Science.gov

Sample records for cancer cell-derived microvesicles

  1. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

    PubMed Central

    Santana, Steven M.; Antonyak, Marc A.; Cerione, Richard A.

    2015-01-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  2. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations.

    PubMed

    Santana, Steven M; Antonyak, Marc A; Cerione, Richard A; Kirby, Brian J

    2014-12-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  3. A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles

    PubMed Central

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E.; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D.; Mörgelin, Matthias; Karpman, Diana

    2015-01-01

    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system. PMID:25719452

  4. Human ether-a-go-go-related gene K+ channels regulate shedding of leukemia cell-derived microvesicles.

    PubMed

    Zheng, Fang; Li, Juanjuan; Du, Wen; Wang, Ningfang; Li, Huiyu; Huang, Shiang

    2012-08-01

    Microvesicles (MVs) are released by various cancer cells, including leukemia cells. They can "hijack" membrane components from their parental cells and exert pleiotropic effects on tumor progression. Human ether-a-go-go-related gene (hERG1) K(+) channels are highly expressed in cancer cells and appear of exceptional importance in favoring cancer development. Given the attributes of MVs and hERG1 K(+) channels in disease progression, we investigated the putative relationship between hERG1 K(+) channels and MVs in leukemia. The protein content of MVs isolated from K562 cell supernatants was significantly higher than that from HL-60 cells. The molecular profile of these MVs showed that in addition to the myeloid lineage antigen (CD11b), MVs contained hERG1 K(+) channels. Interestingly, inhibition of hERG1 K(+) channels rapidly reduced MV fractions in supernatants. Furthermore, MVs created positive feedback loops to facilitate leukemogenesis. Upon exposure to MVs, the plasma membrane expression of hERG1 protein was in turn up-regulated, the migration of leukemia cells was significantly increased, and the adhesion of leukemia cells to human umbilical vein endothelial cells (HUVECs) was markedly enhanced. Importantly, hERG1 K(+) channel inhibitor E-4031 impaired these effects. We conclude that leukemia cell-derived MVs can "hijack" the plasma membrane hERG1 K(+) channels, which regulate the release of MVs and their biological effects upon leukemia cells. PMID:22292854

  5. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain.

    PubMed

    Baulch, Janet E; Acharya, Munjal M; Allen, Barrett D; Ru, Ning; Chmielewski, Nicole N; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L; Benke, Sarah N; Parihar, Vipan K; Limoli, Charles L

    2016-04-26

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  6. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain

    PubMed Central

    Baulch, Janet E.; Acharya, Munjal M.; Allen, Barrett D.; Ru, Ning; Chmielewski, Nicole N.; Martirosian, Vahan; Giedzinski, Erich; Syage, Amber; Park, Audrey L.; Benke, Sarah N.; Parihar, Vipan K.; Limoli, Charles L.

    2016-01-01

    Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment. PMID:27044087

  7. Microvesicles as Potential Ovarian Cancer Biomarkers

    PubMed Central

    Giusti, Ilaria; D'Ascenzo, Sandra; Dolo, Vincenza

    2013-01-01

    Although the incidence of ovarian cancer is low (i.e., less than 5% in European countries), it is the most lethal gynecologic malignancy and typically has a poor prognosis. To ensure optimal survival, it is important to diagnose this condition when the pathology is confined to the ovary. However, this is difficult to achieve because the first specific symptoms appear only during advanced disease stages. To date, the biomarker mainly used for the diagnosis and prognosis of ovarian cancer is CA125; however, this marker has a low sensitivity and specificity and is associated with several other physiological and pathological conditions. No other serum ovarian cancer markers appear to be able to replace or complement CA125, and the current challenge is therefore to identify novel markers for the early diagnosis of this disease. For this purpose, studies have focused on the microvesicles (MVs) released from tumor cells. MVs may represent an ideal biomarker because they can be easily isolated from blood, and they have particular features (mainly regarding microRNA profiles) that strongly correlate with ovarian cancer stage and may be effective for early diagnosis. PMID:23484144

  8. Longitudinal effects of menopausal hormone treatments on platelet characteristics and cell-derived microvesicles

    PubMed Central

    Miller, Virginia M.; Lahr, Brian D.; Bailey, Kent R.; Heit, John A.; Harman, S. Mitchell; Jayachandran, Muthuvel

    2016-01-01

    Abstract Activated platelets serve as a catalyst for thrombin generation and a source of vasoactive and mitogenic factors affecting vascular remodeling. Oral menopausal hormone treatments (MHT) may carry greater thrombotic risk than transdermal products. This study compared effects of oral and transdermal MHT on platelet characteristics, platelet proteins, and platelet-derived microvesicles (MV) in recently menopausal women. Platelets and MV were prepared from blood of a subset of women (n = 117) enrolled in the Kronos Early Estrogen Prevention Study prior to and after 48 months of treatment with either oral conjugated equine estrogen (0.45 mg/day), transdermal 17β-estradiol (50 µg/day), each with intermittent progesterone (200 mg/day for 12 days a month), or placebo pills and patch. Platelet count and expression of platelet P-selectin and fibrinogen receptors were similar across groups. An aggregate measure of 4-year change in vasoactive and mitogenic factors in platelet lysate, by principle component analysis, indicated significantly lower values in both MHT groups compared to placebo. Increases in numbers of tissue factor positive and platelet-derived MV were significantly greater in the transdermal compared to placebo group. MHT was associated with significantly reduced platelet content of vasoactive and mitogenic factors representing a potential mechanism by which MHT may affect vascular remodeling. Various hormonal compositions and doses of MHT could differentially regulate nuclear transcription in bone marrow megakaryocytes and non-genomic pathways in circulating platelets thus determining numbers and characteristics of circulating MV. Thrombotic risk associated with oral MHT most likely involves liver-derived inflammatory/coagulation proteins rather than circulating platelets per se. PMID:25856160

  9. Longitudinal effects of menopausal hormone treatments on platelet characteristics and cell-derived microvesicles.

    PubMed

    Miller, Virginia M; Lahr, Brian D; Bailey, Kent R; Heit, John A; Harman, S Mitchell; Jayachandran, Muthuvel

    2016-01-01

    Activated platelets serve as a catalyst for thrombin generation and a source of vasoactive and mitogenic factors affecting vascular remodeling. Oral menopausal hormone treatments (MHT) may carry greater thrombotic risk than transdermal products. This study compared effects of oral and transdermal MHT on platelet characteristics, platelet proteins, and platelet-derived microvesicles (MV) in recently menopausal women. Platelets and MV were prepared from blood of a subset of women (n = 117) enrolled in the Kronos Early Estrogen Prevention Study prior to and after 48 months of treatment with either oral conjugated equine estrogen (0.45 mg/day), transdermal 17β-estradiol (50 µg/day), each with intermittent progesterone (200 mg/day for 12 days a month), or placebo pills and patch. Platelet count and expression of platelet P-selectin and fibrinogen receptors were similar across groups. An aggregate measure of 4-year change in vasoactive and mitogenic factors in platelet lysate, by principle component analysis, indicated significantly lower values in both MHT groups compared to placebo. Increases in numbers of tissue factor positive and platelet-derived MV were significantly greater in the transdermal compared to placebo group. MHT was associated with significantly reduced platelet content of vasoactive and mitogenic factors representing a potential mechanism by which MHT may affect vascular remodeling. Various hormonal compositions and doses of MHT could differentially regulate nuclear transcription in bone marrow megakaryocytes and non-genomic pathways in circulating platelets thus determining numbers and characteristics of circulating MV. Thrombotic risk associated with oral MHT most likely involves liver-derived inflammatory/coagulation proteins rather than circulating platelets per se. PMID:25856160

  10. Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior

    PubMed Central

    Muturi, Harrison T.; Dreesen, Janine D.; Nilewski, Elena; Jastrow, Holger; Giebel, Bernd; Ergun, Suleyman; Singer, Bernhard B.

    2013-01-01

    Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis. PMID:24040308

  11. Follicular cell-derived thyroid cancer.

    PubMed

    Dralle, Henning; Machens, Andreas; Basa, Johanna; Fatourechi, Vahab; Franceschi, Silvia; Hay, Ian D; Nikiforov, Yuri E; Pacini, Furio; Pasieka, Janice L; Sherman, Steven I

    2015-01-01

    Follicular cell-derived thyroid cancers are derived from the follicular cells in the thyroid gland, which secrete the iodine-containing thyroid hormones. Follicular cell-derived thyroid cancers can be classified into papillary thyroid cancer (80-85%), follicular thyroid cancer (10-15%), poorly differentiated thyroid cancer (<2%) and undifferentiated (anaplastic) thyroid cancer (<2%), and these have an excellent prognosis with the exception of undifferentiated thyroid cancer. The advent and expansion of advanced diagnostic techniques has driven and continues to drive the epidemic of occult papillary thyroid cancer, owing to overdiagnosis of clinically irrelevant nodules. This transformation of the thyroid cancer landscape at molecular and clinical levels calls for the modification of management strategies towards personalized medicine based on individual risk assessment to deliver the most effective but least aggressive treatment. In thyroid cancer surgery, for instance, injuries to structures outside the thyroid gland, such as the recurrent laryngeal nerve in 2-5% of surgeries or the parathyroid glands in 5-10% of surgeries, negatively affect quality of life more than loss of the expendable thyroid gland. Furthermore, the risks associated with radioiodine ablation may outweigh the risks of persistent or recurrent disease and disease-specific mortality. Improvement in the health-related quality of life of survivors of follicular cell-derived thyroid cancer, which is decreased despite the generally favourable outcome, hinges on early tumour detection and minimization of treatment-related sequelae. Future opportunities include more widespread adoption of molecular and clinical risk stratification and identification of actionable targets for individualized therapies. PMID:27188261

  12. Embryonic Stem Cell-Derived Microvesicles Induce Gene Expression Changes in Müller Cells of the Retina

    PubMed Central

    Katsman, Diana; Stackpole, Emma J.; Domin, Daniel R.; Farber, Debora B.

    2012-01-01

    Cell-derived microvesicles (MVs), recognized as important components of cell-cell communication, contain mRNAs, miRNAs, proteins and lipids and transfer their bioactive contents from parent cells to cells of other origins. We have studied the effect that MVs released from embryonic stem cells (ESMVs) have on retinal progenitor Müller cells. Cultured human Müller cells were exposed to mouse ESMVs every 48 hours for a total of 9 treatments. Morphological changes were observed by light microscopy in the treated cells, which grew as individual heterogeneous cells, compared to the uniform, spindle-like adherent cellular sheets of untreated cells. ESMVs transferred to Müller cells embryonic stem cell (ESC) mRNAs involved in the maintenance of pluripotency, including Oct4 and Sox2, and the miRNAs of the 290 cluster, important regulators of the ESC-specific cell cycle. Moreover, ESMV exposure induced up-regulation of the basal levels of endogenous human Oct4 mRNA in Müller cells. mRNA and miRNA microarrays of ESMV-treated vs. untreated Müller cells revealed the up-regulation of genes and miRNAs involved in the induction of pluripotency, cellular proliferation, early ocular genes and genes important for retinal protection and remodeling, as well as the down-regulation of inhibitory and scar-related genes and miRNAs involved in differentiation and cell cycle arrest. To further characterize the heterogeneous cell population of ESMV-treated Müller cells, their expression of retinal cell markers was compared to that in untreated control cells by immunocytochemistry. Markers for amacrine, ganglion and rod photoreceptors were present in treated but not in control Müller cells. Together, our findings indicate that ESMs induce de-differentiation and pluripotency in their target Müller cells, which may turn on an early retinogenic program of differentiation. PMID:23226281

  13. Microvesicles as mediators of intercellular communication in cancer.

    PubMed

    Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    The discovery that cancer cells generate large membrane-enclosed packets of epigenetic information, known as microvesicles (MVs), that can be transferred to other cells and influence their behavior (Antonyak et al., Small GTPases 3:219-224, 2012; Cocucci et al., Trends Cell Biol 19:43-51, 2009; Rak, Semin Thromb Hemost 36:888-906, 2010; Skog et al., Nat Cell Biol 10:1470-1476, 2008) has added a unique perspective to the classical paracrine signaling paradigm. This is largely because, in addition to growth factors and cytokines, MVs contain a variety of components that are not usually thought to be released into the extracellular environment by viable cells including plasma membrane-associated proteins, cytosolic- and nuclear-localized proteins, as well as nucleic acids, particularly RNA transcripts and micro-RNAs (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008; Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Balaj et al., Nat Commun 2:180, 2011; Choi et al., J Proteome Res 6:4646-4655, 2007; Del Conde et al., Blood 106:1604-1611, 2005; Gallo et al., PLoS One 7:e30679, 2012; Graner et al., FASEB J 23:1541-1557, 2009; Grange et al., Cancer Res 71:5346-5356, 2011; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Noerholm et al., BMC Cancer 12:22, 2012; Zhuang et al., EMBO J 31:3513-3523, 2012). When transferred between cancer cells, MVs have been shown to stimulate signaling events that promote cell growth and survival (Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008). Cancer cell-derived MVs can also be taken up by normal cell types that surround the tumor, an outcome that helps shape the tumor microenvironment, trigger tumor vascularization, and even confer upon normal recipient cells the transformed characteristics of a cancer cell (Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Martins et al., Curr Opin Oncol 25

  14. Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34+ Cells

    PubMed Central

    Xie, Hui; Sun, Li; Zhang, Liming; Liu, Teng; Chen, Li; Zhao, Aiqi; Lei, Qian; Gao, Fei; Zou, Ping; Li, Qiubai; Guo, An-yuan; Chen, Zhichao; Wang, Hongxiang

    2016-01-01

    Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation. PMID:27042183

  15. Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34(+) Cells.

    PubMed

    Xie, Hui; Sun, Li; Zhang, Liming; Liu, Teng; Chen, Li; Zhao, Aiqi; Lei, Qian; Gao, Fei; Zou, Ping; Li, Qiubai; Guo, An-Yuan; Chen, Zhichao; Wang, Hongxiang

    2016-01-01

    Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34(+) cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation. PMID:27042183

  16. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2

    PubMed Central

    Huang, Renwei; Wang, Yan; Liang, Yaolong; Liao, Xiaorong; Li, Mingyi

    2016-01-01

    Hepatic stellate cells (HSCs), previously described for liver-specific mesenchymal stem cells (MSCs), appear to contribute to liver regeneration. Microvesicles (MVs) are nanoscale membrane fragments, which can regulate target cell function by transferring contents from their parent cells. The aim of this study was to investigate the effect of HSC-derived MVs on xenobiotic-induced liver injury. Rat and human hepatocytes, BRL-3A and HL-7702, were used to build hepatocytes injury models by n-acetyl-p-aminophenol n-(APAP) or H2O2 treatment. MVs were prepared from human and rat HSCs, LX-2, and HST-T6 and, respectively, added to injured BRL-3A and HL-7702 hepatocytes. MTT assay was utilized to determine cell proliferation. Cell apoptosis was analyzed by flow cytometry and hoechst33258 staining. Western blot was used for analyzing the expression of activated caspase-3. Liver injury indicators, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in culture medium were also assessed. Results showed that (1) HSC-MVs derived from LX-2 and HST-T6 were positive to CD90 and annexin V surface markers; (2) HSC-MVs dose-dependently improved the viability of hepatocytes in both injury models; (3) HSC-MVs dose-dependently inhibited the APAP/H2O2 induced hepatocytes apoptosis and activated caspase-3 expression and leakage of LDH, ALT, and AST. Our results demonstrate that HSC-derived MVs protect hepatocytes from toxicant-induced injury. PMID:27239205

  17. Cell-derived microvesicles mediate the delivery of miR-29a/c to suppress angiogenesis in gastric carcinoma.

    PubMed

    Zhang, Haiyang; Bai, Ming; Deng, Ting; Liu, Rui; Wang, Xia; Qu, Yanjun; Duan, Jingjing; Zhang, Le; Ning, Tao; Ge, Shaohua; Li, Hongli; Zhou, Likun; Liu, Yuchen; Huang, Dingzhi; Ying, Guoguang; Ba, Yi

    2016-06-01

    Microvesicles (MVs) secreted from cells have been found to mediate signal transduction between cells. In the tumor microenvironment, VEGF released from cancer cells plays a key role in promoting tumor angiogenesis. In this study, we characterized the inhibitory effect of MV-delivered miR-29a/c on angiogenesis and tumor growth in gastric cancer (GC). We found that the downregulation of miR-29a/c increases VEGF expression and release in GC cells, promoting the growth of vascular cells. By simulating the tumor microenvironment, the MV-delivered miR-29a/c significantly suppresses VEGF expression in GC cells, inhibiting vascular cell growth, metastasis, and tube formation. We also used a tumor implantation mouse model to show that secreted MVs containing overexpressed miR-29a/c significantly reduced the growth rate of the vasculature and tumors in vivo. To conclude, our results contribute to a novel anti-cancer strategy using miRNA-containing MVs to control tumor cell growth by blocking angiogenesis. PMID:27000664

  18. Different gDNA Content in the Subpopulations of Prostate Cancer Extracellular Vesicles: Apoptotic Bodies, Microvesicles, and Exosomes

    PubMed Central

    Lázaro-Ibáñez, Elisa; Sanz-Garcia, Andres; Visakorpi, Tapio; Escobedo-Lucea, Carmen; Siljander, Pia; Ayuso-Sacido, Ángel; Yliperttula, Marjo

    2014-01-01

    Background Extracellular vesicles (EVs) are cell-derived membrane vesicles. EVs contain several RNAs such as mRNA, microRNAs, and ncRNAs, but less is known of their genomic DNA (gDNA) content. It is also unknown whether the DNA cargo is randomly sorted or if it is systematically packed into specific EV subpopulations. The aim of this study was to analyze whether different prostate cancer (PCa) cell-derived EV subpopulations (apoptotic bodies, microvesicles, and exosomes) carry different gDNA fragments. Methods EV subpopulations were isolated from three PCa cell lines (LNCaP, PC-3, and RC92a/hTERT) and the plasma of PCa patients and healthy donors, and characterized by transmission electron microscopy, nanoparticle tracking analysis and total protein content. gDNA fragments of different genes were detected by real time quantitative PCR and confirmed by DNA sequencing. Results We report that the concentration of EVs was higher in the cancer patients than in the healthy controls. EV subpopulations differed from each other in terms of total protein and DNA content. Analysis of gDNA fragments of MLH1, PTEN, and TP53 genes from the PCa cell-derived EV subpopulations showed that different EVs carried different gDNA content, which could even harbor specific mutations. Altogether, these results suggest that both nucleic acids and proteins are selectively and cell-dependently packed into the EV subtypes. Conclusions EVs derived from PCa cell lines and human plasma samples contain double-stranded gDNA fragments which could be used to detect specific mutations, making EVs potential biomarkers for cancer diagnostics and prognostics. PMID:25111183

  19. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices.

    PubMed

    Ko, Jina; Carpenter, Erica; Issadore, David

    2016-01-21

    In the last several years, nanoscale vesicles that originate from tumor cells and which can be found circulating in the blood (i.e. exosomes and microvesicles) have been discovered to contain a wealth of proteomic and genetic information to monitor cancer progression, metastasis, and drug efficacy. However, the use of exosomes and microvesicles as biomarkers to improve patient care has been limited by their small size (30 nm-1 μm) and the extensive sample preparation required for their isolation and measurement. In this Critical Review, we explore the emerging use of micro and nano-technology to isolate and detect exosomes and microvesicles in clinical samples and the application of this technology to the monitoring and diagnosis of cancer. PMID:26378496

  20. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    PubMed

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  1. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9

    SciTech Connect

    Stratton, Dan; Moore, Colin; Antwi-Baffour, Samuel; Lange, Sigrun; Inal, Jameel

    2015-05-08

    We have classified microvesicles into two subtypes: larger MVs released upon stimulation of prostate cancer cells, sMVs, and smaller cMVs, released constitutively. cMVs are released as part of cell metabolism and sMVs, released at 10-fold higher levels, produced upon activation, including sublytic C5b-9. From electron microscopy, nanosight tracking analysis, dynamic light scattering and flow cytometry, cMVs (194–210 nm in diameter) are smaller than sMVs (333–385 nm). Furthermore, using a Quartz Crystal Microbalance measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, an sMV and a cMV are estimated at 0.267 and 0.241 pg, respectively. sMVs carry more calcium and protein, express higher levels of lipid rafts, GPI-anchored CD55 and phosphatidylserine including deposited C5b-9 compared to cMVs. This may allude to biological differences such as increased bound C4BP on sMVs inhibiting complement more effectively. - Highlights: • Prostate cells release microvesicles constitutively (cMVs) or upon stimulus (sMVs). • sMVs are larger than cMVs and carry more protein, lipid rafts and surface PstSer. • sMVs inhibit complement more effectively than cMVs.

  2. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes

    PubMed Central

    Minciacchi, Valentina R.; Freeman, Michael R.; Di Vizio, Dolores

    2015-01-01

    Since their first description, extracellular vesicles (EVs) have been the topic of avid study in a variety of physiologic contexts and are now thought to play an important role in cancer. The state of knowledge on biogenesis, molecular content and horizontal communication of diverse types of cancer EVs has expanded considerably in recent years. As a consequence, a plethora of information about EV composition and molecular pathways involved in the regulation of important biological processes has emerged, along with the notion that cancer cells rely on these particles to invade tissues and propagate oncogenic signals at distance. In vivo studies, designed to achieve a deeper understanding of the extent to which EV biology can be applied to clinically relevant settings, are increasing. This review will summarize recent studies on EVs functionally implicated in cancer, with a focus on a novel EV population referred to as large oncosomes, which originate from highly migratory, amoeboid tumor cells. Here we provide an overview about the biogenesis and composition of exosomes, microvesicles and large oncosomes, along with their cancer-specific and more general functions. We also discuss current challenges and emerging technologies that might improve EV detection in various systems. Further studies on the functional role of EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth. PMID:25721812

  3. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes.

    PubMed

    Minciacchi, Valentina R; Freeman, Michael R; Di Vizio, Dolores

    2015-04-01

    Since their first description, extracellular vesicles (EVs) have been the topic of avid study in a variety of physiologic contexts and are now thought to play an important role in cancer. The state of knowledge on biogenesis, molecular content and horizontal communication of diverse types of cancer EVs has expanded considerably in recent years. As a consequence, a plethora of information about EV composition and molecular function has emerged, along with the notion that cancer cells rely on these particles to invade tissues and propagate oncogenic signals at distance. The number of in vivo studies, designed to achieve a deeper understanding of the extent to which EV biology can be applied to clinically relevant settings, is rapidly growing. This review summarizes recent studies on cancer-derived EV functions, with an overview about biogenesis and molecular cargo of exosomes, microvesicles and large oncosomes. We also discuss current challenges and emerging technologies that might improve EV detection in various biological systems. Further studies on the functional role of EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth. PMID:25721812

  4. Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions.

    PubMed

    Park, Jung Ok; Choi, Do-Young; Choi, Dong-Sic; Kim, Hee Joung; Kang, Jeong Won; Jung, Jae Hun; Lee, Jeong Hwa; Kim, Jayoung; Freeman, Michael R; Lee, Kye Young; Gho, Yong Song; Kim, Kwang Pyo

    2013-07-01

    Microvesicles (MVs, also known as exosomes, ectosomes, microparticles) are released by various cancer cells, including lung, colorectal, and prostate carcinoma cells. MVs released from tumor cells and other sources accumulate in the circulation and in pleural effusion. Although recent studies have shown that MVs play multiple roles in tumor progression, the potential pathological roles of MV in pleural effusion, and their protein composition, are still unknown. In this study, we report the first global proteomic analysis of highly purified MVs derived from human nonsmall cell lung cancer (NSCLC) pleural effusion. Using nano-LC-MS/MS following 1D SDS-PAGE separation, we identified a total of 912 MV proteins with high confidence. Three independent experiments on three patients showed that MV proteins from PE were distinct from MV obtained from other malignancies. Bioinformatics analyses of the MS data identified pathologically relevant proteins and potential diagnostic makers for NSCLC, including lung-enriched surface antigens and proteins related to epidermal growth factor receptor signaling. These findings provide new insight into the diverse functions of MVs in cancer progression and will aid in the development of novel diagnostic tools for NSCLC. PMID:23585444

  5. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN

    PubMed Central

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M.; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-01-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. PMID:25503107

  6. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9.

    PubMed

    Stratton, Dan; Moore, Colin; Antwi-Baffour, Samuel; Lange, Sigrun; Inal, Jameel

    2015-05-01

    We have classified microvesicles into two subtypes: larger MVs released upon stimulation of prostate cancer cells, sMVs, and smaller cMVs, released constitutively. cMVs are released as part of cell metabolism and sMVs, released at 10-fold higher levels, produced upon activation, including sublytic C5b-9. From electron microscopy, nanosight tracking analysis, dynamic light scattering and flow cytometry, cMVs (194-210 nm in diameter) are smaller than sMVs (333-385 nm). Furthermore, using a Quartz Crystal Microbalance measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, an sMV and a cMV are estimated at 0.267 and 0.241 pg, respectively. sMVs carry more calcium and protein, express higher levels of lipid rafts, GPI-anchored CD55 and phosphatidylserine including deposited C5b-9 compared to cMVs. This may allude to biological differences such as increased bound C4BP on sMVs inhibiting complement more effectively. PMID:25817790

  7. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles.

    PubMed

    Zhao, Jing-Ya; Chen, Gang; Gu, Yi-Ping; Cui, Ran; Zhang, Zhi-Ling; Yu, Zi-Li; Tang, Bo; Zhao, Yi-Fang; Pang, Dai-Wen

    2016-02-17

    Cell-derived microvesicles (MVs) are natural carriers that can transport biological molecules between cells, which are expected to be promising delivery vehicles for therapeutic purposes. Strategies to label MVs are very important for investigation and application of MVs. Herein, ultrasmall Mn-magnetofunctionalized Ag2Se quantum dots (Ag2Se@Mn QDs) integrated with excellent near-infrared (NIR) fluorescence and magnetic resonance (MR) imaging capabilities have been developed for instant efficient labeling of MVs for their in vivo high-resolution dual-mode tracking. The Ag2Se@Mn QDs were fabricated by controlling the reaction of Mn(2+) with the Ag2Se nanocrystals having been pretreated in 80 °C NaOH solution, with an ultrasmall size of ca. 1.8 nm, water dispersibility, high NIR fluorescence quantum yield of 13.2%, and high longitudinal relaxivity of 12.87 mM(-1) s(-1) (almost four times that of the commercial contrast agent Gd-DTPA). The ultrasmall size of the Ag2Se@Mn QDs enables them to be directly and efficiently loaded into MVs by electroporation, instantly and reliably conferring both NIR fluorescence and MR traceability on MVs. Our method for labeling MVs of different origins is universal and free of unfavorable influence on intrinsic behaviors of MVs. The complementary imaging capabilities of the Ag2Se@Mn QDs have made the long-term noninvasive whole-body high-resolution dual-mode tracking of MVs in vivo realized, by which the dynamic biodistribution of MVs has been revealed in a real-time and in situ quantitative manner. This work not only opens a new window for labeling with QDs, but also facilitates greatly the investigation and application of MVs. PMID:26804745

  8. Permanently Blocked Stem Cells Derived from Breast Cancer Cell Lines

    PubMed Central

    Sajithlal, Gangadharan B.; Rothermund, Kristi; Zhang, Fang; Dabbs, David J.; Latimer, Jean J.; Grant, Stephen G.; Prochownik, Edward V.

    2016-01-01

    Cancer stem cells (CSCs) are thought to be resistant to standard chemotherapeutic drugs and the inimical conditions of the tumor microenvironment. Obtaining CSCs in sufficient quantities and maintaining their undifferentiated state have been major hurdles to their further characterization and to the identification of new pharmaceuticals that preferentially target these cells. We describe here the tagging of CSC-like populations from four human breast cancer cell lines with green fluorescent protein (GFP) under the control of the Oct3/4 stem cell-specific promoter. As expected, GFP was expressed by the CSC-enriched populations. An unanticipated result, however, was that these cells remained blocked in a CSC-like state and tended to be resistant to chemotherapeutic drugs as well as acidotic and hypoxic conditions. These CSC-like cells possessed several other in vitro attributes of CSCs and were able to reproducibly generate tumors in immuno-compromised mice from as few as 100 cells. Moreover, the tumors derived from these cells were comprised almost exclusively of pure CSCs. The ability of the Oct3/4 promoter to block CSC differentiation underscores its potential general utility for obtaining highly purified CSC populations, although the mechanism by which it does so remains undefined and subject to further study. Nonetheless, such stable cell lines should be extremely valuable tools for studying basic questions pertaining to CSC biology and for the initial identification of novel CSC-specific chemotherapeutic agents, which can then be verified in primary CSCs. PMID:20506227

  9. Dendritic cell-derived exosomes for cancer therapy.

    PubMed

    Pitt, Jonathan M; André, Fabrice; Amigorena, Sebastian; Soria, Jean-Charles; Eggermont, Alexander; Kroemer, Guido; Zitvogel, Laurence

    2016-04-01

    DC-derived exosomes (Dex) are nanometer-sized membrane vesicles that are secreted by the sentinel antigen-presenting cells of the immune system: DCs. Like DCs, the molecular composition of Dex includes surface expression of functional MHC-peptide complexes, costimulatory molecules, and other components that interact with immune cells. Dex have the potential to facilitate immune cell-dependent tumor rejection and have distinct advantages over cell-based immunotherapies involving DCs. Accordingly, Dex-based phase I and II clinical trials have been conducted in advanced malignancies, showing the feasibility and safety of the approach, as well as the propensity of these nanovesicles to mediate T and NK cell-based immune responses in patients. This Review will evaluate the interactions of Dex with immune cells, their clinical progress, and the future of Dex immunotherapy for cancer. PMID:27035813

  10. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    PubMed

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  11. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles.

    PubMed

    Fonseca, P; Vardaki, I; Occhionero, A; Panaretakis, T

    2016-01-01

    Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells. PMID:27572129

  12. Rapid and comprehensive 'shotgun' lipidome profiling of colorectal cancer cell derived exosomes.

    PubMed

    Lydic, Todd A; Townsend, Steven; Adda, Christopher G; Collins, Christine; Mathivanan, Suresh; Reid, Gavin E

    2015-10-01

    There is an increasing recognition of the role that cancer cell derived exosomes play in intercellular signaling upon fusion or uptake with a target cell, including immune system evasion, tumor growth and metastasis. To date, however, although exosomal membrane and cargo lipids are expected to play a pivotal role in exosome biogenesis and secretion, as well as in fusion or uptake and target cell functional response, the detailed characterization of cancer cell derived exosome lipids across a range of different cancers has not yet been broadly explored. Here, a simple and straightforward lipidome analysis strategy consisting of optimized sample extraction and novel sample derivatization techniques, coupled with high-resolution 'shotgun' mass spectrometry and 'targeted' tandem mass spectrometry methods, is demonstrated for the rapid identification of >520 individual lipids in 36 lipid classes and sub classes from exosomes secreted by the colorectal cancer cell line, LIM1215. Relative quantification and comparison of exosome versus cellular lipid profiles reveals significant enrichment of certain lipid classes, as well as substantial lipid subclass remodeling and changes in abundance of individual lipids, including sphingolipids, sterol lipids, glycerolipids and glycerophospholipids, and particularly plasmalogen- and alkyl ether-containing glycerophospholipids. This analysis strategy therefore provides a platform for comprehensive lipidome profiling across a wide range of cancer cell or tissue derived exosomes, that will facilitate subsequent functional studies aimed at elucidating the role of specific cellular or exosome lipids in the onset and progression of colorectal cancer, or to identify specific lipid(s) that could serve as effective diagnostic or prognostic disease biomarkers. PMID:25907253

  13. Radioresistance of cancer stem-like cell derived from canine tumours.

    PubMed

    Tanabe, A; Deguchi, T; Sato, T; Nemoto, Y; Maruo, T; Madarame, H; Shida, T; Naya, Y; Ogihara, K; Sahara, H

    2016-09-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are a small subpopulation of cancer cells that are responsible for the initiation, recurrence and metastasis of cancer. We previously demonstrated that, using the Hoechst 33342 dye-based side population technique, CSCs/CICs in canine lung adenocarcinoma cell line exist. In this study, as CSCs/CICs are known to form spheres in anchorage-independent environment in vitro, we evaluated the stemness of spheroid cells derived from canine lung adenocarcinoma and osteosarcoma cells by expression of stemness markers, and investigated radioresistance. Spheroid cells showed greater expression of stemness markers Oct-4 and CD133 gene than those of adherent-cultured cells. In nude mouse xenograft models, spheroid cells showed higher tumourigenic ability than adherent-cultured cells. In addition, spheroid cells showed significantly resistant against radioactivity as compared with adherent-cultured cells. These results suggest that spheroid cells could possess stemness and provide a CSCs/CICs research tool to investigate CSCs/CICs of canine tumour cells. PMID:25070729

  14. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer.

    PubMed

    Pitt, Jonathan M; Charrier, Mélinda; Viaud, Sophie; André, Fabrice; Besse, Benjamin; Chaput, Nathalie; Zitvogel, Laurence

    2014-08-01

    Exosomes are nanometric membrane vesicles of late endosomal origin released by most, if not all, cell types as a means of sophisticated intercellular communication. A multitude of studies showed how exosomes can mediate and regulate immune responses against tumors. Dendritic cell-derived exosomes (Dex) have received much attention as immunotherapeutic anticancer agents since the discovery that they harbor functional MHC-peptide complexes, in addition to various other immune-stimulating components, that together facilitate immune cell-dependent tumor rejection. The therapeutic potential of Dex has been substantiated with their development and clinical testing in the treatment of cancer. This review focuses on mechanisms by which Dex interact with and influence immune cells and describes how they can be engineered to promote their immunogenic capacity as novel and dynamic anticancer agents. PMID:25049431

  15. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2.

    PubMed

    Zhang, Yongliang; Liu, Qiuyan; Zhang, Minggang; Yu, Yizhi; Liu, Xia; Cao, Xuetao

    2009-03-15

    Fas/FasL system has been extensively investigated with respect to its capacity to induce cellular apoptosis. However, accumulated evidences show that Fas signaling also exhibits nonapoptotic functions, such as induction of cell proliferation and differentiation. Lung cancer is one of cancer's refractory to the immunotherapy, however, the underlying mechanisms remain to be fully understood. In this study, we show that Fas overexpression does not affect in vitro growth of 3LL cells, but promotes lung cancer growth in vivo. However, such tumor-promoting effect is not observed in FasL-deficient (gld) mice, and also not observed in the immune competent mice once inoculation with domain-negative Fas-overexpressing 3LL cells, suggesting the critical role of Fas signal in the promotion of lung cancer growth in vivo. More accumulation of myeloid-derived suppressor cells (MDSC) and Foxp3(+) regulatory T cells is found in tumors formed by inoculation with Fas-overexpressing 3LL cells, but not domain-negative Fas-overexpressing 3LL cells. Accordingly, Fas-ligated 3LL lung cancer cells can chemoattract more MDSC but not regulatory T cells in vitro. Furthermore, Fas ligation induces 3LL lung cancer cells to produce proinflammatory factor PGE(2) by activating p38 pathway, and in turn, 3LL cells-derived PGE(2) contribute to the Fas ligation-induced MDSC chemoattraction. Furthermore, in vivo administration of cyclooxygenase-2 inhibitor can significantly reduce MDSC accumulation in the Fas-overexpressing tumor. Therefore, our results demonstrate that Fas signal can promote lung cancer growth by recruiting MDSC via cancer cell-derived PGE(2), thus providing new mechanistic explanation for the role of inflammation in cancer progression and immune escape. PMID:19265159

  16. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study

    PubMed Central

    Bang, Oh Young; Chung, Jong-Won; Lee, Mi Ji; Kim, Suk Jae; Cho, Yeon Hee; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Ahn, Myung-Ju; Moon, Gyeong Joon

    2016-01-01

    Background Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs) play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke. Methods Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326]), tissue factor (TF [CD142]), endothelial cells (CD31+CD42b-), and platelets (CD62P) were measured using flow cytometry in (a) 155 patients with ischemic stroke and active cancer (116 − cancer-related, 39 − conventional stroke mechanisms), (b) 25 patients with ischemic stroke without cancer, (c) 32 cancer patients without stroke, and (d) 101 healthy subjects. Results The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+) were higher in cancer-related stroke than in other groups (P<0.05 in all the cases). Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs. Conclusions Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms. PMID:27427978

  17. Regulated Delivery of Molecular Cargo to Invasive Tumor-derived Microvesicles

    PubMed Central

    Clancy, James W.; Sedgwick, Alanna; Rosse, Carine; Muralidharan-Chari, Vandhana; Raposo, Graca; Method, Michael; Chavrier, Philippe; D'Souza-Schorey, Crislyn

    2015-01-01

    Cells release multiple, distinct, forms of extracellular vesicles including structures known as microvesicles which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function, and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumor cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression. PMID:25897521

  18. Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes.

    PubMed

    Etayash, H; McGee, A R; Kaur, K; Thundat, T

    2016-08-18

    The use of exosomes as cancer diagnostic biomarkers is technically limited by their size, heterogeneity and the need for extensive purification and labelling. We report the use of cantilever arrays for simultaneous detection of multiple exosomal surface-antigens with high sensitivity and selectivity. Exosomes from breast cancer were selectively identified by detecting over-expressed membrane-proteins CD24, CD63, and EGFR. Excellent selectivity however, was achieved when targeting the cell-surface proteoglycan, Glypican-1 at extraordinary limits (∼200 exosomes per mL, ∼0.1 pg mL(-1)). PMID:27492928

  19. Microfluidic isolation and transcriptome analysis of serum microvesicles.

    PubMed

    Chen, Chihchen; Skog, Johan; Hsu, Chia-Hsien; Lessard, Ryan T; Balaj, Leonora; Wurdinger, Thomas; Carter, Bob S; Breakefield, Xandra O; Toner, Mehmet; Irimia, Daniel

    2010-02-21

    Microvesicles (exosomes) shed from both normal and cancerous cells may serve as means of intercellular communication. These microvesicles carry proteins, lipids and nucleic acids derived from the host cell. Their isolation and analysis from blood samples have the potential to provide information about state and progression of malignancy and should prove of great clinical importance as biomarkers for a variety of disease states. However, current protocols for isolation of microvesicles from blood require high-speed centrifugation and filtration, which are cumbersome and time consuming. In order to take full advantage of the potential of microvesicles as biomarkers for clinical applications, faster and simpler methods of isolation will be needed. In this paper, we present an easy and rapid microfluidic immunoaffinity method to isolate microvesicles from small volumes of both serum from blood samples and conditioned medium from cells in culture. RNA of high quality can be extracted from these microvesicles providing a source of information about the genetic status of tumors to serve as biomarkers for diagnosis and prognosis of cancer. PMID:20126692

  20. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy

    PubMed Central

    Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L.; Dai, Long-Jun; Luo, Jie

    2015-01-01

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable. PMID:26496034

  1. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    PubMed

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable. PMID:26496034

  2. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  3. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-01-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis. PMID:27292795

  4. A novel role for peptidylarginine deiminases in microvesicle release reveals therapeutic potential of PAD inhibition in sensitizing prostate cancer cells to chemotherapy

    PubMed Central

    Kholia, Sharad; Jorfi, Samireh; Thompson, Paul R.; Causey, Corey P.; Nicholas, Anthony P.; Inal, Jameel M.; Lange, Sigrun

    2015-01-01

    Introduction Protein deimination, defined as the post-translational conversion of protein-bound arginine to citrulline, is carried out by a family of 5 calcium-dependent enzymes, the peptidylarginine deiminases (PADs) and has been linked to various cancers. Cellular microvesicle (MV) release, which is involved in cancer progression, and deimination have not been associated before. We hypothesize that elevated PAD expression, observed in cancers, causes increased MV release in cancer cells and contributes to cancer progression. Background We have previously reported that inhibition of MV release sensitizes cancer cells to chemotherapeutic drugs. PAD2 and PAD4, the isozymes expressed in patients with malignant tumours, can be inhibited with the pan-PAD-inhibitor chloramidine (Cl-am). We sought to investigate whether Cl-am can inhibit MV release and whether this pathway could be utilized to further increase the sensitivity of cancer cells to drug-directed treatment. Methods Prostate cancer cells (PC3) were induced to release high levels of MVs upon BzATP stimulation of P2X7 receptors. Western blotting with the pan-protein deimination antibody F95 was used to detect a range of deiminated proteins in cells stimulated to microvesiculate. Changes in deiminated proteins during microvesiculation were revealed by immunoprecipitation and immunoblotting, and mass spectrometry identified deiminated target proteins with putative roles in microvesiculation. Conclusion We report for the first time a novel function of PADs in the biogenesis of MVs in cancer cells. Our results reveal that during the stimulation of prostate cancer cells (PC3) to microvesiculate, PAD2 and PAD4 expression levels and the deimination of cytoskeletal actin are increased. Pharmacological inhibition of PAD enzyme activity using Cl-am significantly reduced MV release and abrogated the deimination of cytoskeletal actin. We demonstrated that combined Cl-am and methotrexate (MTX) treatment of prostate cancer

  5. The Genomic and Proteomic Content of Cancer Cell-Derived Exosomes

    PubMed Central

    Henderson, Meredith C.; Azorsa, David O.

    2011-01-01

    Exosomes are secreted membrane vesicles that have been proposed as an effective means to detect a variety of disease states, including cancer. The properties of exosomes, including stability in biological fluids, allow for their efficient isolation and make them an ideal vehicle for studies on early disease detection and evaluation. Much data has been collected over recent years regarding the messenger RNA, microRNA, and protein contents of exosomes. In addition, many studies have described the functional role that exosomes play in disease initiation and progression. Tumor cells have been shown to secrete exosomes, often in increased amounts compared to normal cells, and these exosomes can carry the genomic and proteomic signatures characteristic of the tumor cells from which they were derived. While these unique signatures make exosomes ideal for cancer detection, exosomes derived from cancer cells have also been shown to play a functional role in cancer progression. Here, we review the unique genomic and proteomic contents of exosomes originating from cancer cells as well as their functional effects to promote tumor progression. PMID:22649786

  6. Treatment of distant metastases from follicular cell-derived thyroid cancer.

    PubMed

    Schlumberger, Martin; Leboulleux, Sophie

    2015-01-01

    Distant metastases from thyroid cancer of follicular origin are uncommon. Treatment includes levothyroxine administration at suppressive doses, focal treatment modalities with surgery, external radiation therapy and thermal ablation, and radioiodine in patients with uptake of (131)I in their metastases. Two thirds of distant metastases will become refractory to radioiodine at some point, and when there is a significant tumor burden and documented progression on imaging, a treatment with a kinase inhibitor may provide benefits. PMID:25750740

  7. Treatment of distant metastases from follicular cell-derived thyroid cancer

    PubMed Central

    Leboulleux, Sophie

    2015-01-01

    Distant metastases from thyroid cancer of follicular origin are uncommon. Treatment includes levothyroxine administration at suppressive doses, focal treatment modalities with surgery, external radiation therapy and thermal ablation, and radioiodine in patients with uptake of 131I in their metastases. Two thirds of distant metastases will become refractory to radioiodine at some point, and when there is a significant tumor burden and documented progression on imaging, a treatment with a kinase inhibitor may provide benefits. PMID:25750740

  8. Biomechanical profile of cancer stem-like cells derived from MHCC97H cell lines.

    PubMed

    Sun, Jinghui; Luo, Qing; Liu, Lingling; Zhang, Bingyu; Shi, Yisong; Ju, Yang; Song, Guanbin

    2016-01-01

    Biomechanical properties and cytoskeletal organization of cancer cells are known to be closely related with their aggressive phenotype. In this study, based on atomic force microscopy (AFM), we aimed to evaluate the mechanical property of liver cancer stem-like cells (LCSCs) and compare it with human hepatoma cells (HHCs). LCSCs were enriched from human hepatoma cell line MHCC97H through a sphere culture system. AFM nanoindentation was investigated as a method for measuring the cell stiffness, and reflecting by Young׳s modulus. Microfilament bundles of F-actin were observed with immunofluorescence staining by confocal microscopy. We found that LCSCs show lower Young׳s modulus and higher migration ability compared to MHCC97H cells. Moreover, the decrease in Young׳s modulus is accompanied with a dramatic decline in F-actin content. These results demonstrated a close relationship between the cell Young׳s modulus and metastatic potential of HHCs, which suggest that Young׳s modulus detected by AFM can be used to evaluate metastatic potential of cancer cells. PMID:26627368

  9. Stromal Cells Derived from Visceral and Obese Adipose Tissue Promote Growth of Ovarian Cancers

    PubMed Central

    Zhang, Yan; Nowicka, Aleksandra; Solley, Travis N.; Wei, Caimiao; Parikh, Aaroh; Court, Laurence; Burks, Jared K.; Andreeff, Michael; Woodward, Wendy A.; Dadbin, Ali; Kolonin, Mikhail G.; Lu, Karen H.; Klopp, Ann H.

    2015-01-01

    Obesity, and in particular visceral obesity, has been associated with an increased risk of developing cancers as well as higher rates of mortality following diagnosis. The impact of obesity on adipose-derived stromal cells (ASC), which contribute to the formation of tumor stroma, is unknown. Here we hypothesized that visceral source and diet-induced obesity (DIO) changes the ASC phenotype, contributing to the tumor promoting effects of obesity. We found that ASC isolated from subcutaneous (SC-ASC) and visceral (V-ASC) white adipose tissue(WAT) of lean(Le) and obese(Ob) mice exhibited similar mesenchymal cell surface markers expression, and had comparable effects on ovarian cancer cell proliferation and migration. Obese and visceral derived ASC proliferated slower and exhibited impaired differentiation into adipocytes and osteocytes in vitro as compared to ASC derived from subcutaneous WAT of lean mice. Intraperitoneal co-injection of ovarian cancer cells with obese or visceral derived ASC, but not lean SC-ASC, increased growth of intraperitoneal ID8 tumors as compared to controls. Obese and V-ASC increased stromal infiltration of inflammatory cells, including CD3+ T cells and F4/80+ macrophages. Obese and visceral derived ASC, but not lean SC-ASC, increased expression of chemotactic factors IL-6, MIP-2, and MCP-1 when cultured with tumor cells. Overall, these results demonstrate that obese and V-ASC have a unique phenotype, with more limited proliferation and differentiation capacity but enhanced expression of chemotactic factors in response to malignant cells which support infiltration of inflammatory cells and support tumor growth and dissemination. PMID:26317219

  10. Time-lapse imaging of primary preneoplastic mammary epithelial cells derived from genetically engineered mouse models of breast cancer.

    PubMed

    Nakles, Rebecca E; Millman, Sarah L; Cabrera, M Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S; Schroeder, Timm; Furth, Priscilla A

    2013-01-01

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions. PMID:23425702

  11. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10

    PubMed Central

    WANG, YUZHOU; YI, JUN; CHEN, XINGGUI; ZHANG, YING; XU, MENG; YANG, ZHIXIONG

    2016-01-01

    Tumorigenesis has been considered to be as a result of abnormal cell-cell communication. It has been proposed that exosomes act as communicators between tumors and their microenvironment and have been demonstrated to be involved in tumorigenesis and subsequent metastasis. However, the mechanisms underlying the role of exosomes in these processes remains elusive. The present study sought to determine the underlying mechanisms. Using two lung cancer cell lines, it was demonstrated that exosomes derived from metastatic small cell lung cancer cells (NCI-H1688) have greater effects on cancer cell migration, compared with exosomes derived from primary non-small cell lung cancer cells (NCI-H2228). Further characterization of the contents of the exosomes demonstrated that there were increased levels of TGF-β and IL-10 in exosomes from NCI-H1688 cells compared with exosomes derived from NCI-H2228 cells, in particular under hypoxia. Blockade of TGF-β and IL-10 with antibodies confirmed that these cytokines were essential for the regulation of cancer cell migration. Taken together, the results of the present study indicated that exosomes derived from cancer cells regulated the cellular migration of tumor cells through TGF-β and IL-10, which may provide a novel approach for developing therapeutic methods against cancer. PMID:26893774

  12. Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility.

    PubMed

    Bordeleau, Francois; Chan, Bryan; Antonyak, Marc A; Lampi, Marsha C; Cerione, Richard A; Reinhart-King, Cynthia A

    2016-05-24

    During tumor progression, cancer cells interact and communicate with non-malignant cells within their local microenvironment. Microvesicles (MV) derived from human cancer cells play an important role in mediating this communication. Another critical aspect of cancer progression involves widespread ECM remodeling, which occur both at the primary and metastatic sites. ECM remodeling and reorganization within the tumor microenvironment is generally attributed to fibroblasts. Here, using MCF10a cells, a well-characterized breast epithelial cell line that exhibits a non-malignant epithelial phenotype, and MVs shed by aggressive MDA-MB-231 carcinoma cells, we show that non-malignant epithelial cells can participate in ECM reorganization of 3D collagen matrices following their treatment with cancer cell-derived MVs. In addition, MVs trigger several changes in epithelial cells under 3D culture conditions. Furthermore, we show that this ECM reorganization is associated with an increase in cellular traction force following MV treatment, higher acto-myosin contractility, and higher FAK activity. Overall, our findings suggest that MVs derived from tumor cells can contribute to ECM reorganization occurring within the tumor microenvironment by enhancing the contractility of non-malignant epithelial cells. PMID:26477404

  13. Intercellular transfer of tissue factor via the uptake of tumor-derived microvesicles.

    PubMed

    Lima, Luize G; Leal, Ana Carolina; Vargas, Gabriele; Porto-Carreiro, Isabel; Monteiro, Robson Q

    2013-10-01

    Coagulation proteins play a critical role in numerous aspects of tumor biology. Cancer cells express tissue factor (TF), the protein that initiates blood clotting, which frequently correlates with processes related to cell aggressiveness, including primary tumor growth, invasion, and metastasis. It has been demonstrated that TF gets incorporated into tumor-derived microvesicles (MVs), a process that has been correlated with cancer-associated thrombosis. Here, we describe the exchange of TF-bearing MVs between breast cancer cell lines with different aggressiveness potential. The highly invasive and metastatic MDA-MB-231 cells displayed higher surface levels of functional TF compared with the less aggressive MCF-7 cells. MVs derived from MDA-MB-231 cells were enriched in TF and accelerated plasma coagulation, but MCF-7 cell-derived MVs expressed very low levels of TF. Incubating MCF-7 cells with MDA-MB-231 MVs significantly increased the TF activity. This phenomenon was not observed upon pretreatment of MVs with anti-TF or annexin-V, which blocks phosphatidylserine sites on the surface of MVs. Our data indicated that TF-bearing MVs can be transferred between different populations of cancer cells and may therefore contribute to the propagation of a TF-related aggressive phenotype among heterogeneous subsets of cells in a tumor. PMID:23993901

  14. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    PubMed

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. PMID:22311724

  15. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation

    NASA Astrophysics Data System (ADS)

    Herrmann, I. K.; Bertazzo, S.; O'Callaghan, D. J. P.; Schlegel, A. A.; Kallepitis, C.; Antcliffe, D. B.; Gordon, A. C.; Stevens, M. M.

    2015-08-01

    Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and introduces microvesicle-bacteria aggregation as a potentially useful parameter for making early clinical management decisions.Sepsis is a severe medical condition and a leading cause of hospital mortality. Prompt diagnosis and early treatment has a significant, positive impact on patient outcome. However, sepsis is not always easy to diagnose, especially in critically ill patients. Here, we present a conceptionally new approach for the rapid diagnostic differentiation of sepsis from non-septic intensive care unit patients. Using advanced microscopy and spectroscopy techniques, we measure infection-specific changes in the activity of nano-sized cell-derived microvesicles to bind bacteria. We report on the use of a point-of-care-compatible microfluidic chip to measure microvesicle-bacteria aggregation and demonstrate rapid (<=1.5 hour) and reliable diagnostic differentiation of bacterial infection from non-infectious inflammation in a double-blind pilot study. Our study demonstrates the potential of microvesicle activities for sepsis diagnosis and

  16. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis.

    PubMed

    Sasaki, Soichiro; Baba, Tomohisa; Nishimura, Tatsunori; Hayakawa, Yoshihiro; Hashimoto, Shin-Ichi; Gotoh, Noriko; Mukaida, Naofumi

    2016-08-01

    From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity. PMID:27177471

  17. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease.

    PubMed

    Hulsmans, Maarten; Holvoet, Paul

    2013-10-01

    In addition to intracellular organelles, eukaryotic cells contain extracellular organelles which are released, or shed, into the microenvironment. In practice, most human studies have examined mixed populations containing both exosomes and shedding microvesicles (also called ectosomes or microparticles); only a few studies have rigorously distinguished between the two. Accordingly, in this review, exosomes and shedding microvesicles are collectively called microvesicles. The first aim of this review was to discuss the role of microvesicles in cell-to-cell communication in general and in specific interactions between cells in chronic inflammation associated with atherosclerotic disease. Hereby, we focused on cell-specific microvesicles derived from platelets, endothelial cells and monocyte and monocyte-derived cells. The latter were also found to be associated with inflammation in obesity and type 2 diabetes prior to atherosclerotic disease, and cancer. Our second aim was to discuss specific changes in microvesicle content in relation with inflammation associated with metabolic and atherosclerotic disease, and cancer. Because many studies supported the putative diagnostic value of microRNAs, we emphasized therein changes in microRNA content rather than protein or lipid content. The most interesting microRNAs in inflammatory microvesicles in association with metabolic and cardiovascular diseases were found to be the let-7 family, miR-17/92 family, miR-21, miR-29, miR-126, miR-133, miR-146, and miR-155. These data warrant further investigation of the potential of microvesicles as putative biomarkers and as novel carriers for the cell-specific transfer of microRNAs and other therapeutic agents. PMID:23774505

  18. Stromal cell-derived factor-1α and macrophage migration-inhibitory factor induce metastatic behavior in CXCR4-expressing colon cancer cells.

    PubMed

    Shin, Han-Na; Moon, Hyun-Hye; Ku, Ja-Lok

    2012-12-01

    Metastasis of cancer cells is a major cause of death in cancer patients. The process of cancer metastasis includes the proliferation of primary cancer cells, local invasion, intravasation and cancer cell survival in blood flow, extravasation and attachment to secondary organs and metastatic growth in a new environment. In these mechanisms of cancer metastasis, CXC chemokine receptor 4 (CXCR4) and its ligand play an important role. Stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is well known as a ligand of CXCR4, and macrophage migration-inhibitory factor (MIF) has recently become known as a ligand of CXCR4. In many types of cancers including breast, pancreatic and colorectal cancer (CRC), CXCR4/SDF-1α has been investigated in metastasis-related cancer behavior, which include cell proliferation, adhesion, migration and invasion. However, CXCR4/MIF has rarely been investigated in the metastatic behavior of colon cancer cells. In this report, the effect of SDF-1α or MIF was studied on cell cycle, cell proliferation, adhesion and migration of the CXCR4-expressing colon cancer cell line SW480. SDF-1α or MIF caused a decrease in the number of cells in G0/G1 phase and an increase in the numbers of cells in S and G2/M phases. In addition, SDF-1α or MIF caused an increase in cell proliferation, cell adhesion to fibronectin and migration. AMD3100, a CXCR4 antagonist, attenuated these effects, which included increased cell proliferation, adhesion and migration due to treatment of CXCR4-expressing colon cancer cells with SDF-1α or MIF. In conclusion, SDF-1α or MIF affects the metastasis-related behaviors of CXCR4-expressing colon cancer cells. PMID:23023114

  19. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  20. Synovial Sarcoma Microvesicles Harbor the SYT-SSX Fusion Gene Transcript: Comparison of Different Methods of Detection and Implications in Biomarker Research

    PubMed Central

    Fricke, A.; Ullrich, P. V.; Cimniak, A. F. V.; Follo, M.; Nestel, S.; Heimrich, B.; Nazarenko, I.; Stark, G. B.; Bannasch, H.; Braig, D.; Eisenhardt, S. U.

    2016-01-01

    Background. Synovial sarcoma is an aggressive soft-tissue malignancy. This study examines the presence of the SYT-SSX fusion transcript in synovial sarcoma microvesicles as well as its potential role as a biomarker for synovial sarcoma. Patients and Methods. Microvesicle release of synovial sarcoma cells was examined by transmission electron microscopy. RNA-content was analyzed by qPCR, nested PCR, nested qPCR, and droplet digital PCR to compare their sensitivity for detection of the SYT-SSX fusion gene transcript. Whole blood RNA, RNA of mononuclear cells, and microvesicle RNA of synovial sarcoma patients were analyzed for the presence of the fusion gene transcripts. Results. Electron microscopic analysis revealed synovial sarcoma cells releasing membrane-enclosed microvesicles. In vitro, the SYT-SSX fusion gene transcript was detected in both synovial sarcoma cells and microvesicles. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA. In contrast, the fusion gene transcript was not detected in peripheral blood cells and microvesicles of synovial sarcoma patients. Conclusion. Synovial sarcoma cells release microvesicles harboring the SYT-SSX fusion transcript. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA; however, more sensitive assays are needed to detect cancer-specific microvesicles in the peripheral blood of cancer patients. PMID:27069481

  1. Synovial Sarcoma Microvesicles Harbor the SYT-SSX Fusion Gene Transcript: Comparison of Different Methods of Detection and Implications in Biomarker Research.

    PubMed

    Fricke, A; Ullrich, P V; Cimniak, A F V; Follo, M; Nestel, S; Heimrich, B; Nazarenko, I; Stark, G B; Bannasch, H; Braig, D; Eisenhardt, S U

    2016-01-01

    Background. Synovial sarcoma is an aggressive soft-tissue malignancy. This study examines the presence of the SYT-SSX fusion transcript in synovial sarcoma microvesicles as well as its potential role as a biomarker for synovial sarcoma. Patients and Methods. Microvesicle release of synovial sarcoma cells was examined by transmission electron microscopy. RNA-content was analyzed by qPCR, nested PCR, nested qPCR, and droplet digital PCR to compare their sensitivity for detection of the SYT-SSX fusion gene transcript. Whole blood RNA, RNA of mononuclear cells, and microvesicle RNA of synovial sarcoma patients were analyzed for the presence of the fusion gene transcripts. Results. Electron microscopic analysis revealed synovial sarcoma cells releasing membrane-enclosed microvesicles. In vitro, the SYT-SSX fusion gene transcript was detected in both synovial sarcoma cells and microvesicles. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA. In contrast, the fusion gene transcript was not detected in peripheral blood cells and microvesicles of synovial sarcoma patients. Conclusion. Synovial sarcoma cells release microvesicles harboring the SYT-SSX fusion transcript. Nested qPCR proved to be the most sensitive in detecting the SYT-SSX fusion gene mRNA; however, more sensitive assays are needed to detect cancer-specific microvesicles in the peripheral blood of cancer patients. PMID:27069481

  2. Blood/plasma secretome and microvesicles.

    PubMed

    Inal, Jameel M; Kosgodage, Uchini; Azam, Sarah; Stratton, Dan; Antwi-Baffour, Samuel; Lange, Sigrun

    2013-11-01

    A major but hitherto overseen component of the blood/plasma secretome is that of extracellular vesicles (EVs) which are shed from all blood cell types. These EVs are made up of microvesicles (MVs) and exosomes. MVs, 100nm-1μm in diameter, are released from the cell surface, and are a rich source of non-conventionally secreted proteins lacking a conventional signal peptide, and thus not secreted by the classical secretory pathways. Exosomes are smaller vesicles (≤100nm) having an endocytic origin and released upon multivesicular body fusion with the plasma membrane. Both vesicle types play major roles in intercellular cross talk and constitute an important component of the secretome especially in the area of biomarkers for cancer. The release of EVs, which are found in all the bodily fluids, is enhanced in cancer and a major focus of cancer proteomics is therefore targeted at EVs. The blood/plasma secretome is also a source of EVs, potentially diagnostic of infectious disease, whether from EVs released from infected cells or from the pathogens themselves. Despite the great excitement in this field, as is stated here and in other parts of this Special issue entitled: An Updated Secretome, much of the EV research, whether proteomic or functional in nature, urgently needs standardisation both in terms of nomenclature and isolation protocols. This article is part of a Special Issue entitled: An Updated Secretome. PMID:23590876

  3. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer.

    PubMed

    Tang, Dong; Gao, Jun; Wang, Sen; Yuan, Zhongxu; Ye, Nianyuan; Chong, Yang; Xu, Chuanqi; Jiang, Xuetong; Li, Bin; Yin, Wei; Miao, Yi; Wang, Daorong; Jiang, Kuirong

    2015-07-01

    Galectin-1, a β-galactoside-binding protein implicated in cancer cell immune privilege, was highly expressed in activated pancreatic stellate cells (PSCs). This study was designed to investigate the relationship between PSC-derived galectin-1 and tumor immunity in pancreatic cancer. Isolated PSCs were identified as normal pancreas cells (hNPSCs) or pancreatic cancer cells (hCaPSCs) by immunohistochemical staining for α-SMA and vimentin, and galectin-1 expression was evaluated by Western blotting and quantitative RT-PCR. Apoptosis, caspase activity, and cytokine production (IL-6, IL-10, TNF-β, and IFN-γ) of T cells co-cultured with PSCs were evaluated, and immunohistochemical staining of galectin-1 was correlated with CD3 and clinicopathological variables in 66 pancreatic cancer and 10 normal pancreatic tissue samples. hCaPSCs exhibited higher galectin-1 expression than did hNPSCs, and hCaPSCs induced higher levels of apoptosis in T cells following co-culture. hCaPSCs activated caspase-9 and caspase-3 in the mitochondrial apoptotic pathway and stimulated secretion of Th2 cytokines (IL-6 and IL-10) but decreased secretion of Th1 cytokines (TNF-β and IFN-γ), compared with hNPSCs. Immunohistochemical staining indicated that galectin-1 and CD3 were more highly expressed in pancreatic cancer tissue. Galectin-1 expression was highest in poorly differentiated pancreatic cancer cells and lowest in well-differentiated pancreatic cancer cells and was associated with tumor size, lymph node metastasis, differentiation, and UICC stage. However, CD3 expression showed the opposite trend and was highest in well-differentiated pancreatic cancer cells and was associated with tumor differentiation and UICC stage. High expression of galectin-1 was associated with short survival, as was low expression of CD3. hCaPSC-derived galectin-1 enhanced apoptosis and anergy of T cells in pancreatic cancer, which contributes to the immune escape of pancreatic cancer cells. PMID:25725585

  4. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies.

    PubMed

    Fan, C-W; Chen, T; Shang, Y-N; Gu, Y-Z; Zhang, S-L; Lu, R; OuYang, S-R; Zhou, X; Li, Y; Meng, W-T; Hu, J-K; Lu, Y; Sun, X-F; Bu, H; Zhou, Z-G; Mo, X-M

    2013-01-01

    Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial-mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients. PMID:24091671

  5. Protection of stromal cell-derived factor 2 by heat shock protein 72 prevents oxaliplatin-induced cell death in oxaliplatin-resistant human gastric cancer cells.

    PubMed

    Takahashi, Katsuyuki; Tanaka, Masako; Yashiro, Masakazu; Matsumoto, Masaki; Ohtsuka, Asuka; Nakayama, Keiichi I; Izumi, Yasukatsu; Nagayama, Katsuya; Miura, Katsuyuki; Iwao, Hiroshi; Shiota, Masayuki

    2016-08-01

    Heat shock protein 72 (Hsp72) is a molecular chaperone that assists in the folding of nascent polypeptides and in the refolding of denatured proteins. In many cancers, Hsp72 is constitutively expressed at elevated levels, which can result in enhanced stress tolerance. Similarly, following treatment with anticancer drugs, Hsp72 binds to denatured proteins that may be essential for survival. We therefore hypothesized that Hsp72 client proteins may play a crucial role in drug resistance. Here, we aimed to identify proteins that are critical for oxaliplatin (OXA) resistance by analyzing human gastric cancer cell lines, as well as OXA-resistant cells via a mass spectrometry-based proteomic approach combined with affinity purification using anti-Hsp72 antibodies. Stromal cell-derived factor 2 (SDF-2) was identified as an Hsp72 client protein unique to OCUM-2M/OXA cells. SDF-2 was overexpressed in OXA-resistant cells and SDF-2 silencing promoted the apoptotic effects of OXA. Furthermore, Hsp72 prevented SDF-2 degradation in a chaperone activity-dependent manner. Together, our data demonstrate that Hsp72 protected SDF-2 to avoid OXA-induced cell death. We propose that inhibition of SDF-2 may comprise a novel therapeutic strategy to counteract OXA-resistant cancers. PMID:27157913

  6. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer.

    PubMed

    Zhang, Xuan; Pei, Zenglin; Chen, Jinyun; Ji, Chunxia; Xu, Jianqing; Zhang, Xiaoyan; Wang, Jin

    2016-01-01

    Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention. PMID:27326251

  7. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer

    PubMed Central

    Zhang, Xuan; Pei, Zenglin; Chen, Jinyun; Ji, Chunxia; Xu, Jianqing; Zhang, Xiaoyan; Wang, Jin

    2016-01-01

    Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention. PMID:27326251

  8. Isolation of circulating microRNAs from microvesicles found in human plasma.

    PubMed

    Quackenbush, John F; Cassidy, Pamela B; Pfeffer, Lawrence M; Boucher, Kenneth M; Hawkes, Jason E; Pfeffer, Susan R; Kopelovich, Levy; Leachman, Sancy A

    2014-01-01

    Intact miRNAs can be isolated from the circulation in significant quantities despite the presence of extremely high levels of RNase activity. The remarkable stability of circulating miRNAs makes them excellent candidates for biomarkers in diagnostic applications as well as therapeutic targets in a variety of disease states including melanoma. Circulating RNA molecules are resistant to degradation by RNases because they are encapsulated in membrane-bound microvesicles. We describe a convenient method for the use of ExoQuick, a proprietary resin developed by Systems Biosciences (Mountain View, CA), whereby microvesicles can be purified under gentle conditions using readily available laboratory equipment. This protocol allows for isolation all microvesicles, regardless of their origin, and provides a convenient method for identifying potential cancer-specific biomarkers from biological fluids including serum and plasma. PMID:24259003

  9. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    PubMed Central

    2012-01-01

    Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a differential active RAF

  10. Label-free real-time acoustic sensing of microvesicle release from prostate cancer (PC3) cells using a Quartz Crystal Microbalance

    SciTech Connect

    Stratton, Dan; Lange, Sigrun; Kholia, Sharad; Jorfi, Samireh; Antwi-Baffour, Samuel; Inal, Jameel

    2014-10-24

    Highlights: • Microvesiculating cells record loss of mass on a Quartz Crystal Microbalance. • Using the Quartz Crystal Microbalance microvesicles are measured at 0.24 pg. • The QCM-D reveals loss in viscoelastic properties in microvesiculating cells. - Abstract: Using a Quartz Crystal Microbalance with dissipation monitoring, QCM-D (label-free system) measuring changes in resonant frequency (Δf) that equate to mass deposited on a sensor, we showed the attachment, over a 60 min period, of a monolayer of PC3 cells to the gold electrodes of the quartz crystal sensor, which had been rendered hydrophilic. That MVs were released upon BzATP stimulation of cells was confirmed by NTA analysis (average 250 nm diameter), flow cytometry, showing high phosphatidylserine exposition and by fluorescent (Annexin V Alexa Fluor® 488-positive) and electron microscopy. Over a period of 1000s (16.7 min) during which early apoptosis increased from 4% plateauing at 10% and late apoptosis rose to 2%, the Δf increased 20 Hz, thereupon remaining constant for the last 1000s of the experiment. Using the Sauerbrey equation, the loss in mass, which corresponded to the release of 2.36 × 10{sup 6} MVs, was calculated to be 23 ng. We therefore estimated the mass of an MV to be 0.24 pg. With the deposition on the QCM-D of 3.5 × 10{sup 7} MVs over 200s, the decrease in Δf (Hz) gave an estimate of 0.235 pg per MV.

  11. Stromal cell-derived factor-1 G801A polymorphism and the risk factors for cervical cancer.

    PubMed

    Roszak, Andrzej; Misztal, Matthew; Sowińska, Anna; Jagodziński, Paweł P

    2015-06-01

    Although certain studies have demonstrated no association between the stromal cell‑derived factor‑1 (SDF1‑3') G801A single nucleotide polymorphism (SNP) and cervical carcinoma, the interactions between the SDF1‑3' G801A SNP and contraceptive use, menopausal status, parity and tobacco smoking remain to be fully elucidated. Using polymerase chain reaction‑restriction fragment length polymorphism, the distribution of SDF1‑3' G801A genotypes in patients with cervical cancer (n=462) against control groups (n=497) was investigated. Logistic regression analysis, adjusting for age, pregnancy, oral contraceptive use, tobacco smoking and menopausal status, did not identify the SDF1‑3' G801A polymorphism as a genetic risk factor for cervical cancer. The adjusted odds ratio (OR) for patients with the A/G, vs. G/G genotype was 1.203, with a 95% confidence interval (CI) of 0.909‑1.591 (P=0.196). The adjusted OR for the A/A, vs. G/G genotype was 1.296 (95% CI=0.930‑1.807; P=0.125) and for the A/A or A/G, vs. G/G genotype was 1.262 (95% CI=0.964‑1.653; P=0.090)]. The P‑value of the χ2 test of the trend observed for the SDF1‑3' G801A polymorphism was at the borderline of being statistically significant (ptrend=0.0484). Stratified analyses between the distribution of the SDF1‑3' G801A genotypes and cervical cancer risks demonstrated that this polymorphism may be a risk factor for patients with a positive history of tobacco smoking (1.778; 95% CI=1.078‑2.934; P=0.0235). These findings suggested that the SDF1‑3' G801A polymorphism may be a genetic risk factor for cervical cancer in patients with a positive history of tobacco smoking. PMID:25672413

  12. Effect of hyperthermic CO2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line

    PubMed Central

    WANG, JINLIN; WANG, ZHIYONG; MO, YANXIA; ZENG, ZHAOHUI; WEI, PEI; LI, TAO

    2015-01-01

    The aim of the present study was to determine the antitumor effects of hyperthermic CO2 (HT-CO2)-treated dendritic cell (DC)-derived exosomes (Dex) on human gastric cancer AGS cells. Mouse-derived DCs were incubated in HT-CO2 at 43°C for 4 h. The exosomes in the cell culture supernatant were then isolated. Cell proliferation was analyzed using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was observed using flow cytometry, Hoechst 33258 staining and the analysis of caspase-3 activity. In addition, the proliferation of tumor cells was evaluated in xenotransplant nude mice. HT-CO2 markedly inhibited cell proliferation, as assessed by the CCK-8 assay, and also induced apoptosis in a time-dependent manner, as demonstrated by Annexin V/propidium iodide flow cytometry, caspase-3 activity and morphological analysis using Hoechst fluorescent dye. It was also revealed that HT-CO2-treated Dex decreased the expression of heat shock protein 70 and inhibited tumor growth in nude mice. In conclusion, HT-CO2 exerted an efficacious immune-enhancing effect on DCs. These findings may provide a novel strategy for the elimination of free cancer cells during laparoscopic resection. However, the potential cellular mechanisms underlying this process require further investigation. PMID:26170979

  13. Stromal cell-derived factor-1{alpha} (SDF-1{alpha}/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    SciTech Connect

    Porcile, Carola; Bajetto, Adriana . E-mail: bajetto@cba.unige.it; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio . E-mail: florio@cba.unige.it; Schettini, Gennaro

    2005-08-15

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1{alpha} treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1{alpha} induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.

  14. Colorectal cancer cell-derived interleukin-6 enhances the phagocytic capacity and migration of THP-1 cells.

    PubMed

    Yeh, Kun-Yun; Wu, Tsung-Han; Wu, Tai-Ling

    2016-03-01

    Macrophages perform a versatile range of functions in response to environmental stimuli. In the present study, we evaluated whether interleukin-6 (IL-6), a cytokine released from colorectal cancer (CRC) cells and associated with CRC pathogenesis and metastasis, modulates the phagocytic capacity and migratory ability of macrophages, using a monocyte-macrophage THP-1 cell model and human peripheral monocytes. We found that CRC cells enhanced the phagocytic capacity and migration of THP-1 cells and human peripheral monocytes. CRC cell culture supernatants and recombinant IL-6 neutralized with anti-IL-6 and anti-gp130 antibodies considerably decreased IL-6-mediated phagocytosis by and migration of THP-1 cells and human peripheral monocytes, via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Our data suggest that CRC cells secreting IL-6 via STAT3 phosphorylation can enhance the phagocytic capacity and migration of macrophages in the tumor microenvironment. PMID:26775116

  15. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4.

    PubMed

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena; Gabrielsson, Susanne; Rådmark, Olof

    2016-09-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  16. Natural Killer Cells for Cancer Immunotherapy: Pluripotent Stem Cells-Derived NK Cells as an Immunotherapeutic Perspective

    PubMed Central

    Eguizabal, Cristina; Zenarruzabeitia, Olatz; Monge, Jorge; Santos, Silvia; Vesga, Miguel Angel; Maruri, Natalia; Arrieta, Arantza; Riñón, Marta; Tamayo-Orbegozo, Estibaliz; Amo, Laura; Larrucea, Susana; Borrego, Francisco

    2014-01-01

    Natural killer (NK) cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK-cell biology field and in deciphering how NK-cell function is regulated, is driving efforts to utilize NK-cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK-cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, which adds another tool to the expanding NK-cell-based cancer immunotherapy arsenal. PMID:25309538

  17. Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model; Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC.

    PubMed

    Baek, Soyoung; Lee, Seog Jae; Kim, Myoung Joo; Lee, Hyunah

    2012-12-01

    The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either CD34(+) hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-β secretion were higher in SDC but CCR7 expression, IFN-γ and IL-10 secretion were higher in MoDC. The proportion of CD11c(+)CD8a(+) cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-γ secreting CD8(+) T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer. PMID:23396889

  18. Microvesicles: What is the Role in Multiple Sclerosis?

    PubMed Central

    Carandini, Tiziana; Colombo, Federico; Finardi, Annamaria; Casella, Giacomo; Garzetti, Livia; Verderio, Claudia; Furlan, Roberto

    2015-01-01

    Microvesicles are a recently described way of cell communication that has been implicated in a number of biological processes, including neuroinflammation. Widely investigated as biomarkers in oncology and neurological disorders, little is known of the role of microvesicles in the pathogenesis of diseases such as multiple sclerosis (MS). Several evidences suggest that pro-inflammatory microglia and infiltrating macrophages release microvesicles that spread inflammatory signals and alter neuronal functions. We review here available information on microvesicles, with a special focus on microglia and macrophage microvesicles, in the pathogenesis of MS, and as potential biomarkers and therapeutic targets. PMID:26074867

  19. Acoustic Purification of Extracellular Microvesicles

    PubMed Central

    Lee, Kyungheon; Shao, Huilin; Weissleder, Ralph; Lee, Hakho

    2015-01-01

    Microvesicles (MVs) are an increasingly important source for biomarker discovery and clinical diagnostics. The small size of MVs and their presence in complex biological environment, however, pose practical technical challenges, particularly when sample volumes are small. We herein present an acoustic nano-filter system that size-specifically separates MVs in a continuous and contact-free manner. The separation is based on ultrasound standing waves that exert differential acoustic force on MVs according to their size and density. By optimizing the design of the ultrasound transducers and underlying electronics, we were able to achieve a high separation yield and resolution. The “filter size-cutoff” can be controlled electronically in situ and enables versatile MV-size selection. We applied the acoustic nano-filter to isolate nanoscale (<200 nm) vesicles from cell culture media as well as MVs in stored red blood cell products. With the capacity for rapid and contact-free MV isolation, the developed system could become a versatile preparatory tool for MV analyses. PMID:25672598

  20. Acoustic purification of extracellular microvesicles.

    PubMed

    Lee, Kyungheon; Shao, Huilin; Weissleder, Ralph; Lee, Hakho

    2015-03-24

    Microvesicles (MVs) are an increasingly important source for biomarker discovery and clinical diagnostics. The small size of MVs and their presence in complex biological environment, however, pose technical challenges in sample preparation, particularly when sample volumes are small. We herein present an acoustic nanofilter system that size-specifically separates MVs in a continuous and contact-free manner. The separation uses ultrasound standing waves to exert differential acoustic force on MVs according to their size and density. By optimizing the design of the ultrasound transducers and underlying electronics, we were able to achieve a high separation yield and resolution. The "filter size-cutoff" can be controlled electronically in situ, which enables versatile MV-size selection. We applied the acoustic nanofilter to isolate nanoscale (<200 nm) vesicles from cell culture media as well as MVs in stored red blood cell products. With the capacity for rapid and contact-free MV isolation, the developed system could become a versatile preparatory tool for MV analyses. PMID:25672598

  1. Release of toxic microvesicles by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Nowotny, A; Behling, U H; Hammond, B; Lai, C H; Listgarten, M; Pham, P H; Sanavi, F

    1982-01-01

    Oral isolates of Actinobacillus actinomycetemcomitans (strain Y4) release spherical microvesicles in large numbers during normal growth. The biological activities of these products were studied, and it was estimated that approximately 1/10 of their dry weight was made up of heat- and proteolysis-resistant endotoxin. The chicken embryo lethality and bone-resorbing activity of the microvesicles were heat stable but proteolysis sensitive. Other laboratories have reported the presence of a heat- and proteolysis-sensitive leukotoxin in similar preparations. Accordingly, the microvesicles released by strain Y4 may contain, in addition to endotoxin, several potent substances which are highly toxic and active in bone resorption, and these may be significant factors in the pathogenesis of periodontal diseases. PMID:7049947

  2. Release of toxic microvesicles by Actinobacillus actinomycetemcomitans.

    PubMed

    Nowotny, A; Behling, U H; Hammond, B; Lai, C H; Listgarten, M; Pham, P H; Sanavi, F

    1982-07-01

    Oral isolates of Actinobacillus actinomycetemcomitans (strain Y4) release spherical microvesicles in large numbers during normal growth. The biological activities of these products were studied, and it was estimated that approximately 1/10 of their dry weight was made up of heat- and proteolysis-resistant endotoxin. The chicken embryo lethality and bone-resorbing activity of the microvesicles were heat stable but proteolysis sensitive. Other laboratories have reported the presence of a heat- and proteolysis-sensitive leukotoxin in similar preparations. Accordingly, the microvesicles released by strain Y4 may contain, in addition to endotoxin, several potent substances which are highly toxic and active in bone resorption, and these may be significant factors in the pathogenesis of periodontal diseases. PMID:7049947

  3. Platelet-derived microvesicles: multitalented participants in intercellular communication.

    PubMed

    Aatonen, Maria; Grönholm, Mikaela; Siljander, Pia R-M

    2012-02-01

    Platelets can release a heterogeneous pool of vesicles which include plasma membrane-derived microparticles (PMPs) and multivesicular body-derived exosomes. As both vesicle types are generated upon activation and their distinction is complicated due to an overlap in their molecular properties and sizes, they are best discussed as an entity, the platelet-derived microvesicles (PMVs). PMPs can be formed through several induction pathways, which determine their different molecular profiles and facilitate tailor-made participation in intercellular communication. This dynamic variability may lie behind the multifaceted and sometimes very different observations of the PMPs in physiological and pathological settings. Currently, little is known of platelet-derived exosomes. In all, PMVs not only participate in several homeostatic multicellular processes, such as hemostasis, maintenance of vascular health, and immunity, but they also play a role in thrombotic and inflammatory diseases and cancer progression. In the past few years, the number of original articles and reviews on microvesicles has dramatically increased, but the data simultaneously raise further questions, the answers to which depend on forthcoming analytical improvements. In this article, the differential activation pathways and the molecular and functional properties of PMVs are reviewed in context with their sometimes paradoxical role in health and in disease. Also, the methodological issues of PMV detection and analysis are discussed in the light of recent advances within the field. PMID:22314608

  4. Exosomes and Microvesicles: Identification and Targeting By Particle Size and Lipid Chemical Probes

    PubMed Central

    Kastelowitz, Noah

    2014-01-01

    Exosomes and microvesicles are two classes of submicroscopic vesicle released by cells into the extracellular space. Collectively referred to as extracellular vesicles, these membrane containers facilitate important cell-cell communication by carrying a diverse array of signaling molecules, including nucleic acids, proteins, and lipids. Recently, the role of extracellular vesicle signaling in cancer progression has become a topic of significant interest. Methods to detect and target exosomes and microvesicles are needed to realize applications of extracellular vesicles as biomarkers and, perhaps, therapeutic targets. Detection of exosomes and microvesicles is a complex problem as they are both submicroscopic and of heterogeneous cellular origins. In this Minireview, we highlight the basic biology of extracellular vesicles, and address available biochemical and biophysical detection methods. Detectible characteristics described here include lipid and protein composition, and physical properties such as the vesicle membrane shape and diffusion coefficient. In particular, we propose that detection of exosome and microvesicle membrane curvature with lipid chemical probes that sense membrane shape is a distinctly promising method for identifying and targeting these vesicles. PMID:24740901

  5. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway.

    PubMed

    Lv, Hongjun; Liu, Rui; Fu, Jiao; Yang, Qi; Shi, Jing; Chen, Pu; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2014-01-01

    Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway. PMID:25486483

  6. Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors.

    PubMed

    Iwata-Kajihara, Tomoko; Sumimoto, Hidetoshi; Kawamura, Naoshi; Ueda, Ryo; Takahashi, Tomomi; Mizuguchi, Hiroyuki; Miyagishi, Makoto; Takeda, Kiyoshi; Kawakami, Yutaka

    2011-07-01

    STAT3 signaling constitutes an important negative feedback mechanism for the maintenance of immune homeostasis, a suppressive signal for the Th1 immune response in murine macrophages, and a cancer immune evasion signal in various immune cells. The strategy for STAT3 signal inhibition should be considered, because these features could impede effective cancer immunotherapy. We have evaluated the effects of STAT3 inactivation in dendritic cells (DCs) on immune responses in mice and humans. DCs derived from LysMcre/STAT3(flox/flox) mice displayed higher cytokine production in response to TLR stimulation, activated T cells more efficiently, and were more resistant to the suppression of cytokine production by cancer-derived immunosuppressive factors compared with DCs from control littermates. Antitumor activities of STAT3-depleted and control DCs were compared by intratumoral administration of gp70 Ag peptide-pulsed DCs in the therapeutic MC38 tumor model. Intratumoral administration of STAT3-depleted DCs significantly inhibited MC38 tumor growth of both injected and nontreated remote tumors. The inhibition was accompanied by an increase in gp70-specific T cell response as well as in systemic Th1 immune response. STAT3-depleted human DCs with adenoviral STAT3 short hairpin RNA were also capable of producing more cytokines with TLR stimulation and more resistant to cancer-derived factors, and they induced tumor Ag-specific T cells more efficiently than control DCs. The identified role of DC STAT3 signaling in both in vivo therapeutic tumor models in mice and in vitro-specific T cell induction in humans indicates that STAT3-inactivated DCs may be a promising approach for cancer immunotherapy. PMID:21632716

  7. Detection of Tumor Cell-Specific mRNA and Protein in Exosome-Like Microvesicles from Blood and Saliva

    PubMed Central

    Yang, Jieping; Wei, Fang; Schafer, Christopher; Wong, David T. W.

    2014-01-01

    The discovery of disease-specific biomarkers in oral fluids has revealed a new dimension in molecular diagnostics. Recent studies have reported the mechanistic involvement of tumor cells derived mediators, such as exosomes, in the development of saliva-based mRNA biomarkers. To further our understanding of the origins of disease-induced salivary biomarkers, we here evaluated the hypothesis that tumor-shed secretory lipidic vesicles called exosome-like microvesicles (ELMs) that serve as protective carriers of tissue-specific information, mRNAs, and proteins, throughout the vasculature and bodily fluids. RNA content was analyzed in cell free-saliva and ELM-enriched fractions of saliva. Our data confirmed that the majority of extracellular RNAs (exRNAs) in saliva were encapsulated within ELMs. Nude mice implanted with human lung cancer H460 cells expressing hCD63-GFP were used to follow the circulation of tumor cell specific protein and mRNA in the form of ELMs in vivo. We were able to identify human GAPDH mRNA in ELMs of blood and saliva of tumor bearing mice using nested RT-qPCR. ELMs positive for hCD63-GFP were detected in the saliva and blood of tumor bearing mice as well as using electric field-induced release and measurement (EFIRM). Altogether, our results demonstrate that ELMs carry tumor cell–specific mRNA and protein from blood to saliva in a xenografted mouse model of human lung cancer. These results therefore strengthen the link between distal tumor progression and the biomarker discovery of saliva through the ELMs. PMID:25397880

  8. A New Stem Cell Biology: The Continuum and Microvesicles

    PubMed Central

    Quesenberry, Peter J.; Dooner, Mark S.; Goldberg, Laura R.; Aliotta, Jason M.; Pereira, Mandy; Amaral, Ashley; Del Tatto, Michael M.; Hixson, Douglas C.; Ramratnam, Bharat

    2012-01-01

    The hierarchical models of stem cell biology have been based on work first demonstrating pluripotental spleen-colony-forming units, then showing progenitors with many differentiation fates assayed in in vitro culture; there followed the definition and separation of “stem cells” using monoclonal antibodies to surface epitopes and fluorescent-activated cell characterization and sorting (FACS). These studies led to an elegant model of stem cell biology in which primitive dormant G0 stem cells with tremendous proliferative and differentiative potential gave rise to progressively more restricted and differentiated classes of stem/progenitor cells, and finally differentiated marrow hematopoietic cells. The holy grail of hematopoietic stem cell biology became the purification of the stem cell and the clonal definition of this cell. Most recently, the long-term repopulating hematopoietic stem cell (LT-HSC) has been believed to be a lineage negative sca-1+C-kit+ Flk3- and CD150+ cell. However, a series of studies over the past 10 years has indicated that murine marrow stem cells continuously change phenotype with cell cycle passage. We present here studies using tritiated thymidine suicide and pyronin-Hoechst FACS separations indicating that the murine hematopoietic stem cell is a cycling cell. This would indicate that the hematopoietic stem cell must be continuously changing in phenotype and, thus, could not be purified. The extant data indicate that murine marrow stem cells are continually transiting cell cycle and that the purification has discarded these cycling cells. Further in vivo BrdU studies indicate that the “quiescent” LT-HSC in G0 rapidly transits cycle. Further complexity of the marrow stem cell system is indicated by studies on cell-derived microvesicles showing that they enter marrow cells and transcriptionally alter their cell fate and phenotype. Thus, the stem cell model is a model of continuing changing potential tied to cell cycle and

  9. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.

    PubMed

    Xu, Rong; Greening, David W; Rai, Alin; Ji, Hong; Simpson, Richard J

    2015-10-01

    unambiguous protein identifications, respectively, with 256 proteins in common. A salient finding was the first report of 350 proteins uniquely identified in sMVs may of which have the potential to enable discrimination of this EV subtype from exosomes (notably, members of the septin family, kinesin-like protein (KIF23), exportin-2/chromosome segregation like-1 protein (CSE1L), and Rac GTPase-activating protein 1 (RACGAP1)). We report for the first time that both SCUF-Exos and SCUF-sMVs isolated from LIM1863 colon cancer cells induce invasion of recipient NIH3T3 cells. Interestingly, the SCUF-sMVs promote invasion to a significantly greater extent (3-fold) than SCUF-Exos. This analytical SCUF method for fractionating EVs is potentially scalable using tangential flow filtration, thereby providing a solid foundation for future in-depth functional studies of EV subtypes using diverse cell types and functional assays. PMID:25890246

  10. Quantitation of HLA Class II Protein Incorporated into Human Immunodeficiency Type 1 Virions Purified by Anti-CD45 Immunoaffinity Depletion of Microvesicles

    PubMed Central

    Trubey, Charles M.; Chertova, Elena; Coren, Lori V.; Hilburn, Joanne M.; Hixson, Catherine V.; Nagashima, Kunio; Lifson, Jeffrey D.; Ott, David E.

    2003-01-01

    Among the many host cell-derived proteins found in human immunodeficiency virus type 1 (HIV-1), HLA class II (HLA-II) appears to be selectively incorporated onto virions and may contribute to mechanisms of indirect imunopathogenesis in HIV infection and AIDS. However, the amount of HLA-II on the surface of HIV-1 particles has not been reliably determined due to contamination of virus preparations by microvesicles containing host cell proteins, including HLA-II. Even rigorous sucrose density centrifugation is unable to completely separate HIV-1 from microvesicles. CD45, a leukocyte integral membrane protein, is found on microvesicles, yet appears to be excluded from HIV-1 particles. Exploiting this observation, we have developed a CD45-based immunoaffinity depletion method for removing CD45-containing microvesicles that yields highly purified preparations of virions. Examination of CD45-depleted HIV-1MN by high-pressure liquid chromatography, protein sequencing, and amino acid analyses determined a molar ratio of HLA-II to Gag of 0.04 to 0.05 in the purified virions, corresponding to an estimated average of 50 to 63 native HLA-II complexes (i.e., a dimer of α and β heterodimers) per virion. These values are approximately 5- to 10-fold lower than those previously determined for other virion preparations that contained microvesicles. Our observations demonstrate the utility of CD45 immunoaffinity-based approaches for producing highly purified retrovirus preparations for applications that would benefit from the use of virus that is essentially free of microvesicles. PMID:14610192

  11. Molecular pathways: tumor-derived microvesicles and their interactions with immune cells in vivo.

    PubMed

    Pucci, Ferdinando; Pittet, Mikael J

    2013-05-15

    Cancer is not merely a cell-intrinsic genetic disease but also the result of complex cell-extrinsic interactions with host components, including immune cells. For example, effector T lymphocytes and natural killer cells are thought to participate in an immunosurveillance process, which eliminates neoplastic cells, whereas regulatory T lymphocytes and some myeloid cells, including macrophages, can create a milieu that prevents antitumor activity, supports tumor growth, and reduces survival of the host. Increasing evidence supports the notion that carcinoma cells communicate with immune cells directly, both within and away from the tumor stroma, and that this process fosters suppression of immunosurveillance and promotes tumor outgrowth. An important mode of communication between carcinoma cells and immune cells may involve tumor-derived microvesicles (tMV), also known as exosomes, ectosomes, or microparticles. These microvesicles carry lipids, proteins, mRNAs and microRNAs and travel short or long distances to deliver undegraded and undiluted material to other cells. Here, we consider the capacity of tMVs to control tumor-associated immune responses and highlight the known and unknown actions of tMVs in vivo. We also discuss why microvesicles may play a role in cancer diagnostics and prognostics and how they could be harnessed for anticancer therapy. PMID:23426276

  12. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis

    PubMed Central

    Badimon, Lina; Suades, Rosa; Fuentes, Eduardo; Palomo, Iván; Padró, Teresa

    2016-01-01

    Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future.

  13. C-src Enriched Serum Microvesicles Are Generated in Malignant Plasma Cell Dyscrasia

    PubMed Central

    Zendrini, Andrea; Radeghieri, Annalisa; Caimi, Luigi; Ricotta, Doris

    2013-01-01

    Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies such as Multiple Myeloma (MM). MM accounts for 15% of all hematologic cancers, and those diagnosed with MM typically become severely ill and have a low life expectancy. Monoclonal immunoglobulin Free Light Chains (FLC) are present in the serum and urine of many patients with plasma cell diseases. The biological differences between monoclonal FLCs, produced under malignant or benign dyscrasias, has not yet been characterized. In the present study, we show that endothelial and heart muscle cell lines internalize kappa and lambda FLCs. After internalization, FLCs are rerouted in the extracellular space via microvesicles and exosomes that can be re-internalized in contiguous cells. Only FLCs secreted from malignant B Lymphocytes were carried in Hsp70, annexin V, and c-src positive vesicles. In both MM and AL Amyloidosis patients we observed an increase in microvesicle and exosome production. Isolated serum vesicles from MM, AL Amyloidosis and monoclonal gammopathy of undetermined significance (MGUS) patients contained FLCs. Furthermore MM and AL amyloidosis vesicles were strongly positive for Hsp70, annexin V, and c-src compared to MGUS and control patients. These are the first data implying that FLCs reroute via microvesicles in the blood stream, and also suggest a potential novel mechanism of c-src activation in plasma cell dyscrasia. PMID:23940647

  14. Measurement of microvesicle levels in human blood using flow cytometry.

    PubMed

    Chandler, Wayne L

    2016-07-01

    Microvesicles are fragments of cells released when the cells are activated, injured, or apoptotic. Analysis of microvesicle levels in blood has the potential to shed new light on the pathophysiology of many diseases. Flow cytometry is currently the only method that can simultaneously separate true lipid microvesicles from other microparticles in blood, determine the cell of origin and other microvesicle characteristics, and handle large numbers of clinical samples with a reasonable effort, but expanded use of flow cytometric measurement of microvesicle levels as a clinical and research tool requires improved, standardized assays. The goal of this review is to aid investigators in applying current best practices to microvesicle measurements. First pre-analytical factors are evaluated and data summarized for anticoagulant effects, sample transport and centrifugation. Next flow cytometer optimization is reviewed including interference from background in buffers and reagents, accurate microvesicle counting, swarm interference, and other types of coincidence errors, size calibration, and detection limits using light scattering, impedance and fluorescence. Finally current progress on method standardization is discussed and a summary of current best practices provided. © 2016 Clinical Cytometry Society. PMID:26606416

  15. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation

    PubMed Central

    Desrochers, Laura M.; Bordeleau, François; Reinhart-King, Cynthia A.; Cerione, Richard A.; Antonyak, Marc A.

    2016-01-01

    Communication between the inner cell mass (ICM) and the trophoblast layer of the blastocyst is known to occur, but its functional consequences on early developmental events is unclear. Here we demonstrate that embryonic stem (ES) cells derived from the ICM generate and shed microvesicles (MVs), a major class of extracellular vesicles (EVs), which influence trophoblast behaviour during the implantation process. The MV cargo proteins laminin and fibronectin interact with integrins along the surfaces of the trophoblasts, triggering the activation of two signalling kinases, JNK and FAK, and stimulating trophoblast migration. We further show that injecting MVs isolated from ES cells into blastocysts results in an increase in their implantation efficiency. Thus, these findings highlight a unique mechanism by which ES cells communicate with trophoblasts within the blastocyst to increase their ability to migrate into the uterus, thereby promoting one of the earliest and most important steps during pregnancy. PMID:27302045

  16. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation.

    PubMed

    Desrochers, Laura M; Bordeleau, François; Reinhart-King, Cynthia A; Cerione, Richard A; Antonyak, Marc A

    2016-01-01

    Communication between the inner cell mass (ICM) and the trophoblast layer of the blastocyst is known to occur, but its functional consequences on early developmental events is unclear. Here we demonstrate that embryonic stem (ES) cells derived from the ICM generate and shed microvesicles (MVs), a major class of extracellular vesicles (EVs), which influence trophoblast behaviour during the implantation process. The MV cargo proteins laminin and fibronectin interact with integrins along the surfaces of the trophoblasts, triggering the activation of two signalling kinases, JNK and FAK, and stimulating trophoblast migration. We further show that injecting MVs isolated from ES cells into blastocysts results in an increase in their implantation efficiency. Thus, these findings highlight a unique mechanism by which ES cells communicate with trophoblasts within the blastocyst to increase their ability to migrate into the uterus, thereby promoting one of the earliest and most important steps during pregnancy. PMID:27302045

  17. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells

    PubMed Central

    2014-01-01

    Background Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Results Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Conclusions Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer. PMID:24929539

  18. Lung tumor-associated dendritic cell-derived resistin promoted cancer progression by increasing Wolf-Hirschhorn syndrome candidate 1/Twist pathway.

    PubMed

    Kuo, Chih-Hsin; Chen, Kuei-Fang; Chou, Shah-Hwa; Huang, Ya-Fang; Wu, Cheng-Ying; Cheng, Da-En; Chen, Yu-Wen; Yang, Chih-Jen; Hung, Jen-Yu; Huang, Ming-Shyan

    2013-11-01

    The interaction between tumors and their microenvironments leads to a vicious cycle, which strengthens both immune suppression and cancer progression. The present study demonstrates for the first time that tumor-associated dendritic cells (TADCs) are a source of resistin, which is responsible for increasing lung cancer epithelial-to-mesenchymal transition. In addition, large amounts of resistin in the condition medium (CM) of TADCs increase cell migration and invasion, as well as the osteolytic bone metastatic properties of lung cancer cells. Neutralization of resistin from TADC-CM prevents the advanced malignancy-inducing features of TADC-CM. Significantly elevated levels of resistin have been observed in mice transplanted with lung cancer cells, tumor-infiltrating CD11c(+) DCs in human lung cancer samples and lung cancer patients' sera. Induction of lung cancer progression by TADC-derived resistin is associated with increased expression of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase. Resistin-induced WHSC1 increases the dimethylation of histone 3 at lysine 36 and decreases the trimethylation of histone 3 at lysine 27 on the promoter of Twist, resulting in an enhancement of the expression of Twist. Knockdown of WHSC1 by small interfering RNA transfection significantly decreases resistin-mediated cancer progression by decreasing the upregulation of Twist, suggesting that WHSC1 plays a critical role in the regulation of Twist by epigenetic modification. Furthermore, mice that received antiresistin antibodies showed a decreased incidence of cancer development and metastasis. These findings suggest that TADC-derived resistin may be a novel candidate in promoting the development of lung cancer. PMID:23955539

  19. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway.

    PubMed

    Liu, Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. However, it is still not clear how CSF microvesicles and what factors affect glioblastoma development. In this study, we collected the plasma and CSF from glioblastoma patients and healthy volunteers. Microvesicles acquired from serum or CSF were added to cultured endothelial cells. And the effects of these microvesicles on endothelial cells were examined. Our results showed that microvesicles from CSF of patients, but not from circulating blood, promoted endothelial cells migration and proliferation in vitro. In addition, the degree of endothelial cell proliferation triggered by microvesicles from CSF was reduced when treated with siRNA targeting Akt/beta-catenin, suggesting that the Akt/beta-catenin pathway is involved in the microvesicle-initiated endothelial cell proliferation. In conclusion, glioblastoma mainly affects microvesicles within CSF without showing significant impact on microvesicles in circulating blood. Microvesicles from the CSF of glioblastoma patients may initiate endothelial cell growth and thus promote cell invasion. This effect may be directly exerted by activated Akt/beta-catenin pathway. PMID:25197356

  20. Microvesicles preparation from mesenchymal stem cells

    PubMed Central

    Rad, Fariba; Pourfathollah, Ali Akbar; Yari, Fatemeh; Mohammadi, Saeed; Kheirandish, Maryam

    2016-01-01

    Background: Extracellular vesicles are particles ranged from 30 nm to 5μm and subcategorized into three groups; exosomes, microvesicles and apoptotic bodies, each of which have different biological impact. Lack of a standard method for the detection and isolation of MVs has led to a challenging issue that is a worth considering. In this study, we isolated MVs from the conditioned medium of UC-MSCs by four different schemes of ultracentrifugation. Methods: We examined the efficacy of differential centrifugation ranging from 10,000×g to 60,000×g on UCMSCs- derived microvesicles yield and purity. The fractions were evaluated by Dynamic Light Scattering (DLS) method, total protein quantification and flow cytometry. Results: UC-MSCs were spindle cells that adhered to plastic culture flasks. These cells expressed MSC markers such as CD44 and CD73, whereas were negative for hematopoietic markers CD45 and CD34. UC-MSCparticles were successfully isolated. Particles were heterogeneous vesicles of approximately 50 to 1250 nm in diameter that bear the surface-expressed molecules UC-MSCs such as; CD90, CD106, CD166 and CD44, and negative for CD34, CD63, and CD9. According to the results of DLS method, centrifugation at 10,000, 20,000, 40,000 and 60,000 ×g, all gave MVs of less than 1000 nm. It is of notion that only at the centrifugation rates of 40,000 and 60,000×g, particles of less than 100 nm in diameter were also obtained. Conclusion: The choice of exact speed greatly influences the purity of MVs and their yield. Our findings indicate that centrifugation at 20,000×g is appropriate for the purification of UC-MSC-MVs. PMID:27579288

  1. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix

    PubMed Central

    Akkari, Leila; Gocheva, Vasilena; Kester, Jemila C.; Hunter, Karen E.; Quick, Marsha L.; Sevenich, Lisa; Wang, Hao-Wei; Peters, Christoph; Tang, Laura H.; Klimstra, David S.; Reinheckel, Thomas

    2014-01-01

    During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg–Gly–Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function. PMID:25274726

  2. Comparative regulation of gene expression by 1,25-dihydroxyvitamin D3 in cells derived from normal mammary tissue and breast cancer

    PubMed Central

    Beaudin, Sarah G; Robilotto, Samantha; Welsh, JoEllen

    2016-01-01

    Previous genomic profiling of immortalized, non-tumorigenic human breast epithelial cells identified a set of 1,25-dihydroxyvitamin D3 (1,25D) regulated genes with potential relevance to breast cancer prevention. In this report, we characterized the effect of 1,25D on a subset of these genes in six cell lines derived from mammary tissue and breast cancers. Non-tumorigenic cell lines included hTERT-HME1, HME and MCF10A cells which are often used to model normal breast epithelial cells. Breast cancer cell lines included MCF7 cells (a model of early stage, estrogen-dependent disease), DCIS.com cells (a derivative of MCF10A cells that models in situ breast cancer) and Hs578T cells (a model of metastatic disease). All of these cell lines express the vitamin D receptor (VDR) and exhibit anti-cancer responses to 1,25D such as changes in proliferation, apoptosis, metabolism, or invasion. Our comparative data demonstrate highly variable responses to 1,25D (100nM, 24h) between the cell lines. In both hTERT-HME1 and HME cell lines, CYP24A1, SLC1A1 and ITGB3 were up-regulated whereas KDR, GLUL and BIRC3 were down-regulated in response to 1,25D. In contrast, no changes in SLC1A1, ITGB3 or GLUL expression were detected in 1,25D treated MCF10A cells although KDR and BIRC3 were down-regulated by 1,25D. The effects of 1,25D on these genes in the breast cancer cell lines were blunted, with the DCIS.com cells exhibiting the most similar responses to the immortalized hTERT-HME1 and HME cells. The differences in cellular responses were not due to general impairment in VDR function as robust CYP24A1 induction was observed in all cell lines. Thus, our data indicate that the genomic changes induced by 1,25D are highly cell-type specific even in model cell lines derived from the same tissue. The implication of these findings is that genomic responses to changes in vitamin D status in vivo are likely to be distinct from individual to individual, particularly in neoplastic tissue. PMID

  3. Comparative regulation of gene expression by 1,25-dihydroxyvitamin D3 in cells derived from normal mammary tissue and breast cancer.

    PubMed

    Beaudin, Sarah G; Robilotto, Samantha; Welsh, JoEllen

    2015-04-01

    Previous genomic profiling of immortalized, non-tumorigenic human breast epithelial cells identified a set of 1,25-dihydroxyvitamin D3 (1,25D) regulated genes with potential relevance to breast cancer prevention. In this report, we characterized the effect of 1,25D on a subset of these genes in six cell lines derived from mammary tissue and breast cancers. Non-tumorigenic cell lines included hTERT-HME1, HME and MCF10A cells which are often used to model normal breast epithelial cells. Breast cancer cell lines included MCF7 cells (a model of early stage, estrogen-dependent disease), DCIS.com cells (a derivative of MCF10A cells that models in situ breast cancer) and Hs578T cells (a model of metastatic disease). All of these cell lines express the vitamin D receptor (VDR) and exhibit anti-cancer responses to 1,25D such as changes in proliferation, apoptosis, metabolism, or invasion. Our comparative data demonstrate highly variable responses to 1,25D (100nM, 24h) between the cell lines. In both hTERT-HME1 and HME cell lines, CYP24A1, SLC1A1 and ITGB3 were up-regulated whereas KDR, GLUL and BIRC3 were down-regulated in response to 1,25D. In contrast, no changes in SLC1A1, ITGB3 or GLUL expression were detected in 1,25D treated MCF10A cells although KDR and BIRC3 were down-regulated by 1,25D. The effects of 1,25D on these genes in the breast cancer cell lines were blunted, with the DCIS.com cells exhibiting the most similar responses to the immortalized hTERT-HME1 and HME cells. The differences in cellular responses were not due to general impairment in VDR function as robust CYP24A1 induction was observed in all cell lines. Thus, our data indicate that the genomic changes induced by 1,25D are highly cell-type specific even in model cell lines derived from the same tissue. The implication of these findings is that genomic responses to changes in vitamin D status in vivo are likely to be distinct from individual to individual, particularly in neoplastic tissue. This

  4. Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes.

    PubMed

    Ghirelli, Cristina; Reyal, Fabien; Jeanmougin, Marine; Zollinger, Raphaël; Sirven, Philémon; Michea, Paula; Caux, Christophe; Bendriss-Vermare, Nathalie; Donnadieu, Marie-Hélène; Caly, Martial; Fourchotte, Virginie; Vincent-Salomon, Anne; Sigal-Zafrani, Brigitte; Sastre-Garau, Xavier; Soumelis, Vassili

    2015-07-15

    Reciprocal interactions between tumor cells and their microenvironment vitally impact tumor progression. In this study, we show that GM-CSF produced by primary breast tumor cells induced the activation of plasmacytoid predendritic cells (pDC), a cell type critical to anti-viral immunity. pDC that expressed the GM-CSF receptor were increased in breast tumors compared with noninvolved adjacent breast tissue. Tumor-activated pDC acquired naïve CD4(+) T-cell stimulatory capacity and promoted a regulatory Th2 response. Finally, the concomitant increase of GM-CSF and pDC was significantly associated with relatively more aggressive breast cancer subtypes. Our results characterize the first tumor-derived factor that can activate pDC to promote a regulatory Th2 response, with implications for therapeutic targeting of a tumor-immune axis of growing recognition in its significance to cancer. PMID:25977333

  5. May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment?

    PubMed

    Moccia, Francesco; Poletto, Valentina

    2015-09-01

    Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. PMID:25447551

  6. Hybrid Cells Derived from Human Breast Cancer Cells and Human Breast Epithelial Cells Exhibit Differential TLR4 and TLR9 Signaling

    PubMed Central

    Tosun, Songül; Fried, Sabrina; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas

    2016-01-01

    TLRs are important receptors of cells of the innate immune system since they recognize various structurally conserved molecular patterns of different pathogens as well as endogenous ligands. In cancer, the role of TLRs is still controversial due to findings that both regression and progression of tumors could depend on TLR signaling. In the present study, M13SV1-EGFP-Neo human breast epithelial cells, MDA-MB-435-Hyg human breast cancer cells and two hybrids M13MDA435-1 and -3 were investigated for TLR4 and TLR9 expression and signaling. RT-PCR data revealed that LPS and CpG-ODN induced the expression of pro-inflammatory cytokines, like IFN-β, TNF-α, IL-1β and IL-6 in hybrid cells, but not parental cells. Interestingly, validation of RT-PCR data by Western blot showed detectable protein levels solely after LPS stimulation, suggesting that regulatory mechanisms are also controlled by TLR signaling. Analysis of pAKT and pERK1/2 levels upon LPS and CpG-ODN stimulation revealed a differential phosphorylation pattern in all cells. Finally, the migratory behavior of the cells was investigated showing that both LPS and CpG-ODN potently blocked the locomotory activity of the hybrid cells in a dose-dependent manner. In summary, hybrid cells exhibit differential TLR4 and TLR9 signaling. PMID:27187369

  7. Hybrid Cells Derived from Human Breast Cancer Cells and Human Breast Epithelial Cells Exhibit Differential TLR4 and TLR9 Signaling.

    PubMed

    Tosun, Songül; Fried, Sabrina; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2016-01-01

    TLRs are important receptors of cells of the innate immune system since they recognize various structurally conserved molecular patterns of different pathogens as well as endogenous ligands. In cancer, the role of TLRs is still controversial due to findings that both regression and progression of tumors could depend on TLR signaling. In the present study, M13SV1-EGFP-Neo human breast epithelial cells, MDA-MB-435-Hyg human breast cancer cells and two hybrids M13MDA435-1 and -3 were investigated for TLR4 and TLR9 expression and signaling. RT-PCR data revealed that LPS and CpG-ODN induced the expression of pro-inflammatory cytokines, like IFN-β, TNF-α, IL-1β and IL-6 in hybrid cells, but not parental cells. Interestingly, validation of RT-PCR data by Western blot showed detectable protein levels solely after LPS stimulation, suggesting that regulatory mechanisms are also controlled by TLR signaling. Analysis of pAKT and pERK1/2 levels upon LPS and CpG-ODN stimulation revealed a differential phosphorylation pattern in all cells. Finally, the migratory behavior of the cells was investigated showing that both LPS and CpG-ODN potently blocked the locomotory activity of the hybrid cells in a dose-dependent manner. In summary, hybrid cells exhibit differential TLR4 and TLR9 signaling. PMID:27187369

  8. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    SciTech Connect

    Li, Xin-xing; Wang, Jian; Wang, Hao-lu; Wang, Wei; Yin, Xiao-bin; Li, Qi-wei; Chen, Yu-ying; Yi, Jing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  9. Characterization of cancer stem-like cells derived from mouse induced pluripotent stem cells transformed by tumor-derived extracellular vesicles.

    PubMed

    Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J C; Strizzi, Luigi; Salomon, David S; Fu, Li; Seno, Masaharu

    2014-01-01

    Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308

  10. Characterization of Cancer Stem-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Transformed by Tumor-Derived Extracellular Vesicles

    PubMed Central

    Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J. C.; Strizzi, Luigi; Salomon, David S.; Fu, Li; Seno, Masaharu

    2014-01-01

    Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308

  11. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation

    PubMed Central

    Inder, Kerry L.; Ruelcke, Jayde E.; Petelin, Lara; Moon, Hyeongsun; Choi, Eunju; Rae, James; Blumenthal, Antje; Hutmacher, Dietmar; Saunders, Nicholas A.; Stow, Jennifer L.; Parton, Robert G.; Hill, Michelle M.

    2014-01-01

    Background Tumour-derived extracellular vesicles (EVs) play a role in tumour progression; however, the spectrum of molecular mechanisms regulating EV secretion and cargo selection remain to be fully elucidated. We have reported that cavin-1 expression in prostate cancer PC3 cells reduced the abundance of a subset of EV proteins, concomitant with reduced xenograft tumour growth and metastasis. Methods We examined the functional outcomes and mechanisms of cavin-1 expression on PC3-derived EVs (PC3-EVs). Results PC3-EVs were internalized by osteoclast precursor RAW264.7 cells and primary human osteoblasts (hOBs) in vitro, stimulating osteoclastogenesis 37-fold and hOB proliferation 1.5-fold, respectively. Strikin gly, EVs derived from cavin-1-expressing PC3 cells (cavin-1-PC3-EVs) failed to induce multinucleate osteoblasts or hOB proliferation. Cavin-1 was not detected in EVs, indicating an indirect mechanism of action. EV morphology, size and quantity were also not affected by cavin-1 expression, suggesting that cavin-1 modulated EV cargo recruitment rather than release. While cavin-1-EVs had no osteoclastogenic function, they were internalized by RAW264.7 cells but at a reduced efficiency compared to control EVs. EV surface proteins are required for internalization of PC3-EVs by RAW264.7 cells, as proteinase K treatment abolished uptake of both control and cavin-1-PC3-EVs. Removal of sialic acid modifications by neuraminidase treatment increased the amount of control PC3-EVs internalized by RAW264.7 cells, without affecting cavin-1-PC3-EVs. This suggests that cavin-1 expression altered the glycosylation modifications on PC3-EV surface. Finally, cavin-1 expression did not affect EV in vivo tissue targeting as both control and cavin-1-PC3-EVs were predominantly retained in the lung and bone 24 hours after injection into mice. Discussion Taken together, our results reveal a novel pathway for EV cargo sorting, and highlight the potential of utilizing cavin-1-mediated

  12. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    PubMed Central

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for

  13. The Immunomodulatory Role of Syncytiotrophoblast Microvesicles

    PubMed Central

    Southcombe, Jennifer; Tannetta, Dionne; Redman, Christopher; Sargent, Ian

    2011-01-01

    Immune adaptation is a critical component of successful pregnancy. Of primary importance is the modification of cytokine production upon immune activation. With the discovery that normal pregnancy itself is a pro-inflammatory state, it was recognised that the classical Th1/Th2 cytokine paradigm, with a shift towards ‘type 2’ cytokine production (important for antibody production), and away from ‘type 1’ immunity (associated with cell mediated immunity and graft rejection), is too simplistic. It is now generally agreed that both arms of cytokine immunity are activated, but with a bias towards ‘type 2’ immunity. Many factors are released from the placenta that can influence the maternal cytokine balance. Here we focus on syncytiotrophoblast microvesicles (STBM) which are shed from the placenta into the maternal circulation. We show that STBM can bind to monocytes and B cells and induce cytokine release (TNFα, MIP-1α, IL-1α, IL-1β, IL-6, IL-8). Other cytokines are down-modulated, such as IP-10 which is associated with ‘type 1’ immunity. Therefore STBM may aid the ‘type 2’ skewed nature of normal pregnancy. We also observed that PBMC from third trimester normal pregnant women produce more TNFα and IL-6 in response to STBM than PBMC from non-pregnant women, confirming that maternal immune cells are primed by pregnancy, possibly through their interaction with STBM. PMID:21633494

  14. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    PubMed

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field. PMID:27179926

  15. Circulating Membrane-Derived Microvesicles in Redox Biology

    PubMed Central

    Larson, Michael Craig; Hillery, Cheryl A.; Hogg, Neil

    2015-01-01

    Microparticles or microvesicles (MV) are sub-cellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or result of cellular redox signaling has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids, and harbor redox-regulated matrix metalloproteinases and pro-coagulative surface molecules; and circulating MVs from RBCs and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. While our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely a pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes—developmental, homeostatic and pathological—and the role of MVs in redox signaling is an rich and exciting area of investigation. PMID:24751526

  16. Circulating membrane-derived microvesicles in redox biology.

    PubMed

    Larson, Michael Craig; Hillery, Cheryl A; Hogg, Neil

    2014-08-01

    Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation. PMID:24751526

  17. [STRUCTURAL CHARACTERIZATION OF PLATELETS AND PLATELET-DERIVED MICROVESICLES].

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Litvinov, R I

    2016-01-01

    Platelets are the anucleated blood cells, wich together with the fibrin stop bleeding (hemostasis). Cellular microvesicles are membrane-surrounded microparticles released into extracellular space upon activation and/or apoptosis of various cells. Platelet-derived macrovesicles from the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the pathophysiology of platelet-derived macrovesicles, mechanisms of their formation and structural details remain poorly understood. Here we investigated the ultrastructure of parental platelets and platelet-derived microvesicles formed in vitro by quiescent cells as well as by cells stimulated with one of the following activators: arachidonic acid, ADP, thrombin, calcium ionophore A23187. Using transmission electron microscopy of human platelets and isolated microvesicles, we analyzed the intracellular origin, steps of formation, structural diversity, and size distributions of the subcellular particles. We have revealed that thrombin, unlike other stimuli, not only induced vesiculation of the plasma membrane but also caused break-up of the cells followed by formation of microparticles that are comparable with microvesicles by size. A fraction of these microparticles contained cellular organelles surrounded by a thin membrane. The size of platelet-derived macrovesicles varied from 30 nm to 500 nm, however, the size distributions depended on the nature of a cell-activating stimulus. The results obtained provide new information about the formation of platelet-derived macrovesicles and their structural diversity, wich is important to understand their multiple functions in normal and disease states. PMID:27228656

  18. Cell-derived microparticles and the lung.

    PubMed

    Nieri, Dario; Neri, Tommaso; Petrini, Silvia; Vagaggini, Barbara; Paggiaro, Pierluigi; Celi, Alessandro

    2016-09-01

    Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension. PMID:27581826

  19. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy

    NASA Astrophysics Data System (ADS)

    Shao, Huilin; Chung, Jaehoon; Balaj, Leonora; Weissleder, Ralph; Lee, Hakho

    2013-03-01

    Glioblastomas shed large quantities of small, membrane-bound microvesicles (MVs) into the circulation. While these hold promise as potential biomarkers of therapeutic response, there remain hurdles to their identification and quantitation. Here, we describe a highly sensitive and rapid analytical technique for profiling circulating MVs directly from blood samples of glioblastoma patients. MVs, introduced onto a dedicated microfluidic chip, are labeled with target-specific magnetic nanoparticles and detected by a miniaturized nuclear magnetic resonance system. Compared with current standard assays (e.g., Western blotting, ELISA and flow cytometry), this integrated system has a much higher detection sensitivity, and can differentiate glioblastoma multiforme (GBM) MVs from non-tumor host cell-derived MVs. The system further showed that circulating GBM MVs could serve as a surrogate for primary tumor by reflecting its molecular signature and a predictor of treatment-induced changes. We expect that this converging nanotechnology platform would have a wide range of applications, providing both an earlier indicator of drug efficacy and a potential molecular stratifier for human clinical trials.

  20. Microvesicles as a potential biomarker of neoplastic diseases and their role in development and progression of neoplasm

    PubMed Central

    Kajdos, Magdalena; Janas, Łukasz; Kolasa-Zwierzchowska, Dorota; Wilczyński, Jacek R.

    2015-01-01

    Neoplastic diseases together with cardiovascular diseases are the most frequent causes of death in the Polish population. Cancers of reproductive organs with breast cancer are responsible for the highest morbidity and mortality in women suffering from neoplasm diseases. Asymptomatic dynamics of the development of a neoplasm and no deviations from the normal level of laboratory results contribute to the fact that malignant diseases are diagnosed too late. The aim of modern medicine is to diagnose cancer at the earliest stage, however, there is no sufficiently sensitive and specific biomarker which can be used for diagnostic, prognostic and therapeutic purposes. Cellular interactions play the main role in the development, angiogenesis and invasiveness of a tumor. Recent research suggests the possibility of microvesicles (MVs) involvement in communication between cells. The MVs ability to fuse with various cells is used in cell-to-cell contact. Microvesicles cargo may include growth factors, their receptors, protease, adhesion molecules, signaling molecules and the sequence of DNA, mRNA, and micro-RNA. Larger quantities of MVs released from neoplastic cells affect both the local environment and systematic range causing metastases and progression. The research on molecular mechanisms of MVs’ release and the presence of characteristic oncogenes in blood of patients with neoplasms is being carried out. Confirmation of MVs presence in patients’ serum can potentially serve as useful information for therapeutic purposes and as the biomarker of a neoplastic disease. PMID:26848301

  1. Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes.

    PubMed

    Nagai, Ayako; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Sumida, Michihiro

    2005-06-01

    Secretion of microvesicles, defined as sebosomes, containing lipid particles were discovered for the first time in cultured sebocytes. After reaching confluency, hamster-cloned sebocytes released bubble-like microvesicles with a diameter range of 0.5-5.0 microm. They had a complex structure containing multiple Oil Red O-stainable particles. The lipid components of the microvesicles were large amounts of squalene both of hamster-cloned and rat primary cultured sebocytes. The microvesicles contained a concentrated 17-kDa cationic protein, which was soluble in sulfate buffer including Nonidet P-40 at pH 1.5. As the protein bound tightly to heparin-Sepharose and eluted with 1.5 M NaCl, it was further purified from a SDS-PAGE gel. Peptide sequencing identified the protein to be histone H3. Polyclonal antibodies against the purified protein detected the antigen in the microvesicles both in the hamster-cloned and rat primary cultured sebocytes. The antibodies demonstrated a distribution of the protein within the nucleus, cytoplasm, and precursor microvesicles. When a gene construct encoding histone H3-enhanced green fluorescent protein was transfected to the sebocytes, fluorescence of the fusion proteins was detected within both the nucleus and the precursor microvesicles of the cytoplasm. The distribution of heparan sulfate was evident in the microvesicles, and it suggested the possibility that the histone H3 protein was recruited and then condensed to the secreted microvesicles by the molecules. In addition, the 14-3-3 protein, which was detected in the microvesicles, also may help incorporate the histone H3 protein in the microvesicles because it can bind to both histone and lipid particles. PMID:15746254

  2. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope.

    PubMed

    Mrvar-Brecko, Anita; Sustar, Vid; Jansa, Vid; Stukelj, Roman; Jansa, Rado; Mujagić, Emir; Kruljc, Peter; Iglic, Ales; Hägerstrand, Henry; Kralj-Iglic, Veronika

    2010-04-15

    Microvesicles are sub-micron structures shed from the cell membrane in a final step of the budding process. After being released into the microenvironment they are free to move and carry signaling molecules to distant cells, thereby they represent a communication system within the body. Since all cells shed microvesicles, it can be expected that they will be found in different body fluids. The potential diagnostic value of microvesicles has been suggested, however, a standardized protocol for isolation has not yet been agreed upon. It is unclear what is the content of the isolates and whether the isolated microvesicles were present in vivo or-have they been created within the isolation procedure. To present evidence in this direction, in this work we focus on the visualization of the material obtained by the microvesicle isolation procedure. We present scanning electronic microscope images of microvesicles isolated from blood, ascites, pleural fluid, cerebrospinal fluid, postoperative drainage fluid and chyloid fluid acquired from human and animal patients. Vesicular structures sized from 1microm downto 50nm are present in isolates of all considered body fluids, however, the populations differ in size and shape reflecting also the composition of the corresponding sediments. Isolates of microvesicles contain numerous cells which indicates that methods of isolation and determination of the number of microvesicles in the peripheral blood are to be elaborated and improved. PMID:20199878

  3. Microvesicles: Isolation, Characterization for In Vitro and In Vivo Procedures.

    PubMed

    Valencia, Karmele; Lecanda, Fernando

    2016-01-01

    Microvesicles and exosomes are released to the extracellular milieu and are detectable in body fluids. They act as unique vehicles for cargo transfer to other cells/tissues. They contain a set of membrane receptors, intracellular proteins and nucleic acids. Here, we describe basic techniques for their isolation and characterization from cell culture media or body fluids. We also describe critical techniques for characterizing their cargo (miRNAs) and their protein content. Finally, we present labeling methods for their use in in vitro procedures and for their in vivo delivery and subsequent analysis of their cargo transfer to multiple cell types. PMID:26530924

  4. Exosomes as Biomarker Enriched Microvesicles: Characterization of Exosomal Proteins Derived from a Panel of Prostate Cell Lines with Distinct AR Phenotypes

    PubMed Central

    Hosseini-Beheshti, Elham; Pham, Steven; Adomat, Hans; Li, Na; Tomlinson Guns, Emma S.

    2012-01-01

    Prostate cancer is the leading type of cancer diagnosed in men. In 2010, ∼217,730 new cases of prostate cancer were reported in the United States. Prompt diagnosis of the disease can substantially improve its clinical outcome. Improving capability for early detection, as well as developing new therapeutic targets in advanced disease are research priorities that will ultimately lead to better patient survival. Eukaryotic cells secrete proteins via distinct regulated mechanisms which are either ER/Golgi dependent or microvesicle mediated. The release of microvesicles has been shown to provide a novel mechanism for intercellular communication. Exosomes are nanometer sized cup-shaped membrane vesicles which are secreted from normal and cancerous cells. They are present in various biological fluids and are rich in characteristic proteins. Exosomes may thus have potential both in facilitating early diagnosis via less invasive procedures or be candidates for novel therapeutic approaches for castration resistance prostate cancer. Because exosomes have been shown previously to have a role in cell-cell communication in the local tumor microenvironment, conferring activation of numerous survival mechanisms, we characterized constitutive lipids, cholesterol and proteins from exosomes derived from six prostate cell lines and tracked their uptake in both cancerous and benign prostate cell lines respectively. Our comprehensive proteomic and lipidomic analysis of prostate derived exosomes could provide insight for future work on both biomarker and therapeutic targets for the treatment of prostate cancer. PMID:22723089

  5. Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles

    PubMed Central

    Quesenberry, Peter J.; Dooner, Mark S.; Aliotta, Jason M.

    2010-01-01

    The phenotype of marrow hematopoietic stem cells is determined by cell cycle state and microvesicle entry into the stem cells. The stem cell population is continually changing based on cell cycle transit and thus can only be defined on a population basis. Purification of marrow stem cells only addresses the heterogeneity of these populations. When whole marrow is studied, the long-term repopulating stem cells are in active cell cycle. However, with some variability, when highly purified stem cells are studied, the cells appear to be dormant. Thus, the study of purified stem cells is intrinsically misleading. Tissue-derived microvesicles enhanced by injury effect the phenotype of different cell classes. We propose that previously described stem cell plasticity is due to microvesicle modulation. We further propose a stem cell population model in which the individual cell phenotypes continually changes, but the population phenotype is relatively stable. This, in turn, is modulated by microvesicle and microenvironmental influences. PMID:20382199

  6. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs.

    PubMed

    Hata, Taketoshi; Murakami, Kosuke; Nakatani, Hajime; Yamamoto, Yasunari; Matsuda, Tsukasa; Aoki, Naohito

    2010-05-28

    By a series of centrifugation and ultracentrifugation, we could isolate microvesicles with approximately 100 nm in diameter from bovine milk. We also found that approximately 1700 and 1000 ng of total RNA, in which small RNAs were major components, was contained inside the microvesicles isolated from 6 ml of colostrum and mature milk, respectively, despite high RNase activity in the milk. Polyadenylated gene transcripts for major milk proteins and translation elongation factor-1alpha (EF-1alpha) were present in the microvesicles, and integrity of some transcripts was confirmed by real-time PCR targeting 5'- and 3'-ends of mRNA and by in vitro translation analysis. Moreover, a considerable amount of mammary gland and immune-related microRNAs were present in the milk-derived microvesicles. Acidification of milk to mimic gastrointestinal tract did not mostly affected RNA yield and quality. The milk related gene transcripts were detected in cultured cells when incubated with milk-derived microvesicles, suggesting cellular uptake of the microvesicle contents including RNA. Our findings suggest that bovine breast milk contains RNAs capable for being transferred to living cells and involved in the development of calf's gastrointestinal and immune systems. PMID:20434431

  7. Chitosan-coated microvesicles: Effect of polysaccharide-phospholipid affinity on decafluorobutane dissolution.

    PubMed

    Picheth, Guilherme F; Pirich, Cleverton L; Dos Santos, Larissa A; Camarozano, Ana C; Sierakowski, Maria Rita; Ocampos, Fernanda M; Barison, Andersson; Kaminski, Gabriel A; Pontarolo, Roberto; de Freitas, Rilton Alves

    2016-11-20

    The stability of perfluorinated microvesicles is mainly determined by the presence of interfacial materials and their ability to hinder the gas component diffusibility into the bloodstream. The goal of this study is to increase the persistence of the gaseous-core by introducing chitosan-coated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) microvesicles, reducing gas diffusion from microvesicles, and increasing for a long time ultrasonic signals. Our hypothesis was based on the irreversible adhesion of chitosan towards DSPC head groups observed in thin-films models. This affinity enhanced the stabilization of gaseous-core microvesicles, in which the polysaccharide effectively reduced the phospholipid phase transition enthalpy from 383±5.5Jmg(-1) for plain to 150±9.7Jmg(-1) for chitosan-coated microvesicles, providing a more stable structure that diminished the gaseous component lost and provided the persistence of intense (19)F-NMR signals after 48h, twice as long compared to plain samples. As a result, stronger and long-lasting ultrasonic signals were produced by the more stable chitosan-containing microvesicles, thus, presenting great potential to increase the diagnostic and therapeutic applications of perfluorocarbon carries. PMID:27561484

  8. Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity.

    PubMed

    Lo Cicero, Alessandra; Majkowska, Iwona; Nagase, Hideaki; Di Liegro, Italia; Troeberg, Linda

    2012-05-01

    Membrane microvesicle shedding is an active process and occurs in viable cells with no signs of apoptosis or necrosis. We report here that microvesicles shed by oligodendroglioma cells contain an 'aggrecanase' activity, cleaving aggrecan at sites previously identified as targets for adamalysin metalloproteinases with disintegrin and thrombospondin domains (ADAMTSs). Degradation was inhibited by EDTA, the metalloproteinase inhibitor GM6001 and by tissue inhibitor of metalloproteinases (TIMP)-3, but not by TIMP-1 or TIMP-2. This inhibitor profile indicates that the shed microvesicles contain aggrecanolytic ADAMTS(s) or related TIMP-3-sensitive metalloproteinase(s). The oligodendroglioma cells were shown to express the three most active aggrecanases, namely Adamts1, Adamts4 and Adamts5, suggesting that one or more of these enzymes may be responsible for the microvesicle activity. Microvesicles shed by rheumatoid synovial fibroblasts similarly degraded aggrecan in a TIMP-3-sensitive manner. Our findings raise the novel possibility that microvesicles may assist oligodendroglioma and rheumatoid synovial fibroblasts to invade through aggrecan-rich extracellular matrices. PMID:22406378

  9. The Impact of Lipoprotein-Associated Oxidative Stress on Cell-Specific Microvesicle Release in Patients with Familial Hypercholesterolemia

    PubMed Central

    Nielsen, M. H.; Irvine, H.; Vedel, S.; Raungaard, B.; Beck-Nielsen, H.; Handberg, A.

    2016-01-01

    Objective. Microvesicles (MVs) are small cell-derived particles shed upon activation. Familial hypercholesterolemia (FH) particularly when associated with Achilles tendon xanthomas (ATX) predisposes to atherosclerosis, possibly through oxLDL-C interaction with the CD36 receptor. To investigate the hypothesis that MVs derived from cells involved in atherosclerosis are increased in FH and that CD36 expressing MVs (CD36+ MVs) may be markers of oxLDL-C-induced cell activation, cell-specific MVs were measured in FH patients with and without ATX and their association with atherogenic lipid profile was studied. Approach and Results. Thirty FH patients with and without ATX and twenty-three controls were included. Plasma concentrations of MVs and CD36+ MVs derived from platelets (PMVs), erythrocytes (ErytMVs), monocytes (MMVs), and endothelial cells (EMVs), as well as tissue factor-positive cells (TF+ MVs), were measured by flow cytometry. Total MVs, MMVs, EMVs, ErytMVs, and TF+ MVs were significantly increased in FH patients, compared to controls. CD36+ MVs derived from endothelial cells and monocytes were significantly higher in FH patients and oxLDL-C predicted all the investigated cell-specific CD36+ MVs in FH patients with ATX. Conclusions. MVs derived from cells involved in atherosclerosis were increased in FH and may contribute to elevated atherothrombosis risk. The increased cell-specific CD36+ MVs observed in FH may represent markers of oxLDL-C-induced cell activation. PMID:26925191

  10. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications.

    PubMed

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Chen, Zhichao; Zhang, WenJie

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  11. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications

    PubMed Central

    Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  12. Urinary extracellular microvesicles: isolation methods and prospects for urinary proteome.

    PubMed

    Wang, Danqi; Sun, Wei

    2014-08-01

    Extracellular microvesicles (EVs) are membranous vesicles, which are released from diverse cells. These EVs have also been found in a wide range of body fluids. The cargo of EVs, including proteins, lipids, carbohydrates, and nucleic acids, can be stably preserved in EVs. Researchers have found that EVs can mediate intercellular communication by shuttling the cargo components. Therefore, EVs can be used for the identification of disease-specific biomarkers. As one class of EVs, urinary exosomes can reflect the status of the renal system. Moreover, urinary exosome analysis can minimize the interference of high abundant proteins in the whole urine sample. Therefore, urinary exosomes have gained much attention in recent years. In this review, we present a comprehensive summary of urinary exosome studies in recent years, including collection, storage, and isolation methods. The normal and disease proteomic analyses of urinary exosomes are also presented. Thus, this review may provide a valuable reference for future research. PMID:24962155

  13. Microvesicle-mediated Transfer of MicroRNA-150 from Monocytes to Endothelial Cells Promotes Angiogenesis*

    PubMed Central

    Li, Jing; Zhang, Yujing; Liu, Yuchen; Dai, Xin; Li, Wenyang; Cai, Xing; Yin, Yuan; Wang, Qiang; Xue, Yunxing; Wang, Cheng; Li, Dameng; Hou, Dongxia; Jiang, Xiaohong; Zhang, Junfeng; Zen, Ke; Chen, Xi; Zhang, Chen-Yu

    2013-01-01

    Recent studies by our group and others show that microRNAs can be actively secreted into the extracellular environment through microvesicles (MVs) and function as secretory signaling molecules that influence the recipient cell phenotypes. Here we investigate the role of monocyte-secreted miR-150 in promoting the capillary tube formation of endothelial cells and in enhancing angiogenesis. In vitro capillary tube formation and in vivo angiogenesis assays showed that monocyte-derived MVs have strong pro-angiogenic activities. By depleting miR-150 from monocytic MVs and increasing miR-150 in MVs derived from cells that normally contain low levels of miR-150, we further demonstrated that the miR-150 content accounted for the pro-angiogenic activity of monocytic MVs in these assays. Using tumor-implanted mice and ob/ob mice as models, we revealed that miR-150 secretion, which is increased for diseases such as cancers and diabetes, significantly promotes angiogenesis. The delivery of anti-miR-150 antisense oligonucleotides into tumor-implanted mice and ob/ob mice via MVs, however, strongly reduced angiogenesis in both types of mice. Our results collectively demonstrate that secretion of miR-150 via MVs can promote angiogenesis in vitro and in vivo, and we also present a novel microRNA-based therapeutic approach for disease treatment. PMID:23766514

  14. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    PubMed Central

    2013-01-01

    Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary

  15. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome.

    PubMed

    Rood, Ilse M; Deegens, Jeroen K J; Merchant, Michael L; Tamboer, Wim P M; Wilkey, Daniel W; Wetzels, Jack F M; Klein, Jon B

    2010-10-01

    Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome. PMID:20686450

  16. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  17. Microvesicles at the crossroads between infection and cardiovascular diseases

    PubMed Central

    Xiong, Jing; Miller, Virginia M.; Li, Yunman; Jayachandran, Muthuvel

    2011-01-01

    Observational and experimental studies continue to support the association of infection and infection-stimulated inflammation with development of cardiovascular disease (CVD) including atherosclerosis and thrombosis. Microvesicles (MV) are heterogeneous populations of sealed membrane-derived vesicles shed into circulation by activated mammalian cells and/or pathogenic microbes that may represent an interface between bacterial/microbial infection and increased risk of CVD. This review evaluates how MV act to modulate and intersect immunological and inflammatory responses to infection with particular attention to progression of CVD. While infection-related stimuli provoke release of MV from blood and vascular cells, MV express phosphatidylserine (PS) and other procoagulant factors on their surface which initiate and amplify blood coagulation. In addition, MV mediate cell-cell adhesion which may stimulate production of pro-inflammatory cytokines in vascular cells, which in turn aggravate progression of CVD and propagate atherothrombosis. MV transfer membrane receptors, RNA and proteins among cells, and present auto-antigens from their cells of origin to proximal or remote target cells. Because MV harbor cell surface proteins and contain cytoplasmic components of the parent cell, they mediate biological messages and play a pivotal role in the crossroad between infection-stimulated inflammation and cardiovascular diseases. PMID:21242813

  18. Microvesicles and exosomes: new players in metabolic and cardiovascular disease.

    PubMed

    Lawson, Charlotte; Vicencio, Jose M; Yellon, Derek M; Davidson, Sean M

    2016-02-01

    The past decade has witnessed an exponential increase in the number of publications referring to extracellular vesicles (EVs). For many years considered to be extracellular debris, EVs are now seen as novel mediators of endocrine signalling via cell-to-cell communication. With the capability of transferring proteins and nucleic acids from one cell to another, they have become an attractive focus of research for different pathological settings and are now regarded as both mediators and biomarkers of disease including cardio-metabolic disease. They also offer therapeutic potential as signalling agents capable of targeting tissues or cells with specific peptides or miRNAs. In this review, we focus on the role that microvesicles (MVs) and exosomes, the two most studied classes of EV, have in diabetes, cardiovascular disease, endothelial dysfunction, coagulopathies, and polycystic ovary syndrome. We also provide an overview of current developments in MV/exosome isolation techniques from plasma and other fluids, comparing different available commercial and non-commercial methods. We describe different techniques for their optical/biochemical characterization and quantitation. We also review the signalling pathways that exosomes and MVs activate in target cells and provide some insight into their use as biomarkers or potential therapeutic agents. In summary, we give an updated focus on the role that these exciting novel nanoparticles offer for the endocrine community. PMID:26743452

  19. Microvesicles as cell-cell messengers in cardiovascular diseases.

    PubMed

    Loyer, Xavier; Vion, Anne-Clémence; Tedgui, Alain; Boulanger, Chantal M

    2014-01-17

    Cell-cell communication has proven to be even more complex than previously thought since the discovery that extracellular vesicles serve as containers of biological information on various pathophysiological settings. Extracellular vesicles are classified into exosomes, microvesicles/microparticles, or apoptotic bodies, originating from different subcellular compartments. The cellular machinery controlling their formation and composition, as well as the mechanisms regulating their extracellular release, remain unfortunately much unknown. Extracellular vesicles have been found in plasma, urine, saliva, and inflammatory tissues. Their biomarker potential has raised significant interest in the cardiovascular field because the vesicle composition and microRNA content are specific signatures of cellular activation and injury. More than simply cell dust, extracellular vesicles are capable of transferring biological information to neighboring cells and play an active role in inflammatory diseases, including atherosclerosis and angiogenesis. The molecular interactions regulating these effects involve specific receptor activation, proteolytic enzymes, reactive oxygen species, or delivery of genetic information to target cells. Unraveling their mechanisms of action will likely open new therapeutic avenues. PMID:24436430

  20. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse

    NASA Astrophysics Data System (ADS)

    Choudhuri, Kaushik; Llodrá, Jaime; Roth, Eric W.; Tsai, Jones; Gordo, Susana; Wucherpfennig, Kai W.; Kam, Lance C.; Stokes, David L.; Dustin, Michael L.

    2014-03-01

    The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These

  1. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases

    PubMed Central

    Müller, Günter

    2012-01-01

    Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy – hallmarks of personalized medicine – plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on

  2. Epithelial Microvesicles Promote an Inflammatory Phenotype in Fibroblasts.

    PubMed

    Bi, J; Koivisto, L; Owen, G; Huang, P; Wang, Z; Shen, Y; Bi, L; Rokka, A; Haapasalo, M; Heino, J; Häkkinen, L; Larjava, H S

    2016-06-01

    Microvesicles (MVs) are extracellular vesicles secreted by various cell types that are involved in intercellular communication. We hypothesized that in human periodontal disease, the pocket epithelium releases MVs, which then modulate gene expression in the underlying fibroblasts to control periodontal inflammation. MVs were isolated from culture medium of gingival epithelial cells (GECs) treated with oral bacterial biofilm extract or left untreated. Biofilm treatment significantly increased MV release from the GECs. Mass spectrometry of GEC-MVs identified a total of 2,173 proteins, of which about 80% were detected in MVs from both control and biofilm-treated GECs. Among 80 signature genes of human gingival fibroblasts, 20 were significantly regulated (P < 0.05) by MVs from control and biofilm-treated GECs in a similar manner. Matrix metalloproteinase 1 and 3 and interleukin 6 and 8 showed the strongest regulation at the mRNA and protein levels. Several cellular signaling pathways were activated by GEC-MVs in human gingival fibroblasts, including Smad and mitogen-activated protein kinase-associated pathways ERK1/2, JNK, and p38. However, ERK1/2 signaling dominated in the MV-induced gene expression changes. The results demonstrate that GEC-MVs have a strong regulatory effect on the expression of fibroblast genes associated with inflammation and matrix degradation and that bacterial biofilm stimulates the generation of GEC-MVs. This suggests that bacterial biofilms can contribute to the initiation and progression of periodontal disease by promoting a tissue-destructive phenotype in gingival fibroblasts via the enhanced secretion of epithelial MVs. PMID:26912223

  3. Elevated levels of procoagulant plasma microvesicles in dialysis patients.

    PubMed

    Burton, James O; Hamali, Hassan A; Singh, Ruchir; Abbasian, Nima; Parsons, Ruth; Patel, Amit K; Goodall, Alison H; Brunskill, Nigel J

    2013-01-01

    Cardiovascular (CV) death remains the largest cause of mortality in dialysis patients, unexplained by traditional risk factors. Endothelial microvesicles (EMVs) are elevated in patients with traditional CV risk factors and acute coronary syndromes while platelet MVs (PMVs) are associated with atherosclerotic disease states. This study compared relative concentrations of circulating MVs from endothelial cells and platelets in two groups of dialysis patients and matched controls and investigated their relative thromboembolic risk. MVs were isolated from the blood of 20 haemodialysis (HD), 17 peritoneal dialysis (PD) patients and 20 matched controls. Relative concentrations of EMVs (CD144(+ ve)) and PMVs (CD42b(+ ve)) were measured by Western blotting and total MV concentrations were measured using nanoparticle-tracking analysis. The ability to support thrombin generation was measured by reconstituting the MVs in normal plasma, using the Continuous Automated Thrombogram assay triggered with 1µM tissue factor. The total concentration of MVs as well as the measured sub-types was higher in both patient groups compared to controls (p<0.05). MVs from HD and PD patients were able to generate more thrombin than the controls, with higher peak thrombin, and endogenous thrombin potential levels (p<0.02). However there were no differences in either the relative quantity or activity of MVs between the two patient groups (p>0.3). Dialysis patients have higher levels of circulating procoagulant MVs than healthy controls. This may represent a novel and potentially modifiable mediator or predictor of occlusive cardiovascular events in these patients. PMID:23936542

  4. Elevated Levels of Procoagulant Plasma Microvesicles in Dialysis Patients

    PubMed Central

    Burton, James O.; Hamali, Hassan A.; Singh, Ruchir; Abbasian, Nima; Parsons, Ruth; Patel, Amit K.; Goodall, Alison H.; Brunskill, Nigel J.

    2013-01-01

    Cardiovascular (CV) death remains the largest cause of mortality in dialysis patients, unexplained by traditional risk factors. Endothelial microvesicles (EMVs) are elevated in patients with traditional CV risk factors and acute coronary syndromes while platelet MVs (PMVs) are associated with atherosclerotic disease states. This study compared relative concentrations of circulating MVs from endothelial cells and platelets in two groups of dialysis patients and matched controls and investigated their relative thromboembolic risk. MVs were isolated from the blood of 20 haemodialysis (HD), 17 peritoneal dialysis (PD) patients and 20 matched controls. Relative concentrations of EMVs (CD144+ ve) and PMVs (CD42b+ ve) were measured by Western blotting and total MV concentrations were measured using nanoparticle-tracking analysis. The ability to support thrombin generation was measured by reconstituting the MVs in normal plasma, using the Continuous Automated Thrombogram assay triggered with 1µM tissue factor. The total concentration of MVs as well as the measured sub-types was higher in both patient groups compared to controls (p<0.05). MVs from HD and PD patients were able to generate more thrombin than the controls, with higher peak thrombin, and endogenous thrombin potential levels (p<0.02). However there were no differences in either the relative quantity or activity of MVs between the two patient groups (p>0.3). Dialysis patients have higher levels of circulating procoagulant MVs than healthy controls. This may represent a novel and potentially modifiable mediator or predictor of occlusive cardiovascular events in these patients. PMID:23936542

  5. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells

    PubMed Central

    Bollati, Valentina; Angelici, Laura; Rizzo, Giovanna; Pergoli, Laura; Rota, Federica; Hoxha, Mirjam; Nordio, Francesco; Bonzini, Matteo; Tarantini, Letizia; Cantone, Laura; Pesatori, Angela C; Apostoli, Pietro; Baccarelli, Andrea A; Bertazzi, Pier Alberto

    2015-01-01

    Cardiovascular disease risk has been consistently linked with particulate matter (PM) exposure. Cell-derived microvesicles (MVs) are released into plasma and transfer microRNAs (miRNAs) between tissues. MVs can be produced by the respiratory system in response to proinflammatory triggers, enter the circulatory system and remotely modify gene expression in cardiovascular tissues. However, whether PM affects MV signaling has never been investigated. In this study, we evaluated expression of microRNAs contained within plasma MVs upon PM exposure both in vivo and in vitro. In the in vivo study, we isolated plasma MVs from healthy steel plant workers before and after workplace PM exposure. We measured the expression of 88 MV-associated miRNAs by real-time polymerase chain reaction. To assess a possible source of the MV miRNAs identified in vivo, we measured their miRNA expression in PM-treated A549 pulmonary cell lines in vitro. MiRNA profiling of plasma MVs showed 5.62- and 13.95-fold increased expression of miR-128 and miR-302c, respectively, after 3 days of workplace PM exposure (P < 0.001). According to Ingenuity Pathway Analysis, miR-128 is part of coronary artery disease pathways, and miR-302c is part of coronary artery disease, cardiac hypertrophy and heart failure pathways. In vitro experiments confirmed a dose-dependent expression of miR-128 in MVs released from A549 cells after 6 h of PM treatment (P = 0.030). MiR-302c was expressed neither from A549 cells nor in reference lung RNA. These results suggest novel PM-activated molecular mechanisms that may mediate the effects of air pollution and could lead to the identification of new diagnostic and therapeutic interventions. Copyright © 2014 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Cell-derived microvesicles (MVs) are found in plasma and may transfer signals between tissues. In this article, we report in-vivo and in-vitro studies demonstrating that Particulate

  6. Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways

    PubMed Central

    Yoon, Yae Jin; Kim, Dae-Kyum; Yoon, Chang Min; Park, Jaesung; Kim, Yoon-Keun; Roh, Tae-Young; Gho, Yong Song

    2014-01-01

    Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference–mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases. PMID:25502753

  7. Impact of Biofluid Viscosity on Size and Sedimentation Efficiency of the Isolated Microvesicles

    PubMed Central

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Trachtenberg, Alexander J.; Hochberg, Fred H.; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the “gold standard” for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentrifugation when processing any biofluids. PMID:22661955

  8. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Trachtenberg, Alexander J; Hochberg, Fred H; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the "gold standard" for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentrifugation when processing any biofluids. PMID:22661955

  9. Translocation of Endogenous Danger Signal HMGB1 From Nucleus to Membrane Microvesicles in Macrophages.

    PubMed

    Chen, Yan; Li, Guangping; Liu, Yanxia; Werth, Victoria P; Williams, Kevin Jon; Liu, Ming-Lin

    2016-11-01

    High mobility group box 1 (HMGB1) is a nuclear protein that can be released from activated or dead cells. Extracellular HMGB1 can serve as a "danger signal" and novel cytokine that mediates sterile inflammation. In addition to its soluble form, extracellular HMGB1 can also be carried by membrane microvesicles. However, the cellular mechanisms responsible for nuclear HMGB1 translocation to the plasma membrane and release onto membrane microvesicles have not been investigated. Tobacco smoking is a major cause of sterile inflammation in many diseases. Smoking also increases blood levels of HMGB1. In this study, we found that exposure of macrophages to tobacco smoke extract (TSE) stimulated HMGB1 expression, redistribution, and release into the extracellular milieu both as a soluble molecule and, surprisingly, as a microvesicle-associated form (TSE-MV). Inhibition of chromosome region maintenance-1 (CRM1), a nuclear exporter, attenuated TSE-induced HMGB1 redistribution from the nucleus to the cytoplasm, and then its release on TSE-MVs. Our study demonstrates a novel mechanism for the translocation of nuclear HMGB1 to the plasma membrane, and then its release in a microvesicle-associated form. J. Cell. Physiol. 231: 2319-2326, 2016. © 2016 Wiley Periodicals, Inc. PMID:26909509

  10. CD9-Positive Microvesicles Mediate the Transfer of Molecules to Bovine Spermatozoa during Epididymal Maturation

    PubMed Central

    Caballero, Julieta N.; Frenette, Gilles; Belleannée, Clémence; Sullivan, Robert

    2013-01-01

    Acquisition of fertilization ability by spermatozoa during epididymal transit occurs in part by the transfer of molecules from membranous vesicles called epididymosomes. Epididymosomes are heterogeneous in terms of both size and molecular composition. Exosomes and other related small membranous vesicles (30–120 nm) containing tetraspanin proteins on their surface are found in many biological fluids. In this study, we demonstrate that these vesicles are present in bovine cauda epididymal fluid as a subpopulation of epididymosomes. They contain tetraspanin CD9 in addition to other proteins involved in sperm maturation such as P25b, GliPr1L1, and MIF. In order to study the mechanism of protein transfer to sperm, DilC12-labeled unfractionated epididymosomes or CD9-positive microvesicles were coincubated with epididymal spermatozoa, and their transfer was evaluated by flow cytometry. CD9-positive microvesicles from epididymal fluid specifically transferred molecules to spermatozoa, whereas those prepared from blood were unable to do so. The CD9-positive microvesicles transferred molecules to the same sperm regions (acrosome and midpiece) as epididymosomes, with the same kinetics; however, the molecules were preferentially transferred to live sperm and, in contrast to epididymosomes, Zn2+ did not demonstrate potentiated transfer. Tetraspanin CD9 was associated with other proteins on the membrane surface of CD9-positive microvesicles according to coimmunoprecipitation experiments. CD26 cooperated with CD9 in the molecular transfer to sperm since the amount of molecules transferred was significantly reduced in the presence of specific antibodies. In conclusion, CD9-positive microvesicles are present in bovine cauda epididymal fluid and transfer molecules to live maturing sperm in a tissue-specific manner that involves CD9 and CD26. PMID:23785420

  11. Upregulation of lipid synthesis in small rat adipocytes by microvesicle-associated CD73 from large adipocytes.

    PubMed

    Müller, Günter; Schneider, Marion; Biemer-Daub, Gabriele; Wied, Susanne

    2011-08-01

    Filling-up lipid stores is critical for size increase of mammalian adipocytes. The glycosylphosphatidylinositol (GPI)-anchored protein, CD73, is released from adipocytes into microvesicles in response to the lipogenic stimuli, palmitate, the antidiabetic sulfonylurea drug glimepiride, phosphoinositolglycans (PIG), and H(2)O(2). Upon incubation of microvesicles with adipocytes, CD73 is translocated to cytoplasmic lipid droplets (LD) and esterification is upregulated. The role of CD73-harboring microvesicles in coordinating esterification between differently sized adipocytes was studied here. Populations consisting of either small or large or of both small and large isolated rat adipocytes as well as native adipose tissue pieces from young and old rats were incubated with or depleted of endogenous microvesicles and analyzed for translocation of CD73 and esterification in response to the lipogenic stimuli. Large adipocytes exhibited higher and lower efficacy in releasing CD73 into microvesicles and in translocating CD73 to LD, respectively, compared to small adipocytes. Populations consisting of both small and large adipocytes were more active in esterification in response to the lipogenic stimuli than either small or large adipocytes. With both adipocytes and adipose tissue pieces from young rats esterification stimulation by the lipogenic stimuli was abrogated by depletion of CD73-harboring microvesicles from the incubation medium and interstitial spaces, respectively. In conclusion, stimulus-induced lipid synthesis between differently sized adipocytes is controlled by the release of microvesicle-associated CD73 from large cells and its subsequent translocation to LD of small cells. This information transfer via microvesicles harboring GPI-anchored proteins may shift the burden of triacylglycerol storage from large to small adipocytes. PMID:21372807

  12. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases

    PubMed Central

    Yang, Qiwei; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Cells release into the extracellular environment, diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles. A number of studies indicate that these extracellular vehicles (EVs) mediate the interaction between cancer cells and their microenvironment; and thereby, play a critical role in the development of cancers. EVs contain cargo which consist of proteins, lipids, mRNAs, and miRNAs that can be delivered to different types of cells in nascent as well as distal locations. Discovery of this latter cargo has drawn an increasing amount of attention, due to their altering effects on the transcriptome, proteins, and subsequent cellular characteristics in recipient cells. Cancer cell derived exosomes (CCEs) have been identified in body fluids of cancer patients including urine, plasma and saliva. Because CCE content largely depends on tumor type and stage, they invariably lend great potential in serving as prognostic and diagnostic markers. Notably, accumulating evidence demonstrates that EV-derived miRNAs have key roles in regulating various aspects of cellular homeostasis, including proliferation, survival, migration, metastasis, and the immune system etc. More recently, diagnostic and therapeutic exploitation of stem cells derived EVs are under investigation. This review aims to summarize recent advances in EV-derived miRNAs in a variety of tumor types, and suggests that these cancer-derived exosomal miRNAs play a critical role in regulating cellular functions in surrounding and distant locations. It also discusses the role of adverse environmental exposure in altering stem cell exosomal miRNA profiling, which we believe leads to changes in the extracellular environment as well as a diverse range of biological processes. PMID:27099870

  13. Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation

    PubMed Central

    Gennai, S.; Monsel, A.; Hao, Q.; Park, J.; Matthay, M. A.; Lee, J. W.

    2016-01-01

    The need to increase the donor pool for lung transplantation is a major public health issue. We previously found that administration of mesenchymal stem cells “rehabilitated” marginal donor lungs rejected for transplantation using ex vivo lung perfusion. However, the use of stem cells has some inherent limitation such as the potential for tumor formation. In the current study, we hypothesized that microvesicles, small anuclear membrane fragments constitutively released from mesenchymal stem cells, may be a good alternative to using stem cells. Using our well established ex vivo lung perfusion model, microvesicles derived from human mesenchymal stem cells increased alveolar fluid clearance (i.e. ability to absorb pulmonary edema fluid) in a dose-dependent manner, decreased lung weight gain following perfusion and ventilation, and improved airway and hemodynamic parameters compared to perfusion alone. Microvesicles derived from normal human lung fibroblasts as a control had no effect. Co-administration of microvesicles with anti-CD44 antibody attenuated these effects, suggesting a key role of the CD44 receptor in the internalization of the microvesicles into the injured host cell and its effect. In summary, microvesicles derived from human mesenchymal stem cells were as effective as the parent mesenchymal stem cells in rehabilitating marginal donor human lungs. PMID:25847030

  14. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells

    PubMed Central

    Li, Cheryl CY; Eaton, Sally A; Young, Paul E; Lee, Maggie; Shuttleworth, Rupert; Humphreys, David T; Grau, Georges E; Combes, Valery; Bebawy, Mary; Gong, Joyce; Brammah, Susan; Buckland, Michael E; Suter, Catherine M

    2013-01-01

    Interactions between glioma cells and their local environment are critical determinants of brain tumor growth, infiltration and neovascularisation. Communication with host cells and stroma via microvesicles represents one pathway by which tumors can modify their surroundings to achieve a tumor-permissive environment. Here we have taken an unbiased approach to identifying RNAs in glioma-derived microvesicles, and explored their potential to regulate gene expression in recipient cells. We find that glioma microvesicles are predominantly of exosomal origin and contain complex populations of coding and noncoding RNAs in proportions that are distinct from those in the cells from which they are derived. Microvesicles show a relative depletion in microRNA compared with their cells of origin, and are enriched in unusual or novel noncoding RNAs, most of which have no known function. Short-term exposure of brain microvascular endothelial cells to glioma microvesicles results in many gene expression changes in the endothelial cells, most of which cannot be explained by direct delivery of transcripts. Our data suggest that the scope of potential actions of tumor-derived microvesicles is much broader and more complex than previously supposed, and highlight a number of new classes of small RNA that remain to be characterized. PMID:23807490

  15. miR-146b-5p within BCR-ABL1-Positive Microvesicles Promotes Leukemic Transformation of Hematopoietic Cells.

    PubMed

    Zhang, Hong-Mei; Li, Qing; Zhu, Xiaojian; Liu, Wei; Hu, Hui; Liu, Teng; Cheng, Fanjun; You, Yong; Zhong, Zhaodong; Zou, Ping; Li, Qiubai; Chen, Zhichao; Guo, An-Yuan

    2016-05-15

    Evidence is accumulating that extracellular microvesicles (MV) facilitate progression and relapse in cancer. Using a model in which MVs derived from K562 chronic myelogenous leukemia (CML) cells transform normal hematopoietic transplants into leukemia-like cells, we defined the underlying mechanisms of this process through gene-expression studies and network analyses of transcription factors (TF) and miRNAs. We found that antitumor miRNAs were increased and several defense pathways were initiated during the early phases of oncogenic transformation. Later, oncomiRs and genes involved in cell cycle, DNA repair, and energy metabolism pathways were upregulated. Regulatory network analyses revealed that a number of TFs and miRNAs were responsible for the pathway dysregulation and the oncogenic transformation. In particular, we found that miR-146b-5p, which was highly expressed in MVs, coordinated the regulation of cancer-related genes to promote cell-transforming processes. Notably, treatment of recipient cells with MV derived from K562 cells expressing mimics of miR-146b-5p revealed that it accelerated the transformation process in large part by silencing the tumor-suppressor NUMB High levels of miR-146b-5p also enhanced reactive oxygen species levels and genome instability of recipient cells. Taken together, our finding showed how upregulation of oncogenic miRNAs in MVs promote hematopoetic cells to a leukemic state, as well as a demonstration for TF and miRNA coregulatory analysis in exploring the dysregulation of cancers and discovering key factors. Cancer Res; 76(10); 2901-11. ©2016 AACR. PMID:27013199

  16. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants.

    PubMed

    Wisgrill, Lukas; Lamm, Christian; Hartmann, Julia; Preißing, Falk; Dragosits, Klaus; Bee, Annica; Hell, Lena; Thaler, Johannes; Ay, Cihan; Pabinger, Ingrid; Berger, Angelika; Spittler, Andreas

    2016-07-01

    Microvesicles (MVs) are small membrane bound vesicles released from various cell types after activation or apoptosis. In the last decades, MVs received an increased interest as biomarkers in inflammation, coagulation and cancer. However, standardized pre-analytical steps are crucial for the minimization of artifacts in the MV analysis. Thus, this study evaluated the MV release in whole blood samples under the influence of different anticoagulants, storage time and various temperature conditions. Samples were collected from healthy probands and processed immediately, after 4, 8, 24 and 48 hours at room temperature (RT) or 4°C. To identify MV subpopulations, platelet free plasma (PFP) was stained with Annexin V, calcein AM, CD15, CD41 and CD235a. Analysis was performend on a CytoFLEX flow cytometer. Procoagulatory function of MVs was measured using a phospholipid dependent activity and a tissue factor MVactivity assay. Without prior storage, sodium citrate showed the lowest MV count compared to heparin and EDTA. Interestingly, EDTA showed a significant release of myeloid-derived MVs (MMVs) compared to sodium citrate. Sodium citrate showed a stable MV count at RT in the first 8 hours after blood collection. Total MV counts increased after 24 hours in sodium citrated or heparinzed blood which was related to all subpopulations. Interestingly, EDTA showed stable platelet-derived MV (PMV) and erythrocyte-derived MV (EryMV) count at RT over a 48 h period. In addition, the procoagulatory potential increased significantly after 8-hour storage. Based on both, this work and literature data, the used anticoagulant, storage time and storage temperature differently influence the analysis of MVs within 8 hours. To date, sodium citrated tubes are recommended for MV enumeration and functional analysis. EDTA tubes might be an option for the clinical routine due to stable PMV and EryMV counts. These new approaches need to be validated in a clinical laboratory setting before being

  17. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles

    NASA Astrophysics Data System (ADS)

    Huang, Renliang; Su, Rongxin; Qi, Wei; Zhao, Jun; He, Zhimin

    2011-06-01

    To gain insight into the hierarchical self-assembly of peptides and the surface effect on assembly formation, an aromatic peptide of diphenylalanine (FF) was used in this study as the model peptide. We found that the diphenylalanine peptide could self-assemble into a core-branched nanostructure through non-covalent interactions in aqueous solution. The pre-assemblies further assembled into nanofibers and microvesicles on the glass surface and microporous membrane, respectively, showing a significant dependence on surface characteristics. The structural and morphological differences between nanofibers and microvesicles were investigated directly using several spectroscopy and microscopy techniques. Our results revealed a hierarchical and interface-induced assembly behavior of diphenylalanine peptide. The novel strategy based on the surface effect allows one to controllably fabricate various peptide-based nanostructures.

  18. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.

    PubMed

    Huang, Renliang; Su, Rongxin; Qi, Wei; Zhao, Jun; He, Zhimin

    2011-06-17

    To gain insight into the hierarchical self-assembly of peptides and the surface effect on assembly formation, an aromatic peptide of diphenylalanine (FF) was used in this study as the model peptide. We found that the diphenylalanine peptide could self-assemble into a core-branched nanostructure through non-covalent interactions in aqueous solution. The pre-assemblies further assembled into nanofibers and microvesicles on the glass surface and microporous membrane, respectively, showing a significant dependence on surface characteristics. The structural and morphological differences between nanofibers and microvesicles were investigated directly using several spectroscopy and microscopy techniques. Our results revealed a hierarchical and interface-induced assembly behavior of diphenylalanine peptide. The novel strategy based on the surface effect allows one to controllably fabricate various peptide-based nanostructures. PMID:21543826

  19. Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg)

    PubMed Central

    Szajnik, Marta; Czystowska, Malgorzata; Szczepanski, Miroslaw J.; Mandapathil, Magis; Whiteside, Theresa L.

    2010-01-01

    Background Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4+CD25highFOXP3+ Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/expansion/and activation of human Treg. Methodology/Principal Findings TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4+CD25neg T cells into CD4+CD25highFOXP3+ Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-β1, CTLA-4, granzyme B and perforin expression (p<0.05) and mediated stronger suppression of responder cell (RC) proliferation (p<0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-β1 and/or IL-10 significantly inhibited TMV ability to expand Treg. Conclusions/Significance This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in supporting immune evasion of human cancers. PMID:20661468

  20. Methodology for Isolation, Identification and Characterization of Microvesicles in Peripheral Blood

    PubMed Central

    Jayachandran, Muthuvel; Miller, Virginia M.; Heit, John A.; Owen, Whyte G.

    2011-01-01

    Rationale Analyses of circulating cell membrane-derived microvesicles (MV) have come under scrutiny as potential diagnostic and prognostic biomarkers of disease. However, methods to isolate, label and quantify MV have been neither systematized nor validated. Objective To determine how pre-analytical, analytical and post-analytical factors affect plasma MV counts, markers for cell of origin and expression of procoagulant surface phosphatidylserine. Methods and Results Peripheral venous blood samples were collected from healthy volunteers and patients with cardiovascular disease and/or diabetes. Effects of blood sample collection, anticoagulant and sample processing to platelet free plasma (PFP), and MV isolation, staining and storage (freeze-thaw) and cytometer design were evaluated with replicate samples from these populations. The key finding is that use of citrate or EDTA anticoagulants decreases or eliminates microvesicles from plasma by inducing adhesion of the microvesicles to platelets or other formed elements. Protease inhibitor anticoagulants, including heparin, preserve MV counts. A centrifugation protocol was developed in which recovery of isolated MV was high with resolution down to the equivalent light scatter of 0.2 micron latex beads. Each procedure was systematically evaluated for its impact on the MV counts and characteristics. Conclusion This study provides a systematic methodology for MV isolation, identification and quantification, essential for development of MV as diagnostic and prognostic biomarkers of disease. PMID:22075275

  1. Sensing protein antigen and microvesicle analytes using high-capacity biopolymer nano-carriers.

    PubMed

    Kumar, Saroj; Milani, Gloria; Takatsuki, Hideyo; Lana, Tobia; Persson, Malin; Frasson, Chiara; te Kronnie, Geertruy; Månsson, Alf

    2016-02-01

    Lab-on-a-chip systems with molecular motor driven transport of analytes attached to cytoskeletal filament shuttles (actin filaments, microtubules) circumvent challenges with nanoscale liquid transport. However, the filaments have limited cargo-carrying capacity and limitations either in transportation speed (microtubules) or control over motility direction (actin). To overcome these constraints we here report incorporation of covalently attached antibodies into self-propelled actin bundles (nanocarriers) formed by cross-linking antibody conjugated actin filaments via fascin, a natural actin-bundling protein. We demonstrate high maximum antigen binding activity and propulsion by surface adsorbed myosin motors. Analyte transport capacity is tested using both protein antigens and microvesicles, a novel class of diagnostic markers. Increased incubation concentration with protein antigen in the 0.1-100 nM range (1 min) reduces the fraction of motile bundles and their velocity but maximum transportation capacity of >1 antigen per nm of bundle length is feasible. At sub-nanomolar protein analyte concentration, motility is very well preserved opening for orders of magnitude improved limit of detection using motor driven concentration on nanoscale sensors. Microvesicle-complexing to monoclonal antibodies on the nanocarriers compromises motility but nanocarrier aggregation via microvesicles shows unique potential in label-free detection with the aggregates themselves as non-toxic reporter elements. PMID:26617251

  2. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes

    PubMed Central

    Crescitelli, Rossella; Lässer, Cecilia; Szabó, Tamas G.; Kittel, Agnes; Eldh, Maria; Dianzani, Irma; Buzás, Edit I.; Lötvall, Jan

    2013-01-01

    Introduction In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer®. Results RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics

  3. Structural Phenotyping of Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-01-01

    Summary Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. PMID:25733020

  4. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles.

    PubMed

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-06-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  5. Thrombocyte adhesion and release of extracellular microvesicles correlate with surface morphology of adsorbent polymers for lipid apheresis.

    PubMed

    Weiss, René; Spittler, Andreas; Schmitz, Gerd; Fischer, Michael B; Weber, Viktoria

    2014-07-14

    Whole blood lipid apheresis is clinically applied to reduce low density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Here, we studied the correlation between physicochemical parameters, in particular, surface roughness and blood compatibility, of two polyacrylate-based and a dextran sulfate-based polymer for lipid apheresis. The adsorbent surface roughness was assessed by atomic force microscopy. Freshly isolated human thrombocytes were circulated over adsorbent columns downscaled equivalent to clinical use to study thrombocyte adhesion and microvesicle generation. Quantification of thrombocytes and microvesicles in the flow-through of the columns revealed that both thrombocyte adhesion and microvesicle generation increased with increasing adsorbent surface roughness. Activation of thrombocytes with thrombin receptor-activating peptide-6 favored their adhesion to the adsorbents, as demonstrated by preferential depletion of CD62(+) and PAC-1(+) thrombocytes. Taken together, enhanced polymer surface roughness fostered cell adhesion and microvesicle release, underscoring the role of extracellular microvesicles as markers of cellular activation and of blood compatibility. PMID:24844344

  6. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  7. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway

    PubMed Central

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after

  8. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    PubMed

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  9. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  10. Micropost arrays for measuring stem cell-derived cardiomyocyte contractility.

    PubMed

    Beussman, Kevin M; Rodriguez, Marita L; Leonard, Andrea; Taparia, Nikita; Thompson, Curtis R; Sniadecki, Nathan J

    2016-02-01

    Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes. PMID:26344757

  11. Investigation of Soluble and Transmembrane CTLA-4 Isoforms in Serum and Microvesicles

    PubMed Central

    Esposito, Laura; Hunter, Kara M. D.; Clark, Jan; Rainbow, Daniel B.; Stevens, Helen; Denesha, Jennifer; Duley, Simon; Dawson, Sarah; Coleman, Gillian; Nutland, Sarah; Bell, Gwynneth L.; Moran, Carla; Pekalski, Marcin; Todd, John A.

    2014-01-01

    Expression of the CTLA-4 gene is absolutely required for immune homeostasis, but aspects of its molecular nature remain undefined. In particular, the characterization of the soluble CTLA-4 (sCTLA-4) protein isoform generated by an alternatively spliced mRNA of CTLA4 lacking transmembrane-encoding exon 3 has been hindered by the difficulty in distinguishing it from the transmembrane isoform of CTLA-4, Tm-CTLA-4. In the current study, sCTLA-4 has been analyzed using novel mAbs and polyclonal Abs specific for its unique C-terminal amino acid sequence. We demonstrate that the sCTLA-4 protein is secreted at low levels following the activation of primary human CD4+ T cells and is increased only rarely in the serum of autoimmune patients. Unexpectedly, during our studies aimed to define the kinetics of sCTLA-4 produced by activated human CD4+ T cells, we discovered that Tm-CTLA-4 is associated with microvesicles produced by the activated cells. The functional roles of sCTLA-4 and microvesicle-associated Tm-CTLA-4 warrant further investigation, especially as they relate to the multiple mechanisms of action described for the more commonly studied cell-associated Tm-CTLA-4. PMID:24928993

  12. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. PMID:27161653

  13. Keratinocyte Microvesicles Regulate the Expression of Multiple Genes in Dermal Fibroblasts.

    PubMed

    Huang, Ping; Bi, Jiarui; Owen, Gethin R; Chen, Weimin; Rokka, Anne; Koivisto, Leeni; Heino, Jyrki; Häkkinen, Lari; Larjava, Hannu

    2015-12-01

    Extracellular vesicles released from cells regulate many normal and pathological conditions. Little is known about the role of epidermal keratinocyte microvesicles (KC-MVs) in epithelial-stromal interaction that is essential for wound healing. We investigated, therefore, whether MV-like structures are present in human wounds and whether they affect wound healing-associated gene expression in dermal fibroblasts. In human wounds, MV-like vesicles were observed during active epithelial migration and early granulation tissue formation. When KC-MVs derived from keratinocyte-like cells (HaCaT) were added to fibroblast cultures, expression of 21 genes was significantly regulated (P<0.05) out of 80 genes investigated, including matrix metalloproteinase-1 and -3, interleukin-6 and -8, and genes associated with transforming growth factor-β signaling. Similar changes were observed at the protein level. MVs from normal epidermal keratinocytes showed similar response to HaCaT cells. KC-MVs activated ERK1/2, JNK, Smad, and p38 signaling pathways in fibroblasts with ERK1/2 signaling having the most prominent role in the MV-induced gene expression changes. KC-MVs stimulated fibroblast migration and induced fibroblast-mediated endothelial tube formation but did not affect collagen gel contraction by fibroblasts. The results demonstrate that keratinocyte microvesicles have a strong and a specific regulatory effect on fibroblasts that may modulate several aspects of wound healing. PMID:26288358

  14. CHK1 regulates NF-κB signaling upon DNA damage in p53- deficient cells and associated tumor-derived microvesicles

    PubMed Central

    Carroll, Brittany L.; Pulkoski-Gross, Michael J.; Hannun, Yusuf A.; Obeid, Lina M.

    2016-01-01

    The recently discovered CHK1-Suppressed (CS) pathway is activated by inhibition or loss of the checkpoint kinase CHK1, promoting an apoptotic response to DNA damage mediated by caspase-2 in p53-deficient cells. Although functions of the CS-pathway have been investigated biochemically, it remains unclear whether and how CHK1 inhibition can be regulated endogenously and whether this constitutes a key component of the DNA damage response (DDR). Here, we present data that define the first endogenous activation of the CS-pathway whereby, upon DNA damage, wild type p53 acts as an endogenous regulator of CHK1 levels that modulates caspase-2 activation. Moreover, we demonstrate that persistence of CHK1 levels in response to DNA damage in p53-deficient cancer cells, leads to CHK1-mediated activation of NF-κB and induction of NF-κB-regulated genes in cells and in associated tumor-derived microvesicles (TMVs), both of which are abrogated by loss or inhibition of CHK1. These data define a novel role for CHK1 in the DDR pathway as a regulator NF-κB activity. Our data provide evidence that targeting CHK1 in p53-deficient cancers may abrogate NF-κB signaling that is associated with increased cellular survival and chemoresistance. PMID:26921248

  15. Red blood cell-derived microparticles: An overview.

    PubMed

    Westerman, Maxwell; Porter, John B

    2016-07-01

    The red blood cell (RBC) is historically the original parent cell of microparticles (MPs). In this overview, we describe the discovery and the early history of red cell-derived microparticles (RMPs) and present an overview of the evolution of RMP. We report the formation, characteristics, effects of RMP and factors which may affect RMP evaluation. The review examines RMP derived from both normal and pathologic RBC. The pathologic RBC studies include sickle cell anemia (SCA), sickle cell trait (STr), thalassemia intermedia (TI), hereditary spherocytosis (HS), hereditary elliptocytosis (HE), hereditary stomatocytosis (HSt) and glucose-6-phosphate dehydrogenase deficiency (G6PD). PMID:27282583

  16. Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers

    PubMed Central

    Mangale, Vrushali; Rahawi, Shahad; McIntyre, Laura L.; Williams, Wesley; Kha, Nelson; Cruz, Casey; Hancock, Bryan M.; Nguyen, David P.; Sayen, M. Richard; Hilton, Brett J.; Doran, Kelly S.; Segall, Anca M.; Wolkowicz, Roland; Cornell, Christopher T.; Whitton, J. Lindsay; Gottlieb, Roberta A.; Feuer, Ralph

    2014-01-01

    Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low

  17. Matrix Metalloproteinase-3 in Odontoblastic Cells Derived from Ips Cells: Unique Proliferation Response as Odontoblastic Cells Derived from ES Cells

    PubMed Central

    Hiyama, Taiki; Ozeki, Nobuaki; Mogi, Makio; Yamaguchi, Hideyuki; Kawai, Rie; Nakata, Kazuhiko; Kondo, Ayami; Nakamura, Hiroshi

    2013-01-01

    We previously reported that matrix metalloproteinase (MMP)-3 accelerates wound healing following dental pulp injury. In addition, we reported that a proinflammatory cytokine mixture (tumor necrosis factor-α, interleukin (IL)-1β and interferon-γ) induced MMP-3 activity in odontoblast-like cells derived from mouse embryonic stem (ES) cells, suggesting that MMP-3 plays a potential unique physiological role in wound healing and regeneration of dental pulp in odontoblast-like cells. In this study, we tested the hypothesis that upregulation of MMP-3 activity by IL-1β promotes proliferation and apoptosis of purified odontoblast-like cells derived from induced pluripotent stem (iPS) and ES cells. Each odontoblast-like cell was isolated and incubated with different concentrations of IL-1β. MMP-3 mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. MMP-3 activity was measured using immunoprecipitation and a fluorescence substrate. Cell proliferation and apoptosis were determined using ELISA for BrdU and DNA fragmentation, respectively. siRNA was used to reduce MMP-3 transcripts in these cells. Treatment with IL-1β increased MMP-3 mRNA and protein levels, and MMP-3 activity in odontoblast-like cells. Cell proliferation was found to markedly increase with no changes in apoptosis. Endogenous tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 were constitutively expressed during all experiments. The exocytosis inhibitor, Exo1, potently suppressed the appearance of MMP-3 in the conditioned medium. Treatment with siRNA against MMP-3 suppressed an IL-1β-induced increase in MMP-3 expression and activity, and also suppressed cell proliferation, but unexpectedly increased apoptosis in these cells (P<0.05). Exogenous MMP-3 was found to induce cell proliferation in odontoblast-like cells derived from iPS cells and ES cells. This siRNA-mediated increase in apoptosis could be reversed with exogenous MMP-3 stimulation (P<0.05). Taken

  18. Functional Characterization of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Kirsch, Authors Glenn E.; Obejero-Paz, Carlos A.; Bruening-Wright, Andrew

    2014-01-01

    Cardiac toxicity is a leading contributor to late-stage attrition in the drug discovery process and to withdrawal of approved from the market. In vitro assays that enable earlier and more accurate testing for cardiac risk provide early stage predictive indicators that aid in mitigating risk. Human cardiomyocytes, the most relevant subjects for early stage testing, are severely limited in supply. But human stem cell-derived cardiomyocytes (SC-hCM) are readily available from commercial sources and are increasingly used in academic research, drug discovery and safety pharmacology. As a result, SC-hCM electrophysiology has become a valuable tool to assess cardiac risk associated with drugs. This unit describes techniques for recording individual currents carried by sodium, calcium and potassium ions, as well as single cell action potentials, and impedance recordings from contracting syncytia of thousands of interconnected cells. PMID:25152802

  19. Stem cell-derived systems in toxicology assessment.

    PubMed

    Suter-Dick, Laura; Alves, Paula M; Blaauboer, Bas J; Bremm, Klaus-Dieter; Brito, Catarina; Coecke, Sandra; Flick, Burkhard; Fowler, Paul; Hescheler, Jürgen; Ingelman-Sundberg, Magnus; Jennings, Paul; Kelm, Jens M; Manou, Irene; Mistry, Pratibha; Moretto, Angelo; Roth, Adrian; Stedman, Donald; van de Water, Bob; Beilmann, Mario

    2015-06-01

    Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and

  20. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  1. Initial evidence that blood-borne microvesicles are biomarkers for recurrence and survival in newly diagnosed glioblastoma patients.

    PubMed

    Evans, Sydney M; Putt, Mary; Yang, Xiang-Yang; Lustig, Robert A; Martinez-Lage, Maria; Williams, Dewight; Desai, Arati; Wolf, Ronald; Brem, Steven; Koch, Cameron J

    2016-04-01

    The purpose of this pilot study was to determine whether blood-borne microvesicles from newly diagnosed glioblastoma patients could be used as biomarkers. We collected 2.8 mL blood from 16 post-operative patients at the time that they were being simulated for chemoradiation therapy (radiation with concurrent temozolomide). Two additional samples were collected during chemoradiation therapy and a final sample was collected at the end of chemoradiation therapy. Patients continued with the therapy suggested by their physicians, based on tumor conference consensus and were followed for recurrence and overall survival. Microvesicles were isolated using serial centrifugation and stained for surface markers (Annexin V for phosphotidyl serine, CD41 for platelets, anti-EGFR for tumor cells, and CD235 for red blood cells). Flow cytometry analysis was performed. Our findings provide initial evidence that increases in Annexin V positive microvesicle levels during chemoradiation therapy are associated with earlier recurrence and shorter overall survival in newly diagnosed glioblastoma patients. The effect is dramatic, with over a four-fold increase in the hazard ratio for an individual at the 75th versus the 25th percentile. Moreover the pattern of Annexin V positive microvesicles remain significant after adjustment for confounding clinical variables that have previously been shown to be prognostic for recurrence and survival. Inclusion of neutrophil levels at the start of chemoradiation therapy in the model yielded the largest attenuation of the observed association. Further studies will be needed to verify and further investigate the association between these two entities. PMID:26746692

  2. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    PubMed

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  3. In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells.

    PubMed

    Thoene, Jess; Goss, Thomas; Witcher, Marc; Mullet, Jodi; N'Kuli, Francisca; Van Der Smissen, Patrick; Courtoy, Pierre; Hahn, Si Houn

    2013-05-01

    Infection of Spodoptera frugiperda (Sf9) cells by baculovirus (BV) is well established for transgene expression of soluble proteins, but few correctly folded transmembrane proteins have been so produced. We here report the use of the BV/Sf9 (BVES) method for the expression and transfer, via microvesicles, of the exclusive lysosomal exporters for cystine and sialic acid, human cystinosin and sialin. These proteins and their mRNA are released into the culture medium as very low-density microvesicles (~1.05 g/ml), which do not label for lysobisphosphatidic acid. The presence of the human transgene proteins in the vesicles was confirmed by western blotting and confirmed and quantified by mass spectrometry. Addition of vesicles to cultures of human fibroblast lines deficient in either cystinosin or sialin produced a progressive depletion of stored lysosomal cystine or sialic acid, respectively. The depletion effect was slow (T1/2 ~48 h), saturable (down to ~40% of initial after 4 days) and stable (>one week). Surprisingly, BV infection of Spodoptera appeared to induce expression and release into microvesicles of the insect orthologue of cystinosin, but not of sialin. We conclude that BVES is an effective method to express and transfer functional transmembrane proteins so as to study their properties in mammalian cells, and has a generic potential for transport protein replacement therapy. PMID:23465695

  4. MicroRNA and Protein Profiling of Brain Metastasis Competent Cell-Derived Exosomes

    PubMed Central

    Camacho, Laura; Guerrero, Paola; Marchetti, Dario

    2013-01-01

    Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM) versus non-brain metastatic (non-BM) cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM) variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210) and two down-regulated miRNAs (miR-19a and miR-29c) in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis. PMID:24066071

  5. Large-scale generation of cell-derived nanovesicles

    NASA Astrophysics Data System (ADS)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  6. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  7. Tracing Synaptic Connectivity onto Embryonic Stem Cell-Derived Neurons

    PubMed Central

    Garcia, Isabella; Huang, Longwen; Ung, Kevin; Arenkiel, Benjamin R.

    2012-01-01

    Transsynaptic circuit tracing using genetically modified Rabies virus (RV) is an emerging technology for identifying synaptic connections between neurons. Complementing this methodology, it has become possible to assay the basic molecular and cellular properties of neuronal lineages derived from embryonic stem (ES) cells in vitro, and these properties are under intense investigation towards devising cell replacement therapies. Here, we report the generation of a novel mouse ES cell (mESC) line that harbors the genetic elements to allow RV-mediated transsynaptic circuit tracing in ES cell-derived neurons and their synaptic networks. To facilitate transsynaptic tracing, we have engineered a new reporter allele by introducing cDNA encoding tdTomato, the Rabies-G glycoprotein, and the avian TVA receptor into the ROSA26 locus by gene targeting. We demonstrate high-efficiency differentiation of these novel mESCs into functional neurons, show their capacity to functionally connect with primary neuronal cultures as evidenced by immunohistochemistry and electrophysiological recordings, and show their ability to act as source cells for presynaptic tracing of neuronal networks in vitro and in vivo. Together, our data highlight the potential for using genetically engineered stem cells to investigate fundamental mechanisms of synapse and circuit formation with unambiguous identification of presynaptic inputs onto neuronal populations of interest. PMID:22996827

  8. Enriched retinal ganglion cells derived from human embryonic stem cells.

    PubMed

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  9. Regulation of the expression of zinc finger protein genes by microRNAs enriched within acute lymphoblastic leukemia-derived microvesicles.

    PubMed

    Lu, L; Chen, X M; Tao, H M; Xiong, W; Jie, S H; Li, H Y

    2015-01-01

    Microvesicles (MVs) are submicrometric membrane fragments that can "engulf" cytoplasmic contents such as microRNAs (miRNAs) from their cellular origin. The study of miRNAs carried within MVs might provide insights into the roles that miRNAs play in the underlying pathophysiologic processes of acute lymphoblastic leu-kemia (ALL). We identified numerous dysregulated MV miRNAs in patients with B- and T-cell ALL by using Agilent microarray analysis. Selected miRNAs obtained by microarray profiling were validated us-ing quantitative reverse transcription-polymerase chain reaction. Us-ing bioinformatic tools, we found that 118 and 116 miRNAs from B- and T-ALL MVs, respectively, regulated the expression of zinc finger protein (ZFP) genes. For example, zinc finger protein 238 (ZNF238), known as a tumor suppressor, was regulated by miR-20b over-expres-sion. Conversely, ZNF267, a cancer-promoting factor, was mediated by downregulated miR-23a and miR-23b. Considering that miRNAs are generally believed to repress gene expression, antineoplastic ZNF238 was likely inhibited while the level of oncogenic ZNF267 was likely increased by miRNA dysregulation, leading to modifica-tion of the ALL microenvironment. In addition, gene ontology and sig-naling pathway analysis demonstrated that a subset of the ZFP genes targeted by altered MV miRNAs are involved in cellular biological processes including proliferation, differentiation, apoptosis, and cell cycle regulation. These findings indicated that cancer-associated MV miRNAs and their target ZFP genes might be novel pathogenic factors in ALL. However, the specific roles exerted by MV miRNAs and their target ZFP genes on the pathological mechanisms of ALL remain to be further understood. PMID:26505336

  10. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes. PMID:25751085

  11. TISSUE ENGINEERING WITH MENISCUS CELLS DERIVED FROM SURGICAL DEBRIS

    PubMed Central

    Baker, Brendon M.; Nathan, Ashwin S.; Huffman, G. Russell; Mauck, Robert L.

    2009-01-01

    Objective Injuries to the avascular regions of the meniscus fail to heal and so are treated by resection of the damaged tissue. This alleviates symptoms but fails to restore normal load transmission in the knee. Tissue engineering functional meniscus constructs for re-implantation may improve tissue repair. While numerous studies have developed scaffolds for meniscus repair, the most appropriate autologous cell source remains to be determined. In this study, we hypothesized that the debris generated from common meniscectomy procedures would possess cells with potential for forming replacement tissue. We also hypothesized that donor age and the disease status would influence the ability of derived cells to generate functional, fibrocartilaginous matrix. Methods Meniscus derived cells (MDCs) were isolated from waste tissue of ten human donors (seven partial meniscectomies, three total knee arthroplasties) ranging in age from 18–84 years. MDCs were expanded in monolayer culture through passage two and seeded onto fiber-aligned biodegradable nanofibrous scaffolds and cultured in a chemically-defined media. Mechanical properties, biochemical content, and histological features were evaluated over ten weeks of culture. Results Results demonstrated that cells from every donor contributed to increasing biochemical content and mechanical properties of engineered constructs. Significant variability was observed in outcome parameters (cell infiltration, proteoglycan and collagen content, and mechanical properties) amongst donors, but these variations did not correlate with patient age or disease condition. Strong correlations were observed between the amount of collagen deposition within the construct and the tensile properties achieved. In scaffolds seeded with particularly robust cells, construct tensile moduli approached maxima of ~40MPa over the ten week culture period. Conclusions This study demonstrates that cells derived from surgical debris are a potent cell source

  12. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC

    PubMed Central

    Besse, Benjamin; Charrier, Mélinda; Lapierre, Valérie; Dansin, Eric; Lantz, Olivier; Planchard, David; Le Chevalier, Thierry; Livartoski, Alain; Barlesi, Fabrice; Laplanche, Agnès; Ploix, Stéphanie; Vimond, Nadège; Peguillet, Isabelle; Théry, Clotilde; Lacroix, Ludovic; Zoernig, Inka; Dhodapkar, Kavita; Dhodapkar, Madhav; Viaud, Sophie; Soria, Jean-Charles; Reiners, Katrin S.; Pogge von Strandmann, Elke; Vély, Frédéric; Rusakiewicz, Sylvie; Eggermont, Alexander; Pitt, Jonathan M.; Zitvogel, Laurence; Chaput, Nathalie

    2016-01-01

    ABSTRACT Dendritic cell-derived exosomes (Dex) are small extracellular vesicles secreted by viable dendritic cells. In the two phase-I trials that we conducted using the first generation of Dex (IFN-γ-free) in end-stage cancer, we reported that Dex exerted natural killer (NK) cell effector functions in patients. A second generation of Dex (IFN-γ-Dex) was manufactured with the aim of boosting NK and T cell immune responses. We carried out a phase II clinical trial testing the clinical benefit of IFN-γ-Dex loaded with MHC class I- and class II-restricted cancer antigens as maintenance immunotherapy after induction chemotherapy in patients bearing inoperable non-small cell lung cancer (NSCLC) without tumor progression. The primary endpoint was to observe at least 50% of patients with progression-free survival (PFS) at 4 mo after chemotherapy cessation. Twenty-two patients received IFN-γ-Dex. One patient exhibited a grade three hepatotoxicity. The median time to progression was 2.2 mo and median overall survival (OS) was 15 mo. Seven patients (32%) experienced stabilization of >4 mo. The primary endpoint was not reached. An increase in NKp30-dependent NK cell functions were evidenced in a fraction of these NSCLC patients presenting with defective NKp30 expression. Importantly, MHC class II expression levels of the final IFN-γ-Dex product correlated with expression levels of the NKp30 ligand BAG6 on Dex, and with NKp30-dependent NK functions, the latter being associated with longer progression-free survival. This phase II trial confirmed the capacity of Dex to boost the NK cell arm of antitumor immunity in patients with advanced NSCLC. PMID:27141373

  13. Microvesicle formulations used in topical drugs and cosmetics affect product efficiency, performance and allergenicity.

    PubMed

    Madsen, Jakob Torp; Andersen, Klaus Ejner

    2010-01-01

    Attempts to improve the formulations of topical products are continuing processes (ie, to increase cosmetic performance, enhance effects, and protect ingredients from degradation). The development of micro- and nanovesicular systems has led to the marketing of topical drugs and cosmetics that use these technologies. Several articles have reported improved clinical efficacy by the encapsulation of pharmaceuticals in vesicular systems, and the numbers of publications and patents are rising. Some vesicular systems may deliver the drug deeper in the skin as compared to conventional vehicles, or even make transdermal delivery more efficient for a number of drugs. Vesicular systems may also allow a more precise drug delivery to the site of action (ie, the hair follicles) and thereby minimize the applied drug concentration, reducing potential side effects. On the other hand, this may increase the risk of other side effects. Few case reports have suggested that microvesicle formulations may affect the allergenicity of topical products. This article gives an overview of the current knowledge about the topical use of microvesicular systems and the dermatoallergologic aspects. PMID:20920408

  14. Complex N-Linked Glycans Serve as a Determinant for Exosome/Microvesicle Cargo Recruitment*

    PubMed Central

    Liang, Yaxuan; Eng, William S.; Colquhoun, David R.; Dinglasan, Rhoel R.; Graham, David R.; Mahal, Lara K.

    2014-01-01

    Exosomes, also known as microvesicles (EMVs), are nano-sized membranous particles secreted from nearly all mammalian cell types. These nanoparticles play critical roles in many physiological processes including cell-cell signaling, immune activation, and suppression and are associated with disease states such as tumor progression. The biological functions of EMVs are highly dependent on their protein composition, which can dictate pathogenicity. Although some mechanisms have been proposed for the regulation of EMV protein trafficking, little attention has been paid to N-linked glycosylation as a potential sorting signal. Previous work from our laboratory found a conserved glycan signature for EMVs, which differed from that of the parent cell membranes, suggesting a potential role for glycosylation in EMV biogenesis. In this study, we further explore the role of glycosylation in EMV protein trafficking. We identify EMV glycoproteins and demonstrate alteration of their recruitment as a function of their glycosylation status upon pharmacological manipulation. Furthermore, we show that genetic manipulation of the glycosylation levels of a specific EMV glycoprotein, EWI-2, directly impacts its recruitment as a function of N-linked glycan sites. Taken together, our data provide strong evidence that N-linked glycosylation directs glycoprotein sorting into EMVs. PMID:25261472

  15. Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles

    PubMed Central

    2006-01-01

    Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331

  16. The Role of Microvesicles Derived from Mesenchymal Stem Cells in Lung Diseases

    PubMed Central

    Chen, Jie; Li, Chonghui; Chen, Liangan

    2015-01-01

    Microvesicles (MVs) are membrane vesicles that are released by many types of cells and have recently been considered important mediators of cell-to-cell communication. MVs serve as a vehicle to transfer proteins and messenger RNA and microRNA (miRNA) to distant cells, which alters the gene expression, proliferation, and differentiation of the recipient cells. Several studies have demonstrated that mesenchymal stem cells (MSCs) have the capacity to reverse acute and chronic lung injury in different experimental models through paracrine mechanisms. This paracrine action may be partially accounted for by MVs that are derived from MSCs. MSC-derived MVs may confer a stem cell-like phenotype to injured cells with the consequent activation of self-regenerative programmers. In this review, we summarize the characteristics and biological activities of MSC-derived MVs, and we describe their potential in novel therapeutic approaches in regenerative medicine to repair damaged tissues. Additionally, we provide an overview of studies that have assessed the role of MSC-derived MVs in lung diseases, including the mechanisms that may account for their therapeutic potential. Finally, we discuss the clinical use of MSC-derived MVs with several suggestions for enhancing their therapeutic efficiency. PMID:26064975

  17. Equine Amniotic Microvesicles and Their Anti-Inflammatory Potential in a Tenocyte Model In Vitro.

    PubMed

    Lange-Consiglio, Anna; Perrini, Claudia; Tasquier, Riccardo; Deregibus, Maria Chiara; Camussi, Giovanni; Pascucci, Luisa; Marini, Maria Giovanna; Corradetti, Bruna; Bizzaro, Davide; De Vita, Bruna; Romele, Pietro; Parolini, Ornella; Cremonesi, Fausto

    2016-04-15

    Administration of horse amniotic mesenchymal cells (AMCs) and their conditioned medium (AMC-CM) improves the in vivo recovery of spontaneous equine tendon lesions and inhibits in vitro proliferation of peripheral blood mononuclear cells (PBMC). This process may involve microvesicles (MVs) as an integral component of cell-to-cell communication during tissue regeneration. In this study, the presence and type of MVs secreted by AMCs were investigated and the response of equine tendon cells to MVs was studied using a dose-response curve at different concentrations and times. Moreover, the ability of MVs to counteract in vitro inflammation of tendon cells induced by lipopolysaccharide was studied through the expression of some proinflammatory genes such as metallopeptidase (MPP) 1, 9, and 13 and tumor necrosis factor-α (TNFα), and expression of transforming growth factor-β (TGF-β). Lastly, the immunomodulatory potential of MVs was investigated. Results show that AMCs secrete MVs ranging in size from 100 to 200 nm. An inverse relationship between concentration and time was found in their uptake by tendon cells: the maximal uptake occurred after 72 h at a concentration of 40 × 10(6) MVs/mL. MVs induced a downregulation of MMP1, MMP9, MMP13, and TNFα expression without affecting PBMC proliferation, contrary to CM and supernatant. Our data suggest that MVs contribute to in vivo healing of tendon lesions, alongside soluble factors in AMC-CM. PMID:26914245

  18. Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients

    PubMed Central

    Muntión, Sandra; Ramos, Teresa L.; Diez-Campelo, María; Rosón, Beatriz; Sánchez-Abarca, Luis Ignacio; Misiewicz-Krzeminska, Irena; Preciado, Silvia; Sarasquete, María-Eugenia; de las Rivas, Javier; González, Marcos; Sánchez-Guijo, Fermín; del Cañizo, María-Consuelo

    2016-01-01

    Exosomes/microvesicles (MVs) provide a mechanism of intercellular communication. Our hypothesis was that mesenchymal stromal cells (MSC) from myelodysplastic syndrome (MDS) patients could modify CD34+ cells properties by MVs. They were isolated from MSC from MDS patients and healthy donors (HD). MVs from 30 low-risk MDS patients and 27 HD were purified by ExoQuick-TC™ or ultracentrifugation and identified by transmission electron microscopy, flow cytometry (FC) and western blot for CD63. Incorporation of MVs into CD34+ cells was analyzed by FC, and confocal and fluorescence microscopy. Changes in hematopoietic progenitor cell (HPC) properties were assessed from modifications in microRNAs and gene expression in CD34+ cells as well as viability and clonogenic assays of CD34+ cells after MVs incorporation. Some microRNAs were overexpressed in MVs from patients MSC and two of them, miR-10a and miR-15a, were confirmed by RT-PCR. These microRNAs were transferred to CD34+ cells, modifying the expression of MDM2 and P53 genes, which was evaluated by RT-PCR and western blot. Finally, examining CD34+ cells properties after incorporation, higher cell viability (p = 0.025) and clonogenic capacity (p = 0.037) were observed when MVs from MDS patients were incorporated. In summary, we show that BM-MSC release MVs with a different cargo in MDS patients compared with HD. These structures are incorporated into HPC and modify their properties. PMID:26836120

  19. UVB Generates Microvesicle Particle Release in Part Due to Platelet-activating Factor Signaling.

    PubMed

    Bihl, Ji C; Rapp, Christine M; Chen, Yanfang; Travers, Jeffrey B

    2016-05-01

    The lipid mediator platelet-activating factor (PAF) and oxidized glycerophosphocholine PAF agonists produced by ultraviolet B (UVB) have been demonstrated to play a pivotal role in UVB-mediated processes, from acute inflammation to delayed systemic immunosuppression. Recent studies have provided evidence that microvesicle particles (MVPs) are released from cells in response to various signals including stressors. Importantly, these small membrane fragments can interact with various cell types by delivering bioactive molecules. The present studies were designed to test if UVB radiation can generate MVP release from epithelial cells, and the potential role of PAF receptor (PAF-R) signaling in this process. We demonstrate that UVB irradiation of the human keratinocyte-derived cell line HaCaT resulted in the release of MVPs. Similarly, treatment of HaCaT cells with the PAF-R agonist carbamoyl PAF also generated equivalent amounts of MVP release. Of note, pretreatment of HaCaT cells with antioxidants blocked MVP release from UVB but not PAF-R agonist N-methyl carbamyl PAF (CPAF). Importantly, UVB irradiation of the PAF-R-negative human epithelial cell line KB and KB transduced with functional PAF-Rs resulted in MVP release only in PAF-R-positive cells. These studies demonstrate that UVB can generate MVPs in vitro and that PAF-R signaling appears important in this process. PMID:26876152

  20. Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content

    PubMed Central

    Zhou, Jing; Ghoroghi, Shima; Benito-Martin, Alberto; Wu, Hao; Unachukwu, Uchenna John; Einbond, Linda Saxe; Guariglia, Sara; Peinado, Hector; Redenti, Stephen

    2016-01-01

    Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm–1uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue. PMID:26797168

  1. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later.

    PubMed

    Ratajczak, Mariusz Z; Ratajczak, Janina

    2016-12-01

    Extracellular microvesicles (ExMVs) are part of the cell secretome, and evidence has accumulated for their involvement in several biological processes. Fourteen years ago our team demonstrated for the first time that ExMVs carry functional RNA species and proteins from one cell to another, an observation that opened up the new research field of horizontal transfer of bioactive molecules in cell-to-cell communication. Moreover, the presence of mRNA, noncoding RNA, and miRNA in ExMVs in blood and other biological fluids opened up the possibility of employing ExMVs as new detection markers for pathological processes, and ExMVs became a target for "liquid biopsy" approaches. While ExMV-derived mRNAs may be translated in target cells into appropriate proteins, miRNAs regulate expression of corresponding mRNA species, and both RNA-depended ExMV-mediated mechanisms lead to functional changes in the target cells. Following from this observation, several excellent papers have been published that confirm the existence of the horizontal transfer of RNA. Moreover, in addition to RNA, proteins, bioactive lipids, infectious particles and intact organelles such as mitochondria may follow a similar mechanism. In this review we will summarize the impressive progress in this field-14 years after initial report. PMID:26943717

  2. MSC Microvesicles for the Treatment of Lung Disease: A New Paradigm for Cell-Free Therapy

    PubMed Central

    Sdrimas, Konstantinos

    2014-01-01

    Abstract Significance: Bronchopulmonary dysplasia (BPD), also known as chronic lung disease of infancy, is a major complication of preterm birth that, despite improvements in neonatal respiratory support and perinatal care, remains an important cause of morbidity and mortality, often with severe adverse neurodevelopmental sequelae. Even with major advances in our understanding of the pathogenesis of this disease, BPD remains essentially without adequate treatment. Recent Advances: Cell-based therapies arose as a promising treatment for acute and chronic lung injury in many experimental models of disease. Currently, more than 3000 human clinical trials employing cell therapy for the treatment of diverse diseases, including cardiac, neurologic, immune, and respiratory conditions, are ongoing or completed. Among the treatments, mesenchymal stem cells (MSCs) are the most studied and have been extensively tested in experimental models of BPD, pulmonary hypertension, pulmonary fibrosis, and acute lung injury. Critical Issues: Despite the promising potential, MSC therapy for human lung disease still remains at an experimental stage and optimal transplantation conditions need to be determined. Although the mechanism of MSC action can be manifold, accumulating evidence suggests a predominant paracrine, immunomodulatory, and cytoprotective effect. Future Directions: The current review summarizes the effect of MSC treatment in models of lung injury, including BPD, and focuses on the MSC secretome and, specifically, MSC-derived microvesicles as potential key mediators of therapeutic action that can be the focus of future therapies. Antioxid. Redox Signal. 21, 1905–1915. PMID:24382303

  3. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures

    SciTech Connect

    Guescini, M.; Leo, G.; Genedani, S.; Carone, C.; Pederzoli, F.; Ciruela, F.; Guidolin, D.; Stocchi, V.; Mantuano, M.; Borroto-Escuela, D.O.; Fuxe, K.; Agnati, L.F.

    2012-03-10

    Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A{sub 2A} and D{sub 2} receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D{sub 2}R-CFP or A{sub 2A}R-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D{sub 2}R-CFP and A{sub 2A}R-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A{sub 2A}R positive MVs were treated with the adenosine A{sub 2A} receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A{sub 2A}Rs were functionally competent in target cells. These findings demonstrate that A{sub 2A} receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.

  4. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  5. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes

    PubMed Central

    Maillet, Agnes; Tan, Kim; Chai, Xiaoran; Sadananda, Singh N.; Mehta, Ashish; Ooi, Jolene; Hayden, Michael R.; Pouladi, Mahmoud A.; Ghosh, Sujoy; Shim, Winston; Brunham, Liam R.

    2016-01-01

    Doxorubicin is a highly efficacious anti-cancer drug but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity (DIC) remain incompletely understood. We investigated the characteristics and molecular mechanisms of DIC in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). We found that doxorubicin causes dose-dependent increases in apoptotic and necrotic cell death, reactive oxygen species production, mitochondrial dysfunction and increased intracellular calcium concentration. We characterized genome-wide changes in gene expression caused by doxorubicin using RNA-seq, as well as electrophysiological abnormalities caused by doxorubicin with multi-electrode array technology. Finally, we show that CRISPR-Cas9-mediated disruption of TOP2B, a gene implicated in DIC in mouse studies, significantly reduces the sensitivity of hPSC-CMs to doxorubicin-induced double stranded DNA breaks and cell death. These data establish a human cellular model of DIC that recapitulates many of the cardinal features of this adverse drug reaction and could enable screening for protective agents against DIC as well as assessment of genetic variants involved in doxorubicin response. PMID:27142468

  6. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    PubMed

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions. PMID:26439175

  7. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes.

    PubMed

    Maillet, Agnes; Tan, Kim; Chai, Xiaoran; Sadananda, Singh N; Mehta, Ashish; Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A; Ghosh, Sujoy; Shim, Winston; Brunham, Liam R

    2016-01-01

    Doxorubicin is a highly efficacious anti-cancer drug but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity (DIC) remain incompletely understood. We investigated the characteristics and molecular mechanisms of DIC in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). We found that doxorubicin causes dose-dependent increases in apoptotic and necrotic cell death, reactive oxygen species production, mitochondrial dysfunction and increased intracellular calcium concentration. We characterized genome-wide changes in gene expression caused by doxorubicin using RNA-seq, as well as electrophysiological abnormalities caused by doxorubicin with multi-electrode array technology. Finally, we show that CRISPR-Cas9-mediated disruption of TOP2B, a gene implicated in DIC in mouse studies, significantly reduces the sensitivity of hPSC-CMs to doxorubicin-induced double stranded DNA breaks and cell death. These data establish a human cellular model of DIC that recapitulates many of the cardinal features of this adverse drug reaction and could enable screening for protective agents against DIC as well as assessment of genetic variants involved in doxorubicin response. PMID:27142468

  8. Induced pluripotent stem cell-derived mesenchymal stem cells: A leap toward personalized therapies.

    PubMed

    Whitt, Jason; Vallabhaneni, Krishna C; Penfornis, Patrice; Pochampally, Radhika

    2016-01-01

    Mesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960's to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment. PMID:26423301

  9. Leukemia Stem Cell-Released Microvesicles Promote the Survival and Migration of Myeloid Leukemia Cells and These Effects Can Be Inhibited by MicroRNA34a Overexpression

    PubMed Central

    Wang, Yue; Cheng, Qian; Liu, Jing; Dong, Min

    2016-01-01

    Leukemia stem cells (LSCs) play the major role in relapse of acute myeloid leukemia (AML). Recent evidence indicates that microvesicles (MVs) released from cancer stem cells can promote tumor growth and invasion. In this study, we investigated whether LSCs-released MVs (LMVs) can regulate the malignance of AML cells and whether overexpression of tumor suppressive microRNA (miR), miR34a, is able to interrupt this process. LSCs were transfected with miRNA control (miRCtrl) or miR34a mimic for producing LMVs, respectively, defined as LMVsmiRCtrl and LMVsmiR34a. The effect of miR34a transfection on LSC proliferation and the effects of LMVsmiRCtrl or LMVsmiR34a on the proliferation, migration, and apoptosis of AML cells (after LSC depletion) were determined. The levels of miR34a targets, caspase-3 and T cell immunoglobulin mucin-3 (Tim-3), were analyzed. Results showed that (1) LMVsmiRCtrl promoted proliferation and migration and inhibited apoptosis of AML cells, which were associated with miR34a deficit; (2) transfection of miR34a mimic inhibited LSC proliferation and increased miR34a level in LMVsmiR34a; (3) LMVsmiR34a produced opposite effects as compared with LMVsmiRCtrl, which were associated with the changes of caspase-3 and Tim-3 levels. In summary, LMVs support AML cell malignance and modulating miR34a could offer a new approach for the management of AML. PMID:27127521

  10. Improved Methods to Generate Spheroid Cultures from Tumor Cells, Tumor Cells & Fibroblasts or Tumor-Fragments: Microenvironment, Microvesicles and MiRNA

    PubMed Central

    Lao, Zheng; Kelly, Catherine J.; Yang, Xiang-Yang; Jenkins, W. Timothy; Toorens, Erik; Ganguly, Tapan; Evans, Sydney M.; Koch, Cameron J.

    2015-01-01

    Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF) spheroids in only 2–3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids). Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma) with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia) and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids. PMID:26208323

  11. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases.

    PubMed

    Liepelt, Anke; Tacke, Frank

    2016-08-01

    The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer. PMID:27313175

  12. Smoking alters circulating plasma microvesicle pattern and microRNA signatures.

    PubMed

    Badrnya, S; Baumgartner, R; Assinger, A

    2014-07-01

    Circulating plasma microvesicles (PMVs) and their microRNA content are involved in the development of atherosclerosis and could serve as biomarkers for cardiovascular disease (CVD) progression. However, little is known on how smoking influences the levels of PMVs and microRNA signatures in vivo. Therefore, we aimed to investigate the effects of smoking on circulating PMV levels and CVD-related PMV-derived microRNAs in young, healthy smokers. Twenty young (10 female, 10 male; 25 ± 4 years) healthy smokers (16 ± 6 cigarettes per day for 8 ± 4 years) and age- and sex-matched controls were included in this study. While complete blood count revealed no differences between both groups, smoking significantly enhanced intracellular reactive oxygen species in platelets and leukocytes as well as platelet-leukocyte aggregate formation. Total circulating PMV counts were significantly reduced in smokers, which could be attributed to decreased platelet-derived PMVs. While the number of endothelial PMVs remained unaffected, smoking propagated circulating leukocyte-derived PMVs. Despite reduced total PMVs, PMV-derived microRNA-profiling of six smoker/control pairs revealed a decrease of only a single microRNA, the major platelet-derived microRNA miR-223. Conversely, miR-29b, a microRNA associated with aortic aneurysm and fibrosis, and RNU6-2, a commonly used reference-RNA, were significantly up-regulated. Smoking leads to alterations in the circulating PMV profile and changes in the PMV-derived microRNA signature already in young, healthy adults. These changes may contribute to the development of smoking-related cardiovascular pathologies. Moreover, these smoking-related changes have to be considered when microRNA or PMV profiles are used as disease-specific biomarkers. PMID:24573468

  13. Influence of a low-carbohydrate diet on endothelial microvesicles in overweight women.

    PubMed

    Wekesa, Antony L; Doyle, Lorna M; Fitzmaurice, Doreen; O'Donovan, Orla; Phelan, John P; Ross, Mark D; Cross, Keith S; Harrison, Michael

    2016-05-01

    Low-carbohydrate diets (LCD) are increasing in popularity, but their effect on vascular health has been questioned. Endothelial microvesicles (EMV) are membrane-derived vesicles with the potential to act as a sensitive prognostic biomarker of vascular health and endothelial function. The aim of this study was to examine the influence of a LCD on EMV and other endothelial biomarkers of protein origin. Twenty-four overweight women (age, 48.4 ± 0.6 years; height, 1.60 ± 0.07 m; body mass, 76.5 ± 9.1 kg; body mass index, 28.1 ± 2.7 kg·m(-2); waist circumference, 84.1 ± 7.4 cm; mean ± standard deviation) were randomised to either 24 weeks on their normal diet (ND) or a LCD, after which they crossed over to 24 weeks on the alternative diet. Participants were assisted in reducing carbohydrate intake, but not below 40 g·day(-1). Body composition and endothelial biomarkers were assessed at the crossover point and at the end of the study. Daily carbohydrate intake (87 ± 7 versus 179 ± 11 g) and the percentage of energy derived from carbohydrate (29% versus 44%) were lower (p < 0.05) on the LCD compared to the ND, but absolute fat and saturated fat intake were unchanged. Body mass and waist circumference were 3.7 ± 0.8 kg and 3.5 ± 1.0 cm lower (p < 0.05), respectively, after the LCD compared with the ND phases. CD31(+)CD41(-)EMV, soluble (s) thrombomodulin, sE-selectin, sP-selectin, serum amyloid A and C-reactive protein were lower (p < 0.05) after the LCD compared to the ND, but serum lipids and apolipoproteins were not different. EMV along with a range of endothelial and inflammatory biomarkers are reduced by a LCD that involves modest weight loss. PMID:26963592

  14. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation

    PubMed Central

    Gosselin, Romain-Daniel; Meylan, Patrick; Decosterd, Isabelle

    2013-01-01

    Glutamate transport through astrocytic excitatory amino-acid transporters (EAAT)-1 and EAAT-2 is paramount for neural homeostasis. EAAT-1 has been reported in secreted extracellular microvesicles (eMV, such as exosomes) and because the protein kinase C (PKC) family controls the sub-cellular distribution of EAATs, we have explored whether PKCs drive EAATs into eMV. Using rat primary astrocytes, confocal immunofluorescence and ultracentrifugation on sucrose gradient we here report that PKC activation by phorbol myristate acetate (PMA) reorganizes EAAT-1 distribution and reduces functional [3H]-aspartate reuptake. Western-blots show that EAAT-1 is present in eMV from astrocyte conditioned medium, together with NaK ATPase and glutamine synthetase all being further increased after PMA treatment. However, nanoparticle tracking analysis reveals that PKC activation did not change particle concentration. Functional analysis indicates that eMV have the capacity to reuptake [3H]-aspartate. In vivo, we demonstrate that spinal astrocytic reaction induced by peripheral nerve lesion (spared nerve injury, SNI) is associated with a phosphorylation of PKC δ together with a shift of EAAT distribution ipsilaterally. Ex vivo, spinal explants from SNI rats release eMV with an increased content of NaK ATPase, EAAT-1 and EAAT-2. These data indicate PKC and cell activation as important regulators of EAAT-1 incorporation in eMV, and raise the possibility that microvesicular EAAT-1 may exert extracellular functions. Beyond a putative role in neuropathic pain, this phenomenon may be important for understanding neural homeostasis and a wide range of neurological diseases associated with astrocytic reaction as well as non-neurological diseases linked to eMV release. PMID:24368897

  15. Stem Cells and Stem Cell-derived Tissues and Their Use in Safety Assessment*

    PubMed Central

    Kolaja, Kyle

    2014-01-01

    Toxicology has long relied on animal models in a tedious approach to understanding risk of exposure to an uncharacterized molecule. Stem cell-derived tissues can be made in high purity, quality, and quantity to enable a new approach to this problem. Currently, stem cell-derived tissues are primarily “generic” genetic backgrounds; the future will see the integration of various genetic backgrounds and complex three-dimensional models to create truly unique in vitro organoids. This minireview focuses on the state of the art of a number of stem cell-derived tissues and details their application in toxicology. PMID:24362027

  16. EMMPRIN Is Secreted by Human Uterine Epithelial Cells in Microvesicles and Stimulates Metalloproteinase Production by Human Uterine Fibroblast Cells

    PubMed Central

    Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.

    2012-01-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071

  17. miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function.

    PubMed

    Noman, Muhammad Zaeem; Janji, Bassam; Berchem, Guy; Chouaib, Salem

    2016-09-28

    It has become clear that tumor stroma components are engaged in an active and complex molecular cross-talk that has serious implications for immunological recognition of tumor cells in shaping the microenvironment. Hypoxia which is a major component of tumor microenvironment influences the characteristics of neoplasia by favoring heterogeneity, invasiveness, metastatic potency and tumor progression. In this regard, an important mode of communication between carcinoma cells and immune cells may involve tumor-derived microvesicles, which are able to carry lipids, proteins, mRNAs and miRNAs. This review covers new evidence indicating that the efficacy of the cell-mediated cytotoxicity (CTLs and NK) may be dependent on hypoxia induced miRNA and microvesicles in the tumor microenvironment by inhibiting the efficacy of natural host anti-tumor immune response and improving the ability of tumors to avoid immunosurveillance. This emphasizes that hypoxic tumors actively develop additional mechanisms to suppress the sensing of the immunologic danger signals in order to survive and propagate without inciting anti-tumor immunity. PMID:26523672

  18. Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

    PubMed Central

    Choi, Moonhwan; Ban, Taehyun; Rhim, Taiyoun

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs. PMID:24598998

  19. Niacinamide pretreatment reduces microvesicle formation in hairless guinea pigs cutaneously exposed to sulfur mustard. (Reannouncement with new availability information)

    SciTech Connect

    Yourick, J.J.; Clark, C.R.; Mitcheltree, L.W.

    1991-12-31

    It has been proposed that sulfur mustard (HD) may indirectly activate poly(ADP-ribose) polymerase (PADPRP) by alkylating cellular DNA (Papirmeister et al., 1985). Activation of PADPRP results in the depletion of cellular NAD+ which initiates a series of biochemical processes that have been proposed to culminate in blister formation. Preventing PADPRP activation and NAD+ depletion should inhibit blister formation. Niacinamide is both an inhibitor of PADPRP and a precursor for NAD+ synthesis. The present study was undertaken to determine whether niacinamide can protect against HD-induced microvesication in cutaneously exposed hairless guinea pigs. Each site was exposed to HD for 8 min by means of a vapor cup. Niacinamide (750 mg/kg, ip) given as a 30-min pretreatment inhibited microvesicle formation by 50% after HD application. However, niacinamide given 2 hr after HD application did not reduce microvesicle formation. There was no benefit when niacinamide was given as both a pretreatment and treatment when compared to niacinamide given only as a pretreatment. The reduction in microvesication 24 hr after HD did not correlate with skin NAD+ content. Niacinamide did not reduce the degree of erythema or edema. Ballooning degeneration of basal epidermal cells was present in some niacinamide pretreated HD exposure sites.

  20. Membrane retrieval in the guinea-pig neurohypophysis. Isolation and characterization of secretory vesicles and coated microvesicles after radiolabel incorporation in vivo.

    PubMed

    Saermark, T; Jones, P M; Robinson, I C

    1984-03-01

    We have developed small-scale methods for the isolation and biochemical characterization of subcellular fractions from single guinea-pig posterior-pituitary glands. Secretory vesicles and coated microvesicles produced in this way were of similar purity to those isolated from large amounts of tissue by conventional ultracentrifugation. [35S]Cysteine injected into the hypothalamus was found in the soluble contents of secretory vesicles isolated from the neural lobes 24 h later. High-pressure liquid-chromatographic analysis revealed that the radiolabel was incorporated into the expected neurosecretory products (oxytocin, vasopressin and neurophysin) and also into a biosynthetic intermediate in the vasopressin system. The membranes of secretory vesicles were labelled with [3H]choline 24 h after its hypothalamic injection. Little or no [3H]choline could be demonstrated in coated microvesicles at this time, although these structures were labelled 5 days after injection. Stimulating hormone secretion by chronic dehydration produced a significant fall in [3H]choline content of the secretory-vesicle membranes without any transfer of label into coated microvesicles, suggesting that coated microvesicles are not involved in membrane retrieval in the neurohypophysis. PMID:6712633

  1. Membrane retrieval in the guinea-pig neurohypophysis. Isolation and characterization of secretory vesicles and coated microvesicles after radiolabel incorporation in vivo.

    PubMed Central

    Saermark, T; Jones, P M; Robinson, I C

    1984-01-01

    We have developed small-scale methods for the isolation and biochemical characterization of subcellular fractions from single guinea-pig posterior-pituitary glands. Secretory vesicles and coated microvesicles produced in this way were of similar purity to those isolated from large amounts of tissue by conventional ultracentrifugation. [35S]Cysteine injected into the hypothalamus was found in the soluble contents of secretory vesicles isolated from the neural lobes 24 h later. High-pressure liquid-chromatographic analysis revealed that the radiolabel was incorporated into the expected neurosecretory products (oxytocin, vasopressin and neurophysin) and also into a biosynthetic intermediate in the vasopressin system. The membranes of secretory vesicles were labelled with [3H]choline 24 h after its hypothalamic injection. Little or no [3H]choline could be demonstrated in coated microvesicles at this time, although these structures were labelled 5 days after injection. Stimulating hormone secretion by chronic dehydration produced a significant fall in [3H]choline content of the secretory-vesicle membranes without any transfer of label into coated microvesicles, suggesting that coated microvesicles are not involved in membrane retrieval in the neurohypophysis. Images Fig. 1. PMID:6712633

  2. Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering.

    PubMed

    Zhang, Weixiang; Zhu, Yun; Li, Jia; Guo, Quanyi; Peng, Jiang; Liu, Shichen; Yang, Jianhua; Wang, Yu

    2016-06-01

    The extracellular matrix (ECM) is a dynamic and intricate microenvironment with excellent biophysical, biomechanical, and biochemical properties, which can directly or indirectly regulate cell proliferation, adhesion, migration, and differentiation, as well as plays key roles in homeostasis and regeneration of tissues and organs. The ECM has attracted a great deal of attention with the rapid development of tissue engineering in the field of regenerative medicine. Tissue-derived ECM scaffolds (also referred to as decellularized tissues and whole organs) are considered a promising therapy for the repair of musculoskeletal defects, including those that are widely used in orthopedics, although there are a few shortcomings. Similar to tissue-derived ECM scaffolds, cell-derived ECM scaffolds also have highly advantageous biophysical and biochemical properties, in particular their ability to be produced in vitro from a number of different cell types. Furthermore, cell-derived ECM scaffolds more closely resemble native ECM microenvironments. The products of cell-derived ECM have a wide range of biomedical applications; these include reagents for cell culture substrates and biomaterials for scaffolds, hybrid scaffolds, and living cell sheet coculture systems. Although cell-derived ECM has only just begun to be investigated, it has great potential as a novel approach for cell-based tissue repair in orthopedic tissue engineering. This review summarizes and analyzes the various types of cell-derived ECM products applied in cartilage, bone, and nerve tissue engineering in vitro or in vivo and discusses future directions for investigation of cell-derived ECM. PMID:26671674

  3. Cancer

    MedlinePlus

    ... Leukemia Liver cancer Non-Hodgkin lymphoma Ovarian cancer Pancreatic cancer Testicular cancer Thyroid cancer Uterine cancer ... have any symptoms. In certain cancers, such as pancreatic cancer, symptoms often do not start until the disease ...

  4. Impact of collection, isolation and storage methodology of circulating microvesicles on flow cytometric analysis

    PubMed Central

    KONG, FANCONG; ZHANG, LIMING; WANG, HONGXIANG; YUAN, GUOLIN; GUO, ANYUAN; LI, QIUBAI; CHEN, ZHICHAO

    2015-01-01

    Microvesicles (MVs) in body fluids participate in a variety of physical and pathological processes, and are regarded as potential biomarkers for numerous diseases. Flow cytometry (FCM) is among the most frequently used techniques for MV detection. However, different handling methods unavoidably cause pre-analytical variations in the counts and sizes of MVs determined by FCM. The aim of the present study was to investigate the effect of centrifugation, storage conditions and anticoagulant on MV measurements. Blood samples were obtained from 13 healthy donors, including 4 women and 9 men. Calcein-AM staining was used to label MVs and assess the impact of pre-analytical preparation, including centrifugation, and storage conditions on MV measurements obtained using FCM. The range of factors investigated for comparison included: Platelet-free plasma (PFP) stored at −80°C for 1 or 4 weeks; MVs stored at 4°C for 3–4 days or 1 week; MVs frozen at −80°C for 1 or 4 weeks; and anticoagulants, either heparin or ethylenediaminetetraacetic acid (EDTA). No statistically significant differences in MV counts were detected between the two centrifugation speeds (16,000 and 20,500 × g) or among the three centrifugation times (15, 30 and 60 min) investigated. Similarly, no significant differences were noted in MV counts between the two anticoagulants tested (heparin and EDTA). However, the storage of PFP or MVs in heparin-anticoagulated plasma for different periods markedly affected the detected MV counts and size distribution. The counts and sizes of MVs from EDTA-anticoagulated plasma were only affected when the MVs were frozen at −80°C for 4 weeks. In conclusion, calcein-AM is able to efficiently identify MVs from plasma and may be an alternative to Annexin V for MV staining. EDTA preserves the MV counts and size more accurately compared with heparin under calcein-AM staining. PFP centrifuged at 16,000 × g for 15 min is sufficient to isolate MVs, which enables the

  5. Microvesicle phenotypes are associated with transfusion requirements and mortality in subjects with severe injuries

    PubMed Central

    Matijevic, Nena; Wang, Yao-Wei W.; Holcomb, John B.; Kozar, Rosemary; Cardenas, Jessica C.; Wade, Charles E.

    2015-01-01

    Background Severe injury often results in substantial bleeding and mortality. Injury provokes cellular activation and release of extracellular vesicles. Circulating microvesicles (MVs) are predominantly platelet-derived and highly procoagulant. They support hemostasis and vascular function. The roles of MVs in survival after severe injury are largely unknown. We hypothesized that altered MV phenotypes would be associated with transfusion requirements and poor outcomes. Methods This single-centre study was approved by the Institutional Review Board. The study cohort consisted of patients with major trauma requiring blood product transfusion and 26 healthy controls. Plasma samples for MVs were collected upon admission to the emergency department (n=169) and post-resuscitation (n=42), and analysed by flow cytometry for MV counts and cellular origin: platelet (PMV), erythrocyte (RMV), leukocyte (LMV), endothelial (EMV), tissue factor (TFMV), and annexin V (AVMV). Twenty-four hour mortality is the outcome measurement used to classify survivors versus non-survivors. Data were compared over time and analysed with demographic and clinical data. Results The median age was 34 (IQR 23, 51), 72% were male, Injury Severity Score was 29 (IQR 19, 36), and 24 h mortality was 13%. MV levels and phenotypes differed between patients and controls. Elevated admission EMVs were found both in survivors (409/µL) and non-survivors (393/µL) compared to controls (23/µL, p<0.001) and persisted over time. Admission levels of PMV, AVMV, RMV, and TFMV were significantly lower in patients who died compared to survivors, but were not independently associated with the 24 h mortality rate. Patients with low MV levels at admission received the most blood products within the first 24 h. AVMV and PMV levels either increased over time or stabilized in survivors but decreased in non-survivors, resulting in significantly lower levels at intensive care unit admission in non-survivors (1,048 vs. 1

  6. Leukocyte Cell-Derived Chemotaxin 2-Associated Amyloidosis: A Recently Recognized Disease with Distinct Clinicopathologic Characteristics.

    PubMed

    Nasr, Samih H; Dogan, Ahmet; Larsen, Christopher P

    2015-11-01

    Amyloidosis derived from leukocyte cell-derived chemotaxin 2 is a recently recognized form of amyloidosis, and it has already been established as a frequent form of systemic amyloidosis in the United States, with predominant involvement of kidney and liver. The disease has a strong ethnic bias, affecting mainly Hispanics (particularly Mexicans). Additional ethnic groups prone to develop amyloidosis derived from leukocyte cell-derived chemotaxin 2 include Punjabis, First Nations people in British Columbia, and Native Americans. Most patients are elderly who present with chronic renal insufficiency and bland urinary sediment. Proteinuria is variable, being absent altogether in about one third of patients. Liver involvement is frequently an incidental finding. Amyloidosis derived from leukocyte cell-derived chemotaxin 2 deposits shows a characteristic distribution: in the kidney, there is consistent involvement of cortical interstitium, whereas in the liver, there is a preferential involvement of periportal and pericentral vein regions. Concurrent renal disease is frequent, with diabetic nephropathy and IgA nephropathy being the most common. Patient survival is excellent, likely because of the rarity of cardiac involvement, whereas renal survival is guarded, with a median renal survival of 62 months in those without concurrent renal disease. There is currently no efficacious therapy for amyloidosis derived from leukocyte cell-derived chemotaxin 2 amyloidosis. Renal transplantation seems to be a reasonable treatment for patients with advanced renal failure, although the disease may recur in the allograft. The pathogenesis of amyloidosis derived from leukocyte cell-derived chemotaxin 2 amyloidosis has not yet been elucidated. It could be a result of leukocyte cell-derived chemotaxin 2 overexpression by hepatocytes either constitutively (controlled by yet-uncharacterized genetic defects) or secondary to hepatocellular damage. It is critical not to misdiagnose amyloidosis

  7. Noncoding RNAs in Cancer Immunology.

    PubMed

    Li, Qian; Liu, Qiang

    2016-01-01

    Cancer immunology is the study of interaction between cancer cells and immune system by the application of immunology principle and theory. With the recent approval of several new drugs targeting immune checkpoints in cancer, cancer immunology has become a very attractive field of research and is thought to be the new hope to conquer cancer. This chapter introduces the aberrant expression and function of noncoding RNAs, mainly microRNAs and long noncoding RNAs, in tumor-infiltrating immune cells, and their significance in tumor immunity. It also illustrates how noncoding RNAs are shuttled between tumor cells and immune cells in tumor microenvironments via exosomes or other microvesicles to modulate tumor immunity. PMID:27376738

  8. Biochemical and Biologic Characterization of Exosomes and Microvesicles as Facilitators of HIV-1 Infection in Macrophages1

    PubMed Central

    Kadiu, Irena; Narayanasamy, Prabagaran; Dash, Prasanta K.; Zhang, Wei; Gendelman, Howard E.

    2013-01-01

    Exosomes and microvesicles are cell membranous sacs originating from multivesicular bodies and plasma membranes that facilitate long-distance intercellular communications. Lipidomic, proteomic and cell biologic approaches uncovered processes by which the human immunodeficiency virus type-1 (HIV-1) can use exosomes and MV to facilitate its dissemination. Macrophage MV and exosomes were isolated by immunoaffinity and sucrose cushion centrifugation and characterized by morphologic, biochemical and molecular assays. HIV-1 was “entrapped” in exosome aggregates. Robust HIV-1 replication followed infection with exosome-enhanced fractions isolated from infected cell supernatants. MV and exosomes facilitated viral infection that was affected by a range of cell surface receptors and adhesion proteins. HIV-1 readily completed its life cycle in human monocyte-derived macrophages but not in CD4 negative cells. The data support a significant role for exosomes as facilitators of viral infection. PMID:22711894

  9. Extracellular vesicles: Emerging targets for cancer therapy

    PubMed Central

    Vader, Pieter; Breakefield, Xandra O.; Wood, Matthew J.A.

    2014-01-01

    Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV-mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anti-cancer therapy. Here, we summarize the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread. PMID:24703619

  10. Isolated nerve endings (neurosecretosomes) from the posterior pituitary. Partial separation of vasopressin and oxytocin and the isolation of microvesicles.

    PubMed

    Bindler, E; Labella, F S; Sanwal, M

    1967-07-01

    Subcellular fractions of the bovine posterior pituitary, including one composed almost exclusively of pinched-off nerve endings (neurosecretosomes), were characterized electron microscopically, hormonally, and enzymically. 15% of the nerve terminals in the gland were isolated as neurosecretosomes, as estimated from determinations of lactic dehydrogenase, a soluble, cytoplasmic enzyme. Neurosecretosomes were subdivided into three fractions by density-gradient centrifugation. The three subfractions, each shown to be nearly homogeneous populations of neurosecretosomes by means of electron microscopic and enzymic criteria, differed from each other in their vasopressin/oxytocin (VP/OT) ratios. The VP/OT ratio increased from the lightest to the densest fraction, indicating that VP is localized to denser and OT to lighter neurosecretosomes; similar results have been obtained previously for subfractions of neurosecretory granules (NSG). No morphological differences were apparent in neurosecretosomes among the three subfractions. Although complete separation of VP and OT was not achieved, the findings suggest that VP and OT are each stored in a different species of nerve ending and support the hypothesis that a given neurosecretory cell synthesizes, stores, and secretes only one of the peptide hormones. Microvesicles, 40-80 mmicro diameter and contained in typical neurosecretory cell terminals, are believed to be degradation products of membrane ghosts of depleted NSG; electron micrographs indicative of this transformation are presented. A fraction rich in microvesicles, but containing some NSG membranes, was prepared by density-gradient centrifugation of an osmolysate of neurosecretosomes. Smaller, apparently nonneurosecretory nerve endings, lacking NSG but filled with small vesicles, are occasionally seen in sections from whole gland. The vesicles in these atypical posterior pituitary nerve endings may be true neurohumor-containing, "synaptic" vesicles. PMID:6040535

  11. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis.

    PubMed

    Dragovic, R A; Collett, G P; Hole, P; Ferguson, D J P; Redman, C W; Sargent, I L; Tannetta, D S

    2015-10-01

    The human placenta releases multiple types and sizes of syncytiotrophoblast (STB) extracellular vesicles (EV) into the maternal circulation that exhibit diverse biological activities. The placental perfusion technique enables isolation of these STBEV, but conventional flow cytometry can only be used to phenotype EV down to ∼300 nm in size. Fluorescence Nanoparticle Tracking Analysis (fl-NTA) has the potential to phenotype EV down to ∼50 nm, thereby improving current characterisation techniques. The aims of this study were to prepare microvesicle and exosome enriched fractions from human placental perfusate (n=8) and improve fl-NTA STBEV detection. Differential centrifugation and filtration effectively removed contaminating red blood cells from fresh placental perfusates and pelleted a STB microvesicle (STBMV) fraction (10,000×g pellet - 10KP; NTA modal size 395±12 nm), enriched for the STB marker placental alkaline phosphatase (PLAP) and a STB exosome (STBEX) fraction (150,000×g pellet - 150KP; NTA modal size 147±6 nm), enriched for PLAP and exosome markers Alix and CD63. The PLAP positivity of 'standard' 10KP and 150KP pools (four samples/pool), determined by immunobead depletion, was used to optimise fl-NTA camera settings. Individual 10KP and 150KP samples (n=8) were 54.5±5.7% (range 17.8-66.9%) and 30.6±5.6% (range 3.3-51.7%) PLAP positive, respectively. We have developed a reliable method for enriching STBMV and STBEX from placental perfusate. We also standardised fl-NTA settings and improved measurement of PLAP positive EV in STBMV. However, fl-NTA is not as sensitive as anti-PLAP Dynabead capture for STBEX detection, possibly due to STBEX having lower surface expression of PLAP. These important developments will facilitate more detailed studies of the role of STBMV and STBEX in normal and pathological pregnancies. PMID:25843788

  12. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    PubMed

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  13. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    NASA Astrophysics Data System (ADS)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  14. Microvesicles but Not Exosomes from Pathfinder Cells Stimulate Functional Recovery of the Pancreas in a Mouse Streptozotocin-Induced Diabetes Model.

    PubMed

    McGuinness, Dagmara; Anthony, Diana F; Moulisova, Vladimira; MacDonald, Alasdair I; MacIntyre, Alan; Thomson, Jacqueline; Nag, Abhijeet; Davies, R Wayne; Shiels, Paul G

    2016-06-01

    Pathfinder cells (PCs), a novel cell type derived from the pancreas of adult rats, have been demonstrated to stimulate recovery of tissue structure and function in two animal models of acute tissue damage to date-streptozotocin (STZ)-induced diabetes and ischemia-reperfusion damage to the kidney. In repaired tissue, PCs and their progeny typically represent only 0.02% of the repaired tissue, suggesting that they act via a paracrine mechanism on native cells in the damaged area. Extracellular vesicles are strong candidates for mediating such a paracrine effect. Therefore, we studied the effects of two PC-derived extracellular vesicle fractions on tissue repair in the STZ diabetes model, one containing primarily microvesicles and the second containing predominantly exosomes. Treatment of STZ-induced diabetic mice with the microvesicles preparation led to blood glucose, insulin, glucagon, and C-peptide levels similar to those found with PC treatment. Furthermore, analysis of the histopathology of the pancreas indicated islet regeneration. In contrast, the exosome fraction demonstrated no repair activity, and STZ diabetic mice treated with exosome preparations had blood glucose values that were indistinguishable from those of vehicle-only treated controls. Therefore, we conclude that exosomes play no part in PC action as detected by this assay, whereas microvesicles provide all or a large component of the paracrine activity of PCs. Because they act to stimulate repair of multiple tissues, PC-derived microvesicles may similarly have the potential to stimulate repair of many damaged tissues, identifying a very significant cell-free therapeutic opportunity in regenerative medicine. PMID:26414011

  15. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

    PubMed Central

    Kim, Hyuck; Roh, Hyo Sun; Kim, Jai Eun; Park, Sun Dong; Park, Won Hwan

    2016-01-01

    BACKGROUND/OBJECTIVES Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C (PKC)α and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS CK significantly reduced the phosphorylation of PKCα and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including PKCα, ERK1/2, and MMPs. PMID:27247721

  16. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    PubMed Central

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts. PMID:25148370

  17. Bioenergetic phenotypes and metabolic stress responses in cells derived from ecologically and commercially important fish species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various stressors negatively affect wild and cultured fish and can result in metabolic disturbances that first manifest at the level of the cell. In the present study, we sought to further our understanding of cellular metabolism in fish by examining the stress responses of cells derived from three...

  18. Pluripotent stem cell-derived natural killer cells for cancer therapy

    PubMed Central

    Knorr, David A.; Kaufman, Dan S.

    2010-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an accessible, genetically tractable and homogenous starting cell populations to efficiently study human blood cell development. These cell populations provide platforms to develop new cell-based therapies to treat both malignant and non-malignant hematological diseases. Our group has previously demonstrated the ability of hESC-derived hematopoietic precursors to produce functional natural killer (NK) cells as well as an explanation of the underlying mechanism responsible for inefficient development of T and B cells from hESCs. hESCs and iPSCs, which can be reliably engineered in vitro, provide an important new model system to study human lymphocyte development and produce enhanced cell-based therapies with potential to serve as a “universal” source of anti-tumor lymphocytes for novel clinical therapies. This review will focus on the application of hESC-derived NK cells with currently used and novel therapeutics for clinical trials, current barriers to translation, and future applications through genetic engineering approaches. PMID:20801411

  19. Molecular and In Vivo Characterization of Cancer-Propagating Cells Derived from MYCN-Dependent Medulloblastoma

    PubMed Central

    Ahmad, Zai; Jasnos, Lukasz; Gil, Veronica; Howell, Louise; Hallsworth, Albert; Petrie, Kevin; Sawado, Tomoyuki; Chesler, Louis

    2015-01-01

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. While the pathways that are deregulated in MB remain to be fully characterized, amplification and/or overexpression of the MYCN gene, which is has a critical role in cerebellar development as a regulator of neural progenitor cell fate, has been identified in several MB subgroups. Phenotypically, aberrant expression of MYCN is associated with the large-cell/anaplastic MB variant, which accounts for 5-15% of cases and is associated with aggressive disease and poor clinical outcome. To better understand the role of MYCN in MB in vitro and in vivo and to aid the development of MYCN-targeted therapeutics we established tumor-derived neurosphere cell lines from the GTML (Glt1-tTA/TRE-MYCN-Luc) genetically engineered mouse model. A fraction of GTML neurospheres were found to be growth factor independent, expressed CD133 (a marker of neural stem cells), failed to differentiate upon MYCN withdrawal and were highly tumorigenic when orthotopically implanted into the cerebellum. Principal component analyzes using single cell RNA assay data suggested that the clinical candidate aurora-A kinase inhibitor MLN8237 converts GTML neurospheres to resemble non-MYCN expressors. Correlating with this, MLN8237 significantly extended the survival of mice bearing GTML MB allografts. In summary, our results demonstrate that MYCN plays a critical role in expansion and survival of aggressive MB-propagating cells, and establish GTML neurospheres as an important resource for the development of novel therapeutic strategies. PMID:25785590

  20. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    SciTech Connect

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-11-07

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter.

  1. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers.

    PubMed

    Jo, Wonju; Jeong, Dayeong; Kim, Junho; Cho, Siwoo; Jang, Su Chul; Han, Chungmin; Kang, Ji Yoon; Gho, Yong Song; Park, Jaesung

    2014-04-01

    Exosomes/microvesicles are known to shuttle biological signals between cells, possibly by transferring biological signal components such as encapsulated RNAs and proteins, plasma membrane proteins, or both. Therefore exosomes are being considered for use as RNA and protein delivery vehicles for various therapeutic applications. However, living cells in nature secrete only a small number of exosomes, and procedures to collect them are complex; these complications impede their use in mass delivery of components to targeted cells. We propose a novel and efficient method that forces cells through hydrophilic microchannels to generate artificial nanovesicles. These mimetic nanovesicles contain mRNAs, intracellular proteins and plasma membrane proteins, and are shaped like cell-secreted exosomes. When recipient cells are exposed to nanovesicles from embryonic stem cells, mRNAs of Oct 3/4 and Nanog are transferred from embryonic stem cells to the target cells. This result suggests that mimetic nanovesicles can be used as vehicles to deliver RNA. This nanovesicle formation method is expected to be used in exosome research and to have applications in drug and RNA-delivery systems. PMID:24493004

  2. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.

    PubMed

    Galat, Vasiliy; Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J; Iannaccone, Philip M; Hendrix, Mary J C

    2016-07-15

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  3. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    PubMed Central

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  4. Cancer

    MedlinePlus

    ... body. Cancerous cells are also called malignant cells. Causes Cancer grows out of cells in the body. Normal ... of many cancers remains unknown. The most common cause of cancer-related death is lung cancer. In the U.S., ...

  5. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis

    PubMed Central

    Dragovic, R.A.; Collett, G.P.; Hole, P.; Ferguson, D.J.P.; Redman, C.W.; Sargent, I.L.; Tannetta, D.S.

    2015-01-01

    The human placenta releases multiple types and sizes of syncytiotrophoblast (STB) extracellular vesicles (EV) into the maternal circulation that exhibit diverse biological activities. The placental perfusion technique enables isolation of these STBEV, but conventional flow cytometry can only be used to phenotype EV down to ∼300 nm in size. Fluorescence Nanoparticle Tracking Analysis (fl-NTA) has the potential to phenotype EV down to ∼50 nm, thereby improving current characterisation techniques. The aims of this study were to prepare microvesicle and exosome enriched fractions from human placental perfusate (n = 8) and improve fl-NTA STBEV detection. Differential centrifugation and filtration effectively removed contaminating red blood cells from fresh placental perfusates and pelleted a STB microvesicle (STBMV) fraction (10,000×g pellet – 10KP; NTA modal size 395 ± 12 nm), enriched for the STB marker placental alkaline phosphatase (PLAP) and a STB exosome (STBEX) fraction (150,000×g pellet – 150KP; NTA modal size 147 ± 6 nm), enriched for PLAP and exosome markers Alix and CD63. The PLAP positivity of ‘standard’ 10KP and 150KP pools (four samples/pool), determined by immunobead depletion, was used to optimise fl-NTA camera settings. Individual 10KP and 150KP samples (n = 8) were 54.5 ± 5.7% (range 17.8–66.9%) and 30.6 ± 5.6% (range 3.3–51.7%) PLAP positive, respectively. We have developed a reliable method for enriching STBMV and STBEX from placental perfusate. We also standardised fl-NTA settings and improved measurement of PLAP positive EV in STBMV. However, fl-NTA is not as sensitive as anti-PLAP Dynabead capture for STBEX detection, possibly due to STBEX having lower surface expression of PLAP. These important developments will facilitate more detailed studies of the role of STBMV and STBEX in normal and pathological pregnancies. PMID:25843788

  6. Endometrial Exosomes/Microvesicles in the Uterine Microenvironment: A New Paradigm for Embryo-Endometrial Cross Talk at Implantation

    PubMed Central

    Ng, York Hunt; Rome, Sophie; Jalabert, Audrey; Forterre, Alexis; Singh, Harmeet; Hincks, Cassandra L.; Salamonsen, Lois A.

    2013-01-01

    Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50–150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk

  7. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes.

    PubMed

    Eng, George; Lee, Benjamin W; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S; Keller, Gordon; Robinson, Richard B; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  8. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana

    2016-01-01

    The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135

  9. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    SciTech Connect

    Clark, Gregory O.; Yochem, Robert L.; Axelman, Joyce; Sheets, Timothy P.; Kaczorowski, David J.; Shamblott, Michael J. . E-mail: mshambl1@jhmi.edu

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and {beta}-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.

  10. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine.

    PubMed

    Hynds, Robert E; Giangreco, Adam

    2013-03-01

    Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine. PMID:23203919