaska) also have Permo-Carboniferous (280-330 Ma) and late Precambrian-Silurian (420-580 Ma) zircons in addition to Permo-Triassic (235-265 Ma), Devonian (340-390 Ma), and late Precambrian (1000-1300 Ma) zircons. These ages suggest at least partial derivation from the Taimyr, Siberian Trap, and/ or east Urals regions of Arctic Russia. The northerly derived Ivishak Formation (Sadlerochit Mountains, Alaska) and Pat Bay Formation (Sverdrup Basin, Canada) are dominated by Cambrian-latest Precambrian (500-600 Ma) and 445-490 Ma zircons. Permo-Carboniferous and Permo-Triassic zircons are absent. The Bjorne Formation (Sverdrup Basin), derived from the south, differs from other samples studied with mostly 1130-1240 Ma and older Precambrian zircons in addition to 430-470 Ma zircons. The most popular tectonic model for the origin of the Amerasian Basin involves counterclockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic margin. The detrital zircon data suggest that the Chukotka part of the microplate originated closer to the Taimyr and Verkhoyansk, east of the Polar Urals of Russia, and not from the Canadian Arctic. Copyright 2006 by the American Geophysical Union.

  13. Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.

    2017-12-01

    Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.

  14. Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

    2006-01-01

    Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during

  15. Arctic Outflow West of Greenland: Mass and Freshwater Fluxes at Davis Strait

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Curry, Beth; Petrie, Brian; Azetsu-Scott, Kumiko; Gobat, Jason

    2014-05-01

    Eberhard Fahrbach worked to understand the communication between the Arctic and subpolar oceans and its role in modulating Arctic change. This included long-standing leadership in the Arctic-Subarctic Ocean Flux program and the long-term quantification of fluxes east of Greenland, through Fram Strait, the primary pathway for Atlantic water passing into the Arctic and one of two gateways for freshwater flowing out. Freshwater also exits the Arctic west of Greenland, though the Canadian Arctic Archipelago and, to the south, Davis Strait. The strait provides a convenient choke point for monitoring temporal and spatial variability of Arctic outflow while also characterizing a critical upstream boundary condition for Labrador Sea convection. Fluxes through the Strait represent the net integrated Canadian Archipelago throughflow, over 50% of the Arctic's liquid freshwater discharge, modified by terrestrial inputs and oceanic processes during its southward transit through Baffin Bay. By the time they reach Davis Strait, Arctic waters already embody most of the transformations they undergo prior to exerting their influence on the deepwater formation sites in the Labrador Sea. An ongoing program has characterized Davis Strait volume, freshwater and heat flux since September 2004. Measurements include continuous velocity, temperature and salinity time series collected by a moored array, autumn ship-based hydrographic sections and high-resolution sections occupied by autonomous gliders. Moored instrumentation includes novel new instruments that provide temperature and salinity measurements in the critical region neat the ice-ocean interface and measurements over the shallow Baffin and West Greenland shelves, while gliders have captured the first high-resolution wintertime sections across the Strait. These data show large interannual variability in volume and freshwater transport, with no clear trends observed between 2004-2010. Average volume, liquid freshwater and sea ice

  16. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge

    USGS Publications Warehouse

    Polyak, L.; Curry, W.B.; Darby, D.A.; Bischof, J.; Cronin, T. M.

    2004-01-01

    Distinct cyclicity in lithology and microfaunal distribution in sediment cores from the Mendeleev Ridge in the western Arctic Ocean (water depths ca. 1. 5 km) reflects contrasting glacial/interglacial sedimentary patterns. We conclude that during major glaciations extremely thick pack ice or ice shelves covered the western Arctic Ocean and its circulation was restricted in comparison with interglacial, modern-type conditions. Glacier collapse events are marked in sediment cores by increased contents of ice-rafted debris, notably by spikes of detrital carbonates and iron oxide grains from the Canadian Arctic Archipelago. Composition of foraminiferal calcite ?? 18O and ??13C also shows strong cyclicity indicating changes in freshwater balance and/or ventilation rates of the Arctic Ocean. Light stable isotopic spikes characterize deglacial events such as the last deglaciation at ca. 12 14C kyr BP. The prolonged period with low ??18O and ??13C values and elevated contents of iron oxide grains from the Canadian Archipelago in the lower part of the Mendeleev Ridge record is interpreted to signify the pooling of freshwater in the Amerasia Basin, possibly in relation to an extended glaciation in arctic North America. Unique benthic foraminiferal events provide a means for an independent stratigraphic correlation of sedimentary records from the Mendeleev Ridge and other mid-depth locations throughout the Arctic Ocean such as the Northwind and Lomonosov Ridges. This correlation demonstrates the disparity of existing age models and underscores the need to establish a definitive chronostratigraphy for Arctic Ocean sediments. ?? 2003 Elsevier B.V. All rights reserved.

  17. Characterizing the vertical presence of atmospheric black carbon in the in the high Arctic region from airborne measurements

    NASA Astrophysics Data System (ADS)

    Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.

    2016-12-01

    Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest

  18. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  19. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  20. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  1. Evidence of molting and the function of "rock-nosing" behavior in bowhead whales in the eastern Canadian Arctic.

    PubMed

    Fortune, Sarah M E; Koski, William R; Higdon, Jeff W; Trites, Andrew W; Baumgartner, Mark F; Ferguson, Steven H

    2017-01-01

    Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas-likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.

  2. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions

  3. Ammonia in the summer Arctic marine boundary layer: Sources, Sinks and Implications

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Murphy, J. G.; Croft, B.; Martin, R.; Pierce, J. R.; Tremblay, J. E.; Courchesne, I.; Côté, J. S.; Gagnon, J.; Levasseur, M.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The abundance of NH3 can influence new particle formation rates, aerosol chemical and optical properties, as well as N-sensitive ecosystems via deposition. Sources and sinks of gas-phase ammonia (NH3) are poorly constrained in the High Arctic due to a lack of field observations. In particular, both the magnitude and direction of sea-air NH3 exchange are highly uncertain, although previous studies suggest the open ocean is likely to act as a net sink at high latitudes. In order to investigate potential NH3 sources, sinks and impacts, hourly gas-phase NH3 and particulate-phase NH4+ and SO42- measurements were taken from 13 July to 7 August 2014 aboard a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Simultaneous measurements of total seawater ammonium, pH and sea surface temperature were used to compute the compensation point (χ), which is the ambient NH3 concentration at which sea-air fluxes change direction. Ambient NH3 ranged from 30-650 ng m-3 throughout the cruise and was several orders of magnitude larger than measured χ values (0.4-10 ng m-3). Hence, the summertime Arctic Ocean is a strong net sink of NH3. GEOS-Chem (a chemical transport model) was employed to examine the impact of seabird guano (feces) on surface NH3 concentrations. A simulation without guano-derived NH3 emissions yielded highly acidic aerosol and underestimated surface NH3 by several orders of magnitude. Including NH3 emission estimates from seabird guano greatly improved model-measurement comparison. The importance of seabird guano as an NH3 source was also investigated using the FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF). FLEXPART-WRF results confirm that air masses with origins co-located with large seabird colonies were enriched in NH3, whereas those originating over the open ocean were depleted in NH3. The influence of NH3 from wildfires, as well as implications for N-deposition and aerosol neutralization are also

  4. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  5. The large-scale freshwater cycle of the Arctic

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Barrett, Andrew P.; Slater, Andrew G.; Woodgate, Rebecca A.; Aagaard, Knut; Lammers, Richard B.; Steele, Michael; Moritz, Richard; Meredith, Michael; Lee, Craig M.

    2006-11-01

    This paper synthesizes our understanding of the Arctic's large-scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA-40 reanalysis and land surface and ice-ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (˜8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (˜8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ˜84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability.

  6. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; hide

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  7. Relation between gas hydrate and physical properties at the Mallik 2L-38 research well in the Mackenzie delta

    USGS Publications Warehouse

    Winters, W.J.; Dallimore, S.R.; Collett, T.S.; Jenner, K.A.; Katsube, J.T.; Cranston, R.E.; Wright, J.F.; Nixon, F.M.; Uchida, T.

    2000-01-01

    As part of an interdisciplinary field program, a 1150-m deep well was drilled in the Canadian Arctic to determine, among other goals, the location, characteristics, and properties of gas hydrate. Numerous physical properties of the host sediment were measured in the laboratory and are presented in relation to the lithology and quantity of in situ gas hydrate. Profiles of measured and derived properties presented from that investigation include: sediment wet bulk density, water content, porosity, grain density, salinity, gas hydrate content (percent occupancy of non-sediment grain void space), grain size, porosity, and post-recovery core temperature. The greatest concentration of gas hydrate is located within sand and gravel deposits between 897 and 922 m. Silty sediment between 926 and 952 m contained substantially less, or no, gas hydrate perhaps because of smaller pore size.

  8. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  9. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  10. Status and Impacts of Arctic Freshwater Export

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  11. Strategic Environmental Assessment of Greenhouse Gas Mitigation Options in the Canadian Agricultural Sector

    NASA Astrophysics Data System (ADS)

    Noble, Bram F.; Christmas, Lisa M.

    2008-01-01

    This article presents a methodological framework for strategic environmental assessment (SEA) application. The overall objective is to demonstrate SEA as a systematic and structured policy, plan, and program (PPP) decision support tool. In order to accomplish this objective, a stakeholder-based SEA application to greenhouse gas (GHG) mitigation policy options in Canadian agriculture is presented. Using a mail-out impact assessment exercise, agricultural producers and nonproducers from across the Canadian prairie region were asked to evaluate five competing GHG mitigation options against 13 valued environmental components (VECs). Data were analyzed using multi-criteria and exploratory analytical techniques. The results suggest considerable variation in perceived impacts and GHG mitigation policy preferences, suggesting that a blanket policy approach to GHG mitigation will create gainers and losers based on soil type and associate cropping and on-farm management practices. It is possible to identify a series of regional greenhouse gas mitigation programs that are robust, socially meaningful, and operationally relevant to both agricultural producers and policy decision makers. The assessment demonstrates the ability of SEA to address, in an operational sense, environmental problems that are characterized by conflicting interests and competing objectives and alternatives. A structured and systematic SEA methodology provides the necessary decision support framework for the consideration of impacts, and allows for PPPs to be assessed based on a much broader set of properties, objectives, criteria, and constraints whereas maintaining rigor and accountability in the assessment process.

  12. Occurrence and Risk Assessment of PAHs in Surface Sediments from Western Arctic and Subarctic Oceans

    PubMed Central

    Lin, Yan; Cai, Minggang; Zhang, Jingjing; Zhang, Yuanbiao; Kuang, Weiming; Liu, Lin; Huang, Peng; Ke, Hongwei

    2018-01-01

    In the fourth Chinese National Arctic Research Expedition (from July to September, 2010), 14 surface sediment samples were collected from the Bering Sea, Chukchi Sea, and Canadian Basin to examine the spatial distributions, potential sources, as well as ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The ∑PAH (refers to the sum of 16 priority PAHs) concentration range from 27.66 ng/g to 167.48 ng/g (dry weight, d.w.). Additionally, the concentrations of ∑PAH were highest in the margin edges of the Canadian Basin, which may originate from coal combustion with an accumulation of Canadian point sources and river runoff due to the surface ocean currents. The lowest levels occurred in the northern of Canadian Basin, and the levels of ∑PAH in the Chukchi Sea were slightly higher than those in the Being Sea. Three isomer ratios of PAHs (Phenanthrene/Anthracene, BaA/(BaA+Chy), and LMW/HMW) were used to investigate the potential sources of PAHs, which showed the main source of combustion combined with weaker petroleum contribution. Compared with four sediment quality guidelines, the concentrations of PAH are much lower, indicating a low potential ecological risk. All TEQPAH also showed a low risk to human health. Our study revealed the important role of the ocean current on the redistribution of PAHs in the Arctic. PMID:29649142

  13. Effects of Caledonian tectonism in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.

    1986-11-01

    Several north-trending structures in the Canadian Arctic islands are interpreted as Caledonian in origin, in the sense that they probably represent intraplate tectonism triggered by the closing of the Iapetus Ocean along the Greenland-Scandinavia-Svalbard Caledonian suture. These structures include the Boothia uplift, Rens Fiord uplift, Inglefield uplift (redefined unit, replacing Bache Peninsula arch), and possibly several other structures, such as the Cornwall arch, which are now expressed mainly in Mesozoic-Cenozoic strata but may represent rejuvenated Caledonian lineaments.

  14. Last Decade of Changes in Ground Temperature and Active Layer Thickness in the High Canadian Arctic and in Barrow

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Walker, D. A.; Yoshikawa, K.; Marchenko, S. S.

    2013-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Most of the permafrost observatories in the Northern Hemisphere show substantial warming of permafrost since circa 1980-1990. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C. Permafrost is already thawing within the southern part of the permafrost domain. However, recent observations documented propagation of this process northward into the continuous permafrost zone. The close proximity of the exceptionally icy soil horizons to the ground surface, which is typical for the arctic tundra biome, makes tundra surfaces extremely sensitive to the natural and human-made changes that may resulted in development of processes such as thermokarst, thermal erosion, and retrogressive thaw slumps that strongly affect the stability of ecosystems and infrastructure. In 2003-2005, three Ecological Permafrost Observatories where established in the High Canadian Arctic (Green Cabin on the Banks Island, Mould Bay on the Prince Patrick Island, and Isachsen on the Ellef Ringnes Island) as a part of the University of Alaska Fairbanks NSF funded Biocomplexity Project. These observatories represent the northern part of the North American Arctic Transect (NAAT) established as a result of this project. The climatic and ground temperature data collected at these observatories show a general warming trend similar to what has been observed at the other locations in the North American Arctic. An important result of this resent warming is a significant increase in the active layer thickness (ALT) during the last decade. For example, ALT at the Isachsen observatory increased from 0.4-0.42 m in 2005 to 0.54 m in 2012. The maximum ALT of 0.58 m was recorded in 2008. In a shallow excavation across an ice wedge at the Isachsen site, we estimated that the top of the ice wedge ice was located at 42

  15. Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function

    NASA Astrophysics Data System (ADS)

    Sofowote, Uwayemi M.; Hung, Hayley; Rastogi, Ankit K.; Westgate, John N.; Deluca, Patrick F.; Su, Yushan; McCarry, Brian E.

    2011-02-01

    Gas-phase and particle-phase atmospheric samples collected in a sparsely populated sub-Arctic environment in the Yukon Territory, Canada were analyzed for a wide range of organic pollutants including polycyclic aromatic hydrocarbons (PAH). Receptor modeling using positive matrix factorization (PMF) was applied to a PAH data set from samples collected between August 2007 and December 2008 to afford four factors. These factors were designated as fossil fuel combustion emissions, particle-phase wood combustion emissions, gas-phase wood combustion emissions, and unburned petroleum/petrogenic emissions. The multiple linear regression-derived average contributions of these factors to the total PAH concentrations were 14% for fossil fuel combustion, 6% for particle-phase wood combustion emissions, 46% for gas-phase wood combustion emissions and 34% for petrogenic emissions. When the total PAH concentrations (defined as the sum of twenty-two PAH) and the PMF-modeled PAH concentrations set were compared, the correlation was excellent ( R2 = 0.97). Ten-day back trajectories starting at four different heights were used in a potential source contribution function analysis (PSCF) to assess the potential source regions of these PAH factors. Mapping the computed PSCF values for the four PMF factors revealed different source regions in the northern hemisphere for each PMF factor. Atmospheric transport of PAH occurred from both relatively short and long distances with both continental (North American) and trans-oceanic (Asian) sources contributing significantly to the total PAH. This study provides evidence of the transport of fossil fuel and wood combustion emissions from Asia, continental North America and northern Europe to sub-Arctic Canada (and by extension to the Canadian Arctic) primarily during cooler (fall-winter) months. This study demonstrates for the first time that the combined PMF-PSCF methodology can be used to identify geographically-disperse PAH source contributors

  16. Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Woods, Gwen C.; Simpson, Myrna J.; Pautler, Brent G.; Lamoureux, Scott F.; Lafrenière, Melissa J.; Simpson, André J.

    2011-11-01

    Arctic landscapes are believed to be highly sensitive to climate change and accelerated disturbance of permafrost is expected to significantly impact the rate of carbon cycling. While half the global soil organic matter (SOM) is estimated to reside in Arctic soils, projected warmer temperatures and permafrost disturbance will release much of this SOM into waterways in the form of dissolved organic matter (DOM). The spring thaw and subsequent flushing of soils releases the highest contributions of DOM annually but has historically been undersampled due to the difficulties of sampling during this period. In this study, passive samplers were placed throughout paired High Arctic watersheds during the duration of the 2008 spring flush in Nunavut, Canada. The watersheds are very similar with the exception of widespread active layer detachments (ALDs) that occurred within one of the catchments during a period of elevated temperatures in the summer of 2007. DOM samples were analyzed for structural and spectral characteristics via nuclear magnetic resonance (NMR) and fluorescence spectroscopy as well as vulnerability to degradation with simulated solar exposure. Lignin-derived phenols were further assessed utilizing copper(II) oxide (CuO) oxidation and gas chromatography/mass spectrometry (GC/MS). The samples were found to have very low dissolved lignin phenol content (˜0.07% of DOC) and appear to originate from primarily non-woody angiosperm vegetation. The acid/aldehyde ratios for dissolved vanillyl phenols were found to be high (up to 3.6), indicating the presence of highly oxidized lignin. Differences between DOM released from the ALD vs. the undisturbed watershed suggest that these shallow detachment slides have significantly impacted the quality of Arctic DOM. Although material released from the disturbed catchment was found to be highly oxidized, DOM in the lake into which this catchment drained had chemical characteristics indicating high contributions from

  17. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  18. Boundary layer and free-tropospheric dimethyl sulfide in the Arctic spring and summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Croft, Betty; Martin, Randall V.; Pierce, Jeffrey R.; Burkart, Julia; Rempillo, Ofelia; Bozem, Heiko; Kunkel, Daniel; Thomas, Jennie L.; Aliabadi, Amir A.; Wentworth, Gregory R.; Levasseur, Maurice; Staebler, Ralf M.; Sharma, Sangeeta; Leaitch, W. Richard

    2017-07-01

    Vertical distributions of atmospheric dimethyl sulfide (DMS(g)) were sampled aboard the research aircraft Polar 6 near Lancaster Sound, Nunavut, Canada, in July 2014 and on pan-Arctic flights in April 2015 that started from Longyearbyen, Spitzbergen, and passed through Alert and Eureka, Nunavut, and Inuvik, Northwest Territories. Larger mean DMS(g) mixing ratios were present during April 2015 (campaign mean of 116 ± 8 pptv) compared to July 2014 (campaign mean of 20 ± 6 pptv). During July 2014, the largest mixing ratios were found near the surface over the ice edge and open water. DMS(g) mixing ratios decreased with altitude up to about 3 km. During April 2015, profiles of DMS(g) were more uniform with height and some profiles showed an increase with altitude. DMS reached as high as 100 pptv near 2500 m. Relative to the observation averages, GEOS-Chem (www.geos-chem.org) chemical transport model simulations were higher during July and lower during April. Based on the simulations, more than 90 % of the July DMS(g) below 2 km and more than 90 % of the April DMS(g) originated from Arctic seawater (north of 66° N). During April, 60 % of the DMS(g), between 500 and 3000 m originated from Arctic seawater. During July 2014, FLEXPART (FLEXible PARTicle dispersion model) simulations locate the sampled air mass over Baffin Bay and the Canadian Arctic Archipelago 4 days back from the observations. During April 2015, the locations of the air masses 4 days back from sampling were varied: Baffin Bay/Canadian Archipelago, the Arctic Ocean, Greenland and the Pacific Ocean. Our results highlight the role of open water below the flight as the source of DMS(g) during July 2014 and the influence of long-range transport (LRT) of DMS(g) from further afield in the Arctic above 2500 m during April 2015.

  19. An Existentialist in Iqaluit: Existentialism and Reflexivity Informing Pedagogy in the Canadian North

    ERIC Educational Resources Information Center

    Yue, Anthony R.

    2011-01-01

    Reflecting on the personal experience of teaching human resource management in the Canadian Arctic, the author explores the utility of an existentialist approach to pedagogy. The author outlines select aspects of existentialism that are pertinent to the teaching and discusses the implications of using reflexive existential thought as guidance in a…

  20. Stratospheric Aerosol and Gas Experiment (SAGE) II and III Aerosol Extinction Measurements in the Arctic Middle and Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.

    2006-01-01

    In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.

  1. Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, F.L.; Machemehl, J.L.

    1985-01-01

    Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less

  2. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    PubMed

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Introduction to the 2008 Circum-Arctic Resource Appraisal (CARA) professional paper

    USGS Publications Warehouse

    Gautier, Donald L.; Moore, Thomas E.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The amount of yet-to-find oil and gas in the high northern latitudes is one of the great uncertainties of future energy supply. The possibility of extensive new petroleum developments in the Arctic Ocean is of interest to the Arctic nations, to petroleum companies, and to those concerned with the delicate and changing Arctic environment. The U.S. Geological Survey (USGS) 2008 Circum-Arctic Resource Appraisal (CARA) had the express purpose of conducting a geologically based assessment of undiscovered petroleum north of the Arctic Circle, thereby providing an initial evaluation of resource potential. 

  4. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  5. Global View of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    2000-01-01

    together to create a time-lapsed view of this remote and inhospitable region. So far, they have processed one season's worth of images.

    'We can see large cracks in the ice cover, where most ice grows, ' said Kwok. 'These cracks are much longer than previously thought, some as long as 2,000 kilometers (1,200 miles),' Kwok continued. 'If the ice is thinning due to warming, we'll expect to see more of these long cracks over the Arctic Ocean. '

    Scientists believe this is one of the most significant breakthroughs in the last two decades of ice research. 'We are now in a position to better understand the sea ice cover and the role of the Arctic Ocean in global climate change, ' said Kwok.

    Radar can see through clouds and any kind of weather system, day or night, and as the Arctic regions are usually cloud-covered and subject to long, dark winters, radar is proving to be extremely useful. However, compiling these data into extremely detailed pictures of the Arctic is a challenging task.

    'This is truly a major innovation in terms of the quantities of data being processed and the novelty of the methods being used, ' said Verne Kaupp, director of the Alaska SAR Facility at the University of Alaska, Fairbanks.

    The mission is a joint project between JPL, the Alaska SAR Facility, and the Canadian Space Agency. Launched by NASA in 1995, the Radarsat satellite is operated by the Canadian Space Agency. JPL manages the Sea Ice Thickness Derived From High Resolution Radar Imagery project for NASA's Earth Science Enterprise, Washington, DC. The Earth Science Enterprise is dedicated to studying how natural and human-induced changes affect our global environment.

  6. Multi-decadal frontal change rates of tidewater glaciers in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Cook, Alison; Copland, Luke; Stokes, Chris; Bentley, Mike

    2017-04-01

    Recent studies of post-2000 observational data have shown variability in the dynamic ice discharge of tidewater glaciers throughout the Canadian Arctic Archipelago (CAA). Expanding this to all tidewater glaciers in the region on a decadal time scale using earlier records can help identify when glacier retreat began, and determine longer-term temporal trends in mass balance. Our study shows that over 94% of 300 tidewater glaciers in the CAA (from southern Baffin Island to Ellesmere Island, excluding those on the northern coast) have retreated since the earliest observational records (aerial photographs acquired in 1958-1960). Mean overall length change rate of the 211 glaciers in the Queen Elizabeth Islands (QEI) is -9.3 ma-1 (± 1.38 SE), and of the 89 glaciers on Baffin and Bylot Islands (BBI) is -7.1 ma-1 (± 0.72 SE). Mean frontal widths of tidewater glaciers in the QEI are greater than those on islands to the south, resulting in greater mean area loss from this region. Each glacier has 6 frontal positions digitised from a range of image sources at approximately decadal intervals. Length change rates have been calculated across each time interval for each glacier, based on area changes divided by glacier frontal width. Results indicate a similar temporal pattern throughout the region, whereby glaciers show minimal change in early years with retreat rates slowly increasing, followed by acceleration in retreat rates since the late 1990s. Mean change rates in the QEI and BBI in the 1960s were -6.92 ma-1 and -0.51 ma-1 respectively, increasing to -28.96 ma-1 and -24.84 ma-1 since 2010. The same trend (at differing magnitudes) has been observed within each latitudinal degree band, and for glaciers of differing frontal widths. Further observations of glacier changes and links to climate change are revealed on the poster.

  7. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  8. Calibration and application of the IP25 biomarker for Arctic sea ice reconstructions

    NASA Astrophysics Data System (ADS)

    Cabedo Sanz, P.; Navarro Rodriguez, A.; Belt, S. T.; Brown, T. A.; Knies, J.; Husum, K.; Giraudeau, J.; Andrews, J.

    2012-04-01

    The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales [e.g. 1, 3]. In addition, measurement of IP25 has also been applied as a sea ice origin tracer for studying the transfer of organic carbon through Arctic food-webs [2]. The current study focuses on three main areas: (1) In order to improve on the quantitative analytical aspects of IP25 based research, we present here the results of a large scale extraction, purification and identification procedure for IP25 from marine sediments. This has confirmed the structure of IP25 in sediments and enabled more robust quantitative measurements by gas chromatography - mass spectrometry (GC-MS) to be established. (2) Quantitative measurements of IP25 from a sediment core from Andfjord (continental shelf, Tromsø, Norway) have been determined for the period 6.3 to 14.3 ka BP. The results of this study add significant further information to that reported previously from other biomarker studies for this core (e.g. brassicasterol) [4]. (3) Analytical detection issues (GC-MS) regarding the occurrence of IP25 in other sub-Arctic regions (e.g. East Greenland - North Iceland area) will be presented and discussed with relation to other proxy data (e.g. IRD). Belt, S. T., Vare, L. L., Massé, G., Manners, H. R., Price, J. C., MacLachlan, S. E., Andrews, J. T. & Schmidt, S. (2010) 'Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years', Quaternary Science Reviews, 29 (25-26), pp. 3489-3504. Brown, T. A. & Belt, S. T. (2012) 'Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs', Polar Biology, 35, pp. 131-137. Müller, J., Massé, G

  9. Arctic Ocean UNCLOS Article 76 Work for Greenland Starts on Land

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, T.; Marcussen, C.; Jackson, R.; Voss, P.

    2005-12-01

    One of the most lonely and desolate stretches of coastline on the planet has become the target for UNCLOS article 76 related research. The Danish Continental Shelf Project has launched a work program to investigate the possibilities for Greenland to claim an area outside the 200 nm limit in the Arctic Ocean. The role of the Lomonosov Ridge as a Natural Prolongation of Greenland/Canada is an important issue, and in order to better evaluate the connection between Greenland and the Lomonosov Ridge the nature of not only the ridge but also of Northern Greenland is the target of deep crustal investigations. The North Greenland Fold belt covers the ice-free part of North Greenland and continues west in the Canadian Arctic. The foldbelt was formed during the Ellesmerian orogeny, where sediments from the Franklinian Basin where compressed and deformed. The deep structure of basin and its subsequent closure are broadly unknown. Three broad band earthquake seismological stations where installed in North Greenland to supplement the existing stations at Alert (Canada) and Station Nord to the east, and the first data was available summer 2005. Crustal thickness data from these first results are presented. Plans for the spring 2006 consist of wide-angle acquisition on the sea ice from the Greenland-Canadian mainland out onto the Lomonosov Ridge, a joint Danish - Canadian project with a 400 km long profile over difficult ice conditions, 18 tons of explosives, three helicopters, a Twin Otter and about 30 participants.

  10. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  11. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Livingstone, S. D.; Romet, T.; Keefe, A. A.; Nolan, R. W.

    1996-12-01

    Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures -11 and -21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  12. Changes in cold tolerance due to a 14-day stay in the Canadian Arctic.

    PubMed

    Livingstone, S D; Romet, T; Keefe, A A; Nolan, R W

    1996-11-01

    Response to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the arctic (average maximum and minimum temperatures -11 and -21 degrees C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures -5 and -11 degrees C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10 degrees C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.

  13. Lidar Measurements of Tropospheric Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-06-01

    This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  14. Genomics of Arctic cod

    USGS Publications Warehouse

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    identified species-specific markers and in conjunction with mitogenome data, identified an Arctic cod x Polar cod hybrid in western Canadian Beaufort Sea. Overall, the lack of genetic structure among Arctic cod within the Bering, Chukchi and Beaufort seas of Alaska is concordant with the absence of geographic barriers to dispersal and typical among marine fishes. Arctic cod may exhibit a genetic pattern of isolation-by-distance, whereby populations in closer geographic proximity are more genetically similar than more distant populations. As this signal is only found between our two fartherest localities, data from populations elsewhere in the species’ global range are needed to determine if this is a general characteristic. Further, tests for selection suggested a limited role for natural selection acting on the mitochondrial genome of Arctic cod, but do not exclude the possibility of selection on genes involved in nuclear-mitogenome interactions. Unlike previous genetic assessment of Arctic cod sampled from the Chukchi Sea, the high levels of genetic diversity found in Arctic cod assayed in this study, across regions, suggests that the species in the Beaufort and Chukchi seas does not suffer from low levels of genetic variation, at least at neutral genetic markers. The large census size of Arctic cod may allow this species to retain high levels of genetic diversity. In addition, we discovered the presence of hybridization between Arctic and Polar cod (although low in frequency). Hybridization is expected to occur when environmental changes modify species distributions that result in contact between species that were previously separated. In such cases, hybridization may be an evolutionary mechanism that promotes an increase in genetic diversity that may provide species occupying changing environments with locally-adapted genotypes and, therefore, phenotypes. Natural selection can only act on the standing genetic variation present within a population. Therefore, given its

  15. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside

  16. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  17. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  18. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  19. Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri

    2017-04-01

    Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but

  20. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  1. Ammonia in the summertime Arctic marine boundary layer: sources, sinks and implications

    NASA Astrophysics Data System (ADS)

    Wentworth, G. R.; Murphy, J. G.; Croft, B.; Martin, R. V.; Pierce, J. R.; Côté, J.-S.; Courchesne, I.; Tremblay, J.-É.; Gagnon, J.; Thomas, J. L.; Sharma, S.; Toom-Sauntry, D.; Chivulescu, A.; Levasseur, M.; Abbatt, J. P. D.

    2015-11-01

    Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30-650 ng m-3 (40-870 pptv) with the highest values recorded in Lancaster Sound (74°13' N, 84°00' W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface-air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (< 0.4-10 ng m3) indicating these surface pools are net sinks of NH3(g). Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m-2 s-1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea salt sulphate (nss-SO42-) in the boundary layer during most of the study. This finding was corroborated with a historical dataset of PM2.5 composition from Alert, NU (82°30' N, 62°20' W) wherein the median ratio of NH4+/nss-SO42- equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42- neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42- neutralization. This is strong evidence that seabird colonies are significant sources of NH3(g) in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3(g), but their influence was probably

  2. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications

    NASA Astrophysics Data System (ADS)

    Wentworth, Gregory R.; Murphy, Jennifer G.; Croft, Betty; Martin, Randall V.; Pierce, Jeffrey R.; Côté, Jean-Sébastien; Courchesne, Isabelle; Tremblay, Jean-Éric; Gagnon, Jonathan; Thomas, Jennie L.; Sharma, Sangeeta; Toom-Sauntry, Desiree; Chivulescu, Alina; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2016-02-01

    Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30 to 650 ng m-3 (40-870 pptv) with the highest values recorded in Lancaster Sound (74°13' N, 84°00' W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface-air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (< 0.4-10 ng m3) indicating these surface pools are net sinks of NH3. Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m-2 s-1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea-salt sulfate (nss-SO42-) in the boundary layer during most of the study. This finding was corroborated with a historical data set of PM2.5 composition from Alert, Nunavut (82°30' N, 62°20' W) wherein the median ratio of NH4+/nss-SO42- equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42- neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42- neutralization. This is strong evidence that seabird colonies are significant sources of NH3 in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3, but their influence was probably

  3. Bottom-simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Vadakkepuliyambatta, S.; Hong, W.-L.; Mienert, J.; Bünz, S.; Chand, S.; Greinert, J.

    2017-06-01

    The Vestnesa Ridge comprises a >100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (>1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions results in an unusual underestimation of the observed bottom-simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with >99% methane. Models for measured gas compositions with >4% higher-order hydrocarbons result in a better BSR approximation. However, the BSR remains >20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unaccounted spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.

  4. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Frederick, Jennifer Mary

    , allows us a unique opportunity to study the response of methane hydrate deposits to warming. Gas hydrate stability in the Arctic and the permeability of the shelf sediments to gas migration is thought to be closely linked with relict submarine permafrost. Submarine permafrost extent depends on several environmental factors, such as the shelf lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, groundwater hydrology, and the salinity of the pore water. Effects of submarine groundwater discharge, which introduces fresh terrestrial groundwater off-shore, can freshen deep marine sediments and is an important control on the freezing point depression of ice and methane hydrate. While several thermal modeling studies suggest the permafrost layer should still be largely intact near-shore, many recent field studies have reported elevated methane levels in Arctic coastal waters. The permafrost layer is thought to create an impermeable barrier to fluid and gas flow, however, talik formation (unfrozen regions within otherwise continuous permafrost) below paleo-river channels can create permeable pathways for gas migration from depth. This is the first study of its kind to make predictions of the methane gas flux to the water column from the Arctic shelf sediments using a 2D multi-phase fluid flow model. Model results show that the dissociation of methane hydrate deposits through taliks can supersaturate the overlying water column at present-day relative to equilibrium with the atmosphere when taliks are large (> 1 km width) or hydrate saturation is high within hydrate layers (> 50% pore volume). Supersaturated waters likely drive a net flux of methane into the atmosphere, a potent greenhouse gas. Effects of anthropogenic global warming will certainly increase gas venting rates if ocean bottom water temperatures increase, but likely won't have immediately observable impacts due to the long response times.

  5. Canadian Unilateralism in the Arctic: Using Scenario Planning to Help Canada Achieve Its Strategic Goals in the North

    DTIC Science & Technology

    2013-05-23

    IN THE NORTH, by Major Sonny T. Hatton, 78 pages. Climate change and global warming could open up the Arctic to unprecedented energy and resource...heating up, both literally and figuratively. Climate change and global warming are melting the Polar ice cap in the North at an unprecedented rate...grow for Arctic nations as access increases due to global warming .35 Increased access and development in the Arctic will continue to encourage the

  6. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales.

    PubMed

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-09-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (F ST = 0.01) and mitochondrial (ΦST = 0.47; F ST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species' range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history.

  7. CANOZE measurements of the Arctic ozone hole

    NASA Technical Reports Server (NTRS)

    Evans, W. F. J.; Kerr, J. B.; Fast, H.

    1988-01-01

    In CANOZE 1 (Canadian Ozone Experiment), a series of 20 ozone profile measurements were made in April, 1986 from Alert at 82.5 N. CANOZE is the Canadian program for study of the Arctic winter ozone layer. In CANOZE 2, ozone profile measurements were made at Saskatoon, Edmonton, Churchill and Resolute during February and March, 1987 with ECC ozonesondes. Ground based measurements of column ozone, nitrogen dioxide and hydrochloric acid were conducted at Saskatoon. Two STRATOPROBE balloon flights were conducted on February 26 and March 19, 1987. Two aerosol flights were conducted by the University of Wyoming. The overall results of this study will be reported and compared with the NOZE findings. The results from CANOZE 3 in 1988, are also discussed. In 1988, as part of CANOZE 3, STRATOPROBE balloon flights were conducted from Saskatchewan on January 27 and February 13. A new lightweight infrared instrument was developed and test flown. A science flight was successfully conducted from Alert (82.5 N) on March 9, 1988 when the vortex was close to Alert; a good measurement of the profile of nitric acid was obtained. Overall, the Arctic spring ozone layer exhibits many of the features of the Antarctic ozone phenomenon, although there is obviously not a hole present every year. The Arctic ozone field in March, 1986 demonstrated many similarities to the Antarctic ozone hole. The TOMS imagery showed a crater structure in the ozone field similar to the Antarctic crater in October. Depleted layers of ozone were found in the profiles around 15 km, very similar to those reported from McMurdo. Enhanced levels of nitric acid were measured in air which had earlier been in the vortex. The TOMS imagery for March 1987 did not show an ozone crater, but will be examined for an ozone crater in February and March, 1988, the target date for the CANOZE 3 project.

  8. Atmospheric Form Drag Coefficients Over Arctic Sea Ice Using Remotely Sensed Ice Topography Data, Spring 2009-2015

    NASA Technical Reports Server (NTRS)

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.

    2017-01-01

    Sea ice topography significantly impacts turbulent energy/momentum exchange, e.g., atmospheric (wind) drag, over Arctic sea ice. Unfortunately, observational estimates of this contribution to atmospheric drag variability are spatially and temporally limited. Here we present new estimates of the neutral atmospheric form drag coefficient over Arctic sea ice in early spring, using high-resolution Airborne Topographic Mapper elevation data from NASA's Operation IceBridge mission. We utilize a new three-dimensional ice topography data set and combine this with an existing parameterization scheme linking surface feature height and spacing to form drag. To be consistent with previous studies investigating form drag, we compare these results with those produced using a new linear profiling topography data set. The form drag coefficient from surface feature variability shows lower values [less than 0.5-1 × 10(exp. -3)] in the Beaufort/Chukchi Seas, compared with higher values [greater than 0.5-1 ×10(exp. -3)] in the more deformed ice regimes of the Central Arctic (north of Greenland and the Canadian Archipelago), which increase with coastline proximity. The results show moderate interannual variability, including a strong increase in the form drag coefficient from 2013 to 2014/2015 north of the Canadian Archipelago. The form drag coefficient estimates are extrapolated across the Arctic with Advanced Scatterometer satellite radar backscatter data, further highlighting the regional/interannual drag coefficient variability. Finally, we combine the results with existing parameterizations of form drag from floe edges (a function of ice concentration) and skin drag to produce, to our knowledge, the first pan-Arctic estimates of the total neutral atmospheric drag coefficient (in early spring) from 2009 to 2015.

  9. Sources of inorganic and monomethyl mercury to high and sub Arctic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Kirk, Jane Liza

    Monomethyl mercury (MMHg), a toxic and bioaccumulative form of Hg, is present in some Canadian high and sub Arctic marine mammals at concentrations high enough to pose health risks to Northern peoples using these animals as food. To quantify potentially large sources of Hg to Arctic marine ecosystems, we examined several aspects of Hg cycling in the Canadian Arctic Archipelago (CAA) and Hudson Bay. Firstly, we quantified net Hg inputs to Hudson Bay from atmospheric Hg depletion events (AMDEs). During AMDEs, gaseous elemental Hg(0) (GEM), which is present in the Arctic atmosphere at global background concentrations, is oxidized to inorganic Hg(II) species that deposit to snowpacks. By simultaneously monitoring Hg in the atmosphere and in snowpacks of western Hudson Bay, we demonstrated that most of the Hg(II) deposited during AMDEs is rapidly (photo)reduced and emitted to the atmosphere. Secondly, we examined Hg speciation in marine waters of the CAA and Hudson Bay. We found high concentrations of MMHg and dimethyl Hg (DMHg; a toxic, gaseous form of Hg) in deep marine waters, where they are likely produced from Hg(II). Arctic marine waters were also found to be a substantial source of DMHg and GEM to the atmosphere. Thirdly, we quantified Hg exports to Hudson Bay from two major rivers, the Nelson and the Churchill, which have been altered for hydroelectric power production. When landscapes are inundated during river diversion or reservoir creation, microbial production of MMHg is stimulated in flooded soils. Newly produced MMHg can then be exported to downstream waterbodies. We found that annual inputs of total Hg (THg; includes both Hg(II) and MMHg) to Hudson Bay from combined Nelson and Churchill River discharge were comparable to inputs from AMDEs. MMHg inputs from river discharge are, however, ˜13 times greater than those from annual snowmelt of Hudson Bay snowpacks. Finally, although combined river and AMDE Hg inputs may account for a large portion of the THg

  10. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    PubMed

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  11. The North Warning System: A Canadian military SATCOM success

    NASA Astrophysics Data System (ADS)

    Wawryk, Ivan J.

    The strategic threat to North America presented by modern, supersonic bombers and long range cruise missiles has stimulated a modernization of atmospheric defence capability. The North Warning System (NWS), employs a chain of microwave radars across the Arctic and down the east coast of Canada to provide tactical warning and attack assessment information to NORAD and its forces. The responsibility for NWS facilities construction and communications is allocated to Canada. Earlier investigations in Canada and the U.S. had confirmed that an all satellite communications system to link the 47 Canadian NWS radars to command and control centers was more economical than any terrestrial alternative. A project was undertaken by the Canadian Department of National Defence (DND) to acquire and install an integrated, digital satellite communications system for the NWS. This paper outlines the project background and procurement process. System requirements and specifications are discussed and the communications system is described in some detail. The communications equipment will be required to function unmanned in extreme Arctic conditions for extended periods. Specifications called for a long haul communications network (LHCN), a maintenance control system to monitor and control the equipment, and a suite of on-site communications for each location. The LHCN is a fully integrated, redundant satellite system which employs a transponder on each of the Anik D satellites. Either transponder can carry the full communications load. The system is configured as a star network with the hub at North Bay. Five remote stations and the North Bay facility have been built in phase one of the project; the second phase will see the construction of 36 unattended stations across the Arctic and down the Baffin Island and Labrador coasts.

  12. Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago.

    PubMed

    Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter

    2005-12-01

    Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.

  13. Impacts of Declining Arctic Sea Ice: An International Challenge

    NASA Astrophysics Data System (ADS)

    Serreze, M.

    2008-12-01

    As reported by the National Snow and Ice Data Center in late August of 2008, Arctic sea ice extent had already fallen to its second lowest level since regular monitoring began by satellite. As of this writing, we were closing in on the record minimum set in September of 2007. Summers may be free of sea ice by the year 2030. Recognition is growing that ice loss will have environmental impacts that may extend well beyond the Arctic. The Arctic Ocean will in turn become more accessible, not just to tourism and commercial shipping, but to exploitation of oil wealth at the bottom of the ocean. In recognition of growing accessibility and oil operations, the United States Coast Guard set up temporary bases this summer at Barrow and Prudhoe Bay, AK, from which they conducted operations to test their readiness and capabilities, such as for search and rescue. The Canadians have been busy showing a strong Arctic presence. In August, a German crew traversed the Northwest Passage from east to west in one of their icebreakers, the Polarstern. What are the major national and international research efforts focusing on the multifaceted problem of declining sea ice? What are the areas of intersection, and what is the state of collaboration? How could national and international collaboration be improved? This talk will review some of these issues.

  14. Dynamical downscaling with the fifth-generation Canadian regional climate model (CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature

    NASA Astrophysics Data System (ADS)

    Takhsha, Maryam; Nikiéma, Oumarou; Lucas-Picher, Philippe; Laprise, René; Hernández-Díaz, Leticia; Winger, Katja

    2017-10-01

    As part of the CORDEX project, the fifth-generation Canadian Regional Climate Model (CRCM5) is used over the Arctic for climate simulations driven by reanalyses and by the MPI-ESM-MR coupled global climate model (CGCM) under the RCP8.5 scenario. The CRCM5 shows adequate skills capturing general features of mean sea level pressure (MSLP) for all seasons. Evaluating 2-m temperature (T2m) and precipitation is more problematic, because of inconsistencies between observational reference datasets over the Arctic that suffer of a sparse distribution of weather stations. In our study, we additionally investigated the effect of large-scale spectral nudging (SN) on the hindcast simulation driven by reanalyses. The analysis shows that SN is effective in reducing the spring MSLP bias, but otherwise it has little impact. We have also conducted another experiment in which the CGCM-simulated sea-surface temperature (SST) is empirically corrected and used as lower boundary conditions over the ocean for an atmosphere-only global simulation (AGCM), which in turn provides the atmospheric lateral boundary conditions to drive the CRCM5 simulation. This approach, so-called 3-step approach of dynamical downscaling (CGCM-AGCM-RCM), which had considerably improved the CRCM5 historical simulations over Africa, exhibits reduced impact over the Arctic domain. The most notable positive effect over the Arctic is a reduction of the T2m bias over the North Pacific Ocean and the North Atlantic Ocean in all seasons. Future projections using this method are compared with the results obtained with the traditional 2-step dynamical downscaling (CGCM-RCM) to assess the impact of correcting systematic biases of SST upon future-climate projections. The future projections are mostly similar for the two methods, except for precipitation.

  15. Evidence of molting and the function of “rock-nosing” behavior in bowhead whales in the eastern Canadian Arctic

    PubMed Central

    Koski, William R.; Higdon, Jeff W.; Trites, Andrew W.; Baumgartner, Mark F.; Ferguson, Steven H.

    2017-01-01

    Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas—likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic. PMID:29166385

  16. Early Triassic development of a foreland basin in the Canadian high Arctic: Implications for a Pangean Rim of Fire

    NASA Astrophysics Data System (ADS)

    Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick

    2018-06-01

    Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.

  17. First record of eocene bony fishes and crocodyliforms from Canada's Western Arctic.

    PubMed

    Eberle, Jaelyn J; Gottfried, Michael D; Hutchison, J Howard; Brochu, Christopher A

    2014-01-01

    Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada's High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early - middle Eocene (∼53-50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada's easternmost Arctic - Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada's westernmost Arctic Island - Banks Island, Northwest Territories - they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower - middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early - middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator

  18. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment

    NASA Astrophysics Data System (ADS)

    Roiger, Anke; Thomas, Jennie L.; Schlager, Hans; Law, Kathy; Kim, Jin; Reiter, Anja; Schäfler, Andreas; Weinzierl, Bernadett; Rose, Maximilian; Raut, Jean-Christophe; Marelle, Louis

    2014-05-01

    Arctic change has opened the region to new industrial activities, most notably transit shipping and resource extraction. The impacts that Arctic industrialization will have on pollutants and Arctic climate are not well understood. In order to understand how shipping and offshore oil/gas extraction impact on Arctic tropospheric chemistry and composition, we conducted the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign. The campaign was conducted in July 2012 using the DLR Falcon research aircraft, based in Andenes, Norway. The Falcon was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species) to characterize these emissions and their atmospheric chemistry. The Falcon performed nine scientific flights to study emissions from different ships (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) off the Norwegian Coast. Distinct differences in chemical and aerosol composition were found in emissions from these increasing pollution sources. We also studied the composition of biomass burning plumes imported from Siberian wildfires to put the emerging local pollution within a broader context. In addition to our measurements, we used a regional chemical transport model to study the influence of emerging pollution sources on gas and aerosol concentrations in the region. We will present an overview on the measured trace gas and aerosol properties of the different emission sources and discuss the impact of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  19. Polar bear maternal den habitat in the Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.

    2006-01-01

    Polar bears (Ursus maritimus) give birth during mid-winter in dens of ice and snow. Denning polar bears subjected to human disturbances may abandon dens before their altricial young can survive the rigors of the Arctic winter. Because the Arctic coastal plain of Alaska is an area of high petroleum potential and contains existing and planned oil field developments, the distribution of polar bear dens on the plain is of interest to land managers. Therefore, as part of a study of denning habitats along the entire Arctic coast of Alaska, we examined high-resolution aerial photographs (n = 1655) of the 7994 km2 coastal plain included in the Arctic National Wildlife Refuge (ANWR) and mapped 3621 km of bank habitat suitable for denning by polar bears. Such habitats were distributed uniformly and comprised 0.29% (23.2 km2) of the coastal plain between the Canning River and the Canadian border. Ground-truth sampling suggested that we had correctly identified 91.5% of bank denning habitats on the ANWR coastal plain. Knowledge of the distribution of these habitats will help facilitate informed management of human activities and minimize disruption of polar bears in maternal dens.

  20. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  1. Does Arctic governance hold the key to achieving climate policy targets?

    NASA Astrophysics Data System (ADS)

    Forbis, Robert, Jr.; Hayhoe, Katharine

    2018-02-01

    Arctic feedbacks are increasingly viewed as the wild card in the climate system; but their most unpredictable and potentially dangerous aspect may lie in the human, rather than the physical, response to a warming climate. If Arctic policy is driven by agendas based on domestic resource development, the ensuing oil and gas extraction will ensure the failure of the Paris Agreement. If Arctic energy policy can be framed by the Arctic Council, however, its environmental agenda and fragmented governance structure offers the scientific community a fighting chance to determine the region’s energy future. Connecting Arctic climate science to resource economics via its unique governance structure is one of the most powerful ways the scientific community can protect the Arctic region’s environmental, cultural, and scientific resources, and influence international energy and climate policy.

  2. Ice-sheet-driven methane storage and release in the Arctic

    PubMed Central

    Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun

    2016-01-01

    It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features—pockmarks and active gas flares—across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone—which could serve as a methane sink—existed beneath the ice sheet. Moreover, we reveal that in water depths 150–520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release. PMID:26739497

  3. Current and future contributions of local emissions from shipping and hydrocarbon extraction flaring to short lived pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Raut, J. C.; Law, K.; Thomas, J. L.; Fast, J. D.; Berg, L. K.; Shrivastava, M. B.; Easter, R. C.; Herber, A. B.

    2015-12-01

    The Arctic is increasingly open to human activity due to rapid Arctic warming, associated with decreased sea ice extent and snow cover. While pollution from in-Arctic sources is currently low, oil and gas extraction and marine traffic could become a significant future source of short-lived pollutants (aerosols, ozone) in the Arctic. It is currently unclear if these local sources might become significant compared to the long-range transport of anthropogenic pollution from the midlatitudes, which is currently the main source of Arctic pollution. Here, we investigate the current (2012) and future (2050) impact of emissions from shipping and oil and gas extraction on Arctic aerosols and ozone, in relation to emissions from long-range transport. These impacts are determined by performing 6-month long, quasi-hemispheric simulations over the Arctic region with the WRF-Chem model. Our regional simulations include up-to-date representations of cloud/aerosol interactions and secondary organic aerosol formation developed recently for WRF-Chem. In order to determine the impact of Arctic shipping and oil and gas extraction, we use recent emission inventories by Winther et al., 2014 for local shipping and ECLIPSEv5 for oil and gas flaring. Both inventories suggest that current and future emissions from these sources are higher than previous estimates. Simulations are evaluated using measurements at Arctic surface sites and aircraft campaigns (ACCESS, YAK) in 2012. Model results are then used to assess the impact of Arctic shipping and oil and gas flaring on modeled surface aerosol and ozone concentrations, direct aerosol and ozone radiative effects, indirect aerosol radiative effects, and aerosol deposition. Results are used to determine if these local emissions are expected to have a significant influence on these quantities at the local or the regional scale, compared to emissions transported from the midlatitudes and to other emission sources, including boreal fires.

  4. Arctic Gas Phase Water Vapor Measurements from the NASA DC-8 During SOLVE

    NASA Technical Reports Server (NTRS)

    Podolske, James; Sachse, Glen; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The NASA Langley / Ames Diode Laser Hygrometer (DLH) was flown aboard the NASA DC-8 during all three arctic deployments of the SOLVE campaign. The DLH measures gas phase H2O in the freestream air between the fuselage and the outer right engine cowling, essentially free from aircraft perturbations. It uses wavelength-modulated near-IR laser radiation at about 1.4 microns to detect the H2O absorption. Calibration is based on short path experiments in the laboratory using a NIST-traceable dewpoint hygrometer with carefully conditioned air at dewpoints between - 10 and + 10 degrees C. The theory of operation of the DLH instrument will be presented, along with a description of the calibration methodology. A simple climatology of H2O observations from SOLVE will be presented.

  5. Investigation of Arctic mixed-phase clouds by combining airborne remote sensing and in situ observations during VERDI, RACEPAC and ACLOUD

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred

    2016-04-01

    To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be

  6. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  7. Naval Research Laboratory Arctic Initiatives

    DTIC Science & Technology

    2011-06-01

    Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial

  8. Summer in the Arctic National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on August 16, 2000, during Terra orbit 3532. The swirling patterns apparent on the Beaufort Sea are small ice floes driven by turbulent water patterns, or eddies, caused by the interactions of water masses of differing salinity and temperature. By this time of year, all of the seasonal ice which surrounds the north coast of Alaska in winter has broken up, although the perennial pack ice remains further north. The morphology of the perennial ice pack's edge varies in response to the prevailing wind. If the wind is blowing strongly toward the perennial pack (that is, to the north), the ice edge will be more compact. In this image the ice edge is diffuse, and the patterns reflected by the ice floes indicate fairly calm weather.

    The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest wildlife refuge in the United States. Animals of the Refuge include the 130,000-member Porcupine caribou herd, 180 species of birds from four continents, wolves, wolverine, polar and grizzly bears, muskoxen, foxes, and over 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was set aside so that the oil and gas reserves beneath the tundra could be studied. Drilling remains a topic of contention, and an energy bill allowing North Slope oil development to extend onto the coastal plain of the Refuge was approved by the US House of Representatives on August 2, 2001.

    The Refuge encompasses an impressive variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Of all these, the arctic tundra is the landscape judged most important for wildlife. From the coast inland to an average of 30

  9. Oceanographic Aspects of Recent Changes in the Arctic

    NASA Astrophysics Data System (ADS)

    Morison, J. H.

    2002-12-01

    In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important

  10. Introduction to special section on Annual Cycles on the Arctic Ocean Shelf

    NASA Astrophysics Data System (ADS)

    Fortier, Louis; Cochran, J. Kirk

    2008-03-01

    The perennial sea-ice cover of the Arctic Ocean is shrinking rapidly in response to the anthropogenic warming of Earth's lower atmosphere. From September 2002 to September 2004 the Canadian Arctic Shelf Exchange Study (CASES) logged over 14,500 scientist-days at sea to document the potential impacts of a shift in sea-ice regime on the ecosystem of the Mackenzie Shelf in the southeastern Beaufort Sea. In particular, teams from Canada, Denmark, Japan, Norway, Spain, the United Kingdom, and the United States totaling over 200 scientists took rotations on the CCS Amundsen to study all aspects of the ecosystem during a 385-day over-wintering expedition in the region from September 2003 to September 2004. The resulting wealth of information has revealed an unexpectedly active food web under the winter sea ice of the coastal Beaufort Sea. From the thermodynamics of snow to the reconstruction of local paleo-climate, this special section focuses on how sea-ice cover dynamics dictate biological processes and biogeochemical fluxes on and at the margin of the shallow Arctic continental shelf. The highly successful CASES program has initiated ongoing time series of key measurements of the response of the marine ecosystem to change that have been expanded to other Arctic regions through the ArcticNet project and the International Polar Year.

  11. A community-based, environmental chronic disease prevention intervention to improve healthy eating psychosocial factors and behaviors in indigenous populations in the Canadian Arctic.

    PubMed

    Mead, Erin L; Gittelsohn, Joel; Roache, Cindy; Corriveau, André; Sharma, Sangita

    2013-10-01

    Diet-related chronic diseases are highly prevalent among indigenous populations in the Canadian Arctic. A community-based, multi-institutional nutritional and lifestyle intervention-Healthy Foods North-was implemented to improve food-related psychosocial factors and behaviors among Inuit and Inuvialuit in four intervention communities (with two comparison communities) in Nunavut and the Northwest Territories, Canada, in 2008. The 12-month program was developed from theory (social cognitive theory and social ecological models), formative research, and a community participatory process. It included an environmental component to increase healthy food availability in local stores and activities consisting of community-wide and point-of-purchase interactive educational taste tests and cooking demonstrations, media (e.g., radio ads, posters, shelf labels), and events held in multiple venues, including recreation centers and schools. The intervention was evaluated using pre- and postassessments with 246 adults from intervention and 133 from comparison communities (311 women, 68 men; mean age 42.4 years; 78.3% retention rate). Outcomes included psychosocial constructs (healthy eating knowledge, self-efficacy, and behavioral intentions), frequency of healthy and unhealthy food acquisition, healthiness of commonly used food preparation methods, and body mass index (kg/m(2)). After adjustment for demographic, socioeconomic status, and body mass index variables, respondents living in intervention communities showed significant improvements in food-related self-efficacy (β = 0.15, p = .003) and intentions (β = 0.16, p = .001) compared with comparison communities. More improvements from the intervention were seen in overweight, obese, and high socioeconomic status respondents. A community-based, multilevel intervention is an effective strategy to improve psychosocial factors for healthy nutritional behavior change to reduce chronic disease in indigenous Arctic populations.

  12. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  13. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  14. Decision Making For Sustainable Futures In A Rapidly Changing Arctic

    NASA Astrophysics Data System (ADS)

    Chabay, I.

    2016-12-01

    Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.

  15. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2010-03-30

    used to support national claims to submerged lands which may contain large amounts of oil, natural gas, methane hydrates, or minerals. Expiration...developments offer opportunities for growth, they are potential sources of competition and conflict for access and natural resources.163 In a February 2009...management of Arctic natural resources and to address socioeconomic impacts of changing patterns in the use of natural resources. Changes in the Arctic

  16. Modelling the impacts of a dipole-like climatic state over the Arctic

    NASA Astrophysics Data System (ADS)

    Pasha Karami, Mehdi; de Vernal, Anne; Hu, Xianmin; Myers, Paul G.

    2015-04-01

    The Arctic dipole anomaly (ADA) features a pattern with opposite sea-level pressure anomalies over the Canadian Archipelago and the Barents Sea. Changes in the predominance of Arctic atmospheric circulation modes and the shift towards a dipole mode in the past decade played a role in the summer sea ice loss and sea ice-freshwater export from the Arctic to the North Atlantic. Reconstruction of sea ice cover variations during Holocene also suggests opposite anomalies in the Barents Sea versus either the western Arctic or the Fram Strait area similar to the ADA pattern. It is vital to study such physical processes that cause dramatic changes in the Arctic sea ice recalling the link between the ADA and the current climate change. Here we focus on the question of how a persistent ADA-like state affects the Arctic sea ice distribution and its outflow to the Atlantic Ocean. For this purpose, an eddy-permitting regional configuration of the NEMO coupled ocean/sea-ice model is used. The regional domain covers the Arctic Ocean and the Northern-Hemisphere Atlantic, with a horizontal resolution of 1/4 degree at the equator (ANHA4). For the present-day simulations, boundary conditions are obtained by taking the average over the years with a positive ADA and those with a negative ADA. In the Holocene scenario, global climate model data are used to force our regional model. To exclude the role of Bering Strait and the heat flux from the Pacific Ocean, we repeat the experiments with a closed Bering Strait since a nearly closed Bering configuration was possible for the Early Holocene. The model results are compared with the paleoclimate data from Arctic and subarctic seas.

  17. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  18. Sedimentological Control on Hydrate Saturation Distribution in Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Peng, Y.; Bryant, S. L.

    2010-12-01

    Grain size variations along with the relative rates of fluid phases migrating into the zone of hydrate stability, plays an important role in gas-hydrate distribution and its morphologic characteristics. In the Arctic, strata several meters thick containing large saturations of gas hydrate are often separated by layers containing small but nonzero hydrate saturations. Examples are Mt. Elbert, Alaska and Mallik, NW Territories. We argue that this sandwich type hydrate saturation distribution is consistent with having a gas phase saturation within the sediment when the base of gas hydrate stability zone (BGHSZ) was located above the sediment package. The volume change during hydrate formation process derives movement of fluid phases into the GHSZ. We show that this fluid movement -which is mainly governed by characteristic relative permeability curves of the host sediment-, plays a crucial role in the amount of hydrate saturation in the zone of major hydrate saturation. We develop a mechanistic model that enables estimating the final hydrate saturation from an initial gas/water saturation in sediment with known relative permeability curves. The initial gas/water saturation is predicted using variation of capillary entry pressure with depth, which in turn depends on the variation in grain-size distribution. This model provides a mechanistic approach for explaining large hydrate saturations (60%-75%) observed in zones of major hydrate saturation considering the governing characteristic relative permeability curves of the host sediments. We applied the model on data from Mount Elbert well on the Alaskan North Slope. It is shown that, assuming a cocurrent flow of gas and water into the GHSZ, such large hydrate saturations (up to 75%) cannot result from large initial gas saturations (close to 1-Sw,irr) due to limitations on water flux imposed by typical relative permeability curves. They could however result from modest initial gas saturations (ca. 40%) at which we have

  19. Impacts of Human Activity on the Microbial Communities of Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bywaters, K. B.; Burton, A. S.; Wallace, S. L.; Glass, B. J.

    2016-09-01

    The impacts of human activities on microbial communities in arctic environments are poorly understood. This project compares the distribution of microbes at the HMP Mars analog site prior to and after human settlement.

  20. Fast carnivores and slow herbivores: differential foraging strategies among grizzly bears in the Canadian Arctic.

    PubMed

    Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A

    2011-04-01

    Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.

  1. Radiocarbon chronology of the last deglaciation in the Baffin Bay reveals asynchronous melting of Arctic and Laurentide ice sheets

    NASA Astrophysics Data System (ADS)

    Jackson, Rebecca; Kucera, Michal; Vogt, Christoph; Wacker, Lukas

    2016-04-01

    The transition from the last ice age into the Holocene interglacial was characterised by rapid retreat of North American ice sheets, discharging large quantities of meltwater into the Labrador Sea. Whereas the meltwater chronology of the Laurentide Ice Sheet is well documented, the deglacial history of the American Arctic ice sheets (Inuit Ice sheet and northern Greenland Ice Sheet) draining into the Labrador Sea via the Baffin Bay is less well constrained. Here we present the first high-resolution radiocarbon-dated deglacial records from the Canadian and Greenland margins of the central Baffin Bay. Sedimentological and geochemical data confirm the presence during Termination I of two events of enhanced delivery of detrital carbonate (Baffin Bay Detrital Carbonate Events) dated to 14.2-13.7 ka BP and 12.7-11 ka BP. The events are synchronous across the Baffin Bay and their mineralogical signature indicates a common source of detrital carbonate from the Canadian Arctic, with a synchronous clastic source proximal to Greenland. The events postdate Heinrich layers and their onset is not linked to Greenland temperature change. This indicates that the deglaciation of American Arctic ice sheets and associated meltwater discharge were decoupled from the dominant North Atlantic climate mode.

  2. Comparative Views of Arctic Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    how the sea ice cover grows and contorts over time. 'Using this new data set, we have the first estimates of how much ice has been produced and where it formed during the winter. We have never been able to do this before,' said Kwok. 'Through our radar maps of the Arctic Ocean, we can actually see ice breaking apart and thin ice growth in the new openings.'

    RADARSAT gives researchers a piece of the overall puzzle every three days by creating a complete image of the Arctic. NASA scientists then put those puzzle pieces together to create a time-lapsed view of this remote and inhospitable region. So far, they have processed one season's worth of images.

    'We can see large cracks in the ice cover, where most ice grows,' said Kwok. 'These cracks are much longer than previously thought, some as long as 2,000 kilometers (1,200 miles),' Kwok continued. 'If the ice is thinning due to warming, we'll expect to see more of these long cracks over the Arctic Ocean.'

    Scientists believe this is one of the most significant breakthroughs in the last two decades of ice research. 'We are now in a position to better understand the sea ice cover and the role of the Arctic Ocean in global climate change,' said Kwok.

    Radar can see through clouds and any kind of weather system, day or night, and as the Arctic regions are usually cloud-covered and subject to long, dark winters, radar is proving to be extremely useful. However, compiling these data into extremely detailed pictures of the Arctic is a challenging task.

    'This is truly a major innovation in terms of the quantities of data being processed and the novelty of the methods being used,' said Verne Kaupp, director of the Alaska SAR Facility at the University of Alaska, Fairbanks.

    The mission is a joint project between JPL, the Alaska SAR Facility, and the Canadian Space Agency. Launched by NASA in 1995, the Radarsat satellite is operated by the Canadian Space Agency. JPL manages the Sea Ice Thickness Derived From High

  3. Environmental impact of exhaust emissions by Arctic shipping.

    PubMed

    Schröder, Christian; Reimer, Nils; Jochmann, Peter

    2017-12-01

    Since 2005, a dramatic decline of the Arctic sea-ice extent is observed which results in an increase of shipping activities. Even though this provides commercial and social development opportunities, the resulting environmental impacts need to be investigated and monitored. In order to understand the impact of shipping in arctic areas, the method described in this paper determines the travel time, fuel consumption and resulting exhaust emissions of ships navigating in arctic waters. The investigated case studies are considering ship particulars as well as environmental conditions with special focus on ice scenarios. Travel time, fuel consumption and exhaust gas emission were investigated for three different vessels, using different passages of the Northern Sea Route (NSR) in different seasons of years 1960, 2000 and 2040. The presented results show the sensitivity of vessel performance and amount of exhaust emissions to optimize arctic traffic with respect to efficiency, safety and environmental impact.

  4. Canadian advanced life support capacities and future directions

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  5. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  6. Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state

    NASA Astrophysics Data System (ADS)

    Teufel, Bernardo; Sushama, Laxmi; Arora, Vivek K.; Verseghy, Diana

    2018-03-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961-2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.

  7. Managing the Arctic Thaw: A Joint Interagency Approach to a Potential Hot Spot

    DTIC Science & Technology

    2011-05-04

    cruise ship EXPLORER, which, in 2007, struck a growler and sank in the Antarctic Ocean. 24 Fortunately, there was an additional cruise ship in the...the Antarctic Ocean, significant loss of life would have occurred. Even homeland security issues are in play in the Arctic. Canadian officials, for...Itemid=89/ (accessed 14 March 2011). 24. Bill Cormier, “ Iceberg Sinks Cruise Ship Off Antarctica,” National Geographic News, 24 November 2007

  8. Quantification of Methane Gas Flux and Bubble Fate on the Eastern Siberian Arctic Shelf Utilizing Calibrated Split-beam Echosounder Data.

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.

    2016-12-01

    On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with

  9. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-12

    discovery of new oil and gas deposits far from existing storage, pipelines , and shipping facilities cannot be developed until infrastructure is built...markets. Other questions in need of answers include the status of port, pipeline , and liquid natural gas infrastructure; whether methane hydrates...Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas , and minerals. Warming that causes

  10. A Tri-Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes

    PubMed Central

    Carr, Christina M.; Hardy, Sarah M.; Brown, Tanya M.; Macdonald, Tara A.; Hebert, Paul D. N.

    2011-01-01

    Background Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested. Methodology/Principal Findings Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas. Conclusions/Significance Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor

  11. [Character accentuations as a criterion for psychological risks in the professional activity of the builders of main gas pipelines in the conditions of arctic].

    PubMed

    Korneeva, Ia A; Simonova, N N

    2015-01-01

    The article is devoted to the study of character accentuations as a criterion for psychological risks in the professional activity of builders of main gas pipelines in the conditions of Arctic. to study the severity of character accentuations in rotation-employed builders of main gas pipelines, stipulated by their professional activities, as well as personal resources to overcome these destructions. The study involved 70 rotation-employed builders of trunk pipelines, working in the Tyumen Region (duration of the shift-in--52 days), aged from 23 to 59 (mean age 34,9 ± 8.1) years, with the experience of work from 0.5 years to 14 years (the average length of 4.42 ± 3.1). Methods of the study: questionnaires, psychological testing, participant observation. One-Sample t-test of Student, multiple regression analysis, incremental analysis. In the work there were revealed differences of expression of character accentuations in builders of trunk pipelines with experience in work on rotation less and more than five years. There was determined that builders of the main gas pipelines, working on the rotation in Arctic, with more pronounced accentuation ofthe character use mainly psychological defenses of compensation, substitution and denial, and have an average level of expression of flexibility as the regulatory process.

  12. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history

    PubMed Central

    KUZMIN, I. V.; HUGHES, G. J.; BOTVINKIN, A. D.; GRIBENCHA, S. G.; RUPPRECHT, C. E.

    2008-01-01

    SUMMARY Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98·6–99·2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses. PMID:17599781

  13. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history.

    PubMed

    Kuzmin, I V; Hughes, G J; Botvinkin, A D; Gribencha, S G; Rupprecht, C E

    2008-04-01

    Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98.6-99.2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses.

  14. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    NASA Astrophysics Data System (ADS)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  15. Tsunami in the Arctic

    NASA Astrophysics Data System (ADS)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  16. How Rapid Change Affects Deltas in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  17. Arctic tundra and mountain landscapes are persistent sinks of atmospheric CH4

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Winkler, Renato; Juncher Jørgensen, Christian

    2017-04-01

    Recent studies have shown significant rates of net uptake of atmospheric methane (CH4) in Arctic tundra soils. Oxidation of CH4 in these cold, dry soils in the Arctic region can counteract CH4 emissions from wetlands and play a potential important role for the net Arctic CH4 budget. However, significant knowledge gaps exist on the overall magnitude of the net CH4 sink in these cold, dry systems as the spatial and environmental limits for CH4 oxidation has not been determined. In particular, the extent, magnitude and drivers of CH4 oxidation in mountains and alpine landforms, which occupy large land areas in the Arctic and High Arctic has not yet been investigated leaving a potential vast CH4 sink unquantified with major potential implications for our conceptual view of Arctic CH4 budget in a changing climate. Here we present the results from two expeditions in the summers of 2015 and 2016 from Disko Bay and in the pro-glacial landscape in vicinity of the Russell Glacier, Kangerlussuaq, Greenland, respectively. The aim of our work is to determine the magnitude and extent of net uptake of atmospheric CH4 across a variety of previously unexplored dry tundra and post-glacial landforms in the Arctic, i.e. marginal moraines and other glacial features at the Greenland ice sheet as well as mountain tops and outwash plains. We used high-precision, mobile cavity-ring-down spectrometers (e.g. model G4301 GasScouter, Picarro Inc.) to achieve reliable flux estimates in sub-ambient CH4 concentration levels with a 4-minute enclosure time per chamber measurement. Our results show a persistent net uptake of CH4 uptake in these dry, extreme environments that rival the sink strength observed in temperate forest soils, otherwise considered the primary global terrestrial sink of atmospheric CH4. In this dynamic glacial landscape the magnitude of the net CH4 uptake is mainly constrained by recent landscape evolution along glacier margins and meltwater systems. Utilizing the high

  18. An Overview of the NASA Spring/Summer 2008 Arctic Campaign - ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites)

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Clarke, Antony; Crawford, James H.; Dibbs, Jack; Ferrare, Richard A.; Hostetler, Chris A.; Maring, Hal; Russell, Philip B.; Singh, Hanwant B.

    2008-01-01

    ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) is a major NASA led airborne field campaign being performed in the spring and summer of 2008 at high latitudes (http://cloud1.arc.nasa.gov/arctas/). ARCTAS is a part of the International Polar Year program and its activities are closely coordinated with multiple U. S. (NOAA, DOE), Canadian, and European partners. Observational data from an ensemble of aircraft, surface, and satellite sensors are closely integrated with models of atmospheric chemistry and transport in this experiment. Principal NASA airborne platforms include a DC-8 for detailed atmospheric composition studies, a P-3 that focuses on aerosols and radiation, and a B-200 that is dedicated to remote sensing of aerosols. Satellite validation is a central activity in all these platforms and is mainly focused on CALIPSO, Aura, and Aqua satellites. Major ARCTAS themes are: (1) Long-range transport of pollution to the Arctic including arctic haze, tropospheric ozone, and persistent pollutants such as mercury; (2) Boreal forest fires and their implications for atmospheric composition and climate; (3) Aerosol radiative forcing from arctic haze, boreal fires, surface-deposited black carbon, and other perturbations; and (4) Chemical processes with focus on ozone, aerosols, mercury, and halogens. The spring deployment (April) is presently underway and is targeting plumes of anthropogenic and biomass burning pollution and dust from Asia and North America, arctic haze, stratosphere-troposphere exchange, and ozone photochemistry involving HOx and halogen radicals. The summer deployment (July) will target boreal forest fires and summertime photochemistry. The ARCTAS mission is providing a critical link to enhance the value of NASA satellite observations for Earth science. In this talk we will discuss the implementation of this campaign and some preliminary results.

  19. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  20. Can We Just Get Along Already Canadian Arctic Sovereignty is American Security

    DTIC Science & Technology

    2017-06-01

    and assesses new security problems such as organized crime, environmental threats, drugs and human smuggling.26 This, in turn, leads to an even... News | News and Insight | Lloyd’s Register,” accessed March 23, 2017, http://www.lr.org/en/ news -and-insight/ news /lr-to- class -versatile-icebreaker...Canada, the Arctic, and NORAD: Status Quo or New Ball Game ?,” International Journal 70, no. 2 (2015): 215–231. 29 Brian Flemming, “Canada-U.S

  1. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  2. Seasonal formation of ikaite (caco 3 · 6h 2o) in saline spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth

    NASA Astrophysics Data System (ADS)

    Omelon, Christopher R.; Pollard, Wayne H.; Marion, Giles M.

    2001-05-01

    - Spring discharge at Expedition Fiord (Pollard et al., 1999) on Axel Heiberg Island in the Canadian High Arctic produces a variety of travertine forms in addition to a diverse collection of mineral precipitates. This paper focuses on clusters of thermally unstable crystals believed to be the mineral ikaite (CaCO 3 · 6H 2O) growing seasonally along two spring outflows at Colour Peak. This form of calcium carbonate mineral occurs along small sections of discharge outflow as white euhedral crystals up to 0.5 cm in length. Difficulty in sampling, storage and transport of the samples for analysis has hampered attempts to confirm the presence of ikaite by X-ray diffraction. However, various field observations and the remarkable instability of these crystals at normal ambient temperatures strengthens our argument. This paper provides a description of these particular CaCO 3 · 6H 2O crystals and their environmental surroundings, and attempts to determine the validity of ikaite precipitation at this site by theoretical geochemical modeling: these results are compared with other reported observations of ikaite to both understand their occurrence and help delineate their geochemical characteristics. It is believed that the restrictive combination of spring water chemistry and long periods of low temperatures characteristic of arctic climates are necessary for ikaite growth at this site. The fact that ikaite is not forming at a second group of saline springs 11 km away allows us to more specifically outline conditions controlling its presence.

  3. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    PubMed Central

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  4. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  5. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland

    PubMed Central

    Hanke, Dennis; Freuling, Conrad M.; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R.; Bøtner, Anette; Mettenleiter, Thomas C.; Beer, Martin; Rasmussen, Thomas B.; Müller, Thomas F.; Höper, Dirk

    2016-01-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1–4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I – 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure

  6. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    PubMed

    Hanke, Dennis; Freuling, Conrad M; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R; Bøtner, Anette; Mettenleiter, Thomas C; Beer, Martin; Rasmussen, Thomas B; Müller, Thomas F; Höper, Dirk

    2016-07-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in

  7. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  8. Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic.

    PubMed

    Braune, Birgit M; Gaston, Anthony J; Mallory, Mark L

    2016-07-01

    We compared temporal trends of total mercury (Hg) in eggs of five seabird species breeding at Prince Leopold Island in the Canadian high Arctic. As changes in trophic position over time have the potential to influence contaminant temporal trends, Hg concentrations were adjusted for trophic position (measured as δ(15)N). Adjusted Hg concentrations in eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) increased from 1975 to the 1990s, followed by a plateauing of levels from the 1990s to 2014. Trends of adjusted Hg concentrations in eggs of murres, fulmars, black guillemots (Cepphus grylle) and black-legged kittiwakes (Rissa tridactyla) had negative slopes between 1993 and 2013. Adjusted Hg concentrations in glaucous gull (Larus hyperboreus) eggs decreased by 50% from 1993 to 2003 before starting to increase again. Glaucous gull eggs had the highest Hg concentrations followed by black guillemot eggs, and black-legged kittiwake eggs had the lowest concentrations consistently in the five years compared between 1993 and 2013. Based on published toxicological thresholds for Hg in eggs, there is little concern for adverse reproductive effects due to Hg exposure in these birds, although the levels in glaucous gull eggs warrant future scrutiny given the increase in Hg concentrations observed in recent years. There is evidence that the Hg trends observed reflect changing anthropogenic Hg emissions. It remains unclear, however, to what extent exposure to Hg on the overwintering grounds influences the Hg trends observed in the seabird eggs at Prince Leopold Island. Future research should focus on determining the extent to which Hg exposure on the breeding grounds versus the overwintering areas contribute to the trends observed in the eggs. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an

  10. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  11. Satellite observation of pollutant emissions from gas flaring activities near the Arctic

    NASA Astrophysics Data System (ADS)

    Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Fu, Joshua S.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee

    2016-05-01

    Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at ˜1 × 1015 molecules cm-2, suggesting sizeable emissions from these industrial activities. Statistically significant (at the 95% confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (±0.01) × 1015 and 0.015 (±0.006) × 1015 molecules cm-2 year-1 over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (±0.006) × 1015 molecules cm-2 year-1. This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire.

  12. Analysis of Decadal-Scale Shoreline Change along the Hamlet of Paulatuk (Canadian Arctic), using Landsat Satellite Imagery and GIS techniques from 1984 to 2014.

    NASA Astrophysics Data System (ADS)

    Sankar, R. D.; Murray, M. S.; Wells, P.

    2016-12-01

    Increased accuracy in estimating coastal change along localized segments of the Canadian Arctic coast is essential, in order to identify plausible adaptation initiatives to deal with the effects of climate change. This paper quantifies rates of shoreline movement along an 11 km segment of the Hamlet of Paulatuk (Northwest Territories, Canada), using an innovative modelling technique - Analyzing Moving Boundaries Using R (AMBUR). Approximately two dozen shorelines, obtained from high-resolution Landsat satellite imagery were analyzed. Shorelines were extracted using the band ratio method and compiled in ArcMapTM to determine decadal trends of coastal change. The unique geometry of Paulatuk facilitated an independent analysis of the western and eastern sections of the study area. Long-term (1984-2014) and short-term (1984-2003) erosion and accretion rates were calculated using the Linear Regression and End Point Rate methods respectively. Results reveal an elevated rate of erosion for the western section of the hamlet over the long-term (-1.1 m/yr), compared to the eastern portion (-0.92 m/yr). The study indicates a significant alongshore increase in the rates of erosion on both portions of the study area, over the short-term period 1984 to 2003. Mean annual erosion rates increased over the short-term along the western segment (-1.4 m/yr), while the eastern shoreline retreated at a rate of -1.3 m/yr over the same period. The analysis indicates that an amalgamation of factors may be responsible for the patterns of land loss experienced along Paulatuk. These include increased sea-surface temperature coupled with dwindling arctic ice and elevated storm hydrodynamics. The analysis further reveals that the coastline along the eastern portion of the hamlet, where the majority of the population reside, is vulnerable to a high rate of shoreline erosion.

  13. Recent Trends in the Arctic Navigable Ice Season and Links to Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Maslanik, J.; Drobot, S.

    2002-12-01

    One of the potential effects of Arctic climate warming is an increase in the navigable ice season, perhaps resulting in development of the Arctic as a major shipping route. The distance from western North American ports to Europe through the Northwest Passage (NWP) or the Northern Sea Route (NSR) is typically 20 to 60 percent shorter than travel through the Panama Canal, while travel between Europe and the Far East may be reduced by as much as three weeks compared to transport through the Suez Canal. An increase in the navigable ice season would also improve commercial opportunities within the Arctic region, such as mineral and oil exploration and tourism, which could potentially expand the economic base of Arctic residents and companies, but which would also have negative environmental impacts. Utilizing daily passive-microwave derived sea ice concentrations, trends and variability in the Arctic navigable ice season are examined from 1979 through 2001. Trend analyses suggest large increases in the length of the navigable ice season in the Kara and Barents seas, the Sea of Okhotsk, and the Beaufort Sea, with decreases in the length of the navigable ice season in the Bering Sea. Interannual variations in the navigable ice season largely are governed by fluctuations in low-frequency atmospheric circulation, although the specific annular modes affecting the length of the navigable ice season vary by region. In the Beaufort and East Siberian seas, variations in the North Atlantic Oscillation/Arctic Oscillation control the navigable ice season, while variations in the East Pacific anomaly play an important role in controlling the navigable ice season in the Kara and Barents seas. In Hudson Bay, the Canadian Arctic Archipelago, and Baffin Bay, interannual variations in the navigable ice season are strongly related to the Pacific Decadal Oscillation.

  14. Assessment of Coalbed Gas Resources in Cretaceous and Tertiary Rocks on the North Slope, Alaska, 2006

    USGS Publications Warehouse

    Roberts, Steve; Barker, Charles E.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2006-01-01

    The North Slope of Alaska is a vast area of land north of the Brooks Range, extending from the Chukchi Sea eastward to the Canadian border. This Arctic region is known to contain extensive coal deposits; hypothetical coal resource estimates indicate that nearly 4 trillion short tons of coal are in Cretaceous and Tertiary rocks. Because of the large volume of coal, other studies have indicated that this region might also have potential for significant coalbed gas resources. The present study represents the first detailed assessment of undiscovered coalbed gas resources beneath the North Slope by the USGS. The assessment is based on the total petroleum system (TPS) concept. Geologic elements within a TPS relate to hydrocarbon source rocks (maturity, hydrocarbon generation, migration), the characteristics of reservoir rocks, and trap and seal formation. In the case of coalbed gas, the coal beds serve as both source rock and reservoir. The Brookian Coalbed Gas Composite TPS includes coal-bearing rocks in Cretaceous and Tertiary strata underlying the North Slope and adjacent Alaska State waters. Assessment units (AUs) within the TPS (from oldest to youngest) include the Nanushuk Formation Coalbed Gas AU, the Prince Creek and Tuluvak Formations Coalbed Gas AU, and the Sagavanirktok Formation Coalbed Gas AU.

  15. The Arctic Boreal Vulnerability Experiment (ABoVE) 2017 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Goetz, S. J.; Griffith, P. C.; Hoy, E.; Larson, E. K.; Hodkinson, D. J.; Hansen, C.; Woods, J.; Kasischke, E. S.; Margolis, H. A.

    2017-12-01

    The 2017 ABoVE Airborne Campaign (AAC) was one of the largest airborne experiments ever conducted by NASA's Earth Science Division. It involved nine aircraft in 17 deployments - more than 100 flights - between April and October and sampled over 4 million km2in Alaska and northwestern Canada. Many of these flights were coordinated with detailed, same-day ground-based measurements to link field-based, process-level studies with geospatial data products derived from satellite remote sensing. A major goal of the 2017 AAC was to collect data that spanned the critical intermediate space and time scales that are essential for a comprehensive understanding of scaling issues across the ABoVE Study Domain and extrapolation to the pan-Arctic. Additionally, the 2017 AAC provided unique opportunities to validate satellite and airborne remote sensing data for northern high latitude ecosystems, develop and advance fundamental remote sensing science, and explore scientific insights from innovative sensor combinations. The 2017 AAC science strategy coupled domain-wide sampling with L-band and P-band synthetic aperture radar (SAR), imaging spectroscopy (AVIRIS-NG), full waveform lidar (LVIS) and atmospheric carbon dioxide and methane with more spatially and temporally focused studies using Ka-band SAR (Ka-SPAR) and solar induced chlorophyll fluorescence (CFIS). Additional measurements were coordinated with the NEON Airborne Observing Platform, the ASCENDS instrument development suite, and the ATOM EV-S2 investigation. Targets of interest included the array of field sites operated by the ABoVE Science Team as well as the intensive sites operated by the DOE NGEE-Arctic team on the Seward Peninsula and in Barrow, NSF's LTER sites at Toolik Lake (North Slope) and Bonanza Creek (Interior Alaska), the Canadian Cold Regions Hydrology sites in the Arctic tundra near Trail Valley Creek NT, the Government of the Northwest Territories Slave River/Slave Delta watershed time series and numerous

  16. Present heat flow and paleo-geothermal regime in the Canadian Arctic margin: analysis of industrial thermal data and coalification gradients

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Embry, Ashton F.

    1998-06-01

    Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that

  17. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    NASA Astrophysics Data System (ADS)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a

  18. Impact origin of the Avak Structure, Arctic Alaska, and genesis of the Barrow gas fields

    USGS Publications Warehouse

    Kirschner, C.E.; Grantz, A.; Mullen, M.W.

    1992-01-01

    Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. Examination of cores from the Barrow gas fields and data concerning the age of the Avak structure suggest that the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma). -from Authors

  19. Sea ice decline and 21st century trans-Arctic shipping routes

    NASA Astrophysics Data System (ADS)

    Melia, N.; Haines, K.; Hawkins, E.

    2016-09-01

    The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using Coupled Model Intercomparison Project Phase 5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic transit shipping. By midcentury for standard open water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice-ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by midcentury, and 13 days faster by late century, while North American routes become 4 days faster. Future greenhouse gas emissions have a larger impact by late century; the shipping season reaching 4-8 months in Representative Concentration Pathway (RCP)8.5 double that of RCP2.6, both with substantial interannual variability. Moderately, ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.

  20. Links between ocean properties, ice cover, and plankton dynamics on interannual time scales in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hamilton, James M.; Collins, Kate; Prinsenberg, Simon J.

    2013-10-01

    A decade of instrumented mooring data from Barrow Strait in the eastern Canadian Arctic Archipelago reveals connections between sea ice, water characteristics, and zooplankton dynamics on interannual time scales. On the North side of the Strait, the timing of breakup is positively related to the timing of freezeup in the previous year and negatively related to spring water temperature. This suggests that an early freezeup insulates the ocean from a cold autumn atmosphere, allowing heat to be retained until spring when it contributes to early sea ice erosion. There is also a very strong negative association between the timing of freezeup and late summer salinity, suggesting that monitoring of salinity in real time could be used to predict freezeup. A zooplankton biomass index derived from acoustic Doppler current profiler echo intensity data is used to demonstrate that on the North side there are also strong connections between early summer water temperature and the start, length, and productivity of the zooplankton growth season. On the South side of the Strait where currents are stronger, the relationships seen on the North side were not observed. But here integrated zooplankton biomass index and measured currents are used to identify interannual variability in the zooplankton biomass being delivered downstream into Lancaster Sound. Also on the South side, two yearlong records of daily fluorescence profiles reveal a large difference in the phytoplankton biomass being delivered downstream between years and demonstrate a strong relationship between the timing of the spring phytoplankton bloom and that of breakup.

  1. Sedimentology of cores recovered from the Canada Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Edwards, B. D.; Saint-Ange, F.; Pohlman, J.; Higgins, J.; Mosher, D. C.; Lorenson, T. D.; Hart, P.

    2011-12-01

    Researchers from the United States and Canada are collaborating to understand the tectonic and sedimentary history of the Arctic Ocean between Canada and Alaska. As part of this on-going study, a joint US-Canadian ice breaker expedition operated in parts of the Canada Basin during August 2010. Occasional interruptions of the seismic data acquisition provided the ship time to collect gravity and piston cores at five sites-of-opportunity throughout the basin. High-resolution multibeam bathymetry and chirp sub-bottom profiler data collected immediately prior to coring reveal the fine-scale morphology of each site. Core photographs, X-ray radiographs, and physical property data support the following descriptions. Two piston cores were collected from the Beaufort Sea continental margin in a region of known bottom simulating reflectors (BSRs). Site 1 (2538 m water depth): This core recovered 5.72 m of gas-charged, gray sticky clay and silty-clay from an approximately 1100 m diameter, 130 m high conical mound overlying the crest of a buried anticline. Gas hydrate recovered in the core catcher combined with cracks and voids, methane and other hydrocarbon gasses, pyrite concretions, chemosynthetic clams, carbonate nodules, and soft carbonate masses indicate the likely upward migration of deep-seated fluids. Site 2 (1157 m water depth): This core, positioned 40 km upslope from the gas hydrate core, recovered 3 m of gray sticky silty clay and clayey silt near the base of an erosional scarp. Some voids and fracturing are apparent but carbonate masses and pyrite concretions are absent. Site 3 (3070 m water depth): This core from the top of a seamount discovered in 2009 in the north-central part of the Canada Basin recovered 4.94 m of sediment. More than 3 m of dark brown to yellowish brown, massive interbedded silty clays with sands and matrix-supported gravels (ice rafted debris [IRD]) occur in abrupt contact with underlying reddish yellow to brownish yellow silty clay and

  2. Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory

    2013-04-01

    The recent expansion of summertime melt zones in both Greenland and some Arctic ice caps, and the clearing of perennial sea ice from much of the Arctic, may presage more rapid shifts in mass balances of land ice than glaciologists had generally expected. The summer openings of vast stretches of open water in the Arctic, particularly in straits and the Arctic Ocean shores of the Queen Elizabeth Islands and along some Greenland coastal zones, must have a large impact on summer and early autumn temperatures and precipitation now that the surface boundary condition is no longer limited by the triple-point temperature and water-vapor pressure of H2O. This state change in the Arctic probably is part of the explanation for the expanded melt zones high in the Greenland ice sheet. However, Greenland and the Canadian Arctic are vast regions subject to climatic influences of multiple marine bodies, and the situation with sea ice and climate change remains heterogeneous, and so the local climate feedbacks from sea ice diminution remain patchy. Projected forward just a few decades, it is likely that sea ice will play a significant role in the Queen Elizabeth Islands and around Greenland only in the winter months. The region is in the midst of a dramatic climate change that is affecting the mass balances of the Arctic's ice bodies; some polar-type glaciers must be transforming to polythermal, and polythermal ones to maritime-temperate types. Attendant with these shifts, glacier response times will shorten, the distribution and sizes of glacier lakes will change, unconsolidated debris will be debuttressed, and hazards-related dynamics will shift. Besides changes to outburst flood, debris flow, and rock avalanche occurrences, the tsunami hazard (with ice and debris landslide/avalanche triggers) in glacierized fjords and the surge behaviors of many glaciers is apt to increase or shift locations. For any given location, the past is no longer the key to the present, and the present

  3. Anthropogenic impacts on habitat structure and species richness in the west Siberian Arctic

    Treesearch

    Olga Khitun; Olga Rebristaya

    2002-01-01

    Intensive technogenous invasion in the West Siberian Arctic during the last two decades in connection with gas and oil exploration, along with the constant growth of domestic reindeer herds, has caused dramatic changes in arctic ecosystems. Loss of biodiversity on the species level has not yet been documented in the region on a whole, but changes in ecosystems in...

  4. Sensitivity of the Arctic Ocean gas hydrate to climate changes in the period of 1948-2015

    NASA Astrophysics Data System (ADS)

    Malakhova, Valentina V.; Golubeva, Elena N.; Iakshina, Dina F.

    2017-11-01

    The objective of the present study is to analyze the interactions between a methane hydrates stability zone and the ocean temperature variations and to define the hydrate sensitivity to the contemporary warming in the Arctic Ocean. To obtain the spatial-temporary variability of the ocean bottom temperature we employ the ICMMG regional Arctic-North Atlantic ocean model that has been developed in the Institute of Computational Mathematics and Mathematical Geophysics. With the ice-ocean model the Arctic bottom water temperatures were analyzed. The resulting warming ocean bottom water is spatially inhomogeneous, with a strong impact by the Atlantic inflow on shallow regions of 200-500 m depth. Results of the mathematical modeling of the dynamics of methane hydrate stability zone in the Arctic Ocean sediment are reported. We find that the reduction of the methane hydrate stability zone occurs in the Arctic Ocean between 250 and 400 m water depths within the upper 100 m of sediment in the area influenced by the Atlantic inflow. We have identified the areas of the Arctic Ocean where an increase in methane release is probable to occur at the present time.

  5. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  6. Calculations of Arctic ozone chemistry using objectively analyzed data in a 3-D CTM

    NASA Technical Reports Server (NTRS)

    Kaminski, J. W.; Mcconnell, J. C.; Sandilands, J. W.

    1994-01-01

    A three-dimensional chemical transport model (CTM) (Kaminski, 1992) has been used to study the evolution of the Arctic ozone during the winter of 1992. The continuity equation has been solved using a spectral method with Rhomboidal 15 (R15) truncation and leap-frog time stepping. Six-hourly meteorological fields from the Canadian Meteorological Center global objective analysis routines run at T79 were degraded to the model resolution. In addition, they were interpolated to the model time grid and were used to drive the model from the surface to 10 mb. In the model, processing of Cl(x) occurred over Arctic latitudes but some of the initial products were still present by mid-January. Also, the large amounts of ClO formed in the model in early January were converted to ClNO3. The results suggest that the model resolution may be insufficient to resolve the details of the Arctic transport during this time period. In particular, the wind field does not move the ClO(x) 'cloud' to the south over Europe as seen in the MLS measurements.

  7. Arctic Risk Management (ARMNet) Network: Linking Risk Management Practitioners and Researchers Across the Arctic Regions of Canada and Alaska To Improve Risk, Emergency and Disaster Preparedness and Mitigation Through Comparative Analysis and Applied Research

    NASA Astrophysics Data System (ADS)

    Garland, A.

    2015-12-01

    The Arctic Risk Management Network (ARMNet) was conceived as a trans-disciplinary hub to encourage and facilitate greater cooperation, communication and exchange among American and Canadian academics and practitioners actively engaged in the research, management and mitigation of risks, emergencies and disasters in the Arctic regions. Its aim is to assist regional decision-makers through the sharing of applied research and best practices and to support greater inter-operability and bilateral collaboration through improved networking, joint exercises, workshops, teleconferences, radio programs, and virtual communications (eg. webinars). Most importantly, ARMNet is a clearinghouse for all information related to the management of the frequent hazards of Arctic climate and geography in North America, including new and emerging challenges arising from climate change, increased maritime polar traffic and expanding economic development in the region. ARMNet is an outcome of the Arctic Observing Network (AON) for Long Term Observations, Governance, and Management Discussions, www.arcus.org/search-program. The AON goals continue with CRIOS (www.ariesnonprofit.com/ARIESprojects.php) and coastal erosion research (www.ariesnonprofit.com/webinarCoastalErosion.php) led by the North Slope Borough Risk Management Office with assistance from ARIES (Applied Research in Environmental Sciences Nonprofit, Inc.). The constituency for ARMNet will include all northern academics and researchers, Arctic-based corporations, First Responders (FRs), Emergency Management Offices (EMOs) and Risk Management Offices (RMOs), military, Coast Guard, northern police forces, Search and Rescue (SAR) associations, boroughs, territories and communities throughout the Arctic. This presentation will be of interest to all those engaged in Arctic affairs, describe the genesis of ARMNet and present the results of stakeholder meetings and webinars designed to guide the next stages of the Project.

  8. U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Gautier; Timothy Klett

    2008-12-31

    The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment unitsmore » were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.« less

  9. Mercury biomagnification in food webs of the northeastern Chukchi Sea, Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Fox, Austin L.; Trefry, John H.; Trocine, Robert P.; Dunton, Kenneth H.; Lasorsa, Brenda K.; Konar, Brenda; Ashjian, Carin J.; Cooper, Lee W.

    2017-10-01

    Predictive tools and a large new dataset for the northeastern Chukchi Sea (NECS) are used here to help identify regional differences and potential future shifts in the magnitude of Hg biomagnification in the Arctic. At the base of the food web in the NECS, concentrations of total mercury (THg) in phytoplankton (20-μm mesh) ranged from 4-42 ng g-1 dry weight, partly in response to variations in algal biomass and water temperature. A >3-fold increase in monomethylmercury (MMHg) was observed in zooplankton (4.3±0.7 ng g-1) relative to phytoplankton (<1.5 ng g-1), even though concentrations of THg in zooplankton (150-μm mesh) were not significantly different than in phytoplankton. Concentrations and % MMHg increased with trophic level (TL) by >150-fold and from <10 to >85%, respectively, from phytoplankton to muscle in the whelk Plicifusus kroeyeri (279 ng g-1, TL 4.5). For muscle tissue in 10 species plus whole phytoplankton and zooplankton, the trophic magnification slope (TMS) for MMHg (log10[MMHg]=m(δ15N)+b; where m=TMS) was 0.23±0.02 (SE). No significant differences in TMS were found for the NECS plus three other studies from the eastern Canadian Arctic (average TMS=0.24±0.02). Nevertheless, all data for MMHg in biota from the NECS plotted below the combined best fit line for all four studies. Results from an ANCOVA showed that statistically different (p=0.001) intercept values (b), not TMS, best explained the >2-fold lower concentrations of MMHg in biota from the NECS (b=-1.85) relative to the same species from the eastern Canadian Arctic (b=-1.29). Future changes that affect bioaccumulation of MMHg in the Arctic may impact the biomagnification equation by shifting the TMS, intercept or both. The intercept is more likely to respond to changes in productivity and concentrations of dissolved Hg whereas the TMS may respond to changing growth rates due to fluctuations in productivity and food availability. In either case, small changes in the intercept or TMS

  10. New tectonic concept of the Arctic region evolution

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Sobolev, N. V.; Petrov, E.

    2012-12-01

    The international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 million scale" was launched in 2003. It was initiated by geological surveys of Circum-Arctic states with active support from the UNESCO Commission for the Geological Map of the World (CGMW). This work engages a number of scientists from national academies of sciences and universities. As of today, international working groups have accomplished the compilation of geological, magnetic and gravity maps at 1:5 million scale. Upon completion of those basic maps, it became possible to undertake the compilation of the Tectonic Map of the Arctic - TeMAr. The final draft of this map is being demonstrated at GeoExpo here in Brisbane. Analysis of the new tectonic map clearly shows the Neoproterozoic - Paleozoic - late Mesozoic Paleoasian oceanic structures. Among those structures are the Neoproterozoic Timan Orogen, the Baikalian fold basement in the Pre-Yenisey zone and the collisional systems of Uralides and Kimmerides whose age becomes successively younger northward from Late Carboniferous - Early Permian to Triassic - Jurassic. Seismic and isotope-geochemistry data recently obtained on Lomonosov Ridge and Mendeleev Rise suggest the possibility that Neoproterozoic-Mesozoic orogenic structures of the High Arctic may incorporate isolated blocks of Early Precambrian continental crust. The north-directed decrease of age refers not only to orogenies caused by gradual closing of the Asian paleo-ocean but also to post-orogenic rift-related processes superposed on continental crust and reflected in the first place in the formation of LIPs. This is well exemplified by transition from the Early Triassic Siberian trap province to Triassic West Siberian province and then to Late Jurassic - Cretaceous, locally Cenozoic basaltic province of the High Arctic. The center of the Canadian Basin so far remains enigmatic: it was probably formed by seafloor spreading that could follow intensive Jurassic

  11. Potential Arctic sea ice refuge for sustaining a remnant polar bear population (Invited)

    NASA Astrophysics Data System (ADS)

    Durner, G. M.; Amstrup, S. C.; Douglas, D. C.; Gautier, D. L.

    2010-12-01

    Polar bears depend on sea ice as a platform from which they capture seals. Sea ice availability must be spatially and temporally adequate for birth and weaning of seal pups, and to maximize seal hunting opportunities for polar bears. Projected declines in the spatial and temporal extent of summer and autumn sea ice could potentially limit the ability of polar bears to build up body stores sufficient to maintain reproductive fitness. General circulation models, however, suggest that summer and autumn sea ice may persist in the shelf waters of the Canadian Archipelago and northern Greenland adjacent to the Arctic basin. While winter-formed ice is important, a primary mechanism for sea ice accumulation in this region is by mechanical thickening of the sea ice facilitated by convergent forces from the Beaufort Gyre and the Transpolar Drift Stream. Collectively these areas could provide a polar bear refugium when other regions have lost the sea ice necessary to support viable populations. The potential for a polar bear refugium, however, must include other resource considerations. Projected declines of sea ice in the Northwest Passage may expose polar bears to hazards related to increase shipping and other commerce. Increasing global demands and limited opportunities elsewhere make the Arctic an increasingly attractive area for petroleum exploration. The Canadian Archipelago coincides with the Sverdrup basin, where petroleum accumulations have already been discovered but as yet are undeveloped. The Lincoln Sea Basin offshore of northern Greenland has the geological possibility of significant petroleum accumulations, and northeastern Greenland is one of the most prospective areas in the Arctic for undiscovered oil. Activities associated with commerce and petroleum development could reduce the potential viability of the region as a polar bear refugium. Hence, if the goal is a sustainable (albeit reduced) polar bear population, important considerations include commerce

  12. A high-resolution (0.1° × 0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Jacob, Daniel J.; Maasakkers, Joannes D.; Sulprizio, Melissa P.; Zavala-Araiza, Daniel; Hamburg, Steven P.

    2017-06-01

    Canada and Mexico have large but uncertain methane emissions from the oil/gas industry. Inverse analyses of atmospheric methane observations can improve emission estimates but require accurate source patterns as prior information. In order to serve this need, we develop a 0.1° × 0.1° gridded inventory of oil/gas emissions in Canada for 2013 and Mexico for 2010 by disaggregating national emission inventories using best available data for production, processing, transmission, and distribution. Results show large differences with the EDGAR v4.2 gridded global inventory used in past inverse analyses. Canadian emissions are concentrated in Alberta (gas production and processing) and Mexican emissions are concentrated along the east coast (oil production).

  13. Siberian Arctic black carbon sources constrained by model and observation

    PubMed Central

    Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan

    2017-01-01

    Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. PMID:28137854

  14. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NASA Astrophysics Data System (ADS)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.

    2013-09-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.

  15. Arctic Energy Resources: Energy Research

    NASA Astrophysics Data System (ADS)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  16. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  17. The Immediacy of Arctic Change: New 2016-17 Extremes

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  18. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  19. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  20. Reservoir controls on the occurrence and production of gas hydrates in nature

    USGS Publications Warehouse

    Collett, Timothy Scott

    2014-01-01

    modeling has shown that concentrated gas hydrate occurrences in sand reservoirs are conducive to existing well-based production technologies. The resource potential of gas hydrate accumulations in sand-dominated reservoirs have been assessed for several polar terrestrial basins. In 1995, the U.S. Geological Survey (USGS) assigned an in-place resource of 16.7 trillion cubic meters of gas for hydrates in sand-dominated reservoirs on the Alaska North Slope. In a more recent assessment, the USGS indicated that there are about 2.42 trillion cubic meters of technically recoverable gas resources within concentrated, sand-dominated, gas hydrate accumulations in northern Alaska. Estimates of the amount of in-place gas in the sand dominated gas hydrate accumulations of the Mackenzie Delta Beaufort Sea region of the Canadian arctic range from 1.0 to 10 trillion cubic meters of gas. Another prospective gas hydrate resources are those of moderate-to-high concentrations within sandstone reservoirs in marine environments. In 2008, the Bureau of Ocean Energy Management estimated that the Gulf of Mexico contains about 190 trillion cubic meters of gas in highly concentrated hydrate accumulations within sand reservoirs. In 2008, the Japan Oil, Gas and Metals National Corporation reported on a resource assessment of gas hydrates in which they estimated that the volume of gas within the hydrates of the eastern Nankai Trough at about 1.1 trillion cubic meters, with about half concentrated in sand reservoirs. Because conventional production technologies favor sand-dominated gas hydrate reservoirs, sand reservoirs are considered to be the most viable economic target for gas hydrate production and will be the prime focus of most future gas hydrate exploration and development projects.

  1. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-09-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  2. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; General, S.; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-03-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase radical chemistry, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr, with a concomitant, decreased net O3 loss rate. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  3. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  4. Arctic tree-line reproduction in Canada and Siberia: Possible greenhouse effect?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, H.

    1997-12-31

    The arctic tree-line is sensitive to climatic changes as indicated by paleo-ecological studies, and it is predicted to respond strongly to global warming. Northern Canadian studies of tree-line reproduction spanning two decades demonstrate a widespread switch from infertility due to cold summers (early 1970`s) to pollen and cone production (1990s), in line with greenhouse warming predictions. Ecotonal cone formation is usually sporadic and localized, but this largescale reproductive shift, along a 1500 km transect, suggests widespread climatic warming since the 1970s. These Siberian studies (at 27 sites) represented only a modest fraction of the Eurasian tree-line, but the widespread fertilitymore » at so many locations, plus the extensive Canadian evidence, suggests that the predicted polar warming may be responsible. Whether this is due to natural or anthropogenic climatic change, and whether it will be short or long-term, is unclear, and merits further study.« less

  5. Processes Controlling the Seasonal Cycle of Arctic Aerosol Number and Size Distributions

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Croft, B.; Martin, R.; Leaitch, W. R.; Tunved, P.; Breider, T. J.; D'Andrea, S.; Pierce, J. R.; Murphy, J. G.; Kodros, J.; Abbatt, J.

    2015-12-01

    Measurements at high-Arctic sites show a strong seasonal cycle in aerosol number and size. The number of aerosols with diameters larger than 20 nm exhibits a maximum in late spring associated with a dominant accumulation mode, and a second maximum in the summer associated with a dominant Aitken mode. Seasonal-mean aerosol effective diameter ranges from about 160 nm in summer to 250 nm in winter. This study interprets these seasonal cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. We find improved agreement with in situ measurements (SMPS) of aerosol size at both Alert, Nunavut, and Mt. Zeppelin, Svalbard following model developments: 1) increase the efficiency of wet scavenging in the Arctic summer and 2) represent coagulation between interstitial aerosols and aerosols activated to form cloud droplets. Our simulations indicate that the dominant summer-time Aitken mode is associated with increased efficiency of wet removal, which limits the number of larger aerosols and promotes local new-aerosol formation. We also find an important role of interstitial coagulation in clouds in the Arctic, which limits the number of Aitken-mode aerosols in the non-summer seasons when direct wet removal of these aerosols is inefficient. The summertime Arctic atmosphere is particularly pristine and strongly influenced by natural regional emissions which have poorly understood climate impacts. Especially influenced are the climatic roles of atmospheric particles and clouds. Here we present evidence that ammonia (NH3) emissions from migratory-seabird guano (dung) are the primary contributor to summertime free ammonia levels recently measured in the Canadian Arctic atmosphere. These findings suggest that ammonia from seabird guano is a key factor contributing to bursts of new-particle formation, which are observed every summer in the near-surface atmosphere at Alert, Canada. Chemical transport model simulations show that these newly formed particles can grow by vapour

  6. Biodegradation of dispersed oil in Arctic seawater at -1°C.

    PubMed

    McFarlin, Kelly M; Prince, Roger C; Perkins, Robert; Leigh, Mary Beth

    2014-01-01

    As offshore oil and gas exploration expands in the Arctic, it is important to expand the scientific understanding of arctic ecology and environmental impact to mitigate operational risks. Understanding the fate of oil in arctic seawater is a key factor for consideration. Here we report the chemical loss due to the biodegradation of Alaska North Slope (ANS) crude oil that would occur in the water column following the successful dispersion of a surface oil slick. Primary biodegradation and mineralization were measured in mesocosms containing Arctic seawater collected from the Chukchi Sea, Alaska, incubated at -1°C. Indigenous microorganisms degraded both fresh and weathered oil, in both the presence and absence of Corexit 9500, with oil losses ranging from 46-61% and up to 11% mineralization over 60 days. When tested alone, 14% of 50 ppm Corexit 9500 was mineralized within 60 days. Our study reveals that microorganisms indigenous to Arctic seawater are capable of performing extensive biodegradation of chemically and physically dispersed oil at an environmentally relevant temperature (-1°C) without any additional nutrients.

  7. Biodegradation of Dispersed Oil in Arctic Seawater at -1°C

    PubMed Central

    McFarlin, Kelly M.; Prince, Roger C.; Perkins, Robert; Leigh, Mary Beth

    2014-01-01

    As offshore oil and gas exploration expands in the Arctic, it is important to expand the scientific understanding of arctic ecology and environmental impact to mitigate operational risks. Understanding the fate of oil in arctic seawater is a key factor for consideration. Here we report the chemical loss due to the biodegradation of Alaska North Slope (ANS) crude oil that would occur in the water column following the successful dispersion of a surface oil slick. Primary biodegradation and mineralization were measured in mesocosms containing Arctic seawater collected from the Chukchi Sea, Alaska, incubated at −1°C. Indigenous microorganisms degraded both fresh and weathered oil, in both the presence and absence of Corexit 9500, with oil losses ranging from 46−61% and up to 11% mineralization over 60 days. When tested alone, 14% of 50 ppm Corexit 9500 was mineralized within 60 days. Our study reveals that microorganisms indigenous to Arctic seawater are capable of performing extensive biodegradation of chemically and physically dispersed oil at an environmentally relevant temperature (−1°C) without any additional nutrients. PMID:24416211

  8. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future sourcemore » of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.« less

  9. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  10. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Roiger, A.; Thomas, J. L.; Schlager, H.; Law, K.; Kim, J.; Reiter, A.; Schaefler, A.; Weinzierl, B.; Rose, M.; Raut, J.; Marelle, L.

    2013-12-01

    Arctic sea ice has decreased dramatically in the past few decades, which has opened the Arctic Ocean to transit shipping and hydrocarbon extraction. These anthropogenic activities are expected to increase emissions of air pollutants and climate forcers (e.g. aerosols, ozone) in the Arctic troposphere significantly in the future. However, large knowledge gaps exist how these emissions influence regional air pollution and Arctic climate. Here we present an overview on the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign, which primarily focused on studying emissions from emerging Arctic pollution sources. During the ACCESS campaign in July 2012, the DLR Falcon was based in Andenes, Norway, and was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species). During nine scientific flights, emissions from different ship types (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) were probed off the Norwegian Coast. The emissions from these increasing pollution sources showed distinct differences in chemical and aerosol composition. To put the emerging local pollution within a broader context, we also measured sulfur-rich emissions originating from industrial activities on the Kola Peninsula and black carbon containing biomass burning plumes imported from Siberian wildfires. We will present an overview on the trace gas and aerosol properties of the different emission sources, and discuss the influence of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  11. Arctic “ozone hole” in a cold volcanic stratosphere

    PubMed Central

    Tabazadeh, A.; Drdla, K.; Schoeberl, M. R.; Hamill, P.; Toon, O. B.

    2002-01-01

    Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999–2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade. PMID:11854461

  12. A climatologically significant aerosol longwave indirect effect in the Arctic.

    PubMed

    Lubin, Dan; Vogelmann, Andrew M

    2006-01-26

    The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

  13. Engineering and Economics of the USGS Circum-Arctic Oil and Gas Resource Appraisal (CARA) Project

    USGS Publications Warehouse

    Verma, Mahendra K.; White, Loring P.; Gautier, Donald L.

    2008-01-01

    This Open-File report contains illustrative materials, in the form of PowerPoint slides, used for an oral presentation given at the Fourth U.S. Geological Survey Workshop on Reserve Growth of petroleum resources held on March 10-11, 2008. The presentation focused on engineering and economic aspects of the Circum-Arctic Oil and Gas Resource Appraisal (CARA) project, with a special emphasis on the costs related to the development of hypothetical oil and gas fields of different sizes and reservoir characteristics in the North Danmarkshavn Basin off the northeast coast of Greenland. The individual PowerPoint slides highlight the topics being addressed in an abbreviated format; they are discussed below, and are amplified with additional text as appropriate. Also included in this report are the summary results of a typical ?run? to generate the necessary capital and operating costs for the development of an offshore oil field off the northeast coast of Greenland; the data are displayed in MS Excel format generated using Questor software (IHS Energy, Inc.). U.S. Geological Survey (USGS) acknowledges that this report includes data supplied by IHS Energy, Inc.; Copyright (2008) all rights reserved. IHS Energy has granted USGS the permission to publish this report.

  14. A multi-model assessment of pollution transport to the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shindell, D T; Chin, M; Dentener, F

    2008-03-13

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere.more » Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for

  15. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  16. Abundant Pre-Industrial Carbon Emitted by Arctic Inland Waters

    NASA Astrophysics Data System (ADS)

    Dean, J.; Van der Velde, Y.; Billett, M. F.; Dinsmore, K. J.; Garnett, M.; Meisel, O.; Dolman, A. J.

    2017-12-01

    Mobilization of carbon (C) derived from soil/sediment organic matter into inland freshwaters constitutes a substantial, but poorly-constrained, component of the global C cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized C, but aquatic 14C studies in permafrost regions rarely detect 'old' C (assimilated from the atmosphere into plants and soil prior to AD1950). This is partly due to a focus on dissolved organic C (DOC) in many Arctic inland water 14C studies to date, now known to be an insensitive method for detecting old C. Crucially, the emission of greenhouse gases (GHGs) derived from old permafrost C by aquatic systems contributes to a positive climate feedback loop: the 'Permafrost Climate Feedback' (PCF). Here, we measure directly the 14C content and quantify fluxes of aquatic CO2 and CH4, alongside DOC and particulate-OC, in freshwater systems of the Canadian and Siberian Arctic tundra - the first such concurrent 14C measurements from freshwater systems. Aquatic C increased in age significantly over the snow-free season as the active layer deepened (Figure 1). However, 'modern' C (assimilated since AD1950) still dominated aquatic CO2 and CH4 emissions, except where deep ancient (6,000 to 50,000 yBP) C was exposed. Age distribution modeling of these bulk 14C samples indicated that 'pre-industrial' C (assimilated prior to AD1750) comprised 15-30% of aquatic GHGs (Figure 1). Further, we estimate that 15-20% of total CO2 and CH4 emissions were derived from old C previously locked up in permafrost soils and thus contributed to the PCF. These results demonstrate the previously unknown presence of aged C within Arctic headwater GHG emissions that could be equivalent to 7.5-28.2 Tg C yr-1 across the pan-Arctic.

  17. Mercury distribution in the skin of beluga (Delphinapterus leucas) and narwhal (Monodon monoceros) from the Canadian Arctic and mercury burdens and excretion by moulting.

    PubMed

    Wagemann, R; Kozlowska, H

    2005-12-01

    Beluga and narwhal skin as a whole (in Inuktitut known as "muktuk") is considered to be a delicacy by native Canadian and Greenland people. Individual strata of the skin, and muscle from 27 beluga from the western, and 20 narwhal from the eastern Canadian Arctic, were analyzed for mercury and the thickness and density of each skin layer was measured. Mercury was not uniformly distributed in the skin, but increased outwardly with each layer. The concentration was only 0.29 and 0.16 microg/g (wet wt) in the innermost layer (dermis) of belugas and narwhal respectively, and 1.5 and 1.4 microg/g (wet wt) in the outermost layer (degenerative epidermis) of beluga and narwhal, respectively. There was a significant (alpha=0.05) association between age and mercury concentration in each skin layer, the regression coefficients progressively increasing from the inner layer (dermis) to the outer layer: 0.011-0.063 microg/g year-1; 0.034 microg/g year-1 for skin as a whole; 0.054 microg/g year-1 for muscle. The concentration of total mercury was 0.84 and 0.59 microg/g (wet wt) in skin as a whole (muktuk) of beluga and narwhal respectively, and 0.12 and 0.03 microg/g in blubber, respectively. The average, total mercury concentration in muscle tissue was 1.4 and 0.81 microg/g wet wt, in beluga and narwhal respectively, exceeding (except for blubber) the Canadian Government's Guideline (0.5 microg/g wet wt) for fish export and consumption. The skin surface area of an average-size beluga and narwhal was estimated (6.10 and 6.50 m2, respectively), as were excretions of mercury through moulting (13,861 and 6721 microg year-1; 14 and 7 mg year-1) for belugas and narwhal, respectively. The whole-body mercury burden (699,300 microg; 700 mg) for a 1000 kg beluga and its various tissues were estimated, as was the fraction of mercury excreted by moulting (2-0.42% of the whole-body burden). Annual mercury burden increments in beluga skin, muscle and the whole body were estimated (2750; 17

  18. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2011-12-01

    the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.

  19. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    PubMed

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  20. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    PubMed Central

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons. PMID:22253877

  1. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  2. The Long and Winding Road of Arctic Change Research

    NASA Astrophysics Data System (ADS)

    Mark, S.

    2016-12-01

    In the quest to better understand the local, regional and global drivers and impacts of Arctic change, we must not forget that the questions being asked today build on more than a century of research. There were giants before us. Perhaps the first observational evidence that the Arctic was responding to increasing carbon dioxide levels came from a 1986 study by Lachenbruch and Marshall of permafrost temperatures from boreholes in northernmost Alaska. In 1991, Detlef Quadfasel provided the first data on what appeared to be shifts in the ocean circulation, and hints then emerged that the sea ice cover at summer's end was receding. It was then noted that air temperatures over some parts of the Arctic were rising and others were cooling, attended by shifts in weather patterns. While some of this resembled what climate models were projecting, much of it looked like natural climate variability, driven variously by processes internal to the Arctic or linked to lower latitudes via the behavior of the NAO and the Arctic Oscillation. But the changes kept coming. Through a largely self-organizing process, led in considerable part by a small number of leading voices and with the strong support of funding agencies, scientists from diverse disciplines around the world began to find the answers. By the first decade of the 21st century, it was understood that large natural variability in Arctic climate, linked to both within-Arctic and lower-latitude drivers, was superimposed upon warming due to rising greenhouse gas levels, and that what was happening in the Arctic was already influencing lower latitudes. Many issues remain to be resolved. What are the relative roles of different drivers of Arctic amplification? Does Arctic amplification influence weather patterns beyond the Arctic? Will thawing terrestrial or subsea permafrost lead to substantial carbon emissions to the atmosphere, exacerbating global warming? How will sea ice loss affect Arctic ecosystems? How much will the

  3. Morphological peculiarities of respiratory compartments of arctic animal lungs.

    PubMed

    Shishkin, G S; Ustyuzhaninova, N V

    1997-04-01

    Morphological and ultrastructural peculiarities of interalveolar septa in endemic arctic animals (reindeer, polar fox, lemming) are compared with laboratory animals (rat,dog). For light microscopy, tissue samples were taken from the central and peripheral sections of all lobes of the right lung. They were fixed in 10% neutral formalin and embedded in paraffin. For electron microscopy, samples were taken from subpleural sections of the caudal lobe of the right lung, fixed in 4% paraformaldehyde for 24 hours, subsequently postfixed in 2% OsO4. for 2.0 hours. Samples were dehydrated in acetone and embedded in a mixture of Epon 812 and Araldite. Ultrathin sections were photographed at a magnification of x4,000. For each interalveolar septum, lengths and diameters were recorded and the squares of septa surface, air-blood barrier surface and the number of the structures were determined. The topography of capillaries and the ultrastructure of interstitium were described. Acini in the arctic animals (reindeer, polar fox, lemming) are compact. In all lobes they are fully expanded and uniformly filled with air. There is no physiological atelectasis. Alveoli appear straight and homogeneous in form and size. In the polar fox, the quantity of interalveolar pores of Kohn is twice that in the dog. The number of pores in the lemming are similar to those in the rat but their size is 1.6 times greater in diameter. In arctic animals more capillaries connect with both alveolar surfaces by an air-blood barrier and simultaneously participate in the gas exchange of two adjoining alveoli. In the polar fox and lemming the thickness of the air-blood barrier is 1.3-1.4 times less than that in the dog and rat. The set of morpho-functional peculiarities of the acini of arctic animals allows for an increase in gas exchange in the respiratory compartments of the lungs and provides necessary oxygenation of arterial blood at a low partial pressure of oxygen in the alveolar gas.

  4. Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2016-12-01

    The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.

  5. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    USGS Publications Warehouse

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John; Gaglioti, Benjamin V.; Czimzik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  6. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    NASA Astrophysics Data System (ADS)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V.; Czimczik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3-4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  7. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  8. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  9. Collapsing permafrost coasts in the Arctic

    NASA Astrophysics Data System (ADS)

    Fritz, Michael; Lantuit, Hugues

    2017-04-01

    Arctic warming is exposing permafrost coastlines, which account for 34% of the Earth's coasts, to rapid thaw and erosion. Coastal erosion rates as high as 25 m yr-1 together with the large amount of organic matter frozen in permafrost are resulting in an annual release of 14.0 Tg (1012 gram) particulate organic carbon into the nearshore zone. The nearshore zone is the primary recipient of higher fluxes of carbon and nutrients from thawing permafrost. We highlight the crucial role the nearshore zone plays in Arctic biogeochemical cycling, as here the fate of the released material is determined to: (1) degrade into greenhouse gases, (2) fuel marine primary production, (3) be buried in nearshore sediments or (4) be transported offshore. With Arctic warming, coastal erosion fluxes have the potential to increase by an order of magnitude until 2100. Such increases would result in drastic impacts on global carbon fluxes and their climate feedbacks, on nearshore food webs and on local communities, whose survival still relies on marine biological resources. Quantifying the potential impacts of increasing erosion on coastal ecosystems is crucial for food security of northern residents living in Arctic coastal communities. We need to know how the traditional hunting and fishing grounds might be impacted by high loads of sediment and nutrients released from eroding coasts, and to what extent coastal retreat will lead to a loss of natural habitat. Quantifying fluxes of organic carbon and nutrients is required, both in nearshore deposits and in the water column by sediment coring and systematic oceanographic monitoring. Ultimately, this will allow us to assess the transport and degradation pathways of sediment and organic matter derived from erosion. We need to follow the complete pathway, which is multi-directional including atmospheric release, lateral transport, transitional retention in the food web, and ultimate burial in seafloor sediments. We present numbers of multi

  10. New U.S. icebreaker to advance Arctic Marine Science

    NASA Astrophysics Data System (ADS)

    Swift, Jim; Clough, Lisa; Berkson, Jonathan; DuPree, George; Falkner, Kelly

    The decades-long planning for a U.S. icebreaking vessel dedicated to Arctic marine science reached its goal with the entry into service of the UGCGC Healy, a polar research vessel operated by the U.S. Coast Guard for the U.S. science community. The ship is named for Captain Michael A. Healy, a legendary figure of Alaskan history who served as commanding officer of the U.S. Revenue Cutters Corwin (1884-1885) and Bear (1886-1895).Healy is 128 m long, 25 m wide, displaces 14,900 metric tons, and traverses up to 1.4 m ice at 1.65 m s-1, propelled by two 11.1-MW AC synchronous motors fed from DC diesel electric engines through cycloconverters. Thus, Healy is more powerful and somewhat larger than the German polar research vessel Polarstern or the Canadian icebreaker Louis S. St-Laurent. Healy's power system responds quickly to the load changes common in icebreaking. The ship has a conventional icebreaker bow. The hull provides a sea-kindly ride and more stable work conditions in open water than do the U.S. Coast Guard Polar-class icebreakers. The ship is designed to work in any Arctic season.

  11. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  12. Explore Arctic Health.

    PubMed

    Lebow, Mahria

    2014-04-01

    The Arctic Health web site is a portal to Arctic-specific, health related content. The site provides expertly organized and annotated resources pertinent to northern peoples and places, including health information, research publications and environmental information. This site also features the Arctic Health Publications Database, which indexes an array of Arctic-related resources.

  13. Amplified North Atlantic Warming in the Late Pliocene by Changes in Arctic Gateways

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, B. L.; Jahn, A.; Feng, R.; Brady, E. C.; Hu, A.; Lofverstrom, M.

    2017-12-01

    Reconstructions of the late Pliocene (mid-Piacenzian, 3.3 - 3.0 million years ago) sea surface temperature (SST) find much warmer conditions in the North Atlantic than modern. The much warmer SSTs, up to 8.8°C from sites with good dating and replicates from several different types of proxies, have been difficult for climate models to reproduce. Even with the slow feedbacks of a reduced Greenland ice sheet and expansion of boreal forests to the Arctic Ocean over Canada and Eurasia, models cannot warm the North Atlantic sufficiently to match the reconstructed SSTs. An enhancement of the Atlantic Meridional Overturning Circulation (AMOC) during the late Pliocene, proposed as a possible mechanism based on ocean core records of δ13C, also is not present in the model simulations. Here, we present CESM simulations using a new reconstruction of late Pliocene paleogeography that has the Bering Strait (BS) and Canadian Arctic Archipelago (CAA) Straits closed. We find that the closure of these small Arctic gateways strengthens the AMOC, by inhibiting freshwater (FW) transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading to warmer sea surface temperatures in the North Atlantic. The cutoff of the short export route through the CAA results in a more saline Labrador and south Greenland Sea with increased deep convection. At the same time, as all FW now leaves the Arctic east of Greenland, there is a freshening of and decreased deepwater formation in the Norwegian Sea. Overall, the AMOC strengthens. This past time period has implications for a future Earth under more responsible scenarios of emissions. Late Pliocene atmospheric carbon dioxide concentrations are estimated to have ranged between 350 and 450 ppmv and the paleogeography is relatively similar to modern. Our study indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the

  14. Dissolved Organophosphate Esters and Polybrominated Diphenyl Ethers in Remote Marine Environments: Arctic Surface Water Distributions and Net Transport through Fram Strait.

    PubMed

    McDonough, Carrie A; De Silva, Amila O; Sun, Caoxin; Cabrerizo, Ana; Adelman, David; Soltwedel, Thomas; Bauerfeind, Eduard; Muir, Derek C G; Lohmann, Rainer

    2018-06-05

    Organophosphate esters (OPEs) have been found in remote environments at unexpectedly high concentrations, but very few measurements of OPE concentrations in seawater are available, and none are available in subsurface seawater. In this study, passive polyethylene samplers (PEs) deployed on deep-water moorings in the Fram Strait and in surface waters of Canadian Arctic lakes and coastal sites were analyzed for a suite of common OPEs. Total OPEs ( ∑ 11 OPE) at deep-water sites were dominated by chlorinated OPEs, and ranged from 6.3 to 440 pg/L. Concentrations were similar in eastern and western Fram Strait. Chlorinated OPEs were also dominant in Canadian Arctic surface waters (mean concentration ranged from < DL to 4400 pg/L), while nonhalogenated alkyl/aryl-substituted OPEs remained low (1.3-55 pg/L), possibly due to the greater long-range transport potential of chlorinated OPEs. Polybrominated diphenyl ethers (PBDEs) were found at much lower concentrations than OPEs (Arctic, ranging from 17 kg/yr for ethylhexyldiphenylphosphate (EHDPP) to 3400 kg/yr for tris (2-chloroisopropyl) phosphate (TCIPP). This study highlights the importance of OPEs as poorly understood contaminants present at unexpectedly high concentrations in remote marine environments.

  15. 2008 Joint United States-Canadian program to explore the limits of the Extended Continental Shelf aboard the U.S. Coast Guard cutter Healy--Cruise HLY0806

    USGS Publications Warehouse

    Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.

    2012-01-01

    In September 2008, the U.S. Geological Survey (USGS), in cooperation with Natural Resources Canada, Geological Survey of Canada (GSC), conducted bathymetric and geophysical surveys in the Arctic Beaufort Sea aboard the U.S. Coast Guard cutter USCGC Healy. The principal objective of this mission to the high Arctic was to acquire data in support of delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf (ECS) in the Arctic Ocean in accordance with the provisions of Article 76 of the Law of the Sea Convention. The Healy was accompanied by the Canadian Coast Guard icebreaker Louis S. St- Laurent. The science parties on the two vessels consisted principally of staff from the USGS (Healy), and the GSC and the Canadian Hydrographic Service (Louis). The crew included marine mammal and Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. The joint survey proved an unqualified success. The Healy collected 5,528 km of swath (multibeam) bathymetry (38,806 km2) and CHIRP subbottom profile data, with accompanying marine gravity measurements. The Louis acquired 2,817 km of multichannel seismic (airgun) deep-penetration reflection-profile data along 12 continuous lines, as well as 35 sonobuoy refraction stations and accompanying single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection profile data of much higher quality and continuity than if the data had been acquired with a single vessel alone. Equipment failure rate of the seismic equipment gear aboard the Louis was greatly improved with the advantage of having a leading icebreaker. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetry and CHIRP sub-bottom data in comparison with data collected by the Healy in the lead or working alone. Ancillary science objectives, including ice observations, deployment

  16. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  17. A new Calibrated Deglacial Drainage History for North America and Evidence for an Arctic Trigger for the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Tarasov, L.; Peltier, W. R.

    2004-05-01

    We present a new deglacial drainage history for the North American ice complex using the 3D University of Toronto glacial systems model calibrated against a large set of RSL and geodetic data. During melt-water pulse 1a, large order 0.15 to 0.2 Sverdrup century-scale melt-water discharges into both the Gulf of Mexico and western Atlantic occur. During this period, it has generally been inferred that strong thermohaline overturning circulation (TOC) was maintained. As such, our results suggest that the TOC is relatively insensitive to injection of melt-water into the Western Atlantic. In contrast with past inferences, we find the periods of strongest combined melt-water and ice calving discharge (with peak flows of order 0.2 Sverdrups over a century) into the NW Arctic to be during both the onset of and within the Younger Dryas. Model results also show no significant freshwater flux into the Western Atlantic during the Younger Dryas onset period. Given that the Greenland-Iceland-Norwegian (GIN) seas basin was the only outlet route for Arctic waters at this time, we infer that some combination of reduced Canadian Basin sea surface salinities in combination with enhanced sea-ice export into the GIN seas basin played a critical role in triggering and sustaining the altered TOC that is believed to be responsible for the Younger Dryas cold interval. We also speculate that the prior lack of such large discharges into the Canadian Arctic Basin may explain the apparent uniqueness of the Younger Dryas interval.

  18. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  19. Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Enkin, Randolph J.; Baker, Judith; Nourgaliev, Danis; Iassonov, Pavel; Hamilton, Tark S.

    2007-06-01

    The J meter coercivity spectrometer is a machine capable of rapid and simple measurement of magnetic hysteresis, isothermal remanence acquisition and magnetic viscosity of rocks and sediments. The J meter was used to study a suite of samples collected from strata in the gas hydrate-bearing JAPEX/JNOC/GSC Mallik 5L-38 well (69.5°N, 134.6°W) in the Mackenzie Delta of the northwestern Canadian Arctic. The Day plot of magnetic hysteresis ratios for these samples is exotic in that the points do not plot along a hyperbola as is usually observed. Rather, they plot as a scatter which is shown to contour into vertical slices using coercivity field (HC) or saturation magnetization (JS), and horizontal slices using the relative quantity of superparamagnetism (JSPM/JS). Optical microscopy reveals that the magnetic minerals are detrital magnetite and authigenic greigite. Greigite is dominant in sands which in situ had >70% gas hydrate saturation and in silts in which gas hydrate growth was blocked by insufficient porosity. We infer that the silts were the accumulation sites for solutes which had been excluded from the pore waters in neighboring coarser-grained sediments during the course of gas hydrate formation. Consequently, we conclude that magnetic properties are related to gas hydrate-related processes, and as such, may have potential as a method of remote sensing for gas hydrate deposits.

  20. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  1. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum.

    PubMed

    Sluijs, Appy; Schouten, Stefan; Pagani, Mark; Woltering, Martijn; Brinkhuis, Henk; Sinninghe Damsté, Jaap S; Dickens, Gerald R; Huber, Matthew; Reichart, Gert-Jan; Stein, Ruediger; Matthiessen, Jens; Lourens, Lucas J; Pedentchouk, Nikolai; Backman, Jan; Moran, Kathryn

    2006-06-01

    The Palaeocene/Eocene thermal maximum, approximately 55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from 18 degrees C to over 23 degrees C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10 degrees C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms--perhaps polar stratospheric clouds or hurricane-induced ocean mixing--to amplify early Palaeogene polar temperatures.

  2. Land-Sea relationships of climate-related records: example of the Holocene in the eastern Canadian Arctic and Greenland

    NASA Astrophysics Data System (ADS)

    de Vernal, Anne; Fréchette, Bianca; Hillaire-Marcel, Claude

    2017-04-01

    Anne de Vernal, Bianca Fréchette, Claude Hillaire-Marcel Important progresses have been made to reconstruct climate and ocean changes through time. However, there is often a hiatus between the land-based climate reconstructions and paleoceanographical data. The reconstructed parameters are not the same (e.g. surface air temperature vs. sea-surface temperature). Moreover, the spatial (local to regional) and temporal dimensions (seasonal, annual to multi-decadal) of proxy-data are often inconsistent, thus preventing direct correlation of time series and often leading to uncertainties in multi-site, multi-proxy compilations. Here, we address the issue of land-sea relationships in the eastern Canadian Arctic-Baffin Bay-Labrador Sea-western Greenland based on the examination of different climate-related information from marine cores (dinocysts) collected nearshore vs. offshore, ice cores (isotopes), fjord and lake data (pollen). The combined information tends to indicate that "climate" changes are not easily neither adequately captured by temperature and temperature shifts. However, the seasonal contrast of temperatures seems to be a key parameter. Whereas it is often attenuated offshore, it is generally easy to reconstruct nearshore, where water stratification is usually stronger. The confrontation of data also shows a relationship between ice core data and sea-ice cover and/or sea-surface salinity, suggesting that air-sea exchanges in basins surrounding ice sheets play a significant role with respect to their isotopic composition. On the whole, combined onshore-offshore data consistently suggest a two-step shift towards optimal summer and winter conditions the circum Baffin Bay and northern Labrador Sea at 7.5 and 6 ka BP. These delayed optimal conditions seem to result from ice-meltwater discharges maintaining low salinity conditions in marine surface waters and thus a strong seasonality.

  3. Role of land-surface changes in arctic summer warming

    USGS Publications Warehouse

    Chapin, F. S.; Sturm, M.; Serreze, Mark C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, Joshua P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.

    2005-01-01

    A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.

  4. Food and water security in a changing arctic climate

    NASA Astrophysics Data System (ADS)

    White, Daniel M.; Gerlach, S. Craig; Loring, Philip; Tidwell, Amy C.; Chambers, Molly C.

    2007-10-01

    In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic.

  5. Increased Arctic Deposition of Persistent Compounds as a Result of the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Young, C.; Pickard, H. M.; De Silva, A. O.; Spencer, C.; Criscitiello, A. S.; Muir, D.; Sharp, M. J.

    2017-12-01

    Perfluorocarboxylic acids (PFCAs) are among the diverse groups of compounds characterized as persistent organic pollutants. They are toxic, resistant to environmental degradation, and adversely impact human and environmental health. PFCAs with four or fewer carbons, short-chain PFCAs (scPFCAs), are of particular interest because of their increasing levels in the environment, toxicity to plants, and potential for accumulation in some aquatic ecosystems, making them an emerging environmental concern. A minor source of scPFCAs to the Arctic has been shown to be atmospheric transformation of fluoropolymer precursors, followed by deposition. Additional potential sources of scPFCAs to the Arctic are chlorofluorocarbon (CFC)-replacement compounds. Through analysis of an ice core from the Canadian High Arctic, we show that Montreal Protocol-mandated introduction of CFC-replacement compounds for the heat-transfer industry has led to increasing inputs of these scPFCAs to the remote environment. Flux measurements for scPFCAs as a class of contaminants have only been reported in a couple studies to date. Here, we provide the first multi-decadal temporal record of scPFCA deposition, demonstrating a dramatic increase in deposition resulting from emission of CFC-replacements. These results bring to the forefront a need for a holistic approach to environmental risk assessment that considers impacts of replacement substances and degradation products.

  6. Greenhouse gas release from arctic permafrost: positive feedback to climate warming (Invited)

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Zimov, S. A.

    2009-12-01

    The release of carbon (C) in the form of greenhouse gases from thawing permafrost is one of the most likely and important positive feedbacks from the land to the atmosphere in a warmer world. Perennially frozen ground, known as permafrost, covers 20 percent of the Earth’s land surface. Recent accounting for C stored as far as 80m beneath the surface in permafrost (950 billion tons) more than doubles previous inventory estimates and is comparable to the current atmospheric CO2 burden of 750 billion tons. Permafrost organic C accumulated over tens of thousands of years. In its frozen state this C is sequestered from the atmosphere, mitigating climate warming. Long term borehole from Siberia and North America attest that permafrost is thawing. A third to half of permafrost is now within a degree to a degree and a half of thawing. In places where permafrost temperature crosses the critical 0°C threshold, ice melts causing thermokarst (ground surface collapse). Thermokarst features such as sink holes, pits, slope failure, mud flows, and the formation, expansion, and drainage of thaw lakes are widespread, up to 90% of the land area in some areas of the Arctic. Dating of features revealed that this process has been going on for the past 10,000 years, since the Earth entered the most recent interglacial warm period. However, satellite records during the past 55 years suggest that permafrost thaw in some regions is accelerating. What will happen to the climate as the rest of the permafrost thaws? When permafrost thaws, organic C is made available to microbes, which rapidly degrade it, producing greenhouse gases such as CO2 and methane (CH4, 25 times the global warming potential of CO2 over 100 years). A particularly important region for greenhouse gas emissions is the Siberian Yedoma Ice Complex (10^6 km2), a Pliestocene-aged permafrost type that contains roughly half of the Arctic’s permafrost C stock. Based on patterns of yedoma degradation during the present

  7. Arctic Ice Management: an integrated approach to climate engineering

    NASA Astrophysics Data System (ADS)

    Desch, S. J.; Hartnett, H. E.; Groppi, C. E.; Romaniello, S. J.

    2017-12-01

    The warming climate is having the most rapid and pronounced effects in the high Arctic. The loss of Arctic sea ice is not only changing the physical oceanography of the Arctic Ocean and its coastlines; it is also promoting new conversations about the dangers and benefits for trade, transportation, and industry in the Arctic. The rate of decrease of summer sea ice in the Arctic is currently -300 km3 yr-1, a rate that will lead to complete loss of end-summer sea ice as soon as 2030. Preventing the strong positive feedbacks and increased warming due to sea ice albedo loss must be an important component of climate mitigation strategies. Here, we explore a direct engineering approach we call Arctic Ice Management (AIM) to reduce the loss of Arctic sea ice. We predict that pumping seawater onto the ice surface during the Arctic winter using wind-powered pumps can thicken sea ice by up to 1 m per year, reversing the current loss rates and prolonging the time until the Arctic Ocean is ice-free. Thickening sea ice would not change CO2 levels, which are the underlying cause of ice loss, but it would prevent some of the strongest feedbacks and would buy time to develop the tools and governance systems necessary to achieve carbon-neutrality. We advocate exploration of AIM as a mitigation strategy employed in parallel with CO2 reduction efforts. The opportunity and risk profiles of AIM differ from other geoengineering proposals. While similar in principle to solar radiation management, AIM may present fewer large-scale environmental risks. AIM is separate from greenhouse gas emission reduction or sequestration, but might help prevent accelerated release of methane from thawing permafrost. Further, AIM might be usefully employed at regional and local scales to preserve Arctic ecosystems and possibly reduce the effects of ice-loss induced coastal erosion. Through presentation of the AIM concept, we hope to spark new conversations between scientists, stakeholders, and decision

  8. White Arctic vs. Blue Arctic: Making Choices

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  9. Production and Cycling of Methylated Mercury Species in Arctic Marine Waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.; Hintelmann, H.

    2009-12-01

    Monomethyl mercury (MMHg), a vertebrate neurotoxin which bioaccumulates through foodwebs, is found in some Arctic marine mammals at levels that may be harmful to northern peoples consuming them as food. Unfortunately, sources of MMHg to polar marine food webs remain unknown, in part due to the complex nature of Hg cycling in polar marine waters. Since 2005, we have been sampling the marine waters of the Canadian Arctic Archipelago from the Canadian Coast Guard research icebreaker CCGS Amundsen. Early results demonstrated that elevated concentrations of both MMHg and dimethyl mercury (DMHg, a toxic, gaseous Hg species) are found in sub-surface Arctic marine waters (89±36 pg L-1 and 73±37 pg L-1, respectively) despite low total Hg (THg) concentrations (290±220 pg L-1), suggesting an internal source of methylated Hg. We tested the hypothesis that methylated Hg species are produced directly in the marine water column using stable-isotope Hg tracers. Seawater samples were amended with 198Hg(II) and incubated for 0, 8, 16 or 24 hours to measure the production of MM198Hg, DM198Hg and gaseous elemental 198Hg(0) (GEM) over time. A second tracer, MM199Hg, was also added to quantify MMHg methylation (formation of DM199Hg), demethylation (loss of MM199Hg) and reduction (formation of 199Hg(0)). Preliminary analysis of the data indicates that Hg(II) is methylated in polar marine waters to form both MMHg (first order rate-constant km1 ~6x10-4 d-1) and DMHg (km2 ~5x10-6 d-1). We also found that DMHg production from MMHg is ~50x faster than with Hg(II) as the substrate. Furthermore, at a small number of sites, we measured methylation rates that were elevated by almost a full order of magnitude compared to the average, suggesting that methylation hotspots may exist in Arctic marine waters. However, during the less productive fall season when the CCGS Amundsen cruises were conducted, demethylation of MMHg generally appears to dominate in the water column and can occur via a number

  10. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  11. AROME-Arctic: New operational NWP model for the Arctic region

    NASA Astrophysics Data System (ADS)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  12. Analysis of Crude Oil Production in the Arctic National Wildlife Refuge

    EIA Publications

    2008-01-01

    This report responds to a request from Senator Ted Stevens that the Energy Information Administration provide an assessment of federal oil and natural gas leasing in the coastal plain of the Arctic National Wildlife Refuge (ANWR) in Alaska.

  13. Origin Of Methane Gas And Migration Through The Gas Hydrate Stability Zone Beneath The Permafrost Zone

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.; Namikawa, T.

    2005-12-01

    In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data as well as visible gas hydrates have confirmed pore-space hydrate as intergranular pore filling within sandy layers whose saturations are up to 80% in pore volume, but muddy sediments scarcely contain. Plenty of gas hydrate-bearing sand core samples have been obtained from the Mallik wells. According to grain size distributions pore-space hydrate is dominant in medium- to very fine-grained sandy strata. Methane gas accumulation and original pore space large enough to occur within host sediments may be required for forming highly saturated gas hydrate in pore system. The distribution of a porous and coarser-grained host rock should be one of the important factors to control the occurrence of gas hydrate, as well as physicochemical conditions. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sandy core samples also revealed important geologic and sedimentological controls on the formation and concentration of natural gas hydrate. This appears to be a similar mode for conventional oil and gas accumulations. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. The isotopic data of methane show that hydrocarbon gas contained in gas hydrate is generated by thermogenic decomposition of kerogen in deep mature sediments. Based on geochemical and geological data, methane is inferred to migrate upward closely associated with pore water hundreds of meters into and through the hydrate stability zone partly up to the permafrost zone and the surface along faults and

  14. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds.

    PubMed

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  15. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  16. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047

  17. The Holocene history of Nares Strait: Transition from glacial bay to Arctic-Atlantic throughflow

    USGS Publications Warehouse

    Jennings, Anne E.; Sheldon, Christina; Cronin, Thomas M.; Francus, Pierre; Stoner, Joseph; Andrews, John

    2011-01-01

    Retreat of glacier ice from Nares Strait and other straits in the Canadian Arctic Archipelago after the end of the last Ice Age initiated an important connection between the Arctic and the North Atlantic Oceans, allowing development of modern ocean circulation in Baffin Bay and the Labrador Sea. As low-salinity, nutrient-rich Arctic Water began to enter Baffin Bay, it contributed to the Baffin and Labrador currents flowing southward. This enhanced freshwater inflow must have influenced the sea ice regime and likely is responsible for poor calcium carbonate preservation that characterizes the Baffin Island margin today. Sedimentologic and paleoceanographic data from radiocarbon-dated core HLY03-05GC, Hall Basin, northern Nares Strait, document the timing and paleoenvironments surrounding the retreat of waning ice sheets from Nares Strait and opening of this connection between the Arctic Ocean and Baffin Bay. Hall Basin was deglaciated soon before 10,300 cal BP (calibrated years before present) and records ice-distal sedimentation in a glacial bay facing the Arctic Ocean until about 9,000 cal BP. Atlantic Water was present in Hall Basin during deglaciation, suggesting that it may have promoted ice retreat. A transitional unit with high ice-rafted debris content records the opening of Nares Strait at approximately 9,000 cal BP. High productivity in Hall Basin between 9,000 and 6,000 cal BP reflects reduced sea ice cover and duration as well as throughflow of nutrient-rich Pacific Water. The later Holocene is poorly resolved in the core, but slow sedimentation rates and heavier carbon isotope values support an interpretation of increased sea ice cover and decreased productivity during the Neoglacial period.

  18. Artificial warming of arctic meadow under pollution stress: Experimental design

    USDA-ARS?s Scientific Manuscript database

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...

  19. The Increase of the Ice-free Season as Further Indication of the Rapid Decline of the Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Rodrigues, J.

    2008-12-01

    level. For example, the Northwest Passage and the Northern Sea Route are especially relevant to assess the maritime transport between the Atlantic and the Pacific, changes in the ice cover in oil rich areas such as the north coast of Alaska will attract the attention of the oil industry, and the disappearance of the sea ice in Hudson Bay will strongly affect its wildlife. We divided the Arctic in 85 regions and examined how the LIFS and the ISII changed in each of them since 1979. 53 regions enjoyed their longest ice-free seasons in 2006 or 2007. 2006 was special for the Canadian Arctic (longest ice-free season on record for about half of the regions) while 2007 was the year of the Russian Arctic (with the longest ice-free season in the period under study for more than half of the regions). Some of the largest variations were observed in the Russian Arctic, where the average LIFS increased from 84 days in the late 1970s to 129 around 2006, to reach a maximum of 171 days in 2007. Let us quote the changes in the White Sea (105 days between 1979 and 2006), in the South Barents Sea (70 days), in the South East Siberian Sea (60 days) and in the mid-latitude Chukchi Sea (66 days). Other areas where important changes took place include the Gulf of Finland (101 days), the Gulf of Riga (111 days) and the West coast of Spitsbergen (61 days). In the Canadian Arctic it is worth mentioning the increase of 62 days in Hudson Strait, 36 days in Hudson and Baffin Bays, and 52 days in Davis St. In almost all straits and sounds of the High Canadian Arctic the increase has been clearly non-linear and we prefer to compare the average LIFS in the periods 1979-1983 and 2002-2006. We quote an increase of 87 days in Lancaster Sound and of 74 days in Coronation Gulf. class="ab'>

  20. Global hexachlorocyclohexane use trends and their impact on the Arctic atmospheric environment

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Bidleman, T. F.; Barrie, L. A.; McConnell, L. L.

    The relationship between the global technical HCH use trends and their impact on the arctic atmospheric environment has been studied. Two significant drops in global technical HCH usage were identified. In 1983, China banned the use of technical HCH. This represented the largest drop ever in global use rates. In 1990 India stopped technical HCH usage in agriculture and the former Soviet Union banned the use of technical HCH. Since 1990, India has been the biggest user of technical HCH in the world. Significant drops in atmospheric α-HCH in the arctic were observed between 1982 and 1983, and again between 1990 and 1992. The rapid response in atmospheric concentrations to usage is encouraging; however, since α-HCH concentrations in the arctic waters have remained relatively unchanged, the decline in atmospheric α-HCH has reversed the net direction of air-sea gas flux. The accumulated mass in oceans and large lakes may represent a new source of HCH to the arctic atmosphere.

  1. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean.

    PubMed

    Kellogg, Colleen T E; Deming, Jody W

    2014-08-01

    Microbial enzymatic hydrolysis of marine-derived particulate organic carbon (POC) can be a dominant mechanism for attenuating carbon flux in cold Arctic waters during spring and summer. Whether this mechanism depends on composition of associated microbial communities and extends into other seasons is not known. Bacterial community composition (BCC) and extracellular enzyme activity (EEA, for leucine aminopeptidases, glucosidases and chitobiases) were measured on small suspended particles and potentially sinking aggregates collected during fall from waters of the biologically productive North Water and river-impacted Beaufort Sea. Although other environmental variables appeared influential, both BCC and EEA varied along a marine productivity gradient in the two regions. Aggregates harbored the most distinctive bacterial communities, with a small number of taxa driving differences between particle-size classes (1.0-60 and > 60 μm) and free-living bacteria (0.2-1.0 μm). Significant relationships between patterns in particle-associated BCC and EEA suggest strong links between these two variables. Calculations indicated that up to 80% of POC in the euphotic zone of the North Water, and 20% in the Beaufort Sea, may be hydrolyzed enzymatically, underscoring the importance of this mechanism in attenuating carbon fluxes in Arctic waters even as winter approaches. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Trends of polybrominated diphenyl ethers and hexabromocyclododecane in eggs of Canadian Arctic seabirds reflect changing use patterns.

    PubMed

    Braune, Birgit M; Letcher, Robert J; Gaston, Anthony J; Mallory, Mark L

    2015-10-01

    Due to the substantial use and release of polybrominated diphenyl ether (PBDE) flame retardants in North America, PBDE concentrations in North American marine biota are among the highest in the world. In this study, we compared PBDE concentrations and congener patterns in eggs of five seabird species (thick-billed murres, northern fulmars, black guillemots, glaucous gulls, black-legged kittiwakes) breeding at a colony in the Canadian Arctic in 1993, 2008 and 2013. Temporal trends of PBDEs (1975-2014) and another flame retardant, hexabromocyclododecane (HBCD) (2003-2014), were also examined in eggs of two seabird species, the thick-billed murre and northern fulmar. BDE-47 generally dominated the BDE congener profiles in eggs of all five species. Glaucous gulls had the highest concentrations of both ΣPBDE and BDE-47, and northern fulmars, the lowest. ΣPBDE concentrations increased exponentially in eggs of both thick-billed murres and northern fulmars from 1975 to 2003 with doubling times of 9.1 years in the murres and 7.2 years in the fulmars. From 2003 to 2008/09, ΣPBDE decreased rapidly in the murres and fulmars to concentrations not significantly different from those recorded in 1975 and 1987 for each species. After 2008/09, ΣPBDE concentrations plateaued. BDE-47 followed a similar temporal trend to that of ΣPBDE concentrations. These concentration trends were consistent with the phase-out of the penta- and octa-BDE products from the North American market in the mid-2000s. There was an overall decline in concentrations of HBCD in murre eggs from 2003 to 2014, whereas concentrations in the fulmar eggs increased from 2003 to 2006 followed by a decline to 2014. The ratio of HBCD to BDE-47 suggests that northern fulmars showed more of a European contaminant signature, and thick-billed murres, more of a North American signature. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  3. Trends and variability of cloud fraction cover in the Arctic, 1982-2009

    NASA Astrophysics Data System (ADS)

    Boccolari, Mauro; Parmiggiani, Flavio

    2018-05-01

    Climatology, trends and variability of cloud fraction cover (CFC) data over the Arctic (north of 70°N), were analysed over the 1982-2009 period. Data, available from the Climate Monitoring Satellite Application Facility (CM SAF), are derived from satellite measurements by AVHRR. Climatological means confirm permanent high CFC values over the Atlantic sector during all the year and during summer over the eastern Arctic Ocean. Lower values are found in the rest of the analysed area especially over Greenland and the Canadian Archipelago, nearly continuously during all the months. These results are confirmed by CFC trends and variability. Statistically significant trends were found during all the months over the Greenland Sea, particularly during the winter season (negative, less than -5 % dec -1) and over the Beaufort Sea in spring (positive, more than +5 % dec -1). CFC variability, investigated by the Empirical Orthogonal Functions, shows a substantial "non-variability" in the Northern Atlantic Ocean. Statistically significant correlations between CFC principal components elements and both the Pacific Decadal Oscillation index and Pacific North America patterns are found.

  4. NASA Airborne Campaigns Focus on Climate Impacts in the Arctic

    NASA Image and Video Library

    2017-12-08

    This red plane is a DHC-3 Otter, the plane flown in NASA's Operation IceBridge-Alaska surveys of mountain glaciers in Alaska. Credit: Chris Larsen, University of Alaska-Fairbanks Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region’s summer comes to a close, NASA is hard at work studying how rising temperatures are affecting the Arctic. NASA researchers this summer and fall are carrying out three Alaska-based airborne research campaigns aimed at measuring greenhouse gas concentrations near Earth’s surface, monitoring Alaskan glaciers, and collecting data on Arctic sea ice and clouds. Observations from these NASA campaigns will give researchers a better understanding of how the Arctic is responding to rising temperatures. The Arctic Radiation – IceBridge Sea and Ice Experiment, or ARISE, is a new NASA airborne campaign to collect data on thinning sea ice and measure cloud and atmospheric properties in the Arctic. The campaign was designed to address questions about the relationship between retreating sea ice and the Arctic climate. Arctic sea ice reflects sunlight away from Earth, moderating warming in the region. Loss of sea ice means more heat from the sun is absorbed by the ocean surface, adding to Arctic warming. In addition, the larger amount of open water leads to more moisture in the air, which affects the formation of clouds that have their own effect on warming, either enhancing or reducing it. Read more: www.nasa.gov/earthrightnow NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Arctic rabies--a review.

    PubMed

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  6. Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Vonk, Jorien E.; Holmes, R. Max; Giosan, Liviu; Zimov, Nikita; Eglinton, Timothy I.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high-latitude lakes. The comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter, riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil- and lake-calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. The application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high-latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.

  7. Arctic Haze Analysis

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  8. Marine biodegradation of crude oil in temperate and Arctic water samples.

    PubMed

    Kristensen, Mette; Johnsen, Anders R; Christensen, Jan H

    2015-12-30

    Despite increased interest in marine oil exploration in the Arctic, little is known about the fate of Arctic offshore oil pollution. Therefore, in the present study, we examine the oil degradation potential for an Arctic site (Disko Bay, Greenland) and discuss this in relation to a temperate site (North Sea, Denmark). Biodegradation was assessed following exposure to Oseberg Blend crude oil (100 mg L(-1)) in microcosms. Changes in oil hydrocarbon fingerprints of polycyclic aromatic hydrocarbons (PAHs), alkyl-substituted PAHs, dibenzothiophenes, n-alkanes and alkyltoluenes were measured by gas chromatography-mass spectrometry (GC-MS). In the Disko Bay sample, the degradation order was n-alkanes>alkyltoluenes (para->meta->ortho-isomers)>PAHs and dibenzothiophenes, whereas, the degradation order in the North Sea samples was PAHs and dibenzothiophenes>alkyltoluenes>n-alkanes. These differences in degradation patterns significantly affect the environmental risk of oil spills and emphasise the need to consider the specific environmental conditions when conducting risk assessments of Arctic oil pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a

  10. Geo-Environmental Change and the United States Military: How History Can Inform Future Arctic Operations

    DTIC Science & Technology

    2012-05-17

    and the Northern Sea Route, extraction of potential oil and gas resources, and expanded fishing and tourism .‖ 6 The Arctic‘s vast natural resources...sudden and substantial increase in commercial shipping, marine tourism , and large passenger vessels in the Arctic poses significant challenges to the...security,‖ Huebert states that, ―Canada, Denmark, Norway, Russia and the United States have all either begun to rebuild their Arctic capabilities

  11. Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gready, Benjamin P.

    The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback

  12. Environmental Implications of Maritime Vessel Intensification in Arctic Waters

    NASA Astrophysics Data System (ADS)

    Stevenson, T. C.; Banis, D.; Sheard, W.

    2016-12-01

    In 2016, the Arctic experienced some of the warmest monthly temperatures on record. Record high temperatures in the Arctic continue to cause rapid sea ice declines, opening new areas of ocean to commercial exploitation and transportation and causing significant reductions in critical sea ice habitats used by iconic species. Elevated maritime vessel traffic in the Arctic is projected to increase black carbon emissions, encourage the spread of invasive species, increase mammal strikes, intensify conflict with smaller subsistence boats, and heighten oil spill risks. The Arctic Council, an intergovernmental organization concerned with sustainable development and environmental protection, is working with member countries, indigenous participants and other groups on developing networks of marine protected areas within ecologically or biologically important areas. To help inform that process, we analyzed vessel traffic and marine protected area coverage occurring within ecologically or biologically significant areas in the circumpolar Arctic. Our preliminary findings suggest vessel traffic within ecologically or biologically significant areas were highest around Iceland, Norway, Russia and United States but differed by vessel type. The density of fishing vessels occurring within ecologically or biologically important areas were highest near Norway, Iceland, Faroe Islands, parts of Greenland and United States, whereas vessels carrying liquefied natural gas and oil were concentrated near Norway and Russia. The percentage of area covered by marine protected areas within ecologically or biologically significant areas was low, with the exception of places like Wrangel Island, Svalbard, and areas around Greenland. These findings are important because it illustrates ecologically or biologically significant areas in the Arctic are vulnerable to projected vessel traffic intensification and the level of protection afforded by marine protected areas is relatively low.

  13. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  14. Submarine landslides in Arctic sedimentation: Canada Basin

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  15. Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5

    NASA Astrophysics Data System (ADS)

    Tietsche, Steffen; Balmaseda, Magdalena A.; Zuo, Hao; Mogensen, Kristian

    2017-08-01

    We discuss the state of Arctic sea ice in the global eddy-permitting ocean reanalysis Ocean ReAnalysis Pilot 5 (ORAP5). Among other innovations, ORAP5 now assimilates observations of sea ice concentration using a univariate 3DVar-FGAT scheme. We focus on the period 1993-2012 and emphasize the evaluation of model performance with respect to recent observations of sea ice thickness. We find that sea ice concentration in ORAP5 is close to assimilated observations, with root mean square analysis residuals of less than 5 % in most regions. However, larger discrepancies exist for the Labrador Sea and east of Greenland during winter owing to biases in the free-running model. Sea ice thickness is evaluated against three different observational data sets that have sufficient spatial and temporal coverage: ICESat, IceBridge and SMOSIce. Large-scale features like the gradient between the thickest ice in the Canadian Arctic and thinner ice in the Siberian Arctic are simulated well by ORAP5. However, some biases remain. Of special note is the model's tendency to accumulate too thick ice in the Beaufort Gyre. The root mean square error of ORAP5 sea ice thickness with respect to ICESat observations is 1.0 m, which is on par with the well-established PIOMAS model sea ice reconstruction. Interannual variability and trend of sea ice volume in ORAP5 also compare well with PIOMAS and ICESat estimates. We conclude that, notwithstanding a relatively simple sea ice data assimilation scheme, the overall state of Arctic sea ice in ORAP5 is in good agreement with observations and will provide useful initial conditions for predictions.

  16. The IAOOS arctic network project, status and prospect

    NASA Astrophysics Data System (ADS)

    Pelon, J.; Provost, C.; Sennechael, N.; Calzas, M.; Blouzon, F.; Gascard, J. C.

    2015-12-01

    It is quite clear that for studying Arctic climate changes, and better understand interacting processes it is essential to follow an integrated approach for observing and modeling the whole Arctic system encompassing the atmosphere, the ocean and sea-ice at once. Due to the difficulties in retrieving key parameters, satellite observations alone are not the right answer. The project we are developing, is an attempt to tackle this challenge by providing and maintaining a new integrated observing network of instrumented buoys over the Arctic Ocean in order to collect simultaneously and in real time information related to the state of the upper Ocean, the lower Atmosphere and the Arctic sea-ice/snow. It is planned to operate several autonomous platforms in a network in the Arctic Ocean for a period of at least 5 years. Each platform is equipped to vertically sense and profile key variables in the ocean, sea-ice and atmosphere using - CTD (conductivity, temperature, depth) vertical profilers sensors collecting ocean temperature and salinity down to 800m depth, - Temperature and heat conductivity in snow and ice from ice-mass-balance systems - Cloud and aerosol lidar profiling of the lower atmosphere - Diffuse and direct solar flux using wide angle radiometer - Meteorological standard parameters at the surface Platforms allow measurements to be transmitted in near real time via Iridium satellites. As they will be drifting, it is planned to replace part of them every year. Major tests were performed deploying progressively fully equipped IAOOS platform at the North Pole in April 2012, 2013 and 2014. These platforms drifted from the North Pole in April to Fram Strait (September, October) providing spring summer and fall field data. Important fieldwork for IAOOS was also taking place within the Norwegian ice camp on board R/V Lance organized by the Norsk Polar Institute from January to June 2015, as part of the Norwegian young ICE (N-ICE 2015) cruise project. These

  17. Altimeter Observations of Wave Climate in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Babanin, A. V.; Liu, Q.; Zieger, S.

    2016-02-01

    Wind waves are a new physical phenomenon to the Arctic Seas, which in the past were covered with ice. Now, over summer months, ice coverage retreats up to high latitudes and waves are generated. The marginal open seas provide new opportunities and new problems. Navigation and other maritime activities become possible, but wave heights, storm surges and coastal erosion will likely increase. Air-sea interactions enter a completely new regime, with momentum, energy, heat, gas and moisture fluxes being moderated or produced by the waves, and impacting on upper-ocean mixing. All these issues require knowledge of the wave climate. We will report results of investigation of wave climate and its trends by means of satellite altimetry. This is a challenging, but important topic. On one hand, no statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current observations into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties, such as wave height, period, direction, on the frequency of occurrence and duration of the storms is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.

  18. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    PubMed

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    NASA Astrophysics Data System (ADS)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  20. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  1. Current-use pesticides in seawater and their bioaccumulation in polar bear-ringed seal food chains of the Canadian Arctic.

    PubMed

    Morris, Adam D; Muir, Derek C G; Solomon, Keith R; Letcher, Robert J; McKinney, Melissa A; Fisk, Aaron T; McMeans, Bailey C; Tomy, Gregg T; Teixeira, Camilla; Wang, Xiaowa; Duric, Mark

    2016-07-01

    The distribution of current-use pesticides (CUPs) in seawater and their trophodynamics were investigated in 3 Canadian Arctic marine food chains. The greatest ranges of dissolved-phase concentrations in seawater for each CUP were endosulfan sulfate (less than method detection limit (MDL) to 19 pg L(-1) ) > dacthal (0.76-15 pg L(-1) ) > chlorpyrifos (less than MDL to 8.1 pg L(-1) ) > pentachloronitrobenzene (less than MDL to 2.6 pg L(-1) ) > α-endosulfan (0.20-2.3 pg L(-1) ). Bioaccumulation factors (BAFs, water-respiring organisms) were greatest in plankton, including chlorothalonil (log BAF = 7.4 ± 7.1 L kg(-1) , mean ± standard error), chlorpyrifos (log BAF = 6.9 ± 6.7 L kg(-1) ), and α-endosulfan (log BAF = 6.5 ± 6.0 L kg(-1) ). The largest biomagnification factors (BMFs) were found for dacthal in the capelin:plankton trophic relationship (BMF = 13 ± 5.0) at Cumberland Sound (Nunvavut), and for β-endosulfan (BMF = 16 ± 4.9) and α-endosulfan (BMF = 9.3 ± 2.8) in the polar bear-ringed seal relationship at Barrow and Rae Strait (NU), respectively. Concentrations of endosulfan sulfate exhibited trophic magnification (increasing concentrations with increasing trophic level) in the poikilothermic portion of the food web (trophic magnification factor = 1.4), but all of the CUPs underwent trophic dilution in the marine mammal food web, despite some trophic level-specific biomagnification. Together, these observations are most likely indicative of metabolism of these CUPs in mammals. Environ Toxicol Chem 2016;35:1695-1707. © 2016 SETAC. © 2016 SETAC.

  2. Injuries in the North – analysis of 20 years of surveillance data collected by the Canadian Hospitals Injury Reporting and Prevention Program

    PubMed Central

    Do, Minh T.; Fréchette, Mylène; McFaull, Steven; Denning, Bryany; Ruta, Mike; Thompson, Wendy

    2013-01-01

    Background Injury is a major public health concern, particularly for Canadians living in Arctic regions where the harsh physical and social conditions pose additional challenges. Surveillance data collected over the past 2 decades through the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) provide insights into the burden of injuries in certain parts of Canada. Objectives This study aims to summarize and compare patterns of injuries in the Northwest Territories (NWT) and Nunavut to other southern communities across Canada. Methods Analysis was based on CHIRPP data covering the period 1991–2010. Proportionate injury ratio (PIR) and its 95% confidence interval were used to summarize and compare the injury experience of Canadians living in the Arctic regions to other CHIRPP sites across Canada. Results Between 1991 and 2010, there were 65,116 reported injuries. Approximately 83% of the cases were unintentional in nature; however, significantly higher proportions were observed for assaults and maltreatment (PIR=2.80, 95% CI: 2.72–2.88) among Canadians living in northern communities. Significantly higher proportions were also observed for crushing/amputations (PIR=2.28, 95% CI: 2.14–2.44), poison/toxic effects (PIR=1.21, 95% CI: 1.15–1.28), drowning/asphyxiations (PIR=1.52, 95% CI: 1.33–1.74) and frostbites (PIR=7.39, 95% CI: 6.60–8.28). The use of all-terrain vehicles or snowmobiles also resulted in significantly higher proportions of injuries (PIR=1.93, 95% CI: 1.79–2.09). Conclusions This study contributes to the limited literature describing injuries in northern communities where the harsh physical and social climates pose additional challenges. Excesses in the proportions identified in this study could be useful in identifying strategies needed to minimize injury risks in northern communities within Canada. PMID:24062994

  3. Early diagenesis and trace element accumulation in North American Arctic margin sediments

    NASA Astrophysics Data System (ADS)

    Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.

    2017-04-01

    Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production

  4. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Parris, T.M.; Burruss, R.C.; O'Sullivan, P. B.

    2003-01-01

    Along the southeast border of the 1002 Assessment Area in the Arctic National Wildlife Refuge, Alaska, an explicit link between gas generation and deformation in the Brooks Range fold and thrust belt is provided through petrographic, fluid inclusion, and stable isotope analyses of fracture cements integrated with zircon fission-track data. Predominantly quartz-cemented fractures, collected from thrusted Triassic and Jurassic rocks, contain crack-seal textures, healed microcracks, and curved crystals and fluid inclusion populations, which suggest that cement growth occurred before, during, and after deformation. Fluid inclusion homogenization temperatures (175-250??C) and temperature trends in fracture samples suggest that cements grew at 7-10 km depth during the transition from burial to uplift and during early uplift. CH4-rich (dry gas) inclusions in the Shublik Formation and Kingak Shale are consistent with inclusion entrapment at high thermal maturity for these source rocks. Pressure modeling of these CH4-rich inclusions suggests that pore fluids were overpressured during fracture cementation. Zircon fission-track data in the area record postdeposition denudation associated with early Brooks Range deformation at 64 ?? 3 Ma. With a closure temperature of 225-240??C, the zircon fission-track data overlap homogenization temperatures of coeval aqueous inclusions and inclusions containing dry gas in Kingak and Shublik fracture cements. This critical time-temperature relationship suggests that fracture cementation occurred during early Brooks Range deformation. Dry gas inclusions suggest that Shublik and Kingak source rocks had exceeded peak oil and gas generation temperatures at the time structural traps formed during early Brooks Range deformation. The timing of hydrocarbon generation with respect to deformation therefore represents an important exploration risk for gas exploration in this part of the Brooks Range fold and thrust belt. The persistence of gas high at

  5. Hypsometry, volume and physiography of the Arctic Ocean and their paleoceanographic implications

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Macnab, R.; Grantz, A.; Kristoffersen, Y.

    2003-04-01

    Recent analyses of the International Bathymetric Chart of the Arctic Ocean (IBCAO) grid model include: Hypsometry (the distribution of surface area at various depths); ocean volume distribution; and physiographic provinces [Jakobsson 2002; Jakobsson et al., in press]. The present paper summarizes the main results from these recent studies and expands on the paleoceanographic implications for the Arctic Ocean, which in this work is defined as the broad continental shelves of the Barents, Kara, Laptev, East Siberian and Chukchi Seas, the White Sea and the narrow continental shelves of the Beaufort Sea, the Arctic continental margins off the Canadian Arctic Archipelago and northern Greenland. This, the World's smallest ocean, is a virtually land-locked ocean that makes up merely 2.6 % of the area, and 1.0 % of the volume, of the entire World Ocean. The continental shelf area, from the coastline out to the shelf break, comprises as much as 52.9 % of the total area in the Arctic Ocean, which is significantly larger in comparison to the rest of the world oceans where the proportion of shelves, from the coastline out to the foot of the continental slope, only ranges between about 9.1 % and 17.7 %. In Jakobsson [2002], the seafloor area and water volume were calculated for different depths starting from the present sea level and progressing in increments of 10 m to a depth of 500 m, and in increments of 50 m from 550 m down to the deepest depth within each of the analyzed Arctic Ocean seas. Hypsometric curves expressed as simple histograms of the frequencies in different depth bins were presented, along with depth plotted against cumulative area for each of the analyzed seas. The derived hypsometric curves show that most of the Arctic Ocean shelf seas besides the Barents Sea, Beaufort Sea and the shelf off northern Greenland have a similar shape with the largest seafloor area between 0 and 50 m. The East Siberian and Laptev seas, in particular, show area distributions

  6. With Climate Change Expanding Trade Routes in the Arctic and the Resultant Pursuit of Resources, it is Crucial that the Eight Arctic Nations Find Paths Towards Sustainability and Peace in the Region. Traditional Arctic Games are an Essential Scenario that Provide an Important Scale for Analysis Aimed at Medium-long term Sustainability in the Arctic.

    NASA Astrophysics Data System (ADS)

    Kilbourne, J. R.

    2016-12-01

    With climate change expanding trade routes in the Arctic and the resultant pursuit of oil, gas, mineral deposits, and fish, it is imperative that the eight Arctic countries find paths towards sustainability and peace in the region. Revisiting and understanding the traditional games of the indigenous people of these regions can go a long way towards helping those determining the region's future to work cooperatively towards these goals. Traditional games are an essential scenario that provide an important scale for analysis aimed at medium-long term sustainability in the Arctic. Throughout history the games we have played have been a testament about who we were, and are. From early Inuit bone and hunting games, to the gladiator contests of Ancient Rome, to the modern American game of baseball, the games we play have served as a statement of and a rehearsal for the life-world of that period and place. By reconnecting with and understanding the games of our past, we can build meaningful bridges between our past and present, and hopefully gain a better understanding of our modern world. The aforesaid are timely and important, especially as they relate to indigenous people throughout the world who are trying to preserve their traditions in a fast changing modern world. This presentation/paper will offer, based on my research and experiences in the Arctic, lessons learned from traditional Sámi and Inuit games that may help promote sustainability and peace in the Arctic world. Hopefully by acknowledging these lessons we can pursue a path forward, together reconnecting with the traditional games of the Arctic with the hope of building meaningful bridges between the past and present and moreover, helping to enhance our understanding of the important role traditional games can play in shaping an Arctic where sustainability and peace flourish.

  7. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying

    2016-03-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  8. Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry.

    PubMed

    Lacorte, S; Quintana, J; Tauler, R; Ventura, F; Tovar-Sánchez, A; Duarte, C M

    2009-12-04

    This study presents the optimization and application of an analytical method based on the use of stir bar sorptive extraction (SBSE) gas chromatography coupled to mass spectrometry (GC-MS) for the ultra-trace analysis of POPs (Persistent Organic Pollutants) in Arctic ice. In a first step, the mass-spectrometry conditions were optimized to quantify 48 compounds (polycyclic aromatic hydrocarbons, brominated diphenyl ethers, chlorinated biphenyls, and organochlorinated pesticides) at the low pg/L level. In a second step, the performance of this analytical method was evaluated to determine POPs in Arctic cores collected during an oceanographic campaign. Using a calibration range from 1 to 1800 pg/L and by adjusting acquisition parameters, limits of detection at the 0.1-99 and 102-891 pg/L for organohalogenated compounds and polycyclic aromatic hydrocarbons, respectively, were obtained by extracting 200 mL of unfiltered ice water. alpha-hexachlorocyclohexane, DDTs, chlorinated biphenyl congeners 28, 101 and 118 and brominated diphenyl ethers congeners 47 and 99 were detected in ice cores at levels between 0.5 to 258 pg/L. We emphasise the advantages and disadvantages of in situ SBSE in comparison with traditional extraction techniques used to analyze POPs in ice.

  9. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE PAGES

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...

    2018-02-22

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  10. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  11. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    NASA Astrophysics Data System (ADS)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  12. Ice-Free Arctic Ocean?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  13. Domestic satellite communications - The Canadian experience

    NASA Astrophysics Data System (ADS)

    Golden, D. A.

    1980-09-01

    The history of commercial satellite communications in Canada is surveyed. The benefits provided by the existing system are illustrated by focusing on the experience of a particular Arctic hamlet (Pangnirtung). Attention is given to the factors that have differentiated the Canadian system from the American one (smaller, less homogenous, and more widely dispersed population). The problem posed by 'pirate' earth stations in Canada is discussed. An account is given of the origin of the dual-band Anik B (6/4 GHz and 14/12 GHz channels) satellite series, and the experiments (telemedicine, tele-education, communication with remote communities) carried out with the Anik B are discussed. Attention is also given to the promising results obtained in the direct-to-home TV service delivered by Anik B. Plans for the Anik C (16 channels 14/12 GHz frequency band) and Anik D (24 channels 6/4 GHz frequency band) series are discussed. Canada's communications needs are such that the continued development of satellite systems seems assured.

  14. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  15. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    article title:  Summer in the Arctic National Wildlife Refuge     View Larger Image This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging ...

  16. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  17. Magnetic Diagenesis in the Gas Hydrate System

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Hamilton, T. S.; Esteban, L.

    2009-05-01

    Natural gas hydrate is a methane-bearing form of ice which occurs in permafrost and continental slope settings. Geochemical processes associated with gas hydrate formation lead to the growth of iron sulphides which have a geophysically measurable magnetic signature. Detailed magnetic investigation and complementary petrological observations were undertaken on unconsolidated sediments from three gas hydrate (GH) settings: permafrost in fluvial-deltaic silts and sands in the Western Canadian Arctic (Japex et al. Mallik 5L-38 in 2002); diamictons and hemipelagics in the Cascadia accretionary wedge west of Vancouver Island (IODP Exp.311 in 2006); and marine sands and hemipelagics from the Bay of Bengal (NGHP Exp.01 in 2007). These magnetic measurements provide stratigraphic profiles which reveal fine scale variations in lithology, magnetic grain size, and paleo-pore fluid geochemistry. The highest magnetic susceptibility values are observed in strata which preserve high initial concentrations of detrital magnetite, such as glacial deposits. The lowest values of magnetic susceptibility are observed where iron has been reduced to paramagnetic pyrite, formed in settings with high methane and sulphate flux such as at methane vents. Enhanced values of magnetic susceptibility characterize the introduction of the ferrimagnetic iron sulphide minerals greigite and smythite. These magnetic minerals are mostly found immediately adjacent to the sedimentary horizons which host the gas hydrate and their textures and compositions indicate rapid disequilibrium crystallization. The observed diagenesis result from the unique physical and geochemical properties of the environment where gas hydrates form: methane is available to fuel microbiological activity and the freezing which accompanied GH crystallization quickly removed pure water, froze the sediments into an impermeable solid and expelled more concentrated brines into the adjacent less permeable strata to the point of inducing

  18. Utilization of Fluorescent Microspheres and a Green Fluorescent Protein-Marked Strain for Assessment of Microbiological Contamination of Permafrost and Ground Ice Core Samples from the Canadian High Arctic

    PubMed Central

    Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.

    2005-01-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963

  19. Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic.

    PubMed

    Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G

    2005-02-01

    Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.

  20. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

    USGS Publications Warehouse

    McGuire, A.D.; Hayes, D.J.; Kicklighter, D.W.; Manizza, M.; Zhuang, Q.; Chen, M.; Follows, M.J.; Gurney, K.R.; McClelland, J.W.; Melillo, J.M.; Peterson, B.J.; Prinn, R.G.

    2010-01-01

    This study used several model-based tools to analyse the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr-1, which is within the range of uncertainty in estimates from atmospheric inversions. Although both lands and oceans of the Arctic were estimated to be CO2 sinks, the land sink diminished in strength because of increased fire disturbance compared to previous decades, while the ocean sink increased in strength because of increased biological pump activity associated with reduced sea ice cover. Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr-1 that increased by 0.6 Tg CH4 yr-1 during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH4. Because the radiative forcing of the estimated CH4 emissions is much greater than the CO2 sink, the analysis suggests that the Arctic Basin is a substantial net source of green house gas forcing to the climate system.

  1. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    NASA Astrophysics Data System (ADS)

    Ford, James D.; Pearce, Tristan

    2010-01-01

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  2. Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes

    NASA Astrophysics Data System (ADS)

    Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin

    2017-01-01

    We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to

  3. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  4. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    NASA Astrophysics Data System (ADS)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  5. Live from the Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  6. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.

    PubMed

    Letcher, Robert J; Bustnes, Jan Ove; Dietz, Rune; Jenssen, Bjørn M; Jørgensen, Even H; Sonne, Christian; Verreault, Jonathan; Vijayan, Mathilakath M; Gabrielsen, Geir W

    2010-07-01

    POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Decrease in glacier coverage contributes to increased winter baseflow of Arctic rivers

    NASA Astrophysics Data System (ADS)

    Liljedahl, A. K.; Gaedeke, A.; Baraer, M.; Chesnokova, A.; Lebedeva, L.; Makarieva, O.; O'Neel, S.

    2016-12-01

    Rising minimum daily flows in northern Eurasian and North American rivers suggest a growing influence of groundwater in the Arctic hydrological cycle, while the impact of a warmer high-latitude climate system is evident in decreased glacier coverage and increasing permafrost temperatures. Multiple mechanisms have been proposed to explain the increased discharge, which is well documented but relatively poorly understood. Here we assess the long-term (up to 88 yrs) linkages between climate, glaciers and hydrology in Alaska, Canadian and Russian glacierized (from 0.3 to 60% glacier cover) and non-glacierized watersheds (31 to 186 000 km2). We are specifically interested in analyzing trends in late winter discharge from larger watersheds to refine our understanding of the regional aquifer status and annual discharge from smaller headwater basins. Field measurements of differential runoff in Interior Alaska show that glaciated headwater streams can lose significant amounts of water in summer to the underlying aquifer. The aquifer is in turn feeding the larger lowland river system throughout the year. Groundwater storage status in Arctic regions is especially prominent through winter river discharge as it is typically the only source of water to the river system for at least 6 months of the year. Our analyses aim to explore the hypothesis that the documented increase in later winter river discharge of larger watersheds can be explained at least partly, by increased glacier melt in summer as observed by long-term decreases in glacier coverage. If true, a decrease in winter freshwater exports to the Arctic Ocean could potentially follow as glaciers retreat to higher (cooler) elevations. Increased Arctic river baseflow can favor sea ice growth and fish habitats, while negatively impacting local communities in their river ice travel.

  8. The Age of the Arctic.

    ERIC Educational Resources Information Center

    Young, Oran R.

    1986-01-01

    Examines trends related to exploration in the Arctic by considering: (1) technology and military strategies; (2) foreign policy and the Arctic; (3) Arctic industrialization; (4) the Arctic policy agenda; and (5) recent United States initiatives in this region. (JN)

  9. Arctic megaslide at presumed rest

    PubMed Central

    Geissler, Wolfram H.; Gebhardt, A. Catalina; Gross, Felix; Wollenburg, Jutta; Jensen, Laura; Schmidt-Aursch, Mechita C.; Krastel, Sebastian; Elger, Judith; Osti, Giacomo

    2016-01-01

    Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates. PMID:27922097

  10. Arctic megaslide at presumed rest

    NASA Astrophysics Data System (ADS)

    Geissler, Wolfram H.; Gebhardt, A. Catalina; Gross, Felix; Wollenburg, Jutta; Jensen, Laura; Schmidt-Aursch, Mechita C.; Krastel, Sebastian; Elger, Judith; Osti, Giacomo

    2016-12-01

    Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.

  11. Baseline Monitoring of the Western Arctic Ocean Estimates 20% of Canadian Basin Surface Waters Are Undersaturated with Respect to Aragonite

    PubMed Central

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074

  12. Suppressed mid-latitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2016-12-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heatwaves and other destructive weather events in the Northern Hemisphere (NH) mid-latitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature (SST) warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH mid-latitudes. However, sea ice loss has induced a negative Arctic Oscillation (AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH mid-latitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  13. The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James

    2014-05-01

    In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in

  14. Arctic science input wanted

    NASA Astrophysics Data System (ADS)

    The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.

  15. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?

    USGS Publications Warehouse

    Ruppel, Carolyn

    2015-01-01

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

  16. Arctic Rabies – A Review

    PubMed Central

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology. PMID:15535081

  17. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    NASA Astrophysics Data System (ADS)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.

  18. Soil greenhouse gas flux, soil moisture, and soil temperature variability among three plant communities from 2015 to 2017 in a High-Arctic lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Konkel, J. M.; Welker, J. M.; Schaeffer, S. M.

    2017-12-01

    Soil greenhouse gas flux rates are known to vary with plant community and soil environment. Increases in temperature and precipitation are likely to affect the distribution of vegetation and soil conditions in High Arctic ecosystems. In coastal tundra landscapes in northwest Greenland, vegetation, soil organic matter, and greenhouse gas fluxes are thought to be controlled primarily by water availability. In this study, we measured greenhouse gas flux rates, soil moisture, and soil temperature over three summer seasons along a soil moisture gradient in a High Arctic lake basin represented by dry tundra, moist tundra, and wet grassland plant communities. Preliminary results for trace gas fluxes showed N2O production from all three plant communities ranged from 0.03±0.03 to 0.48±0.12 g N ha-1d-1. While wet grassland was a CH4 source up to 5.2±1.1 g C ha-1d-1, dry tundra and moist tundra were CH4 sinks up to -10.4±1.7 and -2.2±0.9 g C ha-1d-1, respectively. For all three seasons, the highest and lowest mean soil CO2 flux rates were measured in wet grassland and moist tundra (up to 18.3±1.1 and 8.7±0.6 kg C ha-1 d-1, respectively). A lab incubation study showed that, with frequent wetting events, soil CO2 flux remained relatively high in wet grassland, was consistently higher in dry tundra than in moist tundra, and dry tundra CO2 flux significantly increased with wetting events. We show that while soil CO2 flux in all three vegetation zones was influenced by soil moisture variability, soil temperature clearly influenced the timing of flux rate increases and decreases over the course of each season. Colder air and soil temperatures in 2017 corresponded with decreased mean soil CO2 flux rates in dry tundra and wet grassland, yet CO2 flux rates remained consistent in moist tundra among all three seasons. These results suggest that climate-induced warmer and wetter soil environmental conditions may increase rates of soil CO2 flux from wet grassland and dry tundra

  19. Levels and trends of organochlorines and brominated flame retardants in ivory gull eggs from the Canadian Arctic, 1976 to 2004.

    PubMed

    Braune, Birgit M; Mallory, Mark L; Grant Gilchrist, H; Letcher, Robert J; Drouillard, Ken G

    2007-06-01

    The ivory gull (Pagophila eburnea) is a circumpolar marine bird which has recently been listed as an endangered species in Canada. To determine whether contaminants may be playing a role in the population decline of this species, ivory gull eggs collected in 1976, 1987 and 2004 from Seymour Island in the Canadian Arctic were analyzed for organochlorines, polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and non-ortho PCBs. This study also provides the first account of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs) and polybrominated biphenyls (PBBs) in ivory gulls. The most quantitatively abundant legacy organochlorines found in the ivory gull eggs were p,p'-DDE, SigmaPCB and oxychlordane. Concentrations of the organochlorines analyzed either decreased or showed little change between 1976 and 2004. Concentrations of SigmaPCDD in ivory gull eggs were greater than SigmaPCDF, and the non-ortho PCBs (primarily PCB-126) contributed the largest fraction to the total TEQ value in all years sampled. Concentrations of PCDDs, PCDFs and SigmaTEQ decreased from 1976 to 2004. In contrast, concentrations of the PBDEs steadily increased between 1976 and 2004 driven primarily by increases in BDE-47. Although concentrations of the persistent chlorinated compounds (i.e. organochlorine pesticides, PCBs, PCDDs, PCDFs) reported in this study were below published toxicological threshold values for eggs of wild birds, we cannot rule out the possibility of synergistic/additive, sublethal effects. Very few studies have been carried out to evaluate the exposure-effect relationship of the persistent brominated compounds in avian species. Given the scarcity of information on toxicity threshold levels for PBBs and PBDEs in avian species, coupled with the trend toward increasing concentrations in ivory gulls, continued monitoring and further toxicological studies of these compounds are warranted.

  20. The 1994 Arctic Ocean Section. The First Major Scientific Crossing of the Arctic Ocean,

    DTIC Science & Technology

    1996-09-01

    contribute to the international effort to better understand the role of the Arctic Ocean in the global carbon cycle and climate change. Summar...Barium Distributions in the Arctic Ocean ? ........................ 32 Biology and the Carbon Cycle Cycling of Organic Carbon in the Central Arctic...of Heterotrophic Bacteria and Protists in the Arctic Ocean Carbon Cycle............. 40