Science.gov

Sample records for cancellous bone graft

  1. Biology of cancellous bone grafts.

    PubMed

    Heiple, K G; Goldberg, V M; Powell, A E; Bos, G D; Zika, J M

    1987-04-01

    Despite 30 years of experimental bone grafting research, the fresh cancellous bone graft remains the most osteogenic and reliable bone grafting material. Recent experimental data suggest that modification of the graft-host interaction by antigen matching or immune manipulation may allow increasingly successful use of allografts. PMID:3550570

  2. [Grafting of preserved homogenous cancellous bone. Results of 90 operations (author's transl)].

    PubMed

    Ackermann, W; Taillard, W

    1977-10-01

    Description of a simple technique for the removal of homogeneous cancellous bone from heads of femur removed during replacement of the hip-joint. The material has been preserved for one year at -20 degrees C and can be used after simple washing. Results in 89 grafts are analysed: They all took perfectly at the site of grafting. There was no rejection, no local or general allergy. Risk of infection was not increased. The technique is simple and useful where much cancellous bone is needed. PMID:337707

  3. Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting.

    PubMed

    Harvanová, Denisa; Hornák, Slavomír; Amrichová, Judita; Spaková, Tímea; Mikes, Jaromír; Plsíková, Jana; Ledecký, Valent; Rosocha, Ján

    2014-09-01

    Avian osteoblasts have been isolated particularly from chicken embryo, but data about other functional tissue sources of adult avian osteoblast precursors are missing. The method of preparation of pigeon osteoblasts is described in this study. We demonstrate that pigeon cancellous bone derived osteoblasts have particular proliferative capacity in vitro in comparison to mammalian species and developed endogenous ALP. Calcium deposits formation in vitro was confirmed by alizarin red staining. Only a few studies have attempted to investigate bone grafting and treatment of bone loss in birds. Lack of autologous bone grafts in birds has prompted investigation into the use of avian xenografts for bone augmentation. Here we present a method of xenografting of ostrich demineralised cancellous bone scaffold seeded with allogeneic adult pigeon osteoblasts. Ostrich demineralised cancellous bone scaffold supported proliferation of pigeon osteoblasts during two weeks of co - cultivation in vitro. Scanning electron microscopy demonstrated homogeneous adult pigeon osteoblasts attachment and distribution on the surface of xenogeneic ostrich demineralised cancellous bone. Our preliminary in vitro results indicate that demineralised cancellous bone from ostrich tibia could provide an effective biological support for growth and proliferation of allogeneic osteoblasts derived from cancellous bone of pigeons. PMID:24915787

  4. Secondary Alveolar Bone Grafting and Iliac Cancellous Bone Harvesting for Patients With Alveolar Cleft.

    PubMed

    Pan, Weiyi; Wu, Chenzhou; Yang, Zheng; Duan, Zexi; Su, Zhifei; Wang, Peiqi; Zheng, Qian; Li, Chunjie

    2016-06-01

    To assess the efficacy of present interventions optimizing the result of secondary alveolar bone grafting (SABG) and the interventions alleviating the donor site morbidity after iliac cancellous bone harvesting. Researches were identified by searching the electronic database of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Chinese BioMedical Literature Database, and the China National Knowledge Infrastructure. In addition, relevant journals and references of the included studies were searched manually. The Oxford 2011 Levels of Evidence were applied to assess the methodological quality of selected studies, and the best evidence synthesis system was applied afterward to measure the strength of evidence. As a result, 42 studies were considered eligible and included, among which 4 were of high quality while 38 were of low quality. Thirty lines of evidences were acquired after the synthesis, among which 13 were rated as moderate while 17 were rated as insufficient. As for the interventions optimizing the result of SABG, moderate evidence confirmed the efficacy of preoperative orthodontic treatment, the superiority of performing SABG before the eruption of canine, and the accuracy of cone beam computed tomography in preoperative estimation of the cleft volume. As for the interventions alleviating the morbidity of iliac cancellous bone harvesting, moderate evidence confirmed the treatment benefit of the interventions below: minimally invasive technique, including trephine and Shepard osteotomy; preemptive analgesia, including continuous bupivacaine infusion or transversus abdominis plane block. As for the rest interventions, only insufficient evidence was found. PMID:27244214

  5. Histometric analyses of cancellous and cortical interface in autogenous bone grafting

    PubMed Central

    Netto, Henrique Duque; Olate, Sergio; Klüppel, Leandro; do Carmo, Antonio Marcio Resende; Vásquez, Bélgica; Albergaria-Barbosa, Jose

    2013-01-01

    Surgical procedures involving the rehabilitation of the maxillofacial region frequently require bone grafts; the aim of this research was to evaluate the interface between recipient and graft with cortical or cancellous contact. 6 adult beagle dogs with 15 kg weight were included in the study. Under general anesthesia, an 8 mm diameter block was obtained from parietal bone of each animal and was put on the frontal bone with a 12 mm 1.5 screws. Was used the lag screw technique from better contact between the recipient and graft. 3-week and 6-week euthanized period were chosen for histometric evaluation. Hematoxylin-eosin was used in a histologic routine technique and histomorphometry was realized with IMAGEJ software. T test was used for data analyses with p<0.05 for statistical significance. The result show some differences in descriptive histology but non statistical differences in the interface between cortical or cancellous bone at 3 or 6 week; as natural, after 6 week of surgery, bone integration was better and statistically superior to 3-week analyses. We conclude that integration of cortical or cancellous bone can be usefully without differences. PMID:23923071

  6. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  7. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    PubMed Central

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514

  8. Anatomically safe and minimally invasive transcrestal technique for procurement of autogenous cancellous bone graft from the mid-iliac crest

    PubMed Central

    Missiuna, Paul C.; Gandhi, Harjeet S.; Farrokhyar, Forough; Harnett, Barry E.; Dore, Edward M.G.; Roberts, Barbara

    2011-01-01

    Background Open iliac bone harvesting techniques can result in significant complications and residual morbidity. In reconstructive procedures where a small volume of autogenous cancellous bone graft is required, a minimally invasive technique for bone harvesting applied at the mid-iliac crest has been deemed satisfactory. We sought to assess the application of a well-established surgical technique to procure adequate volume of autogenous cancellous iliac bone graft with minimal trauma to adjacent structures. Methods We retrospectively reviewed the cases of patients who underwent a minimally invasive transcrestal mid-iliac bone graft procurement technique between May 2003 and December 2007. The technique was performed using a 3.5-mm Steinmann pin as a trocar and a 4.5-mm AO drill sleeve as a trephine. We administered a questionnaire, either in the clinic or by mail, to assess a number of parameters, including postoperative pain, dysthesia, parasthesia, status of the donor site wound and patient satisfaction. Results Of the 37 consecutive patients who underwent the procedure, data from 26 patients were available for assessment. Donor site pain resolved within a few days of the surgery, and none of the patients experienced symptoms of chronic pain. At the final review, none of the patients reported any unpleasant signs and symptoms related to the residual scar. Conclusion We recommend that the described minimally invasive trephine method be used when a small cancellous bone graft is needed. We found that patient morbidity was significantly lower with the trephine harvest technique than with open bone harvesting methods at the anterior iliac crest. PMID:21933526

  9. Bone Grafts

    MedlinePlus

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  10. Delayed Union of a Sacral Fracture: Percutaneous Navigated Autologous Cancellous Bone Grafting and Screw Fixation

    SciTech Connect

    Huegli, R. W. Messmer, P.; Jacob, A. L.; Regazzoni, P.; Styger, S.; Gross, T.

    2003-09-15

    Delayed or non-union of a sacral fracture is a serious clinical condition that may include chronic pain, sitting discomfort, gait disturbances, neurological problems, and inability to work. It is also a difficult reconstruction problem. Late correction of the deformity is technically more demanding than the primary treatment of acute pelvic injuries. Open reduction, internal fixation (ORIF), excision of scar tissue, and bone grafting often in a multi-step approach are considered to be the treatment of choice in delayed unions of the pelvic ring. This procedure implies the risk of neurological and vascular injuries, infection, repeated failure of union, incomplete correction of the deformity, and incomplete pain relief as the most important complications. We report a new approach for minimally invasive treatment of a delayed union of the sacrum without vertical displacement. A patient who suffered a Malgaigne fracture (Tile C1.3) was initially treated with closed reduction and percutaneous screw fixation (CRPF) of the posterior pelvic ring under CT navigation and plating of the anterior pelvic ring. Three months after surgery he presented with increasing hip pain caused by a delayed union of the sacral fracture. The lesion was successfully treated percutaneously in a single step procedure using CT navigation for drilling of the delayed union, autologous bone grafting, and screw fixation.

  11. Secondary alveolar bone grafting: our experience with olecranon bone graft.

    PubMed

    Nadal, Emmanuela; Sabás, Mariana; Dogliotti, Pedro; Espósito, Raquel

    2010-03-01

    Management of alveolar cleft has dramatically changed during the last century: secondary alveolar bone grafting is now an integral part of cleft palate and craniofacial center's protocols. The objectives of alveolar repair and bone grafting are as follows: providing a continuous and stable maxillary dental arch, closure of oronasal fistulae, adequate bone for tooth eruption or orthodontic movement, and nasal base support, improving facial aesthetic. Although cancellous iliac bone is the donor site selected more frequently, bone grafts harvested from different sites have been advocated to decrease donor site morbidity.The aim of this study was to propose and evaluate the use of olecranon as a donor site in 24 patients with secondary alveolar cleft. The graft is taken as a single piece to fit the alveolar cleft defect, and it includes periosteum and corticocancellous bone to improve early vascularization and greater volume maintenance. PMID:20186086

  12. A comparison of the rates of union after cancellous iliac crest bone graft and Kirschner-wire fixation in the treatment of stable and unstable scaphoid nonunion.

    PubMed

    Park, H Y; Yoon, J O; Jeon, I H; Chung, H W; Kim, J S

    2013-06-01

    This study was performed to determine whether pure cancellous bone graft and Kirschner (K-) wire fixation were sufficient to achieve bony union and restore alignment in scaphoid nonunion. A total of 65 patients who underwent cancellous bone graft and K-wire fixation were included in this study. The series included 61 men and four women with a mean age of 34 years (15 to 72) and mean delay to surgery of 28.7 months (3 to 240). The patients were divided into an unstable group (A) and stable group (B) depending on the pre-operative radiographs. Unstable nonunion was defined as a lateral intrascaphoid angle > 45°, or a radiolunate angle > 10°. There were 34 cases in group A and 31 cases in group B. Bony union was achieved in 30 patients (88.2%) in group A, and in 26 (83.9%) in group B (p = 0.439). Comparison of the post-operative radiographs between the two groups showed no significant differences in lateral intrascaphoid angle (p = 0.657) and scaphoid length (p = 0.670) and height (p = 0.193). The radiolunate angle was significantly different (p = 0.020) but the mean value in both groups was < 10°. Comparison of the dorsiflexion and palmar flexion of movement of the wrist and the mean Mayo wrist score at the final clinical visit in each group showed no significant difference (p = 0.190, p = 0.587 and p = 0.265, respectively). Cancellous bone graft and K-wire fixation were effective in the treatment of stable and unstable scaphoid nonunion. PMID:23723277

  13. Bone grafts in dentistry

    PubMed Central

    Kumar, Prasanna; Vinitha, Belliappa; Fathima, Ghousia

    2013-01-01

    Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation. PMID:23946565

  14. Onlay Bone Grafts in Head and Neck Reconstruction

    PubMed Central

    Yazar, Sukru

    2010-01-01

    Bone grafts are used in a variety of clinical situations and can be divided into two categories: treatment of bone gaps (inlay bone grafting) and bone projection (onlay bone grafting). Cortical grafts are useful in situations requiring immediate mechanical strength. These grafts can survive with or without complete revascularization or resorption and are primarily used by plastic surgeons in the treatment of bone volume deficiency. Cancellous grafts, in contrast, have no mechanical strength and therefore require additional support to bridge bone defects. Thus, they are used primarily for the treatment of bone gaps and in general revascularize quickly, resorb completely, and stimulate significant new bone formation. PMID:22550447

  15. Strontium doping of bone graft extender

    PubMed Central

    2011-01-01

    Background and purpose Allografts are often used during revision hip replacement surgery for stabilization of the implant. Resorption of the allograft may exceed new bone formation, and instability of the prosthesis can develop. We investigated whether strontium could regulate the imbalance of fast resorption of allograft and slower formation of new bone, because it is both an anabolic and an anticatabolic agent. Method Strontium was added to the implant interface environment by doping a hydroxyapatite bone graft extender. 10 dogs each received 2 experimental titanium implants. The implants were inserted within a 2.7-mm concentric gap in cancellous bone. The gap was filled with 50% (v/v) allograft mixed with 50% bone graft extender. The extender either had 5% strontium doping (SrHA) or was undoped (HA). After 4 weeks, osseointegration and mechanical fixation were evaluated by histomorphometry and by push-out test. Results SrHA bone graft extender induced a 1.2-fold increase in volume of new bone, a 1.2-fold increase in allograft remaining in the gap, and a 1.4-fold increase in surface area of the bone graft extender material in contact with new bone compared to HA bone graft extender. All these increases were statistically significant. SrHA bone graft extender did not significantly improve ongrowth of bone onto the implants or improve any of the mechanical push-out parameters compared to HA bone graft extender. Interpretation Doping of the HA bone graft extender with 5% strontium increased gap healing, preserved more of the allograft in the gap, and increased the ongrowth of bone onto the bone graft extender material, but did not improve mechanical fixation. PMID:21895497

  16. Proximal Tibial Bone Graft

    MedlinePlus

    ... Complications Potential problems after a PTBG include infection, fracture of the proximal tibia and pain related to the procedure. Frequently Asked Questions If proximal tibial bone graft is taken from my knee, will this prevent me from being able to ...

  17. Clinical Results of Auto-Iliac Cancellous Bone Grafts Combined with Implantation of Autologous Bone Marrow Cells for Osteonecrosis of the Femoral Head: A Minimum 5-Year Follow-Up

    PubMed Central

    Kang, Joon Soon; Moon, Kyoung Ho; Kim, Bom-Soo; Shin, Sang Hyun; Shin, Byung Ki; Ryu, Dong-Jin

    2013-01-01

    Purpose There are no reports about bone graft and cell therapy for the osteonecrosis of femoral head (ONFH). We prospectively evaluated the clinical results of auto-iliac cancellous bone grafts combined with implantation of autologous bone marrow cells for ONFH. Materials and Methods Sixty-one hips in 52 patients with ONFH treated with bone graft and cell therapy were enrolled, and the average follow-up of the patients was 68 (60-88) months. Necrotic lesions were classified according to their size by the Steinberg method and location of necrosis. Results At the last follow-up, the percentage of excellent or good results was 80% (12/15 hips) in the small lesion group, 65% (17/26 hips) in the medium size group, and 28% (6/20 hips) in the large size group. The procedures were a clinical success in 4 of 5 hips (80%) of stage I, 23 of 35 hips (65.7%) of stage II, 7 of 18 hips (38.9%) of stage III, and 1 of 3 hips (33.3%) of stage IV grade, according to the Association Research Circulation Osseous grading system. Among the 20 cases with large sized necrotic lesions, 17 cases were laterally located and this group showed the worst outcomes, with 13 hips (76.5%) having bad or failed clinical results. Conclusion The results of the present study suggested that patients who have a large sized lesion or medium sized laterally located lesion would not be good candidates for the head preserving procedure. However, for medium sized lesions, this procedure generated clinical results comparable to those of other head preserving procedures. PMID:23364989

  18. Estimation of In vivo Cancellous Bone Elasticity

    NASA Astrophysics Data System (ADS)

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi

    2009-07-01

    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  19. Bone Grafts in Craniofacial Surgery

    PubMed Central

    Elsalanty, Mohammed E.; Genecov, David G.

    2009-01-01

    Reconstruction of cranial and maxillofacial defects is a challenging task. The standard reconstruction method has been bone grafting. In this review, we shall describe the biological principles of bone graft healing, as pertinent to craniofacial reconstruction. Different types and sources of bone grafts will be discussed, as well as new methods of bone defect reconstruction. PMID:22110806

  20. Bone grafts and their substitutes.

    PubMed

    Fillingham, Y; Jacobs, J

    2016-01-01

    The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. PMID:26733632

  1. Alveolar bone grafting

    PubMed Central

    Lilja, Jan

    2009-01-01

    In patients with cleft lip and palate, bone grafting in the mixed dentition in the residual alveolar cleft has become a well-established procedure. The main advantages can be summarised as follows: stabilisation of the maxillary arch; facilitation of eruption of the canine and sometimes facilitation of the lateral incisor eruption; providing bony support to the teeth adjacent to the cleft; raising the alar base of the nose; facilitation of closure of an oro-nasal fistula; making it possible to insert a titanium fixture in the grafted site and to obtain favourable periodontal conditions of the teeth within and adjacent to the cleft. The timing of the ABG surgery take into consideration not only eruption of the canine but also that of the lateral incisor, if present. The best time for bone grafting surgery is when a thin shell of bone still covers the soon erupting lateral incisor or canine tooth close to the cleft. PMID:19884665

  2. Bone Grafting the Cleft Maxilla

    MedlinePlus

    ... amount of bone from one place (usually the hip, head, ribs, or leg) and placing it in ... adjacent teeth into the bone graft; 2) prosthetic replacement (dental bridge); or 3) dental metallic bone implants. ...

  3. [Bone grafts in orthopedic surgery].

    PubMed

    Zárate-Kalfópulos, Barón; Reyes-Sánchez, Alejandro

    2006-01-01

    In orthopedic surgery the demand for the use of bone grafts increases daily because of the increasing quantity and complexity of surgical procedures. At present, the gold standard is the autologous bone graft but the failure rate, morbidity of the donor site and limited availability have stimulated a proliferation for finding materials that work as bone graft substitutes. In order to have good success, we must know the different properties of these choices and the environment where the graft is going to be used. As bone graft substitutes and growth factors become clinical realities, a new gold standard will be defined. Tissue engineering and gene therapy techniques have the objective to create an optimum bone graft substitute with a combination of substances with properties of osteconduction, osteogenesis and osteoinduction. PMID:16875525

  4. The fracture toughness of cancellous bone.

    PubMed

    Cook, R B; Zioupos, P

    2009-09-18

    The mechanical capacity and integrity of cancellous bone is crucial in osteoporosis, a condition which is set to become more prevalent with increasing lifespan and population sizes. The fracture toughness (FT) of cancellous bone has never been examined before and the conditions associated with the growth of a major crack through the lattice of cancellous bone, a cellular solid, may improve our understanding for structural integrity of this material. The aim of this study is to provide (i) basic data on cancellous bone FT and (ii) the experimental support for the hypothesis of Gibson, L.J., Ashby, M.F. [1997a. Chapter 10: Wood. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 387-428; Gibson, L.J., Ashby, M.F., 1997b. Chapter 11: Cancellous Bone. In: Cellular Solids: Structure and Properties, second ed. Cambridge University Press, pp. 429-52] that the FT of cancellous bone tissue is governed by the density of the tissue to a power function of between one and two. 294 SENB and 121 DC(T) specimen were manufactured from 45 human femoral heads, 37 osteoporotic and 8 osteoarthritic, as well as 19 equine thoracic vertebrae. The samples were manufactured in two groups: the first aligned with the trabecular structure (A( parallel)), the second orientated at 90 degrees to the main trabecular orientation (A( perpendicular)). The samples were tested in either tensile or bending mode to provide values of the stress intensity factor (K). The results which were obtained show a strong and significant link between the density of the cancellous bone tissue and that the critical stress intensity values are governed by the density of the tissue to a power function of between 1 and 2 (K(Q) vs. apparent density: A( perpendicular)=1.58, A( parallel)=1.6). Our results provide some fundamental values for the critical stress intensity factor for cancellous bone and also support the previous hypothesis as set by Gibson, L.J., Ashby, M.F., 1997a

  5. Quantitative Comparison of Volume Maintenance between Inlay and Onlay Bone Grafts in the Craniofacial Skeleton

    PubMed Central

    Sugg, Kristoffer B.; Rosenthal, Andrew H.; Ozaki, Wayne; Buchman, Steven R.

    2015-01-01

    Background Nonvascularized autologous bone grafts are the criterion standard in craniofacial reconstruction for bony defects involving the craniofacial skeleton. The authors have previously demonstrated that graft microarchitecture is the major determinant of volume maintenance for both inlay and onlay bone grafts following transplantation. This study performs a head-to-head quantitative analysis of volume maintenance between inlay and onlay bone grafts in the craniofacial skeleton using a rabbit model to comparatively determine their resorptive kinetics over time. Methods Fifty rabbits were divided randomly into six experimental groups: 3-week inlay, 3-week onlay, 8-week inlay, 8-week onlay, 16-week inlay, and 16-week onlay. Cortical bone from the lateral mandible and both cortical and cancellous bone from the ilium were harvested from each animal and placed either in or on the cranium. All bone grafts underwent micro–computed tomographic analysis at 3, 8, and 16 weeks. Results All bone graft types in the inlay position increased their volume over time, with the greatest increase in endochondral cancellous bone. All bone graft types in the onlay position decreased their volume over time, with the greatest decrease in endochondral cancellous bone. Inlay bone grafts demonstrated increased volume compared with onlay bone grafts of identical embryologic origin and microarchitecture at all time points (p < 0.05). Conclusions Inlay bone grafts, irrespective of their embryologic origin, consistently display less resorption over time compared with onlay bone grafts in the craniofacial skeleton. Both inlay and onlay bone grafts are driven by the local mechanical environment to recapitulate the recipient bed. PMID:23629083

  6. Cadmium content of human cancellous bone.

    PubMed

    Knuuttila, M; Lappalainen, R; Olkkonen, H; Lammi, S; Alhava, E M

    1982-01-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 889 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels ere determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 9.16 micrograms/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relation was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content. PMID:7138079

  7. Cadmium content of human cancellous bone

    SciTech Connect

    Knuuttila, M.; Lappalainen, R.; Olkkonen, H.; Lammi, S.; Albava, E.M.

    1982-09-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 88 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels were determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 0.16 ..mu..g/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relationship was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content.

  8. Bone grafts, bone substitutes and orthobiologics

    PubMed Central

    Roberts, Timothy T.; Rosenbaum, Andrew J.

    2012-01-01

    The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591

  9. Cryopreserved cancellous bone allograft in periodontal intraosseous defects.

    PubMed

    Borghetti, A; Novakovitch, G; Louise, F; Simeone, D; Fourel, J

    1993-02-01

    The purpose of this study was to evaluate the potential of cryopreserved cancellous bone allograft (CCBA) in the treatment of intraosseous periodontal defects compared to surgical debridement alone (DEBR). Cancellous bone was procured from femur heads that had been extracted for hip prosthesis procedures and cryopreserved in liquid nitrogen (-196 degrees C) in a tissue bank. Ten patients without systemic disorders and advanced periodontal disease (at least 2 intraosseous defects) participated in this investigation. Measurements from the cemento-enamel junction were made after initial therapy for clinical attachment level; also gingival recession, probing pocket depth, plaque index, and gingival index and, at the time of surgery, alveolar crest height and osseous defect depth were measured. All measurements were repeated at 1 year-reentry. Sixteen defects were debrided and grafted (test sites) and 13 defects were debrided only (control sites). Soft tissue measurements showed no statistical differences between the 2 groups. Defect fill was significantly greater with CCBA (1.75 mm) than with DEBR (0.56 mm). Defect depth reduction was 2.06 mm for CCBA and 0.78 mm for DEBR. These values correspond to a percent-defect resolution of 60% for CCBA and 29% for DEBR. Hard tissue measurements showed significant differences between the 2 groups. CCBA seems to be effective in the short-term treatment of intraosseous periodontal defects. PMID:8433252

  10. Results of autogenous trephine biopsy needle bone grafting in fractures of radius and ulna.

    PubMed

    Lakhey, S; Shrestha, B P; Pradhan, R L; Pandey, B; Rijal, K P

    2005-01-01

    Cortico-Cancellous bone graft harvested from the anterior iliac crest by the conventional open method is associated with more morbidity and is more time consuming as compared to the percutaneous method using trephine biopsy needle. The aim of the study was to determine whether cancellous bone graft harvested from anterior iliac crest using trephine biopsy needle consistently achieved bone union in comminuted fractures and fractures of more than 3 weeks duration of radius and ulna and also to determine the morbidity at the donor site. Autogenous cancellous bone graft was harvested percutaneously from 28 iliac crests in 16 patients and applied at fracture sites of 30 forearm bones using a 4mm trephine biopsy needle after the fractures had been fixed with plate and screws. The patients were followed up regularly upto 6 to 9 months post - operatively in the OPD to determine the union status of the fractured bones and the morbidity at the donor site. 29 of the 30 fractures of the forearm bones united without any problems. The shaft of a trephine got bent during the harvesting procedure at the beginning of the study due to improper technique. Cancellous bone graft harvested from the anterior iliac crest results in predictable good union results in comminuted fractures of forearm bones and also fractures presenting after 3 weeks of injury. It is also an easier and quicker way of harvesting bone graft and is associated with lesser morbidity and earlier recovery as compared to conventional open method. PMID:16554860

  11. Socket preservation and sinus augmentation using a medical grade calcium sulfate hemihydrate and mineralized irradiated cancellous bone allograft composite.

    PubMed

    Bagoff, Robert; Mamidwar, Sachin; Chesnoiu-Matei, Ioana; Ricci, John L; Alexander, Harold; Tovar, Nick M

    2013-06-01

    Regeneration and preservation of bone after the extraction of a tooth are necessary for the placement of a dental implant. The goal is to regenerate alveolar bone with minimal postoperative pain. Medical grade calcium sulfate hemihydrate (MGCSH) can be used alone or in combination with other bone grafts; it improves graft handling characteristics and particle containment of particle-based bone grafts. In this case series, a 1:1 ratio mix of MGCSH and mineralized irradiated cancellous bone allograft (MICBA) was mixed with saline and grafted into an extraction socket in an effort to maintain alveolar height and width for future implant placement. MGCSH can be used in combination with other bone grafts and can improve handling characteristics and graft particle containment of particle-based bone grafts. In the cases described, we found that an MGCSH:MICBA graft can potentially be an effective bone graft composite. It has the ability to act as a space maintainer and as an osteoconductive trellis for bone cells, thereby promoting bone regeneration in the extraction socket. MGCSH, a cost-effective option, successfully improved MICBA handling characteristics, prevented soft tissue ingrowth, and assisted in the regeneration of bone. PMID:21905884

  12. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  13. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion. PMID:27098659

  14. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study

    PubMed Central

    Strube, Patrick; Funk, Julia F.; Gross, Christian; Mönig, Hans-Joachim; Perka, Carsten; Pruss, Axel

    2009-01-01

    The current gold standard in lumbar fusion consists of transpedicular fixation in combination with an interbody interponate of autologous bone from iliac crest. Because of the limited availability of autologous bone as well as the still relevant donor site morbidity after iliac crest grafting the need exists for alternative grafts with a comparable outcome. Forty patients with degenerative spinal disease were treated with a monosegmental spondylodesis (ventrally, 1 PEEK-cage; dorsally, a screw and rod system), and randomly placed in two groups. In group 1, autogenous iliac crest cancellous bone was used as a cage filling. In group 2 the cages were filled with an allogenic cancellous bone graft. Following 3, 6, 9 and 12 months, the clinical outcome was determined on the basis of: the Oswestry Low Back Pain Disability Questionnaire; patient satisfaction; patient willingness to undergo the operation again; and a visual analog scale for pain. The radiological outcome was based on both fusion rate (radiographs, computed tomography), and on the bone mineral density of the grafts. After 6 months, the X-rays of the patients in group 2 had a significantly lower rate of fusion. Aside from this, there were no further significant differences. After 12 months, radiological results showed a similar fusion rate in both groups. Donor site complications consisted of five patients with hematoma, and three patients with persistent pain in group 1. No implant complications were observed. If a bone bank is available for support and accepting the low risk of possible transmission of infectious diseases, freeze–dried allogenic cancellous bone can be used for monosegmental spondylodeses. The results demonstrated an equivalent clinical outcome, as well as similar fusion rates following a 12-month period. This is in despite of a delayed consolidation process. PMID:19148687

  15. Vascularized bone graft for scaphoid nonunions.

    PubMed

    Mih, Alexander D

    2004-09-01

    Scaphoid fracture nonunion remains a challenging problem that may persist despite traditional methods of bone grafting and internal fixation. The alteration of wrist mechanics created by nonunion as well as the development of avascular necrosis leads to degenerative change of the radiocarpal joint accompanied by loss of motion and pain. The use of a vascularized bone graft has the theoretical benefit of increased blood flow that exceeds that of nonvascularized grafts. Numerous sources of vascularized bone graft have been described, including those from remote sites as well as from the carpus and distal radius. Knowledge of the blood supply to the distal radius has allowed for development of several vascularized bone graft harvest sites. The results of vascularized bone grafting from the distal radius have been encouraging, with numerous authors reporting the successful treatment of scaphoid nonunions. PMID:16518108

  16. Reconstruction of the mandible by bone graft and metal prosthesis.

    PubMed

    Kummoona, Raja

    2009-07-01

    This clinical research was carried out in the Maxillofacial Unit, Surgical Specialties Hospital, Medical City, Baghdad, and included 188 patients with mandibular defects. The patients' ages ranged from 4 to 70 years (mean, 37 years); 60 of them were female, and 128 were male. One hundred twenty-six patients represent 67.03% of total cases with benign and locally aggressive tumors and malignant tumors of the mandible and oral cavity. Eighty-four cases (44.68%) of these were benign, 42 cases (22.34%) were malignant tumors, and 62 patients constitute about 32.98% with mandibular defect of posttraumatic missile injuries. Reconstruction of the mandible were done by a variety of techniques ranging from immediate reconstruction of the mandible by chrome-cobalt prosthesis, Kirschner wire, rib graft and bone graft from the iliac crest, and other additional technique of reimplanted condyle, secured with bone graft, and Dacron osteomesh tray carrying cancellous bone harvested from iliac crest. Long-term follow-up ranged between 5 and 10 years.The aim of these study was to share experience and to present an interesting pathology and methods of reconstruction of the mandible by metal prosthesis and bone graft; the management of these cases was a difficult task to be approached in some cases and was a surgical challenge to us. PMID:19521256

  17. Response of canine bone to a synthetic bone graft material.

    PubMed

    St John, K R; Zardiackas, L D; Black, R J; Armstrong, R

    1993-01-01

    A model simulating a spiral diaphyseal fracture with butterfly fragments and bone loss was utilized to evaluate an hydroxyapatite/tricalcium phosphate, and collagen composite bone graft substitute in twelve dogs. The resultant grafted and contralateral control femora were tested in torsion at one year. This study examines the histological response to the graft material as well as crack propagation and fracture surface morphology using light microscopy and SEM. SEM and gross evaluation of the grafted bones revealed that 8/12 had fractured through bone outside the osteotomy site and all fractures included bone outside the graft site. No graft material was demonstrated at the points of initiation or termination of fracture for any of the bones. It was apparent that recorticalization had begun to occur at the graft site but the canal had not yet fully formed. The HA/TCP was seen to be tightly bound in tissue which had the appearance of new bone. Bone was found to be in direct apposition to the surface of the ceramic and within pores with no intervening soft tissue. Much of the new bone had remodeled into well organized Haversian systems with some patchy areas of woven bone and osteoid seen with polarized light illumination. PMID:10148784

  18. Engineering anatomically shaped human bone grafts

    PubMed Central

    Grayson, Warren L.; Fröhlich, Mirjam; Yeager, Keith; Bhumiratana, Sarindr; Chan, M. Ete; Cannizzaro, Christopher; Wan, Leo Q.; Liu, X. Sherry; Guo, X. Edward; Vunjak-Novakovic, Gordana

    2009-01-01

    The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a “biomimetic” scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle—in vitro cultivation of viable bone grafts of complex geometries—to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions. PMID:19820164

  19. Piezo harvesting of bone grafts from the anterior iliac crest: A technical note

    PubMed Central

    Ylikontiola, Leena P.; Lehtonen, Ville; Sándor, George K.

    2016-01-01

    Background: Autogenous bone graft harvesting from the iliac crest is associated with donor site morbidity. The aim of this report is to describe the use of piezosurgery as an attempt at morbidity reduction. Materials and Methods: A piezosurgical handpiece and its selection of tips can easily be accommodated in an iliac crest wound to osteotomize and allow the harvest and delivery of autogenous bone grafts. Results: Corticocancellous blocks or cancellous strips of autogenous bone can be readily harvested using a piezosurgical technique at the anterior iliac crest. Conclusion: Piezosurgery avoids some of the traumatic aspects of harvesting bone associated with the use of conventional rotary instruments or saws.

  20. Controlling Bone Graft Substitute Microstructure to Improve Bone Augmentation.

    PubMed

    Sheikh, Zeeshan; Drager, Justin; Zhang, Yu Ling; Abdallah, Mohamed-Nur; Tamimi, Faleh; Barralet, Jake

    2016-07-01

    Vertical bone augmentation procedures are frequently carried out to allow successful placement of dental implants in otherwise atrophic ridges and represent one of the most common bone grafting procedures currently performed. Onlay autografting is one of the most prevalent and predictable techniques to achieve this; however, there are several well documented complications and drawbacks associated with it and synthetic alternatives are being sought. Monetite is a bioresorbable dicalcium phosphate with osteoconductive and osteoinductive potential that has been previously investigated for onlay bone grafting and it is routinely made by autoclaving brushite to simultaneously sterilize and phase convert. In this study, monetite disc-shaped grafts are produced by both wet and dry heating methods which alter their physical properties such as porosity, surface area, and mechanical strength. Histological observations after 12 weeks of onlay grafting on rabbit calvaria reveal higher bone volume (38%) in autoclaved monetite grafts in comparison with the dry heated monetite grafts (26%). The vertical bone height gained is similar for both the types of monetite grafts (up to 3.2 mm). However, it is observed that the augmented bone height is greater in the lateral than the medial areas of both types of monetite grafts. It is also noted that the higher porosity of autoclaved monetite grafts increases the bioresorbability, whereas the dry heated monetite grafts having lower porosity but higher surface area resorb to a significantly lesser extent. This study provides information regarding two types of monetite onlay grafts prepared with different physical properties that can be further investigated for clinical vertical bone augmentation applications. PMID:27214877

  1. Experimental models for cancellous bone healing in the rat

    PubMed Central

    Bernhardsson, Magnus; Sandberg, Olof; Aspenberg, Per

    2015-01-01

    Background and purpose — Cancellous bone appears to heal by mechanisms different from shaft fracture healing. There is a paucity of animal models for fractures in cancellous bone, especially with mechanical evaluation. One proposed model consists of a screw in the proximal tibia of rodents, evaluated by pull-out testing. We evaluated this model in rats by comparing it to the healing of empty drill holes, in order to explain its relevance for fracture healing in cancellous bone. To determine the sensitivity to external influences, we also compared the response to drugs that influence bone healing. Methods — Mechanical fixation of the screws was measured by pull-out test and related to the density of the new bone formed around similar, but radiolucent, PMMA screws. The pull-out force was also related to the bone density in drill holes at various time points, as measured by microCT. Results — The initial bone formation was similar in drill holes and around the screw, and appeared to be reflected by the pull-out force. Both models responded similarly to alendronate or teriparatide (PTH). Later, the models became different as the bone that initially filled the drill hole was resorbed to restore the bone marrow cavity, whereas on the implant surface a thin layer of bone remained, making it change gradually from a trauma-related model to an implant fixation model. Interpretation — The similar initial bone formation in the different models suggests that pull-out testing in the screw model is relevant for assessment of metaphyseal bone healing. The subsequent remodeling would not be of clinical relevance in either model. PMID:26200395

  2. Tripled semitendinosus-cancellous bone anterior cruciate ligament reconstruction with bioscrew fixation.

    PubMed

    Barber, F A

    1999-05-01

    A prospective evaluation of a tripled semitendinosus-autologous cancellous bone plug ACL reconstruction, secured with bioabsorbable interference screws (Bioscrew; Linvatec, Largo, FL) made of polyL-lactic acid, was undertaken from July 1994 through August 1995. A total of 21 patients with 22 anterior cruciate ligament (ACL) reconstructions were followed-up an average 29 months (range, 20 to 45). The average age was 38 years (range, 24 to 48 years). Tegner and Lysholm scores were 2.1 and 46, respectively, preoperatively and increased postoperatively to 4.4 and 90. KT tests at 24 months follow-up showed an average 20-lb laxity of 1.4 mm, an average 30-lb laxity of 2.1 mm, and an average KT maximum manual side-to-side difference of 2.9 mm. A pivot shift was absent in all but two patients at final follow-up. Full extension was rapidly achieved in all cases and flexion averaged 135 degrees at follow-up. No problems with the poly L-lactic acid interference screws occurred. These data support the effectiveness of Bioscrew fixation of the tripled semitendinosus-cancellous bone graft ACL reconstruction, which achieves both anatomic graft position and anatomic graft fixation. PMID:10355710

  3. Cancellous Bone Osseointegration Is Enhanced by In Vivo Loading

    PubMed Central

    Yang, Xu; Kelly, Natalie H.; Han, Jane; Nair, Turya; Wright, Timothy M.; van der Meulen, Marjolein C.H.; Bostrom, Mathias P.G.

    2010-01-01

    Biophysical stimuli may be an effective therapy to counteract age-related changes in bone structure that affect the primary stability of implants used in joint replacement or fracture fixation. The influence of controlled mechanical loading on osseointegration was investigated using an in vivo device implanted in the distal lateral femur of 12 male rabbits. Compressive loads (1 MPa, 1 Hz, 50 cycles/day, 4 weeks) were applied to a porous titanium foam implant and the underlying cancellous bone. The contralateral limbs served as nonloaded controls. Backscattered electron imaging indicated that the amount of bone ingrowth was significantly greater in the loaded limb than in the nonloaded control limb, whereas the amount of underlying cancellous periprosthetic bone was similar. No significant difference in the mineral apposition rate of the bone ingrowth or periprosthetic bone was measured in the loaded compared to the control limb. Histological analysis demonstrated newly formed woven bone in direct apposition to the implant coating, with a lack of fibrous tissue at the implant–periprosthetic bone interface in both loaded and nonloaded implants. The lack of fibrous tissue demonstrates that mechanical stimulation using this model significantly enhanced cancellous bone ingrowth without the detrimental effects of micromotion. These results suggest that biophysical therapy should be further investigated to augment current treatments to enhance long-term fixation of orthopedic devices. Additionally, this novel in vivo loading model can be used to further investigate the influence of biophysical stimulation on other tissue engineering approaches requiring bone ingrowth into both metallic and nonmetallic cell-seeded scaffolds. PMID:20367497

  4. Mechanical behaviour of Bioactive Glass granules and morselized cancellous bone allograft in load bearing defects.

    PubMed

    Hulsen, D J W; Geurts, J; van Gestel, N A P; van Rietbergen, B; Arts, J J

    2016-05-01

    Bioactive Glass (BAG) granules are osteoconductive and possess unique antibacterial properties for a synthetic biomaterial. To assess the applicability of BAG granules in load-bearing defects, the aim was to compare mechanical behaviour of graft layers consisting of BAG granules and morselized cancellous bone allograft in different volume mixtures under clinically relevant conditions. The graft layers were mechanically tested, using two mechanical testing modalities with simulated physiological loading conditions: highly controllable confined compression tests (CCT) and more clinically realistic in situ compression tests (ISCT) in cadaveric porcine bone defects. Graft layer impaction strain, residual strain, aggregate modulus, and creep strain were determined in CCT. Graft layer porosity was determined using micro computed tomography. The ISCT was used to determine graft layer subsidence in bone environment. ANOVA showed significant differences (p<0.001) between different graft layer compositions. True strains absolutely decreased for increasing BAG content: impaction strain -0.92 (allograft) to -0.39 (BAG), residual strain -0.12 to -0.01, and creep strain -0.09 to 0.00 respectively. Aggregate modulus increased with increasing BAG content from 116 to 653MPa. Porosity ranged from 66% (pure allograft) to 15% (pure BAG). Subsidence was highest for allograft, and remarkably low for a 1:1 BAG-allograft volume mixture. Both BAG granules and allograft morsels as stand-alone materials exhibit suboptimal mechanical behaviour for load-bearing purpose. BAG granules are difficult to handle and less porous, whereas allograft subsides and creeps. A 1:1 volume mixture of BAG and allograft is therefore proposed as the best graft material in load-bearing defects. PMID:26972764

  5. Effect of calvarial burring on resorption of onlay cranial bone graft.

    PubMed

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P < 0.05). Burring the recipient site cortex before onlay cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended. PMID:22976644

  6. Ultrasonic wave propagation and scattering in cancellous bone

    NASA Astrophysics Data System (ADS)

    Wear, Keith A.

    2004-10-01

    Theoretical models and experimental data describing the interaction between ultrasound and cancellous bone will be discussed. Ultrasonic attenuation in cancellous bone is much greater than that for soft tissues and varies approximately linearly with frequency between 400 kHz and 1.7 MHz. Speed of sound in cancellous bone is slightly higher than that for soft tissues and decreases gradually with frequency at diagnostic frequencies (between 300 and 700 kHz). The dependence of phase velocity on porosity may be predicted from theory of acoustic propagation in fluid-filled porous solids. The negative dispersion can be explained using a stratified two-component model. At diagnostic frequencies, scattering varies approximately as frequency to the nth power where 3

  7. Bone-grafting materials in implant dentistry.

    PubMed

    Misch, C E; Dietsh, F

    1993-01-01

    There are three classes of bone-grafting materials based upon the mode of action. Autogenous bone is an organic material and forms bone by osteogenesis, osteoinduction, and osteoconduction. Allografts such as demineralized freeze-dried bone are osteoinductive and osteoconductive and may be cortical and/or trabecular in nature. Alloplasts such as hydroxyapatite and tricalcium phosphate may be synthetic or natural, vary in size, and are only osteoconductive. They can be divided into three types based upon the porosity of the product and include dense, macroporous, and microporous materials. In addition, alloplastic materials may be crystalline or amorphous. These materials have different properties and therefore indications. The use of the three classes of materials in diverse combinations depends upon the size and topography of the bony defect. Small defects or defects with four walls of host bone can be repaired with alloplasts alone or allografts in combination with alloplasts. The loss of three or more bony walls mandates the addition of autogenous bone to the graft or the use of a small pore membrane. The larger the defect, the more autogenous bone is required. The different indications of bone substitutes are discussed as to their specific applications in implant dentistry. PMID:8142935

  8. Influence of the volume of bone defect, bone grafting methods, and hook fixation on stress on the Kerboull-type plate and screw in total hip arthroplasty: three-dimensional finite element analysis.

    PubMed

    Kaku, Nobuhiro; Hara, Katsutoshi; Tabata, Tomonori; Tsumura, Hiroshi

    2015-02-01

    For total hip arthroplasty or revision surgery using acetabular reinforcement cross-plates, choosing between bulk and morselized bone grafts for filling acetabular defects is challenging. We used finite element model (FEM) analysis to clarify various stresses on the cross-plate based on bone defect size, bone graft type, and presence or absence of hook fixation to the bone. We constructed 12-pattern FEMs and calculated the maximum stress generated on the Kerboull-type (KT) plate and screw. Bone defects were classified into four patterns according to the volume. Regarding the bone graft type, bulk bone grafts were considered as cortical bone, and morselized bone grafts were considered to consist of cancellous bone. Models were compared based on whether hook fixation was used and whether a gap was present behind the plate. The upper surface of the host bone was fixed, and a 1,000-N load was imposed on the horizontal axis at 71°. Larger bone defects increased the stress on the KT plate and screws. This stress increased when no bone was grafted; it was lower when bulk cortical bone grafts were used for filling than when morselized cancellous bone grafts were used. For cortical bone grafts, the increased stress on the KT plate and screws was lowered with hook removal. Attaching the hook to the bone and filling the gap behind the KT plate with an adequate bone graft reduced the stress on the KT plate and screws, particularly for large bone defects filled by bulk bone grafting. PMID:24964969

  9. Repair of tegmen defect using cranial particulate bone graft.

    PubMed

    Greene, Arin K; Poe, Dennis S

    2015-01-01

    Bone paté is used to repair cranial bone defects. This material contains bone-dust collected during the high-speed burring of the cranium. Clinical and experimental studies of bone dust, however, have shown that it does not have biological activity and is resorbed. We describe the use of bone paté using particulate bone graft. Particulate graft is harvested with a hand-driven brace and 16mm bit; it is not subjected to thermal injury and its large size resists resorption. Bone paté containing particulate graft is much more likely than bone dust to contain viable osteoblasts capable of producing new bone. PMID:25465655

  10. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model.

    PubMed

    Li, Donghai; Deng, Liqing; Yang, Zhouyuan; Xie, Xiaowei; Kang, Pengde; Tan, Zhen

    2016-04-01

    Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p < 0.05), while the difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p < 0.05) but was similar to that in group B (p > 0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects. PMID:26801475

  11. How bone forms in large cancellous defects: critical analysis based on experimental work and literature.

    PubMed

    Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y

    2011-09-01

    The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. PMID:21742327

  12. Predicting Bone Mechanical Properties of Cancellous Bone from DXA, MRI, and Fractal Dimensional Measurements

    NASA Technical Reports Server (NTRS)

    Harrigan, Timothy P.; Ambrose, Catherine G.; Hogan, Harry A.; Shackleford, Linda; Webster, Laurie; LeBlanc, Adrian; Lin, Chen; Evans, Harlan

    1997-01-01

    This project was aimed at making predictions of bone mechanical properties from non-invasive DXA and MRI measurements. Given the bone mechanical properties, stress calculations can be made to compare normal bone stresses to the stresses developed in exercise countermeasures against bone loss during space flight. These calculations in turn will be used to assess whether mechanical factors can explain bone loss in space. In this study we assessed the use of T2(sup *) MRI imaging, DXA, and fractal dimensional analysis to predict strength and stiffness in cancellous bone.

  13. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis.

    PubMed

    Tomanik, Magdalena; Nikodem, Anna; Filipiak, Jarosław

    2016-12-01

    Bone tissue is a biological system in which the dynamic processes of, among others, bone formation or internal reconstruction will determine the spatial structure of the tissue and its mechanical properties. The appearance of a factor disturbing the balance between biological processes, e.g. a disease, will cause changes in the spatial structure of bones, thus affecting its mechanical properties. One of the bone diseases most common in an increasingly ageing population is osteoarthritis, also referred to as degenerative joint disease. It is estimated that in 2050 about 1300 million people will show symptoms of OA. The appearance of a pathological stimulus disturbs the balance of the processes of degradation and synthesis of articular cartilage, chondrocytes and the extracellular matrix, and the subchondral bone layer. As osteoarthritis progresses, study of the epiphysis reveals increasingly widespread changes of the articular surface and the internal structure of bone tissue. In this paper, the authors point out the differences in the mechanical properties of cancellous bone tissue forming the proximal epiphysis of the femoral bone during the progressive stages of OA. In order to determine microproperties of bone trabeculae, specimens from different stages of the disease (N=9) were subjected to microindentation testing, which made it possible to determine the material properties of bone tissue, such as microhardness HV and Young׳s modulus E. In addition, mechanical tests were supplemented with Raman spectroscopy, which determine the degree of bone mineralization, and measurements of structural properties based on analysis using microCT. The conducted tests were used to establish both quantitative and quantitative description of changes in the structural and mechanical properties connected with reorganization of trabeculae making up the bone in the various stages of osteoarthritis. The proposed description will supplement existing knowledge in the literature about

  14. Quantitative Relationships Between Microdamage and Cancellous Bone Strength and Stiffness

    PubMed Central

    Hernandez, C.J.; Lambers, F.M.; Widjaja, J.; Chapa, C.; Rimnac, C.M.

    2014-01-01

    Microscopic tissue damage (microdamage) is an aspect of bone quality associated with impaired bone mechanical performance. While it is clear that bone tissue submitted to more severe loading has greater amounts of microdamage (as measured through staining), how microdamage influences future mechanical performance of bone has not been well studied, yet is necessary for understanding the mechanical consequences of the presence of microdamage. Here we determine how stained microdamage generated by a single compressive overload affects subsequent biomechanical performance of cancellous bone. Human vertebral cancellous bone specimens (n = 47) from 23 donors (14 male, 9 female, 64–92 years of age) were submitted to a compressive overload, stained for microdamage, then reloaded in compression to determine the relationship between the amount of microdamage caused by the initial load and reductions in mechanical performance during the reload. Damage volume fraction (DV/BV) caused by the initial overload was related to reductions in Young’s modulus, yield strength, ultimate strength, and yield strain upon reloading (p < 0.05, R2 = 0.18–0.34). The regression models suggest that, on average, relatively small amounts of microdamage are associated with large reductions in reload mechanical properties: a 1.50% DV/BV caused by a compressive overload was associated with an average reduction in Young’s modulus of 41.0 ± 3.2 % (mean ± SE), an average reduction in yield strength of 63.1 ± 4.5% and an average reduction in ultimate strength of 52.7 ± 4.0%. Specimens loaded beyond 1.2% (1.2–4.0% apparent strain) demonstrated a single relationship between reload mechanical properties (Young’s modulus, yield strength, and ultimate strength) and bone volume fraction despite a large range in amounts of microdamage. Hence, estimates of future mechanical performance of cancellous bone can be achieved using the bone volume fraction and whether or not a specimen was previously

  15. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts.

    PubMed

    Bolander, M E; Balian, G

    1986-10-01

    A soluble protein component of bone, bone morphogenetic protein, and decalcified bone matrix have been shown to induce the formation of bone in extraosseous tissue. Clinical and animal studies investigating the use of these materials as bone grafts have shown radiographic and histological evidence of formation of bone, but the clinical usefulness of these grafts remains unknown. This study compared the healing processes when plasma-coated demineralized bone matrix and autologous cancellous bone were used to graft segmental defects of bone. A standard procedure was used to make a two-centimeter defect bilaterally in the ulna of forty-eight skeletally mature New Zealand White rabbits. In each rabbit, one ulnar defect was grafted with autologous citrated plasma-coated demineralized bone matrix while the other defect served as a control and was grafted with either autologous cancellous bone from the iliac crest, demineralized bone matrix, or demineralized bone matrix augmented with bone proteins that had been extracted with guanidinium hydrochloride. The ulnar defect was stabilized by the intact radius, and no supplemental device was necessary for fixation. To examine spontaneous healing in this model, one group of rabbits had a control defect that was not grafted. The grafts were periodically evaluated by radiographs, and twelve weeks after surgery the grafts were harvested and tested to failure in a standard torsion-test machine. The mechanical parameters were calculated, and histological examination of major fragments of the grafts was performed. The results of the radiographic and histological evaluation showed that all of the grafted ulnae healed, with fusion of the graft to the cut ends of the defect and reformation of approximately normal anatomy. No ungrafted ulnar defects healed. The results from the mechanical tests were evaluated by comparing the defect that was grafted with plasma-coated demineralized bone matrix with the control graft in each animal. These

  16. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.

    PubMed

    Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E

    2015-12-01

    Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density. PMID:26683412

  17. Osteoinductive PolyHIPE Foams as Injectable Bone Grafts.

    PubMed

    Robinson, Jennifer L; McEnery, Madison A P; Pearce, Hannah; Whitely, Michael E; Munoz-Pinto, Dany J; Hahn, Mariah S; Li, Huinan; Sears, Nicholas A; Cosgriff-Hernandez, Elizabeth

    2016-03-01

    We have recently fabricated biodegradable polyHIPEs as injectable bone grafts and characterized the mechanical properties, pore architecture, and cure rates. In this study, calcium phosphate nanoparticles and demineralized bone matrix (DBM) particles were incorporated into injectable polyHIPE foams to promote osteoblastic differentiation of mesenchymal stem cells (MSCs). Upon incorporation of each type of particle, stable monoliths were formed with compressive properties comparable to control polyHIPEs. Pore size quantification indicated a negligible effect of all particles on emulsion stability and resulting pore architecture. Alizarin red calcium staining illustrated the incorporation of calcium phosphate particles at the pore surface, while picrosirius red collagen staining illustrated collagen-rich DBM particles within the monoliths. Osteoinductive particles had a negligible effect on the compressive modulus (∼30 MPa), which remained comparable to human cancellous bone values. All polyHIPE compositions promoted human MSC viability (∼90%) through 2 weeks. Furthermore, gene expression analysis indicated the ability of all polyHIPE compositions to promote osteogenic differentiation through the upregulation of bone-specific markers compared to a time zero control. These findings illustrate the potential for these osteoinductive polyHIPEs to promote osteogenesis and validate future in vivo evaluation. Overall, this work demonstrates the ability to incorporate a range of bioactive components into propylene fumarate dimethacrylate-based injectable polyHIPEs to increase cellular interactions and direct specific behavior without compromising scaffold architecture and resulting properties for various tissue engineering applications. PMID:26739120

  18. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  19. Mechanical characteristics of impacted morsellised bone grafts used in revision of total hip arthroplasty.

    PubMed

    Giesen, E B; Lamerigts, N M; Verdonschot, N; Buma, P; Schreurs, B W; Huiskes, R

    1999-11-01

    The use of impacted, morsellised bone grafts has become popular in revision total hip arthroplasty (THA). The initial stability of the reconstruction and the effectiveness of any subsequent process of revitalisation and incorporation will depend on the mechanical integrity of the graft. Our aim in this study was to document the time-dependent mechanical properties of the morsellised graft. This information is useful in clinical application of the graft, in studies of migration of the implant and in the design of the joint. We used 16 specimens of impacted, morsellised cancellous bone from the sternum of goats to assess the mechanical properties by confined compression creep tests. Consideration of the graft material as a porous, permeable solid, filled with fluid, allowed determination of the compressive modulus of the matrix, and its permeability to fluid flow. In all specimens the compression tests showed large, irreversible deformations, caused by flow-independent creep behaviour as a result of rolling and sliding of the bone chips. The mean permeability was 8.82 *10(-12) m4/Ns (SD 43%), and the compressive modulus was 38.7 MPa (SD 34%). No correlation was found between the apparent density and the permeability or between the apparent density and the compressive modulus. The irreversible deformations in the graft could be captured by a creep law, for which the parameters were quantified. We conclude that in clinical use the graft is bound to be subject to permanent deformation after operation. The permeability of the material is relatively high compared with, for example, human cartilage. The confined compression modulus is relatively low compared with cancellous bone of the same apparent density. Designs of prostheses used in revision surgery must accommodate the viscoelastic and permanent deformations in the graft without causing loosening at the interface. PMID:10615985

  20. Ultrasonic characterization of cancellous bone using apparent integrated backscatter

    NASA Astrophysics Data System (ADS)

    Hoffmeister, B. K.; Jones, C. I., III; Caldwell, G. J.; Kaste, S. C.

    2006-06-01

    Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R2 = 0.817) and longitudinal (R2 = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R2 = 0.007 transverse, R2 = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.

  1. Experimental study of damage and fracture of cancellous bone using a digital speckle correlation method.

    PubMed

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun

    2008-01-01

    Cancellous bone is a widespread structure in a creatural body, for instance, in the femoral head and spondyle. The damage evolution and crack growth of cattle cancellous bone were studied under three-point-bending load conditions. A series of speckle images with deformation information surrounding the crack tip were recorded, and the full-field displacement distributions were obtained at different loading levels by means of digital speckle correlation method (DSCM). Characterizations of the damage deformation and fracture of cancellous bone were analyzed. These results provide some useful information for studying the fracture behavior of cancellous bone. PMID:18601571

  2. PHYSICOCHEMICAL CHARACTERIZATION OF LYOPHILIZED BOVINE BONE GRAFTS

    PubMed Central

    Galia, Carlos Roberto; Lourenço, André Luis; Rosito, Ricardo; Souza Macedo, Carlos Alberto; Camargo, Lourdes Maria Araujo Quaresma

    2015-01-01

    To evaluate the physicochemical characteristics of lyophilized bovine grafts manufactured on a semi-industrial scale (Orthogen; Baumer S/A*) in accordance with a protocol previously developed by the authors. Methods: The lyophilized bovine bone grafts were characterized by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD), thermogravimetric (TG) analysis, differential exploratory scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) spectroscopy. Results: Ca was the main component (60%) found in the samples, followed by P (28%) and O (5%). The mean (sd) pore size was 316 μm (146.7), ranging from 91.2 to 497.8 μm, and 333.5 μm (304.8), ranging from 87.2 to 963.9 μm, at 50x and 150x magnification, respectively. The hydroxyapatite peaks were at 26°C and 32°C, and mass losses were observed between 250°C and 640°C, corresponding to organic material and water. Two temperature transitions (45.67°C and 91.89°C) showed denaturation of type 1 collagen and dehydration of hydroxyapatite. Conclusion: The physicochemical assessment of lyophilized bovine bone grafts in accordance with the protocol developed at semi-industrial scale confirmed that this product presents excellent biocompatibility, with characteristics similar to natural bone. PMID:27027036

  3. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure

    PubMed Central

    Jun, Sang-Ho; Ahn, Jin-Soo; Lee, Jae-Il; Ahn, Kyo-Jin; Yun, Pil-Young

    2014-01-01

    PURPOSE The purpose of this prospective study was to evaluate the effectiveness of newly developed autogenous tooth bone graft material (AutoBT)application for sinus bone graft procedure. MATERIALS AND METHODS The patients with less than 5.0 mm of residual bone height in maxillary posterior area were enrolled. For the sinus bone graft procedure, Bio-Oss was grafted in control group and AutoBT powder was grafted in experimental group. Clinical and radiographic examination were done for the comparison of grafted materials in sinus cavity between groups. At 4 months after sinus bone graft procedure, biopsy specimens were analyzed by microcomputed tomography and histomorphometric examination for the evaluation of healing state of bone graft site. RESULTS In CT evaluation, there was no difference in bone density, bone height and sinus membrane thickness between groups. In microCT analysis, there was no difference in total bone volume, new bone volume, bone mineral density of new bone between groups. There was significant difference trabecular thickness (0.07 µm in Bio-Oss group Vs. 0.08 µm in AutoBT group) (P=.006). In histomorphometric analysis, there was no difference in new bone formation, residual graft material, bone marrow space between groups. There was significant difference osteoid thickness (8.35 µm in Bio-Oss group Vs. 13.12 µm in AutoBT group) (P=.025). CONCLUSION AutoBT could be considered a viable alternative to the autogenous bone or other bone graft materials in sinus bone graft procedure. PMID:25551014

  4. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  5. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    SciTech Connect

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-07-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding.

  6. Mechanical Properties of a Single Cancellous Bone Trabeculae Taken from Bovine Femur

    NASA Astrophysics Data System (ADS)

    Enoki, Shinichi; Sato, Mitsuhiro; Tanaka, Kazuto; Katayama, Tsutao

    The increase of patients with osteoporosis is becoming a social problem, thus it is an urgent issue to find its prevention and treatment methods. Since cancellous bone is metabolically more active than cortical bone, cancellous bone is often used for diagnosis of osteoporosis and has received much attention within the study of bone. Bone is a hierarchically structured material and its mechanical properties vary at different structural levels, therefore it is important to break down the mechanical testing of bone according to the various levels within bone material. Mechanical properties of cancellous bone is said to be depended on quantities and orientation of trabecular bone. It is supposed that mechanical properties of trabecular bone are constant without depending on any structural arrangement and parts. However, such assumption has not been established in studies of trabecular bone. Furthermore test results have a large margin of error caused by insufficient shape assessment. In this study, three point bending tests of single cancellous bone trabeculae extracted from bovine femur were conducted to evaluate the effects of directions to the femur major axis direction on the mechanical properties. X-ray μCT was used to obtain shape of trabecular bone specimens. Furthermore compression tests of cancellous bone specimens, which were extracted in 10mm cubic geometry, were conducted for evaluation of directional properties.There were small difference in the elastic modulus of the trabecular bones which were extracted in parallel and in perpendicular to the major axis of femur. Considering from the results that the cancellous bone specimens, which were extracted in 10mm cubic geometry, have different elastic properties depending on the tested directions; the bone structure has larger influence than bone material property on the mechanical properties of cancellous bone.

  7. Mandibular Tori: A source of autogenous bone graft

    PubMed Central

    Santhanakrishnan, Muthukumar; Rangarao, Suresh

    2014-01-01

    Restoration of lost alveolar bone support remains as one of the main objectives of periodontal surgery. Amongst the various types of bone grafts available for grafting procedures, autogenous bone grafts are considered to be the gold standard in alveolar defect reconstruction. Although there are various sources for autogenous grafts including the mandibular symphysis and ramus, they are almost invariably not contiguous with the area to be augmented. An alternative mandibular donor site that is continuous with the recipient area and would eliminate the need for an extra surgical site is the tori/exostoses. Bone grafting was planned for this patient as there were angular bone loss present between 35-36 and 36-37. As the volume of bone required was less and bilateral tori were present on the lingual side above the mylohyoid line, the tori was removed and used as a source of autogenous bone graft, which were unnecessary bony extensions present on the mandible and continuous with the recipient area. Post-operative radiographs taken at 6 and 12 month intervals showed good bone fill and also areas of previous pockets, which did not probe after treatment indicates the success of the treatment. The use of mandibular tori as a source of autogenous bone graft should be considered whenever a patient requires bone grafting procedure to be done and presents with a tori. PMID:25624635

  8. The combined effect of parathyroid hormone and bone graft on implant fixation

    PubMed Central

    Daugaard, H.; Elmengaard, B.; Andreassen, T. T.; Baas, J.; Bechtold, J. E.; Søballe, K.

    2013-01-01

    Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseo-integration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1-34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks. PMID:21196558

  9. The effects of early postoperative radiation on vascularized bone grafts

    SciTech Connect

    Evans, H.B.; Brown, S.; Hurst, L.N. )

    1991-06-01

    The effects of early postoperative radiation were assessed in free nonvascularized and free vascularized rib grafts in the canine model. The mandibles of one-half of the dogs were exposed to a cobalt 60 radiation dose of 4080 cGy over a 4-week period, starting 2 weeks postoperatively. The patency of vascularized grafts was confirmed with bone scintigraphy. Histological studies, including ultraviolet microscopy with trifluorochrome labeling, and histomorphometric analyses were performed. Osteocytes persist within the cortex of the vascularized nonradiated grafts to a much greater extent than in nonvascularized, nonradiated grafts. Cortical osteocytes do not persist in either vascularized or nonvascularized grafts subjected to radiation. New bone formation is significantly retarded in radiated grafts compared with nonradiated grafts. Periosteum and endosteum remained viable in the radiated vascularized grafts, producing both bone union and increased bone turnover, neither of which were evident to any significant extent in nonvascularized grafts. Bone union was achieved in vascularized and non-vascularized nonradiated bone. In the radiated group of dogs, union was only seen in the vascularized bone grafts.

  10. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.

    PubMed

    Karim, Lamya; Vashishth, Deepak

    2012-01-01

    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706

  11. DYSAPOPTOSIS OF OSTEOBLASTS AND OSTEOCYTES INCREASES CANCELLOUS BONE FORMATION BUT EXAGGERATES BONE POROSITY WITH AGE

    PubMed Central

    Jilka, Robert L.; O’Brien, Charles A.; Roberson, Paula K.; Bonewald, Lynda F.; Weinstein, Robert S.; Manolagas, Stavros C.

    2013-01-01

    Skeletal aging is accompanied by decreased cancellous bone mass and increased formation of pores within cortical bone. The latter accounts for a large portion of the increase in non-vertebral fractures after age 65 in humans. We selectively deleted Bak and Bax, two genes essential for apoptosis, in two types of terminally differentiated bone cells: the short-lived osteoblasts that elaborate the bone matrix, and the long-lived osteocytes that are immured within the mineralized matrix and choreograph the regeneration of bone. Attenuation of apoptosis in osteoblasts increased their working lifespan and thereby cancellous bone mass in the femur. In long-lived osteocytes, however, it caused dysfunction with advancing age and greatly magnified intracortical femoral porosity associated with increased production of receptor activator of nuclear factor-κB ligand and vascular endothelial growth factor. Increasing bone mass by artificial prolongation of the inherent lifespan of short-lived osteoblasts, while exaggerating the adverse effects of aging on long-lived osteocytes, highlights the seminal role of cell age in bone homeostasis. In addition, our findings suggest that distress signals produced by old and/or dysfunctional osteocytes are the culprits of the increased intracortical porosity in old age. PMID:23761243

  12. A new modified technique for harvest of calcaneal bone grafts in surgery on the foot and ankle.

    PubMed

    Biddinger, K R; Komenda, G A; Schon, L C; Myerson, M S

    1998-05-01

    Reported sites for retrieval of cancellous bone for grafts include the iliac crest, greater trochanter, proximal tibia, and distal tibia. A new lateral technique for retrieval of cancellous bone from the calcaneus is evaluated through anatomic review, quantitative analysis, and retrospective clinical assessment. Of 22 patients managed with this technique over a 2-year period, 17 returned for an evaluation by questionnaire, physical examination, and radiographic follow-up at an average of 7 months after surgery (range, 4-16 months). Complaints/complications were minor: three had minor incisional symptoms, five had medial heel pain (3 caused by plantar fasciitis), and one had unchanged preoperative heel pain secondary to clubfoot deformity. Compared with more extensive bone-grafting procedures, this procedure offers the advantages of bone harvested under local anesthesia using a readily accessible ipsilateral extremity and producing minor complications. PMID:9622424

  13. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.

    PubMed

    Hosokawa, Atsushi

    2010-06-01

    Cancellous bone is a porous material composed of numerous trabecular elements, and its porosity changes according to its position within a bone. In this study, the effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone was numerically investigated using finite-difference time-domain (FDTD) simulations. Fifty four numerical models of cancellous bone were reconstructed from 3-D X-ray microcomputed tomographic (microCT) images at 6 positions in a bovine femoral bone. To generate trabecular structures with distinct porosity distributions, 3 erosion procedures were performed in which the trabecular elements in each cancellous bone model were eroded. In one procedure, erosion was uniformly distributed over the whole spatial region of the cancellous bone model, but in the other 2 procedures, the spatial distribution of erosion was changed in a specific direction. Fast and slow waves propagating through the 3-D microCT cancellous bone models in the porosity-distributed direction were simulated using the viscoelastic FDTD method. The wave amplitudes and propagation speeds of the fast and slow waves were measured for the cancellous bone models eroded by each procedure, and the effect of porosity distribution was investigated in terms of change in the trabecular microstructure. The results suggest that both wave amplitudes increased when porosity distribution was low and when trabecular structure was more uniform, but that the speed of the fast wave increased when porosity distribution was high and when longer trabecular elements were present. PMID:20529708

  14. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep.

    PubMed

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-03-01

    Allogenic bone graft has been considered the gold standard in connection with bone graft material in revision joint arthroplasty. However, the lack of osteogenic potential and the risk of disease transmission are clinical challenges. The use of osteoinductive materials, such as demineralized bone matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10 mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft (gold standard), respectively. A standardized surgical procedure was used. At sacrifice 6 weeks after implantation, both distal femurs were harvested. The implant fixation was evaluated by mechanical push-out testing to test shear mechanical properties between implant and the host bone and by histomorphometry. Non-parametric tests were applied; p < 0.05 was considered significant. Mechanical fixation showed that the strengths among the DBM/CB, DBM/allograft and allograft groups were not statistically different. The strength of the DBM group was 0.01 MPa, which was statistical significantly lower than the other three groups (p < 0.05). Histomorphometry results showed that the bone ongrowth in the DBM group was statistically significantly lower than the other three groups

  15. Assessment of the autogenous bone graft for sinus elevation

    PubMed Central

    Peng, Wang; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-01-01

    Objectives The posterior maxillary region often provides a limited bone volume for dental implants. Maxillary sinus elevation via inserting a bone graft through a window opened in the lateral sinus wall has become the most common surgical procedure for increasing the alveolar bone height in place of dental implants in the posterior maxillary region. The purpose of this article is to assess the change of bone volume and the clinical effects of dental implant placement in sites with maxillary sinus floor elevation and autogenous bone graft through the lateral window approach. Materials and Methods In this article, the analysis data were collected from 64 dental implants that were placed in 24 patients with 29 lacks of the bone volume posterior maxillary region from June 2004 to April 2011, at the Department of Oral and Maxillofacial Surgery, Inha University Hospital. Panoramic views were taken before the surgery, after the surgery, 6 months after the surgery, and at the time of the final follow-up. The influence of the factors on the grafted bone material resorption rate was evaluated according to the patient characteristics (age and gender), graft material, implant installation stage, implant size, implant placement region, local infection, surgical complication, and residual alveolar bone height. Results The bone graft resorption rate of male patients at the final follow-up was significantly higher than the rate of female patients. The single autogenous bone-grafted site was significantly more resorbed than the autogenous bone combined with the Bio-Oss grafted site. The implant installation stage and residual alveolar height showed a significant correlation with the resorption rate of maxillary sinus bone graft material. The success rate and survival rate of the implant were 92.2% and 100%, respectively. Conclusion Maxillary sinus elevation procedure with autogenous bone graft or autogenous bone in combination with Bio-Oss is a predictable treatment method for

  16. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture. PMID:26077722

  17. Microdamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance

    PubMed Central

    Lambers, Floor M.; Bouman, Amanda R.; Rimnac, Clare M.; Hernandez, Christopher J.

    2013-01-01

    Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76±8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young’s modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8±0.5% (no loading) to 3.4±2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young’s modulus caused by fatigue loading (r2 = 0.60, p<0.01). The relationship between reductions in Young’s modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young’s modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance. PMID:24386247

  18. An investigation into the feasibility of implementing fractal paradigms to simulate cancellous bone structure.

    PubMed

    Haire, T J; Ganney, P S; Langton, C M

    2001-01-01

    Cancellous bone consists of a framework of solid trabeculae interspersed with bone marrow. The structure of the bone tissue framework is highly convoluted and complex, being fractal and statistically self-similar over a limited range of magnifications. To date, the structure of natural cancellous bone tissue has been defined using 2D and 3D imaging, with no facility to modify and control the structure. The potential of four computer-generated paradigms has been reviewed based upon knowledge of other fractal structures and chaotic systems, namely Diffusion Limited Aggregation (DLA), Percolation and Epidemics, Cellular Automata, and a regular Grid with randomly relocated nodes. The resulting structures were compared for their ability to create realistic structures of cancellous bone rather than reflecting growth and form processes. Although the creation of realistic computer-generated cancellous bone structures is difficult, it should not be impossible. Future work considering the combination of fractal and chaotic paradigms is underway. PMID:11328644

  19. Decreased cortical and increased cancellous bone in two children with primary hyperparathyroidism.

    PubMed

    Boechat, M I; Westra, S J; Van Dop, C; Kaufman, F; Gilsanz, V; Roe, T F

    1996-01-01

    The basis for this study is two children with primary hyperparathyroidism (PHPT) who radiographically manifested both marked subperiosteal resorption and prominent osteosclerosis. We hypothesize that the parathyroid hormone (PTH) elevation not only increased osteoclastic resorption of cortical bone but also simultaneously enhanced cancellous bone formation, giving rise to osteosclerosis. In this report, we describe the changes in trabecular and cortical bone density, as measured by quantitative computed tomography (QCT), in these two young patients with severe PHPT, before and after removal of a parathyroid adenoma. Before surgery, the radiographic findings of subperiosteal resorption and osteosclerosis were associated with low cortical and high cancellous bone density values in both children. Within 1 week of surgery, both cortical and cancellous bone density values increased and serum concentrations of calcium and, to a lesser degree, phosphorus decreased due to the "hungry bone syndrome." Twelve weeks after parathyroidectomy, QCT bone density values and skeletal radiographs were normal in both patients. The findings suggest that in patients with severe PHPT, the catabolic effect of PTH on cortical bone may be associated with a simultaneous anabolic effect on cancellous bone, and PTH may cause a significant redistribution of bone mineral from cortical to cancellous bone. PMID:8544781

  20. Differences in Non-Enzymatic Glycation and Collagen Crosslinks between Human Cortical and Cancellous Bone

    PubMed Central

    Karim, Lamya; Tang, Simon Y.; Sroga, Grażyna E.; Vashishth, Deepak

    2015-01-01

    Purpose Accumulation of collagen crosslinks (advanced glycation end products [AGEs]) produced by non-enzymatic glycation deteriorates bone's mechanical properties and fracture resistance. Although a single AGE, pentosidine, is commonly used as a representative marker, it is unclear whether it quantitatively reflects total fluorescent AGEs in bone. The goal of this study was to establish the relationship between pentosidine and total AGEs in cancellous and cortical bone. Methods Pentosidine and total AGEs were quantified in 170 human bone samples. Total fluorescent AGEs were measured in 28 additional cancellous and cortical bone specimens of the same apparent volume that were incubated in control or in vitro glycation solutions. Correlations between pentosidine and total AGEs and differences between cortical and cancellous groups were determined. Results Pentosidine was correlated with total AGEs in cancellous bone (r=0.53, p<0.0001) and weakly correlated in cortical bone (r=0.23, p<0.05). There was more pentosidine (p<0.01) and total AGEs (p<0.001) in cancellous than in cortical bone. The in vitro glycation sub-study showed that cancellous bone accumulated more AGEs than cortical bone (p<0.05). Conclusion The relationship between pentosidine and total AGEs and their magnitude of accumulation differed in cancellous and cortical bone of the same apparent volume, and were dependent on the surface-to-volume ratios of each sample. It is important to consider the bone types as two separate entities, and it is crucial to quantify total AGEs in addition to pentosidine to allow for more comprehensive analysis of the effects of non-enzymatic glycation in bone. PMID:23471564

  1. Ultrasonic Pulse Waves Propagating through Cancellous Bone Phantoms with Aligned Pore Spaces

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2006-05-01

    To elucidate the propagation phenomena of ultrasonic waves in cancellous bone related to trabecular structure, pulse waves propagating through three cancellous bone phantoms with different skeletal frames have been experimentally observed using a water-immersion ultrasonic technique. Skeletal frames with regularly aligned pore spaces were formed to imitate the orthotropic trabecular structure, using wire gauzes, punched plates and honeycomb ceramics. The propagations of the fast and slow waves, which were clearly observed in the direction of the trabecular alignment of cancellous bone, were investigated with the frame’s structures of these phantoms.

  2. [Busulfan and cycosporin in bone graft children].

    PubMed

    Bertolle, V; Martin, P; Bleyzac, N; Aulagner, G

    2004-05-01

    Most drugs exhibit both inter- and intra-individual pharmacokinetic and pharmacodynamic variability. This variability explains the different responses observed in patients exposed to standard doses and must be taken into consideration when the therapeutic window is narrow. Population pharmacokinetics provides mean (or median) values of pharmacokinetic parameters as well as the distribution pattern and the statistical relationship with covariables in a group of individuals presenting common characteristics. Among the different methods developed for population pharmacokinetics, the data pool method, as well as the two-step and one-step methods (NONMEM and NPEM) are attractive. Population models can then be developed using bayesian logistics to obtain an estimation of the pharmacokinetic parameters of a given patient and predict the most adapted dose in light of the therapeutic target (residual serum concentration, mean concentration.). Busulfan is an alkylizing agent used instead of radiotherapy for pre-graft preparation before bone marrow grafts in children. This compound requires dose monitoring because of its narrow therapeutic window: under-dosing raises the risk of graft rejection; inversely over-dosing can cause potentially fatal complications such as occlusive venous disease. Interindividual variability is characteristic of busulfan kinetics. Several factors can explain part of this variability: age, underlying disease, changes in liver function, drug bioavailability, chronobiology. The short treatments used (most protocols have 16 doses given in four days) require rapid monitoring to propose effective adjustments. In this context, use of bayesian logistics to estimate the patient's pharmokinetic parameters is very useful for correct dosing. This type of monitoring could also be used for other compounds such as cyclosporine, with a narrow therapeutic window. PMID:15243350

  3. Prostaglandin E2 Restores Cancellous Bone to Immobilized Limb and Adds Bone to Overloaded Limb in Right Hindlimb Immobilization Rats

    NASA Technical Reports Server (NTRS)

    Li, M.; Jee, W. S. S.; Ke, H. Z.; Liang, X. G.; Lin, B. Y.; Ma, Y. F.; Setterberg, R. B.

    1993-01-01

    The purpose of this study was to determine whether prostaglandin E2 (PGE2) can restore cancellous bone mass and architecture to osteopenic, continuously immobilized (IM), proximal tibial metaphysis (PTM) in female rats. The right hindlimb of three and one-half-month-old Sprague-Dawley female rats were immobilized by right hindlimb immobilization (RHLI) in which the right hindlimb was underloaded and the contralateral left limb was overloaded during ambulation. After 4 or 12 weeks of RHLI, the rats were treated with 3 or 6 mg PGE2/kg/day and RHLI for 8 or 16 weeks. Bone histomorphometry was performed on microradiographs of PTM. Immobilization (IM) induced a transient cancellous bone loss and decreased trabecular thickness, number and node density, and increased free end density that established a new steady state after 4 weeks of IM. Three or 6 mg PGE2/kg/d for 8 weeks beginning at 4 or 12 weeks of IM completely restored cancellous bone mass (+127 to +188 percent) and structure to the age-related control levels in spite of continuous IM. Another 8 weeks of treatment maintained bone mass and architecture at these levels. No differences in cancellous bone mass and architecture were found between the overloaded PTM or RHLI rats and the age-related controls. However, 3 and 6 mg/kg/d of PGE2 treatment started at 4 or 12 weeks for 8 weeks significantly increased cancellous bone mass in the overloaded PTM (+45 to +74% of untreated controls), and another 8 weeks of treatment maintained bone mass at these levels. Our findings indicate that daily 3 or 6 mg PGE2/kg/d treatment restores and maintains PTM cancellous bone mass in continuously immobilized (right) tibiae, and adds and maintains extra bone to slightly overloaded PTM cancellous bone in female rats.

  4. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.

    PubMed

    Gorna, Katarzyna; Gogolewski, Sylwester

    2003-12-01

    Autogenous cancellous bone graft is used to heal critical-size segmental long bone defects and defects in the maxillofacial skeleton. Harvesting of bone graft is traumatic, causes morbidity of the donor site, and often results in complications. Thus, there is a need for new biologically functional bone graft substitutes that, instead of autogenous bone graft, could be used to facilitate bone regeneration in critical-size defects. Porous biodegradable elastomeric polyurethane scaffolds combined with the patient's own bone marrow could potentially be such bone substitutes. The elastomeric bone substitute prevents shear forces at the interface between bone and rigid, e.g., ceramic bone substitutes and establishes an intimate contact with the native bone ends, thus facilitating the proliferation of osteogenic cells and bone regeneration. Crosslinked 3D biodegradable polyurethane scaffolds (foams) with controlled hydrophilicity for bone graft substitutes were synthesized from biocompatible reactants. The scaffolds had hydrophilic-to-hydrophobic content ratios of 70:30, 50:50, and 30:70. The reactants used were hexamethylene diisocyanate, poly(ethylene oxide) diol (MW = 600) (hydrophilic component), and poly(epsilon-caprolactone) diol (M(w) = 2000), amine-based polyol (M(w) = 515) or sucrose-based polyol (M(w) = 445) (hydrophobic component), water as the chain extender and foaming agent, and stannous octoate, dibutyltin dilaurate, ferric acetylacetonate, and zinc octoate as catalysts. Citric acid was used as a calcium complexing agent, calcium carbonate, glycerol phosphate calcium salt, and hydroxyapatite were used as inorganic fillers, and lecithin or solutions of vitamin D(3) were used as surfactants. The scaffolds had an open-pore structure with pores whose size and geometry depended on the material's chemical composition. The compressive strengths of the scaffolds were in the range of 4-340 kPa and the compressive moduli in the range of 9-1960 kPa, the values of

  5. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable

  6. Bone graft substitutes for spine fusion: A brief review

    PubMed Central

    Gupta, Ashim; Kukkar, Nitin; Sharif, Kevin; Main, Benjamin J; Albers, Christine E; El-Amin III, Saadiq F

    2015-01-01

    Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins (recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice. PMID:26191491

  7. Bone graft substitutes for spine fusion: A brief review.

    PubMed

    Gupta, Ashim; Kukkar, Nitin; Sharif, Kevin; Main, Benjamin J; Albers, Christine E; El-Amin Iii, Saadiq F

    2015-07-18

    Bone graft substitutes are widely used in the field of orthopedics and are extensively used to promote vertebral fusion. Fusion is the most common technique in spine surgery and is used to treat morbidities and relieve discomfort. Allograft and autograft bone substitutes are currently the most commonly used bone grafts to promote fusion. These approaches pose limitations and present complications to the patient. Numerous alternative bone graft substitutes are on the market or have been developed and proposed for application. These options have attempted to promote spine fusion by enhancing osteogenic properties. In this review, we reviewed biology of spine fusion and the current advances in biomedical materials and biological strategies for application in surgical spine fusion. Our findings illustrate that, while many bone graft substitutes perform well as bone graft extenders, only osteoinductive proteins (recombinant bone morphogenetic proteins-2 and osteogenic protein-1) provide evidence for use as both bone enhancers and bone substitutes for specific types of spinal fusion. Tissue engineered hydrogels, synthetic polymer composites and viral based gene therapy also holds the potential to be used for spine fusion in future, though warrants further investigation to be used in clinical practice. PMID:26191491

  8. Structure and function of the human patella: the role of cancellous bone.

    PubMed

    Townsend, P R; Miegel, R E; Rose, R M

    1976-07-01

    Total joint and other prosthesis often require the removal and replacement of considerable quantities of cancellous bone, and often are anchored in place by grouting into cancellous bone. Thus, a possible source of failure or loosening of many types of prostheses may be rooted in the lack of understanding of the structure, properties, and function of this material. In addition, as we have pointed out before, cancellous bone may play an important biomechanical role in the etiology of joint degeneration. With these considerations in mind, the architecture of the cancellous bone in the human patella was studied by serial sectioning and microradiography, using an improved technique developed in our laboratory. Volumes of cancellous bone with apparently different functional roles were identified. Stereological techniques were used to quantify the structural characteristics and geometrical relationships throughout the patella. These results led to a structural model for the cancellous bone of the patella, and a comprehensive picture of the internal architecture. The distribution of mechanical compliance and yield stress was also measured, as a function of location and orientation, by a specially constructed microcompression testing machine. The measurements reflected the distribution of trabecular architecture, and both the properties and architecture reflected the gross biomechanical function of the patella. Furthermore, a true structure-function relationship was derived. Patellar contact area studies were performed on fresh cadavers and mapped for various angles of flexion. The variation in contact areas and the spatial variations in stiffness are discussed relative to the biomechanics and clinical aspects of the patella. PMID:947922

  9. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  10. Calcium carbonate powder containing gentamicin for mixing with bone grafts.

    PubMed

    Coraça-Huber, Débora; Hausdorfer, Johann; Fille, Manfred; Nogler, Michael; Kühn, Klaus-Dieter

    2014-08-01

    Bone grafts are used for reconstructing bone defects caused by implant-associated complications, trauma, and tumors. Surgery with bone allografts is complex and time consuming; therefore, it is prone to a higher infection rate (2.0%-2.5%). In the case of site infection, systemically administered antibiotics cannot reach the infected bone graft. This study evaluated the use of resorbable bone graft substitute powder (HERAFILL; Heraeus Medical GmbH, Wehrheim, Germany) as a bone void-filling material as well as an antibiotic carrier for mixing with bone grafts. The antibiotic activity of the bone chips mixed with HERAFILL powder was measured by drug release tests and bacterial susceptibility with Bacillus subtilis, Staphylococcus epidermidis, and Staphylococcus aureus. HERAFILL powder was added to the bone chips (bone chips/HERAFILL; w/w = 1:1), mixed with a spatula, and vortexed for 1 minute. Gentamicin base release was evaluated in phosphate-buffered saline for up to 7 days using B subtilis bioassay. Antimicrobial efficacy was tested with S aureus and S epidermidis. The average amount of gentamicin base released from bone chips mixed with HERAFILL at 0 to 12 hours was 99.66 mg/mL. On day 7, the gentamicin base released 0.42 mg/mL. The elution released from bone chips mixed with HERAFILL promoted the formation of a zone of inhibition on S epidermidis and S aureus plates. This study confirmed the capacity of bone grafts to act as antibiotic carriers once mixed with HERAFILL powder. Bone chips mixed with HERAFILL showed efficacy against S aureus and S epidermidis. PMID:25102500

  11. Effect of medullary cavity in cancellous bone on two-wave phenomenon

    NASA Astrophysics Data System (ADS)

    Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami

    2016-07-01

    Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.

  12. A new bone banking technique to maintain osteoblast viability in frozen human iliac cancellous bone.

    PubMed

    Oh, Jung-Hwan; Zöller, Joachim E; Kübler, Alexander

    2002-06-01

    The aim of this study was to develop a new cryopreservation technique to maintain the osteoblast viability in frozen iliac bone and to prove cell viability using cell culture techniques. Human iliac cancellous bones were frozen with and without 10% Me(2)SO at -80 degrees C. The tubes were kept in a -80 degrees C freezer for at least 2 days. After the storage period, the frozen bone was thawed by placing the tube in a 37 degrees C water bath. A serial enzymatic digestion technique using 0.2% collagenase was employed to isolate osteoblast-like cells from the bone. The cells that were released were inoculated into tissue culture flasks containing DMEM supplemented with 10% FCS. They were incubated at 37 degrees C in a humidified atmosphere of 95% air and 5% CO(2). Cells of the second passage were plated at a density of 5 x 10(3)cells/cm(2) in a 24-well plate and used for characterization. For characterization, WST-1 assay, determination of alkaline phosphatase, Type I collagen assay, osteocalcin assay, and von Kossa staining were used. The assays were performed at 3, 6, 9, and 12 days after plating the cells. Based on the results of this study, we conclude that the osteoblast-like cells in the frozen bone can survive, only when the bone is frozen with cryoprotectants to prevent injury during freezing and thawing. PMID:12237093

  13. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  14. Secondary Alveolar Bone Grafting (CLEFTSiS) 2007-2010.

    PubMed

    Paterson, Michael; Rae, Jennifer; Paterson, Paul; Gilgrass, Toby; Devlin, Mark; McIntyre, Grant

    2016-03-01

    Objective To determine whether alveolar bone graft outcomes for unilateral and bilateral cleft lip and palate patients have continued to improve since the reorganization of cleft services in Scotland in 2000. Design Retrospective analysis of postoperative anterior occlusal radiographs. Patients and Participants Eighty-one of 106 patients who were eligible for alveolar bone grafting between 2007 and 2010 had suitable postoperative radiographs available. Interventions Twenty-seven percent of the patients (n = 22) had presurgical orthodontic intervention. All patients underwent alveolar bone grafting with bone harvested from the iliac crest. Main Outcome Measures The Kindelan bone-fill index was used to evaluate success. Weighted kappa statistics were used to assess intra- and interobserver reproducibility. A comparison was made with results from 2000 to 2004 to assess any improvement. Chi-square tests (or Fisher exact test) were used to determine whether outcomes differed depending on the laterality of the cleft, use of presurgical expansion, or age at bone grafting. Results Interobserver scoring agreement was good (weighted kappa = .383). Intraobserver reproducibility was greater (weighted kappas of .835 and .620). Success was achieved in 99% of bone grafts, compared with 76% in the period from 2000 to 2004 (P < .001). There was no statistically significant relationship between the laterality of the cleft (P = 1.000), use of presurgical expansion (P = 1.000), or age at time of bone grafting and outcome (P = .259). Conclusion Scottish secondary alveolar bone graft outcomes improved during 2007 to 2010 in comparison to the 2000 to 2004 results. PMID:26914161

  15. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

    PubMed Central

    Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant

    2015-01-01

    Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973

  16. The Use of Bone Graft Substitute in Hand Surgery

    PubMed Central

    Liodaki, Eirini; Kraemer, Robert; Mailaender, Peter; Stang, Felix

    2016-01-01

    Abstract Bone defects are a very common problem in hand surgery, occurring in bone tumor surgery, in complicated fractures, and in wrist surgery. Bone substitutes may be used instead of autologous bone graft to avoid donor site morbidity. In this article, we will review our experience with the use of Cerament bone void filler (Bonesupport, Lund, Sweden) in elective and trauma hand surgery. A prospective clinical study was conducted with 16 patients treated with this bone graft substitute in our department over a period of 3.5 years. Twelve patients (2 female, 10 male; with an average age of 42.42 years) with monostoic enchondroma of the phalanges were treated and 4 patients (1 female, 3 male; with an average age of 55.25 years) with complicated metacarpal fractures with bone defect. Data such as postoperative course with rating of pain, postoperative complications, functional outcome assessment at 1, 2, 3, 6 months, time to complete remodeling were registered. Postoperative redness and swelling after bone graft substitute use was noticed in 7 patients with enchondroma surgery due to the thin soft-tissue envelope of the fingers. Excellent total active motion of the involved digit was noticed in 10 of 12 enchondroma patients and in all 4 fracture patients at 2-month follow-up. In summary, satisfying results are described, making the use of injectable bone graft substitute in the surgical treatment of enchondromas, as well as in trauma hand surgery a good choice. PMID:27310946

  17. Effect of Vacuum-Assisted Closure Combined with Open Bone Grafting to Promote Rabbit Bone Graft Vascularization

    PubMed Central

    Hu, Chao; Zhang, Taogen; Ren, Bin; Deng, Zhouming; Cai, Lin; Lei, Jun; Ping, Ansong

    2015-01-01

    Background Patients with composite bone non-union and soft tissue defects are difficult to treat. Vacuum-assisted closure (VAC) combined with open bone grafting is one of the most effective treatments at present. The aim of the present study was to preliminarily investigate the effect and mechanism of VAC combined with open bone grafting to promote rabbit bone graft vascularization, and to propose a theoretical basis for clinical work. Material/Methods Twenty-four New Zealand white rabbits were randomly divided into an experimental and a control group. Allogeneic bones were grafted and banded with the proximal femur with a suture. The experimental group had VAC whereas the control group had normal wound closure. The bone vascularization rate was compared based on X-ray imaging, fluorescent bone labeling (labeled tetracycline hydrochloride and calcein), calcium content in the callus, and expression of fibroblast growth factor-2 (FGF-2) in bone allografts by Western blot analysis at the 4th, 8th, and 12th week after surgery. Results At the 4th, 8th, and 12th week after surgery, the results of the tests demonstrated that the callus was larger, contained more calcium (p<0.05), and expressed FGF-2 at higher levels (p<0.05) in the experimental group than in the control group. Fluorescent bone labeling showed the distance between the two fluorescent ribbons was significantly shorter in the control group than in the experimental group at the 8th and 12th week after surgery. Conclusions VAC combined with open bone grafting promoted rabbit bone graft vascularization. PMID:25913359

  18. Temporal Changes of Microarchitectural and Mechanical Parameters of Cancellous Bone in the Osteoporotic Rabbit

    PubMed Central

    Wen, Xin-Xin; Xu, Chao; Wang, Fa-Qi; Feng, Ya-Fei; Zhao, Xiong; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    This study was aimed at elucidating the temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit model induced by ovariectomy (OVX) combined with glucocorticoid (GC) administration. Osteoporotic (OP) group received bilateral OVX combined with injections of GC, while sham group only received sham operation. Cancellous bone quality in vertebrae and femoral condyles in each group was assessed by DXA, μCT, nanoindentation, and biomechanical tests at pre-OVX and 4, 6, and 8 weeks after injection. With regard to femoral condyles, nanoindentation test could detect significant decline in tissue modulus and hardness at 4 weeks. However, BMD and microarchitecture of femoral condylar cancellous bone changed significantly at 6 weeks. In vertebrae, BMD, microarchitecture, nanoindentation, and biomechanical tests changed significantly at 4 weeks. Our data demonstrated that temporal changes of microarchitectural and mechanical parameters of cancellous bone in the osteoporotic rabbit were significant. The temporal changes of cancellous bone in different anatomical sites might be different. The nanoindentation method could detect the changes of bone quality at an earlier stage at both femoral condyle and vertebra in the osteoporotic rabbit model than other methods (μCT, BMD). PMID:25918705

  19. The Palatal Bone Block Graft for Onlay Grafting Combined with Maxillary Implant Placement: A Case Series.

    PubMed

    Gluckman, Howard; Du Toit, Jonathan; Salama, Maurice

    2016-01-01

    The aim of this study was to introduce an intraoral bone block harvesting technique--the palatal bone block graft (PBBG)--as an alternative harvest site for autogenous bone blocks. The PBBG technique was used to onlay graft esthetic zone defects simultaneous to implant placement in five patients. Measurable objectives were used to evaluate outcomes, and treatment was reassessed at up to 6 years. Defects of the maxilla were successfully grafted with PBBG in all five cases, and tissues remained stable at 1- and 6-year follow-ups. Harvesting an autogenous bone block from the palate is an advantageous, predictable, and reproducible method for augmenting buccofacial defects at implant placement, and may be considered as an alternative to conventional intraoral bone block donor sites when treating the maxilla. PMID:27333009

  20. Pharmacokinetics of Cefuroxime in Porcine Cortical and Cancellous Bone Determined by Microdialysis

    PubMed Central

    Hardlei, Tore Forsingdal; Bendtsen, Michael; Bue, Mats; Brock, Birgitte; Fuursted, Kurt; Søballe, Kjeld; Birke-Sørensen, Hanne

    2014-01-01

    Traditionally, the pharmacokinetics of antimicrobials in bone have been investigated using bone biopsy specimens, but this approach suffers from considerable methodological limitations. Consequently, new methods are needed. The objectives of this study were to assess the feasibility of microdialysis (MD) for measuring cefuroxime in bone and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. The measurements were conducted in bone wax sealed and unsealed drill holes in cortical bone and in drill holes in cancellous bone and in subcutaneous tissue. As a reference, the free and total plasma concentrations were also measured. The animals received a bolus of 1,500 mg cefuroxime over 30 min. No significant differences were found between the key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone. The mean ± standard error of the mean area under the concentration-time curve (AUC) values from 0 to 5 h were 6,013 ± 1,339, 3,222 ± 1086, 2,232 ± 635, and 952 ± 290 min · μg/ml for free plasma, subcutaneous tissue, cancellous bone, and cortical bone, respectively (P < 0.01, analysis of variance). The AUC for cortical bone was also significantly different from that for cancellous bone (P = 0.04). This heterogeneous tissue distribution was also reflected in other key pharmacokinetic parameters. This study validates MD as a suitable method for measuring cefuroxime in bone. Cefuroxime penetration was impaired for all tissues, and bone may not be considered one distinct compartment. PMID:24663019

  1. Penetration of moxifloxacin and levofloxacin into cancellous and cortical bone in patients undergoing total hip arthroplasty.

    PubMed

    Metallidis, S; Topsis, D; Nikolaidis, J; Alexiadou, E; Lazaraki, G; Grovaris, L; Theodoridou, A; Nikolaidis, P

    2007-12-01

    Penetration of levofloxacin and moxifloxacin into cancellous and cortical bone was studied using high-performance liquid chromatography (HPLC) in 16 patients who underwent routine total hip arthroplasty. Our results demonstrate a good degree of penetration into bone for both quinolones. The mean cancellous penetration was 53.86% for moxifloxacin and 54.13% for levofloxacin. The penetration into cortical bone was 41.59% and 34.26% respectively. The concentrations for both quinolones were above the minimum inhibitory concentration (MIC(90s)) for the most common pathogens, so they can be used for the treatment of osteomyelitis. PMID:18230551

  2. Greater Bone Formation Induction Occurred in Aged than Young Cancellous Bone Sites

    NASA Technical Reports Server (NTRS)

    Ke, H. Z.; Jee, W. S. S.; Ito, H.; Setterberg, R. B.; Li, M.; Lin, B. Y.; Liang, X. G.; Ma, Y. F.

    1993-01-01

    We have determined the differences in the effects of continual prostaglandin E(sub 2) (PGE(sub 2) treatment in aged (non-growing) and young (growing) cancellous bone sites in 7-month-old Sprague-Dawley rats. The sites involved are the aged distal tibial metaphysis (DTM) with a closed epiphysis and the young proximal tibial metaphysis (PTM) with a slow growing, open epiphysis. The study involved rats treated with 0, 1, 3 or 6 mg PGE(sub 2)/kg/d for 60, 120 and 180 days. Static and dynamic histomorphometry of percent trabecular area, and tissue-referent bone formation rate (BFR/TV) were determined in both DTM and PTM. In pretreatment controls, the secondary spongiosa of the two metaphyses contain the same amount of cancellous bone (11% in DTM vs. 13% in PTM), but markedly less bone formation in DTM (0.6%/y in DTM vs. 41.5%/y in PTM). After 60 days of 6 mg PGE(sub 2)/kg/d treatment, %Tb.Ar was increased 607% in DTM and 199% in PTM, BFR/TV was increased to nearly 14 fold in DTM and only 5 fold in PTM. These results indicated the aged metaphysis of the DTM was much more responsive to PGE(sub 2) treatment than young, growing metaphysis of the PTM. The results of 120 and 180 days treatment did not significantly differ from 60 days treatment in both sites, indicating that the effect of continuous daily PGE2 treatment were in equilibrium after 60 days. We concluded that aged metaphysis was much more responsive to PGE(sub 2) treatment than young growing metaphysis.

  3. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  4. Tissue-engineered autologous grafts for facial bone reconstruction.

    PubMed

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  5. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    PubMed

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc. PMID:8148671

  6. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate (the distal tibial metaphysis, DTM) to ovariectomy (OVX) and OVX plus a prostaglandin E2 (PGE2) treatment, and compare the site's response to previous findings reported for another site (the proximal tibial metaphysis, PTM). Thirty-five 3-month old female Sprague-Dawley rats were divided into five groups: basal, sham-OVX, and OVX+0, +1, or +6 mg PGE2/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20-micron-thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months post-OVX; there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE2/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE2/kg/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation without altering bone resorption. Furthermore, after PGE2 administration, the DTM, a cancellous bone site with a closed growth plate, inereased bone formation more than did the cancellous bone in the PTM.

  7. Prostaglandin E2 Adds Bone to a Cancellous Bone Site with a Closed Growth Plate and Low Bone Turnover in Ovariectomized Rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Ke, H. Z.; Jee, W. S. S.

    1994-01-01

    The objects of this study were to determine the responses of a cancellous bone site with a closed growth plate, (the distal tibial metaphysis (DTM), to ovariectomy (OVX) and OVX plus a prostaglandin E(2) treatment, and compare the site's response to previous findings reported for another site, the proximal tibial metaphysis (PTM). Thirty five 3-month old female Sprague-Dawley rats were divided into five groups; basal, sham OVX, and OVX+0, +1, or +6 mg PGE(2)/kg/d injected subcutaneously for 3 months and given double fluorescent labels before sacrifice. Cancellous bone histomorphometric analyses were performed on 20 micrometer thick undecalcified DTM sections. Similar to the PTM, the DTM showed age-related decreases in bone formation and increases in bone resorption, but it differed in that at 3 months POST OVX there was neither bone loss nor changes in formation endpoints. Giving 1 mg PGE(2)/kg/d to OVX rats prevented most age-related changes and maintained the bone formation histomorphometry near basal levels. Treating OVX rats with 6 mg PGE(2)/kd/d prevented age-related bone changes, added extra bone, and improved microanatomical structure by stimulating bone formation, without altering bone resportion. Futhermore, After PGE(2) admimnistration, the DTM, a cancellous bone site with a closed growth plate, increased bone formation more than did the cancellous bone in the PTM.

  8. Anabolic Responses of an Adult Cancellous Bone Site to Prostaglandin E2 in the Rat

    NASA Technical Reports Server (NTRS)

    Ito, Hiroshi; Ke, Hua Zhu; Jee, Webster S. S.; Sakou, Takashi

    1993-01-01

    The objects of this study were to determine: (1) the response of a non-growing cancellous bone site to daily prostaglandin E2 (PGE2) administration; and (2) the differences in the effects of daily PGE2, administration in growing (proximal tibial metaphysis, PTM) and non-growing cancellous bone sites (distal tibial metaphysis, DTM). Seven-month-old male Sprague-Dawley rats were given daily subcutaneous injections of 0, 1, 3 and 6 mg PGE2/kg per day for 60, 120 and 180 days. The static and dynamic histomorphometric analyses were performed on double-fluorescent labeled undecalcified distal tibial metaphyses (DTM). No age-related changes were found in static and dynamic histomorphometry of DTM cancellous bone between 7 and 13 months of age. The DTM of 7-month-old (basal controls) rats consisted of a 24.5 +/- 7.61%-metaphyseal cancellous bone mass, and a thick trabeculae (92 +/- 12 micro-m). It also had a very low tissue-base bone formation rate (3.0 +/- 7.31%/year). Exogenous PGE2 administration produced the following transient changes in a dose-response manner between zero and 60 days: (1) increased trabecular bone mass and improved architecture (increased trabecular bone area, width and number, and decreased trabecular separation); (2) increased trabecular interconnections: (3) increased bone formation parameters; and (4) decreased eroded perimeter. A new steady state with more cancellous bone mass and higher bone turnover was observed from day 60 onward, The elevated bone mass induced by the first 60 days of PGE2 treatment was maintained by another 60 and 120 days with continuous daily PGE2 treatment. When these findings were compared to those previously reported for the PTM, we found that the DTM was much more responsive to PGE2 treatment than the PTM. Percent trabecular bone area and tissue based bone formation rate increased significantly more in DTM as compared to PTM after the 60 days of 6 mg PGE2 treatment. These observations indicate that a non

  9. Microvascular anastomoses for bone grafts in the treatment of massive defects in bone.

    PubMed

    Weiland, A J; Daniel, R K

    1979-01-01

    Six patients with large defects in bone are described in whom we performed microvascular anastomoses of grafted fibular vessels (arteries and veins) to vessels in the recipient site. Two other patients, with massive loss of bone and skin, were treated by grafting of osteocutaneous composites also using microvascular anastomoses. All but one defect healed successfully. There is a wide potential for applications of these two techniques in the treatment of large segmental bone defects secondary to trauma or following tumor resection. PMID:365868

  10. The current status of free vascularized bone grafts.

    PubMed

    Taylor, G I

    1983-01-01

    In the last decade, free vascularized bone transfer has become an established technique, with success rates above 90 per cent reported in most series. These operations have special application for those situations in which the bone defect is large, the recipient bed is poorly vascularized, and there is an associated soft tissue deficiency. The donor sites now include the fibula, iliac crest, rib, metatarsal, radius, and scapula. Because this is a rapidly expanding field of surgical endeavor, much of the work is unpublished and information in some instances has been obtained necessarily from recent clinical meetings and by personal communication with surgeons. Our experience of 41 bone transfers, using the fibula and the iliac crest as the donor grafts, over a 9-year period has been presented. In general, the fibula is recommended for the reconstruction of a long bone. In the lower extremity it should be placed within the medullary cavity of the recipient bone ends so as to be sited in the line of the weight-bearing stress. The iliac osteocutaneous graft is ideal for reconstructing the mandible and other curved bones but can be used also for shorter defects of the tibia. With appropriate osteotomies the curvature of this bone can be increased or straightened to satisfy the requirements of the recipient site. Stress fracture of a long graft is not uncommon in the lower extremity, especially in adults. Nevertheless, this is followed usually by rapid formation of callus at the fracture site and hypertrophy of the bone. The use of angiography, replica bone models, and trial operations on cadavers is recommended in planning. Operative refinements include a simpler dissection of the fibula with a thinner sleeve of muscle; shaping the iliac bone graft while it is still attached at the donor site; and the suture of vein grafts to the bone graft on a side table when the pedicle is too short. Finally, it must be remembered that these are still relatively sophisticated

  11. Bone graft complications: what can we do to prevent them?

    NASA Astrophysics Data System (ADS)

    Tandon, Rahul; Herford, Alan S.

    2014-03-01

    Introduction: Bone grafts are commonly used in oral and maxillofacial surgery, helping to restore missing bone structure and provide osseous support. In spite of their reported success, complications can and do arise. Examples include loosening and resorption of the graft, infection, and complete loss of the graft. These complications can potentially lead to larger defects, necessitating additional procedures to correct the problem. This not only causes great discomfort to the patient, but also drains considerable time and resources away from the clinician. Thus, improvements on identifying ways to identify and prevent these complications are constantly being sought. We have performed a literature review and identified several areas in the field of optics that could potentially help solve our problem. Optical Techniques: Raman spectroscopy has been shown to provide a transcutaneous measurement of bone mineral and matrix Raman bands. This could potentially provide surgeons with the ability to more accurately assess bone graft osseointegration. In-vivo near-infrared optical imaging could potentially provide accurate diagnosis of pathologic lesions such as osteosarcoma. Contrast-enhanced ultrasound could be used to detect vascular disturbances and other information related to the transplantation of osseous components. Conclusion: Bone graft complications can be one of the most devastating consequences of osseous surgery. As surgeons, we are constantly searching for ways to identify them earlier and prevent them. We hope that by presenting areas that could be used, we can gain a better insight to ways in which both fields can benefit.

  12. Osteosynthesis of ununited femoral neck fracture by internal fixation combined with iliac crest bone chips and muscle pedicle bone grafting

    PubMed Central

    Baksi, D D; Pal, A K; Baksi, D P

    2016-01-01

    Background: Ununited femoral neck fracture is seen commonly in developing countries due to delayed presentation or failure of primary internal fixation. Such fractures, commonly present with partial or total absorption of femoral neck, osteonecrosis of femoral head in 8–30% cases with upward migration of trochanter posing problem for osteosynthesis, especially in younger individuals. Several techniques for treatment of such conditions are described like osteotomies or nonvascularied cortical or cancellous bone grafting provided varying degrees of success in terms of fracture union but unsatisfactory long term results occurred due to varying incidence of avascular necrosis (AVN) of femoral head. Moreover, in presence of AVN of femoral head neither free fibular graft nor cancellous bone graft is satisfactory. The vascularied bone grafting by deep circumflex iliac artery based on iliac crest bone grafting, free vascularied fibular grafting and muscle pedicle periosteal grafting showed high incidence of success rate. Osteosynthesis is the preferred treatment of choice in ununited femoral neck fracture in younger individuals. Materials and Methods: Of the 293 patients operated during the period from June 1977 to June 2009, 42 were lost to followup. Seven patients with gluteus medius muscle pedicle bone grafting (MPBG) were excluded. Thus, out of 244 patients, 208 (85.3%) untreated nonunion and 36 (14.7%) following failure of primary internal fixation were available for studies. Time interval between the date of injury and operation in untreated nonunion cases was mean 6.5 months and in failed internal fixation cases was mean 11.2 months. Ages of the patients varied from 16 to 55 years. Seventy patients had partial and 174 had subtotal absorption of the femoral neck. Evidence of avascular necrosis (AVN) femoral head was found histologically in 135 (54.3%) and radiologically in 48 (19.7%) patients. The patients were operated by open reduction of fracture, cannulated hip

  13. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  14. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  15. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women.

    PubMed

    Misof, B M; Dempster, D W; Zhou, Hua; Roschger, P; Fratzl-Zelman, N; Fratzl, P; Silverberg, S J; Shane, E; Cohen, A; Stein, E; Nickolas, T L; Recker, R R; Lappe, J; Bilezikian, J P; Klaushofer, K

    2014-10-01

    Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD. PMID:25134800

  16. Osteostimulatory effect of bone grafts on fibroblast cultures

    PubMed Central

    Fathima, Hameed; Harish

    2015-01-01

    Objective: We analyzed the morphological changes and alkaline phosphatase (ALP) level in fibroblast, which is indicative of their functional ability when cultured in three different commercially available graft materials with osseoconductive property. Materials and Methods: Fibroblasts obtained from fifth passage were seeded within three different bone substitutes (bovine hydroxyapatite [HA] [Osseo-graft®], β-tricalciumphosphate [RTR®], bovine HA [Bio-oss®]) and incubated under standard cell culture conditions. 10 samples in each group were evaluated for cell morphology and alkaline phosphates activity using scanning electron microscopy and spectrophotometric analysis on the 7th day of culture. Results: Fibroblast cultured with RTR® showed changes in morphology and increase in ALP activity when compared to fibroblast cultured with Osseo-graft® and Bio-oss®. Conclusion: Alkaline phosphatase activity was observed in fibroblasts when cultured with three types of commercially available bone grafts. ALP activity was highest when cultured with β-tricalcium phosphate graft material indicating its better bone regenerating capacity of this graft material. PMID:26283815

  17. Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties.

    PubMed

    Rohlmann, A; Zilch, H; Bergmann, G; Kölbel, R

    1980-01-01

    The time independent material behavior of cylindrical specimens obtained from the cancelous bone of 20 cadaveric human femora were determined. In this part of the publication, the nominal values for compressive strength, limits of elasticity (yield point), strain, elastic modulus and apparent density are being reported for the cancellous bone of the femoral head and condyle. The correlations between the various parameters are analysed. A positive linear correlation between the four parameters compressive stength, limit of elasticity, modulus of elasticity and apparent density could not be excluded. The material properties vary considerably both within one single bone and between individuals. Compressive strength, modulus of elasticity and apparent density found for cancellous bone of the femoral head are greater than those found in the condyles. Within the condyles, compressive strength, elastic modulus and apparent density increase from the proximal parts to the parts closer to the joint. The medial femoral condyle showed higher compressive strength than the lateral one. Relating each of the three other parameters to the apparent density of the individual specimen did not result in equalizing the data for the material properties. This indicates that the mechanical properties of cancellous bone are strongly related to the direction of loading. PMID:7458606

  18. Voxel Size and Measures of Individual Resorption Cavities in Three-Dimensional Images of Cancellous Bone

    PubMed Central

    Tkachenko, E.V.; Slyfield, C.R.; Tomlinson, R.E.; Daggett, J.R.; Wilson, D.L.; Hernandez, C.J.

    2009-01-01

    Cavities formed by osteoclasts on the surface of cancellous bone during bone remodeling (resorption cavities) are believed to act as stress risers and impair cancellous bone strength and stiffness. Although resorption cavities are readily detected as eroded surfaces in histology sections, identification of resorption cavities in three-dimensional images of cancellous bone has been rare. Here we use sub-micron resolution images of rat lumbar vertebral cancellous bone obtained through serial milling (n=5) to determine how measures of the number and surface area of resorption cavities are influenced by image resolution. Three-dimensional images of a 1mm cube of cancellous bone were collected at 0.7 X 0.7 X 5.0 μm/voxel using fluorescence based serial milling and uniformly coarsened to four other resolutions ranging from 1.4 X 1.4 X 5.0 to 11.2 X 11.2 X 10 μm/voxel. Cavities were identified in the three-dimensional image as an indentation on the cancellous bone surface and were confirmed as eroded surfaces by viewing two-dimensional cross-sections (mimicking histology techniques). The number of cavities observed in the 0.7 X 0.7 X 5.0 μm/voxel images (22.0 ± 1.43, mean ± SD) was not significantly different from that in the 1.4 X 1.4 X 5.0 μm/voxel images (19.2 ± 2.59) and an average of 79% of the cavities observed at both of these resolutions were coincident. However, at lower resolutions, cavity detection was confounded by low sensitivity (<20%) and high false positive rates (>40%). Our results demonstrate that when image voxel size exceeds 1.4 X 1.4 X 5.0 μm/voxel identification of resorption cavities by bone surface morphology is highly inaccurate. Experimental and computational studies of resorption cavities in three-dimensional images of cancellous bone may therefore require images to be collected at resolutions of 1.4 μm/pixel in-plane or better to ensure consistent identification of resorption cavities. PMID:19482097

  19. Osteofibrous Dysplasia managed with Extraperiosteal excision, Autologous free fibular graft and bone graft substitute

    PubMed Central

    Abraham, Vineet T; Marimuthu, Chandrasekaran; Subbaraj, Ravichandran; Rengarajan, Nandakumar

    2015-01-01

    Introduction: Osteofibrous Dysplasia is a rare benign self-limiting fibro-osseous lesion most commonly seen in the diaphysis of the tibia. Its incidence is reported to be 0.2% of all primary bone tumors. It occurs in the first two decades of life with a slight male preponderance. Surgical options include extra periosteal resection, autologous graft, limb lengthening procedures etc. There are no case reports mentioning the use of synthetic bone graft to fill the defect following extraperiosteal excision. Case Report: A 13 year old girl presented with pain and swelling of the (R) leg since 2 months following a trivial injury at school. Examination revealed a 5×3cm tender swelling on the anteromedial aspect of the middle third tibia. Radiographs and MRI, revealed an eccentric expansile lytic lesion, which was multilocular and was present at the junction of the metaphysis and diaphysis on the antero -medial aspect of tibia. The cortex had ballooned out and there was a possibility of an impending fracture. Biopsy was done which revealed osteofibrous dysplasia. We did an extraperiosteal excision of the lesion. To fill the cavity we harvested 10 cm of the contralateral fibula and since there was still space in the cavity, we packed bone graft substitute (hydroxyapatite crystals) into the defect. The surgical management of osteofibrous dysplasia is controversial. Various methods of treatment of such cases have been described in literature. The use of synthetic graft is an option in these patients as it reduces morbidity; and in our case we had good graft incorporation with this method. Conclusion: Extraperiosteal Excision of Osteofibrous dysplasia combined with autologous free fibular graft and bone graft substitute is a good surgical option to prevent recurrence and mange bone defects in this rare lesion. PMID:27299018

  20. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng-Meng; Jee, Webster S. S.; Ke, Hua-Zhu; Lin, Bai-Yun; Li, Qing-Nan; Li, Xiao-Jian

    1992-01-01

    Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 tLm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at I and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobiliza- tion. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in

  1. Adaptation of Cancellous Bone to Aging and Immobilization in Growing Rats

    NASA Technical Reports Server (NTRS)

    Chen, Meng Meng; Jee, Webster S. S.; Ke, Hua Zhu; Lin, Bia Yun; Li, Qing Nan; Li, Xiao Jian

    1992-01-01

    Two-and-a half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 micron sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55% to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59%c at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9 month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated

  2. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    PubMed Central

    Hoffmeister, Brent K.; Holt, Andrew P.; Kaste, Sue C.

    2012-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term “apparent” means that the parameters are sensitive to the frequency dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions. PMID:21896966

  3. Effects of gas produced by degradation of Mg-Zn-Zr Alloy on cancellous bone tissue.

    PubMed

    Wang, Jingbo; Jiang, Hongfeng; Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao

    2015-10-01

    Mg-Zn-Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P<0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg-Zn-Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. PMID:26117789

  4. [Bone gammagraphy for evaluating free vascularized bone grafts in mandibular reconstruction].

    PubMed

    Serra, J M; Paloma, V; Mesa, F; Ballesteros, A; Richter, J A

    1989-01-01

    In oncology jaw reconstruction, the probability of infection, sequestration and failure in scarring is high. For this reason, we use a vascularized free bone graft, whose direct blood flow makes it much more resistant to support the attendant properly. The use of bone scintigraphy by means of three phases acquisition technique is very effective to evaluate the viability of these vascularized grafts during the first days after surgery, in order to adjust the attendant treatments and to prevent the possible complications. PMID:2641826

  5. Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties.

    PubMed

    Zilch, H; Rohlmann, A; Bergmann, G; Kölbel, R

    1980-01-01

    In part I of this communication we reported on some time independent material properties of cancellous bone specimens from different regions of human femora. In part II we will report on our investigations of the time dependent behaviour, i.e. stress relaxation and creep. Cylindrical specimens were obtained from the head and condyles of pairs of cadaveric femora and subjected to axial loading. The data were evaluated statistically. The medianL values for relaxation of cancellous bone were greater in the femoral head than in the condyles, greater proximally than distally and greater medially than laterally in the condyles. The distribution of creep was found to be the reverse. The correlation analysis showed that a linear correlation between compressive strength, apparent density and the time dependent properties cannot be assumed. The time dependent properties reported here would appear to demonstrate the visco-elastic behaviour of cancellous bone. An experimental foundation and explanation is presented for the clinical practice of re-tightening cancellous bone screws one time only. PMID:7458609

  6. Morsellized bone grafting compensates for femoral bone loss in revision total knee arthroplasty. An experimental study.

    PubMed

    van Loon, C J; de Waal Malefijt, M C; Verdonschot, N; Buma, P; van der Aa, A J; Huiskes, R

    1999-01-01

    This study was undertaken to examine the contribution of uncontained morsellized bone graft to the structural properties of a femoral reconstruction in total knee arthroplasty and to serve as a basis for an in vivo animal study. Ten human distal femora with a standard unicondylar uncontained medial bone defect were prepared to fit a femoral component of a cruciate sacrificing TKA. A cyclic axial load of 750 N was applied to the medial part of the femoral component in the presence of impacted morsellized bone graft. After removal of the bone graft, the cyclic loading was repeated for the unsupported situation. None of the grafts collapsed and all cement mantles stayed intact during the experiments. Elastic deformation during cyclic loading was significantly less when graft was added while time-dependent deformation was not affected. We conclude that impacted morsellized bone graft, used for reconstruction of uncontained femoral bone loss in revision knee arthroplasty, may improve the structural resistance against loading. Further animal experimentation for in vivo application is warranted. PMID:9916775

  7. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores

    PubMed Central

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality. PMID:26064297

  8. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores.

    PubMed

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality. PMID:26064297

  9. Apparent damage accumulation in cancellous bone using neural networks.

    PubMed

    Hambli, Ridha

    2011-08-01

    In this paper, a neural network model is developed to simulate the accumulation of apparent fatigue damage of 3D trabecular bone architecture at a given bone site during cyclic loading. The method is based on five steps: (i) performing suitable numerical experiments to simulate fatigue accumulation of a 3D micro-CT trabecular bone samples taken from proximal femur for different combinations of loading conditions; (ii) averaging the sample outputs in terms of apparent damage at whole specimen level based on local tissue damage; (iii) preparation of a proper set of corresponding input-output data to train the network to identify apparent damage evolution; (iv) training the neural network based on the results of step (iii); (v) application of the neural network as a tool to estimate rapidly the apparent damage evolution at a given bone site. The proposed NN model can be incorporated into finite element codes to perform fatigue damage simulation at continuum level including some morphological factors and some bone material properties. The proposed neural network based multiscale approach is the first model, to the author's knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel fatigue of bone. This is beneficial to develop enhanced finite element models to investigate the role of damage accumulation on bone damage repair during remodelling. PMID:21616468

  10. Effect of vitamin K2 on cortical and cancellous bones in orchidectomized and/or sciatic neurectomized rats.

    PubMed

    Iwamoto, Jun; Yeh, James K; Takeda, Tsuyoshi

    2003-04-01

    We examined the effect of vitamin K2 on cortical and cancellous bones in orchidectomized and/or sciatic neurectomized rats. Ninety male Sprague-Dawley rats, 3 months of age, were randomized by stratified weight method into nine groups with 10 rats in each group: baseline control (BLC), age-matched intact control (IN), IN+vitamin K2 administration (K), orchidectomy (ORX), ORX+K, unilateral sciatic neurectomy (NX), NX+K, ORX+NX (ONX), and ONX+K. Vitamin K2 (menatetrenone) was administered orally twice a week at a dose of 30 mg/kg each. After 10 weeks of feeding, the tibial shaft and proximal tibia were processed for cortical and cancellous bone histomorphometric analyses, respectively. An ORX-induced reduction in maturation-related cortical bone gain and ORX-induced cancellous bone loss were attributable to increased endocortical and trabecular bone turnover, respectively. NX- and ONX-induced reductions in maturation-related cortical bone gain were attributable to decreased periosteal bone formation and increased endocortical bone turnover, while NX- and ONX-induced cancellous bone loss was attributable to increased bone resorption and decreased bone formation. ORX-induced cancellous bone loss was more pronounced when combined with immobilization. Vitamin K2 administration did not significantly alter any parameters in IN rats. Vitamin K2 administration in ORX rats suppressed endocortical bone resorption and trabecular bone turnover, retarding a reduction in maturation-related cortical bone gain and cancellous bone loss. This effect on cancellous bone loss was primarily because of prevention of a reduction of trabecular thickness. Vitamin K2 administration in NX and ONX rats suppressed bone resorption and stimulated bone formation (mineralization), with retardation of a reduction of trabecular thickness without any significant effect on cancellous bone mass, and suppressed endocortical bone resorption, retarding a reduction in maturation-related cortical bone gain

  11. Reconstruction of the mandible by prefabricated autogenous bone grafts. An experimental study in minipigs.

    PubMed

    Schliephake, H; Langner, M

    1997-08-01

    The aim of the present experimental study was to evaluate the use of prefabricated bone grafts for reconstruction of the mandible. In 20 adult Göttingen minipigs, prefabricated bone grafts 10 x 12 x 40 mm in size were cultivated in scaffolds of pyrolized bovine bone under a polylactic membrane on the outside of the mandible during a period of five months. The grafts were harvested and transferred to bridge 2- and 4-cm lower mandibular border defects and discontinuity defects. Five animals served as ungrafted controls and evaluation of the grafts was performed three and five months after grafting. At both intervals and in both graft-length groups, the grafted bone volume was almost completely preserved inside the scaffolds and exhibited a slight (3 months) to marked (5 months) increase in bone density by appositional bone growth. The inserted screws were histologically integrated into the transplanted bone and the grafts were linked to the adjacent mandibular bone without intervening soft tissue. The grafts, which were transferred to bridge discontinuity defects, were likewise well preserved with direct fusion between the grafted bone and local bone. It was concluded that bone grafts can be prefabricated from underlying mandibular bone and used for the repair of mandibular defects of various length and shape. PMID:9258711

  12. Free vascularised fibular grafting with OsteoSet®2 demineralised bone matrix versus autograft for large osteonecrotic lesions of the femoral head.

    PubMed

    Feng, Yong; Wang, Shanzhi; Jin, Dongxu; Sheng, Jiagen; Chen, Shengbao; Cheng, Xiangguo; Zhang, Changqing

    2011-04-01

    The aim of this study was to compare the safety and efficacy of OsteoSet®2 DBM with autologous cancellous bone in free vascularised fibular grafting for the treatment of large osteonecrotic lesions of the femoral head. Twenty-four patients (30 hips) with large osteonecrotic lesions of the femoral head (stage IIC in six hips, stage IIIC in 14, and stage IVC in ten, according to the classification system of Steinberg et al.) underwent free vascularised fibular grafting with OsteoSet®2 DBM. This group was retrospectively matched to a group of 24 patients (30 hips) who underwent free vascularised fibular grafting with autologous cancellous bone during the same time period according to the aetiology, stage, and size of the lesion and the mean preoperative Harris hip score. A prospective case-controlled study was then performed with a mean follow-up duration of 26 months. The results show no statistically significant differences between the two groups in overall clinical outcome or the radiographic assessment. Furthermore, no adverse events related to the use of the OsteoSet®2 DBM were observed. The results demonstrate that OsteoSet®2 DBM combined with autograft bone performs equally as well as that of autologous bone alone. Therefore, OsteoSet®2 DBM can be used as a safe and effective graft extender in free vascularised fibular grafting for large osteonecrotic lesions of the femoral head. PMID:20012040

  13. Development and validation of a multiecho computer simulation of ultrasound propagation through cancellous bone

    NASA Astrophysics Data System (ADS)

    Langton, Christian; Church, Luke

    2002-05-01

    Cancellous bone consists of a porous open-celled framework of trabeculae interspersed with marrow. Although the measurement of broadband ultrasound attenuation (BUA) has been shown to be sensitive to osteoporotic changes, the exact dependence on material and structural parameters has not been elucidated. A 3-D computer simulation of ultrasound propagation through cancellous bone has been developed, based upon simple reflective behavior at the multitude of trabecular/marrow interfaces. A cancellous bone framework is initially described by an array of bone and marrow elements. An ultrasound pulse is launched along each row of the model with partial reflection occurring at each bone/marrow interface. If a reverse direction wave hits an interface, a further forward (echo) wave is created, with phase inversion implemented if appropriate. This process is monitored for each wave within each row. The effective received signal is created by summing the time domain data, thus simulating detection by a phase-sensitive ultrasound transducer, as incorporated in clinical systems. The simulation has been validated on a hexagonal honeycomb design of variable mesh size, first against a commercial computer simulation solution (Wave 2000 Pro), and second, via experimental measurement of physical replicas produced by stereolithography.

  14. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading.

    PubMed

    Prot, M; Saletti, D; Pattofatto, S; Bousson, V; Laporte, S

    2015-02-01

    Previous studies show that in vivo assessment of fracture risk can be achieved by identifying the relationships between microarchitecture description from clinical imaging and mechanical properties. This study demonstrates that results obtained at low strain rates can be extrapolated to loadings with an order of magnitude similar to trauma such as car crashes. Cancellous bovine bone specimens were compressed under dynamic loadings (with and without confinement) and the mechanical response properties were identified, such as Young׳s modulus, ultimate stress, ultimate strain, and ultimate strain energy. Specimens were previously scanned with pQCT, and architectural and structural microstructure properties were identified, such as parameters of geometry, topology, connectivity and anisotropy. The usefulness of micro-architecture description studied was in agreement with statistics laws. Finally, the differences between dynamic confined and non-confined tests were assessed by the bone marrow influence and the cancellous bone response to different boundary conditions. Results indicate that architectural parameters, such as the bone volume fraction (BV/TV), are as strong determinants of mechanical response parameters as ultimate stress at high strain rates (p-value<0.001). This study reveals that cancellous bone response at high strain rates, under different boundary conditions, can be predicted from the architectural parameters, and that these relations with mechanical properties can be used to make fracture risk prediction at a determined magnitude. PMID:25577437

  15. Phase velocity and attenuation predictions of waves in cancellous bone using an iterative effective medium approximation.

    PubMed

    Potsika, Vassiliki T; Protopappas, Vasilios C; Vavva, Maria G; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2013-01-01

    The quantitative determination of wave dispersion and attenuation in bone is an open research area as the factors responsible for ultrasound absorption and scattering in composite biological tissues have not been completely explained. In this study, we use the iterative effective medium approximation (IEMA) proposed in [1] so as to calculate phase velocity and attenuation in media with properties similar to those of cancellous bones. Calculations are performed for a frequency range of 0.4-0.8 MHz and for different inclusions' volume concentrations and sizes. Our numerical results are compared with previous experimental findings so as to assess the effectiveness of IEMA. It was made clear that attenuation and phase velocity estimations could provide supplementary information for cancellous bone characterization. PMID:24111396

  16. Progressive femoral cortical and cancellous bone density loss after uncemented tapered-design stem fixation

    PubMed Central

    Nowak, Tobias E; Haeberle, Lothar; Mueller, Lars P; Kress, Alexander; Voelk, Michael; Pfander, David; Forst, Raimund; Schmidt, Rainer

    2010-01-01

    Background Aseptic implant loosening and periprosthetic bone loss are major problems after total hip arthroplasty (THA). We present an in vivo method of computed tomography (CT) assisted osteodensitometry after THA that differentiates between cortical and cancellous bone density (BD) and area around the femoral component. Method Cortical and cancellous periprosthetic femoral BD (mg CaHA/mL), area (mm2) and contact area between the prothesis and cortical bone were determined prospectively in 31 patients 10 days, 1 year, and 6 years after uncemented THA (mean age at implantation: 55 years) using CT-osteodensitometry. Results 6 years postoperatively, cancellous BD had decreased by as much as 41% and cortical BD by up to 27% at the metaphyseal portion of the femur; this decrease was progressive between the 1-year and 6-year examinations. Mild cortical hypertrophy was observed along the entire length of the diaphysis. No statistically significant changes in cortical BD were observed along the diaphysis of the stem. Interpretation Periprosthetic CT-assisted osteodensitometry has the technical ability to discriminate between cortical and cancellous bone structures with respect to strain-adapted remodeling. Continuous loss of cortical and cancellous BD at the femoral metaphysis, a homeostatic cortical strain configuration, and mild cortical hypertrophy along the diaphysis suggest a diaphyseal fixation of the implanted stem. CT-assisted osteodensitometry has the potential to become an effective instrument for quality control in THA by means of in vivo determination of periprosthetic BD, which may be a causal factor in implant loosening after THA. PMID:20180716

  17. Time responses of cancellous and cortical bones to sciatic neurectomy in growing female rats.

    PubMed

    Zeng, Q Q; Jee, W S; Bigornia, A E; King, J G; D'Souza, S M; Li, X J; Ma, Y F; Wechter, W J

    1996-07-01

    Effects of unilateral sciatic neurectomy on the responses of both cancellous and cortical bones were studied in growing female rats at 0, 1, 4, 8, and 12 weeks after operation. Using double-fluorescent labeling techniques, histomorphometric analyses were performed on longitudinal sections of proximal tibial metaphyseal secondary spongiosa (PTM) and on cross sections of tibial shaft (TX). In PTM, sciatic neurectomy not only inhibited the age-related bone gain, but also reduced the trabecular bone mass by 46%, which was accompanied by decreases in trabecular number, thickness, and node to node density, and an increase in trabecular separation and free end to free end density. The bone loss occurred mainly between 1 and 4 weeks after operation. A sharp increase in bone formation indices was observed during the first week after nerve section. However, these endpoints quickly dropped to levels lower than those of sham-operated controls at 4 weeks, and were not different from the control levels at 8 weeks after operation. Eroded surface increased progressively after sciatic neurectomy during the 12 weeks experimental period. In TX, sciatic neurectomy inhibited the age-related increase in total tissue area that maintained it at the basal control level. However, the cortical bone area in neurectomized legs was lower than that in sham-operated controls. Sciatic neurectomy also stimulated the bone formation indices on both periosteal and endocortical surfaces during the first week after operation. These endpoints declined sharply between 1 and 4 weeks and then maintained at control levels between 8 and 12 weeks post surgery. Endocortical eroded surface increased 1 week after neurectomy, reached the peak at 8 weeks, and then decreased thereafter. These findings suggest that (1) sciatic neurectomy not only inhibited age-related bone gain but also induced marked bone loss in cancellous bone site and inhibited age-related bone gain in cortical bone site, which mainly resulted

  18. Intermittent PTH administration and mechanical loading are anabolic for periprosthetic cancellous bone

    PubMed Central

    Grosso, Matthew J.; Courtland, Hayden-William; Yang, Xu; Sutherland, James P.; Stoner, Kirsten; Nguyen, Joseph; Fahlgren, Anna; Ross, F. Patrick; van der Meulen, Marjolein C. H.; Bostrom, Mathias P.

    2016-01-01

    The purpose of this study was to determine the individual and combined effects on periprosthetic cancellous bone of intermittent PTH (iPTH) and mechanical loading at the cellular, molecular, and tissue levels. Porous titanium implants were inserted bilaterally on the cancellous bone of adult rabbits beneath a loading device attached to the distal lateral femur. The left femur received a sham loading device. The right femur was loaded daily, and half of the rabbits received daily PTH. Periprosthetic bone was evaluated up to 28 days for gene expression, histology, and µCT analysis. Loading and iPTH increased bone mass by a combination of two mechanisms: 1) altering cell populations in a pro-osteoblastic/anti-adipocytic direction, and 2) controlling bone turnover by modulating the RANKL-OPG ratio. At the tissue level, BV/TV increased with both loading (+53%, p<0.05) and iPTH (+54%, p<0.05). Combined treatment showed only small additional effects at the cellular and molecular levels that corresponded to a small additive effect on bone volume (+13% compared to iPTH alone, p>0.05). This study suggests that iPTH and loading are potential therapies for enhancing periprosthetic bone formation. The elucidation of the cellular and molecular response may help further enhance the combined therapy and related targeted treatment strategies. PMID:25408434

  19. Damage initiation sites in osteoporotic and normal human cancellous bone.

    PubMed

    Soicher, Matthew A; Wang, Xiang; Zauel, Roger R; Fyhrie, David P

    2011-03-01

    Using a finite element (FE) method called biomechanical stereology, Wang et al. previously reported increased microcrack formation and propagation in bone samples from patients with a history of osteoporotic fracture as compared to normal subjects. In this study, we re-analyzed the data from Wang's report to determine the microscopic differences between bone tissue from osteoporotic patients and normal subjects that caused these different patterns of bone tissue damage between the groups. The morphological features examined were the number of "voids" (or osteocyte lacunae) visible and the distance of the lacunae from the initiation of the microcracks. We found that bone samples from patients with a history of osteoporotic fracture contained significantly more lacunae than normal control specimens. We also found a significant correlation (r² = 0.483, p = 0.001) between the number of lacunae visible in the image and the number of microcracks formed. These results help to explain the differences in total microcrack number between the osteoporotic and normal subjects reported in our previous work. PMID:21081188

  20. Early tissue responses to zoledronate, locally delivered by bone screw, into a compromised cancellous bone site: a pilot study

    PubMed Central

    2014-01-01

    Background In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. Methods ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. Results Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. Conclusion This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature. PMID:24656151

  1. Signal of Interest Selection Standard for Ultrasonic Backscatter in Cancellous Bone Evaluation.

    PubMed

    Liu, Chengcheng; Tang, Tao; Xu, Feng; Ta, Dean; Matsukawa, Mami; Hu, Bo; Wang, Weiqi

    2015-10-01

    The aim of this study was to examine the effect of the backscattered signal of interest (SOI) on ultrasonic cancellous bone evaluation. In vitro backscatter measurements were performed using 16 bovine cancellous bone specimens and six different transducers with central frequencies of 0.5, 1, 2.25, 3.5, 5 and 10 MHz. The SOI for signal analysis was selected by a rectangular window. The delay (T1) and duration (T2) of the time window were varied, and the apparent integrated backscatter (AIB) and its correlation to bone volume fraction (BV/TV) were calculated. The results indicate that in addition to affecting the measured value of AIB, the SOI influences the observed correlation between AIB and BV/TV. Strong positive correlations were observed for short T1 (0.5 MHz: ≤6 μs, 1 MHz: ≤3 μs, 2.25 and 3.5 MHz: ≤2 μs, 5 and 10 MHz: ≤1 μs). However, strong negative correlations were observed when T1 was long (0.5 MHz: >9 μs, 1 MHz: >7 μs, 2.25 and 3.5 MHz: >3 μs, 5 and 10 MHz: >2 μs). The T2 value, especially low values (≤3 μs), also influenced the correlation coefficients. Positive correlations were more commonly observed at lower frequencies (i.e., 0.5-1 MHz), whereas negative correlations were more common at higher frequencies (i.e., 2.25-10 MHz). An explicit standard for in vitro SOI selection and cancellous bone assessment was proposed for a broad frequency range (0.5-10 MHz). Current conflicting findings are explained, and constructive suggestions for ultrasonic backscatter cancellous bone evaluation are provided. PMID:26210784

  2. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  3. A preclinical study of stem subsidence and graft incorporation after femoral impaction grafting using porous hydroxyapatite as a bone graft extender.

    PubMed

    Howie, Donald W; McGee, Margaret A; Callary, Stuart A; Carbone, Angelo; Stamenkov, Roumen B; Bruce, Warrick J; Findlay, David M

    2011-10-01

    This preclinical in vivo screening study compared bone graft incorporation and stem subsidence in cemented hemiarthroplasty after femoral impaction bone grafting with either morselized allograft bone (n = 5, control group) or a 1:1 mix of allograft and porous hydroxyapatite ceramics (HA) granules (n = 5, HA group). At 14 weeks, there was excellent bone graft incorporation by bone, and the stems were well fixed in both groups. The median subsidence at the cement-bone interface, measured using radiostereometric analysis, was 0.14 and 0.93 mm in the control and HA groups, respectively. The comparable histologic results between groups and good stem fixation in this study support the conduct of a larger scale investigation of the use of porous HA in femoral impaction bone grafting at revision hip arthroplasty. PMID:21802252

  4. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  5. Bone Marrow Graft in Man after Conditioning by Antilymphocytic Serum*

    PubMed Central

    Mathé, G.; Amiel, J. L.; Schwarzenberg, L.; Choay, J.; Trolard, P.; Schneider, M.; Hayat, M.; Schlumberger, J. R.; Jasmin, Cl.

    1970-01-01

    Allogeneic bone marrow grafts carried out after previous administration of antilymphocytic serum alone were attempted in 16 patients. Of these, six had acute myeloblastic leukaemia, four acute lymphoblastic leukaemia, and one a blast cell crisis in polycythaemia vera. Ten of these patients were in an overt phase of the disease and resistant to chemotherapy, while nine had complete agranulocytosis. In five of these patients erythrocyte and leucocyte antigenic markers demonstrated the establishment of the graft. One patient had thalassaemia major, and four others had aplasia of the bone marrow, in one case due to chloramphenicol poisoning and in another to virus hepatitis. The grafts were successful in the last two patients and transformed their clinical condition. No signs of early acute secondary disease were noted in any of the patients, either when the donor had been given antilymphocytic serum or when he was untreated. The grafts had no adoptive immunotherapeutic effect on the acute leukaemia. These observations have clearly shown that antilymphocytic serum has an immunosuppressive effect in man when it is used alone. PMID:4909449

  6. The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Ta, Dean; Fujita, Fuminori; Hachiken, Takuma; Matsukawa, Mami; Mizuno, Katsunori; Wang, Weiqi

    2014-02-01

    To investigate the relationship between ultrasonic backscatter and trabecular microstructure, ultrasonic backscatter measurements were performed on cylindrical bovine cancellous bone samples in vitro. The backscatter signals from different specimen angles were obtained by rotating the specimen at various central frequencies. The backscatter signal varied a lot as the specimen angle changed. The main trabecular alignment (MTA) orientation was estimated by the maximum of signal energy and integrated reflection coefficient, or the minor axis of fitted ellipse for apparent integrated backscatter and the backscattered spectrum centroid frequency versus specimen angle. The degree of anisotropy (DA) was estimated by the eccentricity of the fitted ellipse with highly significant correlations. The MTA orientation and DA value estimation method proposed in this study is useful for ultrasonic cancellous bone assessment.

  7. Photoacoustic and ultrasound imaging of cancellous bone tissue

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W. Y.; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ˜1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  8. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect

    Seebauer, Christian J.; Bail, Hermann J.; Rump, Jens C. Walter, Thula Teichgraeber, Ulf K. M.

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  9. Tricortical Bone Grafts for Treatment of Malaligned Tibias and Fibulas

    PubMed Central

    Leduc, Stéphane; Gregush, Ronald; Ricci, William M.

    2009-01-01

    Malunions and malaligned nonunions of the tibia and fibula after fracture alter limb function and can be corrected only with surgical intervention. We sought to determine whether using tricortical portions of the iliac crest in conjunction with osteotomy and internal fixation could successfully treat malunions and malaligned nonunions of the tibia and fibula. Seventeen patients with either a malunion or a malaligned nonunion of the tibia or fibula were treated with an osteotomy, deformity correction, and placement of an autogenous iliac crest tricortical bone graft with open reduction and internal fixation (ORIF). The minimum followup was 3 months (average, 32 months; range, 3–118 months). Sixteen patients (94%) had clinical and radiographic evidence of healing at an average of 99 days (range, 43–229 days). Major complications occurred in four patients; one had a persistent nonunion, two had wound infections, and one underwent resection of the distal fibula for subsequent development of fibulotalar arthrosis after ankle arthrodesis. Minor complications occurred in two patients, one tendinitis and one persistent malunion. There were no complications at the iliac crest bone graft site. Autogenous iliac crest tricortical bone grafts, when used in conjunction with correction of alignment and stable internal fixation, are a reasonable option for treatment of nonunions and malaligned nonunions of the tibia and fibula. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19145464

  10. Injectable polyHIPEs as high-porosity bone grafts.

    PubMed

    Moglia, Robert S; Holm, Jennifer L; Sears, Nicholas A; Wilson, Caitlin J; Harrison, Dawn M; Cosgriff-Hernandez, Elizabeth

    2011-10-10

    Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high-porosity scaffolds. The tunable architecture of these polyHIPE foams makes them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (logP values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37 °C was used to initiate radical cross-linking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts. PMID:21861465

  11. Injectable PolyHIPEs as High Porosity Bone Grafts

    PubMed Central

    Moglia, Robert S.; Holm, Jennifer L.; Sears, Nicholas A.; Wilson, Caitlin J.; Harrison, Dawn M.; Cosgriff-Hernandez, Elizabeth

    2011-01-01

    Polymerization of high internal phase emulsions (polyHIPEs) is a relatively new method for the production of high porosity scaffolds. The tunable architecture of these polyHIPE foams make them attractive candidates for tissue engineered bone grafts. Previously studied polyHIPE systems require either toxic diluents or high cure temperatures which prohibit their use as an injectable bone graft. In contrast, we have developed an injectable polyHIPE that cures at physiological temperatures to a rigid, high-porosity foam. First, a biodegradable macromer, propylene fumarate dimethacrylate (PFDMA), was synthesized that has appropriate viscosity and hydrophobicity for emulsification. The process of surfactant selection is detailed with particular focus on the key structural features of both polymer (log P values, hydrogen bond acceptor sites) and surfactant (HLB values, hydrogen bond donor sites) that enable stable HIPE formation. Incubation of HIPEs at 37°C was used to initiate radical crosslinking of the unsaturated double bond of the methacrylate groups to polymerize the continuous phase and lock in the emulsion geometry. The resulting polyHIPEs exhibited ~75% porosity, pore sizes ranging from 4 to 29 μm, and an average compressive modulus and strength of 33 and 5 MPa, respectively. These findings highlight the great potential of these scaffolds as injectable, tissue engineered bone grafts. PMID:21861465

  12. Trabecular domain factor and its influence on the strength of cancellous bone of the vertebral body.

    PubMed

    Tanaka, Y; Kokubun, S; Sato, T; Iwamoto, M; Sato

    2001-11-01

    The effects of architectural differences on the strength of cancellous bone of the vertebral body have not been clarified. This study was aimed at determining the influence of trabecular domain factor (TDF), a new histomorphometric parameter, on the maximum compressive strength (MCS) in vertebral cancellous bone. TDF is a variation coefficient representing the ratio dispersion of the area of each trabecula (Sd) to the area of its domain (D). A Voronoi diagram was used to determine trabecular domains. The materials comprised 35 lumbar vertebral bodies obtained at autopsy from 35 subjects aged 25-83 years. A mechanical test sample (12 x 12 x 16 mm) was cut out from each right half, and two large, undecalcified, horizontal sections from each left half. The fields (144 mm2 x 2) for image analyses were symmetrical with those for mechanical test samples in the other half of the same vertebral body. Bone volume (BV/TV), Sd, and D were semiautomatically measured. BV/TV correlated negatively with TDF (r = -0.73). Multiple regression analysis revealed the contributions of BV/TV (partial r = 0.75, p < 0.001) and TDF (partial r = -0.42, p < 0.02) to MCS. The model with BV/TV and TDF predicted MCS, 1.50 +0.15 BV/TV -0.03 TDF, more accurately (R2 = 0.83) than that with BV/TV alone (r2 = 0.79). We conclude that the bone volume primarily contributes to the MCS of vertebral cancellous bones but that the influence of TDF on the fragility becomes increasingly important as the bone volume decreases. PMID:11768199

  13. Early postoperative bone scintigraphy in the evaluation of microvascular bone grafts in head and neck reconstruction

    PubMed Central

    Schuepbach, Jonas; Dassonville, Olivier; Poissonnet, Gilles; Demard, Francois

    2007-01-01

    Background Bone scintigraphy was performed to monitor anastomotic patency and bone viability. Methods In this retrospective study, bone scans were carried out during the first three postoperative days in a series of 60 patients who underwent microvascular bone grafting for reconstruction of the mandible or maxilla. Results In our series, early bone scans detected a compromised vascular supply to the bone with high accuracy (p < 10-6) and a sensitivity that was superior to the sensitivity of clinical monitoring (92% and 75% respectively). Conclusion When performing bone scintigraphy during the first three postoperative days, it not only helps to detect complications with high accuracy, as described in earlier studies, but it is also an additional reliable monitoring tool to decide whether or not microvascular revision surgery should be performed. Bone scans were especially useful in buried free flaps where early postoperative monitoring depended exclusively on scans. According to our experience, we recommend bone scans as soon as possible after surgery and immediately in cases suspicious of vascularized bone graft failure. PMID:17448223

  14. Correlation between Density and Resorption of Fresh-Frozen and Autogenous Bone Grafts

    PubMed Central

    Manfredi, Edoardo; Consolo, Ugo; Marchetti, Claudio; Bonanini, Mauro; Salgarelli, Attilio; Macaluso, Guido M.

    2014-01-01

    Trial Design. This analysis compared the outcome of fresh-frozen versus autologous bone block grafts for horizontal ridge augmentation in patients with Cawood and Howell class IV atrophies. Methods. Seventeen patients received autologous grafts and 21 patients received fresh-frozen bone grafts. Patients underwent CT scans 1 week and 6 months after surgery for graft volume and density analysis. Results. Two autologous and 3 fresh-frozen grafts failed. Autologous and fresh-frozen grafts lost, respectively, 28% and 46% of their initial volume (P = 0.028). It is noteworthy that less dense fresh-frozen blocks lost more volume than denser grafts (61% versus 16%). Conclusions. According to these 6-month results, only denser fresh-frozen bone graft may be an acceptable alternative to autologous bone for horizontal ridge augmentation. Further studies are needed to investigate its behaviour at longer time points. PMID:25050354

  15. Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment.

    PubMed

    Fahrleitner-Pammer, Astrid; Burr, David; Dobnig, Harald; Stepan, Jan J; Petto, Helmut; Li, Jiliang; Krege, John H; Pavo, Imre

    2016-08-01

    An increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n=16) or alendronate-pretreated (ALN, n=29) at teriparatide initiation. Teriparatide (20μg/day) was given for 24months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P=0.039) and 55 (139)% (P<0.005) and trabecular thickness 30.4 (30)% (P<0.001) and 30.8 (53)% (P<0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r=0.502 (P<0.01) and r=0.378 (P<0.05), trabecular number, r=0.559 (P<0.01) and r=0.515 (P<0.01), and reduction of trabecular separation, r=-0.432 (P<0.05) and r=-0.530 (P<0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy

  16. Determining the modulus of intact bovine vertebral cancellous bone tissue: Development and validation of a protocol

    NASA Astrophysics Data System (ADS)

    Engbretson, Andrew Craig

    Cancellous, or spongy, bone accounts for nearly 80% of the human skeleton's internal surface area, despite comprising only 20% of its mass. It is made up of a network of struts and plates that provide lightweight internal support to mammalian bones. In addition, it often serves as the main interface between the skeletal system and implanted devices such as artificial hips, knees, and fracture fixation devices. However, hip arthroplasties can succumb to loosening of the implant due to bone resorption, which is thought to be caused by a mismatch in both apparent and real stiffness between the device and the surrounding bone. Many studies have attempted to determine the Young's modulus of cancellous bone tissue, but the results are far from being in agreement. Reported values range from less than 1 to nearly 20 GPa. In addition, the small size of trabeculae has made dissection and testing a challenge. In this thesis, whole individual trabeculae from a bovine lumbar spine were tested in three-point bending to determine their Young's modulus using custom-made equipment to fit a miniature single-axis testing device. The device itself was validated by testing materials with moduli ranging from 1 to 200 GPa. The structure of the cancellous bone and the morphology of the individual struts were determined using micro x-ray computed tomography (muXCT). Individual struts were manually isolated from slices made using a low-speed saw under constant lubrication and measured under a stereomicroscope. Samples exhibiting no machined surfaces (and thus deemed to be whole, or "uncut" were compared to struts that had been cut by the saw during sectioning. Validation showed that the system was capable of determining the modulus of materials that were approximately five times stiffer than the expected cancellous modulus (copper, at 115 GPa) to within 10% of published values. This gave confidence in the results for bone. The modulus of the "uncut" specimens was found to be 15.28 2.26 GPa

  17. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression.

    PubMed

    Kelly, Natalie H; Schimenti, John C; Ross, F Patrick; van der Meulen, Marjolein C H

    2016-05-01

    Mechanical loading is an anabolic stimulus that increases bone mass, and thus a promising method to counteract osteoporosis-related bone loss. The mechanism of this anabolism remains unclear, and needs to be established for both cortical and cancellous envelopes individually. We hypothesized that cortical and cancellous bone display different gene expression profiles at baseline and in response to mechanical loading. To test this hypothesis, the left tibiae of 10-week-old female C57Bl/6 mice were subjected to one session of axial tibial compression (9N, 1200cycles, 4Hz triangle waveform) and euthanized 3 and 24h following loading. The right limb served as the contralateral control. We performed RNA-seq on marrow-free metaphyseal samples from the cortical shell and the cancellous core to determine differential gene expression at baseline (control limb) and in response to load. Differential expression was verified with qPCR. Cortical and cancellous bone exhibited distinctly different transcriptional profiles basally and in response to mechanical loading. More genes were differentially expressed with loading at 24h with more genes downregulated at 24h than at 3h in both tissues. Enhanced Wnt signaling dominated the response in cortical bone at 3 and 24h, but in cancellous bone only at 3h. In cancellous bone at 24h many muscle-related genes were downregulated. These findings reveal key differences between cortical and cancellous genetic regulation in response to mechanical loading. Future studies at different time points and multiple loading sessions will add to our knowledge of cortical and cancellous mechanotransduction with the potential to identify new targets for mouse genetic knockout studies and drugs to treat osteoporosis. PMID:26876048

  18. Experimental and clinical analysis of a posterolateral lumbar appendicular bone graft fusion

    PubMed Central

    Wang, Jian-Wen; Xiao, Dong-Min; Wu, Hong; Ye, Ming; Li, Xiong

    2015-01-01

    Objective: This study aimed to investigate the animal experimental and clinical results of the bone graft fusion of a posterolateral lumbar appendicular bone. Methods: 1. Sixty rabbits were randomly divided into experimental and control groups. Posterolateral lumbar bone graft with the appendicular bone and iliac bones, respectively, was then performed on these two groups. A lumbar spine X-ray was performed on the postoperative 4th, 8th and 16th weeks, and the gray value changes of the bone graft fusion area were measured to calculate fusion rates. Histology analysis was also performed to observe and count osteoblasts. 2. The appendicular bones of 106 patients who suffered from lumbar disorders were cut during lumbar surgery, and a posterolateral lumbar bone graft was performed. The postoperative follow-up used the Steffee criteria to evaluate clinical efficacy and the White criteria to evaluate fusion conditions. Results: No significant difference was observed in the relative gray values of X-ray bone density, bone graft fusion rates, and osteoblast counts in the bone graft regions between the two groups (P > 0.05). The follow-up duration of the 106 patients were 4-8 years (6.12 years), the clinical efficacy rate was 85.85%, and the fusion rate was 83.02%. Conclusions: The animal experimental and clinical results of posterolateral lumbar bone graft fusion with autologous iliac and appendicular bones were similar. PMID:26885221

  19. Specific Biomimetic Hydroxyapatite Nanotopographies Enhance Osteoblastic Differentiation and Bone Graft Osteointegration

    PubMed Central

    Loiselle, Alayna E.; Wei, Lai; Faryad, Muhammad; Paul, Emmanuel M.; Lewis, Gregory S.; Gao, Jun; Lakhtakia, Akhlesh

    2013-01-01

    Impaired healing of cortical bone grafts represents a significant clinical problem. Cadaveric bone grafts undergo extensive chemical processing to decrease the risk of disease transmission; however, these processing techniques alter the bone surface and decrease the osteogenic potential of cells at the healing site. Extensive work has been done to optimize the surface of bone grafts, and hydroxyapatite (HAP) and nanotopography both increase osteoblastic differentiation. HAP is the main mineral component of bone and can enhance osteoblastic differentiation and bone implant healing in vivo, while nanotopography can enhance osteoblastic differentiation, adhesion, and proliferation. This is the first study to test the combined effects of HAP and nanotopographies on bone graft healing. With the goal of identifying the optimized surface features to improve bone graft healing, we tested the hypothesis that HAP-based nanotopographic resurfacing of bone grafts improves integration of cortical bone grafts by enhancing osteoblastic differentiation. Here we show that osteoblastic cells cultured on processed bones coated with specific-scale (50–60 nm) HAP nanotopographies display increased osteoblastic differentiation compared to cells on uncoated bone, bones coated with poly-l-lactic acid nanotopographies, or other HAP nanotopographies. Further, bone grafts coated with 50–60-nm HAP exhibited increased formation of new bone and improved healing, with mechanical properties equivalent to live autografts. These data indicate the potential for specific HAP nanotopographies to not only increase osteoblastic differentiation but also improve bone graft incorporation, which could significantly increase patient quality of life after traumatic bone injuries or resection of an osteosarcoma. PMID:23510012

  20. A Retrospective Analysis of the Retreatment of Failed Sinus Bone Grafts.

    PubMed

    Kim, Young-Kyun; Kim, Su-Gwan

    2016-06-01

    This analysis examined the types of retreatment in failed sinus bone grafts due to the development of maxillary sinusitis. Reoperation was performed in 7 patients. The types of reoperation included infection management, reconstruction of the sinus roof using a pedicled buccal fat pad and collagen membrane, oroantral fistula closure, sinus bone graft using an autogenous bone graft, and implant placement. In one case, sinusitis developed 14 months after the reoperation, but it was managed by incision, drainage, and administration of antibiotics. All sinus bone grafts that were performed during the retreatments were successful. PMID:27058356

  1. Treatment of large skeletal defects in the lower extremities using double-strut, free vascularized fibular bone grafting.

    PubMed

    Chang, M C; Lo, W H; Chen, C M; Chen, T H

    1999-08-01

    This article reports on the use of double-strut, free vascularized fibular grafts to treat six patients with infected nonunion or traumatic bone loss in the femur or tibia after prolonged treatment and multiple operations. The defects were 6-13 cm long. Five patients achieved solid union within 6 months, and one patient required additional cancellous grafting to achieve union at the distal end of the fibula. One patient experienced a stress fracture due to strenuous exercise, and union was achieved 3 months after reapplying an external fixator. Although three patients had some restricted knee motion, all patients had a satisfactory outcome in regard to walking, and no limb-length discrepancies were noted in any patient. PMID:10465486

  2. Aneurysmal bone cyst involving the metacarpal bone in a child.

    PubMed

    Song, Kwang Soon; Lee, Si Wook; Bae, Ki Cheor; Sohn, Eun Seok

    2015-03-01

    Aneurysmal bone cysts associated with tubular bones of the hand occur rarely and require particular diagnostic and therapeutic management techniques. While optimal treatment has not been established, accepted treatments range from aggressive radical treatment, including en bloc resection and excision diaphysectomy with strut bone grafting, to relatively simple techniques, such as thorough curettage followed by bone graft. Aggressive treatment approaches may be optimal for the cases with articular surface involvement, full-bone invasion of the phalanx or metacarpal, or more than 1 recurrence. We report a monocentric case of aneurysmal bone cysts involving metacarpal bone in a child who achieved favorable outcome with curettage and morselized cancellous bone grafts. PMID:25750953

  3. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    PubMed Central

    Patel, Purvi SD; Shepherd, Duncan ET; Hukins, David WL

    2008-01-01

    Background Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm-3), to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern. PMID:18844988

  4. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis.

    PubMed

    Guillén, T; Zhang, Q-H; Tozzi, G; Ohrndorf, A; Christ, H-J; Tong, J

    2011-10-01

    Compressive behaviour of bovine cancellous bone and three open-cell metallic foams (AlSi7Mg (30 ppi and 45 ppi); CuSn12Ni2 (30 ppi)) has been studied using mechanical testing, micro-focus computed tomography and finite element modelling. Whilst the morphological parameters of the foams and the bone appear to be similar, the mechanical properties vary significantly between the foams and the bone. Finite element models were built from the CT images of the samples and multi-linear constitutive relations were used for modelling of the bone and the foams. The global responses of the bone and foam samples were reasonably well captured by the FE models, whilst the percentage of yielded elements as a measure of damage evolution during compression seems to be indicative of the micro-mechanical behaviour of the samples. The damage evolution and distribution patterns across the bone and the foams are broadly similar for the strain range studied, suggesting possible substitution of trabecular bones with appropriate foams for biomechanical studies. PMID:21783155

  5. COMPARATIVE STUDY OF BONE NEOFORMATION USING AUTOLOGOUS GRAFTING AND THREE REPLACEMENTS: BONE DEFECTS IN RATS

    PubMed Central

    Stein, Rodrigo Steffen; Silva, Jefferson Braga; Silva, Vinicius Duval da

    2015-01-01

    Objective: Compare the percentage of bone neoformation promoted by autologous bone grafting and three kinds of replacement materials with different characteristics in rats' femoral holes. Methods: Two holes measuring 5.4×2.7mm, were produced on each femur (right and left) of 14 isogenic Wistar rats. Each of the four defects produced was filled by autologous bone or by one of three tested materials-hydroxyapatite (HA), Genphos® (HA+ β-TCP) and GenMix® (a combined bovine bone graft). In the end of the 6-week (n = 6) and 12-week (n = 8) periods, the animals were sacrificed. The sections (stained with Picro-Sirius) were assessed by optical microscopy and specific software. Results: The groups with autologous bone were shown to be significantly superior to the others at both assessed times, showing a mean bone formation rate ± SD of 90.6 ± 10.8% in six weeks, and 98 ± 9.2% in 12 weeks (p > 0.0001 for both assessed times). In six weeks, the results for the other groups were the following: Genphos®, 46 ± 7.1%; HA, 43.1 ± 8.4%; and GenMix®, 57.3 ± 4.5%. In 12 weeks: Genphos®, 47.8 ± 11.1%; HA, 39.9 ± 5.4%; GenMix®, 59.7 ± 4.8%, significant (p = 0.007). Conclusions: In both assessed times, the three bone replacement materials tested in the study showed to be inferior to autologous bone graft for bone neoformation percentage. PMID:27022515

  6. Development of an improved bone washing and demineralisation process to produce large demineralised human cancellous bone sponges.

    PubMed

    Eagle, Mark J; Rooney, Paul; Kearney, John N

    2015-12-01

    Shaped demineralised bone matrices (DBM) made from cancellous bone have important uses in orthopaedic and dental procedures, where the properties of the material allow its insertion into confined defects, therefore acting as a void filler and scaffold onto which new bone can form. The sponges are often small in size, <1.0 cm(3). In this study, we report on an improved bone washing and demineralisation process that allows production of larger DBM sponges (3.375 or 8.0 cm(3)) from deceased donor bone. These sponges were taken through a series of warm water washes, some with sonication, centrifugation, 100 % ethanol and two decontamination chemical washes and optimally demineralised using 0.5 N hydrochloric acid under vacuum. Demineralisation was confirmed by quantitative measurement of calcium and qualitatively by compression. Protein and DNA removal was also determined. The DBM sponges were freeze dried before terminal sterilisation with a target dose of 25 kGy gamma irradiation whilst frozen. Samples of the sponges were examined histologically for calcium, collagen and the presence of cells. The data indicated lack of cells, absence of bone marrow and a maximum of 1.5 % residual calcium. PMID:25736401

  7. Microstructures and properties of cancellous bone of avascular necrosis of femoral heads

    NASA Astrophysics Data System (ADS)

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun; Yeh, Hsien Yang

    2010-03-01

    The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroid-injection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional structures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.

  8. A new harvest site for bone graft in anterior cruciate ligament revision surgery.

    PubMed

    Franceschi, Francesco; Papalia, Rocco; Di Martino, Alberto; Rizzello, Giacomo; Allaire, Robert; Denaro, Vincenzo

    2007-05-01

    During revision anterior cruciate ligament (ACL) surgery, femoral interference screws frequently require removal. This may lead to significant tunnel widening and possible graft fixation failure as a result. Solutions include drilling the revision tunnel in a different location, using stacked interference screws, or using bone graft to fill the defect. Autogenous iliac crest graft and allograft are both used, but there are significant comorbidities associated with each. We developed a new technique for harvesting autogenous bone graft that avoids many of the complications associated with other graft sources. By use of the existing surgical incision from the initial harvest of the bone-patellar tendon-bone autograft, bone from the medial tibial metaphyseal safe zone is harvested via an OATS tube harvester (Arthrex, Naples, FL). A bone plug 1 mm larger in size than the femoral defect is harvested and arthroscopically inserted via a press-fit technique. At 3 months after bone grafting, patients undergo revision ACL reconstruction. The proximal tibial metaphysis is a safe bone graft harvest site in revision ACL surgery and offers an effective method for filling large bony defects, allowing anatomic reconstruction of the ACL after bone healing has occurred. Furthermore, it eliminates the problems associated with allograft or use of a remote graft donor site. PMID:17478290

  9. Radially and axially graded multizonal bone graft substitutes targeting critical-sized bone defects from polycaprolactone/hydroxyapatite/tricalcium phosphate.

    PubMed

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur; Kalyon, Dilhan M

    2012-12-01

    Repair and regeneration of critical sized defects via the utilization of polymeric bone graft substitutes are challenges. Here, we introduce radially and axially graded multizonal bone graft substitutes fabricated from polycaprolactone (PCL), and PCL biocomposites with osteoconductive particles, that is, hydroxyapatite (HA), and β-tricalcium phosphate (TCP). The novel bone graft substitutes should provide a greater degree of freedom to the orthopedic surgeon especially for repair of critically sized bone defects. The modulus of the graft substitute could be tailored in the axial direction upon the systematic variation of the HA/TCP concentration, while in the radial direction the bone graft substitute consisted of an outer layer with high stiffness, encapsulating a softer core with greater porosity. The biocompatibility of the bone graft substitutes was investigated using in vitro culturing of human bone marrow-derived stromal cells followed by the analysis of cell proliferation and differentiation rates. The characterization of the tissue constructs included the enzymatic alkaline phosphates (ALP) activity, microcomputed tomography imaging, and polymerase chain reaction analysis involving the expressions of bone markers, that is, Runx2, ALP, collagen type I, osteopontin, and osteocalcin, overall demonstrating the differentiation of bone marrow derived stem cells (BMSCs) via osteogenic lineage and formation of mineralized bone tissue. PMID:22764839

  10. Radially and Axially Graded Multizonal Bone Graft Substitutes Targeting Critical-Sized Bone Defects from Polycaprolactone/Hydroxyapatite/Tricalcium Phosphate

    PubMed Central

    Ergun, Asli; Yu, Xiaojun; Valdevit, Antonio; Ritter, Arthur

    2012-01-01

    Repair and regeneration of critical sized defects via the utilization of polymeric bone graft substitutes are challenges. Here, we introduce radially and axially graded multizonal bone graft substitutes fabricated from polycaprolactone (PCL), and PCL biocomposites with osteoconductive particles, that is, hydroxyapatite (HA), and β-tricalcium phosphate (TCP). The novel bone graft substitutes should provide a greater degree of freedom to the orthopedic surgeon especially for repair of critically sized bone defects. The modulus of the graft substitute could be tailored in the axial direction upon the systematic variation of the HA/TCP concentration, while in the radial direction the bone graft substitute consisted of an outer layer with high stiffness, encapsulating a softer core with greater porosity. The biocompatibility of the bone graft substitutes was investigated using in vitro culturing of human bone marrow-derived stromal cells followed by the analysis of cell proliferation and differentiation rates. The characterization of the tissue constructs included the enzymatic alkaline phosphates (ALP) activity, microcomputed tomography imaging, and polymerase chain reaction analysis involving the expressions of bone markers, that is, Runx2, ALP, collagen type I, osteopontin, and osteocalcin, overall demonstrating the differentiation of bone marrow derived stem cells (BMSCs) via osteogenic lineage and formation of mineralized bone tissue. PMID:22764839

  11. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone.

    PubMed

    Sennerby, L; Thomsen, P; Ericson, L E

    1992-01-01

    The removal torques for screw-shaped pure titanium implants inserted in rabbit tibia and the femoral part of the knee joint and the tissue response to these implants, as quantitated with light microscopic morphometry on ground sections, were compared after 6 weeks, 3 months, and 6 months. The bone surrounding the femoral intra-articular implants was mostly cancellous, while cortical bone was formed around the tibial implants. The torque needed to remove the intra-articular implants increased with time, but there was no such increase for the tibial implants. At 6 weeks, significantly less torque was needed to remove the intra-articular implants in spite of the fact that significantly more bone was found in the threads of these implants as compared with the tibial implants. When calculating the amount of bone in threads situated in the cortical and subchondral passage, more was found in the threads of the tibial implants, which corresponded to the higher removal torque. Additional light microscopic observations on implants unscrewed after 12 months in rabbit tibia indicated that rupture occurred between the implant surface and calcified bone. Findings indicate that the resistance to unscrewing is dependent on the amount of compact bone surrounding a titanium implant. PMID:1398826

  12. Backscatter Difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System

    PubMed Central

    Hoffmeister, Brent K.; Smathers, Morgan R.; Miller, Catherine J.; McPherson, Joseph A.; Thurston, Cameron R.; Spinolo, P. Luke; Lee, Sang-Rok

    2016-01-01

    Backscatter difference measurements may be used to detect changes in bone caused by osteoporosis. The backscatter difference technique measures the power difference between two portions of an ultrasonic backscatter signal. The goal of this study is to evaluate the feasibility of using an ultrasonic imaging system to perform backscatter difference measurements of bone. Ultrasonic images and backscatter signals were acquired from 24 specimens of human cancellous bone. The signals were analyzed in the frequency domain to determine the normalized mean backscatter difference (nMBD) and in the time domain to determine the normalized backscatter amplitude ratio (nBAR). The images were analyzed to determine the normalized pixel value difference (nPVD), which measures the difference in average pixel brightness between regions of interest placed at two different depths in the image. All three parameters were found to increase with bone mineral density. The signal-based parameters, nMBD and nBAR, correlated well with bone mineral density, yielding linear correlation coefficients that ranged from 0.74 to 0.87. The image based parameter, nPVD, performed somewhat less well, yielding correlation coefficients that ranged from 0.42 to 0.81. These results suggest that ultrasonic imaging systems may be used to perform backscatter difference measurements for the purpose of ultrasonic bone assessment. PMID:26416839

  13. Backscatter-difference Measurements of Cancellous Bone Using an Ultrasonic Imaging System.

    PubMed

    Hoffmeister, Brent K; Smathers, Morgan R; Miller, Catherine J; McPherson, Joseph A; Thurston, Cameron R; Spinolo, P Luke; Lee, Sang-Rok

    2016-07-01

    Backscatter-difference measurements may be used to detect changes in bone caused by osteoporosis. The backscatter-difference technique measures the power difference between two portions of an ultrasonic backscatter signal. The goal of this study is to evaluate the feasibility of using an ultrasonic imaging system to perform backscatter-difference measurements of bone. Ultrasonic images and backscatter signals were acquired from 24 specimens of human cancellous bone. The signals were analyzed in the frequency domain to determine the normalized mean backscatter-difference (nMBD) and in the time domain to determine the normalized backscatter amplitude ratio (nBAR). The images were analyzed to determine the normalized pixel value difference (nPVD), which measures the difference in average pixel brightness between regions of interest placed at two different depths in the image. All three parameters were found to increase with bone mineral density. The signal-based parameters, nMBD and nBAR, correlated well with bone mineral density, yielding linear correlation coefficients that ranged from 0.74 to 0.87. The image based parameter, nPVD, performed somewhat less well, yielding correlation coefficients that ranged from 0.42 to 0.81. These results suggest that ultrasonic imaging systems may be used to perform backscatter-difference measurements for the purpose of ultrasonic bone assessment. PMID:26416839

  14. Morbidity of harvesting of retromolar bone grafts: a prospective study.

    PubMed

    Nkenke, Emeka; Radespiel-Tröger, Martin; Wiltfang, Jörg; Schultze-Mosgau, Stefan; Winkler, Gerhard; Neukam, Friedrich Wilhelm

    2002-10-01

    20 retromolar bone grafts were harvested in outpatients for augmentation of the implant site from January to June 2000 (10 female, 10 male, 40.9 +/- 12.8 years, minimum 17 years, maximum 66 years). The aim of the study was to assess typical complications of this procedure in a prospective manner. For the determination of the superficial sensory function of the inferior alveolar and the lingual nerve, an objective method was used. The bone grafts were harvested for single tooth reconstruction. In 14 cases a ridge augmentation and in 6 cases an endoscopically controlled crestal sinus floor elevation was performed. Preoperatively, the height of bone above the cranial aspect of the inferior alveolar nerve in the retromolar region was assessed radiologically with known markers. The maximum mouth opening was determined. The superficial sensory function of the inferior alveolar and the lingual nerve was assessed with the Pointed-Blunt Test, the Two-Point-Discrimination Test and the objective method of the 'Pain and Thermal Sensitivity' Test (PATH Test). Moreover, the pulp sensitivity of the teeth of the donor site was determined by cold vitality testing. All tests were repeated 1 week postoperatively. Intraoperatively, the width of the retromolar region was measured with a caliper. The patients rated the operative strain on a visual analogue scale. The height of bone above the inferior alveolar nerve in the retromolar region was 11.0 +/- 2.2 mm. The width of the retromolar area was 14.2 +/- 1.9 mm. Postoperatively, the maximal mouth opening changed significantly (40.8 +/- 3.5 mm preoperatively, 38.9 +/- 3.7 mm postoperatively, P = 0.006). However, the reduction was not relevant clinically. A direct injury of the inferior alveolar or lingual nerve did not occur. A sensitivity impairment could not be detected for either of the nerves by the different test methods 1 week postoperatively. The operative strain related to the donor site was significantly less than the strain

  15. Influence of thermodisinfection and duration of cryopreservation at different temperatures on pull out strength of cancellous bone.

    PubMed

    Fölsch, Christian; Mittelmeier, Wolfram; von Garrel, Thomas; Bilderbeek, Uwe; Timmesfeld, Nina; Pruss, Axel; Matter, Hans-Peter

    2015-03-01

    Thermodisinfection of human femoral heads from living donors harvested during hip joint replacement is an established processing procedure. This study was designed to examine the influence of heat sterilization on pull out strength of cancellous bone and storage at different temperatures up to 2 years since we had previously studied the storage of unprocessed cancellous bone. Porcine cancellous bone resembling human bone structure was obtained from 140 proximal humerus of 6-8 months old piglets. Pull out strength of screws after thermodisinfection was compared with unprocessed cancellous bone and tested immediately and after 6, 12 and 24 months of storage at -20 and -80 °C. A three-way ANOVA was performed and significance level was 5 %. The thermodisinfected bone showed a pull out force of 2729 N (1657-3568 N). The reduction of pull out strength compared with unprocessed bone over all periods of storage was 276 N on average with 95 % confidence interval ranging from 166 N to 389 N (p < 0.0001). Different freezing temperatures did not influence this mechanic property within 24 months storage and showed no difference compared with fresh frozen bone. Thermodisinfection of cancellous bone preserves tensile strength necessary for clinical purposes. The storage at -20 °C for at least 2 years did not show relevant decrease of pull out strength compared with -80 °C without difference between thermodisinfected and fresh frozen bone. The increase of the storage temperature to -20 °C for at least 2 years should be considered. PMID:24692177

  16. Mother’s fibula in son’s forearm: use of maternal bone grafting for aneurysmal bone cyst not amenable to curettage – a case report with review of literature

    PubMed Central

    Ansari, Mohammed Tahir; Gautam, Deepak; Kotwal, Prakash P.

    2016-01-01

    It has always been a challenge to reconstruct large bone gaps. The aim of this case report is to highlight the success of homologous maternal bone grafting in a large cystic lesion. A six and half years old boy presented to us with an aneurysmal bone cyst (ABC) of the right radius, not amenable to curettage. We excised the lesion in toto, which created an 11 cm bone loss. Considering the age of the patient, we reconstructed the bone gap with maternal fibular graft. Accordingly, 12 cm of fibular graft was harvested and fashioned to fit into the bone gap. It was fixed with an intramedullary K-wire. No cancellous graft was used in the procedure. The limb was kept in the above elbow cast till incorporation of the fibula was noted on the radiographs. Six months following surgery the skiagram showed that the fibula was incorporated. Mobilization of the elbow and wrist was started along with strengthening of the forearm muscles. K-wire was removed at nine months. At the latest follow up of 24 months, the fibula is fully incorporated, the child regained full range of motion and strength of elbow. We discuss the techniques adopted in this particular case along with the review of literature. PMID:27163107

  17. Cellular bone matrices: viable stem cell-containing bone graft substitutes

    PubMed Central

    Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.

    2015-01-01

    BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may

  18. Is Bone Grafting Necessary in Opening Wedge High Tibial Osteotomy? A Meta-Analysis of Radiological Outcomes

    PubMed Central

    Han, Jae Hwi; Kim, Hyun Jung; Song, Jae Gwang; Yang, Jae Hyuk; Bhandare, Nikhl N; Fernandez, Aldrich Raymund; Park, Hyung Jun

    2015-01-01

    Purpose Bone grafting in opening wedge high tibial osteotomy (OWHTO) is still controversial. The purpose of this study is to compare the radiological outcomes of OWHTO with bone graft (autogenous, allogenous, and synthetic bone graft) and those without bone graft. Materials and Methods PubMed, MEDLINE, EMBASE and Cochrane Register of Studies databases were searched using specific inclusion and exclusion criteria for radiological studies involving OWHTO with bone graft and without bone graft groups. All reported delayed union, nonunion and correction loss were analyzed. Data were searched from the time period of January 2000 through July 2014. In addition, a modified Coleman methodology score (CMS) system was used to assess the methodological quality of the included studies. Results Twenty-five studies with a mean CMS value of 77 (range, 61 to 85 score) were included. In total, 1,841 patients underwent OWHTO using 4 different procedures for bone graft: autobone graft (n=352), allobone graft (n=547), synthetic bone graft (n=541) and no bone graft (n=401). There was a similar tendency for delayed union, nonunion and correction loss rate among the osteotomy space filling methods. Conclusions The meta-analysis showed there was a similar tendency for radiological union and correction maintenance among patients undergoing OWHTO regardless of the type of bone in all of the studies. However, the currently available evidence is not sufficient to strongly support the superiority of OWHTO with bone graft to OWHTO without bone graft. PMID:26675553

  19. Eggshell Derived Hydroxyapatite as Bone Graft Substitute in the Healing of Maxillary Cystic Bone Defects: A Preliminary Report

    PubMed Central

    Kattimani, Vivekanand S; Chakravarthi, P Srinivas; Kanumuru, Narasimha Reddy; Subbarao, Vummidisetti V; Sidharthan, A; Kumar, T S Sampath; Prasad, L Krishna

    2014-01-01

    Background: Since ancient times, use of graft materials to promote healing of defects of bone is wellknown. Traditionally, missing bone is replaced with material from either patient or donor. Multiple sources of bone grafts have been used to graft bone defects to stimulate bone healing. Hydroxyapatite is naturally occurring mineral component of bone, which is osteoconductive. This versatile biomaterial is derived from many sources. The aim of this study is to evaluate the efficacy of eggshell derived hydroxyapatite (EHA) in the bone regeneration of human maxillary cystic bone defects secondary to cystic removal/apicoectomy and compare the material properties of EHA in vitro. Materials and Methods: A total of eight maxillary bone defects were grafted after cystic enucleation and/or apicoectomy in the year 2008 and completed the study at 1 year. The patients were followed-up 2 weeks after surgery for signs and symptoms of infection or any other complications that may have been related to surgical procedure. Follow-up radiographs were obtained immediately after surgery followed by 1, 2, and 3 months to assess the efficacy of EHA in bone healing. Physicochemical characterization of the EHA was carried out in comparison with synthetic hydroxyapatite (SHA), also compared the biocompatibility of EHA using in vitro cytotoxicity test. Results: By the end of the 8th week, the defects grafted with EHA showed complete bone formation. However, bone formation in non-grafted sites was insignificant. The values of density measurements were equal or more than that of surrounding normal bone. These results indicate that the osseous regeneration of the bone defect filled with EHA is significant. EHA showed the superior material properties in comparison with SHA. Conclusion: EHA is a versatile novel bone graft substitute that yielded promising results. Because of its biocompatibility, lack of disease transfer risks, ease of use and unlimited availability, EHA remains a viable choice

  20. The outcome of intraoral onlay block bone grafts on alveolar ridge augmentations: A systematic review

    PubMed Central

    Aloy-Prósper, Amparo; Peñarrocha-Oltra, David; Peñarrocha-Diago, Maria A.

    2015-01-01

    Aim: The purpose of this study was to systematically review clinical studies examining the survival and success rates of implants placed with intraoral onlay autogenous bone grafts to answer the following question: do ridge augmentations procedures with intraoral onlay block bone grafts in conjunction with or prior to implant placement influence implant outcome when compared with a control group (guided bone regeneration, alveolar distraction, native bone or short dental implants.)? Material and Method: An electronic data banks and hand searching were used to find relevant articles on vertical and lateral augmentation procedures performed with intraoral onlay block bone grafts for dental implant therapy published up to October 2013. Publications in English, on human subjects, with a controlled study design –involving at least one group with defects treated with intraoral onlay block bone grafts, more than five patients and a minimum follow-up of 12 months after prosthetic loading were included. Two reviewers extracted the data. Results: A total of 6 studies met the inclusion criteria: 4 studies on horizontal augmentation and 2 studies on vertical augmentation. Intraoperative complications were not reported. Most common postsurgical complications included mainly mucosal dehiscences (4 studies), bone graft or membrane exposures (3 studies), complete failures of block grafts (2 studies) and neurosensory alterations (4 studies). For lateral augmentation procedures, implant survival rates ranged from 96.9% to 100%, while for vertical augmentation they ranged from 89.5% to 100%. None article studied the soft tissues healing. Conclusions: Survival and success rates of implants placed in horizontally and vertically resorbed edentulous ridges reconstructed with block bone grafts are similar to those of implants placed in native bone, in distracted sites or with guided bone regeneration. More surgical challenges and morbidity arise from vertical augmentations, thus short

  1. Radiographic evaluation of the symphysis menti as a donor site for an autologous bone graft in pre-implant surgery

    PubMed Central

    Di Bari, Roberto; Coronelli, Roberto

    2013-01-01

    Purpose This study was performed to obtain a quantitative evaluation of the cortical and cancellous bone graft harvestable from the mental and canine regions, and to evaluate the cortical vestibular thickness. Materials and Methods This study collected cone-beam computed tomographic (CBCT) images of 100 Italian patients. The limits of the mental region were established: 5 mm in front of the medial margin of each mental foramen, 5 mm under the apex of each tooth present, and above the inferior mandibular cortex. Cortical and cancellous bone volumes were evaluated using SimPlant software (SimPlant 3-D Pro, Materialize, Leuven, Belgium) tools. In addition, the cortical vestibular thickness (minimal and maximal values) was evaluated in 3 cross-sections corresponding to the right canine tooth (3R), the median section (M), and the left canine tooth (3L). Results The cortical volume was 0.71±0.23 mL (0.27-1.96 mL) and the cancellous volume was 2.16±0.76 mL (0.86-6.28 mL). The minimal cortical vestibular thickness was 1.54±0.41 mm (0.61-3.25 mm), and the maximal cortical vestibular thickness was 3.14±0.75mm(1.01-5.83 mm). Conclusion The use of the imaging software allowed a patient-specific assessment of mental and canine region bone availability. The proposed evaluation method might help the surgeon in the selection of the donor site by the comparison between bone availability in the donor site and the reconstructive exigency of the recipient site. PMID:24083206

  2. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes

    PubMed Central

    Worm, Paulo V.; Ferreira, Nelson P.; Faria, Mario B.; Ferreira, Marcelo P.; Kraemer, Jorge L.; Collares, Marcus V. M.

    2010-01-01

    Background: As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Methods: Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. Results: The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P < 0.001); the mean cosmetic scores were 9.5 for bone fragment and 5.7 for bone dust (P < 0.001). Conclusions: The use of autologous bone discs showed better results than bone dust for the reconstruction of cranial burr holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines. PMID:21206899

  3. An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation.

    PubMed

    Fujita, Fuminori; Mizuno, Katsunori; Matsukawa, Mami

    2013-12-01

    Wave propagation in a trabecular bone was experimentally investigated using an acoustic tube. For the purposes of this study, a cubic sample was gradually filed so the waveform change due to the sample thickness could be observed. The initial sample showed clear two-wave separation. As the sample became thinner, the fast and slow waves gradually overlapped. The apparent frequencies and amplitudes of the fast waves obtained from the time domain data decreased significantly for the smaller thicknesses. This indicates an increase in the apparent attenuation at the initial stage of the propagation. Next the authors investigated the distribution of the ultrasonic field after the transmission through the cancellous bone sample. In addition to a large aperture receiver, a needle-type ultrasonic transducer was used to observe the ultrasonic field. Within an area of the same size of the large transducer, the waveforms retrieved with the needle sensor exhibited high spatial variations; however, the averaged waveform in the plane was similar to the waveform obtained with the large aperture receiver. This indicates that the phase cancellation effect on the surface of the large aperture receiver can be one of the reasons for the strong apparent attenuation observed at the initial stages of the propagation. PMID:25669289

  4. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading.

    PubMed

    Goff, M G; Lambers, F M; Sorna, R M; Keaveny, T M; Hernandez, C J

    2015-11-26

    High-resolution finite element models derived from micro-computed tomography images are often used to study the effects of trabecular microarchitecture and loading mode on tissue stress, but the degree to which existing finite element methods correctly predict the location of tissue failure is not well characterized. In the current study, we determined the relationship between the location of highly strained tissue, as determined from high-resolution finite element models, and the location of tissue microdamage, as determined from three-dimensional fluoroscopy imaging, which was performed after the microdamage was generated in-vitro by mechanical testing. Fourteen specimens of human vertebral cancellous bone were assessed (8 male donors, 2 female donors, 47-78 years of age). Regions of stained microdamage, were 50-75% more likely to form in highly strained tissue (principal strains exceeding 0.4%) than elsewhere, and generally the locations of the regions of microdamage were significantly correlated (p<0.05) with the locations of highly strained tissue. This spatial correlation was stronger for the largest regions of microdamage (≥1,000,000μm(3) in volume); 87% of large regions of microdamage were located near highly strained tissue. Together, these findings demonstrate that there is a strong correlation between regions of microdamage and regions of high strain in human cancellous bone, particularly for the biomechanically more important large instances of microdamage. PMID:26522622

  5. Effects of liquid nitrogen cryotherapy and bone grafting on artificial bone defects in minipigs: a preliminary study.

    PubMed

    Pogrel, M A; Regezi, J A; Fong, B; Hakim-Faal, Z; Rohrer, M; Tran, C; Schiff, T

    2002-06-01

    Liquid nitrogen cryotherapy has been advocated as an adjunct in the enucleation and curettage of locally aggressive lesions of the jaws. Simultaneous autogenous bone grafting has also been advocated to accelerate bone formation and reduce morbidity. There is, however, relatively little scientific basis for either of these hypotheses. In this study, nine Yucatan minipigs had artificial defects created in the mandible, which were treated with liquid nitrogen spray. Half of the defects were grafted with autogenous bone from the chin and half were closed primarily. Two animals were sacrificed 3 days postoperatively to measure the width of necrosis and the rest were sacrificed at 3 months to assess healing and new bone formation. It was found that drilling the artificial defects alone caused bone necrosis for a mean depth of 0.09 mm. Liquid nitrogen cryospray caused a mean depth of bone necrosis of 0.82 mm (range 0.51-1.52 mm). The defects that were bone grafted healed well clinically. Defects not bone grafted showed a 50% rate of wound breakdown and sequestrum formation with delayed healing. Vital staining showed a non-significantly greater rate of bone formation in the grafted defects. Digitally superimposed radiography showed a non-significantly greater bone density in the non-grafted defects at 3 months postoperatively. It appears that liquid nitrogen cryospray does devitalize an area of bone around defects in the mandible. The width of necrosis is usually less than 1 mm and subsequent healing is enhanced by autogenous bone grafting. This has clinical implications. PMID:12190137

  6. Unilateral Pedicle Screw Fixation with Bone Graft vs. Bilateral Pedicle Screw Fixation with Bone Graft or Cage: A Comparative Study.

    PubMed

    Yang, Si-Dong; Chen, Qian; Ding, Wen-Yuan; Zhao, Jian-Qiang; Zhang, Ying-Ze; Shen, Yong; Yang, Da-Long

    2016-01-01

    BACKGROUND The aim of this study was to explore the clinical efficacy of unilateral pedicle screw fixation with bone graft (UPSFB) in treating single-segment lumbar degenerative diseases (LDD), as compared to bilateral pedicle screw fixation with bone graft (BPSFB) or with cage (BPSFC). MATERIAL AND METHODS Medical records were retrospectively collected between 01/2010 and 02/2015 in Longyao County Hospital. According to surgical methods used, all patients were divided into 3 groups: UPSFB group, BPSFB group, and BPSFC group. Clinical outcomes were evaluated by blood loss, blood transfusion, duration of operation, hospital stay, postoperative complications, interbody fusion rate, reoperation rate, medical expenses, patient satisfaction survey, and JOA score. RESULTS Ninety-five patients were included and underwent 2.5-year follow-up, with 7 patients lost to regular follow-up. As compared to the BPSFB group and BPSFC group, the UPSFB group had less blood loss and less blood transfusion, as well as shorter hospital stay (p<0.05). Medical expenses were far lower in the UPSFB group (p<0.001). There were no significant differences among the 3 groups in postoperative complications, interbody fusion rate, reoperation rate, JOA score, and patient satisfaction (all p>0.05). CONCLUSIONS As compared to BPSFB and BPSFC, UPSFB has the same reliability and effectiveness in treating single-segment LDD with unilateral radicular symptoms in a single lower extremity, with the additional advantage being less expensive. PMID:26988532

  7. Unilateral Pedicle Screw Fixation with Bone Graft vs. Bilateral Pedicle Screw Fixation with Bone Graft or Cage: A Comparative Study

    PubMed Central

    Yang, Si-Dong; Chen, Qian; Ding, Wen-Yuan; Zhao, Jian-Qiang; Zhang, Ying-Ze; Shen, Yong; Yang, Da-Long

    2016-01-01

    Background The aim of this study was to explore the clinical efficacy of unilateral pedicle screw fixation with bone graft (UPSFB) in treating single-segment lumbar degenerative diseases (LDD), as compared to bilateral pedicle screw fixation with bone graft (BPSFB) or with cage (BPSFC). Material/Methods Medical records were retrospectively collected between 01/2010 and 02/2015 in Longyao County Hospital. According to surgical methods used, all patients were divided into 3 groups: UPSFB group, BPSFB group, and BPSFC group. Clinical outcomes were evaluated by blood loss, blood transfusion, duration of operation, hospital stay, postoperative complications, interbody fusion rate, reoperation rate, medical expenses, patient satisfaction survey, and JOA score. Results Ninety-five patients were included and underwent 2.5-year follow-up, with 7 patients lost to regular follow-up. As compared to the BPSFB group and BPSFC group, the UPSFB group had less blood loss and less blood transfusion, as well as shorter hospital stay (p<0.05). Medical expenses were far lower in the UPSFB group (p<0.001). There were no significant differences among the 3 groups in postoperative complications, interbody fusion rate, reoperation rate, JOA score, and patient satisfaction (all p>0.05). Conclusions As compared to BPSFB and BPSFC, UPSFB has the same reliability and effectiveness in treating single-segment LDD with unilateral radicular symptoms in a single lower extremity, with the additional advantage being less expensive. PMID:26988532

  8. Can we achieve bone healing using the diamond concept without bone grafting for recalcitrant tibial nonunions?

    PubMed

    Ollivier, M; Gay, A M; Cerlier, A; Lunebourg, A; Argenson, J N; Parratte, S

    2015-07-01

    The purpose of this study was to evaluate the efficacy and safety of a combination of recombinant human bone morphogenetic protein 7 (rhBMP-7) and resorbable calcium phosphate bone substitute (rCPBS) as a salvage solution for recalcitrant tibial fracture nonunions. Twenty consecutive patients, 16 male and four female, with a mean age of 46.8±15.7 years (21-78) and a mean body mass index (BMI) of 24.2±5.3kgm(-2) (21.5-28.5), suffering from 20 recalcitrant tibial fracture nonunions were included. The mean number of operations performed prior to the procedure was 3.3, with homolateral iliac crest bone grafts being used for all of the patients. All patients were treated with a procedure including debridement and decortications of the bone ends, nonunion fixation with a locking plate, and filling of the bony defect with a combined graft of rhBMP-7 (as osteoinductor) with an rCPBS (as scaffold). The mean follow-up was 14±2.7 months. Both clinical and radiological union occurred in 18 cases, within a mean time of 4.7±3.2 months. A recurrence of deep infection was diagnosed for one of the non-consolidated patients. No specific complication of rCPBS or rhBMP-7 was encountered. This study supports the view that the application of rCPBS combined with rhBMP-7, without any bone grafting, is safe and efficient in the treatment of recalcitrant bone union. PMID:25933808

  9. Transcutaneous Raman spectroscopy for assessing progress of bone-graft incorporation in bone reconstruction and repair

    NASA Astrophysics Data System (ADS)

    Okagbare, Paul I.; Esmonde-White, Francis W. L.; Goldstein, Steven A.; Morris, Michael D.

    2011-03-01

    Allografts and other bone-grafts are frequently used for a variety of reconstructive approaches in orthopaedic surgery. However, successful allograft incorporation remains uncertain. Consequently, there is significant need for methods to monitor the fate of these constructs. Only few noninvasive methods can fully assess the progress of graft incorporation and to provide information on the metabolic status of the graft, such as the mineral and matrix composition of the regenerated-tissue that may provide early indications of graft success or failure. For example, Computed-tomography and MRI provide information on the morphology of the graft/host interface. Limited information is also available from DXA. To address this challenge, we present here the implementation of a noninvasive Raman spectroscopy technique for in-vivo assessment of allograft incorporation in animal-model. In an animal use committee approved osseointegration experiment, a 3mm defect is created in rat's tibia. The defect is reconstructed using auto or allograft and Raman spectra are collected at several time-points during healing using an array of optical-fibers in contact with the skin of the rat over the tibia while the rat is anaesthetized. The array allows excitation and collection of Raman spectra through the skin at various positions around the tibia. Raman parameters such as mineral/matrix, carbonate/phosphate and cross-linking are recovered and monitored. The system is calibrated against locally-constructed phantoms that mimic the morphology, optics and spectroscopy of the rat. This new technology provides a non-invasive method for in-vivo assessment of bone-graft incorporation in animal-models and can be adapted for similar study in human subjects.

  10. A simplified arthroscopic bone graft transfer technique in chronic glenoid bone deficiency.

    PubMed

    Nebelung, Wolfgang; Reichwein, Frank; Nebelung, Sven

    2016-06-01

    In severe shoulder instability, chronic glenoid bone deficiency is a challenge for arthroscopic shoulder surgeons. This paper presents a new all-arthroscopic technique of iliac crest bone graft transfer for those patients. Transportation through the rotator interval and repositioning into the glenoid defect is achieved by use of a tracking suture, while fixation of the graft is performed by biodegradable or titanium double-helix screws. Overall, the feasibility and reproducibility of this new reconstruction technique in recreating the bony and soft tissue anatomy of the antero-inferior glenoid could be demonstrated. So far, preliminary outcomes of 24 patients operated on using this technique are promising. Level of evidence Case series with no comparison group, Level IV. PMID:24803016

  11. Tumour Transfer to Bone Graft Donor Site: A Case Report and Review of the Literature of the Mechanism of Seeding

    PubMed Central

    Dias, Richard G.; Carter, Simon R.; Grimer, Robert J.; Tillman, Roger M.

    2000-01-01

    Purpose. Transmission of malignant tumour cells to a bone graft donor site is a rare complication of bone grafting.We report a case of seeding of malignant fibrous histiocytoma from the femur to a pelvic bone graft donor site. Discussion. We review the literature, discuss the possible mechanism of tumour transfer and offer advice aimed at avoiding this complication. PMID:18521435

  12. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    PubMed Central

    Puricelli, Edela; Dutra, Nardier B; Ponzoni, Deise

    2009-01-01

    Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field. PMID:19134221

  13. A composite graft material containing bone particles and collagen in osteoinduction in mouse.

    PubMed

    Tsai, Chung-Hung; Chou, Ming-Yung; Jonas, Mecrehild; Tien, Yung-Tico; Chi, Emily Y

    2002-01-01

    Demineralized allogenic bone matrices (DABM) and demineralized freeze-dried bone allograft (DFDBA) have been successfully used as bone-graft materials in the treatment of acquired and congenital cranio-maxillofacial defects and in some orthopedic surgery. However, these bone-graft "powders" have many shortcomings. For example, placement of particulate graft material in a hemorrhaging site can result in inadequacies or inaccurate attachment as well as loss of the graft materials. To minimize the inadequacies of powderlike graft materials, xenogenic collagen isolated from human tendon, skin, or bone was added to the bone-graft particles to form a composite spongelike implant. This material is commercially available and consists of 60% collagen and 40% DFDBA (DynaGraft, GenSci Co., Irvine, CA). The goal of this study was to evaluate the characteristics of composite graft implants in the mineralization process in an animal model in comparison with DFDBA powder and pure collagen. Seventy-two Swiss Webster mice were divided into three groups: an experimental group implanted with DynaGraft, two comparison groups implanted with either DFDBA or collagen only. All the graft materials were surgically implanted and inserted into the left thigh muscle. Mice were humanely killed at 1, 2, 3, 4, 6, 8, and 12 weeks. Then the muscle tissues in the vicinity of the implants were excised and processed for histology. Paraffin sections were stained with hematoxylin and eosin (H&E), the Von Kossa method, and Masson's trichrome. Some selected specimens were processed for transmission electron microscopic observation. After 1 week of implantation, the DynaGraft group showed calcium deposition on the collagen material and on the periphery of the DFDBA particles. Increased calcification and bone-forming cells were observed at 4-6 weeks. After 8 weeks, the implant formed a calcified nodule and only heavily mineralized connective tissue was observed at the implanted site. The group implanted

  14. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures

    PubMed Central

    Ferroni, Letizia; Guazzo, Riccardo; Sbricoli, Luca; De Benedictis, Giulia; Finotti, Luca; Isola, Maurizio; Bressan, Eriberto; Zavan, Barbara

    2015-01-01

    The combination of bone grafting materials with guided bone regeneration (GBR) membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM). In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications. PMID:26191793

  15. Histomorphometric Evaluation of Anorganic Bovine Bone Coverage to Reduce Autogenous Grafts Resorption: Preliminary Results

    PubMed Central

    Maiorana, Carlo; Beretta, Mario; Battista Grossi, Giovanni; Santoro, Franco; Scott Herford, Alan; Nagursky, Heiner; Cicciù, Marco

    2011-01-01

    Physiologic resorption due to remodeling processes affects autogenous corticocancellous grafts in the treatment of atrophic jawbone alveolar ridges. Such a situation in the past made overgrafting of the recipient site mandatory to get enough bone support to dental implants in order to perform a prosthetic rehabilitation. Anorganic bovine bone, conventionally used to treat alveolar bone deficiencies in implant surgery, showed a high osteoconductive property thanks to its micro and macrostructure very similar to that of human hydroxyapatite. An original technique provides for the application of a thin layer of anorganic bovine bone granules and a collagen membrane on the top of the corticocancellous onlay bone grafts to reduce in a remarkable way the graft resorption due to remodeling. The results of a clinical prospective study and a histomorphometric analysis done on autogenous grafts harvested from the iliac crest showed that the proposed technique is able to maintain the original bone volume of the corticocancellous blocks. PMID:21566694

  16. Glycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose

    PubMed Central

    Sroga, Grażyna E.; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food

  17. A biomechanical study on fixation stability with twin hook or lag screw in artificial cancellous bone.

    PubMed

    Olsson, O; Tanner, K E; Ceder, L; Ryd, L

    2002-01-01

    The twin hook has been developed as an alternative to the conventional lag screw to be combined with a barrelled side-plate in the treatment of trochanteric hip fractures. With two oppositely directed apical hooks introduced into the subchondral bone of the femoral head, the twin hook provides different stabilising properties to the lag screw. The femoral head purchase of the twin hook and the lag screw were compared in a biomechanical study using artificial cancellous bone, and responses to axial and torsional loading was determined. A distinct yield point in load and torque was noted for the lag screw, representing failure of the laminas supporting the threads. For the twin hook, gradual increase of load and torque occurred during impaction of the bone supporting the hooks. The peak loads and torques were higher for the lag screw, but were similar for both devices after 8 mm deformation. The stiffness was higher for the lag screw, but in counter-clockwise rotation the stiffness for the lag screw was negligible. The twin hook appeared to provide fixation stability comparable to that offered by the lag screw, but with conceivable advantages in terms of a deformation response involving bone impaction and gradually increasing stability. PMID:12466867

  18. Experimental posterolateral spinal fusion with beta tricalcium phosphate ceramic and bone marrow aspirate composite graft

    PubMed Central

    Gupta, Ankit; Chauhan, Vijendra; Chauhan, Neena; Sharma, Sansar; Maheshwari, Rajesh; Agarwal, Atul

    2010-01-01

    Background: Beta tricalcium phosphate is commonly used in metaphyseal defects but its use in posterolateral spinal fusion remains controversial. There are very few published animal studies in which use of beta tricalcium phosphate has been evaluated in the posterolateral lumbar arthrodesis model. Hence we conducted a study to evaluate the potential of composite graft of beta tricalcium phosphate and bone marrow aspirate in comparison to autologous bone graft, when used for posterolateral spinal fusion. Materials and Methods: Single level posterolateral lumbar fusion was performed in 40 adult male Indian rabbits, which were assigned randomly into one of the four groups based on graft materials implanted; a) 3 gm beta tricalcium phosphate plus 3 ml bone marrow aspirate (Group I); b) 3 ml bone marrow aspirate alone (Group II); c) 3 gm beta tricalcium phosphate (Group III) and d) 3 gm autologous bone graft (Group IV). Each group had 10 rabbits. Half of the rabbits were sacrificed by injecting Phenobarbitone intraperitoneally after eight weeks and the remaining after 24 weeks, and were evaluated for fusion by X-rays, computed tomography (CT) scans, manual palpation test and histology. Results: Beta tricalcium phosphate used with bone marrow aspirate produced best results when compared to other groups (P =.0001). When beta tricalcium phosphate was used alone, fusion rates were better as compared to fusion achieved with autologous iliac crest bone graft though statistically not significant (P =0.07). Autologous bone graft showed signs of new bone formation. However, the rate of new bone formation was comparatively slow. Conclusion: Composite graft of beta tricalcium phosphate and bone marrow aspirate can be used as an alternative to autologous iliac crest bone graft. PMID:20924481

  19. Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine.

    PubMed

    Chau, Anthony Minh Tien; Xu, Lileane Liang; Wong, Johnny Ho-Yin; Mobbs, Ralph Jasper

    2014-01-01

    Anterior cervical discectomy and fusion (ACDF) and anterior lumbar interbody fusion (ALIF) are common surgical procedures for degenerative disc disease of the cervical and lumbar spine. Over the years, many bone graft options have been developed and investigated aimed at complimenting or substituting autograft bone, the traditional fusion substrate. Here, we summarise the historical context, biological basis and current best evidence for these bone graft options in ACDF and ALIF. PMID:23743981

  20. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. A one-year study.

    PubMed Central

    Lafage, M H; Balena, R; Battle, M A; Shea, M; Seedor, J G; Klein, H; Hayes, W C; Rodan, G A

    1995-01-01

    Fluoride stimulates trabecular bone formation, whereas bisphosphonates reduce bone resorption and turnover. Fracture prevention has not been convincingly demonstrated for either treatment so far. We compared the effects of 1-yr treatment of 9-mo-old minipigs with sodium fluoride (NaF, 2 mg/kg/d p.o.) or alendronate (ALN, 4 amino-1-hydroxybutylidene bisphosphonate monosodium, 1 mg/kg/d p.o.) on the biomechanical and histomorphometric properties of pig bones. As expected, NaF increased and ALN decreased bone turnover, but in these normal animals neither changed mean bone volume. NaF reduced the strength of cancellous bone from the L4 vertebra, relative to control animals, and the stiffness (resistance to deformation) of the femora, relative to the ALN group. In the ALN-treated animals, there was a strong positive correlation between bone strength and L5 cancellous bone volume, but no such correlation was observed in the NaF group. Furthermore, the modulus (resistance to deformation of the tissue) was inversely related to NaF content and there was a relative decrease in bone strength above 0.25 mg NaF/g bone. Moreover, within the range of changes measured in this study, there was an inverse correlation between bone turnover, estimated as the percentage of osteoid surface, and modulus. These findings have relevant implications regarding the use of these agents for osteoporosis therapy. PMID:7738180

  1. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    PubMed

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound. PMID:24598434

  2. Beta-1 adrenergic agonist treatment mitigates negative changes in cancellous bone microarchitecture and inhibits osteocyte apoptosis during disuse.

    PubMed

    Swift, Joshua M; Swift, Sibyl N; Allen, Matthew R; Bloomfield, Susan A

    2014-01-01

    The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. The purpose of this study was to characterize the independent and combined effects of DOB and hindlimb unloading (HU) on cancellous bone microarchitecture, tissue-level bone cell activity, and osteocyte apoptosis. Male Sprague-Dawley rats, aged 6-mos, were assigned to either normal cage activity (CC) or HU (n = 18/group) for 28 days. Animals were administered either daily DOB (4 mg/kg BW/d) or an equal volume of saline (VEH) (n = 9/gp). Unloading resulted in significantly lower distal femur cancellous BV/TV (-33%), Tb.Th (-11%), and Tb.N (-25%) compared to ambulatory controls (CC-VEH). DOB treatment during HU attenuated these changes in cancellous bone microarchitecture, resulting in greater BV/TV (+29%), Tb.Th (+7%), and Tb.N (+21%) vs. HU-VEH. Distal femur cancellous vBMD (+11%) and total BMC (+8%) were significantly greater in DOB- vs. VEH-treated unloaded rats. Administration of DOB during HU resulted in significantly greater osteoid surface (+158%) and osteoblast surface (+110%) vs. HU-VEH group. Furthermore, Oc.S/BS was significantly greater in HU-DOB (+55%) vs. CC-DOB group. DOB treatment during unloading fully restored bone formation, resulting in significantly greater bone formation rate (+200%) than in HU-VEH rats. HU resulted in an increased percentage of apoptotic cancellous osteocytes (+85%), reduced osteocyte number (-16%), lower percentage of occupied osteocytic lacunae (-30%) as compared to CC-VEH, these parameters were all normalized with DOB treatment. Altogether, these data indicate that beta1AR agonist treatment during disuse mitigates negative

  3. Optimal graft source for allogeneic hematopoietic stem cell transplant: bone marrow or peripheral blood?

    PubMed

    Adhikari, Janak; Sharma, Priyadarshani; Bhatt, Vijaya Raj

    2016-08-01

    Peripheral blood (PB), compared with bone marrow graft, has higher stem cell content, leads to faster engraftment and is more convenient for collection. Consequently, the use of PB graft has significantly increased in recent years. Although the use of PB graft is acceptable or even preferred to bone marrow graft in matched related donor allogeneic transplant due to a possibility of improved survival, PB graft increases the risk of chronic graft-versus-host disease and associated long-term toxicities in the setting of matched unrelated donor allogeneic transplant. In haploidentical transplant, mitigation of graft-versus-host disease with the use of post-transplant cyclophosphamide is a hypothesis-generating possibility; however, available studies have significant limitations to draw any definite conclusion. PMID:27168462

  4. Development of hydroxyapatite scaffolds for artificial bone grafts

    NASA Astrophysics Data System (ADS)

    Ajaal, Tawfik Taher

    The Taguchi method of experimental design is very well suited to improving the production process of the synthetic bone grafts for several reasons. First, it is very efficient and easy to apply, so that it does not require large amounts of time or resources to conduct a given set of experiments. This makes it possible to conduct a series of experiments that result in continuous process improvement. Second, the effect of many different process variables can be examined simultaneously, which ensures that beneficial factor combinations are not overlooked. Finally, using a Taguchi signal-to-noise ratio leads to concurrent optimization of the process and reduction of process variability. The application of Taguchi method was successful in optimizing the production process of the synthetic bone grafts. The compressive strength was doubled while maintaining the appropriate porosity level and microstructure for the bioactivity process. The mean value of the compression strength obtained was 5.8 MPa with density of 0.515 gm/cm3 for samples prepared from 45 pores per inch (PPI) foam reticulate, and 3.2 MPa with 0.422 gm/cm 3 for samples prepared from 30 PPI foam reticulate. Three levels of porosity were identified namely, macro, meso, and micro-porosity. The pore sizes were (350--400) mum, (100--120) mum and (2--6) mum respectively based on the used substrate. Using the Taguchi method in conjunction with a statistical experimental design, the various steps of the scaffold production process such as slurry preparation, coating process, drying, calcining and sintering processes were optimized. The final optimized process gave highly reproducible results.

  5. Effect of different storage media on the regenerative potential of autogenous bone grafts: a histomorphometrical analysis in rabbits.

    PubMed

    Rocha, Flaviana Soares; Batista, Jonas Dantas; Zanetta-Barbosa, Darceny; Dechichi, Paula

    2013-12-01

    The success of autogenous bone graft is related to the graft cell viability. In bone-grafting procedures, harvested grafts are often maintained in extraoral media while the recipient site is prepared. The aim of this study was to evaluate in vivo the effect of storage media over autogenous bone grafts during the transsurgical time. Two grafts were removed bilaterally from the calvaria of 18 rabbits. One graft was immediately fixed in the mandibular angle (control group), and the other was maintained in air exposure (dry group), 0.9% NaCl solution (saline group), or platelet-poor plasma (PPP group) during 30 minutes and stabilized in the symmetrical location of control grafts. After 28 days, the animals were euthanized and the bone fragments were removed, demineralized, and embedded in paraffin. Histological evaluation was performed under light microscope. Empty lacunae and bone graft area quantification were carried out for the sections. The histomorphometrical analysis revealed reduction of the graft area and increase of empty lacunae in the dry group when compared with control. No significant differences were found in the number of empty lacunae or bone graft area between the saline group and its control and also between the PPP group and its control. The dry group showed more empty lacunae and less graft area than the saline and PPP groups. In accordance with the results, PPP and physiologic solution demonstrated osteocyte preservation and bone graft area maintenance, being satisfactory storage media for autogenous bone grafts during the transsurgical period. PMID:21905882

  6. Reconstruction using 'triangular approximation' of bone grafts for orbital blowout fractures.

    PubMed

    Saiga, Atsuomi; Mitsukawa, Nobuyuki; Yamaji, Yoshihisa

    2015-10-01

    There are many orbital wall reconstruction materials that can be used in surgery for orbital blowout fractures. We consider autogenous bone grafts to have the best overall characteristics among these materials and use thinned, inner cortical tables of the ilium. A bone bender is normally used to shape the inner iliac table to match the orbital shape. Since orbital walls curve three-dimensionally, processing of bone grafts is not easy and often requires much time and effort. We applied a triangular approximation method to the processing of bone grafts. Triangular approximation is a concept used in computer graphics for polygon processing. In this method, the shape of an object is represented as combinations of polygons, mainly triangles. In this study, the inner iliac table was used as a bone graft, and cuts or scores were made to create triangular sections. These triangular sections were designed three-dimensionally so that the shape of the resulting graft approximated to the three-dimensional orbital shape. This method was used in 12 patients with orbital blowout fractures, which included orbital floor fractures, medial wall fractures, and combined inferior and medial wall fractures. In all patients, bone grafts conformed to the orbital shape and good results were obtained. This simple method uses a reasonable and easy-to-understand approach and is useful in the treatment of bone defects in orbital blowout fractures when using a hard graft material. PMID:26297418

  7. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones.

    PubMed

    Ogose, Akira; Kondo, Naoki; Umezu, Hajime; Hotta, Tetsuo; Kawashima, Hiroyuki; Tokunaga, Kunihiko; Ito, Tomoyuki; Kudo, Naoko; Hoshino, Makiko; Gu, Wenguang; Endo, Naoto

    2006-03-01

    Prominent osteoconductive activity and the biodegradable nature of commercially available beta-tricalcium phosphate (beta-TCP, OSferion) have been documented in animal experiments. We analyzed four cases of involving grafted OSferion in human bone with respect to histological features by routine hematoxylin and eosin staining, silver impregnation, immunohistochemistry and in situ hybridization. OSferion affords early bioresorption by osteoclasts, vascular invasion of macropores and osteoblastic cell attachment on the surface on the ceramic surface 14 days after grafting. Prominent bone formation and direct bone connection between preexisting bone and OSferion were evident 28 days after grafting. Nearly the entire TCP surface was covered by lamellar bone; additionally, active osteoblastic lining and attachment of the osteoclast-like giant cells were not observed 72 weeks after grafting. Silver impregnation revealed the presence of collagen fibrils within probable micropores of OSferion. PMID:16165205

  8. Prospective Analysis of Secondary Alveolar Bone Grafting in Cleft Lip and Palate Patients

    PubMed Central

    Reddy, M Gokul Chandra; Babu, V Ramesh; Rao, V Eswar; Chaitanya, J Jaya; Allareddy, S; Reddy, C Charan Kumar

    2015-01-01

    Background: To assess the success of the uptake of bone graft in cleft alveolus of the cleft lip and palate patients, quantitatively through computed tomography (CT) scan 6 months postoperative. To assess the successful eruption of permanent lateral incisor or canine in the bone grafted area. Materials and Methods: The children age group of 9-21 years with unilateral cleft lip and palate came to the hospital, needing secondary alveolar bone grafting. A detailed history and clinical examination of the patient was taken. A 3D CT scan was taken and the volume of the cleft was measured pre-operatively. After ambulatory period, 3D CT scan of the alveolar cleft region was taken and volume of the bone grafted was measured and patient was discharged from the hospital. After 6 months, patient was recalled and again 3D CT scan was taken and the volume of remaining bone was measured. Results: The mean volume of the defect pre-operatively is 0.80 cm3 with a standard deviation of 0.36 cm3 with minimum volume of the defect 0.44 cm3 and maximum volume of the defect 1.60 cm3. The mean volume of the bone post-operative immediately after grafting is 1.01 cm3 with a standard deviation of 0.52 cm3 with minimum of bone volume is 0.48 cm3 and maximum of 2.06 cm3. The mean volume of the bone after 6 months after bone grafting is 0.54 cm3 with a standard deviation of 0.33 cm3, minimum bone volume of 0.22 cm3 and maximum bone volume of 1.42 cm3. Conclusion: The CT scan is a valuable radiographic imaging modality to assess and follow the clinical outcome of secondary alveolar bone grafting. PMID:25954076

  9. Cancellous and Cortical Bone Microarchitectures of Femoral Neck in Rheumatoid Arthritis and Osteoarthritis Compared with Donor Controls.

    PubMed

    Wang, Bailiang; Overgaard, Søren; Chemnitz, John; Ding, Ming

    2016-05-01

    This study investigated the 3D microarchitecture of cancellous and cortical bones of the femoral neck in rheumatoid arthritis (RA), osteoarthritis (OA) and donor controls. 26 femoral necks (including heads) were harvested during total hip replacement surgeries in 11 patients with RA (mean age 66.7 ± 12.8 years) and 15 patients with OA (67.3 ± 8.4 years). Femoral heads/necks were also harvested from 8 donors (74.9 ± 10.2 years). Bone samples of 10 mm thickness were prepared from each femoral neck and scanned with micro-CT to evaluate microarchitectural parameters. The RA and OA samples showed no significant differences in microarchitectural parameters in cancellous or cortical bone. Compared with the donor controls, bone volume fraction in RA and OA cancellous bone was significantly greater, the structure model index in OA was significantly lower, and the surface density in RA was significantly greater. The RA bone tissues showed erosion and marked osteophyte formation. This study demonstrated that RA and OA have similar trends of overall microarchitectural degeneration in the femoral neck, despite marked erosion in RA bone and osteophyte formation in OA bone. However, we could not eliminate the possibility of local differences between RA and OA bone. The age-related bone loss in RA and OA was less severe than those of normal ageing and osteoporosis, suggesting a compensatory effect of the diseases to increase bone density. PMID:26677127

  10. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    PubMed

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. PMID:20883832

  11. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  12. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.

    PubMed

    Kefalas, V; Eftaxiopoulos, D A

    2012-02-01

    Experimental study of bovine cancellous bone up to compaction under uniaxial compression and up to fracture under tension, has been pursued in this article. Compression experiments have revealed the known three stages of the constitutive response, namely the initial increasing and softening branches at moderate strains, the plateau region at large strains and the hardening part at very large strains under compaction. Tension tests have quantified the increasing and softening branches of the stress-strain curve up to fracture. Subsequently, a constitutive mechanical model, for the simulation of the experimental findings up to very large strains (75% engineering strain under compression), is proposed. The model is based on the statistical description of (a) the failure process of the trabecular structure at small and moderate strains and (b) the compaction process of the trabecular mass at very large strains under compression. Several fitting cases indicated that the presented constitutive law can capture the evolution of the experimental results. PMID:22301172

  13. Treatment of Scaphoid Waist Nonunion Using Olecranon Bone Graft and Stryker Asnis Micro Cannulated Screw: A Retrospective Study—80 Case Studies and 6 Years of Follow-Up

    PubMed Central

    Poggetti, Andrea; Rosati, Marco; Castellini, Iacopo; Evangelisti, Gisberto; Battistini, Pietro; Parchi, Paolo; Lisanti, Michele

    2015-01-01

    Background Screw fixation and bone grafting are the gold standard for scaphoid waist nonunion without avascular necrosis. Question/Purpose Assesses the scaphoid waist nonunion healing rate with use of an uncommon cancellous bone graft (olecranon) and an unusual fixation system (Asnis Micro Cannulated Screw System; Stryker Inc., Kalamazoo, MI, USA). Material and Methods A series of 102 consecutive patients were treated for scaphoid waist nonunion (without deformity). Of these, 80 patients subjected to clinical (Modified Mayo Wrist Score (MMWS), Jamar hydraulic dynamometer) and radiographic examination before and after surgery were evaluated. Ipsilateral olecranon cancellous bone graft and the ASNIS Micro 3.0-mm diameter screw, were used. The average follow up was 6 years (min 3; max 10). Results Radiographic consolidation was achieved in 90% of patients; dorsal intercalated segment instability (DISI) deformities were corrected in 71.4% of cases. Ninety percent improved the range of motion of the wrist and grip strength. All patients showed a significant reduction of peak force in the operated hand. In 6.25% we observed clinical and radiographic screw head–trapezium impingement. Twenty-six patients developed a degenerative wrist sign. The MMWS yielded 68 optimal, 8 good, and 4 bad results. Conclusions To treat scaphoid waist nonunions without misalignment, low-profile headed screw and olecranon bone graft allowed a high consolidation rate with positive results to long-term follow-up. The Asnis Micro 3.0 mm diameter screw may be a suitable option for treating scaphoid waist nonunion. Level of Evidence IV. PMID:26261746

  14. Donor Site Evaluation: Anterior Iliac Crest Following Secondary Alveolar Bone Grafting

    PubMed Central

    Vura, Nandagopal; Reddy K., Rajiv; R., Sudhir; G., Rajasekhar; Kaluvala, Varun Raja

    2013-01-01

    Introduction: The use of autogenous bone graft for Secondary alveolar bone grafting is well established in the treatment of cleft lip and palate patients. Aims and Objectives: To evaluate post-operative morbidity of anterior iliac crest graft after secondary alveolar bone grafting in cleft patients. Material and Methods: Forty patients during the period from July 2008 to March 2013, who underwent secondary alveolar bone grafting by harvesting graft from anterior iliac crest in Mamata Dental Hospital, Khammam, Andhra Pradesh, India are included in the present study. Unilateral and bilateral cleft patients who had undergone secondary alveolar bone grafting (SABG) with anterior iliac crest as their donor site have been selected and post- operative complications from the surgery were evaluated with the help of a questionnaire which included pain, gait disturbances, numbness and scar problems (infection, irritation). Results: Patients who were operated gave maximum score for pain as 8 on visual analogue scale. No pain was observed in any of the cases after 8 days, gait disturbances were seen in all patients (limping) for 2-6 days, there was no post-operative numbness with all the patients returning to their routine in 6- 15 days and 90% of the patients gave a satisfied response towards scar. Conclusion: From the results in our study the morbidity after harvesting bone from iliac crest was found to be moderate to low, which had minimal complications and were well tolerated and greater acceptance from the patient. PMID:24392424

  15. Impaction grafted bone chip size effect on initial stability in an acetabular model: Mechanical evaluation

    PubMed Central

    Holton, Colin; Bobak, Peter; Wilcox, Ruth; Jin, Zhongmin

    2013-01-01

    Introduction Acetabular bone defect reconstruction is an increasing problem for surgeons with patients undergoing complex primary or revision total hip replacement surgery. Impaction bone grafting is one technique that has favourable long-term clinical outcome results for patients who undergo this reconstruction method for acetabular bone defects. Creating initial mechanical stability of the impaction bone graft in this technique is known to be the key factor in achieving a favourable implant survival rate. Different sizes of bone chips were used in this technique to investigate if the size of bone chips used affected initial mechanical stability of a reconstructed acetabulum. Methodology Twenty acetabular models were created in total. Five control models were created with a cemented cup in a normal acetabulum. Then five models in three different groups of bone chip size were constructed. The three groups had an acetabular protrusion defect reconstructed using either; 2–4 mm3, 10 mm3 or 20 mm3 bone chip size for impaction grafting reconstruction. The models underwent compression loading up to 9500 N and displacement within the acetabular model was measured indicating the initial mechanical stability. Results This study reveals that, although not statistically significant, the largest (20 mm3) bone chip size grafted models have an inferior maximum stiffness compared to the medium (10 mm3) bone chip size. Interpretations Our study suggests that 10 mm3 size of bone chips provide better initial mechanical stability compared to smaller or larger bone chips. We dismissed the previously held opinion that the biggest practically possible graft is best for acetabular bone graft impaction. PMID:24396238

  16. MicroCT Morphometry Analysis of Mouse Cancellous Bone: Intra- and Inter-system Reproducibility

    PubMed Central

    Verdelis, K.; Lukashova, L.; Atti, E.; Mayer-Kuckuk, P.; Peterson, M.G.E.; Tetradis, S.; Boskey, A.L.; van der Meulen, M.C.H.

    2012-01-01

    The agreement between measurements and the relative performance reproducibility among different microcomputed tomography (microCT) systems, especially at voxel sizes close to the limit of the instruments, is not known. To compare this reproducibility 3D morphometric analyses of mouse cancellous bone from distal femoral epiphyses were performed using three different ex vivo microCT systems: GE eXplore Locus SP, Scanco μCT35 and Skyscan 1172. Scans were completed in triplicate at 12μm and 8μm voxel sizes and morphometry measurements, from which relative values and dependence on voxel size were examined. Global and individual visually assessed thresholds were compared. Variability from repeated scans at 12μm voxel size was also examined. Bone volume fraction and trabecular separation values were similar, while values for relative bone surface, trabecular thickness and number varied significantly across the three systems. The greatest differences were measured in trabecular thickness (up to 236%) and number (up to 218%). The relative dependence of measurements on voxel size was highly variable for the trabecular number (from 0% to 20% relative difference between measurements from 12μm and 8μm voxel size scans, depending on the system). The intra-system reproducibility of all trabecular measurements was also highly variable across the systems and improved for BV/TV in all the systems when a smaller voxel size was used. It improved using a smaller voxel size in all the other parameters examined for the Scanco system, but not consistently so for the GE or the Skyscan system. Our results indicate trabecular morphometry measurements should not be directly compared across microCT systems. In addition, the conditions, including voxel size, for trabecular morphometry studies in mouse bone should be chosen based on the specific microCT system and the measurements of main interest. PMID:21621659

  17. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    PubMed

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons. PMID:26115209

  18. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    NASA Astrophysics Data System (ADS)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  19. Kuhlmann vascularized bone grafting for treatment of Kienböck's disease: a case report

    PubMed Central

    Sbai, Mohamed Ali; Msek, Hichem; Benzarti, Sofien; Boussen, Monia; Maalla, Riadh

    2016-01-01

    Treatment of Kienböck's disease has historically been determined by staging, ulnar variance, and presence or absence of arthritic changes. With the advent of newer techniques of vascularized bone grafting, the status of the cartilage shell of the lunate has become another factor that can influence the procedure performed. The purpose of this article is to describe the technique of Kuhlmann vascularized bone graft for Kienböck's disease. In addition, the indications, contraindications, and outcomes are described.

  20. Kuhlmann vascularized bone grafting for treatment of Kienböck's disease: a case report.

    PubMed

    Sbai, Mohamed Ali; Msek, Hichem; Benzarti, Sofien; Boussen, Monia; Maalla, Riadh

    2016-01-01

    Treatment of Kienböck's disease has historically been determined by staging, ulnar variance, and presence or absence of arthritic changes. With the advent of newer techniques of vascularized bone grafting, the status of the cartilage shell of the lunate has become another factor that can influence the procedure performed. The purpose of this article is to describe the technique of Kuhlmann vascularized bone graft for Kienböck's disease. In addition, the indications, contraindications, and outcomes are described. PMID:27583101

  1. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    . Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.

  2. Bone graft and mesenchimal stem cells: clinical observations and histological analysis

    PubMed Central

    Bertolai, Roberto; Catelani, Carlo; Aversa, Alessandro; Rossi, Alessandro; Giannini, Domenico; Bani, Daniele

    2015-01-01

    Summary Autologous bone, for its osteoconductive, osteoinductive and osteogenetic properties, has been considered to be the gold standard for maxillary sinus augmentation procedures. Autograft procedures bring also some disadvantages: sometimes the limited amount of available intraoral bone makes necessary to obtain bone from an extraoral site, and this carries an associated morbidity. To overcome this problem we started using homologous freeze-dried bone in maxillary sinus augmentation procedures. This bone is industrially processed with γ-irradiation to eliminate its disease transmission potential and it’s considered safe, but this treatment also eliminates the osteoinductive and osteogenetic properties, making it just an inert scaffold for regeneration. Mesenchymal stem cells are successfully used in and orthopedic surgery for their amplification potential of healing mechanisms. We assumed that mesenchymal stem cells can restore the osteogenetic and osteoinductive properties in homologous bone grafts. The aim of this study was an histological evaluation of bone regeneration in maxillary sinus elevation using: 1) mesenchymal stem cells engineered freeze-dried bone allografts; 2) freeze-dried bone allografts. Twenty patients (10M, 10F) with a mean age of 55.2 years affected by severe maxillary atrophy were treated with bilateral maxillary sinus floor elevation. For each patient were randomly assigned a “test” side and a “control” side, different from each other exclusively in the composition of the graft material. The “control” sides were composed by corticocancellous freeze-dried bone chips and the “test” sides were composed by corticocancellous freeze-dried bone chips engineered in a bone marrow mesenchymal stem cells concentrate. After three months bone biopsies were performed on the grafts and histological specimens were made in order to evaluate the healed bone from an histological point of view. Histologically all the specimens showed

  3. Autogenous calvarium bone grafting as a treatment for severe bone resorption in the upper maxilla: a case report.

    PubMed

    Díaz-Romeral-Bautista, Migugel; Manchón-Miralles, Angel; Asenjo-Cabezón, Jorge; Cebrián-Carretero, José-Luis; Torres-García-Denche, Jesús; Linares-García-Valdecasas, Rafael

    2010-03-01

    Atrophic maxilla rehabilitation has been the subject of several studies for decades; despite this, there are still many different therapeutic choices for the best way to treat maxillary resorption in order to enable implant placement and integration. These possibilities include the optimal use of remaining bone structures, such as the pterygoid processes or zygomatic arch, which involves using zygomaticus and pterygoid implants in combination with standard implants placed in the residual bone; alternatively, regenerative techniques, alveolar bone expansion/distraction or bone grafting techniques may be used. Severe maxillary atrophy has a multifactorial aetiology; the most important factors being long evolution edentulism, hyperpneumatization of the maxillary sinus, post-traumatic deficit, bone loss after surgery (tumours, cysts) and periodontal problems or infection. In this report, we present a clinical case of onlay block reconstruction in an atrophic maxilla with harvested cranial calvarium bone grafts for successful future implant-supported oral rehabilitation. PMID:19767715

  4. Bone grafting, corticotomy, and orthodontics: treatment of cleft alveolus in a chinese cohort.

    PubMed

    Mao, Li-Xia; Shen, Guo-Fang; Fang, Bing; Xia, Yun-Hui; Ma, Xu-Hui; Wang, Bo

    2013-11-01

    Objective : A multimodal therapy was applied to solve a set of related problems including collapse of the posterior segment, high level gingival margin of canine, and resorption of grafted bone in a cohort of Chinese youngsters with cleft lip and palate. This study aimed to evaluate the benefits of this treatment procedure. Methods : Thirty patients with unilateral cleft lip and palate were included in this prospective study. All patients had previously undergone only cleft lip and palate repair and presented with alveolar cleft and an obvious step in the gingival margin between the canine tooth and the teeth beside it. A multimodal therapy that included bone grafting, corticotomy, and orthodontics was applied to solve these problems. Grafted bone volume, parallelism of the roots, root resorption, gingival margin, and mobility of the canine on the cleft side were established before surgery, 1 week after surgery, and after straightening of the canine. Results : Less than 25% of the grafted bone was reabsorbed in 25 of the 30 patients, while less than 50% was resorbed in the remaining five. The roots of the canines on the cleft side were mostly parallel to the adjacent teeth. Root resorption and mobility of the canines were slight. The difference in the gingival margin between the canines on the cleft side and the other side was small. Conclusions : Canines moved into the grafted bone safely and effectively, thus achieving a normal gingival margin and retaining grafted bone volume in one operation. PMID:22849663

  5. Osseous and dental outcomes of primary gingivoperiosteoplasty with iliac bone graft: A radiological evaluation.

    PubMed

    Touzet-Roumazeille, Sandrine; Vi-Fane, Brigitte; Kadlub, Natacha; Genin, Michaël; Dissaux, Caroline; Raoul, Gwenaël; Ferri, Joël; Vazquez, Marie-Paule; Picard, Arnaud

    2015-07-01

    Primary alveolar cleft repair has two main purposes: to restore normal morphology and normal function. Gingivoperiosteoplasty with bone grafting in mixed dentition has been a well-established procedure. We hypothesized that 1) performance of this surgery in deciduous dentition would provide favorable bone graft osseointegration, and 2) would improve the support of incisor teeth eruption, thereby avoiding maxillary growth disturbances. We conducted a retrospective study of clinical and tridimensional radiological data for 73 patients with alveolar clefts (with or without lip and palate clefts) who underwent gingivoperiosteoplasty with iliac bone graft in deciduous dentition. Pre- and post-operative Cone Beam Computed Tomography (CBCT) comparison allowed evaluation of the ratio between bone graft volume and initial cleft volume (BGV/ICV ratio), and measurement of central incisor teeth movements. This series of 73 patients included 44 males and 29 females, with a mean age of 5.5 years. Few complications were observed. Post-operative CBCT was performed at 7.4 months. The mean BGV/ICV ratio was 0.62. Axial rotation was significantly improved post-operatively (p = 0.004). Gingivoperiosteoplasty with iliac bone graft is safe when performed in deciduous dentition and results in a sufficient bone graft volume to support lateral incisor eruption and upper central incisor tooth position improvement. PMID:26004807

  6. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?

    PubMed

    Van Lieshout, Esther M M; Alt, Volker

    2016-01-01

    Despite improvements in implants and surgical techniques, osteoporotic fractures remain challenging to treat. Among other major risk factors, decreased expression of morphogenetic proteins has been identified for impaired fracture healing in osteoporosis. Bone grafts or bone graft substitutes are often used for stabilizing the implant and for providing a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials are available. Products generally contain hydroxyapatite, tricalcium phosphate, dicalcium phosphate, calcium phosphate cement, calcium sulfate (plaster of Paris), or combinations of the above. Products have been used for the treatment of osteoporotic fractures of the proximal humerus, distal radius, vertebra, hip, and tibia plateau. Although there is generally consensus that screw augmentation increased the biomechanical properties and implant stability, the results of using these products for void filling are not unequivocal. In osteoporotic patients, Bone Morphogenetic Proteins (BMPs) have the potential impact to improve fracture healing by augmenting the impaired molecular and cellular mechanisms. However, the clinical evidence on the use of BMPs in patients with osteoporotic fractures is poor as there are no published clinical trials, case series or case studies. Even pre-clinical literature on in vitro and in vivo data is weak as most articles focus on the beneficial role for BMPs for restoration of the underlying pathophysiological factors of osteoporosis but do not look at the specific effects on osteoporotic fracture healing. Limited data on animal experiments suggest stimulation of fracture healing in ovariectomized rats by the use of BMPs. In conclusion, there is only limited data on the clinical relevance and optimal indications for the use of bone graft substitute materials and BMPs on the treatment of osteoporotic fractures despite the clinical benefits of these materials in other clinical indications. Given the

  7. Use of lymphokine-activated killer cells to prevent bone marrow graft rejection and lethal graft-vs-host disease

    SciTech Connect

    Azuma, E.; Yamamoto, H.; Kaplan, J. )

    1989-09-01

    Prompted by our recent finding that lymphokine-activated killer (LAK) cells mediate both veto and natural suppression, we tested the ability of adoptively transferred LAK cells to block two in vivo alloreactions which complicate bone marrow transplantation: resistance to transplanted allogeneic bone marrow cells, and lethal graft-vs-host disease. Adoptive transfer of either donor type B6D2 or recipient-type B6 lymphokine-activated bone marrow cells, cells found to have strong LAK activity, abrogated or inhibited the resistance of irradiated B6 mice to both B6D2 marrow and third party-unrelated C3H marrow as measured by CFU in spleen on day 7. The ability of lymphokine-activated bone marrow cells to abrogate allogeneic resistance was eliminated by C lysis depletion of cells expressing asialo-GM1, NK1.1, and, to a variable degree, Thy-1, but not by depletion of cells expressing Lyt-2, indicating that the responsible cells had a LAK cell phenotype. Similar findings were obtained by using splenic LAK cells generated by 3 to 7 days of culture with rIL-2. Demonstration that allogeneic resistance could be blocked by a cloned LAK cell line provided direct evidence that LAK cells inhibit allogeneic resistance. In addition to inhibiting allogeneic resistance, adoptively transferred recipient-type LAK cells prevented lethal graft-vs-host disease, and permitted long term engraftment of allogeneic marrow. Irradiation prevented LAK cell inhibition of both allogeneic resistance and lethal graft-vs-host disease. These findings suggest that adoptive immunotherapy with LAK cells may prove useful in preventing graft rejection and graft-versus-host disease in human bone marrow transplant recipients.

  8. Scaffold-free Three-dimensional Graft From Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction: Clinical Proof of Concept.

    PubMed

    Dufrane, Denis; Docquier, Pierre-Louis; Delloye, Christian; Poirel, Hélène A; André, Wivine; Aouassar, Najima

    2015-12-01

    Long bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions. Human ASCs (obtained from subcutaneous adipose tissue of 6 patients and expanded up to passage 4) were incubated in osteogenic media and supplemented with demineralized bone matrix to obtain the scaffold-free 3D osteogenic structure as confirmed in vitro by histomorphometry for osteogenesis and mineralization. The 3D "bone-like" structure was finally transplanted for 3 patients with bone tumor and 3 patients with bone pseudarthrosis (2 congenital, 1 acquired) to assess the clinical feasibility, safety, and efficacy. Although minor clones with structural aberrations (aneuploidies, such as tri or tetraploidies or clonal trisomy 7 in 6%-20% of cells) were detected in the undifferentiated ASCs at passage 4, the osteogenic differentiation significantly reduced these clonal anomalies. The final osteogenic product was stable, did not rupture with forceps manipulation, did not induce donor site morbidity, and was easily implanted directly into the bone defect. No acute (<3 mo) side effects, such as impaired wound healing, pain, inflammatory reaction, and infection, or long-term side effects, such as tumor development, were associated with the graft up to 4 years after transplantation. We report for the first time that autologous ASC can be fully differentiated into a 3D osteogenic-like implant without any scaffold. We demonstrated that this engineered tissue can safely promote

  9. Applications of coronoid process as a bone graft in maxillofacial surgery.

    PubMed

    Sabhlok, Samrat; Waknis, Pushkar P; Gadre, Kiran S

    2014-03-01

    The coronoid process can be easily harvested as a donor bone by an intraoral approach during many maxillofacial surgery procedures. The purpose of this study was to evaluate the utility of autogenous coronoid process bone grafts for maxillofacial reconstructive surgery. Twelve patients, who underwent coronoid process grafts for reconstruction of maxillofacial deformities due to trauma, alveolar atrophy, or temporomandibular joint ankylosis, were included in the study. There were 3 orbital defects after extended maxillectomy, 1 blowout fracture of the orbit, 2 cases of reconstruction after temporomandibular joint ankylosis surgery, 1 case of additional chin augmentation following horizontal flip genioplasty, 1 defect of anterior wall of maxilla due to trauma, 2 mandibular defects, and 2 cases of bone augmentation for implants.We recommend the use of coronoid process of the mandible as a source for autogenous bone graft as it can provide sufficient bone in quantity and quality for selected maxillofacial reconstructions. PMID:24621702

  10. Long-term outcome of dental implants after maxillary augmentation with and without bone grafting

    PubMed Central

    Machuca-Ariza, Jesús; Ruiz-Martos, Alberto; Ramos-Robles, Mª-Carmen; Martínez-Lara, Ildefonso

    2016-01-01

    Background This study aims to evaluate the technique of sinus bone reformation, which consists of elevating the sinus membrane and placement the implant without bone graft, compared with the widely-used technique involving raising the maxillary sinus and grafting, using animal hydroxyapatite as the filler, while simultaneously fixing the implants. Material and Methods This is a retrospective study on two groups of patients who underwent elevation of the sinus membrane and simultaneous placement of the implant. The grafting technique was applied to one group, while the other had no graft. An alveolar ridge height of 4 to 7 mm was necessary. Radiological control was undertaken at 6 months and one year post-prosthetic loading. In each group 38 implants were placed. Results No significant behavioural differences were observed in the implants according to the Albrektsson success criteria. Implant failure was observed in 2 implants from the bone grafting group (success rate 93%) and in 1 implant from the reformation group (success rate 97%). In this group, bone formation was observed on both sides of each implant, the bone gain was measured using image management software (2.7±0.9mm mesial and 2.6±0.9mm distal). There was no correlation between mesial and distal bone gain and implant´s length. Conclusions The results indicate that bone reformation is a valid technique in cases involving atrophy of the posterior maxilla. Primary stability, maintenance of space by the implant, and the formation of a blood clot are crucial in this technique in order to achieve bone formation around the implant. It is an alternative to the conventional technique of sinus lift with filling material, and has several advantages over this procedure, including a lower infection risk, as it does not involve a biomaterial, reduced cost, a simpler technique, and better acceptance by the patient. Key words:Bone formation, sinus membrane elevation, maxillary sinus, bone grafting. PMID:26827071

  11. Experience of using vascularized bone grafts in reconstructive surgery of the upper limbs

    NASA Astrophysics Data System (ADS)

    Atamanov, E. A.; Keosyan, V. T.; Bryukhanov, A. V.; Tsaregorodtseva, E. M.; Danilov, A. V.

    2015-11-01

    The article describes the results of treatment patients with defects and diseases of bone tissue using bone grafting with vascularized bone grafts from different areas of the body. The results of treatment of 27 patients with bone tissue defects of the upper extremities are demonstrated. 16 of patients had scaphoid nonunion. 2 cases of nonunion were reported: one scaphoid nonunion due to unstable osteosynthesis and one lunate fragmentation nonunion in patient with late stage Kienbock`s disease. Vascularized bone graft from distal radius was used in both cases. We had two cases of delayed union at 18 months in surgical treatment of scaphoid. 2 patients had metacarpal bone defect, 1 patient with radius bone defect, 2 patients with SLAC (scapholunate advanced collapse), 2 patients with bone defect of the humerus, 1 patient with bone defect of the ulna. In all cases we used vascularized bone crafts from various anatomical areas. We achieved union in all other cases. The study shows high efficiency of upper extremity bone defect replacement methods.

  12. Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement.

    PubMed

    Yang, J M; Huang, P Y; Yang, M C; Lo, S K

    1997-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) fibers were treated with argon plasma for 5 min, followed by uv irradiation in methyl methacrylate (MMA)-chloroform solution for 5 h to obtain MMA-g-UHMWPE grafted fiber. The grafting content was estimated by the titration of esterification method. The grafting amount of 5280 nmol/g was the largest for the MMA concentration at 18.75 vol%. To improve the mechanical properties of acrylic bone cement, pure UHMWPE fiber and MMA-g-UHMWPE fiber were added to the surgical Simplex. P radiopaque bone cement. The mechanical properties including tensile strength, tensile modulus, compressive strength, bending strength, and bending stiffness were measured. Dynamic mechanical analysis was also performed. By comparing the effect of the pure UHMWPE fiber and MMA-g-UHMWPE grafted fiber on the mechanical properties of acrylic bone cement, it was found that the acrylic bone cement with MMA-g-UHMWPE grafted fiber had a more significant reinforcing effect than that with untreated UHMWPE fiber. This might be due to the improvement of the interfacial bonding between the grafted fibers and the acrylic bone cement matrix. PMID:9421758

  13. Histomorphometric Assessment of Cancellous and Cortical Bone Material Distribution in the Proximal Humerus of Normal and Osteoporotic Individuals

    PubMed Central

    Sprecher, Christoph M.; Schmidutz, Florian; Helfen, Tobias; Richards, R. Geoff; Blauth, Michael; Milz, Stefan

    2015-01-01

    Abstract Osteoporosis is a systemic disorder predominantly affecting postmenopausal women but also men at an advanced age. Both genders may suffer from low-energy fractures of, for example, the proximal humerus when reduction of the bone stock or/and quality has occurred. The aim of the current study was to compare the amount of bone in typical fracture zones of the proximal humerus in osteoporotic and non-osteoporotic individuals. The amount of bone in the proximal humerus was determined histomorphometrically in frontal plane sections. The donor bones were allocated to normal and osteoporotic groups using the T-score from distal radius DXA measurements of the same extremities. The T-score evaluation was done according to WHO criteria. Regional thickness of the subchondral plate and the metaphyseal cortical bone were measured using interactive image analysis. At all measured locations the amount of cancellous bone was significantly lower in individuals from the osteoporotic group compared to the non-osteoporotic one. The osteoporotic group showed more significant differences between regions of the same bone than the non-osteoporotic group. In both groups the subchondral cancellous bone and the subchondral plate were least affected by bone loss. In contrast, the medial metaphyseal region in the osteoporotic group exhibited higher bone loss in comparison to the lateral side. This observation may explain prevailing fracture patterns, which frequently involve compression fractures and certainly has an influence on the stability of implants placed in this medial region. It should be considered when planning the anchoring of osteosynthesis materials in osteoporotic patients with fractures of the proximal humerus. PMID:26705200

  14. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone.

    PubMed

    Willems, Nop M B K; Langenbach, Geerling E J; Stoop, Reinout; den Toonder, Jaap M J; Mulder, Lars; Zentner, Andrej; Everts, Vincent

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2M ribose at 37°C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. PMID:25063086

  15. Alternative method to treat oroantral communication and fistula with autogenous bone graft and platelet rich firbin

    PubMed Central

    Niedzielska, Iwona; Borgiel-Marek, Halina; Różanowski, Bartosz

    2016-01-01

    Background Removing a tooth from the jaw results in the occurrence of oroantral communication in beneficial anatomic conditions or in the case of a iatrogenic effect. Popularized treatments of the oroantral communication have numerous faults. Large bone defect eliminates the chance to introduce an implant. Purpose of this work was assessment of the usefulness of autogenous bone graft and PRF in normal bone regeneration in the site of oroantral communication. Material and Methods Bone regeneration in the site of oroantral communication was assessed in 20 patients. Bone defects were supplemented autogenous bone graft from mental protuberance in 14 cases and from oblique line in 6 cases. The graft was covered with a PRF membrane. Results In the study group in all cases closure of the oroantral communication was observed. The average width of the alveolar was 13 mm and the average height was 12.5 mm. In 3 patients an average increase of alveolar height of 1.5 mm was observed. Conclusions This method may be the best option to prepare alveolar for new implant and prosthetic solutions. Key words:Oroantral communication, oroantral fistula, autogenous bone graft, bone regeneration, platelet rich fibrin. PMID:27475687

  16. Minimally Invasive Harvest of a Quadriceps Tendon Graft With or Without a Bone Block

    PubMed Central

    Fink, Christian; Herbort, Mirco; Abermann, Elisabeth; Hoser, Christian

    2014-01-01

    The quadriceps tendon (QT) as a graft source for anterior cruciate ligament (ACL) and posterior cruciate ligament reconstruction has recently achieved increased attention. Although many knee surgeons have been using the QT as a graft for ACL revision surgery, it has never gained universal acceptance for primary ACL reconstruction. The QT is a very versatile graft that can be harvested in different widths, thicknesses, and lengths. Conventionally, the QT graft is harvested by an open technique, requiring a 6 to 8 cm longitudinal incision, which often leads to unpleasant scars. We describe a new, minimally invasive, standardized approach in which the QT graft can be harvested through a 2- to 3-cm skin incision and a new option of using the graft without a bone block. PMID:25264512

  17. Minimally invasive harvest of a quadriceps tendon graft with or without a bone block.

    PubMed

    Fink, Christian; Herbort, Mirco; Abermann, Elisabeth; Hoser, Christian

    2014-08-01

    The quadriceps tendon (QT) as a graft source for anterior cruciate ligament (ACL) and posterior cruciate ligament reconstruction has recently achieved increased attention. Although many knee surgeons have been using the QT as a graft for ACL revision surgery, it has never gained universal acceptance for primary ACL reconstruction. The QT is a very versatile graft that can be harvested in different widths, thicknesses, and lengths. Conventionally, the QT graft is harvested by an open technique, requiring a 6 to 8 cm longitudinal incision, which often leads to unpleasant scars. We describe a new, minimally invasive, standardized approach in which the QT graft can be harvested through a 2- to 3-cm skin incision and a new option of using the graft without a bone block. PMID:25264512

  18. Autologous cranial particulate bone graft: an experimental study of onlay cranioplasty.

    PubMed

    Clune, James E; Mulliken, John B; Glowacki, Julie; Arany, Praveen R; Kulungowski, Ann M; Rogers, Gary F; Greene, Arin K

    2011-01-01

    The purpose of this study was to determine whether particulate bone graft maintains its volume when used for onlay cranioplasty. Twenty-five adult, male, New Zealand white rabbits were divided into 5 groups (n = 5/group). Groups 1 to 3 were controls: group 1, untreated; group 2, sham procedure; and group 3, burring the cortical surface. Group s 4 and 5 had augmentation of the parietal bones with particulate graft harvested from the frontal bone with a brace and bit. The particulate graft was placed on native parietal bone (group 4) or on parietal bone that had been abraded to punctuate bleeding with an electric burr (group 5). Volume maintenance and osseointegration of the grafts were determined by micro-computed tomography and histology. At 16 weeks postoperatively, the mean (SD) volumes of the parietal bones in control groups 1, 2, and 3 were 555.8 (29.2), 550.8 (36.8), and 539.0 (39.0) mm, respectively. Immediately after cranioplasty, the mean (SD) volumes of augmented parietal bone were 846.0 (10.8) mm for group 4 and 831.8 (11.8) mm for group 5. Sixteen weeks postoperatively, 100% of the group 4 grafts had resorbed (551.8 [SD, 24.0] mm), and parietal volume was no different from controls (P = 0.89). Group 5 maintained 54.2% of volume (695.6 [SD, 22.0] mm), which was greater than those of the controls (P < 0.0001). Particulate graft may be used for onlay cranioplasty if the recipient site is burred. Approximately one half of the onlay graft is resorbed, and its original shape is not maintained. PMID:21239926

  19. The analysis and compensation of cortical thickness effect on ultrasonic backscatter signals in cancellous bone

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Ta, Dean; Hu, Bo; Le, Lawrence H.; Wang, Weiqi

    2014-09-01

    To determine the influence of the overlying cortical shell on ultrasonic backscatter signal in cancellous bone, ultrasonic backscatter simulations were carried out by a three dimensional finite difference time domain method. The simulated signals were obtained for various cortical thickness (CTh) and three central frequencies (1, 2.25, and 3.5 MHz). The integrated reflection coefficient (IRC), integrated transmission coefficient, and apparent integrated backscatter (AIB) were calculated from the signals. The results showed that the IRC oscillated with amplitudes decreasing with increasing CTh and the amplitudes diminished gradually when CTh was over 2.18 mm. The AIB fluctuated and decreased as the CTh increased (R = -0.72 ˜ -0.90, p < 0.05), and the amplitudes were much smaller when the CTh was over 2.18 mm. After removing the multiple reflections in the cortical shell, the corresponding AIB (referred as AIB-c) decreased and the fluctuations were smaller (R = -0.80 ˜ -0.96, p < 0.05). An explicit compensation method for the cortical effect was proposed. No significant correlations were observed between the CTh and the compensated AIB (CAIB: R = -0.19 ˜ 0.26, p > 0.05, and CAIB-c: R = -0.09 ˜ -0.00, p > 0.05, respectively), and the fluctuations in CAIB-c were also reduced. The results demonstrated that the effect of cortical thickness on backscatter signals was removed by the compensation method proposed in this study.

  20. Effect of selected signals of interest on ultrasonic backscattering measurement in cancellous bones

    NASA Astrophysics Data System (ADS)

    Liu, ChengCheng; Han, HaiJie; Ta, DeAn; Wang, WeiQi

    2013-07-01

    This study examined how the signals of interest (SOI) effect on the backscattering measurement numerically based on 3-D finite-difference time-domain (FDTD) method. High resolution microstructure mappings of bovine cancellous bones provided by micro-CT were used as the input geometry for simulations. Backscatter coefficient (BSC), integrated backscatter coefficient (IBC) and apparent integrated backscatter (AIB) were calculated with changing the start ( L1) and duration ( L2) of the SOI. The results demonstrated that BSC and IBC decrease as L1 increases, and AIB decreases more rapidly as L1 increases. The backscattering parameters increase with fluctuations as a function of L2 when L2 is less than 6 mm. However, BSC and IBC change little as L2 continues to increase, while AIB slowly decreases as L2 continues to increase. The results showed how the selections of the SOI effect on the backscattering measurement. An explicit standard for SOI selection was proposed in this study and short L1 (about 1.5 mm) and appropriate L2 (6 mm-12 mm) were recommended for the calculations of backscattering parameters.

  1. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications.

    PubMed

    Yánez, A; Herrera, A; Martel, O; Monopoli, D; Afonso, H

    2016-11-01

    Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. PMID:27524040

  2. Intermediate strain rate behaviour of cancellous bone: Links between microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Prot, Marianne; Cloete, Trevor; Saletti, Dominique; Laporte, Sebastien

    2015-09-01

    Relationships between the micro-architecture description of cancellous bone, obtained from medical imaging, and its mechanical properties can be used to assess the compression fracture risk at high and low strain rate. This study extends the rupture prediction to the intermediate strain rate regime. The micro-architecture description was obtained with a CT-scan, for which geometry, topology, connectivity and anisotropy parameters were computed and compared to mechanical identified parameters in order to confirm their usefulness. Three strain rates were investigated: 1/s, 10/s and 100/s using two different devices: a Wedge-Bar apparatus and a conventional split Hopkinson pressure bar implemented with a Cone-in-Tube striker and a tandem momentum trap. This setup provides a constant strain rate loading with routine specimen recovery allowing the fracture zone to be investigated. This study reveals that a transition in the response behaviour occurred in the intermediate regime and confirms the significant porous organization influence through the regimes.

  3. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  4. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    PubMed Central

    Deev, R. V.; Drobyshev, A. Y.; Bozo, I. Y.; Isaev, A. A.

    2015-01-01

    Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects. PMID:26649300

  5. The Effects of Tensile-Compressive Loading Mode and Microarchitecture on Microdamage in Human Vertebral Cancellous Bone

    PubMed Central

    Lambers, Floor M.; Bouman, Amanda R.; Tkachenko, Evgeniy V.; Keaveny, Tony M.; Hernandez, Christopher J.

    2014-01-01

    The amount of microdamage in bone tissue impairs mechanical performance and may act as a stimulus for bone remodeling. Here we determine how loading mode (tension v. compression) and microstructure (trabecular microarchitecture, local trabecular thickness, and presence of resorption cavities) influence the number and volume of microdamage sites generated in cancellous bone following a single overload. Twenty paired cylindrical specimens of human vertebral cancellous bone from 10 donors (47–78 years) were mechanically loaded to apparent yield in either compression or tension, and imaged in three dimensions for microarchitecture and microdamage (voxel size 0.7 × 0.7 × 5.0 μm). We found that the overall proportion of damaged tissue was greater (p=0.01) for apparent tension loading (3.9 ± 2.4%, mean ± SD) than for apparent compression loading (1.9 ± 1.3%). Individual microdamage sites generated in tension were larger in volume (p < 0.001) but not more numerous (p = 0.64) than sites in compression. For both loading modes, the proportion of damaged tissue varied more across donors than with bone volume fraction, traditional measures of microarchitecture (trabecular thickness, trabecular separation, etc.), apparent Young's modulus, or strength. Microdamage tended to occur in regions of greater trabecular thickness but not near observable resorption cavities. Taken together, these findings indicate that, regardless of loading mode, accumulation of microdamage in cancellous bone after monotonic loading to yield is influenced by donor characteristics other than traditional measures of microarchitecture, suggesting a possible role for tissue material properties. PMID:25458150

  6. Osteoblast-specific overexpression of amphiregulin leads to transient increase in femoral cancellous bone mass in mice.

    PubMed

    Vaidya, Mithila; Lehner, Diana; Handschuh, Stephan; Jay, Freya F; Erben, Reinhold G; Schneider, Marlon R

    2015-12-01

    The epidermal growth factor receptor ligand amphiregulin (AREG) has been implicated in bone physiology and in bone anabolism mediated by intermittent parathyroid hormone treatment. However, the functions of AREG in bone have been only incipiently evaluated in vivo. Here, we generated transgenic mice overexpressing AREG specifically in osteoblasts (Col1-Areg). pQCT analysis of the femoral metaphysis revealed increased trabecular bone mass at 4, 8, and 10weeks of age in Col1-Areg mice compared to control littermates. However, the high bone mass phenotype was transient and disappeared in older animals. Micro-CT analysis of the secondary spongiosa confirmed increased trabecular bone volume and trabecular number in the distal femur of 4-week-old AREG-tg mice compared to control littermates. Furthermore, μ-CT analysis of the primary spongiosa revealed unaltered production of new bone trabeculae in distal femora of Col1-Areg mice. Histomorphometric analysis revealed a reduced number of osteoclasts in 4-week-old Col1-Areg mice, but not at later time points. Cancellous bone formation rate remained unchanged in Col1-Areg mice at all time points. In addition, bone mass and bone turnover in lumbar vertebral bodies were similar in Col1-Areg and control mice at all ages examined. Proliferation and differentiation of osteoblasts isolated from neonatal calvariae did not differ between Col1-Areg and control mice. Taken together, these data suggest that AREG overexpression in osteoblasts induces a transient high bone mass phenotype in the trabecular compartment of the appendicular skeleton by a growth-related, non-cell autonomous mechanism, leading to a positive bone balance with unchanged bone formation and lowered bone resorption. PMID:26103093

  7. Human parathyroid hormone-(1-38) restores cancellous bone to the immobilized, osteopenic proximal tibial metaphysis in rats

    NASA Technical Reports Server (NTRS)

    Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.

    1995-01-01

    The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone

  8. The Volume Behavior of Autogenous Iliac Bone Grafts After Sinus Floor Elevation: A Clinical Pilot Study.

    PubMed

    Gerressen, Marcus; Riediger, Dieter; Hilgers, Ralf-Dieter; Hölzle, Frank; Noroozi, Nelson; Ghassemi, Alireza

    2015-06-01

    Iliac crest is still regarded as one of the most viable source of autogenous graft materials for extensive sinus floor elevation. Three-dimensional resorption behavior has to be taken into account in anticipation of the subsequent insertion of dental implants. We performed 3-dimensional volume measurements of the inserted bone transplants in 11 patients (6 women and 5 men; mean age = 2.3 years) who underwent bilateral sinus floor elevation with autogenous iliac crest grafts. In order to determine the respective bone graft volumes, cone-beam computerized tomography studies of the maxillary sinuses were carried out directly after the operation (T0), as well as 3 months (T1) and 6 months (T2) postoperatively. The acquired DICOM (Digital Imaging and Communications in Medicine) data sets were evaluated using suitable analysis software. We evaluated statistical significance of graft volumes changes using a linear mixed model with the grouping factors for time, age, side, and sex with a significance level of P = .05. 38.9% of the initial bone graft volume, which amounted to 4.2 cm(3), was resorbed until T1. At T2, the average volume again decreased significantly by 18.9 % to finally reach 1.8 cm(3). The results show neither age nor side dependency and apply equally to both sexes. Without functional load, iliac bone grafts feature low-volume stability in sinus-augmentation surgery. Further clinical and animal studies should be done to detect the optimal timing for implant placement. PMID:24303797

  9. Treatment of a two wall defect in a mandibular posterior tooth with autogenous bone graft obtained during ledge removal with a hand instrument

    PubMed Central

    Sam, George; Vadakkekuttical, Rosamma Joseph; Harikumar, Kanakkath; Amol, Nagrale Vijay

    2015-01-01

    Autogenous bone grafts have been considered the gold standard for bone grafting procedures. This case report describes the management of a two wall defect by utilizing the autogenous bone graft obtained during removal of ledges as a part of osteoplasty procedure. The bone was removed with a sickle scaler, and sufficient amounts of bone graft material were obtained to fill a two wall defect distal to left mandibular first molar. PMID:26392695

  10. Posterolateral spinal fusion in a rabbit model using a collagen–mineral composite bone graft substitute

    PubMed Central

    Vizesi, F.; Cornwall, G. B.; Bell, D.; Oliver, R.; Yu, Y.

    2009-01-01

    Choosing the appropriate graft material to participate in the healing process in posterolateral spinal fusion continues to be a challenge. Combining synthetic graft materials with bone marrow aspirate (BMA) and autograft is a reasonable treatment option for surgeons to potentially reduce or replace the need for autograft. FormaGraft, a bone graft material comprising 12% bovine-derived collagen and 88% ceramic in the form of hydroxyapatite (HAp) and beta tricalcium phosphate (β-TCP) was evaluated in three possible treatment modalities for posterior spinal fusion in a standard rabbit model. These three treatment groups were FormaGraft alone, FormaGraft soaked in autogenous BMA, and FormaGraft with BMA and iliac crest autograft. No statistically demonstrable benefits or adverse effects of the addition of BMA were found in the current study based on macroscopic, radiology or mechanical data. This may reflect, in part, the good to excellent results of the collagen HA/TCP composite material alone in a well healing bony bed. Histology did, however, reveal a benefit with the use of BMA. Combining FormaGraft with autograft and BMA achieved results equivalent to autograft alone. The mineral and organic nature of the material provided a material that facilitated fusion between the transverse processes in a standard preclinical posterolateral fusion model. PMID:19475437