Science.gov

Sample records for cancer genome sequences

  1. Genomic Sequencing in Cancer

    PubMed Central

    Tuna, Musaffe; Amos, Christopher I.

    2013-01-01

    Genomic sequencing has provided critical insights into the etiology of both simple and complex diseases. The enormous reductions in cost for whole genome sequencing have allowed this technology to gain increasing use. Whole genome analysis has impacted research of complex diseases including cancer by allowing the systematic analysis of entire genomes in a single experiment, thereby facilitating the discovery of somatic and germline mutations, and identification of the function and impact of the insertions, deletions, and structural rearrangements, including translocations and inversions, in novel disease genes. Whole-genome sequencing can be used to provide the most comprehensive characterization of the cancer genome, the complexity of which we are only beginning to understand. Hence in this review, we focus on whole-genome sequencing in cancer. PMID:23178448

  2. Whole genome sequencing for lung cancer

    PubMed Central

    Goh, Felicia; Wright, Casey M; Sriram, Krishna B; Relan, Vandana; Clarke, Belinda E; Duhig, Edwina E; Bowman, Rayleen V; Yang, Ian A; Fong, Kwun M

    2012-01-01

    Lung cancer is a leading cause of cancer related morbidity and mortality globally, and carries a dismal prognosis. Improved understanding of the biology of cancer is required to improve patient outcomes. Next-generation sequencing (NGS) is a powerful tool for whole genome characterisation, enabling comprehensive examination of somatic mutations that drive oncogenesis. Most NGS methods are based on polymerase chain reaction (PCR) amplification of platform-specific DNA fragment libraries, which are then sequenced. These techniques are well suited to high-throughput sequencing and are able to detect the full spectrum of genomic changes present in cancer. However, they require considerable investments in time, laboratory infrastructure, computational analysis and bioinformatic support. Next-generation sequencing has been applied to studies of the whole genome, exome, transcriptome and epigenome, and is changing the paradigm of lung cancer research and patient care. The results of this new technology will transform current knowledge of oncogenic pathways and provide molecular targets of use in the diagnosis and treatment of cancer. Somatic mutations in lung cancer have already been identified by NGS, and large scale genomic studies are underway. Personalised treatment strategies will improve care for those likely to benefit from available therapies, while sparing others the expense and morbidity of futile intervention. Organisational, computational and bioinformatic challenges of NGS are driving technological advances as well as raising ethical issues relating to informed consent and data release. Differentiation between driver and passenger mutations requires careful interpretation of sequencing data. Challenges in the interpretation of results arise from the types of specimens used for DNA extraction, sample processing techniques and tumour content. Tumour heterogeneity can reduce power to detect mutations implicated in oncogenesis. Next-generation sequencing will facilitate investigation of the biological and clinical implications of such variation. These techniques can now be applied to single cells and free circulating DNA, and possibly in the future to DNA obtained from body fluids and from subpopulations of tumour. As costs reduce, and speed and processing accuracy increase, NGS technology will become increasingly accessible to researchers and clinicians, with the ultimate goal of improving the care of patients with lung cancer. PMID:22833821

  3. Reconstructing cancer genomes from paired-end sequencing data

    PubMed Central

    2012-01-01

    Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i) a partition of the reference genome into intervals; (ii) adjacencies between these intervals in the cancer genome; (iii) an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO), to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B) cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is available at http://compbio.cs.brown.edu/software/. PMID:22537039

  4. Advances in understanding cancer genomes through second-generation sequencing.

    PubMed

    Meyerson, Matthew; Gabriel, Stacey; Getz, Gad

    2010-10-01

    Cancers are caused by the accumulation of genomic alterations. Therefore, analyses of cancer genome sequences and structures provide insights for understanding cancer biology, diagnosis and therapy. The application of second-generation DNA sequencing technologies (also known as next-generation sequencing) - through whole-genome, whole-exome and whole-transcriptome approaches - is allowing substantial advances in cancer genomics. These methods are facilitating an increase in the efficiency and resolution of detection of each of the principal types of somatic cancer genome alterations, including nucleotide substitutions, small insertions and deletions, copy number alterations, chromosomal rearrangements and microbial infections. This Review focuses on the methodological considerations for characterizing somatic genome alterations in cancer and the future prospects for these approaches. PMID:20847746

  5. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data

    PubMed Central

    Jang, Ho; Hur, Youngmi; Lee, Hyunju

    2016-01-01

    DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes. PMID:27156852

  6. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data.

    PubMed

    Jang, Ho; Hur, Youngmi; Lee, Hyunju

    2016-01-01

    DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes. PMID:27156852

  7. Cancer Genomics

    PubMed Central

    Mardis, Elaine

    2015-01-01

    Modern cancer genomics has emerged from the combination of the Human Genome Reference, massively parallel sequencing, and the comparison of tumor to normal DNA sequences, revealing novel insights into the cancer genome and its amazing diversity. Recent developments in applying our knowledge of cancer genomics have focused on the utility of these data for clinical applications. The emergent results of this translation into the clinical setting already are changing the clinical care and monitoring of cancer patients. PMID:26937274

  8. An improved understanding of cancer genomics through massively parallel sequencing

    PubMed Central

    Teer, Jamie K.

    2015-01-01

    DNA sequencing technology advances have enabled genetic investigation of more samples in a shorter time than has previously been possible. Furthermore, the ability to analyze and understand large sequencing datasets has improved due to concurrent advances in sequence data analysis methods and software tools. Constant improvements to both technology and analytic approaches in this fast moving field are evidenced by many recent publications of computational methods, as well as biological results linking genetic events to human disease. Cancer in particular has been the subject of intense investigation, owing to the genetic underpinnings of this complex collection of diseases. New massively-parallel sequencing (MPS) technologies have enabled the investigation of thousands of samples, divided across tens of different tumor types, resulting in new driver gene identification, mutagenic pattern characterization, and other newly uncovered features of tumor biology. This review will focus both on methods and recent results: current analytical approaches to DNA and RNA sequencing will be presented followed by a review of recent pan-cancer sequencing studies. This overview of methods and results will not only highlight the recent advances in cancer genomics, but also the methods and tools used to accomplish these advancements in a constantly and rapidly improving field. PMID:26146607

  9. Returning individual research results for genome sequences of pancreatic cancer

    PubMed Central

    2014-01-01

    Background Disclosure of individual results to participants in genomic research is a complex and contentious issue. There are many existing commentaries and opinion pieces on the topic, but little empirical data concerning actual cases describing how individual results have been returned. Thus, the real life risks and benefits of disclosing individual research results to participants are rarely if ever presented as part of this debate. Methods The Australian Pancreatic Cancer Genome Initiative (APGI) is an Australian contribution to the International Cancer Genome Consortium (ICGC), that involves prospective sequencing of tumor and normal genomes of study participants with pancreatic cancer in Australia. We present three examples that illustrate different facets of how research results may arise, and how they may be returned to individuals within an ethically defensible and clinically practical framework. This framework includes the necessary elements identified by others including consent, determination of the significance of results and which to return, delineation of the responsibility for communication and the clinical pathway for managing the consequences of returning results. Results Of 285 recruited patients, we returned results to a total of 25 with no adverse events to date. These included four that were classified as medically actionable, nine as clinically significant and eight that were returned at the request of the treating clinician. Case studies presented depict instances where research results impacted on cancer susceptibility, current treatment and diagnosis, and illustrate key practical challenges of developing an effective framework. Conclusions We suggest that return of individual results is both feasible and ethically defensible but only within the context of a robust framework that involves a close relationship between researchers and clinicians. PMID:24963353

  10. Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks.

    PubMed

    Roukos, D H

    2011-04-01

    Life diversity can now be clearly explored with the next-generation DNA sequencing technology, allowing the discovery of genetic variants among individuals, patients and tumors. However, beyond causal mutations catalog completion, systems medicine is essential to link genotype to phenotypic cancer diversity towards personalized medicine. Despite advances with traditional single genes molecular research, including rare mutations in BRCA1/2 and CDH1 for primary prevention and trastuzumab for treating HER2-overexpressing breast and gastric tumors, overall, treatment failure and death rates are still alarmingly high. Revolution in sequencing reveals that, now both a huge number and widespread variability of driver mutations, including single-nucleotide polymorphisms, genomic rearrangements and copy-number changes involved in breast cancer development. All these genetic alterations result in a heterogeneous deregulation of signaling pathways, including EGFR, HER2, VEGF, Wnt/Notch, TGF and others.Cancer initiation, progression and metastases are driven by complex molecular networks rather than linear genotype-phenotype relationship. Therefore, clinical expectations by traditional molecular research strategies targeting single genes and single signaling pathways are likely minimal. This review discusses the necessity of molecular networks modeling to understand complex gene-gene, protein-protein and gene-environment interactions. Moreover, the potential of systems clinico-biological approaches to predict intracellular signaling pathways components networks and cancer heterogeneous cells within an individual tumor is described. A flowchart specific for three steps in cancer evolution separately tumorigenesis, early-stage and advanced-stage breast cancer is presented. Using reverse engineering starting with the integration of available established clinical, environmental, treatment and oncological outcomes (survival and death) data and then the still incomplete but progressively accumulating genotypic data into computational networks modeling may lead to bionetworks-based discovery of robust biomarkers and highly effective cancer drugs targets. PMID:20975737

  11. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics

    PubMed Central

    Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K.; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-01-01

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C·G > T·A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes. PMID:26305677

  12. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    PubMed

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have specific patterns and tissue-specificity, which are driven by aging and other cancer-inducing agents. This framework represents the logics of complex cancer biology as a myriad of phenotypic complexities governed by a limited set of underlying organizing principles. It therefore adds to our understanding of tumor evolution and tumorigenesis, and moreover, potential usefulness of predicting tumors' evolutionary paths and clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for cancer patients, as well as cancer risks for healthy individuals are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized treatment and personalized prevention of cancer. PMID:24747696

  13. Genomic Alterations in Biliary Tract Cancer Using Targeted Sequencing1

    PubMed Central

    Yoo, Kwai Han; Kim, Nayoung K.D.; Kwon, Woo Il; Lee, Chung; Kim, Sun Young; Jang, Jiryeon; Ahn, Jungmi; Kang, Mihyun; Jang, Hyojin; Kim, Seung Tae; Ahn, Soomin; Jang, Kee-Taek; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Heo, Jin Seok; Park, Joon Oh

    2016-01-01

    Background: Biliary tract cancers (BTCs) are rare and heterogeneous group of tumors classified anatomically into intrahepatic and extrahepatic bile ducts and gallbladder adenocarcinomas. Patient-derived tumor cell (PDC) models with genome analysis can be a valuable platform to develop a method to overcome the clinical barrier on BTCs. Material and Methods: Between January 2012 and June 2015, 40 BTC patients’ samples were collected. PDCs were isolated and cultured from surgical specimens, biopsy tissues, or malignant effusions including ascites and pleural fluid. Genome analysis using targeted panel sequencing as well as digital multiplexed gene analysis was applied to PDCs as well as primary tumors. Results: Extrahepatic cholangiocarcinoma (N = 15, 37.5%), intrahepatic cholangiocarcinoma (N = 10, 25.0%), gallbladder cancer (N = 14, 35.0%), and ampulla of Vater cancer (N = 1, 2.5%) were included. We identified 15 mutations with diverse genetic alterations in 19 cases of BTC from primary tumor specimens. The most common molecular alterations were in TP53 (8/19, 42.1%), including missense mutations such as C242Y, E285K, G112S, P19T, R148T, R248Q, and R273L. We also detected two NRAS mutations (G12C and Q61L), two KRAS mutations (G12A and G12S), two ERBB2 mutations (V777L and pM774delinsMA) and amplification, and three PIK3CA mutations (N345K, E545K, and E521K). PDC models were successfully established in 27 of 40 samples (67.5%), including 22/24 from body fluids (91.7%) and 5/16 from tissue specimens (31.3%). Conclusions: PDC models are promising tools for uncovering driver mutations and identifying rational therapeutic strategies in BTC. Application of this model is expected to inform clinical trials of drugs for molecular-based targeted therapy.

  14. A somatic reference standard for cancer genome sequencing

    PubMed Central

    Craig, David W.; Nasser, Sara; Corbett, Richard; Chan, Simon K.; Murray, Lisa; Legendre, Christophe; Tembe, Waibhav; Adkins, Jonathan; Kim, Nancy; Wong, Shukmei; Baker, Angela; Enriquez, Daniel; Pond, Stephanie; Pleasance, Erin; Mungall, Andrew J.; Moore, Richard A.; McDaniel, Timothy; Ma, Yussanne; Jones, Steven J. M.; Marra, Marco A.; Carpten, John D.; Liang, Winnie S.

    2016-01-01

    Large-scale multiplexed identification of somatic alterations in cancer has become feasible with next generation sequencing (NGS). However, calibration of NGS somatic analysis tools has been hampered by a lack of tumor/normal reference standards. We thus performed paired PCR-free whole genome sequencing of a matched metastatic melanoma cell line (COLO829) and normal across three lineages and across separate institutions, with independent library preparations, sequencing, and analysis. We generated mean mapped coverages of 99X for COLO829 and 103X for the paired normal across three institutions. Results were combined with previously generated data allowing for comparison to a fourth lineage on earlier NGS technology. Aggregate variant detection led to the identification of consensus variants, including key events that represent hallmark mutation types including amplified BRAF V600E, a CDK2NA small deletion, a 12 kb PTEN deletion, and a dinucleotide TERT promoter substitution. Overall, common events include >35,000 point mutations, 446 small insertion/deletions, and >6,000 genes affected by copy number changes. We present this reference to the community as an initial standard for enabling quantitative evaluation of somatic mutation pipelines across institutions. PMID:27094764

  15. A somatic reference standard for cancer genome sequencing.

    PubMed

    Craig, David W; Nasser, Sara; Corbett, Richard; Chan, Simon K; Murray, Lisa; Legendre, Christophe; Tembe, Waibhav; Adkins, Jonathan; Kim, Nancy; Wong, Shukmei; Baker, Angela; Enriquez, Daniel; Pond, Stephanie; Pleasance, Erin; Mungall, Andrew J; Moore, Richard A; McDaniel, Timothy; Ma, Yussanne; Jones, Steven J M; Marra, Marco A; Carpten, John D; Liang, Winnie S

    2016-01-01

    Large-scale multiplexed identification of somatic alterations in cancer has become feasible with next generation sequencing (NGS). However, calibration of NGS somatic analysis tools has been hampered by a lack of tumor/normal reference standards. We thus performed paired PCR-free whole genome sequencing of a matched metastatic melanoma cell line (COLO829) and normal across three lineages and across separate institutions, with independent library preparations, sequencing, and analysis. We generated mean mapped coverages of 99X for COLO829 and 103X for the paired normal across three institutions. Results were combined with previously generated data allowing for comparison to a fourth lineage on earlier NGS technology. Aggregate variant detection led to the identification of consensus variants, including key events that represent hallmark mutation types including amplified BRAF V600E, a CDK2NA small deletion, a 12 kb PTEN deletion, and a dinucleotide TERT promoter substitution. Overall, common events include >35,000 point mutations, 446 small insertion/deletions, and >6,000 genes affected by copy number changes. We present this reference to the community as an initial standard for enabling quantitative evaluation of somatic mutation pipelines across institutions. PMID:27094764

  16. Quantification of read species behavior within whole genome sequencing of cancer genomes for the stratification and visualization of genomic variation.

    PubMed

    Hibsh, Dror; Buetow, Kenneth H; Yaari, Gur; Efroni, Sol

    2016-05-19

    The cancer genome is abnormal genome, and the ability to monitor its sequence had undergone a technological revolution. Yet prognosis and diagnosis remain an expert-based decision, with only limited abilities to provide machine-based decisions. We introduce a heterogeneity-based method for stratifying and visualizing whole-genome sequencing (WGS) reads. This method uses the heterogeneity within WGS reads to markedly reduce the dimensionality of next-generation sequencing data; it is available through the tool HiBS (Heterogeneity-Based Subclassification) that allows cancer sample classification. We validated HiBS using >200 WGS samples from nine different cancer types from The Cancer Genome Atlas (TCGA). With HiBS, we show progress with two WGS related issues: (i) differentiation between normal (NB) and tumor (TP) samples based solely on the information structure of their WGS data, and (ii) identification of specific regions of chromosomal amplification/deletion and their association with tumor stage. By comparing results to those obtained through available WGS analyses tools, we demonstrate some of the novelties obtained by the approach implemented in HiBS and also show nearly perfect normal/tumor classification, used to identify known and unknown chromosomal aberrations. Finally, the HiBS index has been associated with breast cancer tumor stage. PMID:26809676

  17. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing | Office of Cancer Genomics

    Cancer.gov

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions.

  18. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.

    PubMed

    Murchison, Elizabeth P; Schulz-Trieglaff, Ole B; Ning, Zemin; Alexandrov, Ludmil B; Bauer, Markus J; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R; Cheetham, R Keira; Cheng, William; Connor, Thomas R; Cox, Anthony J; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J; Harris, Simon R; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J; Wedge, David C; Woods, Gregory M; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M J; Carter, Nigel P; Papenfuss, Anthony T; Futreal, P Andrew; Campbell, Peter J; Yang, Fengtang; Bentley, David R; Evers, Dirk J; Stratton, Michael R

    2012-02-17

    The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PMID:22341448

  19. Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

    PubMed Central

    Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R.; Cheetham, R. Keira; Cheng, William; Connor, Thomas R.; Cox, Anthony J.; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J.; Harris, Simon R.; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J.; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J.; Wedge, David C.; Woods, Gregory M.; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M.J.; Carter, Nigel P.; Papenfuss, Anthony T.; Futreal, P. Andrew; Campbell, Peter J.; Yang, Fengtang; Bentley, David R.; Evers, Dirk J.; Stratton, Michael R.

    2012-01-01

    Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip PMID:22341448

  20. Evaluation of paired-end sequencing strategies for detection of genome rearrangements in cancer.

    PubMed

    Bashir, Ali; Volik, Stanislav; Collins, Colin; Bafna, Vineet; Raphael, Benjamin J

    2008-04-01

    Paired-end sequencing is emerging as a key technique for assessing genome rearrangements and structural variation on a genome-wide scale. This technique is particularly useful for detecting copy-neutral rearrangements, such as inversions and translocations, which are common in cancer and can produce novel fusion genes. We address the question of how much sequencing is required to detect rearrangement breakpoints and to localize them precisely using both theoretical models and simulation. We derive a formula for the probability that a fusion gene exists in a cancer genome given a collection of paired-end sequences from this genome. We use this formula to compute fusion gene probabilities in several breast cancer samples, and we find that we are able to accurately predict fusion genes in these samples with a relatively small number of fragments of large size. We further demonstrate how the ability to detect fusion genes depends on the distribution of gene lengths, and we evaluate how different parameters of a sequencing strategy impact breakpoint detection, breakpoint localization, and fusion gene detection, even in the presence of errors that suggest false rearrangements. These results will be useful in calibrating future cancer sequencing efforts, particularly large-scale studies of many cancer genomes that are enabled by next-generation sequencing technologies. PMID:18404202

  1. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  2. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing.

    PubMed

    Alioto, Tyler S; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D; Hovig, Eivind; Heisler, Lawrence E; Beck, Timothy A; Simpson, Jared T; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S; Butler, Adam P; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C; Gut, Marta; Denroche, Robert E; Harding, Nicholas J; Yamaguchi, Takafumi N; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G; Anderson, Charlotte L; Waddell, Nicola; Pearson, John V; Grimmond, Sean M; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A; López-Otín, Carlos; Campo, Elías; Campbell, Peter J; Boutros, Paul C; Puente, Xose S; Gerhard, Daniela S; Pfister, Stefan M; McPherson, John D; Hudson, Thomas J; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T W; Gut, Ivo G

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  3. Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes

    PubMed Central

    Shen, Tony; Pajaro-Van de Stadt, Stefan Hans; Yeat, Nai Chien; Lin, Jimmy C.-H.

    2015-01-01

    This article will review recent impact of massively parallel next-generation sequencing (NGS) in our understanding and treatment of cancer. While whole exome sequencing (WES) remains popular and effective as a method of genetically profiling different cancers, advances in sequencing technology has enabled an increasing number of whole-genome based studies. Clinically, NGS has been used or is being developed for genetic screening, diagnostics, and clinical assessment. Though challenges remain, clinicians are in the early stages of using genetic data to make treatment decisions for cancer patients. As the integration of NGS in the study and treatment of cancer continues to mature, we believe that the field of cancer genomics will need to move toward more complete 100% genome sequencing. Current technologies and methods are largely limited to coding regions of the genome. A number of recent studies have demonstrated that mutations in non-coding regions may have direct tumorigenic effects or lead to genetic instability. Non-coding regions represent an important frontier in cancer genomics. PMID:26136771

  4. Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery.

    PubMed

    Hudson, Andrew M; Yates, Tim; Li, Yaoyong; Trotter, Eleanor W; Fawdar, Shameem; Chapman, Phil; Lorigan, Paul; Biankin, Andrew; Miller, Crispin J; Brognard, John

    2014-11-15

    Cancer genome sequencing is being used at an increasing rate to identify actionable driver mutations that can inform therapeutic intervention strategies. A comparison of two of the most prominent cancer genome sequencing databases from different institutes (Cancer Cell Line Encyclopedia and Catalogue of Somatic Mutations in Cancer) revealed marked discrepancies in the detection of missense mutations in identical cell lines (57.38% conformity). The main reason for this discrepancy is inadequate sequencing of GC-rich areas of the exome. We have therefore mapped over 400 regions of consistent inadequate sequencing (cold-spots) in known cancer-causing genes and kinases, in 368 of which neither institute finds mutations. We demonstrate, using a newly identified PAK4 mutation as proof of principle, that specific targeting and sequencing of these GC-rich cold-spot regions can lead to the identification of novel driver mutations in known tumor suppressors and oncogenes. We highlight that cross-referencing between genomic databases is required to comprehensively assess genomic alterations in commonly used cell lines and that there are still significant opportunities to identify novel drivers of tumorigenesis in poorly sequenced areas of the exome. Finally, we assess other reasons for the observed discrepancy, such as variations in dbSNP filtering and the acquisition/loss of mutations, to give explanations as to why there is a discrepancy in pharmacogenomic studies, given recent concerns with poor reproducibility of data. PMID:25256751

  5. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.

    PubMed

    Zheng, Grace X Y; Lau, Billy T; Schnall-Levin, Michael; Jarosz, Mirna; Bell, John M; Hindson, Christopher M; Kyriazopoulou-Panagiotopoulou, Sofia; Masquelier, Donald A; Merrill, Landon; Terry, Jessica M; Mudivarti, Patrice A; Wyatt, Paul W; Bharadwaj, Rajiv; Makarewicz, Anthony J; Li, Yuan; Belgrader, Phillip; Price, Andrew D; Lowe, Adam J; Marks, Patrick; Vurens, Gerard M; Hardenbol, Paul; Montesclaros, Luz; Luo, Melissa; Greenfield, Lawrence; Wong, Alexander; Birch, David E; Short, Steven W; Bjornson, Keith P; Patel, Pranav; Hopmans, Erik S; Wood, Christina; Kaur, Sukhvinder; Lockwood, Glenn K; Stafford, David; Delaney, Joshua P; Wu, Indira; Ordonez, Heather S; Grimes, Susan M; Greer, Stephanie; Lee, Josephine Y; Belhocine, Kamila; Giorda, Kristina M; Heaton, William H; McDermott, Geoffrey P; Bent, Zachary W; Meschi, Francesca; Kondov, Nikola O; Wilson, Ryan; Bernate, Jorge A; Gauby, Shawn; Kindwall, Alex; Bermejo, Clara; Fehr, Adrian N; Chan, Adrian; Saxonov, Serge; Ness, Kevin D; Hindson, Benjamin J; Ji, Hanlee P

    2016-03-01

    Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants. PMID:26829319

  6. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    PubMed Central

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  7. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer.

    PubMed

    Morrison, Carl D; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C; Johnson, Candace S; Trump, Donald L

    2014-02-11

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  8. The current use and attitudes towards tumor genome sequencing in breast cancer

    PubMed Central

    Gingras, I.; Sonnenblick, A.; de Azambuja, E.; Paesmans, M.; Delaloge, S.; Aftimos, Philippe; Piccart, M. J.; Sotiriou, C.; Ignatiadis, M.; Azim, H. A.

    2016-01-01

    There is increasing availability of technologies that can interrogate the genomic landscape of an individual tumor; however, their impact on daily practice remains uncertain. We conducted a 28-item survey to investigate the current attitudes towards the integration of tumor genome sequencing in breast cancer management. A link to the survey was communicated via newsletters of several oncological societies, and dedicated mailing by academic research groups. Multivariable logistic regression modeling was carried out to determine the relationship between predictors and outcomes. 215 physicians participated to the survey. The majority were medical oncologists (88%), practicing in Europe (70%) and working in academic institutions (66%). Tumor genome sequencing was requested by 82 participants (38%), of whom 21% reported low confidence in their genomic knowledge, and 56% considered tumor genome sequencing to be poorly accessible. In multivariable analysis, having time allocated to research (OR 3.37, 95% CI 1.84–6.15, p < 0.0001), working in Asia (OR 5.76, 95% CI 1.57 – 21.15, p = 0.01) and having institutional guidelines for molecular sequencing (OR 2.09, 95% 0.99–4.42, p = 0.05) were associated with a higher probability of use. In conclusion, our survey indicates that tumor genome sequencing is sometimes used, albeit not widely, in guiding management of breast cancer patients. PMID:26931736

  9. The current use and attitudes towards tumor genome sequencing in breast cancer.

    PubMed

    Gingras, I; Sonnenblick, A; de Azambuja, E; Paesmans, M; Delaloge, S; Aftimos, Philippe; Piccart, M J; Sotiriou, C; Ignatiadis, M; Azim, H A

    2016-01-01

    There is increasing availability of technologies that can interrogate the genomic landscape of an individual tumor; however, their impact on daily practice remains uncertain. We conducted a 28-item survey to investigate the current attitudes towards the integration of tumor genome sequencing in breast cancer management. A link to the survey was communicated via newsletters of several oncological societies, and dedicated mailing by academic research groups. Multivariable logistic regression modeling was carried out to determine the relationship between predictors and outcomes. 215 physicians participated to the survey. The majority were medical oncologists (88%), practicing in Europe (70%) and working in academic institutions (66%). Tumor genome sequencing was requested by 82 participants (38%), of whom 21% reported low confidence in their genomic knowledge, and 56% considered tumor genome sequencing to be poorly accessible. In multivariable analysis, having time allocated to research (OR 3.37, 95% CI 1.84-6.15, p < 0.0001), working in Asia (OR 5.76, 95% CI 1.57 - 21.15, p = 0.01) and having institutional guidelines for molecular sequencing (OR 2.09, 95% 0.99-4.42, p = 0.05) were associated with a higher probability of use. In conclusion, our survey indicates that tumor genome sequencing is sometimes used, albeit not widely, in guiding management of breast cancer patients. PMID:26931736

  10. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  11. Complete Genome Sequence of Helicobacter pylori Strain 29CaP Isolated from a Mexican Patient with Gastric Cancer

    PubMed Central

    Mucito-Varela, Eduardo; Castillo-Rojas, Gonzalo; Cevallos, Miguel A.; Lozano, Luis; Merino, Enrique; López-Leal, Gamaliel

    2016-01-01

    Helicobacter pylori infection is a risk factor for the development of gastric cancer and other gastroduodenal diseases. We report here the complete genome sequence of H. pylori strain 29CaP, isolated from a Mexican patient with gastric cancer. The genomic data analysis revealed a cag-negative H. pylori strain that contains a prophage sequence. PMID:26769924

  12. Complete Genome Sequence of Helicobacter pylori Strain 29CaP Isolated from a Mexican Patient with Gastric Cancer.

    PubMed

    Mucito-Varela, Eduardo; Castillo-Rojas, Gonzalo; Cevallos, Miguel A; Lozano, Luis; Merino, Enrique; López-Leal, Gamaliel; López-Vidal, Yolanda

    2016-01-01

    Helicobacter pylori infection is a risk factor for the development of gastric cancer and other gastroduodenal diseases. We report here the complete genome sequence of H. pylori strain 29CaP, isolated from a Mexican patient with gastric cancer. The genomic data analysis revealed a cag-negative H. pylori strain that contains a prophage sequence. PMID:26769924

  13. Mate pair sequencing of whole-genome-amplified DNA following laser capture microdissection of prostate cancer.

    PubMed

    Murphy, Stephen J; Cheville, John C; Zarei, Shabnam; Johnson, Sarah H; Sikkink, Robert A; Kosari, Farhad; Feldman, Andrew L; Eckloff, Bruce W; Karnes, R Jeffrey; Vasmatzis, George

    2012-10-01

    High-throughput next-generation sequencing provides a revolutionary platform to unravel the precise DNA aberrations concealed within subgroups of tumour cells. However, in many instances, the limited number of cells makes the application of this technology in tumour heterogeneity studies a challenge. In order to address these limitations, we present a novel methodology to partner laser capture microdissection (LCM) with sequencing platforms, through a whole-genome amplification (WGA) protocol performed in situ directly on LCM engrafted cells. We further adapted current Illumina mate pair (MP) sequencing protocols to the input of WGA DNA and used this technology to investigate large genomic rearrangements in adjacent Gleason Pattern 3 and 4 prostate tumours separately collected by LCM. Sequencing data predicted genome coverage and depths similar to unamplified genomic DNA, with limited repetition and bias predicted in WGA protocols. Mapping algorithms developed in our laboratory predicted high-confidence rearrangements and selected events each demonstrated the predicted fusion junctions upon validation. Rearrangements were additionally confirmed in unamplified tissue and evaluated in adjacent benign-appearing tissues. A detailed understanding of gene fusions that characterize cancer will be critical in the development of biomarkers to predict the clinical outcome. The described methodology provides a mechanism of efficiently defining these events in limited pure populations of tumour tissue, aiding in the derivation of genomic aberrations that initiate cancer and drive cancer progression. PMID:22991452

  14. Mate Pair Sequencing of Whole-Genome-Amplified DNA Following Laser Capture Microdissection of Prostate Cancer

    PubMed Central

    Murphy, Stephen J.; Cheville, John C.; Zarei, Shabnam; Johnson, Sarah H.; Sikkink, Robert A.; Kosari, Farhad; Feldman, Andrew L.; Eckloff, Bruce W.; Karnes, R. Jeffrey; Vasmatzis, George

    2012-01-01

    High-throughput next-generation sequencing provides a revolutionary platform to unravel the precise DNA aberrations concealed within subgroups of tumour cells. However, in many instances, the limited number of cells makes the application of this technology in tumour heterogeneity studies a challenge. In order to address these limitations, we present a novel methodology to partner laser capture microdissection (LCM) with sequencing platforms, through a whole-genome amplification (WGA) protocol performed in situ directly on LCM engrafted cells. We further adapted current Illumina mate pair (MP) sequencing protocols to the input of WGA DNA and used this technology to investigate large genomic rearrangements in adjacent Gleason Pattern 3 and 4 prostate tumours separately collected by LCM. Sequencing data predicted genome coverage and depths similar to unamplified genomic DNA, with limited repetition and bias predicted in WGA protocols. Mapping algorithms developed in our laboratory predicted high-confidence rearrangements and selected events each demonstrated the predicted fusion junctions upon validation. Rearrangements were additionally confirmed in unamplified tissue and evaluated in adjacent benign-appearing tissues. A detailed understanding of gene fusions that characterize cancer will be critical in the development of biomarkers to predict the clinical outcome. The described methodology provides a mechanism of efficiently defining these events in limited pure populations of tumour tissue, aiding in the derivation of genomic aberrations that initiate cancer and drive cancer progression. PMID:22991452

  15. The Tip of the Iceberg: Clinical Implications of Genomic Sequencing Projects in Head and Neck Cancer

    PubMed Central

    Birkeland, Andrew C.; Ludwig, Megan L.; Meraj, Taha S.; Brenner, J. Chad; Prince, Mark E.

    2015-01-01

    Recent genomic sequencing studies have provided valuable insight into genetic aberrations in head and neck squamous cell carcinoma. Despite these great advances, certain hurdles exist in translating genomic findings to clinical care. Further correlation of genetic findings to clinical outcomes, additional analyses of subgroups of head and neck cancers and follow-up investigation into genetic heterogeneity are needed. While the development of targeted therapy trials is of key importance, numerous challenges exist in establishing and optimizing such programs. This review discusses potential upcoming steps for further genetic evaluation of head and neck cancers and implementation of genetic findings into precision medicine trials. PMID:26506389

  16. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  17. Return of Results from Genomic Sequencing: A Policy Discussion of Secondary Findings for Cancer Predisposition

    PubMed Central

    Johnson, Kimberly J.; Gehlert, Sarah

    2014-01-01

    Advances in DNA sequencing technology now allow for the rapid genome-wide identification of inherited and acquired genetic variants including those that have been identified as pathogenic alleles for a number of diseases including cancer. Whole genome and exome sequencing are increasingly becoming a part of both clinical practice and research studies. In 2013 the American College of Medical Genetics and Genomics (ACMG) recommended that results of pathogenic genetic variants in 56 genes, nearly half of which comprise cancer genes (including BRCA1, BRCA2, TP53, MLH1, MLH2, MSH6, PMS2, and APC),be returned to patients who have their genome sequenced independent of the purpose for the test. This recommendation has been highly controversial for several reasons, particularly the recommendation that individuals be returned secondary findings of disease causing variants for adult onset conditions regardless of age and without consideration of patient preferences. In addition, the policy regarding returning results of secondary findings from genomic sequencing studies in research settings is currently unclear. In response to these emerging ethical issues, the Washington University Brown School in St. Louis, MO, United Stateshosted a policy forum entitled “First do no harm: Genetic privacy in the age of genomic sequencing” on February 25th, 2014. The forum included a panel of experts to discuss their views on ethical issues related to return of results in both the clinical and research settings. In this report, we highlight key issues related to return of results from genome sequencing tests that emerged during the forum. PMID:25229012

  18. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  19. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  20. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing.

    PubMed

    Helman, Elena; Lawrence, Michael S; Stewart, Chip; Sougnez, Carrie; Getz, Gad; Meyerson, Matthew

    2014-07-01

    Retrotransposons constitute a major source of genetic variation, and somatic retrotransposon insertions have been reported in cancer. Here, we applied TranspoSeq, a computational framework that identifies retrotransposon insertions from sequencing data, to whole genomes from 200 tumor/normal pairs across 11 tumor types as part of The Cancer Genome Atlas (TCGA) Pan-Cancer Project. In addition to novel germline polymorphisms, we find 810 somatic retrotransposon insertions primarily in lung squamous, head and neck, colorectal, and endometrial carcinomas. Many somatic retrotransposon insertions occur in known cancer genes. We find that high somatic retrotransposition rates in tumors are associated with high rates of genomic rearrangement and somatic mutation. Finally, we developed TranspoSeq-Exome to interrogate an additional 767 tumor samples with hybrid-capture exome data and discovered 35 novel somatic retrotransposon insertions into exonic regions, including an insertion into an exon of the PTEN tumor suppressor gene. The results of this large-scale, comprehensive analysis of retrotransposon movement across tumor types suggest that somatic retrotransposon insertions may represent an important class of structural variation in cancer. PMID:24823667

  1. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  2. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.

    PubMed

    Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer. PMID:23171949

  3. A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies

    PubMed Central

    Kim, Tae-Min; Park, Peter J

    2014-01-01

    Microsatellites are simple tandem repeats that are present at millions of loci in the human genome. Microsatellite instability (MSI) refers to DNA slippage events on microsatellites that occur frequently in cancer genomes when there is a defect in the DNA mismatch repair system. These somatic mutations can result in inactivation of tumor suppressor genes or disrupt other non-coding regulatory sequences, thereby playing a role in carcinogenesis. Here, we will discuss the ways in which high-throughput sequencing data can facilitate a genome- or exome-wide discovery and more detailed investigation of MSI events in microsatellite-unstable cancer genomes. We will address the methodological aspects of this approach and highlight insights from recent analyses of colorectal and endometrial cancer genomes from The Cancer Genome Atlas project. These include identification of novel MSI targets within and across tumor types and the relationship between the likelihood of MSI events to chromatin structure. Given the increasing popularity of exome and genome sequencing of cancer genomes, a comprehensive characterization of MSI may serve as a valuable marker of cancer evolution and aid in a search for therapeutic targets. PMID:25371413

  4. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  5. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    PubMed Central

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  6. Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives.

    PubMed

    Liu, Biao; Conroy, Jeffrey M; Morrison, Carl D; Odunsi, Adekunle O; Qin, Maochun; Wei, Lei; Trump, Donald L; Johnson, Candace S; Liu, Song; Wang, Jianmin

    2015-03-20

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  7. Cancer of the ampulla of Vater: analysis of the whole genome sequence exposes a potential therapeutic vulnerability

    PubMed Central

    2012-01-01

    Background Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scale clinical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise only about 0.2% of gastrointestinal cancers. Consequently, they are often treated as either distal common bile duct or pancreatic cancers. Methods We analyzed DNA from a resected cancer of the ampulla of Vater and whole blood DNA from a 63 year-old man who underwent a pancreaticoduodenectomy by whole genome sequencing, achieving 37× and 40× coverage, respectively. We determined somatic mutations and structural alterations. Results We identified relevant aberrations, including deleterious mutations of KRAS and SMAD4 as well as a homozygous focal deletion of the PTEN tumor suppressor gene. These findings suggest that these tumors have a distinct oncogenesis from either common bile duct cancer or pancreatic cancer. Furthermore, this combination of genomic aberrations suggests a therapeutic context for dual mTOR/PI3K inhibition. Conclusions Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers. PMID:22762308

  8. The next steps in next-gen sequencing of cancer genomes

    PubMed Central

    Hayes, D. Neil; Kim, William Y.

    2015-01-01

    The necessary infrastructure to carry out genomics-driven oncology is now widely available and has resulted in the exponential increase in characterized cancer genomes. While a subset of genomic alterations is clinically actionable, the majority of somatic events remain classified as variants of unknown significance and will require functional characterization. A careful cataloging of the genomic alterations and their response to therapeutic intervention should allow the compilation of an “actionability atlas” and the creation of a genomic taxonomy stratified by tumor type and oncogenic pathway activation. The next phase of genomic medicine will therefore require talented bioinformaticians, genomic navigators, and multidisciplinary approaches to decode complex cancer genomes and guide potential therapy. Equally important will be the ethical and interpretable return of results to practicing oncologists. Finally, the integration of genomics into clinical trials is likely to speed the development of predictive biomarkers of response to targeted therapy as well as define pathways to acquired resistance. PMID:25642706

  9. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing

    PubMed Central

    Hua, Xing; Zeller, Georg; Sunagawa, Shinichi; Voigt, Anita Y.; Hercog, Rajna; Goedert, James J.; Shi, Jianxin; Bork, Peer; Sinha, Rashmi

    2016-01-01

    Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect associations that are reproducible and significant after correction for multiple testing. PMID:27171425

  10. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing.

    PubMed

    Yang, Lixing; Lee, Mi-Sook; Lu, Hengyu; Oh, Doo-Yi; Kim, Yeon Jeong; Park, Donghyun; Park, Gahee; Ren, Xiaojia; Bristow, Christopher A; Haseley, Psalm S; Lee, Soohyun; Pantazi, Angeliki; Kucherlapati, Raju; Park, Woong-Yang; Scott, Kenneth L; Choi, Yoon-La; Park, Peter J

    2016-05-01

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5' fusion partners of functional fusions are often housekeeping genes, whereas the 3' fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases. PMID:27153396

  11. Synergy and competition between cancer genome sequencing and epigenome mapping projects

    PubMed Central

    2014-01-01

    Editorial summary Large-scale projects in the fields of cancer genomics and epigenomics have different aims, cultures and outcomes. The author argues that by working together a complete picture of cancer biology could be painted, and he advocates the creation of an International Cancer Epigenome Consortium. PMID:25031623

  12. Flexible positions, managed hopes: the promissory bioeconomy of a whole genome sequencing cancer study.

    PubMed

    Haase, Rachel; Michie, Marsha; Skinner, Debra

    2015-04-01

    Genomic research has rapidly expanded its scope and ambition over the past decade, promoted by both public and private sectors as having the potential to revolutionize clinical medicine. This promissory bioeconomy of genomic research and technology is generated by, and in turn generates, the hopes and expectations shared by investors, researchers and clinicians, patients, and the general public alike. Examinations of such bioeconomies have often focused on the public discourse, media representations, and capital investments that fuel these "regimes of hope," but also crucial are the more intimate contexts of small-scale medical research, and the private hopes, dreams, and disappointments of those involved. Here we examine one local site of production in a university-based clinical research project that sought to identify novel cancer predisposition genes through whole genome sequencing in individuals at high risk for cancer. In-depth interviews with 24 adults who donated samples to the study revealed an ability to shift flexibly between positioning themselves as research participants on the one hand, and as patients or as family members of patients, on the other. Similarly, interviews with members of the research team highlighted the dual nature of their positions as researchers and as clinicians. For both parties, this dual positioning shaped their investment in the project and valuing of its possible outcomes. In their narratives, all parties shifted between these different relational positions as they managed hopes and expectations for the research project. We suggest that this flexibility facilitated study implementation and participation in the face of potential and probable disappointment on one or more fronts, and acted as a key element in the resilience of this local promissory bioeconomy. We conclude that these multiple dimensions of relationality and positionality are inherent and essential in the creation of any complex economy, "bio" or otherwise. PMID:25697637

  13. Flexible Positions, Managed Hopes: The Promissory Bioeconomy of a Whole Genome Sequencing Cancer Study

    PubMed Central

    Haase, Rachel; Michie, Marsha; Skinner, Debra

    2015-01-01

    Genomic research has rapidly expanded its scope and ambition over the past decade, promoted by both public and private sectors as having the potential to revolutionize clinical medicine. This promissory bioeconomy of genomic research and technology is generated by, and in turn generates, the hopes and expectations shared by investors, researchers and clinicians, patients, and the general public alike. Examinations of such bioeconomies have often focused on the public discourse, media representations, and capital investments that fuel these “regimes of hope,” but also crucial are the more intimate contexts of small-scale medical research, and the private hopes, dreams, and disappointments of those involved. Here we examine one local site of production in a university-based clinical research project that sought to identify novel cancer predisposition genes through whole genome sequencing in individuals at high risk for cancer. In-depth interviews with 24 adults who donated samples to the study revealed an ability to shift flexibly between positioning themselves as research participants on the one hand, and as patients or as family members of patients, on the other. Similarly, interviews with members of the research team highlighted the dual nature of their positions as researchers and as clinicians. For both parties, this dual positioning shaped their investment in the project and valuing of its possible outcomes. In their narratives, all parties shifted between these different relational positions as they managed hopes and expectations for the research project. We suggest that this flexibility facilitated study implementation and participation in the face of potential and probable disappointment on one or more fronts, and acted as a key element in the resilience of this local promissory bioeconomy. We conclude that these multiple dimensions of relationality and positionality are inherent and essential in the creation of any complex economy, “bio” or otherwise. PMID:25697637

  14. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  15. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes

    PubMed Central

    San Lucas, F. A.; Allenson, K.; Bernard, V.; Castillo, J.; Kim, D. U.; Ellis, K.; Ehli, E. A.; Davies, G. E.; Petersen, J. L.; Li, D.; Wolff, R.; Katz, M.; Varadhachary, G.; Wistuba, I.; Maitra, A.; Alvarez, H.

    2016-01-01

    Background The ability to perform comprehensive profiling of cancers at high resolution is essential for precision medicine. Liquid biopsies using shed exosomes provide high-quality nucleic acids to obtain molecular characterization, which may be especially useful for visceral cancers that are not amenable to routine biopsies. Patients and methods We isolated shed exosomes in biofluids from three patients with pancreaticobiliary cancers (two pancreatic, one ampullary). We performed comprehensive profiling of exoDNA and exoRNA by whole genome, exome and transcriptome sequencing using the Illumina HiSeq 2500 sequencer. We assessed the feasibility of calling copy number events, detecting mutational signatures and identifying potentially actionable mutations in exoDNA sequencing data, as well as expressed point mutations and gene fusions in exoRNA sequencing data. Results Whole-exome sequencing resulted in 95%–99% of the target regions covered at a mean depth of 133–490×. Genome-wide copy number profiles, and high estimates of tumor fractions (ranging from 56% to 82%), suggest robust representation of the tumor DNA within the shed exosomal compartment. Multiple actionable mutations, including alterations in NOTCH1 and BRCA2, were found in patient exoDNA samples. Further, RNA sequencing of shed exosomes identified the presence of expressed fusion genes, representing an avenue for elucidation of tumor neoantigens. Conclusions We have demonstrated high-resolution profiling of the genomic and transcriptomic landscapes of visceral cancers. A wide range of cancer-derived biomarkers could be detected within the nucleic acid cargo of shed exosomes, including copy number profiles, point mutations, insertions, deletions, gene fusions and mutational signatures. Liquid biopsies using shed exosomes has the potential to be used as a clinical tool for cancer diagnosis, therapeutic stratification and treatment monitoring, precluding the need for direct tumor sampling. PMID:26681674

  16. Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens

    PubMed Central

    Yost, Shawn E.; Smith, Erin N.; Schwab, Richard B.; Bao, Lei; Jung, HyunChul; Wang, Xiaoyun; Voest, Emile; Pierce, John P.; Messer, Karen; Parker, Barbara A.; Harismendy, Olivier; Frazer, Kelly A.

    2012-01-01

    The utilization of archived, formalin-fixed paraffin-embedded (FFPE) tumor samples for massive parallel sequencing has been challenging due to DNA damage and contamination with normal stroma. Here, we perform whole genome sequencing of DNA isolated from two triple-negative breast cancer tumors archived for >11 years as 5 µm FFPE sections and matched germline DNA. The tumor samples show differing amounts of FFPE damaged DNA sequencing reads revealed as relatively high alignment mismatch rates enriched for C·G > T·A substitutions compared to germline samples. This increase in mismatch rate is observable with as few as one million reads, allowing for an upfront evaluation of the sample integrity before whole genome sequencing. By applying innovative quality filters incorporating global nucleotide mismatch rates and local mismatch rates, we present a method to identify high-confidence somatic mutations even in the presence of FFPE induced DNA damage. This results in a breast cancer mutational profile consistent with previous studies and revealing potentially important functional mutations. Our study demonstrates the feasibility of performing genome-wide deep sequencing analysis of FFPE archived tumors of limited sample size such as residual cancer after treatment or metastatic biopsies. PMID:22492626

  17. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Patients with prostate cancer may present with metastatic or recurrent disease despite initial curative treatment. The propensity of metastatic prostate cancer to spread to the bone has limited repeated sampling of tumor deposits. Hence, considerably less is understood about this lethal metastatic disease, as it is not commonly studied. Here we explored whole-genome sequencing of plasma DNA to scan the tumor genomes of these patients non-invasively. Methods We wanted to make whole-genome analysis from plasma DNA amenable to clinical routine applications and developed an approach based on a benchtop high-throughput platform, that is, Illuminas MiSeq instrument. We performed whole-genome sequencing from plasma at a shallow sequencing depth to establish a genome-wide copy number profile of the tumor at low costs within 2 days. In parallel, we sequenced a panel of 55 high-interest genes and 38 introns with frequent fusion breakpoints such as the TMPRSS2-ERG fusion with high coverage. After intensive testing of our approach with samples from 25 individuals without cancer we analyzed 13 plasma samples derived from five patients with castration resistant (CRPC) and four patients with castration sensitive prostate cancer (CSPC). Results The genome-wide profiling in the plasma of our patients revealed multiple copy number aberrations including those previously reported in prostate tumors, such as losses in 8p and gains in 8q. High-level copy number gains in the AR locus were observed in patients with CRPC but not with CSPC disease. We identified the TMPRSS2-ERG rearrangement associated 3-Mbp deletion on chromosome 21 and found corresponding fusion plasma fragments in these cases. In an index case multiregional sequencing of the primary tumor identified different copy number changes in each sector, suggesting multifocal disease. Our plasma analyses of this index case, performed 13 years after resection of the primary tumor, revealed novel chromosomal rearrangements, which were stable in serial plasma analyses over a 9-month period, which is consistent with the presence of one metastatic clone. Conclusions The genomic landscape of prostate cancer can be established by non-invasive means from plasma DNA. Our approach provides specific genomic signatures within 2 days which may therefore serve as 'liquid biopsy'. PMID:23561577

  18. Local sequence assembly reveals a high-resolution profile of somatic structural variations in 97 cancer genomes

    PubMed Central

    Zhuang, Jiali; Weng, Zhiping

    2015-01-01

    Genomic structural variations (SVs) are pervasive in many types of cancers. Characterizing their underlying mechanisms and potential molecular consequences is crucial for understanding the basic biology of tumorigenesis. Here, we engineered a local assembly-based algorithm (laSV) that detects SVs with high accuracy from paired-end high-throughput genomic sequencing data and pinpoints their breakpoints at single base-pair resolution. By applying laSV to 97 tumor-normal paired genomic sequencing datasets across six cancer types produced by The Cancer Genome Atlas Research Network, we discovered that non-allelic homologous recombination is the primary mechanism for generating somatic SVs in acute myeloid leukemia. This finding contrasts with results for the other five types of solid tumors, in which non-homologous end joining and microhomology end joining are the predominant mechanisms. We also found that the genes recursively mutated by single nucleotide alterations differed from the genes recursively mutated by SVs, suggesting that these two types of genetic alterations play different roles during cancer progression. We further characterized how the gene structures of the oncogene JAK1 and the tumor suppressors KDM6A and RB1 are affected by somatic SVs and discussed the potential functional implications of intergenic SVs. PMID:26283183

  19. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 9099 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  20. Preferences for return of incidental findings from genome sequencing among women diagnosed with breast cancer at a young age.

    PubMed

    Kaphingst, K A; Ivanovich, J; Biesecker, B B; Dresser, R; Seo, J; Dressler, L G; Goodfellow, P J; Goodman, M S

    2016-03-01

    While experts have made recommendations, information is needed regarding what genome sequencing results patients would want returned. We investigated what results women diagnosed with breast cancer at a young age would want returned and why. We conducted 60 semi-structured, in-person individual interviews with women diagnosed with breast cancer at age 40 or younger. We examined interest in six types of incidental findings and reasons for interest or disinterest in each type. Two coders independently coded interview transcripts; analysis was conducted using NVivo 10. Most participants were at least somewhat interested in all six result types, but strongest interest was in actionable results (i.e. variants affecting risk of a preventable or treatable disease and treatment response). Reasons for interest varied between different result types. Some participants were not interested or ambivalent about results not seen as currently actionable. Participants wanted to be able to choose what results are returned. Participants distinguished between types of individual genome sequencing results, with different reasons for wanting different types of information. The findings suggest that a focus on actionable results can be a common ground for all stakeholders in developing a policy for returning individual genome sequencing results. PMID:25871653

  1. Functional genomics of cancer.

    PubMed

    Liu, Edison T

    2008-06-01

    Cancer genomics has focused on the discovery of genetic mutations and chromosomal structural rearrangements that either increase susceptibility to cancer or support the cancer phenotype. Though each individual mutation may induce specific cancer phenotypes, it is the interaction of the functional changes in transcription and proteins that give the characteristics of cancer. Whereas molecular biology focuses on the impact of individual genes on the cancer state, functional genomics assesses the comprehensive genetic alterations in a cancer cell and seeks to integrate the dynamic changes in these networks so that cancer phenotypes can be explained. Most commonly, the transcriptome is the target of analysis because of the maturity, completeness, and speed of the technologies, but progressively the proteome is being studied in the same comprehensive manner. The focus of this review, however, will be on the functional consequences of cancer genomic alterations with special reference to the transcriptome and in the perturbed gene expression found in cancer states. The developments in the past two years (which is our time horizon) have been heavily driven by the applications of the new ultra high-throughput sequencing approaches assisted by computational discovery strategies. The precision and comprehensiveness of the analyses are astonishing. The collective results, when taken together, suggest that despite the large range of mutational and epigenetic events, there is a convergence onto a finite number of pathways that drive cancer behavior. Moreover, the interconnectivity of regulatory control mechanisms suggest that the earlier concepts distinguishing driver from passenger abnormalities may undervalue the contribution of the numerous aberrations that have small but additive effects on cancer virulence. PMID:18691651

  2. From human genome to cancer genome: The first decade

    PubMed Central

    Wheeler, David A.; Wang, Linghua

    2013-01-01

    The realization that cancer progression required the participation of cellular genes provided one of several key rationales, in 1986, for embarking on the human genome project. Only with a reference genome sequence could the full spectrum of somatic changes leading to cancer be understood. Since its completion in 2003, the human reference genome sequence has fulfilled its promise as a foundational tool to illuminate the pathogenesis of cancer. Herein, we review the key historical milestones in cancer genomics since the completion of the genome, and some of the novel discoveries that are shaping our current understanding of cancer. PMID:23817046

  3. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges

    PubMed Central

    Liu, Biao; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.; Qin, Maochun; Conroy, Jeffrey C.; Wang, Jianmin; Liu, Song

    2013-01-01

    Accurate detection of somatic copy number variations (CNVs) is an essential part of cancer genome analysis, and plays an important role in oncotarget identifications. Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV detection. In this review, we provide an overview of current analytic tools used for CNV detection in NGS-based cancer studies. We summarize the NGS data types used for CNV detection, decipher the principles for data preprocessing, segmentation, and interpretation, and discuss the challenges in somatic CNV detection. This review aims to provide a guide to the analytic tools used in NGS-based cancer CNV studies, and to discuss the important factors that researchers need to consider when analyzing NGS data for somatic CNV detections. PMID:24240121

  4. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges.

    PubMed

    Liu, Biao; Morrison, Carl D; Johnson, Candace S; Trump, Donald L; Qin, Maochun; Conroy, Jeffrey C; Wang, Jianmin; Liu, Song

    2013-11-01

    Accurate detection of somatic copy number variations (CNVs) is an essential part of cancer genome analysis, and plays an important role in oncotarget identifications. Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV detection. In this review, we provide an overview of current analytic tools used for CNV detection in NGS-based cancer studies. We summarize the NGS data types used for CNV detection, decipher the principles for data preprocessing, segmentation, and interpretation, and discuss the challenges in somatic CNV detection. This review aims to provide a guide to the analytic tools used in NGS-based cancer CNV studies, and to discuss the important factors that researchers need to consider when analyzing NGS data for somatic CNV detections. PMID:24240121

  5. Towards Sequencing Cotton (Gossypium) Genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite rapidly decreasing costs and innovative technologies, sequencing of angiosperm genomes is not yet undertaken lightly. Generating larger amounts of sequence data more quickly does not address the difficulties of sequencing and assembling complex genomes de novo. The cotton genomes represent a...

  6. Cancer Genome Landscapes

    PubMed Central

    Vogelstein, Bert; Papadopoulos, Nickolas; Velculescu, Victor E.; Zhou, Shibin; Diaz, Luis A.; Kinzler, Kenneth W.

    2013-01-01

    Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality. PMID:23539594

  7. Evolution of the cancer genome.

    PubMed

    Yates, Lucy R; Campbell, Peter J

    2012-11-01

    The advent of massively parallel sequencing technologies has allowed the characterization of cancer genomes at an unprecedented resolution. Investigation of the mutational landscape of tumours is providing new insights into cancer genome evolution, laying bare the interplay of somatic mutation, adaptation of clones to their environment and natural selection. These studies have demonstrated the extent of the heterogeneity of cancer genomes, have allowed inferences to be made about the forces that act on nascent cancer clones as they evolve and have shown insight into the mutational processes that generate genetic variation. Here we review our emerging understanding of the dynamic evolution of the cancer genome and of the implications for basic cancer biology and the development of antitumour therapy. PMID:23044827

  8. Intrachromosomal genomic instability in human sporadic colorectal cancer measured by genome-wide allelotyping and inter-(simple sequence repeat) PCR.

    PubMed

    Anderson, G R; Brenner, B M; Swede, H; Chen, N; Henry, W M; Conroy, J M; Karpenko, M J; Issa, J P; Bartos, J D; Brunelle, J K; Jahreis, G P; Kahlenberg, M S; Basik, M; Sait, S; Rodriguez-Bigas, M A; Nowak, N J; Petrelli, N J; Shows, T B; Stoler, D L

    2001-11-15

    We have used genome-wide allelotyping with 348 polymorphic autosomal markers spaced, on average, 10 cM apart to quantitate the extent of intrachromosomal instability in 59 human sporadic colorectal carcinomas. We have compared instability measured by this method with that measured by inter-(simple sequence repeat) PCR and microsatellite instability assays. Instability quantitated by fractional allelic loss rates was found to be independent of that detected by microsatellite instability analyses but was weakly associated with that measured by inter-(simple sequence repeat) PCR. A set of seven loci were identified that were most strongly associated with elevated rates of fractional allelic loss and/or inter-(simple sequence repeat) PCR instability; these seven loci were on chromosomes 3, 8, 11, 13, 14, 18, and 20. A lesser association was seen with two loci flanking p53 on chromosome 17. Coordinate loss patterns for these loci suggest that at least two separate sets of cooperating loci exist for intrachromosomal genomic instability in human colorectal cancer. PMID:11719460

  9. Genome Sequence Databases (Overview): Sequencing and Assembly

    SciTech Connect

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  10. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Schadt, Christopher Warren; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael E

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

  11. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Schadt, Christopher Warren; Baker, Scott; Thykaer, Jette; Adney, William S; Brettin, Tom; Brockman, Fred; Dhaeseleer, Patrick; Martinez, A diego; Miller, R michael; Rokhsar, Daniel; Torok, Tamas; Tuskan, Gerald A; Bennett, Joan; Berka, Randy; Briggs, Steven; Heitman, Joseph; Rizvi, L; Taylor, John; Turgeon, Gillian; Werner-Washburne, Maggie; Himmel, Michael

    2008-01-01

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  12. Fungal Genome Sequencing and Bioenergy

    SciTech Connect

    Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

    2008-09-30

    To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

  13. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden.

    PubMed

    Cazier, J-B; Rao, S R; McLean, C M; Walker, A K; Walker, A L; Wright, B J; Jaeger, E E M; Kartsonaki, C; Marsden, L; Yau, C; Camps, C; Kaisaki, P; Taylor, J; Catto, J W; Tomlinson, I P M; Kiltie, A E; Hamdy, F C

    2014-01-01

    Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression. PMID:24777035

  14. Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden

    PubMed Central

    Cazier, J.-B.; Rao, S.R.; McLean, C.M.; Walker, A.L.; Wright, B.J.; Jaeger, E.E.M.; Kartsonaki, C.; Marsden, L.; Yau, C.; Camps, C.; Kaisaki, P.; Allan, Christopher; Attar, Moustafa; Bell, John; Bentley, David; Broxholme, John; Buck, David; Cazier, Jean-Baptiste; Copley, Richard; Cornall, Richard; Donnelly, Peter; Fiddy, Simon; Green, Angie; Gregory, Lorna; Grocock, Russell; Hatton, Edouard; Holmes, Chris; Hughes, Linda; Humburg, Peter; Humphray, Sean; Kanapin, Alexander; Kingsbury, Zoya; Knight, Julian; Lamble, Sarah; Lise, Stefano; Lonie, Lorne; Lunter, Gerton; Martin, Hilary; Murray, Lisa; McCarthy, Davis; McVean, Gil; Pagnamenta, Alistair; Piazza, Paolo; Polanco, Guadelupe; Ratcliffe, Peter; Rimmer, Andy; Sahgal, Natasha; Taylor, Jenny; Tomlinson, Ian; Trebes, Amy; Wilkie, Andrew; Wright, Ben; Yau, Chris; Taylor, J.; Catto, J.W.; Tomlinson, I.P.M.; Kiltie, A.E.; Hamdy, F.C.

    2014-01-01

    Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression. PMID:24777035

  15. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2

    PubMed Central

    Blein, Sophie; Barjhoux, Laure; Damiola, Francesca; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Lortholary, Alain; Buecher, Bruno; Berthet, Pascaline; Noguès, Catherine; Lasset, Christine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Cox, David G.

    2015-01-01

    Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively) have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk. PMID:26406445

  16. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer

    PubMed Central

    Chen, Jie-Fu; Lin, Millicent; Li, Fuqiang; Wu, Kui; Wu, Hanjie; Lichterman, Jake; Wan, Haolei; Lu, Chia-Lun; OuYang, William; Ni, Ming; Wang, Linlin; Li, Guibo; Lee, Tom; Zhang, Xiuqing; Yang, Jonathan; Rettig, Matthew; Chung, Leland W.K.; Yang, Huanming; Li, Ker-Chau; Hou, Yong; Tseng, Hsian-Rong; Hou, Shuang; Xu, Xun; Wang, Jun; Posadas, Edwin M.

    2015-01-01

    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history. PMID:26575023

  17. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer.

    PubMed

    Jiang, Runze; Lu, Yi-Tsung; Ho, Hao; Li, Bo; Chen, Jie-Fu; Lin, Millicent; Li, Fuqiang; Wu, Kui; Wu, Hanjie; Lichterman, Jake; Wan, Haolei; Lu, Chia-Lun; OuYang, William; Ni, Ming; Wang, Linlin; Li, Guibo; Lee, Tom; Zhang, Xiuqing; Yang, Jonathan; Rettig, Matthew; Chung, Leland W K; Yang, Huanming; Li, Ker-Chau; Hou, Yong; Tseng, Hsian-Rong; Hou, Shuang; Xu, Xun; Wang, Jun; Posadas, Edwin M

    2015-12-29

    Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history. PMID:26575023

  18. Comparative effectiveness of next generation genomic sequencing for disease diagnosis: Design of a randomized controlled trial in patients with colorectal cancer/polyposis syndromes✩

    PubMed Central

    Gallego, Carlos J.; Bennette, Caroline S.; Heagerty, Patrick; Comstock, Bryan; Horike-Pyne, Martha; Hisama, Fuki; Amendola, Laura M.; Bennett, Robin L.; Dorschner, Michael O.; Tarczy-Hornoch, Peter; Grady, William M.; Fullerton, S. Malia; Trinidad, Susan B.; Regier, Dean A.; Nickerson, Deborah A.; Burke, Wylie; Patrick, Donald L.; Jarvik, Gail P.; Veenstra, David L.

    2014-01-01

    Whole exome and whole genome sequencing are applications of next generation sequencing transforming clinical care, but there is little evidence whether these tests improve patient outcomes or if they are cost effective compared to current standard of care. These gaps in knowledge can be addressed by comparative effectiveness and patient-centered outcomes research. We designed a randomized controlled trial that incorporates these research methods to evaluate whole exome sequencing compared to usual care in patients being evaluated for hereditary colorectal cancer and polyposis syndromes. Approximately 220 patients will be randomized and followed for 12 months after return of genomic findings. Patients will receive findings associated with colorectal cancer in a first return of result visit, and findings not associated with colorectal cancer (incidental findings) during a second return of result visit. The primary outcome is efficacy to detect mutations associated with these syndromes; secondary outcomes include psychosocial impact, cost-effectiveness and comparative costs. The secondary outcomes will be obtained via surveys before and after each return visit. The expected challenges in conducting this randomized controlled trial include the relatively low prevalence of genetic disease, difficult interpretation of some genetic variants, and uncertainty about which incidental findings should be returned to patients. The approaches utilized in this study may help guide other investigators in clinical genomics to identify useful outcome measures and strategies to address comparative effectiveness questions about the clinical implementation of genomic sequencing in clinical care. PMID:24997220

  19. Comparative effectiveness of next generation genomic sequencing for disease diagnosis: design of a randomized controlled trial in patients with colorectal cancer/polyposis syndromes.

    PubMed

    Gallego, Carlos J; Bennette, Caroline S; Heagerty, Patrick; Comstock, Bryan; Horike-Pyne, Martha; Hisama, Fuki; Amendola, Laura M; Bennett, Robin L; Dorschner, Michael O; Tarczy-Hornoch, Peter; Grady, William M; Fullerton, S Malia; Trinidad, Susan B; Regier, Dean A; Nickerson, Deborah A; Burke, Wylie; Patrick, Donald L; Jarvik, Gail P; Veenstra, David L

    2014-09-01

    Whole exome and whole genome sequencing are applications of next generation sequencing transforming clinical care, but there is little evidence whether these tests improve patient outcomes or if they are cost effective compared to current standard of care. These gaps in knowledge can be addressed by comparative effectiveness and patient-centered outcomes research. We designed a randomized controlled trial that incorporates these research methods to evaluate whole exome sequencing compared to usual care in patients being evaluated for hereditary colorectal cancer and polyposis syndromes. Approximately 220 patients will be randomized and followed for 12 months after return of genomic findings. Patients will receive findings associated with colorectal cancer in a first return of results visit, and findings not associated with colorectal cancer (incidental findings) during a second return of results visit. The primary outcome is efficacy to detect mutations associated with these syndromes; secondary outcomes include psychosocial impact, cost-effectiveness and comparative costs. The secondary outcomes will be obtained via surveys before and after each return visit. The expected challenges in conducting this randomized controlled trial include the relatively low prevalence of genetic disease, difficult interpretation of some genetic variants, and uncertainty about which incidental findings should be returned to patients. The approaches utilized in this study may help guide other investigators in clinical genomics to identify useful outcome measures and strategies to address comparative effectiveness questions about the clinical implementation of genomic sequencing in clinical care. PMID:24997220

  20. Mutation Discovery in Regions of Segmental Cancer Genome Amplifications with CoNAn-SNV: A Mixture Model for Next Generation Sequencing of Tumors

    PubMed Central

    Crisan, Anamaria; Goya, Rodrigo; Ha, Gavin; Ding, Jiarui; Prentice, Leah M.; Oloumi, Arusha; Senz, Janine; Zeng, Thomas; Tse, Kane; Delaney, Allen; Marra, Marco A.; Huntsman, David G.; Hirst, Martin; Aparicio, Sam; Shah, Sohrab

    2012-01-01

    Next generation sequencing has now enabled a cost-effective enumeration of the full mutational complement of a tumor genome—in particular single nucleotide variants (SNVs). Most current computational and statistical models for analyzing next generation sequencing data, however, do not account for cancer-specific biological properties, including somatic segmental copy number alterations (CNAs)—which require special treatment of the data. Here we present CoNAn-SNV (Copy Number Annotated SNV): a novel algorithm for the inference of single nucleotide variants (SNVs) that overlap copy number alterations. The method is based on modelling the notion that genomic regions of segmental duplication and amplification induce an extended genotype space where a subset of genotypes will exhibit heavily skewed allelic distributions in SNVs (and therefore render them undetectable by methods that assume diploidy). We introduce the concept of modelling allelic counts from sequencing data using a panel of Binomial mixture models where the number of mixtures for a given locus in the genome is informed by a discrete copy number state given as input. We applied CoNAn-SNV to a previously published whole genome shotgun data set obtained from a lobular breast cancer and show that it is able to discover 21 experimentally revalidated somatic non-synonymous mutations in a lobular breast cancer genome that were not detected using copy number insensitive SNV detection algorithms. Importantly, ROC analysis shows that the increased sensitivity of CoNAn-SNV does not result in disproportionate loss of specificity. This was also supported by analysis of a recently published lymphoma genome with a relatively quiescent karyotype, where CoNAn-SNV showed similar results to other callers except in regions of copy number gain where increased sensitivity was conferred. Our results indicate that in genomically unstable tumors, copy number annotation for SNV detection will be critical to fully characterize the mutational landscape of cancer genomes. PMID:22916110

  1. Testing personalized medicine: patient and physician expectations of next-generation genomic sequencing in late-stage cancer care.

    PubMed

    Miller, Fiona A; Hayeems, Robin Z; Bytautas, Jessica P; Bedard, Philippe L; Ernst, Scott; Hirte, Hal; Hotte, Sebastien; Oza, Amit; Razak, Albiruni; Welch, Stephen; Winquist, Eric; Dancey, Janet; Siu, Lillian L

    2014-03-01

    Developments in genomics, including next-generation sequencing technologies, are expected to enable a more personalized approach to clinical care, with improved risk stratification and treatment selection. In oncology, personalized medicine is particularly advanced and increasingly used to identify oncogenic variants in tumor tissue that predict responsiveness to specific drugs. Yet, the translational research needed to validate these technologies will be conducted in patients with late-stage cancer and is expected to produce results of variable clinical significance and incidentally identify genetic risks. To explore the experiential context in which much of personalized cancer care will be developed and evaluated, we conducted a qualitative interview study alongside a pilot feasibility study of targeted DNA sequencing of metastatic tumor biopsies in adult patients with advanced solid malignancies. We recruited 29/73 patients and 14/17 physicians; transcripts from semi-structured interviews were analyzed for thematic patterns using an interpretive descriptive approach. Patient hopes of benefit from research participation were enhanced by the promise of novel and targeted treatment but challenged by non-findings or by limited access to relevant trials. Family obligations informed a willingness to receive genetic information, which was perceived as burdensome given disease stage or as inconsequential given faced challenges. Physicians were optimistic about long-term potential but conservative about immediate benefits and mindful of elevated patient expectations; consent and counseling processes were expected to mitigate challenges from incidental findings. These findings suggest the need for information and decision tools to support physicians in communicating realistic prospects of benefit, and for cautious approaches to the generation of incidental genetic information. PMID:23860039

  2. Testing personalized medicine: patient and physician expectations of next-generation genomic sequencing in late-stage cancer care

    PubMed Central

    Miller, Fiona A; Hayeems, Robin Z; Bytautas, Jessica P; Bedard, Philippe L; Ernst, Scott; Hirte, Hal; Hotte, Sebastien; Oza, Amit; Razak, Albiruni; Welch, Stephen; Winquist, Eric; Dancey, Janet; Siu, Lillian L

    2014-01-01

    Developments in genomics, including next-generation sequencing technologies, are expected to enable a more personalized approach to clinical care, with improved risk stratification and treatment selection. In oncology, personalized medicine is particularly advanced and increasingly used to identify oncogenic variants in tumor tissue that predict responsiveness to specific drugs. Yet, the translational research needed to validate these technologies will be conducted in patients with late-stage cancer and is expected to produce results of variable clinical significance and incidentally identify genetic risks. To explore the experiential context in which much of personalized cancer care will be developed and evaluated, we conducted a qualitative interview study alongside a pilot feasibility study of targeted DNA sequencing of metastatic tumor biopsies in adult patients with advanced solid malignancies. We recruited 29/73 patients and 14/17 physicians; transcripts from semi-structured interviews were analyzed for thematic patterns using an interpretive descriptive approach. Patient hopes of benefit from research participation were enhanced by the promise of novel and targeted treatment but challenged by non-findings or by limited access to relevant trials. Family obligations informed a willingness to receive genetic information, which was perceived as burdensome given disease stage or as inconsequential given faced challenges. Physicians were optimistic about long-term potential but conservative about immediate benefits and mindful of elevated patient expectations; consent and counseling processes were expected to mitigate challenges from incidental findings. These findings suggest the need for information and decision tools to support physicians in communicating realistic prospects of benefit, and for cautious approaches to the generation of incidental genetic information. PMID:23860039

  3. Comparisons of eukaryotic genomic sequences.

    PubMed Central

    Karlin, S; Ladunga, I

    1994-01-01

    A method for assessing genomic similarity based on relative abundances of short oligonucleotides in large DNA samples is introduced. The method requires neither homologous sequences nor prior sequence alignments. The analysis centers on (i) dinucleotide (and tri- and tetra-) relative abundance extremes in genomic sequences, (ii) distances between sequences based on all dinucleotide relative abundance values, and (iii) a multidimensional partial ordering protocol. The emphasis in this paper is on assessments of general relatedness of genomes as distinguished from phylogenetic reconstructions. Our methods demonstrate that the relative abundance distances almost always differ more for genomic interspecific sequence comparisons than for genomic intraspecific sequence comparisons, indicating congruence over different genome sequence samples. The genomic comparisons are generally concordant with accepted phylogenies among vertebrate and among fungal species sequences. Several unexpected relationships between the major groups of metazoa, fungal, and protist DNA emerge, including the following. (i) Schizosaccharomyces pombe and Saccharomyces cerevisiae in dinucleotide relative abundance distances are as similar to each other as human is to bovine. (ii) S. cerevisiae, although substantially far from, is significantly closer to the vertebrates than are the invertebrates (Drosophila melanogaster, Bombyx mori, and Caenorhabditis elegans). This phenomenon may suggest variable evolutionary rates during the metazoan radiations and slower changes in the fungal divergences, and/or a polyphyletic origin of metazoa. (iii) The genomic sequences of D. melanogaster and Trypanosoma brucei are strikingly similar. This DNA similarity might be explained by some molecular adaptation of the parasite to its dipteran (tsetse fly) host, a host-parasite gene transfer hypothesis. Robustness of the methods may be due to a genomic signature of dinucleotide relative abundance values reflecting DNA structures related to dinucleotide stacking energies, constraints of DNA curvature, and mechanisms attendant to replication, repair, and recombination. PMID:7809130

  4. Genomic Sequencing in Determining Treatment in Patients With Metastatic Cancer or Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2015-10-27

    Metastatic Neoplasm; Recurrent Neoplasm; Recurrent Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer; Unresectable Malignant Neoplasm

  5. Genomic profiling of breast cancers

    PubMed Central

    Curtis, Christina

    2015-01-01

    Purpose of review To describe recent advances in the application of advanced genomic technologies towards the identification of biomarkers of prognosis and treatment response in breast cancer. Recent findings Advances in high-throughput genomic profiling such as massively parallel sequencing have enabled researchers to catalogue the spectrum of somatic alterations in breast cancers. These tools also hold promise for precision medicine through accurate patient prognostication, stratification, and the dynamic monitoring of treatment response. For example, recent efforts have defined robust molecular subgroups of breast cancer and novel subtype-specific oncogenes. In addition, previously unappreciated activating mutations in human epidermal growth factor receptor 2 have been reported, suggesting new therapeutic opportunities. Genomic profiling of cell-free tumor DNA and circulating tumor cells has been used to monitor disease burden and the emergence of resistance, and such ‘liquid biopsy’ approaches may facilitate the early, noninvasive detection of aggressive disease. Finally, single-cell genomics is coming of age and will contribute to an understanding of breast cancer evolutionary dynamics. Summary Here, we highlight recent studies that employ high-throughput genomic technologies in an effort to elucidate breast cancer biology, discover new therapeutic targets, improve prognostication and stratification, and discuss the implications for precision cancer medicine. PMID:25502431

  6. Whole-genome sequencing of asian lung cancers: second-hand smoke unlikely to be responsible for higher incidence of lung cancer among Asian never-smokers.

    PubMed

    Krishnan, Vidhya G; Ebert, Philip J; Ting, Jason C; Lim, Elaine; Wong, Swee-Seong; Teo, Audrey S M; Yue, Yong G; Chua, Hui-Hoon; Ma, Xiwen; Loh, Gary S L; Lin, Yuhao; Tan, Joanna H J; Yu, Kun; Zhang, Shenli; Reinhard, Christoph; Tan, Daniel S W; Peters, Brock A; Lincoln, Stephen E; Ballinger, Dennis G; Laramie, Jason M; Nilsen, Geoffrey B; Barber, Thomas D; Tan, Patrick; Hillmer, Axel M; Ng, Pauline C

    2014-11-01

    Asian nonsmoking populations have a higher incidence of lung cancer compared with their European counterparts. There is a long-standing hypothesis that the increase of lung cancer in Asian never-smokers is due to environmental factors such as second-hand smoke. We analyzed whole-genome sequencing of 30 Asian lung cancers. Unsupervised clustering of mutational signatures separated the patients into two categories of either all the never-smokers or all the smokers or ex-smokers. In addition, nearly one third of the ex-smokers and smokers classified with the never-smoker-like cluster. The somatic variant profiles of Asian lung cancers were similar to that of European origin with G.C>T.A being predominant in smokers. We found EGFR and TP53 to be the most frequently mutated genes with mutations in 50% and 27% of individuals, respectively. Among the 16 never-smokers, 69% had an EGFR mutation compared with 29% of 14 smokers/ex-smokers. Asian never-smokers had lung cancer signatures distinct from the smoker signature and their mutation profiles were similar to European never-smokers. The profiles of Asian and European smokers are also similar. Taken together, these results suggested that the same mutational mechanisms underlie the etiology for both ethnic groups. Thus, the high incidence of lung cancer in Asian never-smokers seems unlikely to be due to second-hand smoke or other carcinogens that cause oxidative DNA damage, implying that routine EGFR testing is warranted in the Asian population regardless of smoking status. PMID:25189529

  7. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data

    PubMed Central

    Li, Cheng-Wei

    2016-01-01

    Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects. PMID:27034531

  8. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data.

    PubMed

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-01-01

    Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects. PMID:27034531

  9. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  10. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 1 of 2

  11. Sequencing Complex Genomic Regions

    SciTech Connect

    Eichler, Evan

    2009-05-28

    Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 2 of 2

  12. Poultry Genome Sequences: Progress and Outstanding Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first build of the chicken genome sequence appeared in March 2004 – the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence ...

  13. Whole genome sequencing in pharmacogenomics

    PubMed Central

    Katsila, Theodora

    2015-01-01

    Pharmacogenomics aims to shed light on the role of genes and genomic variants in clinical treatment response. Although, several drug–gene relationships are characterized to date, many challenges still remain toward the application of pharmacogenomics in the clinic; clinical guidelines for pharmacogenomic testing are still in their infancy, whereas the emerging high throughput genotyping technologies produce a tsunami of new findings. Herein, the potential of whole genome sequencing on pharmacogenomics research and clinical application are highlighted. PMID:25859217

  14. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  15. Sequencing and mapping of the onion genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of DNA sequencing continues to decline and, in the near future, it will become reasonable to undertake sequencing of the enormous nuclear genome of onion. We undertook sequencing of expressed and genomic regions of the onion genome to learn about the structure of the onion genome, as well a...

  16. Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing.

    PubMed

    Tang, Man-Hung Eric; Dahlgren, Malin; Brueffer, Christian; Tjitrowirjo, Tamara; Winter, Christof; Chen, Yilun; Olsson, Eleonor; Wang, Kun; Törngren, Therese; Sjöström, Martin; Grabau, Dorthe; Bendahl, Pär-Ola; Rydén, Lisa; Niméus, Emma; Saal, Lao H; Borg, Åke; Gruvberger-Saal, Sofia K

    2015-11-10

    To better understand and characterize chromosomal structural variation during breast cancer progression, we enumerated chromosomal rearrangements for 11 patients by performing low-coverage whole-genome sequencing of 11 primary breast tumors and their 13 matched distant metastases. The tumor genomes harbored a median of 85 (range 18-404) rearrangements per tumor, with a median of 82 (26-310) in primaries compared to 87 (18-404) in distant metastases. Concordance between paired tumors from the same patient was high with a median of 89% of rearrangements shared (range 61-100%), whereas little overlap was found when comparing all possible pairings of tumors from different patients (median 3%). The tumors exhibited diverse genomic patterns of rearrangements: some carried events distributed throughout the genome while others had events mostly within densely clustered chromothripsis-like foci at a few chromosomal locations. Irrespectively, the patterns were highly conserved between the primary tumor and metastases from the same patient. Rearrangements occurred more frequently in genic areas than expected by chance and among the genes affected there was significant enrichment for cancer-associated genes including disruption of TP53, RB1, PTEN, and ESR1, likely contributing to tumor development. Our findings are most consistent with chromosomal rearrangements being early events in breast cancer progression that remain stable during the development from primary tumor to distant metastasis. PMID:26439695

  17. Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing

    PubMed Central

    Brueffer, Christian; Tjitrowirjo, Tamara; Winter, Christof; Chen, Yilun; Olsson, Eleonor; Wang, Kun; Törngren, Therese; Sjöström, Martin; Grabau, Dorthe; Bendahl, Pär-Ola; Rydén, Lisa; Niméus, Emma; Saal, Lao H.; Borg, Åke; Gruvberger-Saal, Sofia K.

    2015-01-01

    To better understand and characterize chromosomal structural variation during breast cancer progression, we enumerated chromosomal rearrangements for 11 patients by performing low-coverage whole-genome sequencing of 11 primary breast tumors and their 13 matched distant metastases. The tumor genomes harbored a median of 85 (range 18-404) rearrangements per tumor, with a median of 82 (26-310) in primaries compared to 87 (18-404) in distant metastases. Concordance between paired tumors from the same patient was high with a median of 89% of rearrangements shared (range 61-100%), whereas little overlap was found when comparing all possible pairings of tumors from different patients (median 3%). The tumors exhibited diverse genomic patterns of rearrangements: some carried events distributed throughout the genome while others had events mostly within densely clustered chromothripsis-like foci at a few chromosomal locations. Irrespectively, the patterns were highly conserved between the primary tumor and metastases from the same patient. Rearrangements occurred more frequently in genic areas than expected by chance and among the genes affected there was significant enrichment for cancer-associated genes including disruption of TP53, RB1, PTEN, and ESR1, likely contributing to tumor development. Our findings are most consistent with chromosomal rearrangements being early events in breast cancer progression that remain stable during the development from primary tumor to distant metastasis. PMID:26439695

  18. Genome Sequence of Mycobacteriophage Phayonce.

    PubMed

    Pope, Welkin H; Jacobetz, Emily; Johnson, Courtney A; Kihle, Brooke L; Sobeski, Margaret A; Werner, Madison B; Adkins, Nancy L; Kramer, Zachary J; Montgomery, Matthew T; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-01-01

    Mycobacteriophage Phayonce is a newly isolated phage recovered from a soil sample in Pittsburgh, PA, using Mycobacterium smegmatis mc(2)155 as a host. Phayonce's genome is 49,203 bp long and contains 77 protein-coding genes, 23 of them having predicted functions. Phayonce shares a strong similarity in nucleotide sequence with phages of cluster P. PMID:26089413

  19. Fusicladium effusum draft genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pecan scab fungus (Fusicladium effusum [G. Winter]) is an economically important pathogen of pecan (Carya illinoinensis [Wangenh]. K. Koch), on account of its impact on yield and quality of valuable nutmeats. We describe the first draft genome sequence of F. effusum, the characteristics of annot...

  20. Genome Sequence of Mycobacteriophage Phayonce

    PubMed Central

    Jacobetz, Emily; Johnson, Courtney A.; Kihle, Brooke L.; Sobeski, Margaret A.; Werner, Madison B.; Adkins, Nancy L.; Kramer, Zachary J.; Montgomery, Matthew T.; Grubb, Sarah R.; Warner, Marcie H.; Bowman, Charles A.; Russell, Daniel A.; Hatfull, Graham F.

    2015-01-01

    Mycobacteriophage Phayonce is a newly isolated phage recovered from a soil sample in Pittsburgh, PA, using Mycobacterium smegmatis mc2155 as a host. Phayonce’s genome is 49,203 bp long and contains 77 protein-coding genes, 23 of them having predicted functions. Phayonce shares a strong similarity in nucleotide sequence with phages of cluster P. PMID:26089413

  1. Punctuated Evolution of Prostate Cancer Genomes

    PubMed Central

    Baca, Sylvan C.; Prandi, Davide; Lawrence, Michael S.; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V.; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T. David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C.; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W.; Berger, Michael F.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A.; Garraway, Levi A.

    2013-01-01

    SUMMARY The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term “chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. PMID:23622249

  2. Plant genome sequencing - applications for crop improvement.

    PubMed

    Bolger, Marie E; Weisshaar, Bernd; Scholz, Uwe; Stein, Nils; Usadel, Björn; Mayer, Klaus F X

    2014-04-01

    It is over 10 years since the genome sequence of the first crop was published. Since then, the number of crop genomes sequenced each year has increased steadily. The amazing pace at which genome sequences are becoming available is largely due to the improvement in sequencing technologies both in terms of cost and speed. Modern sequencing technologies allow the sequencing of multiple cultivars of smaller crop genomes at a reasonable cost. Though many of the published genomes are considered incomplete, they nevertheless have proved a valuable tool to understand important crop traits such as fruit ripening, grain traits and flowering time adaptation. PMID:24679255

  3. The Cancer Genome Atlas ovarian cancer analysis

    Cancer.gov

    An analysis of genomic changes in ovarian cancer has provided the most comprehensive and integrated view of cancer genes for any cancer type to date. Ovarian serous adenocarcinoma tumors from 500 patients were examined by The Cancer Genome Atlas (TCGA) Re

  4. DNA Methylation of Cancer Genome

    PubMed Central

    Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M.; Chan, Wai-Yee

    2010-01-01

    DNA methylation plays an important role in regulating normal development and carcinogenesis. Current understanding of the biological roles of DNA methylation is limited to its role in the regulation of gene transcription, genomic imprinting, genomic stability, and X chromosome inactivation. In the past 2 decades, a large number of changes have been identified in cancer epigenomes when compared with normals. These alterations fall into two main categories, namely, hypermethylation of tumor suppressor genes and hypomethylation of oncogenes or heterochromatin, respectively. Aberrant methylation of genes controlling the cell cycle, proliferation, apoptosis, metastasis, drug resistance, and intracellular signaling has been identified in multiple cancer types. Recent advancements in whole-genome analysis of methylome have yielded numerous differentially methylated regions, the functions of which are largely unknown. With the development of high resolution tiling microarrays and high throughput DNA sequencing, more cancer methylomes will be profiled, facilitating the identification of new candidate genes or ncRNAs that are related to oncogenesis, new prognostic markers, and the discovery of new target genes for cancer therapy. PMID:19960550

  5. Sequencing crop genomes: approaches and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant genome sequencing methodology parrallels the sequencing of the human genome. The first projects were slow and very expensive. BAC by BAC approaches were utilized first and whole-genome shotgun sequencing rapidly replaced that approach. So called 'next generation' technologies such as short rea...

  6. Genome Sequence of Mycobacteriophage Momo

    PubMed Central

    Bina, Elizabeth A.; Brahme, Indraneel S.; Hill, Amy B.; Himmelstein, Philip H.; Hunsicker, Sara M.; Ish, Amanda R.; Le, Tinh S.; Martin, Mary M.; Moscinski, Catherine N.; Shetty, Sameer A.; Swierzewski, Tomasz; Iyengar, Varun B.; Kim, Hannah; Schafer, Claire E.; Grubb, Sarah R.; Warner, Marcie H.; Bowman, Charles A.; Russell, Daniel A.; Hatfull, Graham F.

    2015-01-01

    Momo is a newly discovered phage of Mycobacterium smegmatis mc2155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages. PMID:26089415

  7. Functional genomics and cancer drug target discovery.

    PubMed

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer. PMID:20521217

  8. Translating genomics in cancer care.

    PubMed

    Bombard, Yvonne; Bach, Peter B; Offit, Kenneth

    2013-11-01

    There is increasing enthusiasm for genomics and its promise in advancing personalized medicine. Genomic information has been used to personalize health care for decades, spanning the fields of cardiovascular disease, infectious disease, endocrinology, metabolic medicine, and hematology. However, oncology has often been the first test bed for the clinical translation of genomics for diagnostic, prognostic, and therapeutic applications. Notable hereditary cancer examples include testing for mutations in BRCA1 or BRCA2 in unaffected women to identify those at significantly elevated risk for developing breast and ovarian cancers, and screening patients with newly diagnosed colorectal cancer for mutations in 4 mismatch repair genes to reduce morbidity and mortality in their relatives. Somatic genomic testing is also increasingly used in oncology, with gene expression profiling of breast tumors and EGFR testing to predict treatment response representing commonly used examples. Health technology assessment provides a rigorous means to inform clinical and policy decision-making through systematic assessment of the evidentiary base, along with precepts of clinical effectiveness, cost-effectiveness, and consideration of risks and benefits for health care delivery and society. Although this evaluation is a fundamental step in the translation of any new therapeutic, procedure, or diagnostic test into clinical care, emerging developments may threaten this standard. These include "direct to consumer" genomic risk assessment services and the challenges posed by incidental results generated from next-generation sequencing (NGS) technologies. This article presents a review of the evidentiary standards and knowledge base supporting the translation of key cancer genomic technologies along the continuum of validity, utility, cost-effectiveness, health service impacts, and ethical and societal issues, and offers future research considerations to guide the responsible introduction of NGS technologies into health care. It concludes that significant evidentiary gaps remain in translating genomic technologies into routine clinical practice, particularly in efficacy, health outcomes, cost-effectiveness, and health services research. These caveats are especially germane in the context of NGS, wherein efforts are underway to translate NGS results despite their limited accuracy, lack of proven efficacy, and significant computational and counseling challenges. Further research across these domains is critical to inform the effective, efficient, and equitable translation of genomics into cancer care. PMID:24225968

  9. Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab

    PubMed Central

    2014-01-01

    Background Inhibition of the activated epidermal growth factor receptor (EGFR) with either enzymatic kinase inhibitors or anti-EGFR antibodies such as cetuximab, is an effective modality of treatment for multiple human cancers. Enzymatic EGFR inhibitors are effective for lung adenocarcinomas with somatic kinase domain EGFR mutations while, paradoxically, anti-EGFR antibodies are more effective in colon and head and neck cancers where EGFR mutations occur less frequently. In colorectal cancer, anti-EGFR antibodies are routinely used as second-line therapy of KRAS wild-type tumors. However, detailed mechanisms and genomic predictors for pharmacological response to these antibodies in colon cancer remain unclear. Findings We describe a case of colorectal adenocarcinoma, which was found to harbor a kinase domain mutation, G724S, in EGFR through whole genome sequencing. We show that G724S mutant EGFR is oncogenic and that it differs from classic lung cancer derived EGFR mutants in that it is cetuximab responsive in vitro, yet relatively insensitive to small molecule kinase inhibitors. Through biochemical and cellular pharmacologic studies, we have determined that cells harboring the colon cancer-derived G719S and G724S mutants are responsive to cetuximab therapy in vitro and found that the requirement for asymmetric dimerization of these mutant EGFR to promote cellular transformation may explain their greater inhibition by cetuximab than small-molecule kinase inhibitors. Conclusion The colon-cancer derived G719S and G724S mutants are oncogenic and sensitive in vitro to cetuximab. These data suggest that patients with these mutations may benefit from the use of anti-EGFR antibodies as part of the first-line therapy. PMID:24894453

  10. Genomic tumor evolution of breast cancer.

    PubMed

    Sato, Fumiaki; Saji, Shigehira; Toi, Masakazu

    2016-01-01

    Owing to recent technical development of comprehensive genome-wide analysis such as next generation sequencing, deep biological insights of breast cancer have been revealed. Information of genomic mutations and rearrangements in patients' tumors is indispensable to understand the mechanism in carcinogenesis, progression, metastasis, and resistance to systemic treatment of breast cancer. To date, comprehensive genomic analyses illustrate not only base substitution patterns and lists of driver mutations and key rearrangements, but also a manner of tumor evolution. Breast cancer genome is dynamically changing and evolving during cancer development course from non-invasive disease via invasive primary tumor to metastatic tumor, and during treatment exposure. The accumulation pattern of base substitution and genomic rearrangement looks gradual and punctuated, respectively, in analogy with contrasting theories for evolution manner of species, Darwin's phyletic gradualism, and Eldredge and Gould's "punctuated equilibrium". Liquid biopsy is a non-invasive method to detect the genomic evolution of breast cancer. Genomic mutation patterns in circulating tumor cells and circulating cell-free tumor DNA represent those of tumors existing in patient body. Liquid biopsy methods are now under development for future application to clinical practice of cancer treatment. In this article, latest knowledge regarding breast cancer genome, especially in terms of 'tumor evolution', is summarized. PMID:25998191

  11. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  12. The UCSC Cancer Genomics Browser: update 2013.

    PubMed

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Ellrott, Kyle; Cline, Melissa; Diekhans, Mark; Ma, Singer; Wilks, Chris; Stuart, Josh; Haussler, David; Zhu, Jingchun

    2013-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a set of web-based tools to display, investigate and analyse cancer genomics data and its associated clinical information. The browser provides whole-genome to base-pair level views of several different types of genomics data, including some next-generation sequencing platforms. The ability to view multiple datasets together allows users to make comparisons across different data and cancer types. Biological pathways, collections of genes, genomic or clinical information can be used to sort, aggregate and zoom into a group of samples. We currently display an expanding set of data from various sources, including 201 datasets from 22 TCGA (The Cancer Genome Atlas) cancers as well as data from Cancer Cell Line Encyclopedia and Stand Up To Cancer. New features include a completely redesigned user interface with an interactive tutorial and updated documentation. We have also added data downloads, additional clinical heatmap features, and an updated Tumor Image Browser based on Google Maps. New security features allow authenticated users access to private datasets hosted by several different consortia through the public website. PMID:23109555

  13. Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine.

    PubMed

    Butler, Kimberly S; Young, Megan Y L; Li, Zhihua; Elespuru, Rosalie K; Wood, Steven C

    2016-02-01

    Next-Generation Sequencing is a rapidly advancing technology that has research and clinical applications. For many cancers, it is important to know the precise mutation(s) present, as specific mutations could indicate or contra-indicate certain treatments as well as be indicative of prognosis. Using the Ion Torrent Personal Genome Machine and the AmpliSeq Cancer Hotspot panel v2, we sequenced two pancreatic cancer cell lines, BxPC-3 and HPAF-II, alone or in mixtures, to determine the error rate, sensitivity, and reproducibility of this system. The system resulted in coverage averaging 2000× across the various amplicons and was able to reliably and reproducibly identify mutations present at a rate of 5%. Identification of mutations present at a lower rate was possible by altering the parameters by which calls were made, but with an increase in erroneous, low-level calls. The panel was able to identify known mutations in these cell lines that are present in the COSMIC database. In addition, other, novel mutations were also identified that may prove clinically useful. The system was assessed for systematic errors such as homopolymer effects, end of amplicon effects and patterns in NO CALL sequence. Overall, the system is adequate at identifying the known, targeted mutations in the panel. PMID:26387931

  14. Identifying Gene Disruptions in Novel Balanced de novo Constitutional Translocations in Childhood Cancer Patients by Whole Genome Sequencing

    PubMed Central

    Ritter, Deborah I.; Haines, Katherine; Cheung, Hannah; Davis, Caleb F.; Lau, Ching C.; Berg, Jonathan S.; Brown, Chester W.; Thompson, Patrick A.; Gibbs, Richard; Wheeler, David A.; Plon, Sharon E.

    2014-01-01

    Purpose We applied whole genome sequencing to children diagnosed with neoplasms and found to carry apparently balanced constitutional translocations, to discover novel genic disruptions. Methods We applied SV calling programs CREST, Break Dancer, SV-STAT and CGAP-CNV, and developed an annotative filtering strategy to achieve nucleotide resolution at the translocations. Results We identified the breakpoints for t(6;12) (p21.1;q24.31) disrupting HNF1A in a patient diagnosed with hepatic adenomas and Maturity Onset Diabetes of the Young (MODY). Translocation as the disruptive event of HNF1A, a gene known to be involved in MODY3, has not been previously reported. In a subject with Hodgkin’s lymphoma and subsequent low-grade glioma, we identified t(5;18) (q35.1;q21.2), disrupting both SLIT3 and DCC, genes previously implicated in both glioma and lymphoma. Conclusions These examples suggest that implementing clinical whole genome sequencing in the diagnostic work-up of patients with novel but apparently balanced translocations may reveal unanticipated disruption of disease-associated genes and aid in prediction of the clinical phenotype. PMID:25569436

  15. Genome-wide small RNA sequencing and gene expression analysis reveals a microRNA profile of cancer susceptibility in ATM-deficient human mammary epithelial cells.

    PubMed

    Hesse, Jill E; Liu, Liwen; Innes, Cynthia L; Cui, Yuxia; Palii, Stela S; Paules, Richard S

    2013-01-01

    Deficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a syndrome characterized by neurological, motor and immunological defects, and a predisposition to cancer. MicroRNAs (miRNAs) are useful tools for cancer profiling and prediction of therapeutic responses to clinical regimens. We investigated the consequences of ATM deficiency on miRNA expression and associated gene expression in normal human mammary epithelial cells (HME-CCs). We identified 81 significantly differentially expressed miRNAs in ATM-deficient HME-CCs using small RNA sequencing. Many of these have been implicated in tumorigenesis and proliferation and include down-regulated tumor suppressor miRNAs, such as hsa-miR-29c and hsa-miR-16, as well as over-expressed pro-oncogenic miRNAs, such as hsa-miR-93 and hsa-miR-221. MicroRNA changes were integrated with genome wide gene expression profiles to investigate possible miRNA targets. Predicted mRNA targets of the miRNAs significantly regulated after ATM depletion included many genes associated with cancer formation and progression, such as SOCS1 and the proto-oncogene MAF. While a number of miRNAs have been reported as altered in cancerous cells, there is little understanding as to how these small RNAs might be driving cancer formation or how they might be used as biomarkers for cancer susceptibility. This study provides preliminary data for defining miRNA profiles that may be used as prognostic or predictive biomarkers for breast cancer. Our integrated analysis of miRNA and mRNA expression allows us to gain a better understanding of the signaling involved in breast cancer predisposition and suggests a mechanism for the breast cancer-prone phenotype seen in ATM-deficient patients. PMID:23741392

  16. Sequencing Intractable DNA to Close Microbial Genomes

    SciTech Connect

    Hurt, Jr., Richard Ashley; Brown, Steven D; Podar, Mircea; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  17. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  18. Draft Genome Sequences of Fungus Aspergillus calidoustus

    PubMed Central

    Horn, Fabian; Linde, Jörg; Mattern, Derek J.; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A.; Petzke, Lutz

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  19. Draft Genome Sequences of Fungus Aspergillus calidoustus.

    PubMed

    Horn, Fabian; Linde, Jörg; Mattern, Derek J; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A; Petzke, Lutz; Valiante, Vito

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  20. Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in The Cancer Genome Atlas.

    PubMed

    Camargo, M Constanza; Bowlby, Reanne; Chu, Andy; Pedamallu, Chandra Sekhar; Thorsson, Vesteinn; Elmore, Sandra; Mungall, Andrew J; Bass, Adam J; Gulley, Margaret L; Rabkin, Charles S

    2016-04-01

    The Epstein-Barr virus (EBV)-positive subtype of gastric adenocarcinoma is conventionally identified by in situ hybridization (ISH) for viral nucleic acids, but next-generation sequencing represents a potential alternative. We therefore determined normalized EBV read counts by whole-genome, whole-exome, mRNA and miRNA sequencing for 295 fresh-frozen gastric tumor samples. Formalin-fixed, paraffin-embedded tissue sections were retrieved for ISH confirmation of 13 high-EBV and 11 low-EBV cases. In pairwise comparisons, individual samples were either concordantly high or concordantly low by all genomic methods for which data were available. Empiric cutoffs of sequencing counts identified 26 (9 %) tumors as EBV positive. EBV positivity or negativity by molecular testing was confirmed by EBER-ISH in all but one tumor evaluated by both approaches (kappa = 0.91). EBV-positive gastric tumors can be accurately identified by quantifying viral sequences in genomic data. Simultaneous analyses of human and viral DNA, mRNA and miRNA could streamline tumor profiling for clinical care and research. PMID:26095338

  1. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments.

    PubMed

    Sun, Kun; Jiang, Peiyong; Chan, K C Allen; Wong, John; Cheng, Yvonne K Y; Liang, Raymond H S; Chan, Wai-kong; Ma, Edmond S K; Chan, Stephen L; Cheng, Suk Hang; Chan, Rebecca W Y; Tong, Yu K; Ng, Simon S M; Wong, Raymond S M; Hui, David S C; Leung, Tse Ngong; Leung, Tak Y; Lai, Paul B S; Chiu, Rossa W K; Lo, Yuk Ming Dennis

    2015-10-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541

  2. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments

    PubMed Central

    Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2015-01-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541

  3. Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer

    PubMed Central

    2014-01-01

    Background The outcome of patients with metastatic colorectal carcinoma (mCRC) following first line therapy is poor, with median survival of less than one year. The purpose of this study was to identify candidate therapeutically targetable somatic events in mCRC patient samples by whole genome sequencing (WGS), so as to obtain targeted treatment strategies for individual patients. Methods Four patients were recruited, all of whom had received > 2 prior therapy regimens. Percutaneous needle biopsies of metastases were performed with whole blood collection for the extraction of constitutional DNA. One tumor was not included in this study as the quality of tumor tissue was not sufficient for further analysis. WGS was performed using Illumina paired end chemistry on HiSeq2000 sequencing systems, which yielded coverage of greater than 30X for all samples. NGS data were processed and analyzed to detect somatic genomic alterations including point mutations, indels, copy number alterations, translocations and rearrangements. Results All 3 tumor samples had KRAS mutations, while 2 tumors contained mutations in the APC gene and the PIK3CA gene. Although we did not identify a TCF7L2-VTI1A translocation, we did detect a TCF7L2 mutation in one tumor. Among the other interesting mutated genes was INPPL1, an important gene involved in PI3 kinase signaling. Functional studies demonstrated that inhibition of INPPL1 reduced growth of CRC cells, suggesting that INPPL1 may promote growth in CRC. Conclusions Our study further supports potential molecularly defined therapeutic contexts that might provide insights into treatment strategies for refractory mCRC. New insights into the role of INPPL1 in colon tumor cell growth have also been identified. Continued development of appropriate targeted agents towards specific events may be warranted to help improve outcomes in CRC. PMID:24943349

  4. Value of a newly sequenced bacterial genome

    PubMed Central

    Barbosa, Eudes GV; Aburjaile, Flavia F; Ramos, Rommel TJ; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-01-01

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the “scientific value” of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  5. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  6. Marsupial genome sequences: providing insight into evolution and disease.

    PubMed

    Deakin, Janine E

    2012-01-01

    Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

  7. Marsupial Genome Sequences: Providing Insight into Evolution and Disease

    PubMed Central

    Deakin, Janine E.

    2012-01-01

    Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

  8. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  9. Dr. Marco Marra: Pioneer and Visionary in Cancer Genomics Research | Office of Cancer Genomics

    Cancer.gov

    Dr. Marco Marra is a highly distinguished genomics and bioinformatics researcher. He is the Director of Canada’s Michael Smith Genome Sciences Centre at the BC Cancer Agency and holds a faculty position at the University of British Columbia. The Centre is a state-of-the-art sequencing facility in Vancouver, Canada, with a major focus on the study of cancers.  Many of their research projects are undertaken in collaborations with other Canadian and international institutions.

  10. The cancer genome: from structure to function.

    PubMed

    Geurts van Kessel, Ad

    2014-06-01

    The 2014 joint meeting of the International Society for Cellular Oncology (ISCO) and the European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors (EWCMST), organized by Nick Gilbert, Juan Cigudosa and Bauke Ylstra, was held from 11 to 14 May in Malaga, Spain. Since the previous meeting in 2012, the ever increasing availability of new sequencing technologies has enabled the analysis of cancer genomes at an increasingly greater detail. In addition to structural changes in the genome (i.e., translocations, deletions, amplifications), frequent mutations in important regulatory genes have been found to occur, as also frequent alterations in a large number of epigenetic factors. The challenge now is to relate structural changes in cancer genomes to the underlying disease mechanisms and to reveal opportunities for the design of novel (targeted) therapies. During the meeting, various topics related to these challenges and opportunities were addressed, including those dealing with functional genomics, genome instability, biomarkers and diagnostics, cancer genetics and epigenomics. Special attention was paid to therapy-driven cancer evolution (keynote lecture) and relationships between DNA repair, cancer and ageing (Prof. Ploem lecture). Based on the information presented at the meeting, several aspects of the cancer genome and its functional implications are provided in this report. PMID:24980027

  11. The Genome Sequencing Center at NCGR

    SciTech Connect

    Schilkey, Faye

    2010-06-02

    Faye Schilkey from the National Center for Genome Resources discusses NCGR's research, sequencing and analysis experience on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  12. Genome-tools: a flexible package for genome sequence analysis.

    PubMed

    Lee, William; Chen, Swaine L

    2002-12-01

    Genome-tools is a Perl module, a set of programs, and a user interface that facilitates access to genome sequence information. The package is flexible, extensible, and designed to be accessible and useful to both nonprogrammers and programmers. Any relatively well-annotated genome available with standard GenBank genome files may be used with genome-tools. A simple Web-based front end permits searching any available genome with an intuitive interface. Flexible design choices also make it simple to handle revised versions of genome annotation files as they change. In addition, programmers can develop cross-genomic tools and analyses with minimal additional overhead by combining genome-tools modules with newly written modules. Genome-tools runs on any computer platform for which Perl is available, including Unix, Microsoft Windows, and Mac OS. By simplifying the access to large amounts of genomic data, genome-tools may be especially useful for molecular biologists looking at newly sequenced genomes, for which few informatics tools are available. The genome-tools Web interface is accessible at http://genome-tools.sourceforge.net, and the source code is available at http://sourceforge.net/projects/genome-tools. PMID:12503321

  13. The genomic evolution of human prostate cancer

    PubMed Central

    Mitchell, T; Neal, D E

    2015-01-01

    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer. PMID:26125442

  14. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency

    PubMed Central

    Wang, Linghua; Tsutsumi, Shuichi; Kawaguchi, Tokuichi; Nagasaki, Koichi; Tatsuno, Kenji; Yamamoto, Shogo; Sang, Fei; Sonoda, Kohtaro; Sugawara, Minoru; Saiura, Akio; Hirono, Seiko; Yamaue, Hiroki; Miki, Yoshio; Isomura, Minoru; Totoki, Yasushi; Nagae, Genta; Isagawa, Takayuki; Ueda, Hiroki; Murayama-Hosokawa, Satsuki; Shibata, Tatsuhiro; Sakamoto, Hiromi; Kanai, Yae; Kaneda, Atsushi; Noda, Tetsuo; Aburatani, Hiroyuki

    2012-01-01

    Whole-exome sequencing (Exome-seq) has been successfully applied in several recent studies. We here sequenced the exomes of 15 pancreatic tumor cell lines and their matched normal samples. We captured 162,073 exons of 16,954 genes and sequenced the targeted regions to a mean coverage of 56-fold. This study identified a total of 1517 somatic mutations and validated 934 mutations by transcriptome sequencing. We detected recurrent mutations in 56 genes. Among them, 41 have not been described. The mutation rates varied widely among cell lines. The diversity of the mutation rates was significantly correlated with the distinct MLH1 copy-number status. Exome-seq revealed intensive genomic instability in a cell line with MLH1 homozygous deletion, indicated by a dramatically elevated rate of somatic substitutions, small insertions/deletions (indels), as well as indels in microsatellites. Notably, we found that MLH1 expression was decreased by nearly half in cell lines with an allelic loss of MLH1. While these cell lines were negative in conventional microsatellite instability assay, they showed a 10.5-fold increase in the rate of somatic indels, e.g., truncating indels in TP53 and TGFBR2, indicating MLH1 haploinsufficiency in the correction of DNA indel errors. We further analyzed the exomes of 15 renal cell carcinomas and confirmed MLH1 haploinsufficiency. We observed a much higher rate of indel mutations in the affected cases and identified recurrent truncating indels in several cancer genes such as VHL, PBRM1, and JARID1C. Together, our data suggest that MLH1 hemizygous deletion, through increasing the rate of indel mutations, could drive the development and progression of sporadic cancers. PMID:22156295

  15. TUMOR HAPLOTYPE ASSEMBLY ALGORITHMS FOR CANCER GENOMICS

    PubMed Central

    AGUIAR, DEREK; WONG, WENDY S.W.; ISTRAIL, SORIN

    2014-01-01

    The growing availability of inexpensive high-throughput sequence data is enabling researchers to sequence tumor populations within a single individual at high coverage. But, cancer genome sequence evolution and mutational phenomena like driver mutations and gene fusions are difficult to investigate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity, tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While computational and experimental haplotype phasing of diploid genomes has seen much progress in recent years, haplotype assembly in cancer genomes remains uncharted territory. In this work, we describe HapCompass-Tumor a computational modeling and algorithmic framework for haplotype assembly of copy number variable cancer genomes containing haplotypes at different frequencies and complex variation. We extend our polyploid haplotype assembly model and present novel algorithms for (1) complex variations, including copy number changes, as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass graph which constrain the space of haplotype assembly solutions. The model and algorithm are implemented in the software package HapCompass-Tumor which is available for download from http://www.brown.edu/Research/Istrail_Lab/. PMID:24297529

  16. Towards a reference pecan genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of generating DNA sequence data has declined dramatically over the previous 15 years as a result of the Human Genome Project and the potential applications of genome sequencing for human medicine. This cost reduction has generated renewed interest among crop breeding scientists in applying...

  17. Draft Genome Sequence of Lactobacillus plantarum 2025

    PubMed Central

    Khlebnikov, Valentin C.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  18. Draft Genome Sequence of Lactobacillus plantarum 2025.

    PubMed

    Karlyshev, Andrey V; Khlebnikov, Valentin C; Kosarev, Igor V; Abramov, Vyacheslav M

    2016-01-01

    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain. PMID:26744375

  19. Contact | Office of Cancer Genomics

    Cancer.gov

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  20. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  1. Twenty years of bacterial genome sequencing.

    PubMed

    Loman, Nicholas J; Pallen, Mark J

    2015-12-01

    Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond. PMID:26548914

  2. The genome sequence of parrot bornavirus 5.

    PubMed

    Guo, Jianhua; Tizard, Ian

    2015-12-01

    Although several new avian bornaviruses have recently been described, information on their evolution, virulence, and sequence are often limited. Here we report the complete genome sequence of parrot bornavirus 5 (PaBV-5) isolated from a case of proventricular dilatation disease in a Palm cockatoo (Probosciger aterrimus). The complete genome consists of 8842 nucleotides with distinct 5' and 3' end sequences. This virus shares nucleotide sequence identities of 69-74 % with other bornaviruses in the genomic regions excluding the 5' and 3' terminal sequences. Phylogenetic analysis based on the genomic regions demonstrated this new isolate is an isolated branch within the clade that includes the aquatic bird bornaviruses and the passerine bornaviruses. Based on phylogenetic analyses and its low nucleotide sequence identities with other bornavirus, we support the proposal that PaBV-5 be assigned to a new bornavirus species:- Psittaciform 2 bornavirus. PMID:26403158

  3. Sequence Maneuverer: tool for sequence extraction from genomes

    PubMed Central

    Yasmin, Tayyaba; Rehman, Inayat Ur; Ansari, Adnan Ahmad; liaqat, Khurrum; khan, Muhammad Irfan

    2012-01-01

    The availability of genomic sequences of many organisms has opened new challenges in many aspects particularly in terms of genome analysis. Sequence extraction is a vital step and many tools have been developed to solve this issue. These tools are available publically but have limitations with reference to the sequence extraction, length of the sequence to be extracted, organism specificity and lack of user friendly interface. We have developed a java based software package having three modules which can be used independently or sequentially. The tool efficiently extracts sequences from large datasets with few simple steps. It can efficiently extract multiple sequences of any desired length from a genome of any organism. The results are crosschecked by published data. Availability URL 1: http://ww3.comsats.edu.pk/bio/ResearchProjects.aspx URL 2: http://ww3.comsats.edu.pk/bio/SequenceManeuverer.aspx PMID:23275734

  4. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. PMID:26269219

  5. Genome Sequencing and Analysis Conference IV

    SciTech Connect

    Not Available

    1993-12-31

    J. Craig Venter and C. Thomas Caskey co-chaired Genome Sequencing and Analysis Conference IV held at Hilton Head, South Carolina from September 26--30, 1992. Venter opened the conference by noting that approximately 400 researchers from 16 nations were present four times as many participants as at Genome Sequencing Conference I in 1989. Venter also introduced the Data Fair, a new component of the conference allowing exchange and on-site computer analysis of unpublished sequence data.

  6. Expanding the computational toolbox for mining cancer genomes

    PubMed Central

    Ding, Li; Wendl, Michael C.; McMichael, Joshua F.; Raphael, Benjamin J.

    2014-01-01

    High-throughput DNA sequencing has revolutionized cancer genomics with numerous discoveries relevant to cancer diagnosis and treatment. The latest sequencing and analysis methods have successfully identified somatic alterations including single nucleotide variants (SNVs), insertions and deletions (indels), structural aberrations, and gene fusions. Additional computational techniques have proved useful to define those mutations, genes, and molecular networks that drive diverse cancer phenotypes as well as determine clonal architectures in tumour samples. Collectively, these tools have advanced the study of genomic, transcriptomic, epigenomic alterations and their association to clinical properties. Here, we review cancer genomics software and the insights that have been gained from their application. PMID:25001846

  7. Genomic sequencing of Pleistocene cave bears

    SciTech Connect

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  8. Assessing inhomogeneities in bacterial long genomic sequences

    SciTech Connect

    Karlin, S.

    1997-12-01

    Several complete prokaryotic and eukaryotic genomes are already at hand (S. cerevisiae, H. influenzae, M. genitalium, M. jannaschii, Synechocystis, sp.) and many are forthcoming (e.g., E. coli, H, pylori, C. elegans). The comparative analysis of genomes generally strives to identify genes and characterize function/structure relationships inferred mostly via amino acid sequence comparisons. We describe concisely methods for comparing genomes (or long contigs) emphasizing sequence features other than gene comparisons. These center on the following measures of genomic organization and sequence heterogeneity: (i) compositional biases of short oligonucleotides; (ii) dinucleotide relative abundance distances within and between genomes; (iii) rare and frequent word (oligonucleotide) determinations and their distributional properties; (iv) r-scan statistics assessing clustering, overdispersion, or excessive evenness of various marker arrays; and (v) characterizations of repeat structures in the genome. 20 refs., 3 figs.

  9. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  10. Sequencing the genome of the Atlantic salmon (Salmo salar)

    PubMed Central

    2010-01-01

    The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids. PMID:20887641

  11. Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes

    PubMed Central

    Barthelson, Roger; McFarlin, Adam J.; Rounsley, Steven D.; Young, Sarah

    2011-01-01

    Background Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. Methodology/Principal Findings For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. Conclusions/Significance Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further. PMID:22174807

  12. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  13. Analyzing the cancer methylome through targeted bisulfite sequencing.

    PubMed

    Lee, Eun-Joon; Luo, Junfeng; Wilson, James M; Shi, Huidong

    2013-11-01

    Bisulfite conversion of genomic DNA combined with next-generation sequencing (NGS) has become a very effective approach for mapping the whole-genome and sub-genome wide DNA methylation landscapes. However, whole methylome shotgun bisulfite sequencing is still expensive and not suitable for analyzing large numbers of human cancer specimens. Recent advances in the development of targeted bisulfite sequencing approaches offer several attractive alternatives. The characteristics and applications of these methods are discussed in this review article. In addition, the bioinformatic tools that can be used for sequence capture probe design as well as downstream sequence analyses are also addressed. PMID:23200671

  14. Microbial species delineation using whole genome sequences

    SciTech Connect

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  15. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Cancer.gov

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  16. Complementary DNA sequencing: Expressed sequence tags and human genome project

    SciTech Connect

    Adams, M.D.; Kelley, J.M.; Gocayne, J.D.; Dubnick, M.; Wu, A.; Olde, B.; Moreno, R.F.; Kerlavage, A.R.; McCombie, W.R.; Venter, J.C. ); Polymeropoulos, M.H.; Hong Xiao; Merril, C.R. )

    1991-06-21

    Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.

  17. Genome sequence of Coxiella burnetii strain Namibia

    PubMed Central

    2014-01-01

    We present the whole genome sequence and annotation of the Coxiella burnetii strain Namibia. This strain was isolated from an aborting goat in 1991 in Windhoek, Namibia. The plasmid type QpRS was confirmed in our work. Further genomic typing placed the strain into a unique genomic group. The genome sequence is 2,101,438 bp long and contains 1,979 protein-coding and 51 RNA genes, including one rRNA operon. To overcome the poor yield from cell culture systems, an additional DNA enrichment with whole genome amplification (WGA) methods was applied. We describe a bioinformatics pipeline for improved genome assembly including several filters with a special focus on WGA characteristics. PMID:25593636

  18. Streptococcal taxonomy based on genome sequence analyses

    PubMed Central

    2013-01-01

    The identification of the clinically relevant viridans streptococci group, at species level, is still problematic. The aim of this study was to extract taxonomic information from the complete genome sequences of 67 streptococci, comprising 19 species, by means of genomic analyses, multilocus sequence analysis (MLSA), average amino acid identity (AAI), genomic signatures, genome-to-genome distances (GGD) and codon usage bias. We then attempted to determine the usefulness of these genomic tools for species identification in streptococci. Our results showed that MLSA, AAI and GGD analyses are robust markers to identify streptococci at the species level, for instance, S. pneumoniae, S. mitis, and S. oralis. A Streptococcus species can be defined as a group of strains that share ≥ 95% DNA similarity in MLSA and AAI, and > 70% DNA identity in GGD. This approach allows an advanced understanding of bacterial diversity. PMID:24358875

  19. Genome sequence of Coxiella burnetii strain Namibia.

    PubMed

    Walter, Mathias C; Öhrman, Caroline; Myrtennäs, Kerstin; Sjödin, Andreas; Byström, Mona; Larsson, Pär; Macellaro, Anna; Forsman, Mats; Frangoulidis, Dimitrios

    2014-01-01

    We present the whole genome sequence and annotation of the Coxiella burnetii strain Namibia. This strain was isolated from an aborting goat in 1991 in Windhoek, Namibia. The plasmid type QpRS was confirmed in our work. Further genomic typing placed the strain into a unique genomic group. The genome sequence is 2,101,438 bp long and contains 1,979 protein-coding and 51 RNA genes, including one rRNA operon. To overcome the poor yield from cell culture systems, an additional DNA enrichment with whole genome amplification (WGA) methods was applied. We describe a bioinformatics pipeline for improved genome assembly including several filters with a special focus on WGA characteristics. PMID:25593636

  20. Genome sequence and analysis of Lactobacillus helveticus

    PubMed Central

    Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

    2013-01-01

    The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

  1. Single-cell genome sequencing: current state of the science.

    PubMed

    Gawad, Charles; Koh, Winston; Quake, Stephen R

    2016-03-01

    The field of single-cell genomics is advancing rapidly and is generating many new insights into complex biological systems, ranging from the diversity of microbial ecosystems to the genomics of human cancer. In this Review, we provide an overview of the current state of the field of single-cell genome sequencing. First, we focus on the technical challenges of making measurements that start from a single molecule of DNA, and then explore how some of these recent methodological advancements have enabled the discovery of unexpected new biology. Areas highlighted include the application of single-cell genomics to interrogate microbial dark matter and to evaluate the pathogenic roles of genetic mosaicism in multicellular organisms, with a focus on cancer. We then attempt to predict advances we expect to see in the next few years. PMID:26806412

  2. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  3. Complete genome sequence of arracacha mottle virus.

    PubMed

    Orílio, Anelise F; Lucinda, Natalia; Dusi, André N; Nagata, Tatsuya; Inoue-Nagata, Alice K

    2013-01-01

    Arracacha mottle virus (AMoV) is the only potyvirus reported to infect arracacha (Arracacia xanthorrhiza) in Brazil. Here, the complete genome sequence of an isolate of AMoV was determined to be 9,630 nucleotides in length, excluding the 3' poly-A tail, and encoding a polyprotein of 3,135 amino acids and a putative P3N-PIPO protein. Its genomic organization is typical of a member of the genus Potyvirus, containing all conserved motifs. Its full genome sequence shared 56.2 % nucleotide identity with sunflower chlorotic mottle virus and verbena virus Y, the most closely related viruses. PMID:23001696

  4. Genomic alterations in pancreatic cancer and their relevance to therapy

    PubMed Central

    Takai, Erina; Yachida, Shinichi

    2015-01-01

    Pancreatic cancer is a highly lethal cancer type, for which there are few viable therapeutic options. But, with the advance of sequencing technologies for global genomic analysis, the landscape of genomic alterations in pancreatic cancer is becoming increasingly well understood. In this review, we summarize current knowledge of genomic alterations in 12 core signaling pathways or cellular processes in pancreatic ductal adenocarcinoma, which is the most common type of malignancy in the pancreas, including four commonly mutated genes and many other genes that are mutated at low frequencies. We also describe the potential implications of these genomic alterations for development of novel therapeutic approaches in the context of personalized medicine. PMID:26483879

  5. Systematic genome sequence differences among leaf cells within individual trees

    PubMed Central

    2014-01-01

    Background Even in the age of next-generation sequencing (NGS), it has been unclear whether or not cells within a single organism have systematically distinctive genomes. Resolving this question, one of the most basic biological problems associated with DNA mutation rates, can assist efforts to elucidate essential mechanisms of cancer. Results Using genome profiling (GP), we detected considerable systematic variation in genome sequences among cells in individual woody plants. The degree of genome sequence difference (genomic distance) varied systematically from the bottom to the top of the plant, such that the greatest divergence was observed between leaf genomes from uppermost branches and the remainder of the tree. This systematic variation was observed within both Yoshino cherry and Japanese beech trees. Conclusions As measured by GP, the genomic distance between two cells within an individual organism was non-negligible, and was correlated with physical distance (i.e., branch-to-branch distance). This phenomenon was assumed to be the result of accumulation of mutations from each cell division, implying that the degree of divergence is proportional to the number of generations separating the two cells. PMID:24548431

  6. Bacterial genome sequencing and drug discovery.

    PubMed

    Allsop, A E

    1998-12-01

    The availability of bacterial genome sequence information has opened up many new strategies for antibacterial drug hunting. There are obvious benefits for the identification and evaluation of new drug targets, but genomic-based technology is also beginning to provide new tools for the downstream, preclinical, optimisation of compounds. The greatest benefit from these new approaches lies in the ability to examine the entire genome (or several genomes) simultaneously and in total. In this way, one potential target can be evaluated against another, and either the total effects of functional impairment can be established or the effects of a compound can be compared across species. PMID:9889137

  7. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (ESTSC)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  8. Complete genome sequence of trivittatus virus.

    PubMed

    Groseth, Allison; Vine, Veronica; Weisend, Carla; Ebihara, Hideki

    2015-10-01

    Trivittatus virus (family Bunyaviridae, genus Orthobunyavirus) represents an important genetic intermediate between the California encephalitis group and the Bwamba/Pongola and Nyando groups. Here, we report the first complete genome sequence of the prototype (Eklund) strain, isolated in 1948, which, interestingly, shows only a few differences when compared to partial sequences of modern strains. PMID:26212363

  9. Draft Genome Sequence of Goose Dicistrovirus.

    PubMed

    Greninger, Alexander L; Jerome, Keith R

    2016-01-01

    We report the draft genome sequence of goose dicistrovirus assembled from the filtered feces of a Canadian goose from South Lake Union in Seattle, Washington. The 9.1-kb dicistronic RNA virus falls within the family Dicistroviridae; however, it shares <33% translated amino acid sequence within the nonstructural open reading frame (ORF) from aparavirus or cripavirus. PMID:26941149

  10. Draft Genome Sequence of Goose Dicistrovirus

    PubMed Central

    Jerome, Keith R.

    2016-01-01

    We report the draft genome sequence of goose dicistrovirus assembled from the filtered feces of a Canadian goose from South Lake Union in Seattle, Washington. The 9.1-kb dicistronic RNA virus falls within the family Dicistroviridae; however, it shares <33% translated amino acid sequence within the nonstructural open reading frame (ORF) from aparavirus or cripavirus. PMID:26941149

  11. Complete Genome Sequencing of Trivittatus virus

    PubMed Central

    Groseth, Allison; Vine, Veronica; Weisend, Carla; Ebihara, Hideki

    2015-01-01

    Trivittatus virus (family Bunyaviridae, genus Orthobunyavirus) represents an important genetic intermediate between the California encephalitis group, and Bwamba/Pongola and Nyando groups. Here, we report the first complete genome sequence of the prototype (Eklund) strain, isolated in 1948, which interestingly shows only few differences compared to partial sequences of modern strains. PMID:26212363

  12. Genomic sequence analysis tools: a user's guide.

    PubMed

    Fortna, A; Gardiner, K

    2001-03-01

    The wealth of information from various genome sequencing projects provides the biologist with a new perspective from which to analyze, and design experiments with, mammalian systems. The complexity of the information, however, requires new software tools, and numerous such tools are now available. Which type and which specific system is most effective depends, in part, upon how much sequence is to be analyzed and with what level of experimental support. Here we survey a number of mammalian genomic sequence analysis systems with respect to the data they provide and the ease of their use. The hope is to aid the experimental biologist in choosing the most appropriate tool for their analyses. PMID:11226611

  13. Computational Genomics: From Genome Sequence To Global Gene Regulation

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2000-03-01

    As various genome projects are shifting to the post-sequencing phase, it becomes a big challenge to analyze the sequence data and extract biological information using computational tools. In the past, computational genomics has mainly focused on finding new genes and mapping out their biological functions. With the rapid accumulation of experimental data on genome-wide gene activities, it is now possible to understand how genes are regulated on a genomic scale. A major mechanism for gene regulation is to control the level of transcription, which is achieved by regulatory proteins that bind to short DNA sequences - the regulatory elements. We have developed a new approach to identifying regulatory elements in genomes. The approach formalizes how one would proceed to decipher a ``text'' consisting of a long string of letters written in an unknown language that did not delineate words. The algorithm is based on a statistical mechanics model in which the sequence is segmented probabilistically into ``words'' and a ``dictionary'' of ``words'' is built concurrently. For the control regions in the yeast genome, we built a ``dictionary'' of about one thousand words which includes many known as well as putative regulatory elements. I will discuss how we can use this dictionary to search for genes that are likely to be regulated in a similar fashion and to analyze gene expression data generated from DNA micro-array experiments.

  14. Genome Sequence of Mycobacteriophage Cabrinians

    PubMed Central

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  15. Genome Sequence of Mycobacteriophage Mindy.

    PubMed

    Pope, Welkin H; Bernstein, Nicholas I; Fasolas, Christina S; Mezghani, Nadia; Pressimone, Catherine A; Selvakumar, Priyanga; Stanton, Ann-Catherine J; Lapin, Jonathan S; Prout, Ashley K; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-01-01

    Mycobacteriophage Mindy is a newly isolated phage of Mycobacterium smegmatis, recovered from a soil sample in Pittsburgh, Pennsylvania, USA. Mindy has a genome length of 75,796 bp, encodes 147 predicted proteins and two tRNAs, and is closely related to mycobacteriophages in cluster E. PMID:26089411

  16. Genome Sequence of Mycobacteriophage Cabrinians.

    PubMed

    Chudoff, Dylan; Conboy, Andrew; Conboy, Danielle; Atoulelou, Mireille; Hasan, Sakina; Martinez, Alexandria; Mastrando, Jessica; Roy, Renoy; Schmidt, Robert; Sheed, Kabreeze; Smith, Jewel; Sperratore, Morgan; Struga, Rexhina; Starr, Katelyn; Suppi, Regina; Uguru, Ugo; Terry, Katrina; Villafuerte, Rosendo; Yuan, Vanessa; Dunbar, David

    2016-01-01

    Mycobacteriophage Cabrinians is a newly isolated phage capable of infecting both Mycobacterium phlei and Mycobacterium smegmatis and was recovered from a soil sample in New York City, NY. Cabrinians has a genome length of 56,669 bp, encodes 101 predicted proteins, and is a member of mycobacteriophages in cluster F. PMID:26847904

  17. Genome Sequence of Mycobacteriophage Mindy

    PubMed Central

    Bernstein, Nicholas I.; Fasolas, Christina S.; Mezghani, Nadia; Pressimone, Catherine A.; Selvakumar, Priyanga; Stanton, Ann-Catherine J.; Lapin, Jonathan S.; Prout, Ashley K.; Grubb, Sarah R.; Warner, Marcie H.; Bowman, Charles A.; Russell, Daniel A.; Hatfull, Graham F.

    2015-01-01

    Mycobacteriophage Mindy is a newly isolated phage of Mycobacterium smegmatis, recovered from a soil sample in Pittsburgh, Pennsylvania, USA. Mindy has a genome length of 75,796 bp, encodes 147 predicted proteins and two tRNAs, and is closely related to mycobacteriophages in cluster E. PMID:26089411

  18. Genome Sequence of the Palaeopolyploid soybean

    SciTech Connect

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  19. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  20. Simultaneous Structural Variation Discovery in Multiple Paired-End Sequenced Genomes

    NASA Astrophysics Data System (ADS)

    Hormozdiari, Fereydoun; Hajirasouliha, Iman; McPherson, Andrew; Eichler, Evan E.; Sahinalp, S. Cenk

    Next generation sequencing technologies have been decreasing the costs and increasing the world-wide capacity for sequence production at an unprecedented rate, making the initiation of large scale projects aiming to sequence almost 2000 genomes [1]. Structural variation detection promises to be one of the key diagnostic tools for cancer and other diseases with genomic origin. In this paper, we study the problem of detecting structural variation events in two or more sequenced genomes through high throughput sequencing . We propose to move from the current model of (1) detecting genomic variations in single next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more donor genomes indeed agree or disagree on the variations (in this paper we name this framework Independent Structural Variation Discovery and Merging - ISV&M), to a new model in which we detect structural variation events among multiple genomes simultaneously.

  1. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing.

    PubMed

    Zhang, Jun-Yi; Guan, Rui; Zhang, Hu-Jun; Li, Hua; Xiao, Peng; Yu, Gong-Liang; Du, Lei; Cao, De-Min; Zhu, Bing-Chuan; Li, Ren-Hui; Lu, Zu-Hong

    2016-01-01

    The cyanobacterial genus Microcystis is well known as the main group that forms harmful blooms in water. A strain of Microcystis, M. panniformis FACHB1757, was isolated from Meiliang Bay of Lake Taihu in August 2011. The whole genome was sequenced using PacBio RS II sequencer with 48-fold coverage. The complete genome sequence with no gaps contained a 5,686,839 bp chromosome and a 38,683 bp plasmid, which coded for 6,519 and 49 proteins, respectively. Comparison with strains of M. aeruginosa and some other water bloom-forming cyanobacterial species revealed large-scale structure rearrangement and length variation at the genome level along with 36 genomic islands annotated genome-wide, which demonstrates high plasticity of the M. panniformis FACHB1757 genome and reveals that Microcystis has a flexible genome evolution. PMID:26823957

  2. NIH researchers complete whole-exome sequencing of skin cancer

    Cancer.gov

    A team led by researchers at NIH is the first to systematically survey the landscape of the melanoma genome, the DNA code of the deadliest form of skin cancer. The researchers have made surprising new discoveries using whole-exome sequencing, an approach that decodes the 1-2 percent of the genome that contains protein-coding genes.

  3. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    SciTech Connect

    Nierman, William C.

    2000-02-14

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phred Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.

  4. [Genome sequencing and personalized medicine: perspectives and limitations].

    PubMed

    Le Gall, Jean-Yves; Debré, Patrice

    2014-01-01

    DNA sequencing technologies have advanced at an exponential rate in recent years: the first human genome was sequenced in 2001 after many years of effort by dozens of international laboratories at a cost of tens of millions of dollars, while in 2013 a genome can be sequenced within 24 hours for a few hundred dollars (exome sequencing takes only a few hours). More and more hospital laboratories are acquiring new high-throughput sequencing devices ("next-generation sequencers", NGS), allowing them to analyze tens or hundreds of genes, or even the entire exome. This is having a major impact on medical concepts and practices, especially with respect to genetics and oncology. This ability to search for mutations simultaneously in a large number of genes is finding applications in the diagnosis of Mendelian diseases (including at birth), routine screening for heterozygotes, and pre-conception diagnosis. NGS is now sufficiently sensitive to analyze circulating fetal DNA in maternal blood (cell-free fetal DNA, cffDNA), enabling applications such as non invasive diagnosis of fetal sex (and X-linked diseases), fetal rhesus among rhesus-negative women, trisomy and, in the near future, Mendelian mutations. Data on multifactorial diseases are still preliminary, but it should soon be possible to identify "strong" factors of genetic predisposition that have so far been beyond the scope of genome-wide association studies (GWAS). In the field of constitutional oncogenetics, NGS can also be used for simultaneous analysis of genes involved in " hereditary " cancers (21 breast cancer genes, 6 colon cancer genes, etc.). More generally, NGS can identify all genomic abnormalities (deletions, translocations, mutations) in a given malignant tissue (hemopathy or solid tumor), and has the potential to distinguish between important mutations (those that drive tumor progression) from " bystander " or accessory mutations, and also to identify "druggable" mutations amenable to targeted therapies (e.g. imatinib and Bcr/Abl rearrangement; verumafemib and the BRAF V600E mutation). Systematic sequencing of all the genes involved in drug metabolism and responsiveness will lead to individualized pharmacogenetics. Finally, sequencing of the tumoral and constitutional genomes, identfication of somatic mutations, and detection of pharmacogenetic variants will open up the era of personalized medicine. The first results of these targeted therapeutic indications show a gain in the duration of remission and survival, although the cost-effectiveness of these approaches remains to be determined. Finally, this huge capacity for genome sequencing raises a number of regulatory and ethical issues. PMID:26259290

  5. Clinical applications of next-generation sequencing in colorectal cancers.

    PubMed

    Kim, Tae-Min; Lee, Sug-Hyung; Chung, Yeun-Jun

    2013-10-28

    Like other solid tumors, colorectal cancer (CRC) is a genomic disorder in which various types of genomic alterations, such as point mutations, genomic rearrangements, gene fusions, or chromosomal copy number alterations, can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing (NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review, we will introduce NGS-based cancer genomics studies focusing on those of CRC, including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-, whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies, such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally, we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC. PMID:24187453

  6. Accelerating Genome Sequencing 100X with FPGAs

    SciTech Connect

    Storaasli, Olaf O; Strenski, Dave

    2007-01-01

    The performance of two Cray XD1 systems with Virtex-II Pro 50 and Virtex-4 LX160 FPGAs was evaluated using the FASTA computational biology program for human genome (DNA and protein) sequence comparisons. FPGA speedups of 50X (Virtex-II Pro 50) and 100X (Virtex-4 LX160) over a 2.2 GHz Opteron were obtained. FPGA coding issues for human genome data are described.

  7. Genomic profiling of breast cancer.

    PubMed

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling. PMID:19235775

  8. Microbial species delineation using whole genome sequences.

    PubMed

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. PMID:26150420

  9. Microbial species delineation using whole genome sequences

    PubMed Central

    Varghese, Neha J.; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T.; Mavrommatis, Kostas; Kyrpides, Nikos C.; Pati, Amrita

    2015-01-01

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. PMID:26150420

  10. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome

    PubMed Central

    Dalrymple, Brian P; Kirkness, Ewen F; Nefedov, Mikhail; McWilliam, Sean; Ratnakumar, Abhirami; Barris, Wes; Zhao, Shaying; Shetty, Jyoti; Maddox, Jillian F; O'Grady, Margaret; Nicholas, Frank; Crawford, Allan M; Smith, Tim; de Jong, Pieter J; McEwan, John; Oddy, V Hutton; Cockett, Noelle E

    2007-01-01

    Background Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? Results A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. Conclusion We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited. PMID:17663790

  11. Sequence Pattern Recognition in Genome Analysis

    NASA Astrophysics Data System (ADS)

    Luo, Liaofu; Lu, Jun

    2007-12-01

    The problem of pattern recognition in genome analysis is studied. How the sequence information is extracted and integrated in the approach to sequence pattern recognition is discussed in detail. We propose two methods for calculation and prediction. The first is the Information Deviation Measure with Quadratic Discriminant (IDQD) and the second is the Information Deviation Measure with U-transformation Discriminant (IDUD). The former is applicable in case of sequence information obeying Gaussian-type distribution and the latter can be used in more general statistical distributions of sequence information.

  12. Dana-Farber Cancer Institute | Office of Cancer Genomics

    Cancer.gov

    Functional Annotation of Cancer Genomes Principal Investigator: William C. Hahn, M.D., Ph.D. The comprehensive characterization of cancer genomes has and will continue to provide an increasingly complete catalog of genetic alterations in specific cancers. However, most epithelial cancers harbor hundreds of genetic alterations as a consequence of genomic instability. Therefore, the functional consequences of the majority of mutations remain unclear.

  13. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Cancer.gov

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  14. Genome Walking by Next Generation Sequencing Approaches

    PubMed Central

    Volpicella, Mariateresa; Leoni, Claudia; Costanza, Alessandra; Fanizza, Immacolata; Placido, Antonio; Ceci, Luigi R.

    2012-01-01

    Genome Walking (GW) comprises a number of PCR-based methods for the identification of nucleotide sequences flanking known regions. The different methods have been used for several purposes: from de novo sequencing, useful for the identification of unknown regions, to the characterization of insertion sites for viruses and transposons. In the latter cases Genome Walking methods have been recently boosted by coupling to Next Generation Sequencing technologies. This review will focus on the development of several protocols for the application of Next Generation Sequencing (NGS) technologies to GW, which have been developed in the course of analysis of insertional libraries. These analyses find broad application in protocols for functional genomics and gene therapy. Thanks to the application of NGS technologies, the original vision of GW as a procedure for walking along an unknown genome is now changing into the possibility of observing the parallel marching of hundreds of thousands of primers across the borders of inserted DNA molecules in host genomes. PMID:24832505

  15. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    PubMed

    Hasmats, Johanna; Gréen, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Käller, Max; Lundeberg, Joakim

    2014-01-01

    Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information. PMID:24409309

  16. Assessment of Whole Genome Amplification for Sequence Capture and Massively Parallel Sequencing

    PubMed Central

    Hasmats, Johanna; Gréen, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Käller, Max; Lundeberg, Joakim

    2014-01-01

    Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information. PMID:24409309

  17. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge

    PubMed Central

    Czerwińska, Patrycja; Wiznerowicz, Maciej

    2015-01-01

    The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive “atlas” of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements. PMID:25691825

  18. Translating gastric cancer genomics into targeted therapies.

    PubMed

    Ang, Yvonne L E; Yong, Wei Peng; Tan, Patrick

    2016-04-01

    Gastric cancer is a common disease with limited treatment options and a poor prognosis. Many gastric cancers harbour potentially actionable targets, including over-expression and mutations in tyrosine kinase pathways. Agents have been developed against these targets with varying success- in particular, the use of trastuzumab in HER2-overexpressing gastric cancers has resulted in overall survival benefits. Gastric cancers also have high levels of somatic mutations, making them candidates for immunotherapy; early work in this field has been promising. Recent advances in whole genome and multi-platform sequencing have driven the development of molecular classification systems, which may in turn guide the selection of patients for targeted treatment. Moving forward, challenges will include the development of appropriate biomarkers to predict responses to targeted therapy, and the application of new molecular classifications into trial development and clinical practice. PMID:26947813

  19. An International Plan to Sequence the Onion Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cost of DNA sequencing continues to decline and, in the near future, it will become reasonable to undertake sequencing of the enormous nuclear genome of onion. We undertook sequencing of expressed and genomic regions of the onion genome to learn about the structure of the onion genome, as well a...

  20. Complete genome sequence of Caulobacter crescentus.

    PubMed

    Nierman, W C; Feldblyum, T V; Laub, M T; Paulsen, I T; Nelson, K E; Eisen, J A; Heidelberg, J F; Alley, M R; Ohta, N; Maddock, J R; Potocka, I; Nelson, W C; Newton, A; Stephens, C; Phadke, N D; Ely, B; DeBoy, R T; Dodson, R J; Durkin, A S; Gwinn, M L; Haft, D H; Kolonay, J F; Smit, J; Craven, M B; Khouri, H; Shetty, J; Berry, K; Utterback, T; Tran, K; Wolf, A; Vamathevan, J; Ermolaeva, M; White, O; Salzberg, S L; Venter, J C; Shapiro, L; Fraser, C M; Eisen, J

    2001-03-27

    The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living alpha-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus. PMID:11259647

  1. Genomics of Cancer and a New Era for Cancer Prevention

    PubMed Central

    Brennan, Paul; Wild, Christopher P.

    2015-01-01

    A primary justification for dedicating substantial amounts of research funding to large-scale cancer genomics projects of both somatic and germline DNA is that the biological insights will lead to new treatment targets and strategies for cancer therapy. While it is too early to judge the success of these projects in terms of clinical breakthroughs, an alternative rationale is that new genomics techniques can be used to reduce the overall burden of cancer by prevention of new cases occurring and also by detecting them earlier. In particular, it is now becoming apparent that studying the genomic profile of tumors can help to identify new carcinogens and may subsequently result in implementing strategies that limit exposure. In parallel, it may be feasible to utilize genomic biomarkers to identify cancers at an earlier and more treatable stage using screening or other early detection approaches based on prediagnostic biospecimens. While the potential for these techniques is large, their successful outcome will depend on international collaboration and planning similar to that of recent sequencing initiatives. PMID:26540230

  2. Mapping and Sequencing the Human Genome

    DOE R&D Accomplishments Database

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  3. Mapping and sequencing the human genome

    SciTech Connect

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  4. Genome Sequence of Lactobacillus versmoldensis KCTC 3814

    PubMed Central

    Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Nam, Seong-Hyeuk; Kang, Aram; Kim, Aeri; Park, Hong-Seog

    2011-01-01

    Lactobacillus versmoldensis KCTC 3814 was isolated from raw fermented poultry salami. The species was present in high numbers and frequently dominated the lactic acid bacteria (LAB) populations of the products. Here, we announce the draft genome sequence of Lactobacillus versmoldensis KCTC 3814, isolated from poultry salami, and describe major findings from its annotation. PMID:21914893

  5. Genome sequence of Lactobacillus crispatus ST1.

    PubMed

    Ojala, Teija; Kuparinen, Veera; Koskinen, J Patrik; Alatalo, Edward; Holm, Liisa; Auvinen, Petri; Edelman, Sanna; Westerlund-Wikström, Benita; Korhonen, Timo K; Paulin, Lars; Kankainen, Matti

    2010-07-01

    Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells. PMID:20435723

  6. Genome Sequence of Salmonella Phage 9NA.

    PubMed

    Casjens, Sherwood R; Leavitt, Justin C; Hatfull, Graham F; Hendrix, Roger W

    2014-01-01

    The virulent double-stranded DNA (dsDNA) bacteriophage 9NA infects Salmonella enterica serovar Typhimurium and has a long noncontractile tail. We report its complete 52,869-bp genome sequence. Phage 9NA and two closely related S. enterica serovar Newport phages represent a tailed phage type whose molecular lifestyle has not yet been studied in detail. PMID:25146133

  7. Genome Sequence of Salmonella Phage 9NA

    PubMed Central

    Leavitt, Justin C.; Hatfull, Graham F.; Hendrix, Roger W.

    2014-01-01

    The virulent double-stranded DNA (dsDNA) bacteriophage 9NA infects Salmonella enterica serovar Typhimurium and has a long noncontractile tail. We report its complete 52,869-bp genome sequence. Phage 9NA and two closely related S. enterica serovar Newport phages represent a tailed phage type whose molecular lifestyle has not yet been studied in detail. PMID:25146133

  8. Genome Sequence of Salmonella Phage χ.

    PubMed

    Hendrix, Roger W; Ko, Ching-Chung; Jacobs-Sera, Deborah; Hatfull, Graham F; Erhardt, Marc; Hughes, Kelly T; Casjens, Sherwood R

    2015-01-01

    Salmonella bacteriophage χ is a member of the Siphoviridae family that gains entry into its host cells by adsorbing to their flagella. We report the complete 59,578-bp sequence of the genome of phage χ, which together with its relatives, exemplifies a largely unexplored type of tailed bacteriophage. PMID:25720684

  9. Genome Sequence of Salmonella Phage χ

    PubMed Central

    Ko, Ching-Chung; Jacobs-Sera, Deborah; Hatfull, Graham F.; Erhardt, Marc; Hughes, Kelly T.; Casjens, Sherwood R.

    2015-01-01

    Salmonella bacteriophage χ is a member of the Siphoviridae family that gains entry into its host cells by adsorbing to their flagella. We report the complete 59,578-bp sequence of the genome of phage χ, which together with its relatives, exemplifies a largely unexplored type of tailed bacteriophage. PMID:25720684

  10. Genome Sequence of Corynebacterium ulcerans Strain 210932

    PubMed Central

    Viana, Marcus Vinicius Canário; de Jesus Benevides, Leandro; Batista Mariano, Diego Cesar; de Souza Rocha, Flávia; Bagano Vilas Boas, Priscilla Carolinne; Folador, Edson Luiz; Pereira, Felipe Luiz; Alves Dorella, Fernanda; Gomes Leal, Carlos Augusto; Fiorini de Carvalho, Alex; Silva, Artur; de Castro Soares, Siomar; Pereira Figueiredo, Henrique Cesar; Guimarães, Luis Carlos

    2014-01-01

    In this work, we present the complete genome sequence of Corynebacterium ulcerans strain 210932, isolated from a human. The species is an emergent pathogen that infects a variety of wild and domesticated animals and humans. It is associated with a growing number of cases of a diphtheria-like disease around the world. PMID:25428977

  11. Whole Genome Sequence of a Turkish Individual

    PubMed Central

    Dogan, Haluk; Can, Handan; Otu, Hasan H.

    2014-01-01

    Although whole human genome sequencing can be done with readily available technical and financial resources, the need for detailed analyses of genomes of certain populations still exists. Here we present, for the first time, sequencing and analysis of a Turkish human genome. We have performed 35x coverage using paired-end sequencing, where over 95% of sequencing reads are mapped to the reference genome covering more than 99% of the bases. The assembly of unmapped reads rendered 11,654 contigs, 2,168 of which did not reveal any homology to known sequences, resulting in ∼1 Mbp of unmapped sequence. Single nucleotide polymorphism (SNP) discovery resulted in 3,537,794 SNP calls with 29,184 SNPs identified in coding regions, where 106 were nonsense and 259 were categorized as having a high-impact effect. The homo/hetero zygosity (1,415,123∶2,122,671 or 1∶1.5) and transition/transversion ratios (2,383,204∶1,154,590 or 2.06∶1) were within expected limits. Of the identified SNPs, 480,396 were potentially novel with 2,925 in coding regions, including 48 nonsense and 95 high-impact SNPs. Functional analysis of novel high-impact SNPs revealed various interaction networks, notably involving hereditary and neurological disorders or diseases. Assembly results indicated 713,640 indels (1∶1.09 insertion/deletion ratio), ranging from −52 bp to 34 bp in length and causing about 180 codon insertion/deletions and 246 frame shifts. Using paired-end- and read-depth-based methods, we discovered 9,109 structural variants and compared our variant findings with other populations. Our results suggest that whole genome sequencing is a valuable tool for understanding variations in the human genome across different populations. Detailed analyses of genomes of diverse origins greatly benefits research in genetics and medicine and should be conducted on a larger scale. PMID:24416366

  12. Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease. High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals. Comparisons between these s...

  13. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  14. The topography of mutational processes in breast cancer genomes.

    PubMed

    Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Staaf, Johan; Sieuwerts, Anieta M; Brinkman, Arie B; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Kim, Hyung-Yong; Borg, Åke; Sotiriou, Christos; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Sale, Julian; Rada, Cristina; Stratton, Michael R; Birney, Ewan; Nik-Zainal, Serena

    2016-01-01

    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis. PMID:27136393

  15. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    PubMed

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers. PMID:27188671

  16. The Theory and Practice of Genome Sequence Assembly.

    PubMed

    Simpson, Jared T; Pop, Mihai

    2015-01-01

    The current genomic revolution was made possible by joint advances in genome sequencing technologies and computational approaches for analyzing sequence data. The close interaction between biologists and computational scientists is perhaps most apparent in the development of approaches for sequencing entire genomes, a feat that would not be possible without sophisticated computational tools called genome assemblers (short for genome sequence assemblers). Here, we survey the key developments in algorithms for assembling genome sequences since the development of the first DNA sequencing methods more than 35 years ago. PMID:25939056

  17. The possibility of clinical sequencing in the management of cancer.

    PubMed

    Kou, Tadayuki; Kanai, Masashi; Matsumoto, Shigemi; Okuno, Yasushi; Muto, Manabu

    2016-05-01

    Comprehensive genomic profiling using next-generation sequencing technologies provides insights into understanding the genomic architecture of human cancer. This new understanding of the cancer genome allows us to identify many more genomic alterations occurring within tumors than before, some of which could be potential therapeutic targets through molecular targeted agents. Currently, a large number of molecular targeted agents are being developed, and consequently, cancer treatment is rapidly shifting from empiric therapy employing cytotoxic anticancer drugs to genotype-directed therapy using molecular targeted agents. In current daily clinical practice, hotspot-based single-gene assays that detect RAS mutations in colorectal cancer or EGFR mutations in non-small cell lung cancer are widely used to identify variants. However, it is becoming evident that more comprehensive genomic analysis is crucial in identifying the patient population that may benefit from molecular targeted therapy and the accelerated development of novel drugs for early clinical trials. For these purposes, an increasing number of gene panel-based targeted sequencing is commercially available in clinical practice from sequencing companies. Despite several challenges in implementing this approach, comprehensive genomic profiling and identification of actionable mutations is likely to become one of the standard options in the management of cancer in the near future. The use of clinical sequencing has the potential to usher a new era in precision medicine for cancer diagnosis and treatment. In this review, we discuss the application of comprehensive genomic profiling using next-generation sequencing technologies in clinical oncology and address the current challenges for its implementation. PMID:26917600

  18. Gambling on a shortcut to genome sequencing

    SciTech Connect

    Roberts, L.

    1991-06-21

    Almost from the start of the Human Genome Project, a debate has been raging over whether to sequence the entire human genome, all 3 billion bases, or just the genes - a mere 2% or 3% of the genome, and by far the most interesting part. In England, Sydney Brenner convinced the Medical Research Council (MRC) to start with the expressed genes, or complementary DNAs. But the US stance has been that the entire sequence is essential if we are to understand the blueprint of man. Craig Venter of the National Institute of Neurological Disorders and Stroke says that focusing on the expressed genes may be even more useful than expected. His strategy involves randomly selecting clones from cDNA libraries which theoretically contain all the genes that are switched on at a particular time in a particular tissue. Then the researchers sequence just a short stretch of each clone, about 400 to 500 bases, to create can expressed sequence tag or EST. The sequences of these ESTs are then stored in a database. Using that information, other researchers can then recreate that EST by using polymerase chain reaction techniques.

  19. Dominant short repeated sequences in bacterial genomes.

    PubMed

    Avershina, Ekaterina; Rudi, Knut

    2015-03-01

    We use a novel multidimensional searching approach to present the first exhaustive search for all possible repeated sequences in 166 genomes selected to cover the bacterial domain. We found an overrepresentation of repeated sequences in all but one of the genomes. The most prevalent repeats by far were related to interspaced short palindromic repeats (CRISPRs)—conferring bacterial adaptive immunity. We identified a deep branching clade of thermophilic Firmicutes containing the highest number of CRISPR repeats. We also identified a high prevalence of tandem repeated heptamers. In addition, we identified GC-rich repeats that could potentially be involved in recombination events. Finally, we identified repeats in a 16322 amino acid mega protein (involved in biofilm formation) and inverted repeats flanking miniature transposable elements (MITEs). In conclusion, the exhaustive search for repeated sequences identified new elements and distribution of these, which has implications for understanding both the ecology and evolution of bacteria. PMID:25561351

  20. Genomic instability--an evolving hallmark of cancer.

    PubMed

    Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D

    2010-03-01

    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage. PMID:20177397

  1. Clinical Implications of the Cancer Genome

    PubMed Central

    MacConaill, Laura E.; Garraway, Levi A.

    2010-01-01

    Cancer is a disease of the genome. Most tumors harbor a constellation of structural genomic alterations that may dictate their clinical behavior and treatment response. Whereas elucidating the nature and importance of these genomic alterations has been the goal of cancer biologists for several decades, ongoing global genome characterization efforts are revolutionizing both tumor biology and the optimal paradigm for cancer treatment at an unprecedented scope. The pace of advance has been empowered, in large part, through disruptive technological innovations that render complete cancer genome characterization feasible on a large scale. This article highlights cardinal biologic and clinical insights gleaned from systematic cancer genome characterization. We also discuss how the convergence of cancer genome biology, technology, and targeted therapeutics articulates a cohesive framework for the advent of personalized cancer medicine. PMID:20975063

  2. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo

    PubMed Central

    Hirashima, Kyotaro; Seimiya, Hiroyuki

    2015-01-01

    Telomere erosion causes cell mortality, suggesting that longer telomeres enable more cell divisions. In telomerase-positive human cancer cells, however, telomeres are often kept shorter than those of surrounding normal tissues. Recently, we showed that cancer cell telomere elongation represses innate immune genes and promotes their differentiation in vivo. This implies that short telomeres contribute to cancer malignancy, but it is unclear how such genetic repression is caused by elongated telomeres. Here, we report that telomeric repeat-containing RNA (TERRA) induces a genome-wide alteration of gene expression in telomere-elongated cancer cells. Using three different cell lines, we found that telomere elongation up-regulates TERRA signal and down-regulates innate immune genes such as STAT1, ISG15 and OAS3 in vivo. Ectopic TERRA oligonucleotides repressed these genes even in cells with short telomeres under three-dimensional culture conditions. This appeared to occur from the action of G-quadruplexes (G4) in TERRA, because control oligonucleotides had no effect and a nontelomeric G4-forming oligonucleotide phenocopied the TERRA oligonucleotide. Telomere elongation and G4-forming oligonucleotides showed similar gene expression signatures. Most of the commonly suppressed genes were involved in the innate immune system and were up-regulated in various cancers. We propose that TERRA G4 counteracts cancer malignancy by suppressing innate immune genes. PMID:25653161

  3. Comparative Analysis of Genome Sequences with VISTA

    DOE Data Explorer

    Dubchak, Inna

    VISTA is a comprehensive suite of programs and databases developed by and hosted at the Genomics Division of Lawrence Berkeley National Laboratory. They provide information and tools designed to facilitate comparative analysis of genomic sequences. Users have two ways to interact with the suite of applications at the VISTA portal. They can submit their own sequences and alignments for analysis (VISTA servers) or examine pre-computed whole-genome alignments of different species. A key menu option is the Enhancer Browser and Database at http://enhancer.lbl.gov/. The VISTA Enhancer Browser is a central resource for experimentally validated human noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation with other vertebrates. The results of this enhancer screen are provided through this publicly available website. The browser also features relevant results by external contributors and a large collection of additional genome-wide conserved noncoding elements which are candidate enhancer sequences. The LBL developers invite external groups to submit computational predictions of developmental enhancers. As of 10/19/2009 the database contains information on 1109 in vivo tested elements - 508 elements with enhancer activity.

  4. Whole mitochondrial genome sequence of a rat pancreatic adenocarcinoma CRL-2389 LTPA cell line.

    PubMed

    Wang, Yu-Cun; Song, Bo; Yang, Bei

    2016-05-01

    Pancreatic adenocarcinoma is the fifth leading cause of cancer death in the world. We sequenced a complete mitochondrial genome sequence of a rat pancreatic tumor CRL-2389 LTPA cell line for the first time. The total length of the mitogenome was 16,314 bp and coding 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes. This mitochondrial genome sequence will provide new genetic resource into pancreatic tumor disease. PMID:25492535

  5. Defining Genome Project Standards in a New Era of Sequencing

    SciTech Connect

    Chain, Patrick

    2009-05-27

    Patrick Chain of the DOE Joint Genome Institute gives a talk on behalf of the International Genome Sequencing Standards Consortium on the need for intermediate genome classifications between "draft" and "finished"

  6. Genome-wide epigenetic modifications in cancer

    PubMed Central

    Park, Yoon Jung; Claus, Rainer; Weichenhan, Dieter; Plass, Christoph

    2011-01-01

    Epigenetic alterations in cancer include changes in DNA methylation and associated histone modifications that influence the chromatin states and impact gene expression patterns. Due to recent technological advantages, the scientific community is now obtaining a better picture of the genome-wide epigenetic changes that occurs in a cancer genome. These epigenetic alterations are associated with chromosomal instability and changes in transcriptional control which influence the overall gene expression differences seen in many human malignancies. In this review, we will briefly summarize our current knowledge of the epigenetic patterns and mechanisms of gene regulation in healthy tissues and relate this to what is known for cancer genomes. Our focus will be on DNA methylation. We will review the current standing of technologies that have been developed over recent years. This field is experiencing a revolution in the strategies used to measure epigenetic alterations, which includes the incorporation of next generation sequencing tools. We also will review strategies that utilize epigenetic information for translational purposes, with a special emphasis on the potential use of DNA methylation marks for early disease detection and prognosis. The review will close with an outlook on challenges that this field is facing. PMID:21141723

  7. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  8. Draft Genome Sequence of Mycobacterium brumae ATCC 51384

    PubMed Central

    D'Auria, Giuseppe

    2016-01-01

    Here, we report the draft genome sequence of Mycobacterium brumae type strain ATCC 51384. This is the first draft genome sequence of M. brumae, a nonpathogenic, rapidly growing, nonchromogenic mycobacterium, with immunotherapeutic capacities. PMID:27125480

  9. Draft Genome Sequence of Mycobacterium brumae ATCC 51384.

    PubMed

    D'Auria, Giuseppe; Torrents, Eduard; Luquin, Marina; Comas, Iñaki; Julián, Esther

    2016-01-01

    Here, we report the draft genome sequence of Mycobacterium brumae type strain ATCC 51384. This is the first draft genome sequence of M. brumae, a nonpathogenic, rapidly growing, nonchromogenic mycobacterium, with immunotherapeutic capacities. PMID:27125480

  10. Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux

    PubMed Central

    Lynch, Erin A.; Langille, Morgan G. I.; Darling, Aaron; Wilbanks, Elizabeth G.; Haltiner, Caitlin; Shao, Katie S. Y.; Starr, Michael O.; Teiling, Clotilde; Harkins, Timothy T.; Edwards, Robert A.; Eisen, Jonathan A.; Facciotti, Marc T.

    2012-01-01

    We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology. PMID:22848480

  11. Whole genome sequence analysis of Mycobacterium suricattae.

    PubMed

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; van der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah Musa; Siame, Kabengele Keith; Gey van Pittius, Nicolaas Claudius; van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-12-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi. PMID:26542221

  12. International network of cancer genome projects

    PubMed Central

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  13. International network of cancer genome projects.

    PubMed

    Hudson, Thomas J; Anderson, Warwick; Artez, Axel; Barker, Anna D; Bell, Cindy; Bernabé, Rosa R; Bhan, M K; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M; Jennings, Jennifer L; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusada, Jun; Lane, David P; Laplace, Frank; Youyong, Lu; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T S; Remacle, Jacques; Schafer, Alan J; Shibata, Tatsuhiro; Stratton, Michael R; Vockley, Joseph G; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M F; Knoppers, Bartha M; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G; Dyke, Stephanie O M; Joly, Yann; Kato, Kazuto; Kennedy, Karen L; Nicolás, Pilar; Parker, Michael J; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M; Shaw, Kenna M; Wallace, Susan; Wiesner, Georgia L; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V; Chabannon, Christian; Chin, Lynda; Clément, Bruno; de Alava, Enrique; Degos, Françoise; Ferguson, Martin L; Geary, Peter; Hayes, D Neil; Hudson, Thomas J; Johns, Amber L; Kasprzyk, Arek; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P Andrew; Aburatani, Hiroyuki; Bayés, Mónica; Botwell, David D L; Campbell, Peter J; Estivill, Xavier; Gerhard, Daniela S; Grimmond, Sean M; Gut, Ivo; Hirst, Martin; López-Otín, Carlos; Majumder, Partha; Marra, Marco; McPherson, John D; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R; Stunnenberg, Hendrik G; Swerdlow, Harold; Velculescu, Victor E; Wilson, Richard K; Xue, Hong H; Yang, Liu; Spellman, Paul T; Bader, Gary D; Boutros, Paul C; Campbell, Peter J; Flicek, Paul; Getz, Gad; Guigó, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J; Jiang, Tao; Jones, Steven M; Li, Qibin; López-Bigas, Nuria; Luo, Ruibang; Muthuswamy, Lakshmi; Ouellette, B F Francis; Pearson, John V; Puente, Xose S; Quesada, Victor; Raphael, Benjamin J; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P; Stein, Lincoln D; Stuart, Joshua M; Teague, Jon W; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D; Guigó, Roderic; Hubbard, Tim J; Joly, Yann; Jones, Steven M; Kasprzyk, Arek; Lathrop, Mark; López-Bigas, Nuria; Ouellette, B F Francis; Spellman, Paul T; Teague, Jon W; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L; Axton, Myles; Dyke, Stephanie O M; Futreal, P Andrew; Gerhard, Daniela S; Gunter, Chris; Guyer, Mark; Hudson, Thomas J; McPherson, John D; Miller, Linda J; Ozenberger, Brad; Shaw, Kenna M; Kasprzyk, Arek; Stein, Lincoln D; Zhang, Junjun; Haider, Syed A; Wang, Jianxin; Yung, Christina K; Cros, Anthony; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R C; Hasel, Karl W; Joly, Yann; Kaan, Terry S H; Kennedy, Karen L; Knoppers, Bartha M; Lowrance, William W; Masui, Tohru; Nicolás, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M; Biankin, Andrew V; Bowtell, David D L; Cloonan, Nicole; deFazio, Anna; Eshleman, James R; Etemadmoghadam, Dariush; Gardiner, Brooke B; Gardiner, Brooke A; Kench, James G; Scarpa, Aldo; Sutherland, Robert L; Tempero, Margaret A; Waddell, Nicola J; Wilson, Peter J; McPherson, John D; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Jörg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevard, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlén, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R; Futreal, P Andrew; Birney, Ewan; Borg, Ake; Børresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A; Martin, Sancha; Reis-Filho, Jorge S; Richardson, Andrea L; Sotiriou, Christos; Stunnenberg, Hendrik G; Thoms, Giles; van de Vijver, Marc; van't Veer, Laura; Calvo, Fabien; Birnbaum, Daniel; Blanche, Hélène; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D; Lathrop, Mark; Pauporté, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Jörg; Treilleux, Isabelle; Calvo, Fabien; Bioulac-Sage, Paulette; Clément, Bruno; Decaens, Thomas; Degos, Françoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon; Lathrop, Mark; Samuel, Didier; Thomas, Gilles; Zucman-Rossi, Jessica; Lichter, Peter; Eils, Roland; Brors, Benedikt; Korbel, Jan O; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D; von Kalle, Christof; Majumder, Partha P; Sarin, Rajiv; Rao, T S; Bhan, M K; Scarpa, Aldo; Pederzoli, Paolo; Lawlor, Rita A; Delledonne, Massimo; Bardelli, Alberto; Biankin, Andrew V; Grimmond, Sean M; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Shibata, Tatsuhiro; Nakamura, Yusuke; Nakagawa, Hidewaki; Kusada, Jun; Tsunoda, Tatsuhiko; Miyano, Satoru; Aburatani, Hiroyuki; Kato, Kazuto; Fujimoto, Akihiro; Yoshida, Teruhiko; Campo, Elias; López-Otín, Carlos; Estivill, Xavier; Guigó, Roderic; de Sanjosé, Silvia; Piris, Miguel A; Montserrat, Emili; González-Díaz, Marcos; Puente, Xose S; Jares, Pedro; Valencia, Alfonso; Himmelbauer, Heinz; Himmelbaue, Heinz; Quesada, Victor; Bea, Silvia; Stratton, Michael R; Futreal, P Andrew; Campbell, Peter J; Vincent-Salomon, Anne; Richardson, Andrea L; Reis-Filho, Jorge S; van de Vijver, Marc; Thomas, Gilles; Masson-Jacquemier, Jocelyne D; Aparicio, Samuel; Borg, Ake; Børresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A; Stunnenberg, Hendrik G; van't Veer, Laura; Easton, Douglas F; Spellman, Paul T; Martin, Sancha; Barker, Anna D; Chin, Lynda; Collins, Francis S; Compton, Carolyn C; Ferguson, Martin L; Gerhard, Daniela S; Getz, Gad; Gunter, Chris; Guttmacher, Alan; Guyer, Mark; Hayes, D Neil; Lander, Eric S; Ozenberger, Brad; Penny, Robert; Peterson, Jane; Sander, Chris; Shaw, Kenna M; Speed, Terence P; Spellman, Paul T; Vockley, Joseph G; Wheeler, David A; Wilson, Richard K; Hudson, Thomas J; Chin, Lynda; Knoppers, Bartha M; Lander, Eric S; Lichter, Peter; Stein, Lincoln D; Stratton, Michael R; Anderson, Warwick; Barker, Anna D; Bell, Cindy; Bobrow, Martin; Burke, Wylie; Collins, Francis S; Compton, Carolyn C; DePinho, Ronald A; Easton, Douglas F; Futreal, P Andrew; Gerhard, Daniela S; Green, Anthony R; Guyer, Mark; Hamilton, Stanley R; Hubbard, Tim J; Kallioniemi, Olli P; Kennedy, Karen L; Ley, Timothy J; Liu, Edison T; Lu, Youyong; Majumder, Partha; Marra, Marco; Ozenberger, Brad; Peterson, Jane; Schafer, Alan J; Spellman, Paul T; Stunnenberg, Hendrik G; Wainwright, Brandon J; Wilson, Richard K; Yang, Huanming

    2010-04-15

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  14. Genome instability, cancer and aging

    PubMed Central

    Maslov, Alexander Y.; Vijg, Jan

    2015-01-01

    DNA damage-driven genome instability underlies the diversity of life forms generated by the evolutionary process but is detrimental to the somatic cells of individual organisms. The cellular response to DNA damage can be roughly divided in two parts. First, when damage is severe, programmed cell death may occur or, alternatively, temporary or permanent cell cycle arrest. This protects against cancer but can have negative effects on the long term, e.g., by depleting stem cell reservoirs. Second, damage can be repaired through one or more of the many sophisticated genome maintenance pathways. However, erroneous DNA repair and incomplete restoration of chromatin after damage is resolved, produce mutations and epimutations, respectively, both of which have been shown to accumulate with age. An increased burden of mutations and/or epimutations in aged tissues increases cancer risk and adversely affects gene transcriptional regulation, leading to progressive decline in organ function. Cellular degeneration and uncontrolled cell proliferation are both major hallmarks of aging. Despite the fact that one seems to exclude the other, they both may be driven by a common mechanism. Here, we review age related changes in the mammalian genome and their possible functional consequences, with special emphasis on genome instability in stem/progenitor cells. PMID:19344750

  15. Draft Genome Sequence of Rubrivivax gelatinosus CBS

    SciTech Connect

    Hu, P. S.; Lang, J.; Wawrousek, K.; Yu, J. P.; Maness, P. C.; Chen, J.

    2012-06-01

    Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N{sub 2} as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H{sub 2}. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.

  16. Complete Genome Sequences of 138 Mycobacteriophages

    PubMed Central

    2012-01-01

    Bacteriophages are the most numerous biological entities in the biosphere, and although their genetic diversity is high, it remains ill defined. Mycobacteriophages—the viruses of mycobacterial hosts—provide insights into this diversity as well as tools for manipulating Mycobacterium tuberculosis. We report here the complete genome sequences of 138 new mycobacteriophages, which—together with the 83 mycobacteriophages previously reported—represent the largest collection of phages known to infect a single common host, Mycobacterium smegmatis mc2 155. PMID:22282335

  17. Genomic imprinting and cancer.

    PubMed Central

    Joyce, J A; Schofield, P N

    1998-01-01

    Genomic imprinting is the phenomenon by which individual alleles of certain genes are expressed differentially according to their parent of origin. The alleles appear to be differentially marked during gametogenesis or during the early part of development. This mark is heritable but reversible from generation to generation, implying a stable epigenetic modification. Approximately 25 imprinted genes have been identified to date, and dysregulation of a number of these has been implicated in tumour development. The normal physiological role of many imprinted genes is in the control of cell proliferation and fetal growth, indicating potential mechanisms of action in tumour formation. Both dominant and recessive modes of action have been postulated for the role of imprinted genes in neoplasia, as a result of effective gene dosage alterations by epigenetic modification of the normal pattern of allele specific transcription. The aim of this review is to assess the importance of imprinted genes in generating tumours and to discuss the implications for novel mechanisms of transforming mutation. PMID:9893743

  18. Making sense of cancer genomic data

    PubMed Central

    Chin, Lynda; Hahn, William C.; Getz, Gad; Meyerson, Matthew

    2011-01-01

    High-throughput tools for nucleic acid characterization now provide the means to conduct comprehensive analyses of all somatic alterations in the cancer genomes. Both large-scale and focused efforts have identified new targets of translational potential. The deluge of information that emerges from these genome-scale investigations has stimulated a parallel development of new analytical frameworks and tools. The complexity of somatic genomic alterations in cancer genomes also requires the development of robust methods for the interrogation of the function of genes identified by these genomics efforts. Here we provide an overview of the current state of cancer genomics, appraise the current portals and tools for accessing and analyzing cancer genomic data, and discuss emerging approaches to exploring the functions of somatically altered genes in cancer. PMID:21406553

  19. Single-cell sequencing in cancer research.

    PubMed

    Mato Prado, Mireia; Frampton, Adam E; Stebbing, Justin; Krell, Jonathan

    2016-01-01

    Genome-wide single-cell sequencing investigations have the potential to classify individual cells within a tumor mass. In recent years, various single-cell DNA and RNA quantification techniques have facilitated significant advances in our ability to classify subpopulations of cells within a heterogeneous population. These approaches provide the possibility of unraveling the complex variability in genetic, epigenetic and transcriptional interactions that occur within identical cells in a tumor. This should enhance our knowledge of the underlying biological phenotypes and could have a huge impact in designing more precise anticancer treatments in order to improve outcomes and avoid tumor resistance. In addition, single-cell sequencing analysis has the potential to allow the development of better diagnostic and prognostic biomarkers, and thus aid the delivery of more personalized targeted cancer therapy. Nevertheless, further research is still required to overcome technical, biological and computational problems before clinical application. PMID:26594792

  20. Whole genome sequencing of matched primary and metastatic acral melanomas

    PubMed Central

    Turajlic, Samra; Furney, Simon J.; Lambros, Maryou B.; Mitsopoulos, Costas; Kozarewa, Iwanka; Geyer, Felipe C.; MacKay, Alan; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan; Thomas, Meirion; Stamp, Gordon; Larkin, James; Reis-Filho, Jorge S.; Marais, Richard

    2012-01-01

    Next generation sequencing has enabled systematic discovery of mutational spectra in cancer samples. Here, we used whole genome sequencing to characterize somatic mutations and structural variation in a primary acral melanoma and its lymph node metastasis. Our data show that the somatic mutational rates in this acral melanoma sample pair were more comparable to the rates reported in cancer genomes not associated with mutagenic exposure than in the genome of a melanoma cell line or the transcriptome of melanoma short-term cultures. Despite the perception that acral skin is sun-protected, the dominant mutational signature in these samples is compatible with damage due to ultraviolet light exposure. A nonsense mutation in ERCC5 discovered in both the primary and metastatic tumors could also have contributed to the mutational signature through accumulation of unrepaired dipyrimidine lesions. However, evidence of transcription-coupled repair was suggested by the lower mutational rate in the transcribed regions and expressed genes. The primary and the metastasis are highly similar at the level of global gene copy number alterations, loss of heterozygosity and single nucleotide variation (SNV). Furthermore, the majority of the SNVs in the primary tumor were propagated in the metastasis and one nonsynonymous coding SNV and one splice site mutation appeared to arise de novo in the metastatic lesion. PMID:22183965

  1. Integrative clinical genomics of advanced prostate cancer.

    PubMed

    Robinson, Dan; Van Allen, Eliezer M; Wu, Yi-Mi; Schultz, Nikolaus; Lonigro, Robert J; Mosquera, Juan-Miguel; Montgomery, Bruce; Taplin, Mary-Ellen; Pritchard, Colin C; Attard, Gerhardt; Beltran, Himisha; Abida, Wassim; Bradley, Robert K; Vinson, Jake; Cao, Xuhong; Vats, Pankaj; Kunju, Lakshmi P; Hussain, Maha; Feng, Felix Y; Tomlins, Scott A; Cooney, Kathleen A; Smith, David C; Brennan, Christine; Siddiqui, Javed; Mehra, Rohit; Chen, Yu; Rathkopf, Dana E; Morris, Michael J; Solomon, Stephen B; Durack, Jeremy C; Reuter, Victor E; Gopalan, Anuradha; Gao, Jianjiong; Loda, Massimo; Lis, Rosina T; Bowden, Michaela; Balk, Stephen P; Gaviola, Glenn; Sougnez, Carrie; Gupta, Manaswi; Yu, Evan Y; Mostaghel, Elahe A; Cheng, Heather H; Mulcahy, Hyojeong; True, Lawrence D; Plymate, Stephen R; Dvinge, Heidi; Ferraldeschi, Roberta; Flohr, Penny; Miranda, Susana; Zafeiriou, Zafeiris; Tunariu, Nina; Mateo, Joaquin; Perez-Lopez, Raquel; Demichelis, Francesca; Robinson, Brian D; Schiffman, Marc; Nanus, David M; Tagawa, Scott T; Sigaras, Alexandros; Eng, Kenneth W; Elemento, Olivier; Sboner, Andrea; Heath, Elisabeth I; Scher, Howard I; Pienta, Kenneth J; Kantoff, Philip; de Bono, Johann S; Rubin, Mark A; Nelson, Peter S; Garraway, Levi A; Sawyers, Charles L; Chinnaiyan, Arul M

    2015-05-21

    Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals. PMID:26000489

  2. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.

    PubMed

    Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R

    2016-01-01

    Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery. PMID:26578615

  3. Assessing the Costs and Cost-Effectiveness of Genomic Sequencing

    PubMed Central

    Christensen, Kurt D.; Dukhovny, Dmitry; Siebert, Uwe; Green, Robert C.

    2015-01-01

    Despite dramatic drops in DNA sequencing costs, concerns are great that the integration of genomic sequencing into clinical settings will drastically increase health care expenditures. This commentary presents an overview of what is known about the costs and cost-effectiveness of genomic sequencing. We discuss the cost of germline genomic sequencing, addressing factors that have facilitated the decrease in sequencing costs to date and anticipating the factors that will drive sequencing costs in the future. We then address the cost-effectiveness of diagnostic and pharmacogenomic applications of genomic sequencing, with an emphasis on the implications for secondary findings disclosure and the integration of genomic sequencing into general patient care. Throughout, we ground the discussion by describing efforts in the MedSeq Project, an ongoing randomized controlled clinical trial, to understand the costs and cost-effectiveness of integrating whole genome sequencing into cardiology and primary care settings. PMID:26690481

  4. Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes

    PubMed Central

    Melton, Collin; Reuter, Jason A.; Spacek, Damek V.; Snyder, Michael

    2015-01-01

    Aberrant regulation of gene expression in cancer can promote survival and proliferation of cancer cells. Here we integrate TCGA whole genome sequencing data of 436 patients from eight cancer subtypes with ENCODE and other regulatory annotations to identify point mutations in regulatory regions. We find evidence for positive selection of mutations in transcription factor binding sites, consistent with these sites regulating important cancer cell functions. Using a novel method that adjusts for sample- and genomic locus-specific mutation rate, we identify recurrently mutated sites across cancer patients. Mutated regulatory sites include known sites in the TERT promoter and many novel sites, including a subset in proximity to cancer genes. In reporter assays, two novel sites display decreased enhancer activity upon mutation. These data demonstrate that many regulatory regions contain mutations under selective pressure and suggest a larger role for regulatory mutations in cancer than previously appreciated. PMID:26053494

  5. The sources of variation in the human genome and genome instability in human cancers.

    PubMed

    Diculescu, G L

    1997-01-01

    The human genome is viewed as a stable collection of about 60,000-70,000 genes--a minority of protein--coding DNA sequences--dispersed in a large majority of noncoding DNA sequences--more than 90 per cent of the entire genome sequences. Some of these ubiquitous noncoding DNA sequences, metonymically called "parasitic DNA," "ballast DNA," "selfish DNA" or "extra DNA," especially, the repeated sequences tandemly organized, are not stable but vary with considerable frequency. Recently, the confused or inadequately known origin of native of pathological variations of these DNA sequences appears to be unravelled, with great implications in genome stability. The human chromosomes, the bearer of genome, store and carry it. Their structure is qualified to perform its fastidious functions. The chromosomal conformation, "with variable geometry," exposed to genetoxic action of different damaging factors and to torsional stress after their fast and repeated changes during mitosis. The exaggerate exceeding of the native variation of human genome in disease states, probably, generates genome instability. The chromosome fragility--the cellular phenotypic expression of these molecular instability--reflects the closely relations between the genome and its carrier. The pattern of DNA replication with asynchrony of different domains of "parcelled" genome and the results of replication, susceptible to be corrected by the action of DNA repair genes, render certain limited regions of genome more vulnerable to damaging. These "target" regions focused damaging effects and exhibit an increased susceptibility to breakage and recombination, often with chromosomal expression. The coincidence of these regions, frequently, with locations of many protooncogenes and sometimes, antioncogenes could be subsequently, starting points for a genuine chain of genomic events related to growth cell and cell division. Cancer multistage accumulation of various genomic disorders in a single cell tends to take advantage of discriminating situations of these regions, which themselves can generate other genetic disorders, involving its in carcinogenesis. The gene expression disorders or the genuine mutations of dominant protooncogenes and the recessive behaviour of antioncogenes explain the nature of human cancers--a mixture of inherited and somatically acquired gene disorders. They attest the recessive characteristic of human cell malignancy and emphasize the decisive role of cancer predisposition which operates in interaction with damaging environmental factors. Seemingly, the pivotal causes of genome instability originate from strange behaviour of certain repeated DNA sequences dispersed throughout the human genome. Perhaps they hold the key to the puzzle of cancer processes. PMID:9653805

  6. Why Assembling Plant Genome Sequences Is So Challenging

    PubMed Central

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  7. Whole Chloroplast Genome Sequencing in Fragaria Using Deep Sequencing: A Comparison of Three Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplast sequences previously investigated in Fragaria revealed low amounts of variation. Deep sequencing technologies enable economical sequencing of complete chloroplast genomes. These sequences can potentially provide robust phylogenetic resolution, even at low taxonomic levels within plant gr...

  8. Revealing the Complexity of Breast Cancer by Next Generation Sequencing.

    PubMed

    Verigos, John; Magklara, Angeliki

    2015-01-01

    Over the last few years the increasing usage of "-omic" platforms, supported by next-generation sequencing, in the analysis of breast cancer samples has tremendously advanced our understanding of the disease. New driver and passenger mutations, rare chromosomal rearrangements and other genomic aberrations identified by whole genome and exome sequencing are providing missing pieces of the genomic architecture of breast cancer. High resolution maps of breast cancer methylomes and sequencing of the miRNA microworld are beginning to paint the epigenomic landscape of the disease. Transcriptomic profiling is giving us a glimpse into the gene regulatory networks that govern the fate of the breast cancer cell. At the same time, integrative analysis of sequencing data confirms an extensive intertumor and intratumor heterogeneity and plasticity in breast cancer arguing for a new approach to the problem. In this review, we report on the latest findings on the molecular characterization of breast cancer using NGS technologies, and we discuss their potential implications for the improvement of existing therapies. PMID:26561834

  9. Revealing the Complexity of Breast Cancer by Next Generation Sequencing

    PubMed Central

    Verigos, John; Magklara, Angeliki

    2015-01-01

    Over the last few years the increasing usage of “-omic” platforms, supported by next-generation sequencing, in the analysis of breast cancer samples has tremendously advanced our understanding of the disease. New driver and passenger mutations, rare chromosomal rearrangements and other genomic aberrations identified by whole genome and exome sequencing are providing missing pieces of the genomic architecture of breast cancer. High resolution maps of breast cancer methylomes and sequencing of the miRNA microworld are beginning to paint the epigenomic landscape of the disease. Transcriptomic profiling is giving us a glimpse into the gene regulatory networks that govern the fate of the breast cancer cell. At the same time, integrative analysis of sequencing data confirms an extensive intertumor and intratumor heterogeneity and plasticity in breast cancer arguing for a new approach to the problem. In this review, we report on the latest findings on the molecular characterization of breast cancer using NGS technologies, and we discuss their potential implications for the improvement of existing therapies. PMID:26561834

  10. Complete genome sequence of bacteriophage T5.

    PubMed

    Wang, Jianbin; Jiang, Yan; Vincent, Myriam; Sun, Yongqiao; Yu, Hong; Wang, Jing; Bao, Qiyu; Kong, Huimin; Hu, Songnian

    2005-02-01

    The 121,752-bp genome sequence of bacteriophage T5 was determined; the linear, double-stranded DNA is nicked in one of the strands and has large direct terminal repeats of 10,139 bp (8.3%) at both ends. The genome structure is consistently arranged according to its lytic life cycle. Of the 168 potential open reading frames (ORFs), 61 were annotated; these annotated ORFs are mainly enzymes involved in phage DNA replication, repair, and nucleotide metabolism. At least five endonucleases that believed to help inducing nicks in T5 genomic DNA, and a DNA ligase gene was found to be split into two separate ORFs. Analysis of T5 early promoters suggests a probable motif AAA{3, 4 T}nTTGCTT{17, 18 n}TATAATA{12, 13 W}{10 R} for strong promoters that may strengthen the step modification of host RNA polymerase, and thus control transcription of phage DNA. The distinct protein domain profile and a mosaic genome structure suggest an origin from the common genetic pool. PMID:15661140

  11. Functional genomic studies: insights into the pathogenesis of liver cancer.

    PubMed

    Han, Ze-Guang

    2012-01-01

    Liver cancer is the sixth-most-common cancer overall but the third-most-frequent cause of cancer death. Among primary liver cancers, hepatocellular carcinoma (HCC), the major histological subtype, is associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Although previous studies have revealed that certain genetic and epigenetic changes, such as TP53 and ?-catenin mutations, occur in HCC cells, the pathogenesis of this cancer remains obscure. Functional genomic approaches-including genome-wide association studies, whole-genome and whole-exome sequencing, array-based comparative genomic hybridization, global DNA methylome mapping, and gene or noncoding RNA expression profiling-have recently been applied to HCC patients with different clinical features to uncover the genetic risk factors and underlying molecular mechanisms involved in this cancer's initiation and progression. The genome-wide analysis of germline and somatic genetic and epigenetic events facilitates understanding of the pathogenesis and molecular classification of liver cancer as well as the identification of novel diagnostic biomarkers and therapeutic targets for cancer. PMID:22703171

  12. Insight into the heterogeneity of breast cancer through next-generation sequencing.

    PubMed

    Russnes, Hege G; Navin, Nicholas; Hicks, James; Borresen-Dale, Anne-Lise

    2011-10-01

    Rapid and sophisticated improvements in molecular analysis have allowed us to sequence whole human genomes as well as cancer genomes, and the findings suggest that we may be approaching the ability to individualize the diagnosis and treatment of cancer. This paradigmatic shift in approach will require clinicians and researchers to overcome several challenges including the huge spectrum of tumor types within a given cancer, as well as the cell-to-cell variations observed within tumors. This review discusses how next-generation sequencing of breast cancer genomes already reveals insight into tumor heterogeneity and how it can contribute to future breast cancer classification and management. PMID:21965338

  13. Simple sequence repeats in bryophyte mitochondrial genomes.

    PubMed

    Zhao, Chao-Xian; Zhu, Rui-Liang; Liu, Yang

    2016-01-01

    Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions. PMID:24491104

  14. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  15. Comprehensive characterization of the genomic alterations in human gastric cancer

    PubMed Central

    Cui, Juan; Yin, Yanbin; Ma, Qin; Wang, Guoqing; Olman, Victor; Zhang, Yu; Chou, Wen-Chi; Hong, Celine S.; Zhang, Chi; Cao, Sha; Mao, Xizeng; Li, Ying; Qin, Steve; Zhao, Shaying; Jiang, Jing; Hastings, Phil; Li, Fan; Xu, Ying

    2016-01-01

    Gastric cancer is one of the most prevalent and aggressive cancers worldwide, and its molecular mechanism remains largely elusive. Here we report the genomic landscape in primary gastric adenocarcinoma of human, based on the complete genome sequences of five pairs of cancer and matching normal samples. In total, 103,464 somatic point mutations, including 407 nonsynonymous ones, were identified and the most recurrent mutations were harbored by Mucins (MUC3A and MUC12) and transcription factors (ZNF717, ZNF595 and TP53). 679 genomic rearrangements were detected, which affect 355 protein-coding genes; and 76 genes show copy number changes. Through mapping the boundaries of the rearranged regions to the folded three-dimensional structure of human chromosomes, we determined that 79.6% of the chromosomal rearrangements happen among DNA fragments in close spatial proximity, especially when two endpoints stay in a similar replication phase. We demonstrated evidences that microhomology-mediated break-induced replication was utilized as a mechanism in inducing ~40.9% of the identified genomic changes in gastric tumor. Our data analyses revealed potential integrations of Helicobacter pylori DNA into the gastric cancer genomes. Overall a large set of novel genomic variations were detected in these gastric cancer genomes, which may be essential to the study of the genetic basis and molecular mechanism of the gastric tumorigenesis. PMID:25422082

  16. CGCI Investigators Reveal Comprehensive Landscape of Diffuse Large B-Cell Lymphoma (DLBCL) Genomes | Office of Cancer Genomics

    Cancer.gov

    Researchers from British Columbia Cancer Agency used whole genome sequencing to analyze 40 DLBCL cases and 13 cell lines in order to fill in the gaps of the complex landscape of DLBCL genomes. Their analysis, “Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing,” was published online in Blood on May 22. The authors are Ryan Morin, Marco Marra, and colleagues.  

  17. Draft Genome Sequence of the Fungus Trametes hirsuta 072

    PubMed Central

    Tyazhelova, Tatiana V.; Moiseenko, Konstantin V.; Vasina, Daria V.; Mosunova, Olga V.; Fedorova, Tatiana V.; Maloshenok, Lilya G.; Landesman, Elena O.; Bruskin, Sergei A.; Psurtseva, Nadezhda V.; Slesarev, Alexei I.; Kozyavkin, Sergei A.; Koroleva, Olga V.

    2015-01-01

    A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs). PMID:26586872

  18. Draft Genome Sequence of Streptomyces hygroscopicus subsp. hygroscopicus NBRC 16556.

    PubMed

    Komaki, Hisayuki; Ichikawa, Natsuko; Oguchi, Akio; Hamada, Moriyuki; Tamura, Tomohiko; Suzuki, Ken-Ichiro; Fujita, Nobuyuki

    2016-01-01

    Here, we report the draft genome sequence of strain NBRC 16556, deposited as Streptomyces hygroscopicus subsp. hygroscopicus into the NBRC culture collection. An average nucleotide identity analysis confirmed that the taxonomic identification is correct. The genome sequence will serve as a valuable reference for genome mining to search new secondary metabolites. PMID:27198007

  19. Complete Genome Sequence of the Embu Virus Strain SPAn880

    PubMed Central

    Antwerpen, Markus; Georgi, Enrico; Vette, Philipp; Zoeller, Gudrun; Meyer, Hermann

    2014-01-01

    We report the complete genome sequence of the Embu virus. The genome consists of 185,139 bp and is nearly identical to that of the Cotia virus. This is the first report on the Embu virus genome sequence, which has been considered an unclassified poxvirus until now. PMID:25477400

  20. Draft Genome Sequence of Alternaria alternata ATCC 34957.

    PubMed

    Nguyen, Hai D T; Lewis, Christopher T; Lévesque, C André; Gräfenhan, Tom

    2016-01-01

    We report the draft genome sequence of Alternaria alternata ATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb. PMID:26769939

  1. Draft Genome Sequence of Alternaria alternata ATCC 34957

    PubMed Central

    Nguyen, Hai D. T.; Lewis, Christopher T.; Lévesque, C. André

    2016-01-01

    We report the draft genome sequence of Alternaria alternata ATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb. PMID:26769939

  2. Genome sequence of the Pea Aphid Acyrthosiphon pisum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The International aphid genome consortium, IAGC, herein presents the 464 Mb draft genome assembly sequence of the pea aphid Acyrthosiphon pisum. This is the first published whole genome sequence from the diverse assemblage of hemimetabolous insects, providing an outgroup to the multiple published g...

  3. The complete chloroplast genome sequence of Anoectochilus roxburghii.

    PubMed

    Yu, Chao-Wei; Lian, Qin; Wu, Kang-Cheng; Yu, Shu-Han; Xie, Li-Yan; Wu, Zu-Jian

    2016-07-01

    The complete chloroplast sequence of the Anoectochilus roxburghii, a popular traditional Chinese medicine for the treatment of cancer, was determined in this study. The chloroplast genome (cpDNA)^ was 152,802 bp in length, containing a pair of inverted repeats of 52,728 bp separated by a large single-copy region and a small single-copy region of 82,641 bp and 17,433 bp, respectively. The chloroplast genome encodes 116 predicted functional genes, including 81 protein-coding genes, four ribosomal RNA genes, and 31 transfer RNA genes, 25 of which are duplicated in the inverted repeat regions. The cpDNA is GC-rich (36.9%). PMID:25865497

  4. Complete genome sequence of Methanocorpusculum labreanum type strain Z

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  5. Complete genome sequence of Methanoculleus marisnigri type strain JR1

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Saunders, Elizabeth H; Han, Cliff; Brettin, Tom; Detter, J. Chris; Bruce, David; Mikhailova, Natalia; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.

  6. TAG Sequence Identification of Genomic Regions Using TAGdb.

    PubMed

    Ruperao, Pradeep

    2016-01-01

    Second-generation sequencing (SGS) technology has enabled the sequencing of genomes and identification of genes. However, large complex plant genomes remain particularly difficult for de novo assembly. Access to the vast quantity of raw sequence data may facilitate discoveries; however the volume of this data makes access difficult. This chapter discusses the Web-based tool TAGdb that enables researchers to identify paired read second-generation DNA sequence data that share identity with a submitted query sequence. The identified reads can be used for PCR amplification of genomic regions to identify genes and promoters without the need for genome assembly. PMID:26519409

  7. Genomic Sequence Comparisons, 1987-2003 Final Report

    SciTech Connect

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  8. The dynamics of cancer chromosomes and genomes.

    PubMed

    Ye, C J; Liu, G; Bremer, S W; Heng, H H Q

    2007-01-01

    A key feature of cancer chromosomes and genomes is their high level of dynamics and the ability to constantly evolve. This unique characteristic forms the basis of genetic heterogeneity necessary for cancer formation, which presents major obstacles to current cancer diagnosis and treatment. It has been difficult to integrate such dynamics into traditional models of cancer progression. In this conceptual piece, we briefly discuss some of the recent exciting progress in the field of cancer genomics and genome research. In particular, a re-evaluation of the previously disregarded non-clonal chromosome aberrations (NCCAs) is reviewed, coupled with the progress of the detection of sub-chromosomal aberrations with array technologies. Clearly, the high level of genetic heterogeneity is directly caused by genome instability that is mediated by stochastic genomic changes, and genome variations defined by chromosome aberrations are the driving force of cancer progression. In addition to listing various types of non-recurrent chromosomal aberrations, we discuss the likely mechanism underlying cancer chromosome dynamics. Finally, we call for further examination of the features of dynamic genome diseases including cancer in the context of systems biology and the need to integrate this new knowledge into basic research and clinical applications. This genome centric concept will have a profound impact on the future of biological and medical research. PMID:18000376

  9. Detecting long tandem duplications in genomic sequences

    PubMed Central

    2012-01-01

    Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS < 1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations. PMID:22568762

  10. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes

    PubMed Central

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-01-01

    Genomic sequences of Epstein–Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases. PMID:26927157

  11. From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.

    PubMed

    Kwok, Hin; Chiang, Alan Kwok Shing

    2016-01-01

    Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases. PMID:26927157

  12. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo

    PubMed Central

    Horton, Daniel L.; Marston, Denise A.; Johnson, Nicholas; Ellis, Richard J.; Fooks, Anthony R.; Hewson, Roger

    2016-01-01

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates. PMID:27081121

  13. Genome Sequence of Stachybotrys chartarum Strain 51-11.

    PubMed

    Betancourt, Doris A; Dean, Timothy R; Kim, Jean; Levy, Josh

    2015-01-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful. PMID:26430036

  14. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo.

    PubMed

    Lumley, Sarah; Horton, Daniel L; Marston, Denise A; Johnson, Nicholas; Ellis, Richard J; Fooks, Anthony R; Hewson, Roger

    2016-01-01

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates. PMID:27081121

  15. Next Generation Sequencing at the University of Chicago Genomics Core

    SciTech Connect

    Faber, Pieter

    2013-04-24

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.

  16. Complete Genomic Sequence of Duck Flavivirus from China

    PubMed Central

    Liu, Ming; Liu, Chunguo; Li, Gang; Li, Xiaojun; Yin, Xiuchen; Chen, Yuhuan

    2012-01-01

    We report here the complete genomic sequence of the Chinese duck flavivirus TA strain. This work is the first to document the complete genomic sequence of this previously unknown duck flavivirus strain. The sequence will help further relevant epidemiological studies and extend our general knowledge of flaviviruses. PMID:22354941

  17. Detection of Genomic Structural Variants from Next-Generation Sequencing Data

    PubMed Central

    Tattini, Lorenzo; D’Aurizio, Romina; Magi, Alberto

    2015-01-01

    Structural variants are genomic rearrangements larger than 50 bp accounting for around 1% of the variation among human genomes. They impact on phenotypic diversity and play a role in various diseases including neurological/neurocognitive disorders and cancer development and progression. Dissecting structural variants from next-generation sequencing data presents several challenges and a number of approaches have been proposed in the literature. In this mini review, we describe and summarize the latest tools – and their underlying algorithms – designed for the analysis of whole-genome sequencing, whole-exome sequencing, custom captures, and amplicon sequencing data, pointing out the major advantages/drawbacks. We also report a summary of the most recent applications of third-generation sequencing platforms. This assessment provides a guided indication – with particular emphasis on human genetics and copy number variants – for researchers involved in the investigation of these genomic events. PMID:26161383

  18. Detection of Genomic Structural Variants from Next-Generation Sequencing Data.

    PubMed

    Tattini, Lorenzo; D'Aurizio, Romina; Magi, Alberto

    2015-01-01

    Structural variants are genomic rearrangements larger than 50 bp accounting for around 1% of the variation among human genomes. They impact on phenotypic diversity and play a role in various diseases including neurological/neurocognitive disorders and cancer development and progression. Dissecting structural variants from next-generation sequencing data presents several challenges and a number of approaches have been proposed in the literature. In this mini review, we describe and summarize the latest tools - and their underlying algorithms - designed for the analysis of whole-genome sequencing, whole-exome sequencing, custom captures, and amplicon sequencing data, pointing out the major advantages/drawbacks. We also report a summary of the most recent applications of third-generation sequencing platforms. This assessment provides a guided indication - with particular emphasis on human genetics and copy number variants - for researchers involved in the investigation of these genomic events. PMID:26161383

  19. Current challenges in de novo plant genome sequencing and assembly

    PubMed Central

    2012-01-01

    Genome sequencing is now affordable, but assembling plant genomes de novo remains challenging. We assess the state of the art of assembly and review the best practices for the community. PMID:22546054

  20. Genome sequencing of the important oilseed crop Sesamum indicum L

    PubMed Central

    2013-01-01

    The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described. PMID:23369264

  1. Next-Generation Sequencing for Cancer Diagnostics: a Practical Perspective

    PubMed Central

    Meldrum, Cliff; Doyle, Maria A; Tothill, Richard W

    2011-01-01

    Next-generation sequencing (NGS) is arguably one of the most significant technological advances in the biological sciences of the last 30 years. The second generation sequencing platforms have advanced rapidly to the point that several genomes can now be sequenced simultaneously in a single instrument run in under two weeks. Targeted DNA enrichment methods allow even higher genome throughput at a reduced cost per sample. Medical research has embraced the technology and the cancer field is at the forefront of these efforts given the genetic aspects of the disease. World-wide efforts to catalogue mutations in multiple cancer types are underway and this is likely to lead to new discoveries that will be translated to new diagnostic, prognostic and therapeutic targets. NGS is now maturing to the point where it is being considered by many laboratories for routine diagnostic use. The sensitivity, speed and reduced cost per sample make it a highly attractive platform compared to other sequencing modalities. Moreover, as we identify more genetic determinants of cancer there is a greater need to adopt multi-gene assays that can quickly and reliably sequence complete genes from individual patient samples. Whilst widespread and routine use of whole genome sequencing is likely to be a few years away, there are immediate opportunities to implement NGS for clinical use. Here we review the technology, methods and applications that can be immediately considered and some of the challenges that lie ahead. PMID:22147957

  2. Colorectal cancers in patients with the (9A/6A) polymorphism of TGFBR1 exhibit lesser inter-(simple sequence repeat) PCR genomic instability and present clinically at greater age.

    PubMed

    Dutt, Smitha S; Chen, Neng; Darbary, Huferesh K; Swede, Helen; Petrelli, Nicholas J; Stoler, Daniel L; Anderson, Garth R

    2008-10-14

    TGFbeta is involved in the response to DNA damage and signaling the cell cycle checkpoint response, in large part achieved by modulating the activity of the ATM kinase. We have investigated if the presence of a common polymorphism in the TGFbeta receptor TGFBR1 might impact genomic instability in human colorectal cancer. In order to obtain statistically significant numbers of patients with the lesser polymorphism, 177 colorectal cancer patients were genotyped for either the major form of the TGFBR1 receptor gene, homozygous for an internal segment of 9 alanines (9A/9A), or the lesser form, heterozygous for the polymorphism containing 6 alanines (9A/6A). Intrachromosomal genomic instability in the tumors was then quantified by the robust inter-(simple sequence repeat) PCR method. Tumors from all 26 patients heterozygous with the (9A/6A) polymorphism in TGFBR1 exhibited significantly lower genomic instability than from a randomly selected set [the first identified] of 37 patients with the (9A/9A) polymorphism (p=0.0002, Mann-Whitney). The median age of onset for the (9A/6A) patients was 70 years, compared with a median age of onset of 63 years for the patients carrying the (9A/9A) form (p=0.031, Mann-Whitney). These results are consistent with the model wherein genomic instability facilitates tumor progression, with lesser instability associated with later disease presentation. Clinically, our findings may be developed into improved screening guidelines with respect to the age at which colonoscopy is initiated in carriers of the TGFBR1*6A allele. PMID:18778720

  3. Sequence Imputation of HPV16 Genomes for Genetic Association Studies

    PubMed Central

    Smith, Benjamin; Chen, Zigui; Reimers, Laura; van Doorslaer, Koenraad; Schiffman, Mark; DeSalle, Rob; Herrero, Rolando; Yu, Kai; Wacholder, Sholom; Wang, Tao; Burk, Robert D.

    2011-01-01

    Background Human Papillomavirus type 16 (HPV16) causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs) determine oncogenicity. Methods A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS) using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica. Results HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution. Conclusions Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable resource for future studies of HPV16 pathogenicity. PMID:21731721

  4. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A) in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion

    PubMed Central

    Abisoye-Ogunniyan, Abisola; Waterfall, Joshua J.; Davis, Sean; Killian, J. Keith; Pineda, Marbin; Ray, Satyajit; McCord, Matt R.; Pflicke, Holger; Burkett, Sandra Sczerba; Meltzer, Paul S.; Rudloff, Udo

    2016-01-01

    The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor’s natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression. PMID:26962861

  5. Whole Genome Sequencing of Newly Established Pancreatic Cancer Lines Identifies Novel Somatic Mutation (c.2587G>A) in Axon Guidance Receptor Plexin A1 as Enhancer of Proliferation and Invasion.

    PubMed

    Sorber, Rebecca; Teper, Yaroslav; Abisoye-Ogunniyan, Abisola; Waterfall, Joshua J; Davis, Sean; Killian, J Keith; Pineda, Marbin; Ray, Satyajit; McCord, Matt R; Pflicke, Holger; Burkett, Sandra Sczerba; Meltzer, Paul S; Rudloff, Udo

    2016-01-01

    The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression. PMID:26962861

  6. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    PubMed

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-01-01

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts. PMID:26358599

  7. Complete genome sequence of Arcanobacterium haemolyticum type strain (11018T)

    SciTech Connect

    Yasawong, Montri; Teshima, Hazuki; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Sikorski, Johannes; Pukall, Rudiger; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Vulcanisaeta distributa Itoh et al. 2002 belongs to the family Thermoproteaceae in the phylum Crenarchaeota. The genus Vulcanisaeta is characterized by a global distribution in hot and acidic springs. This is the first genome sequence from a member of the genus Vulcanisaeta and seventh genome sequence in the family Thermoproteaceae. The 2,374,137 bp long genome with its 2,544 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Draft Genome Sequences of Klebsiella variicola Plant Isolates

    PubMed Central

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena

    2015-01-01

    Three endophytic Klebsiella variicola isolates—T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively—were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts. PMID:26358599

  9. Enhancing cancer clonality analysis with integrative genomics

    PubMed Central

    2015-01-01

    Introduction It is understood that cancer is a clonal disease initiated by a single cell, and that metastasis, which is the spread of cancer from the primary site, is also initiated by a single cell. The seemingly natural capability of cancer to adapt dynamically in a Darwinian manner is a primary reason for therapeutic failures. Survival advantages may be induced by cancer therapies and also occur as a result of inherent cell and microenvironmental factors. The selected "more fit" clones outmatch their competition and then become dominant in the tumor via propagation of progeny. This clonal expansion leads to relapse, therapeutic resistance and eventually death. The goal of this study is to develop and demonstrate a more detailed clonality approach by utilizing integrative genomics. Methods Patient tumor samples were profiled by Whole Exome Sequencing (WES) and RNA-seq on an Illumina HiSeq 2500 and methylation profiling was performed on the Illumina Infinium 450K array. STAR and the Haplotype Caller were used for RNA-seq processing. Custom approaches were used for the integration of the multi-omic datasets. Results Reported are major enhancements to CloneViz, which now provides capabilities enabling a formal tumor multi-dimensional clonality analysis by integrating: i) DNA mutations, ii) RNA expressed mutations, and iii) DNA methylation data. RNA and DNA methylation integration were not previously possible, by CloneViz (previous version) or any other clonality method to date. This new approach, named iCloneViz (integrated CloneViz) employs visualization and quantitative methods, revealing an integrative genomic mutational dissection and traceability (DNA, RNA, epigenetics) thru the different layers of molecular structures. Conclusion The iCloneViz approach can be used for analysis of clonal evolution and mutational dynamics of multi-omic data sets. Revealing tumor clonal complexity in an integrative and quantitative manner facilitates improved mutational characterization, understanding, and therapeutic assignments. PMID:26424171

  10. Bioinformatics Interpretation of Exome Sequencing: Blood Cancer

    PubMed Central

    Kim, Jiwoong; Lee, Yun-Gyeong

    2013-01-01

    We had analyzed 10 exome sequencing data and single nucleotide polymorphism chips for blood cancer provided by the PGM21 (The National Project for Personalized Genomic Medicine) Award program. We had removed sample G06 because the pair is not correct and G10 because of possible contamination. In-house software somatic copy-number and heterozygosity alteration estimation (SCHALE) was used to detect one loss of heterozygosity region in G05. We had discovered 27 functionally important mutations. Network and pathway analyses gave us clues that NPM1, GATA2, and CEBPA were major driver genes. By comparing with previous somatic mutation profiles, we had concluded that the provided data originated from acute myeloid leukemia. Protein structure modeling showed that somatic mutations in IDH2, RASGEF1B, and MSH4 can affect protein structures. PMID:23613679

  11. Complete Genome Sequence of Corynebacterium pseudotuberculosis Viscerotropic Strain N1

    PubMed Central

    Portela, Ricardo W.; Sousa, Thiago J.; Rocha, Flávia; Pereira, Felipe L.; Dorella, Fernanda A.; Carvalho, Alex F.; Menezes, Nildo; Macedo, Eduardo S.; Moura-Costa, Lilia F.; Meyer, Roberto; Leal, Carlos A. G.; Figueiredo, Henrique C.; Azevedo, Vasco

    2016-01-01

    We present the complete genome sequence of Corynebacterium pseudotuberculosis strain N1. The sequencing was performed with the Ion Torrent Personal Genome Machine system. The genome is a circular chromosome with 2,337,845 bp, a G+C content of 52.85%, and a total of 2,045 coding sequences, 12 rRNAs, 49 tRNAs, and 58 pseudogenes. PMID:26823597

  12. Complete Genome Sequence of Corynebacterium pseudotuberculosis Viscerotropic Strain N1.

    PubMed

    Loureiro, Dan; Portela, Ricardo W; Sousa, Thiago J; Rocha, Flávia; Pereira, Felipe L; Dorella, Fernanda A; Carvalho, Alex F; Menezes, Nildo; Macedo, Eduardo S; Moura-Costa, Lilia F; Meyer, Roberto; Leal, Carlos A G; Figueiredo, Henrique C; Azevedo, Vasco

    2016-01-01

    We present the complete genome sequence of Corynebacterium pseudotuberculosis strain N1. The sequencing was performed with the Ion Torrent Personal Genome Machine system. The genome is a circular chromosome with 2,337,845 bp, a G+C content of 52.85%, and a total of 2,045 coding sequences, 12 rRNAs, 49 tRNAs, and 58 pseudogenes. PMID:26823597

  13. Caenorhabditis elegans mutant allele identification by whole-genome sequencing.

    PubMed

    Sarin, Sumeet; Prabhu, Snehit; O'Meara, M Maggie; Pe'er, Itsik; Hobert, Oliver

    2008-10-01

    Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants. PMID:18677319

  14. Genome sequencing and annotation of Proteus sp. SAS71

    PubMed Central

    Selim, Samy; Hassan, Sherif; Hagagy, Nashwa

    2015-01-01

    We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000. PMID:26697338

  15. A decision support framework for genomically informed investigational cancer therapy.

    PubMed

    Meric-Bernstam, Funda; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann Marie; Brusco, Lauren; Chen, Ken; Routbort, Mark; Patel, Keyur P; Zeng, Jia; Kopetz, Scott; Davies, Michael A; Piha-Paul, Sarina A; Hong, David S; Eterovic, Agda Karina; Tsimberidou, Apostolia M; Broaddus, Russell; Bernstam, Elmer V; Shaw, Kenna R; Mendelsohn, John; Mills, Gordon B

    2015-07-01

    Rapidly improving understanding of molecular oncology, emerging novel therapeutics, and increasingly available and affordable next-generation sequencing have created an opportunity for delivering genomically informed personalized cancer therapy. However, to implement genomically informed therapy requires that a clinician interpret the patient's molecular profile, including molecular characterization of the tumor and the patient's germline DNA. In this Commentary, we review existing data and tools for precision oncology and present a framework for reviewing the available biomedical literature on therapeutic implications of genomic alterations. Genomic alterations, including mutations, insertions/deletions, fusions, and copy number changes, need to be curated in terms of the likelihood that they alter the function of a "cancer gene" at the level of a specific variant in order to discriminate so-called "drivers" from "passengers." Alterations that are targetable either directly or indirectly with approved or investigational therapies are potentially "actionable." At this time, evidence linking predictive biomarkers to therapies is strong for only a few genomic markers in the context of specific cancer types. For these genomic alterations in other diseases and for other genomic alterations, the clinical data are either absent or insufficient to support routine clinical implementation of biomarker-based therapy. However, there is great interest in optimally matching patients to early-phase clinical trials. Thus, we need accessible, comprehensive, and frequently updated knowledge bases that describe genomic changes and their clinical implications, as well as continued education of clinicians and patients. PMID:25863335

  16. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions fr...

  17. Translational genomics in cancer research: converting profiles into personalized cancer medicine

    PubMed Central

    Patel, Lalit; Parker, Brittany; Yang, Da; Zhang, Wei

    2013-01-01

    Cancer genomics is a rapidly growing discipline in which the genetic molecular basis of malignancy is studied at the scale of whole genomes. While the discipline has been successful with respect to identifying specific oncogenes and tumor suppressors involved in oncogenesis, it is also challenging our approach to managing patients suffering from this deadly disease. Specifically cancer genomics is driving clinical oncology to take a more molecular approach to diagnosis, prognostication, and treatment selection. We review here recent work undertaken in cancer genomics with an emphasis on translation of genomic findings. Finally, we discuss scientific challenges and research opportunities emerging from findings derived through analysis of tumors with high-depth sequencing. PMID:24349831

  18. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis.

    PubMed

    Takami, H; Nakasone, K; Takaki, Y; Maeno, G; Sasaki, R; Masui, N; Fuji, F; Hirama, C; Nakamura, Y; Ogasawara, N; Kuhara, S; Horikoshi, K

    2000-11-01

    The 4 202 353 bp genome of the alkaliphilic bacterium Bacillus halodurans C-125 contains 4066 predicted protein coding sequences (CDSs), 2141 (52.7%) of which have functional assignments, 1182 (29%) of which are conserved CDSs with unknown function and 743 (18. 3%) of which have no match to any protein database. Among the total CDSs, 8.8% match sequences of proteins found only in Bacillus subtilis and 66.7% are widely conserved in comparison with the proteins of various organisms, including B.subtilis. The B. halodurans genome contains 112 transposase genes, indicating that transposases have played an important evolutionary role in horizontal gene transfer and also in internal genetic rearrangement in the genome. Strain C-125 lacks some of the necessary genes for competence, such as comS, srfA and rapC, supporting the fact that competence has not been demonstrated experimentally in C-125. There is no paralog of tupA, encoding teichuronopeptide, which contributes to alkaliphily, in the C-125 genome and an ortholog of tupA cannot be found in the B.subtilis genome. Out of 11 sigma factors which belong to the extracytoplasmic function family, 10 are unique to B. halodurans, suggesting that they may have a role in the special mechanism of adaptation to an alkaline environment. PMID:11058132

  19. Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer

    PubMed Central

    Lim, Byungho; Kim, Jong-Hwan; Kim, Mirang; Kim, Seon-Young

    2016-01-01

    Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr virus-positive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets. PMID:26811657

  20. [Sequence and organization of Muntiacus reevesi mitochondrial genome].

    PubMed

    Zhang, Xiao-Mei; Shan, Xiang-Nian; Shi, Yan-Feng; Zhang, Hai-Jun; Li, Jian; Zheng, Ai-Ling

    2004-11-01

    A shot-gun DNA sequence strategy was employed,in which the mitochondrial genome library of Muntiacus reevesi has been constructed to obtain the complete mitochondrial genome sequence. The Chinese Muntjac's mitochondrial genome, consisting of 16354 base pairs which encode genes for 13 proteins, 2 rRNAs, and 22 tRNAs, is similar to those mammals in both order and orientation. The sequence of rRNA gene, some of the protein-coding regions and tRNAs are highly homologous in mammals. Differences existing in the length and sequence of the D-loop regions account for the variations in mammals mitochondrial genomes. PMID:15640115

  1. A sequence-based survey of the complex structural organization of tumor genomes

    SciTech Connect

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  2. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer. PMID:18616967

  3. Role of non-coding sequence variants in cancer.

    PubMed

    Khurana, Ekta; Fu, Yao; Chakravarty, Dimple; Demichelis, Francesca; Rubin, Mark A; Gerstein, Mark

    2016-02-01

    Patients with cancer carry somatic sequence variants in their tumour in addition to the germline variants in their inherited genome. Although variants in protein-coding regions have received the most attention, numerous studies have noted the importance of non-coding variants in cancer. Moreover, the overwhelming majority of variants, both somatic and germline, occur in non-coding portions of the genome. We review the current understanding of non-coding variants in cancer, including the great diversity of the mutation types - from single nucleotide variants to large genomic rearrangements - and the wide range of mechanisms by which they affect gene expression to promote tumorigenesis, such as disrupting transcription factor-binding sites or functions of non-coding RNAs. We highlight specific case studies of somatic and germline variants, and discuss how non-coding variants can be interpreted on a large-scale through computational and experimental methods. PMID:26781813

  4. Insights into cancer biology through next-generation sequencing.

    PubMed

    Nik-Zainal, Serena

    2014-12-01

    Cancer is the ultimate disorder of the genome, characterised not by just one or two mutations, but by hundreds to thousands of acquired mutations that have been accrued through the development of a tumour. Thanks to the recent increase in the speed of sequencing offered by modern sequencing technologies, we are no longer restricted to exploring tiny fragments of protein-coding portions of the human genome. We can now read all the genetic material in human cells. Here, the framework of a next-generation sequencing experiment is explained, giving insight into the advances and difficulties posed by processing the enormous datasets generated through these methods. Some of the recent insights into tumour biology, that exploit the extraordinary surge in scale and the digital nature of next-generation sequencing, are highlighted, including cancer gene discovery, the detection of mutation signatures and cancer evolution. Technological and intellectual developments are starting to shape the personalized cancer genomic profiles of tomorrow. Let's train the next-generation of clinicians to be able to read them from today. PMID:25468925

  5. CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

    PubMed Central

    2012-01-01

    Background It is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools. Results Here we present CaPSID (Computational Pathogen Sequence IDentification), a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage. Conclusions To demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro. PMID:22901030

  6. Sequencing and Assembly of the 22-Gb Loblolly Pine Genome

    PubMed Central

    Zimin, Aleksey; Stevens, Kristian A.; Crepeau, Marc W.; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L.; de Jong, Pieter J.; Neale, David B.; Salzberg, Steven L.; Yorke, James A.; Langley, Charles H.

    2014-01-01

    Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer “super-reads,” rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp. PMID:24653210

  7. Sequencing and assembly of the 22-gb loblolly pine genome.

    PubMed

    Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H

    2014-03-01

    Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp. PMID:24653210

  8. The UCSC Cancer Genomics Browser: update 2015.

    PubMed

    Goldman, Mary; Craft, Brian; Swatloski, Teresa; Cline, Melissa; Morozova, Olena; Diekhans, Mark; Haussler, David; Zhu, Jingchun

    2015-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/) is a web-based application that integrates relevant data, analysis and visualization, allowing users to easily discover and share their research observations. Users can explore the relationship between genomic alterations and phenotypes by visualizing various -omic data alongside clinical and phenotypic features, such as age, subtype classifications and genomic biomarkers. The Cancer Genomics Browser currently hosts 575 public datasets from genome-wide analyses of over 227,000 samples, including datasets from TCGA, CCLE, Connectivity Map and TARGET. Users can download and upload clinical data, generate Kaplan-Meier plots dynamically, export data directly to Galaxy for analysis, plus generate URL bookmarks of specific views of the data to share with others. PMID:25392408

  9. The reference genome sequence of Saccharomyces cerevisiae: then and now.

    PubMed

    Engel, Stacia R; Dietrich, Fred S; Fisk, Dianna G; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C; Dwight, Selina S; Hitz, Benjamin C; Karra, Kalpana; Nash, Robert S; Weng, Shuai; Wong, Edith D; Lloyd, Paul; Skrzypek, Marek S; Miyasato, Stuart R; Simison, Matt; Cherry, J Michael

    2014-03-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called "S288C 2010," was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  10. Selection to sequence: opportunities in fungal genomics

    SciTech Connect

    Baker, Scott E.

    2009-12-01

    Selection is a biological force, causing genotypic and phenotypic change over time. Whether environmental or human induced, selective pressures shape the genotypes and the phenotypes of organisms both in nature and in the laboratory. In nature, selective pressure is highly dynamic and the sum of the environment and other organisms. In the laboratory, selection is used in genetic studies and industrial strain development programs to isolate mutants affecting biological processes of interest to researchers. Selective pressures are important considerations for fungal biology. In the laboratory a number of fungi are used as experimental systems to study a wide range of biological processes and in nature fungi are important pathogens of plants and animals and play key roles in carbon and nitrogen cycling. The continued development of high throughput sequencing technologies makes it possible to characterize at the genomic level, the effect of selective pressures both in the lab and in nature for filamentous fungi as well as other organisms.

  11. A taste of pineapple evolution through genome sequencing.

    PubMed

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution. PMID:26620110

  12. Insights from twenty years of bacterial genome sequencing

    SciTech Connect

    Land, Miriam L; Hauser, Loren John; Jun, Se Ran; Nookaew, Intawat; Leuze, Michael Rex; Ahn, Tae-Hyuk; Karpinets, Tatiana V; Lund, Ole; Kora, Guruprasad H; Wassenaar, Trudy; Poudel, Suresh; Ussery, David W

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.

  13. Single-molecule analysis of genome rearrangements in cancer

    PubMed Central

    Pole, Jessica C. M.; McCaughan, Frank; Newman, Scott; Howarth, Karen D.; Dear, Paul H.; Edwards, Paul A. W.

    2011-01-01

    Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2?kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome. PMID:21525129

  14. Whole-genome sequencing in outbreak analysis.

    PubMed

    Gilchrist, Carol A; Turner, Stephen D; Riley, Margaret F; Petri, William A; Hewlett, Erik L

    2015-07-01

    In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed. PMID:25876885

  15. Genome Project Standards in a New Era of Sequencing

    SciTech Connect

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better reflect the quality of the genome sequence, based on our collective understanding of the different technologies, available assemblers, and the varied efforts to improve upon drafted genomes. Due to the increasingly rapid pace of genomics we avoided the use of rigid numerical thresholds in our definitions to take into account the types of products achieved by any combination of technology, chemistry, assembler, or improvement/finishing process.

  16. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  17. Chapter 27 -- Breast Cancer Genomics, Section VI, Pathology and Biological Markers of Invasive Breast Cancer

    SciTech Connect

    Spellman, Paul T.; Heiser, Laura; Gray, Joe W.

    2009-06-18

    Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes to cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also reveal the molecular differences between cancer and normal that may be exploited to therapeutic benefit or that provide targets for molecular assays that may enable early cancer detection, and predict individual disease progression or response to treatment. This chapter reviews current and future directions in genome analysis and summarizes studies that provide insights into breast cancer pathophysiology or that suggest strategies to improve breast cancer management.

  18. Finishing The Euchromatic Sequence Of The Human Genome

    SciTech Connect

    Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

    2004-09-07

    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

  19. Validation of rice genome sequence by optical mapping

    PubMed Central

    Zhou, Shiguo; Bechner, Michael C; Place, Michael; Churas, Chris P; Pape, Louise; Leong, Sally A; Runnheim, Rod; Forrest, Dan K; Goldstein, Steve; Livny, Miron; Schwartz, David C

    2007-01-01

    Background Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. Results To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. Conclusion Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties. PMID:17697381

  20. SEQUENCING THE PIG GENOME USING A BAC BY BAC APPROACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have generated a highly contiguous physical map covering >98% of the pig genome in just 176 contigs. The map is localized to the genome through integration with the UIVC RH map as well BAC end sequence alignments to the human genome. Over 265k HindIII restriction digest fingerprints totaling 16.2...

  1. Genome Sequence of Mushroom Soft-Rot Pathogen Janthinobacterium agaricidamnosum.

    PubMed

    Graupner, Katharina; Lackner, Gerald; Hertweck, Christian

    2015-01-01

    Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches. PMID:25883287

  2. Draft Genome Sequence of a Diarrheagenic Morganella morganii Isolate

    PubMed Central

    Singh, Pallavi; Mosci, Rebekah; Rudrik, James T.

    2015-01-01

    This is a report of the whole-genome draft sequence of a diarrheagenic Morganella morganii isolate from a patient in Michigan, USA. This genome represents an important addition to the limited number of pathogenic M.morganii genomes available. PMID:26450735

  3. Initial sequencing and analysis of the human genome.

    PubMed

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence. PMID:11237011

  4. Draft Genome Sequence of Neurospora crassa Strain FGSC 73

    SciTech Connect

    Baker, Scott E.; Schackwitz, Wendy; Lipzen, Anna; Martin, Joel; Haridas, Sajeet; LaButti, Kurt; Grigoriev, Igor V.; Simmons, Blake A.; McCluskey, Kevin

    2015-04-02

    We report the elucidation of the complete genome of the Neurospora crassa (Shear and Dodge) strain FGSC 73, a mat-a, trp-3 mutant strain. The genome sequence around the idiotypic mating type locus represents the only publicly available sequence for a mat-a strain. 40.42 Megabases are assembled into 358 scaffolds carrying 11,978 gene models.

  5. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  6. Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages.

    PubMed

    Sheflo, Michael A; Gardner, Adam V; Merrill, Bryan D; Fisher, Joshua N B; Lunt, Bryce L; Breakwell, Donald P; Grose, Julianne H; Burnett, Sandra H

    2013-01-01

    Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage. PMID:24233582

  7. Complete Genome Sequence of Bacillus megaterium Bacteriophage Eldridge.

    PubMed

    Reveille, Alexandra M; Eldridge, Kimberly A; Temple, Louise M

    2016-01-01

    In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using ITALIC! Bacillus megateriumas the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank. PMID:27103735

  8. Almost finished: the complete genome sequence of Mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola causes septoria tritici blotch of wheat. An 8.9x shotgun sequence of bread wheat strain IPO323 was generated through the Community Sequencing Program of the U.S. Department of Energy’s Joint Genome Institute (JGI), and was finished at the Stanford Human Genome Center. The ...

  9. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii

    PubMed Central

    Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named “wSuzi” that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

  10. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii.

    PubMed

    Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named "wSuzi" that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

  11. The Prospects for Sequencing the Western Corn Rootworm Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, obtaining the complete sequence of eukaryotic genomes has been an expensive and complex task. For this reason, efforts to sequence insect genomes have largely been confined to model organisms, species that are important to human health, and representative species from a few insect orde...

  12. Draft Genome Sequence of "Cohnella kolymensis" B-2846.

    PubMed

    Karlyshev, Andrey V; Kudryashova, Ekaterina B; Ariskina, Elena V

    2016-01-01

    A draft genome sequence of "Cohnella kolymensis" strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics. PMID:26769947

  13. De Novo Genome Sequence of Yersinia aleksiciae Y159T

    PubMed Central

    Neubauer, Heinrich

    2015-01-01

    We report here on the genome sequence of Yersinia aleksiciae Y159T, isolated in Finland in 1981. The genome has a size of 4 Mb, a G+C content of 49%, and is predicted to contain 3,423 coding sequences. PMID:26383649

  14. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    PubMed Central

    Bayjanov, Jumamurat R.; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; Siezen, Roland; van Hijum, Sacha A. F. T.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence. PMID:26607887

  15. Complete Genome Sequence of Bacillus megaterium Bacteriophage Eldridge

    PubMed Central

    Reveille, Alexandra M.; Eldridge, Kimberly A.

    2016-01-01

    In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using Bacillus megaterium as the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank. PMID:27103735

  16. Complete Genome Sequence of Enterococcus faecium ATCC 700221.

    PubMed

    McKenney, Peter T; Ling, Lilan; Wang, Guilin; Mane, Shrikant; Pamer, Eric G

    2016-01-01

    We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. PMID:27198022

  17. Genome sequencing and annotation of Cellulomonas sp. HZM

    PubMed Central

    Chua, Patric; Har, Zi Mei; Austin, Christopher M.; Yule, Catherine M.; Dykes, Gary A.; Lee, Sui Mae

    2015-01-01

    We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA). PMID:26484221

  18. Genome sequencing and annotation of Cellulomonas sp. HZM.

    PubMed

    Chua, Patric; Har, Zi Mei; Austin, Christopher M; Yule, Catherine M; Dykes, Gary A; Lee, Sui Mae

    2015-09-01

    We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA). PMID:26484221

  19. Draft Genome Sequence of Mycobacterium heraklionense Strain Davo

    PubMed Central

    Greninger, Alexander L.; Cunningham, Gail; Chiu, Charles Y.

    2015-01-01

    We report the draft genome sequence of Mycobacterium heraklionense strain Davo, isolated from a fine-needle aspirate of a right-ankle soft-tissue mass. This is the first draft genome sequence of Mycobacterium heraklionense, a nonpigmented rapidly growing mycobacterium. PMID:26205863

  20. Complete genome sequence of Melissococcus plutonius ATCC 35311.

    PubMed

    Okumura, Kayo; Arai, Rie; Okura, Masatoshi; Kirikae, Teruo; Takamatsu, Daisuke; Osaki, Makoto; Miyoshi-Akiyama, Tohru

    2011-08-01

    We report the first completely annotated genome sequence of Melissococcus plutonius ATCC 35311. M. plutonius is a one-genus, one-species bacterium and the etiological agent of European foulbrood of the honeybee. The genome sequence will provide new insights into the molecular mechanisms underlying its pathogenicity. PMID:21622755

  1. Complete Genome Sequence of Melissococcus plutonius ATCC 35311 ▿

    PubMed Central

    Okumura, Kayo; Arai, Rie; Okura, Masatoshi; Kirikae, Teruo; Takamatsu, Daisuke; Osaki, Makoto; Miyoshi-Akiyama, Tohru

    2011-01-01

    We report the first completely annotated genome sequence of Melissococcus plutonius ATCC 35311. M. plutonius is a one-genus, one-species bacterium and the etiological agent of European foulbrood of the honeybee. The genome sequence will provide new insights into the molecular mechanisms underlying its pathogenicity. PMID:21622755

  2. Whole-genome sequence of Streptococcus pseudopneumoniae isolate IS7493.

    PubMed

    Shahinas, Dea; Tamber, Gurdeep Singh; Arya, Gitanjali; Wong, Andrew; Lau, Rachel; Jamieson, Frances; Ma, Jennifer H; Alexander, David C; Low, Donald E; Pillai, Dylan R

    2011-11-01

    Streptococcus pseudopneumoniae is a member of the viridans group streptococci (VGS) whose pathogenic significance is unclear. We announce the complete genome sequence of S. pseudopneumoniae IS7493. The genome sequence will assist in the characterization of this new organism and facilitate the development of accurate diagnostic assays to distinguish it from Streptococcus pneumoniae and Streptococcus mitis. PMID:21994930

  3. Draft Genome Sequence of “Cohnella kolymensis” B-2846

    PubMed Central

    Kudryashova, Ekaterina B.; Ariskina, Elena V.

    2016-01-01

    A draft genome sequence of “Cohnella kolymensis” strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics. PMID:26769947

  4. De novo assembly of a bell pepper endornavirus genome sequence using RNA sequencing data.

    PubMed

    Jo, Yeonhwa; Choi, Hoseng; Cho, Won Kyong

    2015-01-01

    The genus Endornavirus is a double-stranded RNA virus that infects a wide range of hosts. In this study, we report on the de novo assembly of a bell pepper endornavirus genome sequence by RNA sequencing (RNA-Seq). Our result demonstrates the successful application of RNA-Seq to obtain a complete viral genome sequence from the transcriptome data. PMID:25792042

  5. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information. PMID:16773396

  6. From complete genome sequence to “complete“ understanding?

    PubMed Central

    Galperin, Michael Y.; Koonin, Eugene V.

    2011-01-01

    The rapidly accumulating genome sequence data allow researchers to address fundamental biological questions that were not even asked just a few years ago. A major problem in genomics is the widening gap between the rapid progress in genome sequencing and the comparatively slow progress in the functional characterization of sequenced genomes. Here we discuss two key questions of genome biology: whether we need more genomes, and how deep is our understanding of biology based on genomic analysis. We argue that overly specific annotations of gene functions are often less useful than the more generic, but also more robust, functional assignments based on protein family classification. We also discuss problems in understanding the functions of the remaining “conserved hypothetical” genes. PMID:20647113

  7. Draft sequences of the radish (Raphanus sativus L.) genome.

    PubMed

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-10-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥ 300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

  8. Draft Sequences of the Radish (Raphanus sativus L.) Genome

    PubMed Central

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-01-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

  9. Genome sequencing and annotation of Serratia sp. strain TEL

    PubMed Central

    Lephoto, Tiisetso E.; Gray, Vincent M.

    2015-01-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  10. Genome sequencing and annotation of Serratia sp. strain TEL.

    PubMed

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  11. Standards for Sequencing Viral Genomes in the Era of High-Throughput Sequencing

    PubMed Central

    Beitzel, Brett; Chain, Patrick S. G.; Davenport, Matthew G.; Donaldson, Eric; Frieman, Matthew; Kugelman, Jeffrey; Kuhn, Jens H.; O’Rear, Jules; Sabeti, Pardis C.; Wentworth, David E.; Wiley, Michael R.; Yu, Guo-Yun; Sozhamannan, Shanmuga; Bradburne, Christopher

    2014-01-01

    ABSTRACT Thanks to high-throughput sequencing technologies, genome sequencing has become a common component in nearly all aspects of viral research; thus, we are experiencing an explosion in both the number of available genome sequences and the number of institutions producing such data. However, there are currently no common standards used to convey the quality, and therefore utility, of these various genome sequences. Here, we propose five “standard” categories that encompass all stages of viral genome finishing, and we define them using simple criteria that are agnostic to the technology used for sequencing. We also provide genome finishing recommendations for various downstream applications, keeping in mind the cost-benefit trade-offs associated with different levels of finishing. Our goal is to define a common vocabulary that will allow comparison of genome quality across different research groups, sequencing platforms, and assembly techniques. PMID:24939889

  12. Microbial genome sequencing using optical mapping and Illumina sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...

  13. Pathway and Network Analysis of Cancer Genomes

    PubMed Central

    Haider, Syed; Wu, Guanming; Shibata, Tatsuhiro; Vazquez, Miguel; Mustonen, Ville; Gonzalez-Perez, Abel; Pearson, John; Sander, Chris; Raphael, Benjamin J.; Marks, Debora S.; Ouellette, B.F. Francis; Valencia, Alfonso; Bader, Gary D.; Boutros, Paul C.; Stuart, Joshua M.; Linding, Rune; Lopez-Bigas, Nuria; Stein, Lincoln D.

    2016-01-01

    Genomic information on tumors from 50 cancer types catalogued by The International Cancer Genome Consortium (ICGC) shows that only few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations. PMID:26125594

  14. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  15. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  16. Cancer Genetic Markers of Susceptibility | Office of Cancer Genomics

    Cancer.gov

    The Cancer Genetic Markers of Susceptibility (CGEMS) project began in 2005 as a 3-year pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a successful research program of genome-wide association studies (GWAS) to identify genetic variants that affect a persons risk of developing cancer.

  17. Complete Genome Sequence of Probiotic Strain Lactobacillus acidophilus La-14.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2013-01-01

    We present the 1,991,830-bp complete genome sequence of Lactobacillus acidophilus strain La-14 (SD-5212). Comparative genomic analysis revealed 99.98% similarity overall to the L. acidophilus NCFM genome. Globally, 111 single nucleotide polymorphisms (SNPs) (95 SNPs, 16 indels) were observed throughout the genome. Also, a 416-bp deletion in the LA14_1146 sugar ABC transporter was identified. PMID:23788546

  18. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  19. Genomic Biomarkers for Breast Cancer Risk.

    PubMed

    Walsh, Michael F; Nathanson, Katherine L; Couch, Fergus J; Offit, Kenneth

    2016-01-01

    Clinical risk assessment for cancer predisposition includes a three-generation pedigree and physical examination to identify inherited syndromes. Additionally genetic and genomic biomarkers may identify individuals with a constitutional basis for their disease that may not be evident clinically. Genomic biomarker testing may detect molecular variations in single genes, panels of genes, or entire genomes. The strength of evidence for the association of a genomic biomarker with disease risk may be weak or strong. The factors contributing to clinical validity and utility of genomic biomarkers include functional laboratory analyses and genetic epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more common genomic variants, including single nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk for breast cancer may decrease morbidity and mortality, allow for definitive prevention through assisted reproduction, and serve as a guide to targeted therapy . PMID:26987529

  20. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    SciTech Connect

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  1. Genome Sequence of the Trichosporon asahii Environmental Strain CBS 8904

    PubMed Central

    Li, Hai Tao; Zhu, He; Zhou, Guang Peng; Wang, Meng; Wang, Lei

    2012-01-01

    This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function. PMID:23193141

  2. Complete genome sequence of Mycoplasma haemofelis, a hemotropic mycoplasma.

    PubMed

    Barker, Emily N; Helps, Chris R; Peters, Iain R; Darby, Alistair C; Radford, Alan D; Tasker, Séverine

    2011-04-01

    Here, we present the genome sequence of Mycoplasma haemofelis strain Langford 1, representing the first hemotropic mycoplasma (hemoplasma) species to be completely sequenced and annotated. Originally isolated from a cat with hemolytic anemia, this strain induces severe hemolytic anemia when inoculated into specific-pathogen-free-derived cats. The genome sequence has provided insights into the biology of this uncultivatable hemoplasma and has identified potential molecular mechanisms underlying its pathogenicity. PMID:21317334

  3. Complete Genome Sequence of Salmonella Bacteriophage SS3e

    PubMed Central

    Kim, Sung-Hun; Park, Jeong-Hyun; Lee, Bok-Kwon; Kwon, Hyuk-Joon; Shin, Ji-Hyun; Kim, Jungmin

    2012-01-01

    A Salmonella lytic bacteriophage, SS3e, was isolated, and its genome was sequenced completely. This phage is able to lyse not only various Salmonella serovars but also Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens, indicating a broad host specificity. Genomic sequence analysis of SS3e revealed a linear double-stranded DNA sequence of 40,793 bp harboring 58 open reading frames, which is highly similar to Salmonella phages SETP13 and MB78. PMID:22923809

  4. Emerging Role of Genomic Rearrangements in Breast Cancer: Applying Knowledge from Other Cancers

    PubMed Central

    Paratala, Bhavna S.; Dolfi, Sonia C.; Khiabanian, Hossein; Rodriguez-Rodriguez, Lorna; Ganesan, Shridar; Hirshfield, Kim M.

    2016-01-01

    Significant advances in our knowledge of cancer genomes are rapidly changing the way we think about tumor biology and the heterogeneity of cancer. Recent successes in genomically-guided treatment approaches accompanied by more sophisticated sequencing techniques have paved the way for deeper investigation into the landscape of genomic rearrangements in cancer. While considerable research on solid tumors has focused on point mutations that directly alter the coding sequence of key genes, far less is known about the role of somatic rearrangements. With many recurring alterations observed across tumor types, there is an obvious need for functional characterization of these genomic biomarkers in order to understand their relevance to tumor biology, therapy, and prognosis. As personalized therapy approaches are turning toward genomic alterations for answers, these biomarkers will become increasingly relevant to the practice of precision medicine. This review discusses the emerging role of genomic rearrangements in breast cancer, with a particular focus on fusion genes. In addition, it raises several key questions on the therapeutic value of such rearrangements and provides a framework to evaluate their significance as predictive and prognostic biomarkers. PMID:26917980

  5. Toolbox for mobile-element insertion detection on cancer genomes.

    PubMed

    Lee, Wan-Ping; Wu, Jiantao; Marth, Gabor T

    2014-01-01

    Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram. PMID:25452688

  6. Toolbox for Mobile-Element Insertion Detection on Cancer Genomes

    PubMed Central

    Lee, Wan-Ping; Wu, Jiantao; Marth, Gabor T

    2014-01-01

    Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram. PMID:25452688

  7. Toolbox for Mobile-Element Insertion Detection on Cancer Genomes

    PubMed Central

    Lee, Wan-Ping; Wu, Jiantao; Marth, Gabor T

    2015-01-01

    Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram. PMID:25931804

  8. Toolbox for mobile-element insertion detection on cancer genomes.

    PubMed

    Lee, Wan-Ping; Wu, Jiantao; Marth, Gabor T

    2015-01-01

    Mobile elements constitute greater than 45% of the human genome as a result of repeated insertion events during human genome evolution. Although most of mobile elements are fixed within the human population, some elements (including ALU, long interspersed elements (LINE) 1 (L1), and SVA) are still actively duplicating and may result in life-threatening human diseases such as cancer, motivating the need for accurate mobile-element insertion (MEI) detection tools. We developed a software package, TANGRAM, for MEI detection in next-generation sequencing data, currently serving as the primary MEI detection tool in the 1000 Genomes Project. TANGRAM takes advantage of valuable mapping information provided by our own MOSAIK mapper, and until recently required MOSAIK mappings as its input. In this study, we report a new feature that enables TANGRAM to be used on alignments generated by any mainstream short-read mapper, making it accessible for many genomic users. To demonstrate its utility for cancer genome analysis, we have applied TANGRAM to the TCGA (The Cancer Genome Atlas) mutation calling benchmark 4 dataset. TANGRAM is fast, accurate, easy to use, and open source on https://github.com/jiantao/Tangram. PMID:25931804

  9. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE PAGESBeta

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; Desmedt, Christine; Gundem, Gunes; Van Loo, Peter; Aas, Turid; Alexandrov, Ludmil B.; Larsimont, Denis; Davies, Helen; et al

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  10. Subclonal diversification of primary breast cancer revealed by multiregion sequencing.

    PubMed

    Yates, Lucy R; Gerstung, Moritz; Knappskog, Stian; Desmedt, Christine; Gundem, Gunes; Van Loo, Peter; Aas, Turid; Alexandrov, Ludmil B; Larsimont, Denis; Davies, Helen; Li, Yilong; Ju, Young Seok; Ramakrishna, Manasa; Haugland, Hans Kristian; Lilleng, Peer Kaare; Nik-Zainal, Serena; McLaren, Stuart; Butler, Adam; Martin, Sancha; Glodzik, Dominic; Menzies, Andrew; Raine, Keiran; Hinton, Jonathan; Jones, David; Mudie, Laura J; Jiang, Bing; Vincent, Delphine; Greene-Colozzi, April; Adnet, Pierre-Yves; Fatima, Aquila; Maetens, Marion; Ignatiadis, Michail; Stratton, Michael R; Sotiriou, Christos; Richardson, Andrea L; Lønning, Per Eystein; Wedge, David C; Campbell, Peter J

    2015-07-01

    The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer. PMID:26099045

  11. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    SciTech Connect

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; Desmedt, Christine; Gundem, Gunes; Van Loo, Peter; Aas, Turid; Alexandrov, Ludmil B.; Larsimont, Denis; Davies, Helen; Li, Yilong; Ju, Young Seok; Ramakrishna, Manasa; Haugland, Hans Kristian; Lilleng, Peer Kaare; Nik-Zainal, Serena; McLaren, Stuart; Butler, Adam; Martin, Sancha; Glodzik, Dominic; Menzies, Andrew; Raine, Keiran; Hinton, Jonathan; Jones, David; Mudie, Laura J.; Jiang, Bing; Vincent, Delphine; Greene-Colozzi, April; Adnet, Pierre -Yves; Fatima, Aquila; Maetens, Marion; Ignatiadis, Michail; Stratton, Michael R.; Sotiriou, Christos; Richardson, Andrea L.; Lønning, Per Eystein; Wedge, David C.; Campbell, Peter J.

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.

  12. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    PubMed Central

    Bacolla, Albino; Cooper, David N.; Vasquez, Karen M.

    2014-01-01

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules. PMID:24705290

  13. Real-time, portable genome sequencing for Ebola surveillance.

    PubMed

    Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan H J; Becker-Ziaja, Beate; Boettcher, Jan Peter; Cabeza-Cabrerizo, Mar; Camino-Sánchez, Álvaro; Carter, Lisa L; Doerrbecker, Juliane; Enkirch, Theresa; García-Dorival, Isabel; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigael; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallasch, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Y; Sachse, Andreas; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Racine, Trina; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Frank; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, James; Rachwal, Phillip; Turner, Daniel J; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keïta, Sakoba; Rambaut, Andrew; Formenty, Pierre; Günther, Stephan; Carroll, Miles W

    2016-02-11

    The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  14. Data structures and compression algorithms for genomic sequence data

    PubMed Central

    Brandon, Marty C.; Wallace, Douglas C.; Baldi, Pierre

    2009-01-01

    Motivation: The continuing exponential accumulation of full genome data, including full diploid human genomes, creates new challenges not only for understanding genomic structure, function and evolution, but also for the storage, navigation and privacy of genomic data. Here, we develop data structures and algorithms for the efficient storage of genomic and other sequence data that may also facilitate querying and protecting the data. Results: The general idea is to encode only the differences between a genome sequence and a reference sequence, using absolute or relative coordinates for the location of the differences. These locations and the corresponding differential variants can be encoded into binary strings using various entropy coding methods, from fixed codes such as Golomb and Elias codes, to variables codes, such as Huffman codes. We demonstrate the approach and various tradeoffs using highly variables human mitochondrial genome sequences as a testbed. With only a partial level of optimization, 3615 genome sequences occupying 56 MB in GenBank are compressed down to only 167 KB, achieving a 345-fold compression rate, using the revised Cambridge Reference Sequence as the reference sequence. Using the consensus sequence as the reference sequence, the data can be stored using only 133 KB, corresponding to a 433-fold level of compression, roughly a 23% improvement. Extensions to nuclear genomes and high-throughput sequencing data are discussed. Availability: Data are publicly available from GenBank, the HapMap web site, and the MITOMAP database. Supplementary materials with additional results, statistics, and software implementations are available from http://mammag.web.uci.edu/bin/view/Mitowiki/ProjectDNACompression. Contact: pfbaldi@ics.uci.edu PMID:19447783

  15. Whole-exome targeted sequencing of the uncharacterized pine genome.

    PubMed

    Neves, Leandro G; Davis, John M; Barbazuk, William B; Kirst, Matias

    2013-07-01

    The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high-throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm. PMID:23551702

  16. Draft Genome Sequence of Gerbil-Adapted Carcinogenic Helicobacter pylori Strain 7.13.

    PubMed

    Asim, Mohammad; Chikara, Surendra K; Ghosh, Arpita; Vudathala, Srinivas; Romero-Gallo, Judith; Krishna, Uma S; Wilson, Keith T; Israel, Dawn A; Peek, Richard M; Chaturvedi, Rupesh

    2015-01-01

    We report here the draft genome sequence of Helicobacter pylori strain 7.13, a gerbil-adapted strain that causes gastric cancer in gerbils. Strain 7.13 is derived from clinical strain B128, isolated from a patient with a duodenal ulcer. This study reveals genes associated with the virulence of the strain. PMID:26067974

  17. Complete Genome Sequence of Corynebacterium minutissimum, an Opportunistic Pathogen and the Causative Agent of Erythrasma

    PubMed Central

    Tyagi, Eishita; Humrighouse, Ben W.; McQuiston, John R.

    2015-01-01

    Corynebacterium minutissimum was first isolated in 1961 from infection sites of patients presenting with erythrasma, a common cutaneous infection characterized by a rash. Since its discovery, C. minutissimum has been identified as an opportunistic pathogen in immunosuppressed cancer and HIV patients. Here, we report the whole-genome sequence of C. minutissimum. PMID:25792058

  18. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C.; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chuyu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela; Panaud, Olivier; Kellogg, Elizabeth A.; Brutnell, Thomas P.; Doust, Andrew N.; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  19. Reference genome sequence of the model plant Setaria

    SciTech Connect

    Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu; Tuskan, Gerald A

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  20. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington

  1. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  2. First Complete Genome Sequences of Two Keystone Viruses from Florida

    PubMed Central

    Stockwell, Timothy B.; Heberlein-Larson, Lea A.; Tan, Yi; Halpin, Rebecca A.; Fedorova, Nadia; Katzel, Daniel A.; Smole, Sandra; Unnasch, Thomas R.; Kramer, Laura D.

    2015-01-01

    We report here the first complete sequences of two Keystone virus (KEYV) genomes isolated from Florida in 2005, which include the first two publicly available complete large (L) gene sequences. The sequences of the KEYV L segments show 75.99 to 83.86% nucleotide similarity with those of other viruses in the California (CAL) serogroup of bunyaviruses. PMID:26514762

  3. An international plan to sequence the nuclear genome of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As large-scale DNA sequencing technologies become more efficient and less costly, the genomic DNAs of more and more plants are being sequenced, assembled, and annotated. These complete sequences are extremely valuable for the identification of specific genes associated with important phenotypes. Thi...

  4. First Complete Genome Sequences of Two Keystone Viruses from Florida.

    PubMed

    Stockwell, Timothy B; Heberlein-Larson, Lea A; Tan, Yi; Halpin, Rebecca A; Fedorova, Nadia; Katzel, Daniel A; Smole, Sandra; Unnasch, Thomas R; Kramer, Laura D; Das, Suman R

    2015-01-01

    We report here the first complete sequences of two Keystone virus (KEYV) genomes isolated from Florida in 2005, which include the first two publicly available complete large (L) gene sequences. The sequences of the KEYV L segments show 75.99 to 83.86% nucleotide similarity with those of other viruses in the California (CAL) serogroup of bunyaviruses. PMID:26514762

  5. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    PubMed Central

    Ivanova, Natalia; Sikorski, Johannes; Jando, Marlen; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Chain, Patrick; Saunders, Elizabeth; Han, Cliff; Detter, John C.; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304674

  6. Complete genome sequence of Spirosoma linguale type strain (1T)

    SciTech Connect

    Lail, Kathleen; Sikorski, Johannes; Saunders, Elizabeth H; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Detter, J. Chris; Schutze, Andrea; Rohde, Manfred; Tindall, Brian; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-01-01

    Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell morphology. Here we describe the features of this organism, together with the complete ge-nome sequence and annotation. This is only the third completed genome sequence of a member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plas-mids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacte-ria and Archaea project.

  7. Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T)

    SciTech Connect

    Sikorski, Johannes; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Elizabeth H; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, N; Mavromatis, K; Chen, Amy; Palaniappan, Krishna; Chain, Patrick S. G.; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Detter, J. Chris; Han, Cliff; Rohde, Manfred; Lang, Elke; Spring, Stefan; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Sulfurospirillum deleyianum Schumacher et al. 1993 is the type species of the genus Sulfurospirillum. S. deleyianum is a model organism for studying sulfur reduction and dissimilatory nitrate reduction as energy source for growth. Also, it is a prominent model organism for studying the structural and functional characteristics of the cytochrome c nitrite reductase. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the genus Sulfurospirillum. The 2,306,351 bp long genome with its 2291 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    SciTech Connect

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Complete genome sequence of Thermomonospora curvata type strain (B9)

    SciTech Connect

    Chertkov, Olga; Sikorski, Johannes; Nolan, Matt; Lapidus, Alla L.; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Ngatchou, Olivier Duplex; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2011-01-01

    Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    SciTech Connect

    Ivanova, N; Sikorski, Johannes; Jando, Marlen; Lapidus, Alla L.; Nolan, Matt; Glavina Del Rio, Tijana; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Chen, Feng; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Chain, Patrick S. G.; Saunders, Elizabeth H; Han, Cliff; Detter, J C; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Genome sequence of the Nocardia bacteriophage NBR1.

    PubMed

    Petrovski, Steve; Seviour, Robert J; Tillett, Daniel

    2014-01-01

    We here characterize a novel bacteriophage (NBR1) that is lytic for Nocardia otitidiscaviarum and N. brasiliensis. NBR1 is a member of the family Siphoviridae and appears to have a structurally more complex tail than previously reported Siphoviridae phages. NBR1 has a linear genome of 46,140 bp and a sequence that appears novel when compared to those of other phage sequences in GenBank. Annotation of the genome reveals 68 putative open reading frames. The phage genome organization appears to be similar to other Siphoviridae phage genomes in that it has a modular arrangement. PMID:23913189

  12. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    PubMed Central

    2011-01-01

    Background To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. Results Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. Conclusions AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts. PMID:22087792

  13. Interpretation of personal genome sequencing data in terms of disease ranks based on mutual information

    PubMed Central

    2015-01-01

    Background The rapid advances in genome sequencing technologies have resulted in an unprecedented number of genome variations being discovered in humans. However, there has been very limited coverage of interpretation of the personal genome sequencing data in terms of diseases. Methods In this paper we present the first computational analysis scheme for interpreting personal genome data by simultaneously considering the functional impact of damaging variants and curated disease-gene association data. This method is based on mutual information as a measure of the relative closeness between the personal genome and diseases. We hypothesize that a higher mutual information score implies that the personal genome is more susceptible to a particular disease than other diseases. Results The method was applied to the sequencing data of 50 acute myeloid leukemia (AML) patients in The Cancer Genome Atlas. The utility of associations between a disease and the personal genome was explored using data of healthy (control) people obtained from the 1000 Genomes Project. The ranks of the disease terms in the AML patient group were compared with those in the healthy control group using "Leukemia, Myeloid, Acute" (C04.557.337.539.550) as the corresponding MeSH disease term. The mutual information rank of the disease term was substantially higher in the AML patient group than in the healthy control group, which demonstrates that the proposed methodology can be successfully applied to infer associations between the personal genome and diseases. Conclusions Overall, the area under the receiver operating characteristics curve was significantly larger for the AML patient data than for the healthy controls. This methodology could contribute to consequential discoveries and explanations for mining personal genome sequencing data in terms of diseases, and have versatility with respect to genomic-based knowledge such as drug-gene and environmental-factor-gene interactions. PMID:26045178

  14. Therapeutic Guide for mTOuRing through the Braided Kidney Cancer Genomic River.

    PubMed

    Voss, Martin H; Hsieh, James J

    2016-05-15

    mTORC1 inhibitors were first approved for the use in metastatic kidney cancer. However, observed treatment benefit was highly heterogeneous among patients. Through case-based cancer genomic sequencing of therapeutic outliers, we can begin to appreciate the convergent evolution of given cancer pathways/phenotypes beyond genes in kidney cancer, like a braided river. Clin Cancer Res; 22(10); 2320-2. ©2016 AACRSee related article by Kwiatkowski et al., p. 2445. PMID:26920890

  15. Genome sequencing: a systematic review of health economic evidence

    PubMed Central

    2013-01-01

    Recently the sequencing of the human genome has become a major biological and clinical research field. However, the public health impact of this new technology with focus on the financial effect is not yet to be foreseen. To provide an overview of the current health economic evidence for genome sequencing, we conducted a thorough systematic review of the literature from 17 databases. In addition, we conducted a hand search. Starting with 5 520 records we ultimately included five full-text publications and one internet source, all focused on cost calculations. The results were very heterogeneous and, therefore, difficult to compare. Furthermore, because the methodology of the publications was quite poor, the reliability and validity of the results were questionable. The real costs for the whole sequencing workflow, including data management and analysis, remain unknown. Overall, our review indicates that the current health economic evidence for genome sequencing is quite poor. Therefore, we listed aspects that needed to be considered when conducting health economic analyses of genome sequencing. Thereby, specifics regarding the overall aim, technology, population, indication, comparator, alternatives after sequencing, outcomes, probabilities, and costs with respect to genome sequencing are discussed. For further research, at the outset, a comprehensive cost calculation of genome sequencing is needed, because all further health economic studies rely on valid cost data. The results will serve as an input parameter for budget-impact analyses or cost-effectiveness analyses. PMID:24330507

  16. CTD Publication Guidelines | Office of Cancer Genomics

    Cancer.gov

    The Cancer Target Discovery and Development (CTD2) Network is a community resource project supported by the National Cancer Institutes Office of Cancer Genomics. Members of the Network release data to the broader research community by depositing data into NCI-supported or public databases. Data deposition is NOT equivalent to publishing in a peer-reviewed journal. Unless there is a manuscript associated with a dataset, the Network considers data to be formally unpublished.

  17. Genome Science and Personalized Cancer Treatment

    ScienceCinema

    Gray, Joe

    2010-01-08

    August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks ? particularly with regard to breast cancer.

  18. CTD² Publication Guidelines | Office of Cancer Genomics

    Cancer.gov

    The Cancer Target Discovery and Development (CTD2) Network is a “community resource project” supported by the National Cancer Institute’s Office of Cancer Genomics. Members of the Network release data to the broader research community by depositing data into NCI-supported or public databases. Data deposition is NOT equivalent to publishing in a peer-reviewed journal. Unless there is a manuscript associated with a dataset, the Network considers data to be formally unpublished.

  19. Genome Science and Personalized Cancer Treatment

    SciTech Connect

    Gray, Joe

    2009-08-07

    August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  20. Genome Science and Personalized Cancer Treatment

    SciTech Connect

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  1. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1

    PubMed Central

    Kalischuk, Melanie; Hachey, John

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions. PMID:26272557

  2. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1.

    PubMed

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions. PMID:26272557

  3. Genome sequencing and annotation of Aeromonas sp. HZM.

    PubMed

    Chua, Patric; Har, Zi Mei; Austin, Christopher M; Yule, Catherine M; Dykes, Gary A; Lee, Sui Mae

    2015-09-01

    We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000. PMID:26484220

  4. Complete genome sequence of Staphylothermus hellenicus P8T

    SciTech Connect

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Pati, Amrita; Mikhailova, Natalia; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Ivanova, N

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  5. Genome sequencing and annotation of Aeromonas sp. HZM

    PubMed Central

    Chua, Patric; Har, Zi Mei; Austin, Christopher M.; Yule, Catherine M.; Dykes, Gary A.; Lee, Sui Mae

    2015-01-01

    We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000. PMID:26484220

  6. Complete Genome Sequence of Corynebacterium pseudotuberculosis Strain 12C.

    PubMed

    Sousa, Thiago Jesus; Mariano, Diego; Parise, Doglas; Parise, Mariana; Viana, Marcus Vinicius Canário; Guimarães, Luis Carlos; Benevides, Leandro Jesus; Rocha, Flávia; Bagano, Priscilla; Ramos, Rommel; Silva, Artur; Figueiredo, Henrique; Almeida, Sintia; Azevedo, Vasco

    2015-01-01

    We present here the complete genome sequence of Corynebacterium pseudotuberculosis strain 12C, isolated from a sheep abscess in the Brazil. The sequencing was performed with the Ion Torrent Personal Genome Machine (PGM) system, a fragment library, and a coverage of ~48-fold. The genome presented is a circular chromosome with 2,337,451 bp in length, 2,119 coding sequences, 12 rRNAs, 49 tRNAs, and a G+C content of 52.83%. PMID:26184935

  7. Complete Genome Sequence of Corynebacterium pseudotuberculosis Strain 12C

    PubMed Central

    Sousa, Thiago Jesus; Mariano, Diego; Parise, Doglas; Parise, Mariana; Viana, Marcus Vinicius Canário; Guimarães, Luis Carlos; Benevides, Leandro Jesus; Rocha, Flávia; Bagano, Priscilla; Ramos, Rommel; Silva, Artur; Figueiredo, Henrique; Almeida, Sintia

    2015-01-01

    We present here the complete genome sequence of Corynebacterium pseudotuberculosis strain 12C, isolated from a sheep abscess in the Brazil. The sequencing was performed with the Ion Torrent Personal Genome Machine (PGM) system, a fragment library, and a coverage of ~48-fold. The genome presented is a circular chromosome with 2,337,451 bp in length, 2,119 coding sequences, 12 rRNAs, 49 tRNAs, and a G+C content of 52.83%. PMID:26184935

  8. Genome sequence and comparative virulence of raccoonpox virus: the first North American poxvirus sequence.

    PubMed

    Fleischauer, Clare; Upton, Chris; Victoria, Joseph; Jones, Gwendolyn J B; Roper, Rachel L

    2015-09-01

    We report here the complete genome sequence of raccoonpox virus (RCNV), a naturally occurring North American poxvirus. This is the first such North American sequence to the best of our knowledge, and the data showed that RCNV forms a new phylogenetic branch between orthopoxviruses and Yoka poxvirus. RCNV shared overall similarity in genome organization with orthopoxviruses, and the proteins in the central conserved region shared approximately 90  % amino acid identity with orthopoxviruses. RCNV proteins shared approximately 81  % amino acid identity with Yokapox virus proteins. RCNV is missing 10 genes normally conserved in orthopoxviruses, most of which are implicated in virulence. These gene deletions may explain the attenuated phenotype of RCNV in mammals. RCNV contained one unique genome region containing approximately 1 kb of DNA sequence that is not present in any reported poxvirus. It contained a unique ORF predicted to encode a protein with a transmembrane domain. RCNV replicates well in mammalian cells, is naturally attenuated and has been shown to be effective as a vaccine vector platform, so we further tested its safety. We showed here that RCNV is substantially more attenuated than even the highly attenuated VACV-A35Del mutant virus in pregnant, nude and severe combined immunodeficient (SCID) mouse models. RCNV was much safer in pregnant mice and was cleared rapidly from tissues, even in immunocompromised animals, whereas the VACV-A35Del mutant retains virulence and persists in tissues. Thus, RCNV is expected to be a superior vaccine vector for infectious diseases and cancer due to its excellent safety profile, reported vaccine efficacy and ability to replicate in mammalian cells. PMID:26023150

  9. Genomic Rearrangements of PTEN in Prostate Cancer

    PubMed Central

    Phin, Sopheap; Moore, Mathew W.; Cotter, Philip D.

    2013-01-01

    The phosphatase and tensin homolog gene (PTEN) on chromosome 10q23.3 is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen-independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in situ hybridization (FISH) assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, androgen receptor, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies. PMID:24062990

  10. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies.

    PubMed

    Rieber, Nora; Zapatka, Marc; Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland

    2013-01-01

    The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina's HiSeq2000, Life Technologies' SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics' technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies' platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes. PMID:23776689

  11. Limitations of next-generation genome sequence assembly.

    PubMed

    Alkan, Can; Sajjadian, Saba; Eichler, Evan E

    2011-01-01

    High-throughput sequencing technologies promise to transform the fields of genetics and comparative biology by delivering tens of thousands of genomes in the near future. Although it is feasible to construct de novo genome assemblies in a few months, there has been relatively little attention to what is lost by sole application of short sequence reads. We compared the recent de novo assemblies using the short oligonucleotide analysis package (SOAP), generated from the genomes of a Han Chinese individual and a Yoruban individual, to experimentally validated genomic features. We found that de novo assemblies were 16.2% shorter than the reference genome and that 420.2 megabase pairs of common repeats and 99.1% of validated duplicated sequences were missing from the genome. Consequently, over 2,377 coding exons were completely missing. We conclude that high-quality sequencing approaches must be considered in conjunction with high-throughput sequencing for comparative genomics analyses and studies of genome evolution. PMID:21102452

  12. Identification of genomic alterations in oesophageal squamous cell cancer.

    PubMed

    Song, Yongmei; Li, Lin; Ou, Yunwei; Gao, Zhibo; Li, Enmin; Li, Xiangchun; Zhang, Weimin; Wang, Jiaqian; Xu, Liyan; Zhou, Yong; Ma, Xiaojuan; Liu, Lingyan; Zhao, Zitong; Huang, Xuanlin; Fan, Jing; Dong, Lijia; Chen, Gang; Ma, Liying; Yang, Jie; Chen, Longyun; He, Minghui; Li, Miao; Zhuang, Xuehan; Huang, Kai; Qiu, Kunlong; Yin, Guangliang; Guo, Guangwu; Feng, Qiang; Chen, Peishan; Wu, Zhiyong; Wu, Jianyi; Ma, Ling; Zhao, Jinyang; Luo, Longhai; Fu, Ming; Xu, Bainan; Chen, Bo; Li, Yingrui; Tong, Tong; Wang, Mingrong; Liu, Zhihua; Lin, Dongxin; Zhang, Xiuqing; Yang, Huanming; Wang, Jun; Zhan, Qimin

    2014-05-01

    Oesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (>90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients. However, the full repertoire of genomic events leading to the pathogenesis of ESCC remains unclear. Here we describe a comprehensive genomic analysis of 158 ESCC cases, as part of the International Cancer Genome Consortium research project. We conducted whole-genome sequencing in 17 ESCC cases and whole-exome sequencing in 71 cases, of which 53 cases, plus an additional 70 ESCC cases not used in the whole-genome and whole-exome sequencing, were subjected to array comparative genomic hybridization analysis. We identified eight significantly mutated genes, of which six are well known tumour-associated genes (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, NFE2L2), and two have not previously been described in ESCC (ADAM29 and FAM135B). Notably, FAM135B is identified as a novel cancer-implicated gene as assayed for its ability to promote malignancy of ESCC cells. Additionally, MIR548K, a microRNA encoded in the amplified 11q13.3-13.4 region, is characterized as a novel oncogene, and functional assays demonstrate that MIR548K enhances malignant phenotypes of ESCC cells. Moreover, we have found that several important histone regulator genes (MLL2 (also called KMT2D), ASH1L, MLL3 (KMT2C), SETD1B, CREBBP and EP300) are frequently altered in ESCC. Pathway assessment reveals that somatic aberrations are mainly involved in the Wnt, cell cycle and Notch pathways. Genomic analyses suggest that ESCC and head and neck squamous cell carcinoma share some common pathogenic mechanisms, and ESCC development is associated with alcohol drinking. This study has explored novel biological markers and tumorigenic pathways that would greatly improve therapeutic strategies for ESCC. PMID:24670651

  13. Genomic instability in invasive breast carcinoma measured by inter-Simple Sequence Repeat PCR.

    PubMed

    Stoler, Daniel L; Bartos, Jeremy D; Swede, Helen; Edge, Stephen B; Winston, Janet S; Wiseman, Sam M; Anderson, Garth R

    2006-05-01

    We have measured genomic instability in invasive breast carcinomas and assessed the relationship of genomic instability to known tumor prognostic factors. DNAs from tumors and adjacent normal tissue of 18 breast cancer patients were subjected to inter-Simple Sequence Repeat (inter-SSR) PCR for quantitation of tumor genomic instability. Associations between genomic instability level and known breast cancer prognostic factors were evaluated using the Pearson Product Moment Correlation, the Kruskal-Wallis test of independent samples and the Mann-Whitney non-parametric test. Genomic instability was detected by inter-SSR PCR in over 90% of the breast tumors. The mean instability index was 3.08% (0-7.59%), approximately the same mean value observed in studies of colorectal and thyroid carcinomas. Significantly higher levels of instability were associated with tumors exhibiting necrosis. Genomic instability as measured is detected in the majority of breast cancers at levels comparable to other tumor types. Hypoxia, such as that observed in necrotic regions of tumors, has been associated with elevated genomic damage. We hypothesize that the higher levels of genomic instability detected in necrotic tumors is a consequence of hypoxia-associated DNA damage. PMID:16319977

  14. Genomic Treasure Troves: Complete Genome Sequencing of Herbarium and Insect Museum Specimens

    PubMed Central

    Staats, Martijn; Erkens, Roy H. J.; van de Vossenberg, Bart; Wieringa, Jan J.; Kraaijeveld, Ken; Stielow, Benjamin; Geml, Jzsef; Richardson, James E.; Bakker, Freek T.

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 2282 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.497.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.271.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well. PMID:23922691

  15. Genome Sequence of a Novel Iflavirus from mRNA Sequencing of the Butterfly Heliconius erato

    PubMed Central

    Macias-Muoz, Aide; Briscoe, Adriana D.

    2014-01-01

    Here, we report the genome sequence of a novel iflavirus strain recovered from the neotropical butterfly Heliconius erato. The coding DNA sequence (CDS) of the iflavirus genome was 8,895 nucleotides in length, encoding a polyprotein that was 2,965amino acids long. PMID:24831145

  16. BAC-pool 454-sequencing: A rapid and efficient approach to sequence complex tetraploid cotton genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New and emerging next generation sequencing technologies have been promising in reducing sequencing costs, but not significantly for complex polyploid plant genomes such as cotton. Large and highly repetitive genome of G. hirsutum (~2.5GB) is less amenable and cost-intensive with traditional BAC-by...

  17. Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma.

    PubMed

    Rettig, Eleni M; Talbot, C Conover; Sausen, Mark; Jones, Sian; Bishop, Justin A; Wood, Laura D; Tokheim, Collin; Niknafs, Noushin; Karchin, Rachel; Fertig, Elana J; Wheelan, Sarah J; Marchionni, Luigi; Considine, Michael; Fakhry, Carole; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Ha, Patrick K; Agrawal, Nishant

    2016-04-01

    Adenoid cystic carcinomas (ACC) of the salivary glands are challenging to understand, treat, and cure. To better understand the genetic alterations underlying the pathogenesis of these tumors, we performed comprehensive genome analyses of 25 fresh-frozen tumors, including whole-genome sequencing and expression and pathway analyses. In addition to the well-describedMYB-NFIBfusion that was found in 11 tumors (44%), we observed five different rearrangements involving theNFIBtranscription factor gene in seven tumors (28%). Taken together,NFIBtranslocations occurred in 15 of 25 samples (60%, 95% CI, 41%-77%). In addition, mRNA expression analysis of 17 tumors revealed overexpression ofNFIBin ACC tumors compared with normal tissues (P= 0.002). There was no difference inNFIBmRNA expression in tumors withNFIBfusions compared with those without. We also report somatic mutations of genes involved in the axonal guidance and Rho family signaling pathways. Finally, we confirm previously described alterations in genes related to chromatin regulation and Notch signaling. Our findings suggest a separate role forNFIBin ACC oncogenesis and highlight important signaling pathways for future functional characterization and potential therapeutic targeting.Cancer Prev Res; 9(4); 265-74. ©2016 AACR. PMID:26862087

  18. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and genomic analyses of Upland cotton (Gossypium hirsutum) are difficult because it has a complex allotetraploid (AADD; 2n = 4x = 52) genome. Here we sequenced, assembled and analyzed the world's most important cultivated cotton genome with 246.2 gigabase (Gb) clean data obtained using whol...

  19. Genome sequencing and analysis of the model grass Brachypodium distachyon

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Tuskan, Gerald A

    2010-01-01

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

  20. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    PubMed Central

    Abt, Birte; Foster, Brian; Lapidus, Alla; Clum, Alicia; Sun, Hui; Pukall, Rüdiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304688

  1. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    PubMed

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  2. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    SciTech Connect

    Abt, Birte; Foster, Brian; Lapidus, Alla L.; Clum, Alicia; Sun, Hui; Pukall, Rudiger; Lucas, Susan; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Ovchinnikova, Galina; Pati, Amrita; Goodwin, Lynne A.; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Genome sequencing and analysis of the model grass Brachypodium distachyon.

    PubMed

    2010-02-11

    Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops. PMID:20148030

  4. Draft Genome Sequence of Stenotrophomonas maltophilia Strain UV74 Reveals Extensive Variability within Its Genomic Group.

    PubMed

    Conchillo-Solé, Oscar; Yero, Daniel; Coves, Xavier; Huedo, Pol; Martínez-Servat, Sònia; Daura, Xavier; Gibert, Isidre

    2015-01-01

    We report the draft genome sequence of Stenotrophomonas maltophilia UV74, isolated from a vascular ulcer. This draft genome sequence shall contribute to the understanding of the evolution and pathogenicity of this species, particularly regarding isolates of clinical origin. PMID:26067959

  5. The Release 6 reference sequence of the Drosophila melanogaster genome

    PubMed Central

    Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Marra, Marco; Carvalho, A. Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F.; Rubin, Gerald M.; Karpen, Gary H.

    2015-01-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  6. The Release 6 reference sequence of the Drosophila melanogaster genome.

    PubMed

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  7. Clinical Analysis and Interpretation of Cancer Genome Data

    PubMed Central

    Van Allen, Eliezer M.; Wagle, Nikhil; Levy, Mia A.

    2013-01-01

    The scale of tumor genomic profiling is rapidly outpacing human cognitive capacity to make clinical decisions without the aid of tools. New frameworks are needed to help researchers and clinicians process the information emerging from the explosive growth in both the number of tumor genetic variants routinely tested and the respective knowledge to interpret their clinical significance. We review the current state, limitations, and future trends in methods to support the clinical analysis and interpretation of cancer genomes. This includes the processes of genome-scale variant identification, including tools for sequence alignment, tumor–germline comparison, and molecular annotation of variants. The process of clinical interpretation of tumor variants includes classification of the effect of the variant, reporting the results to clinicians, and enabling the clinician to make a clinical decision based on the genomic information integrated with other clinical features. We describe existing knowledge bases, databases, algorithms, and tools for identification and visualization of tumor variants and their actionable subsets. With the decreasing cost of tumor gene mutation testing and the increasing number of actionable therapeutics, we expect the methods for analysis and interpretation of cancer genomes to continue to evolve to meet the needs of patient-centered clinical decision making. The science of computational cancer medicine is still in its infancy; however, there is a clear need to continue the development of knowledge bases, best practices, tools, and validation experiments for successful clinical implementation in oncology. PMID:23589549

  8. Clinical analysis and interpretation of cancer genome data.

    PubMed

    Van Allen, Eliezer M; Wagle, Nikhil; Levy, Mia A

    2013-05-20

    The scale of tumor genomic profiling is rapidly outpacing human cognitive capacity to make clinical decisions without the aid of tools. New frameworks are needed to help researchers and clinicians process the information emerging from the explosive growth in both the number of tumor genetic variants routinely tested and the respective knowledge to interpret their clinical significance. We review the current state, limitations, and future trends in methods to support the clinical analysis and interpretation of cancer genomes. This includes the processes of genome-scale variant identification, including tools for sequence alignment, tumor-germline comparison, and molecular annotation of variants. The process of clinical interpretation of tumor variants includes classification of the effect of the variant, reporting the results to clinicians, and enabling the clinician to make a clinical decision based on the genomic information integrated with other clinical features. We describe existing knowledge bases, databases, algorithms, and tools for identification and visualization of tumor variants and their actionable subsets. With the decreasing cost of tumor gene mutation testing and the increasing number of actionable therapeutics, we expect the methods for analysis and interpretation of cancer genomes to continue to evolve to meet the needs of patient-centered clinical decision making. The science of computational cancer medicine is still in its infancy; however, there is a clear need to continue the development of knowledge bases, best practices, tools, and validation experiments for successful clinical implementation in oncology. PMID:23589549

  9. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    SciTech Connect

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  10. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics

    PubMed Central

    Das, Sarbashis; Pettersson, B.M. Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A.

    2015-01-01

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. PMID:26079817

  11. The complete chloroplast genome sequence of Panax quinquefolius (L.).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Kim, Nam-Hoon; Jang, Woojong; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Panax quinquefolius, an important medicinal herb, was generated by de novo assembly with low-coverage whole-genome sequence data and manual correction. A circular 156 088-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 095 bp, a small single copy region of 17 993 bp, and a pair of inverted repeats of 26 000 bp. The chloroplast genome had 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the chloroplast genome revealed that P. quinquefolius is much closer to P. ginseng than P. notoginseng. PMID:26162051

  12. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing.

    PubMed

    McFadden, David G; Papagiannakopoulos, Thales; Taylor-Weiner, Amaro; Stewart, Chip; Carter, Scott L; Cibulskis, Kristian; Bhutkar, Arjun; McKenna, Aaron; Dooley, Alison; Vernon, Amanda; Sougnez, Carrie; Malstrom, Scott; Heimann, Megan; Park, Jennifer; Chen, Frances; Farago, Anna F; Dayton, Talya; Shefler, Erica; Gabriel, Stacey; Getz, Gad; Jacks, Tyler

    2014-03-13

    Small cell lung carcinoma (SCLC) is a highly lethal, smoking-associated cancer with few known targetable genetic alterations. Using genome sequencing, we characterized the somatic evolution of a genetically engineered mouse model (GEMM) of SCLC initiated by loss of Trp53 and Rb1. We identified alterations in DNA copy number and complex genomic rearrangements and demonstrated a low somatic point mutation frequency in the absence of tobacco mutagens. Alterations targeting the tumor suppressor Pten occurred in the majority of murine SCLC studied, and engineered Pten deletion accelerated murine SCLC and abrogated loss of Chr19 in Trp53; Rb1; Pten compound mutant tumors. Finally, we found evidence for polyclonal and sequential metastatic spread of murine SCLC by comparative sequencing of families of related primary tumors and metastases. We propose a temporal model of SCLC tumorigenesis with implications for human SCLC therapeutics and the nature of cancer-genome evolution in GEMMs. PMID:24630729

  13. Clinical Interpretation and Implications of Whole-Genome Sequencing

    PubMed Central

    Dewey, Frederick E.; Grove, Megan E.; Pan, Cuiping; Goldstein, Benjamin A.; Bernstein, Jonathan A.; Chaib, Hassan; Merker, Jason D.; Goldfeder, Rachel L.; Enns, Gregory M.; David, Sean P.; Pakdaman, Neda; Ormond, Kelly E.; Caleshu, Colleen; Kingham, Kerry; Klein, Teri E.; Whirl-Carrillo, Michelle; Sakamoto, Kenneth; Wheeler, Matthew T.; Butte, Atul J.; Ford, James M.; Boxer, Linda; Ioannidis, John P. A.; Yeung, Alan C.; Altman, Russ B.; Assimes, Themistocles L.; Snyder, Michael; Ashley, Euan A.; Quertermous, Thomas

    2014-01-01

    IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95%CI, 0.40-0.64), and reclassified 69%of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine. PMID:24618965

  14. Complete genome sequences of six strains of the genus methylobacterium

    SciTech Connect

    Marx, Christopher J; Bringel, Francoise O.; Christoserdova, Ludmila; Moulin, Lionel; Farhan Ul Haque, Muhammad; Fleischman, Darrell E.; Gruffaz, Christelle; Jourand, Philippe; Knief, Claudia; Lee, Ming-Chun; Muller, Emilie E. L.; Nadalig, Thierry; Peyraud, Remi; Roselli, Sandro; Russ, Lina; Aguero, Fernan; Goodwin, Lynne A.; Ivanova, N; Kyrpides, Nikos C; Lajus, Aurelie; Medigue, Claudine; Nolan, Matt; Woyke, Tanja; Stolyar, Sergey; Vorholt, Julia A.; Vuilleumier, Stephane

    2012-01-01

    The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

  15. Genome sequence of the halophilic archaeon Halococcus hamelinensis.

    PubMed

    Burns, Brendan P; Gudhka, Reema K; Neilan, Brett A

    2012-04-01

    Halococcus hamelinensis was isolated from hypersaline stromatolites in Shark Bay, Australia. Here we report the genome sequence (3,133,046 bp) of H. hamelinensis, which provides insights into the ecology, evolution, and adaptation of this novel microorganism. PMID:22461544

  16. Complete Genome Sequence of Rahnella aquatilis CIP 78.65

    SciTech Connect

    Martinez, Robert J; Bruce, David; Detter, J C; Goodwin, Lynne A.; Han, James; Han, Cliff; Held, Brittany; Land, Miriam L; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Sobeckya, Patricia A.

    2012-01-01

    Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.

  17. Draft Genome Sequences of Three Mycobacterium chimaera Respiratory Isolates

    PubMed Central

    Roycroft, Emma; Raftery, Philomena; Mok, Simone; Fitzgibbon, Margaret; Rogers, Thomas R.

    2015-01-01

    Mycobacterium chimaera is an opportunistic human pathogen implicated in both pulmonary and cardiovascular infections. Here, we report the draft genome sequences of three strains isolated from human respiratory specimens. PMID:26634757

  18. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a Gram-negative, rod shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. ...

  19. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    PubMed Central

    Rashid, Mamoon; Adroub, Sabir A.; Arnoux, Marc; Ali, Shahjahan; van Soolingen, Dick; Bitter, Wilbert

    2012-01-01

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174. PMID:22628511

  20. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems.

    PubMed

    Flynn, James D; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F; Klotz, Martin G; Knief, Claudia; Op den Camp, Huub J M; Jetten, Mike S M; Khmelenina, Valentina N; Trotsenko, Yuri A; Murrell, J Colin; Semrau, Jeremy D; Svenning, Mette M; Stein, Lisa Y; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A; Kalyuzhnaya, Marina G

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  1. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  2. Complete Genome Sequences of Six Strains of the Genus Methylobacterium

    SciTech Connect

    Marx, Christopher J; Bringel, Francoise O.; Christoserdova, Ludmila; Moulin, Lionel; UI Hague, Muhammad Farhan; Fleischman, Darrell E.; Gruffaz, Christelle; Jourand, Philippe; Knief, Claudia; Lee, Ming-Chun; Muller, Emilie E. L.; Nadalig, Thierry; Peyraud, Remi; Roselli, Sandro; Russ, Lina; Goodwin, Lynne A.; Ivanov, Pavel S.; Ivanova, N; Kyrpides, Nikos C; Lajus, Aurelie; Medigue, Claudine; Nolan, Matt; Woyke, Tanja; Stolyar, Sergey; Vorholt, Julia A.; Vuilleumier, Stephane

    2012-01-01

    The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

  3. Draft Genome Sequence of Pseudomonas syringae pv. persicae NCPPB 2254.

    PubMed

    Zhao, Wenjun; Jiang, Hongshan; Tian, Qian; Hu, Jie

    2015-01-01

    Pseudomonas syringae pv. persicae is a pathogen that causes bacterial decline of stone fruit. Here, we report the draft genome sequence for P. syringae pv. persicae, which was isolated from Prunus persica. PMID:26044420

  4. Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila JBN2301.

    PubMed

    Yang, Wuming; Li, Ningqiu; Li, Ming; Zhang, Defeng; An, Guannan

    2016-01-01

    Aeromonas hydrophila is one of the most important fish pathogens in China. Here, we report complete genome sequence of a virulent strain, A. hydrophila JBN2301, which was isolated from diseased crucian carp. PMID:26823580

  5. Complete Genome Sequence of Fish Pathogen Aeromonas hydrophila JBN2301

    PubMed Central

    Yang, Wuming; Li, Ming; Zhang, Defeng; An, Guannan

    2016-01-01

    Aeromonas hydrophila is one of the most important fish pathogens in China. Here, we report complete genome sequence of a virulent strain, A. hydrophila JBN2301, which was isolated from diseased crucian carp. PMID:26823580

  6. Sequence analysis of the complete mitochondrial genome of Youxian sheldrake.

    PubMed

    He, Shao-Ping; Liu, Li-Li; Yu, Qi-Fang; Li, Si; He, Jian-Hua

    2016-03-01

    Youxian sheldrake is excellent native breeds in Hunan province in China. The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. This is the first study to determine the complete mitochondrial genome sequence of Youxian sheldrake using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, the total length of the mitogenome is 16,605?bp, with the base composition of 29.21% A, 22.18% T, 32.84% C, 15.77% G in the Youxian sheldrake. It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Youxian sheldrake provided an important data for further study of the phylogenetics of poultry, and available data for the genetics and breeding. PMID:25090395

  7. Draft Genome Sequence of Mycobacterium fortuitum Isolated from Murine Brain

    PubMed Central

    Singh, Alok Kumar; Karaulia, Pratiksha

    2016-01-01

    Mycobacterium fortuitum subsp. fortuitum ATCC 6841 is a type and standard laboratory testing quality control strain. We report here the completed draft genome sequence for a strain isolated from the brains of M. fortuitum-infected mice. PMID:27034497

  8. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    PubMed

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus. PMID:25252813

  9. Complete genome sequence of Treponema pallidum strain DAL-1

    PubMed Central

    Zobaníková, Marie; Mikolka, Pavol; Čejková, Darina; Pospíšilová, Petra; Chen, Lei; Strouhal, Michal; Qin, Xiang; Weinstock, George M.; Šmajs, David

    2012-01-01

    Treponema pallidum strain DAL-1 is a human uncultivable pathogen causing the sexually transmitted disease syphilis. Strain DAL-1 was isolated from the amniotic fluid of a pregnant woman in the secondary stage of syphilis. Here we describe the 1,139,971 bp long genome of T. pallidum strain DAL-1 which was sequenced using two independent sequencing methods (454 pyrosequencing and Illumina). In rabbits, strain DAL-1 replicated better than the T. pallidum strain Nichols. The comparison of the complete DAL-1 genome sequence with the Nichols sequence revealed a list of genetic differences that are potentially responsible for the increased rabbit virulence of the DAL-1 strain. PMID:23449808

  10. Sequencing, Assembling, and Correcting Draft Genomes Using Recombinant Populations

    PubMed Central

    Hahn, Matthew W.; Zhang, Simo V.; Moyle, Leonie C.

    2014-01-01

    Current de novo whole-genome sequencing approaches often are inadequate for organisms lacking substantial preexisting genetic data. Problems with these methods are manifest as: large numbers of scaffolds that are not ordered within chromosomes or assigned to individual chromosomes, misassembly of allelic sequences as separate loci when the individual(s) being sequenced are heterozygous, and the collapse of recently duplicated sequences into a single locus, regardless of levels of heterozygosity. Here we propose a new approach for producing de novo whole-genome sequences—which we call recombinant population genome construction—that solves many of the problems encountered in standard genome assembly and that can be applied in model and nonmodel organisms. Our approach takes advantage of next-generation sequencing technologies to simultaneously barcode and sequence a large number of individuals from a recombinant population. The sequences of all recombinants can be combined to create an initial de novo assembly, followed by the use of individual recombinant genotypes to correct assembly splitting/collapsing and to order and orient scaffolds within linkage groups. Recombinant population genome construction can rapidly accelerate the transformation of nonmodel species into genome-enabled systems by simultaneously producing a high-quality genome assembly and providing genomic tools (e.g., high-confidence single-nucleotide polymorphisms) for immediate applications. In populations segregating for important functional traits, this approach also enables simultaneous mapping of quantitative trait loci. We demonstrate our method using simulated Illumina data from a recombinant population of Caenorhabditis elegans and show that the method can produce a high-fidelity, high-quality genome assembly for both parents of the cross. PMID:24531727

  11. Intra-species sequence comparisons for annotating genomes

    SciTech Connect

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  12. Draft genome sequence of Therminicola potens strain JR

    SciTech Connect

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.; Agbo, P.; Hazen, T.C.; Coates, J.D.

    2010-07-01

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  13. Arabidopsis genomic information for interpreting wheat EST sequences.

    PubMed

    Clarke, Bryan; Lambrecht, Mark; Rhee, Seung Y

    2003-03-01

    The resources available from Arabidopsis thaliana for interpreting functional attributes of wheat EST are reviewed. A focus for the review is a comparison between wheat EST sequences, generated from developing endosperm tissue, and the complete genomic sequence from Arabidopsis. The available information indicates that not only can tentative annotations be assigned to many wheat genes but also putative or unknown Arabidopsis gene annotations can be improved by comparative genomics. PMID:12590341

  14. Genome sequence of the cultivated cotton Gossypium arboreum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most economically important natural fiber crops in the world, and the complex tetraploid nature of its genome (AADD, 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled 98.3% of the 1.7-gigabase G. arboreum (AA, 2n = 26...

  15. Complete Genome Sequence of Cyanobacterium Leptolyngbya sp. NIES-3755

    PubMed Central

    Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko

    2016-01-01

    Cyanobacterial genus Leptolyngbya comprises genetically diverse species, but the availability of their complete genome information is limited. Here, we isolated Leptolyngbya sp. strain NIES-3755 from soil at the Toyohashi University of Technology, Japan. We determined the complete genome sequence of the NIES-3755 strain, which is composed of one chromosome and three plasmids. PMID:26988037

  16. A snapshot of the emerging tomato genome sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Proje...

  17. Complete Genome Sequence of Klebsiella pneumoniae YH43.

    PubMed

    Iwase, Tadayuki; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mizunoe, Yoshimitsu

    2016-01-01

    We report here the complete genome sequence ofKlebsiella pneumoniaestrain YH43, isolated from sweet potato. The genome consists of a single circular chromosome of 5,520,319 bp in length. It carries 8 copies of rRNA operons, 86 tRNA genes, 5,154 protein-coding genes, and thenifgene cluster for nitrogen fixation. PMID:27081127

  18. Complete Genome Sequence of Mycoplasma synoviae Strain WVU 1853T

    PubMed Central

    Kutish, Gerald F.; Barbet, Anthony F.; Michaels, Dina L.

    2015-01-01

    A hybrid sequence assembly of the complete Mycoplasma synoviae type strain WVU 1853T genome was compared to that of strain MS53. The findings support prior conclusions about M. synoviae, based on the genome of that otherwise uncharacterized field strain, and provide the first evidence of epigenetic modifications in M. synoviae. PMID:26021934

  19. Draft Genome Sequence of Linfuranone Producer Microbispora sp. GMKU 363.

    PubMed

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Thamchaipenet, Arinthip; Igarashi, Yasuhiro

    2015-01-01

    Here, we report the draft genome sequence of Microbispora sp. GMKU 363, a plant-derived actinomycete that produces linfuranone A, a linear polyketide modified with a furanone ring possessing adipocyte differentiation inducing activity. The biosynthetic gene cluster for linfuranone was identified by analyzing polyketide synthase genes in the genome. PMID:26659694

  20. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    PubMed Central

    Neave, Matthew J.; Michell, Craig T.

    2014-01-01

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp. PMID:25125646

  1. Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens

    PubMed Central

    2016-01-01

    The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes. PMID:27174271

  2. First Complete Genome Sequence of Felis catus Gammaherpesvirus 1

    PubMed Central

    Lee, Justin S.; Vuyisich, Momchilo; Chain, Patrick; Lo, Chien-Chi; Kronmiller, Brent; Bracha, Shay; Avery, Anne C.; VandeWoude, Sue

    2015-01-01

    We sequenced the complete genome of Felis catus gammaherpesvirus 1 (FcaGHV1) from lymph node DNA of an infected cat. The genome includes a 121,556-nucleotide unique region with 87 predicted open reading frames (61 gammaherpesvirus conserved and 26 unique) flanked by multiple copies of a 966-nucleotide terminal repeat. PMID:26543105

  3. Draft Genome Sequence of Mycobacterium lentiflavum CSUR P1491

    PubMed Central

    Phelippeau, Michael; Croce, Olivier; Robert, Catherine; Raoult, Didier

    2015-01-01

    We announce the draft genome sequence of Mycobacterium lentiflavum strain CSUR P1491, a nontuberculous mycobacterium responsible for opportunistic potentially life-threatening infections in immunocompromised patients. The genome described here comprises a 6,818,507-bp chromosome exhibiting a 65.75% G+C content, 6,354 protein-coding genes, and 75 RNA genes. PMID:26205866

  4. Draft Genome Sequence of Mycobacterium triplex DSM 44626

    PubMed Central

    Sassi, Mohamed; Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We announce the draft genome sequence of Mycobacterium triplex strain DSM 44626, a nontuberculosis species responsible for opportunistic infections. The genome described here is composed of 6,382,840 bp, with a G+C content of 66.57%, and contains 5,988 protein-coding genes and 81 RNA genes. PMID:24874681

  5. Draft Genome Sequence of Mycobacterium europaeum Strain CSUR P1344

    PubMed Central

    Phelippeau, Michael; Croce, Olivier; Robert, Catherine; Raoult, Didier

    2015-01-01

    We report the draft genome sequence of Mycobacterium europaeum strain CSUR P1344, a slowly growing mycobacterium of the Mycobacterium simiae complex and opportunistic respiratory tract colonizer and pathogen. This genome of 6,152,523 bp exhibits a 68.18% G+C content, encoding 5,814 predicted proteins and 74 RNAs. PMID:26205865

  6. Draft Genome Sequence of Mycobacterium vulneris DSM 45247T

    PubMed Central

    Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We report the draft genome sequence of Mycobacterium vulneris DSM 45247T strain, an emerging, opportunistic pathogen of the Mycobacterium avium complex. The genome described here is composed of 6,981,439 bp (with a G+C content of 67.14%) and has 6,653 protein-coding genes and 84 predicted RNA genes. PMID:24812218

  7. Draft Genome Sequence of Mycobacterium mageritense DSM 44476T

    PubMed Central

    Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We report the draft genome sequence of Mycobacterium mageritense strain DSM 44476T (CIP 104973), a nontuberculosis species responsible for various infections. The genome described here is composed of 7,966,608 bp, with a G+C content of 66.95%, and contains 7,675 protein-coding genes and 120 predicted RNA genes. PMID:24786954

  8. Genomic sequence for the aflatoxigenic filamentous fungus Aspergillus nomius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the A. nomius type strain was sequenced using a personal genome machine. Annotation of the genes was undertaken, followed by gene ontology and an investigation into the number of secondary metabolite clusters. Comparative studies with other Aspergillus species involved shared/unique ge...

  9. Draft genome sequence of the silver pomfret fish, Pampus argenteus.

    PubMed

    AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar

    2016-01-01

    Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus. PMID:26692342

  10. MAIZE CHLOROTIC DWARF VIRUS GENOME SEQUENCE AND POLYPROTEIN CLEAVAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic sequence (11.8 kb) of the severe Ohio Maize chlorotic dwarf virus isolate (MCDV-S, genus Waikavirus) was determined from overlapping cDNA clones. Approximately 400 kDa polyprotein encoded by the viral genome is post-translationally cleaved into several smaller functional proteins. Wher...

  11. Mitochondrial Genome Sequence of the Glass Sponge Oopsacas minuta

    PubMed Central

    Jourda, Cyril; Santini, Sébastien; Rocher, Caroline; Le Bivic, André

    2015-01-01

    We report the complete mitochondrial genome sequence of the Mediterranean glass sponge Oopsacas minuta. This 19-kb mitochondrial genome has 24 noncoding genes (22 tRNAs and 2 rRNAs) and 14 protein-encoding genes coding for 11 subunits of respiratory chain complexes and 3 ATP synthase subunits. PMID:26227597

  12. Draft Genome Sequence of Rhodococcus sp. Strain 311R

    PubMed Central

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jareck, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria. PMID:25999565

  13. Complete Genome Sequence of Mycobacterium bovis Strain BCG-1 (Russia)

    PubMed Central

    Shitikov, Egor A.; Malakhova, Maja V.; Kostryukova, Elena S.; Ilina, Elena N.; Atrasheuskaya, Alena V.; Ignatyev, Georgy M.; Vinokurova, Nataliya V.; Gorbachyov, Vyacheslav Y.

    2016-01-01

    Mycobacterium bovis BCG (Bacille Calmette-Guérin) is a vaccine strain used for protection against tuberculosis. Here, we announce the complete genome sequence of M. bovis strain BCG-1 (Russia). Extensive use of this strain necessitates the study of its genome stability by comparative analysis. PMID:27034492

  14. Complete Genome Sequence of Mycobacterium bovis Strain BCG-1 (Russia).

    PubMed

    Sotnikova, Evgeniya A; Shitikov, Egor A; Malakhova, Maja V; Kostryukova, Elena S; Ilina, Elena N; Atrasheuskaya, Alena V; Ignatyev, Georgy M; Vinokurova, Nataliya V; Gorbachyov, Vyacheslav Y

    2016-01-01

    Mycobacterium bovisBCG (Bacille Calmette-Guérin) is a vaccine strain used for protection against tuberculosis. Here, we announce the complete genome sequence ofM. bovisstrain BCG-1 (Russia). Extensive use of this strain necessitates the study of its genome stability by comparative analysis. PMID:27034492

  15. The tomato genome sequence provides insight into fleshy fruit evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the inbred tomato cultivar ‘Heinz 1706’ was sequenced and assembled using a combination of Sanger and “next generation” technologies. The predicted genome size is ~900 Mb, consistent with prior estimates, of which 760 Mb were assembled in 91 scaffolds aligned to the 12 tomato chromosom...

  16. Genome Sequence of Fusarium graminearum Isolate CS3005

    PubMed Central

    Stiller, Jiri; Kazan, Kemal

    2014-01-01

    Fusarium graminearum is one of the most important fungal pathogens of wheat, barley, and maize worldwide. This announcement reports the genome sequence of a highly virulent Australian isolate of this species to supplement the existing genome of the North American F. graminearum isolate Ph1. PMID:24744326

  17. Draft Genome Sequence of Linfuranone Producer Microbispora sp. GMKU 363

    PubMed Central

    Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Thamchaipenet, Arinthip; Igarashi, Yasuhiro

    2015-01-01

    Here, we report the draft genome sequence of Microbispora sp. GMKU 363, a plant-derived actinomycete that produces linfuranone A, a linear polyketide modified with a furanone ring possessing adipocyte differentiation inducing activity. The biosynthetic gene cluster for linfuranone was identified by analyzing polyketide synthase genes in the genome. PMID:26659694

  18. Complete genome sequence of pronghorn virus, a pestivirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of Pronghorn virus, a member of the Pestivirus genus of the Flaviviridae, was determined. The virus, originally isolated from a pronghorn antelope, had a genome of 12,287 nucleotides with a single open reading frame of 11,694 bases encoding 3898 amino acids....

  19. Genome Sequence of Type Strain Lysinibacillus macroides DSM 54T

    PubMed Central

    Liu, Guo-hong; Wang, Jie-ping; Che, Jian-Mei; Chen, Qian-Qian; Chen, Zheng; Ge, Ci-bin

    2015-01-01

    Lysinibacillus macroides DSM 54T is a Gram-positive, spore-forming bacterium. Here, we report the 4,866,035-bp genome sequence of Lysinibacillus macroides DSM 54T, which will accelerate the application of degrading xylan and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26543111

  20. Complete genome sequence of Aeromonas hydrophila AL06-06

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. In this work, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains causing ba...

  1. Genome Sequence of Type Strain Lysinibacillus macroides DSM 54T.

    PubMed

    Liu, Guo-Hong; Liu, Bo; Wang, Jie-Ping; Che, Jian-Mei; Chen, Qian-Qian; Chen, Zheng; Ge, Ci-Bin

    2015-01-01

    Lysinibacillus macroides DSM 54(T) is a Gram-positive, spore-forming bacterium. Here, we report the 4,866,035-bp genome sequence of Lysinibacillus macroides DSM 54(T), which will accelerate the application of degrading xylan and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria. PMID:26543111

  2. Draft genome sequence of Phomopsis longicolla MSPL 10-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis longicolla T.W. Hobbs is the primary cause of Phomopsis seed decay in soybean. We report the de novo assembled draft genome sequence of P. longicolla isolate MSPL10-6 with a 54.8-fold depth of coverage. The resulting draft genome was estimated to be approximately 64 Mb in size with an over...

  3. Draft Genome Sequence of Mycobacterium cosmeticum DSM 44829

    PubMed Central

    Croce, Olivier; Robert, Catherine; Raoult, Didier

    2014-01-01

    We announce the draft genome sequence of Mycobacterium cosmeticum strain DSM 44829, a nontuberculous species responsible for opportunistic infection. The genome described here is composed of 6,462,090 bp, with a G+C content of 68.24%. It contains 6,281 protein-coding genes and 75 predicted RNA genes. PMID:24723727

  4. Complete Genome Sequence of Cyanobacterium Leptolyngbya sp. NIES-3755.

    PubMed

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-01

    Cyanobacterial genus Leptolyngbya comprises genetically diverse species, but the availability of their complete genome information is limited. Here, we isolated Leptolyngbya sp. strain NIES-3755 from soil at the Toyohashi University of Technology, Japan. We determined the complete genome sequence of the NIES-3755 strain, which is composed of one chromosome and three plasmids. PMID:26988037

  5. Genome Sequence of Bacillus sp. Strain FJAT-14515

    PubMed Central

    Liu, Guohong; Tang, Weiqi; Che, Jianmei; Lin, Yingzhi; Zhu, Yujing; Su, Mingxing; Tang, Jianyang

    2014-01-01

    We report the draft genome sequence of Bacillus sp. strain FJAT-14515. The genome is 5.44 Mb in length. It covers 5,263 genes with an average length of 791 bp, has a G+C value of 37.06%, and contains 67 tRNAs, 31 small RNAs, and 5 rRNA loci. PMID:24459256

  6. Whole-Genome Sequence of Staphylococcus epidermidis Tü3298

    PubMed Central

    Moran, Josephine C.

    2016-01-01

    Staphylococcus epidermidis Tü3298 is a frequently used laboratory strain, known for its production of epidermin and absence of the icaABCD operon. We report the whole-genome sequence of this strain, a 2.5-kb genome containing 2,332 genes. PMID:26966218

  7. Whole-Genome Sequence of Staphylococcus epidermidis Tü3298.

    PubMed

    Moran, Josephine C; Horsburgh, Malcolm J

    2016-01-01

    Staphylococcus epidermidis Tü3298 is a frequently used laboratory strain, known for its production of epidermin and absence of the icaABCD operon. We report the whole-genome sequence of this strain, a 2.5-kb genome containing 2,332 genes. PMID:26966218

  8. Salmonella Serotype Determination Utilizing High-Throughput Genome Sequencing Data

    PubMed Central

    Zhang, Shaokang; Yin, Yanlong; Jones, Marcus B.; Zhang, Zhenzhen; Deatherage Kaiser, Brooke L.; Dinsmore, Blake A.; Fitzgerald, Collette; Fields, Patricia I.

    2015-01-01

    Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1–3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Web-based tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization. PMID:25762776

  9. Genomic sequence analysis and characterization of Sneathia amnii sp. nov

    PubMed Central

    2012-01-01

    Background Bacteria of the genus Sneathia are emerging as potential pathogens of the female reproductive tract. Species of Sneathia, which were formerly grouped with Leptotrichia, can be part of the normal microbiota of the genitourinary tracts of men and women, but they are also associated with a variety of clinical conditions including bacterial vaginosis, preeclampsia, preterm labor, spontaneous abortion, post-partum bacteremia and other invasive infections. Sneathia species also exhibit a significant correlation with sexually transmitted diseases and cervical cancer. Because Sneathia species are fastidious and rarely cultured successfully in vitro; and the genomes of members of the genus had until now not been characterized, very little is known about the physiology or the virulence of these organisms. Results Here, we describe a novel species, Sneathia amnii sp. nov, which closely resembles bacteria previously designated "Leptotrichia amnionii". As part of the Vaginal Human Microbiome Project at VCU, a vaginal isolate of S. amnii sp. nov. was identified, successfully cultured and bacteriologically cloned. The biochemical characteristics and virulence properties of the organism were examined in vitro, and the genome of the organism was sequenced, annotated and analyzed. The analysis revealed a reduced circular genome of ~1.34 Mbp, containing ~1,282 protein-coding genes. Metabolic reconstruction of the bacterium reflected its biochemical phenotype, and several genes potentially associated with pathogenicity were identified. Conclusions Bacteria with complex growth requirements frequently remain poorly characterized and, as a consequence, their roles in health and disease are unclear. Elucidation of the physiology and identification of genes putatively involved in the metabolism and virulence of S. amnii may lead to a better understanding of the role of this potential pathogen in bacterial vaginosis, preterm birth, and other issues associated with vaginal and reproductive health. PMID:23281612

  10. Sequencing a new target genome: the Boophilus microplus (Acari: Ixodidae) genome project.

    PubMed

    Guerrero, Felix D; Nene, Vishvanath M; George, John E; Barker, Stephen C; Willadsen, Peter

    2006-01-01

    The southern cattle tick, Boophilus microplus (Canestrini), causes annual economic losses in the hundreds of millions of dollars to cattle producers throughout the world, and ranks as the most economically important tick from a global perspective. Control failures attributable to the development of pesticide resistance have become commonplace, and novel control technologies are needed. The availability of the genome sequence will facilitate the development of these new technologies, and we are proposing sequencing to a 4-6X draft coverage. Many existing biological resources are available to facilitate a genome sequencing project, including several inbred laboratory tick strains, a database of approximately 45,000 expressed sequence tags compiled into a B. microplus Gene Index, a bacterial artificial chromosome (BAC) library, an established B. microplus cell line, and genomic DNA suitable for library synthesis. Collaborative projects are underway to map BACs and cDNAs to specific chromosomes and to sequence selected BAC clones. When completed, the genome sequences from the cow, B. microplus, and the B. microplus-borne pathogens Babesia bovis and Anaplasma marginale will enhance studies of host-vector-pathogen systems. Genes involved in the regeneration of amputated tick limbs and transitions through developmental stages are largely unknown. Studies of these and other interesting biological questions will be advanced by tick genome sequence data. Comparative genomics offers the prospect of new insight into many, perhaps all, aspects of the biology of ticks and the pathogens they transmit to farm animals and people. The B. microplus genome sequence will fill a major gap in comparative genomics: a sequence from the Metastriata lineage of ticks. The purpose of the article is to synergize interest in and provide rationales for sequencing the genome of B. microplus and for publicizing currently available genomic resources for this tick. PMID:16506442

  11. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species.

    PubMed

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

  12. BreCAN-DB: a repository cum browser of personalized DNA breakpoint profiles of cancer genomes.

    PubMed

    Narang, Pankaj; Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    BreCAN-DB (http://brecandb.igib.res.in) is a repository cum browser of whole genome somatic DNA breakpoint profiles of cancer genomes, mapped at single nucleotide resolution using deep sequencing data. These breakpoints are associated with deletions, insertions, inversions, tandem duplications, translocations and a combination of these structural genomic alterations. The current release of BreCAN-DB features breakpoint profiles from 99 cancer-normal pairs, comprising five cancer types. We identified DNA breakpoints across genomes using high-coverage next-generation sequencing data obtained from TCGA and dbGaP. Further, in these cancer genomes, we methodically identified breakpoint hotspots which were significantly enriched with somatic structural alterations. To visualize the breakpoint profiles, a next-generation genome browser was integrated with BreCAN-DB. Moreover, we also included previously reported breakpoint profiles from 138 cancer-normal pairs, spanning 10 cancer types into the browser. Additionally, BreCAN-DB allows one to identify breakpoint hotspots in user uploaded data set. We have also included a functionality to query overlap of any breakpoint profile with regions of user's interest. Users can download breakpoint profiles from the database or may submit their data to be integrated in BreCAN-DB. We believe that BreCAN-DB will be useful resource for genomics scientific community and is a step towards personalized cancer genomics. PMID:26586806

  13. BreCAN-DB: a repository cum browser of personalized DNA breakpoint profiles of cancer genomes

    PubMed Central

    Narang, Pankaj; Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    BreCAN-DB (http://brecandb.igib.res.in) is a repository cum browser of whole genome somatic DNA breakpoint profiles of cancer genomes, mapped at single nucleotide resolution using deep sequencing data. These breakpoints are associated with deletions, insertions, inversions, tandem duplications, translocations and a combination of these structural genomic alterations. The current release of BreCAN-DB features breakpoint profiles from 99 cancer-normal pairs, comprising five cancer types. We identified DNA breakpoints across genomes using high-coverage next-generation sequencing data obtained from TCGA and dbGaP. Further, in these cancer genomes, we methodically identified breakpoint hotspots which were significantly enriched with somatic structural alterations. To visualize the breakpoint profiles, a next-generation genome browser was integrated with BreCAN-DB. Moreover, we also included previously reported breakpoint profiles from 138 cancer-normal pairs, spanning 10 cancer types into the browser. Additionally, BreCAN-DB allows one to identify breakpoint hotspots in user uploaded data set. We have also included a functionality to query overlap of any breakpoint profile with regions of user's interest. Users can download breakpoint profiles from the database or may submit their data to be integrated in BreCAN-DB. We believe that BreCAN-DB will be useful resource for genomics scientific community and is a step towards personalized cancer genomics. PMID:26586806

  14. Genomic distribution of simple sequence repeats in Brassica rapa.

    PubMed

    Hong, Chang Pyo; Piao, Zhong Yun; Kang, Tae Wook; Batley, Jacqueline; Yang, Tae-Jin; Hur, Yoon-Kang; Bhak, Jong; Park, Beom-Seok; Edwards, David; Lim, Yong Pyo

    2007-06-30

    Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa. PMID:17646709

  15. Structural Alterations from Multiple Displacement Amplification of a Human Genome Revealed by Mate-Pair Sequencing

    PubMed Central

    Jiao, Xiang; Rosenlund, Magnus; Hooper, Sean D.; Tellgren-Roth, Christian; He, Liqun; Fu, Yutao; Mangion, Jonathan; Sjöblom, Tobias

    2011-01-01

    Comprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification. Multiple displacement amplification led to a decrease in clone coverage and an increase by two orders of magnitude in the prevalence of inversions, but did not increase the prevalence of translocations. While multiple strand displacement amplification may find uses in translocation analyses, it is likely that alternative amplification strategies need to be developed to meet the demands of cancer genomics. PMID:21799804

  16. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.

    PubMed

    Zhang, Xiaoyan; Marjani, Sadie L; Hu, Zhaoyang; Weissman, Sherman M; Pan, Xinghua; Wu, Shixiu

    2016-03-15

    Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing. Cancer Res; 76(6); 1305-12. ©2016 AACR. PMID:26941284

  17. iJGVD: an integrative Japanese genome variation database based on whole-genome sequencing

    PubMed Central

    Yamaguchi-Kabata, Yumi; Nariai, Naoki; Kawai, Yosuke; Sato, Yukuto; Kojima, Kaname; Tateno, Minoru; Katsuoka, Fumiki; Yasuda, Jun; Yamamoto, Masayuki; Nagasaki, Masao

    2015-01-01

    The integrative Japanese Genome Variation Database (iJGVD; http://ijgvd.megabank.tohoku.ac.jp/) provides genomic variation data detected by whole-genome sequencing (WGS) of Japanese individuals. Specifically, the database contains variants detected by WGS of 1,070 individuals who participated in a genome cohort study of the Tohoku Medical Megabank Project. In the first release, iJGVD includes >4,300,000 autosomal single nucleotide variants (SNVs) whose minor allele frequencies are >5.0%.

  18. The Cancer Genome Atlas Pan-Cancer analysis project.

    PubMed

    Weinstein, John N; Collisson, Eric A; Mills, Gordon B; Shaw, Kenna R Mills; Ozenberger, Brad A; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M

    2013-10-01

    The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. PMID:24071849

  19. Genome sequence of the date palm Phoenix dactylifera L

    PubMed Central

    Al-Mssallem, Ibrahim S.; Hu, Songnian; Zhang, Xiaowei; Lin, Qiang; Liu, Wanfei; Tan, Jun; Yu, Xiaoguang; Liu, Jiucheng; Pan, Linlin; Zhang, Tongwu; Yin, Yuxin; Xin, Chengqi; Wu, Hao; Zhang, Guangyu; Ba Abdullah, Mohammed M.; Huang, Dawei; Fang, Yongjun; Alnakhli, Yasser O.; Jia, Shangang; Yin, An; Alhuzimi, Eman M.; Alsaihati, Burair A.; Al-Owayyed, Saad A.; Zhao, Duojun; Zhang, Sun; Al-Otaibi, Noha A.; Sun, Gaoyuan; Majrashi, Majed A.; Li, Fusen; Tala; Wang, Jixiang; Yun, Quanzheng; Alnassar, Nafla A.; Wang, Lei; Yang, Meng; Al-Jelaify, Rasha F.; Liu, Kan; Gao, Shenghan; Chen, Kaifu; Alkhaldi, Samiyah R.; Liu, Guiming; Zhang, Meng; Guo, Haiyan; Yu, Jun

    2013-01-01

    Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants. PMID:23917264

  20. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis

    PubMed Central

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-01-01

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled. PMID:26586576