Science.gov

Sample records for cancer initiation progression

  1. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression.

    PubMed

    Hjelmeland, Anita; Zhang, Jianhua

    2016-04-01

    Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics. PMID:27372165

  2. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis.

    PubMed

    McCubrey, James A; Abrams, Stephen L; Fitzgerald, Timothy L; Cocco, Lucio; Martelli, Alberto M; Montalto, Giuseppe; Cervello, Melchiorre; Scalisi, Aurora; Candido, Saverio; Libra, Massimo; Steelman, Linda S

    2015-01-01

    The EGFR/PI3K/PTEN/Akt/mTORC pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, cancer initiating cells (CICs) and metastasis. The expression of this pathway is frequently altered in breast and other cancers due to mutations at or aberrant expression of: HER2, EGFR1, PIK3CA, and PTEN as well as other oncogenes and tumor suppressor genes. miRs and epigenetic mechanisms of gene regulation are also important events which regulate this pathway. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway has been associated with CICs and in some cases resistance to therapeutics. We will review the effects of activation of the EGFR/PI3K/PTEN/Akt/mTORC pathway primarily in breast cancer and development of drug resistance. The targeting of this pathway and other interacting pathways will be discussed as well as clinical trials with novel small molecule inhibitors as well as established drugs that are used to treat other diseases. In this manuscript, we will discuss an inducible EGFR model (v-ERB-B:ER) and its effects on cell growth, cell cycle progression, activation of signal transduction pathways, prevention of apoptosis in hematopoietic, breast and prostate cancer models. PMID:25453219

  3. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications.

    PubMed

    Qiao, Aixiu; Gu, Feng; Guo, Xiaojing; Zhang, Xinmin; Fu, Li

    2016-03-01

    Breast cancer is the most common malignant tumor in women, and the incidence of this disease has increased in recent years because of changes in diet, living environment, gestational age, and other unknown factors. Previous studies focused on cancer cells, but an increasing number of recent studies have analyzed the contribution of cancer microenvironment to the initiation and progression of breast cancer. Cancer-associated fibroblasts (CAFs), the most abundant cells in tumor stroma, secrete various active biomolecules, including extracellular matrix components, growth factors, cytokines, proteases, and hormones. CAFs not only facilitate the initiation, growth, angiogenesis, invasion, and metastasis of cancer but also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of breast cancer. In this article, we reviewed the literature and summarized the research findings on CAFs in breast cancer. PMID:26791754

  4. Molecular genetics of bladder cancer: Emerging mechanisms of tumor initiation and progression.

    PubMed

    McConkey, David J; Lee, Sangkyou; Choi, Woonyoung; Tran, Mai; Majewski, Tadeusz; Lee, Sooyong; Siefker-Radtke, Arlene; Dinney, Colin; Czerniak, Bogdan

    2010-01-01

    Urothelial cancer has served as one of the most important sources of information about the mutational events that underlie the development of human solid malignancies. Although "field effects" that affect the entire bladder mucosa appear to initiate disease, tumors develop along 2 distinct biological "tracks" that present vastly different challenges for clinical management. Recent whole genome methodologies have facilitated even more rapid progress in the identification of the molecular mechanisms involved in bladder cancer initiation and progression. Specifically, whole organ mapping combined with high resolution, high throughput SNP analyses have identified a novel class of candidate tumor suppressors ("forerunner genes") that localize near more familiar tumor suppressors but are disrupted at an earlier stage of cancer development. Furthermore, whole genome comparative genomic hybridization (CGH) and mRNA expression profiling have demonstrated that the 2 major subtypes of urothelial cancer (papillary/superficial and non-papillary/muscle-invasive) are truly distinct molecular entities, and in recent work our group has discovered that muscle-invasive tumors express molecular markers characteristic of a developmental process known as "epithelial-to-mesenchymal transition" (EMT). Emerging evidence indicates that urothelial cancers contain subpopulations of tumor-initiating cells ("cancer stem cells") but the phenotypes of these cells in different tumors are heterogeneous, raising questions about whether or not the 2 major subtypes of cancer share a common precursor. This review will provide an overview of these new insights and discuss priorities for future investigation. PMID:20610280

  5. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression

    PubMed Central

    Sansone, Luigi; Limana, Federica; Arcangeli, Tania; De Santis, Elena; Polese, Milena; Fini, Massimo; Russo, Matteo A.

    2016-01-01

    The presence of ROS is a constant feature in living cells metabolizing O2. ROS concentration and compartmentation determine their physiological or pathological effects. ROS overproduction is a feature of cancer cells and plays several roles during the natural history of malignant tumor. ROS continuously contribute to each step of cancerogenesis, from the initiation to the malignant progression, acting directly or indirectly. In this review, we will (a) underline the role of ROS in the pathway leading a normal cell to tumor transformation and progression, (b) define the multiple roles of ROS during the natural history of a tumor, (c) conciliate many conflicting data about harmful or beneficial effects of ROS, (d) rethink the importance of oncogene and tumor suppressor gene mutations in relation to the malignant progression, and (e) collocate all the cancer hallmarks in a mechanistic sequence which could represent a “physiological” response to the initial growth of a transformed stem/pluripotent cell, defining also the role of ROS in each hallmark. We will provide a simplified sketch about the relationships between ROS and cancer. The attention will be focused on the contribution of ROS to the signaling of HIF, NFκB, and Sirtuins as a leitmotif of cancer initiation and progression. PMID:26798421

  6. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression.

    PubMed

    Harris, Isaac S; Treloar, Aislinn E; Inoue, Satoshi; Sasaki, Masato; Gorrini, Chiara; Lee, Kim Chung; Yung, Ka Yi; Brenner, Dirk; Knobbe-Thomsen, Christiane B; Cox, Maureen A; Elia, Andrew; Berger, Thorsten; Cescon, David W; Adeoye, Adewunmi; Brüstle, Anne; Molyneux, Sam D; Mason, Jacqueline M; Li, Wanda Y; Yamamoto, Kazuo; Wakeham, Andrew; Berman, Hal K; Khokha, Rama; Done, Susan J; Kavanagh, Terrance J; Lam, Ching-Wan; Mak, Tak W

    2015-02-01

    Controversy over the role of antioxidants in cancer has persisted for decades. Here, we demonstrate that synthesis of the antioxidant glutathione (GSH), driven by GCLM, is required for cancer initiation. Genetic loss of Gclm prevents a tumor's ability to drive malignant transformation. Intriguingly, these findings can be replicated using an inhibitor of GSH synthesis, but only if delivered prior to cancer onset, suggesting that at later stages of tumor progression GSH becomes dispensable potentially due to compensation from alternative antioxidant pathways. Remarkably, combined inhibition of GSH and thioredoxin antioxidant pathways leads to a synergistic cancer cell death in vitro and in vivo, demonstrating the importance of these two antioxidants to tumor progression and as potential targets for therapeutic intervention. PMID:25620030

  7. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression

    PubMed Central

    He, Chunbo; Lv, Xiangmin; Hua, Guohua; Lele, Subodh M; Remmenga, Steven; Dong, Jixin; Davis, John S; Wang, Cheng

    2014-01-01

    Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces expression of EGF receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, while knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF&NRGs/ERBBs/YAP/HBEGF&NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression. PMID:25798835

  8. Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and Progression

    PubMed Central

    Godoy, Guilherme; Gakis, Georgios; Smith, Carolyn L.; Fahmy, Omar

    2016-01-01

    Epidemiologic studies have long demonstrated clear differences in incidence and progression of bladder cancer between genders suggesting that the mechanisms of development and progression in these tumors have a strong association with steroid hormonal pathways. Such observations led to preclinical studies investigating the role of androgen and estrogen receptors, as well as their cognate hormones in bladder cancer initiation and progression. Using various in vitro cell line assays and in vivo mouse models, studies have elucidated different mechanisms and signaling pathways through which these steroid receptors may participate in this disease. More recently, RNA expression data from multiple studies revealed a luminal subtype of bladder cancer that exhibited an estrogen receptor signaling pathway, making it a strong candidate for further consideration of targeted therapies in the future. Despite the promising preclinical data demonstrating potential roles for both antiandrogen and antiestrogen strategies targeting these pathways in different stages of bladder cancer, only two clinical trials are currently active and accruing patients for such clinical studies. Targeted therapies in bladder cancer are a large unmet need and have the potential to change treatment paradigms and improve oncological outcomes of patients with bladder cancer. PMID:27376135

  9. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression.

    PubMed

    Mohammed, Altaf; Janakiram, Naveena B; Madka, Venkateshwar; Brewer, Misty; Ritchie, Rebekah L; Lightfoot, Stan; Kumar, Gaurav; Sadeghi, Michael; Patlolla, Jagan Mohan R; Yamada, Hiroshi Y; Cruz-Monserrate, Zobeida; May, Randal; Houchen, Courtney W; Steele, Vernon E; Rao, Chinthalapally V

    2015-06-20

    Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients. PMID:25906749

  10. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    PubMed

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  11. Radiation Promotes Colorectal Cancer Initiation and Progression by Inducing Senescence-Associated Inflammatory Responses

    PubMed Central

    Kim, Sang Bum; Bozeman, Ronald; Kaisani, Aadil; Kim, Wanil; Zhang, Lu; Richardson, James A.; Wright, Woodring E.; Shay, Jerry W.

    2015-01-01

    Proton radiotherapy is becoming more common since protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared to conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIR) which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence associated gene (P19Arf) are markedly increased. Following these changes loss of Casein kinase Iα (CKIα) and induction of chronic DNA damage and TP53 mutations are increased compared to x-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, CDDO-EA, reduces proton irradiation associated SIR and tumorigenesis. Thus, exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. PMID:26477319

  12. Short-form Ron is a novel determinant of ovarian cancer initiation and progression.

    PubMed

    Moxley, Katherine M; Wang, Luyao; Welm, Alana L; Bieniasz, Magdalena

    2016-05-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  13. Short-form Ron is a novel determinant of ovarian cancer initiation and progression

    PubMed Central

    Moxley, Katherine M.; Wang, Luyao; Welm, Alana L.; Bieniasz, Magdalena

    2016-01-01

    Short-form Ron (sfRon) is an understudied, alternative isoform of the full-length Ron receptor tyrosine kinase. In contrast to Ron, which has been shown to be an important player in many cancers, little is known about the role of sfRon in cancer pathogenesis. Here we report the striking discovery that sfRon expression is required for development of carcinogen-induced malignant ovarian tumors in mice. We also show that sfRon is expressed in several subtypes of human ovarian cancer including high-grade serous carcinomas, which is in contrast to no detectable expression in healthy ovaries. In addition, we report that introduction of sfRon into OVCAR3 cells resulted in epithelial-to-mesenchymal transition, activation of the PI3K and PDK1 pathway, and inhibition of the MAPK pathway. We demonstrated that sfRon confers an aggressive cancer phenotype in vitro characterized by increased proliferation and migration, and decreased adhesion of ovarian cancer cells. Moreover, the in vivo studies show that OVCAR3 tumors expressing sfRon exhibit significantly more robust growth and spreading to the abdominal cavity when compared with the parental sfRon negative OVCAR3 cells. These data suggest that sfRon plays a significant role in ovarian cancer initiation and progression, and may represent a promising therapeutic target for ovarian cancer treatment. PMID:27551332

  14. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    PubMed Central

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  15. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  16. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse.

    PubMed

    Sødring, Marianne; Gunnes, Gjermund; Paulsen, Jan Erik

    2016-04-15

    The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer. PMID:26566853

  17. Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation.

    PubMed

    Attar-Schneider, Oshrat; Zismanov, Victoria; Drucker, Liat; Gottfried, Maya

    2016-04-01

    Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient

  18. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression

    PubMed Central

    Lee, Jong Hun; Khor, Tin Oo; Shu, Limin; Su, Zheng-Yuan; Fuentes, Francisco; Kong, Ah-Ng Tony

    2013-01-01

    Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2–Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including

  19. Multiple roles of COUP-TFII in cancer initiation and progression

    PubMed Central

    Litchfield, Lacey M.; Klinge, Carolyn M.

    2012-01-01

    COUP-TFII is an orphan nuclear receptor that acts as a transcriptional activator or repressor in a cell type-dependent manner. Best characterized for its role in the regulation of angiogenesis during mouse development, COUP-TFII also plays important roles in glucose metabolism and cancer. Expression of COUP-TFII is altered in various endocrine conditions. Cell type-specific functions and the regulation of COUP-TFII expression result in its varying physiological and pathological actions in diverse systems. Evidence will be reviewed for oncogenic and tumor suppressive functions of COUP-TFII, with roles in angiogenesis, metastasis, steroidogenesis, and endocrine sensitivity of breast cancer described. The applicability of current data to our understanding of the role of COUP-TFII in cancer will be discussed. PMID:22966133

  20. Progress in Initiator Modeling

    SciTech Connect

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  1. THE CANCER PROGRESS REPORT

    EPA Science Inventory

    The Cancer Progress Report 2001 is about our Nation's progress against cancer. The information was gathered through a collaborative effort with other key agencies and groups, such as the Centers for Disease Control and Prevention and the American Cancer Society. Data on this site...

  2. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    PubMed Central

    2012-01-01

    Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long

  3. Obesity and colorectal cancer: Role of adipokines in tumor initiation and progression

    PubMed Central

    Riondino, Silvia; Roselli, Mario; Palmirotta, Raffaele; Della-Morte, David; Ferroni, Patrizia; Guadagni, Fiorella

    2014-01-01

    Obesity-associated diseases account for a large portion of public health challenges. Among obesity-related disorders, a direct and independent relationship has been ascertained for colorectal cancer (CRC). The evidence that adipocyte hypertrophy and excessive adipose tissue accumulation (mainly visceral) can promote pathogenic adipocyte and adipose tissue-related diseases, has led to formulate the concept of “adiposopathy”, defined as adipocyte and adipose tissue dysfunction that contributes to metabolic syndrome. Adipose tissue can, indeed, be regarded as an important and highly active player of the innate immune response, in which cytokine/adipokine secretion is responsible for a paracrine loop between adipocytes and macrophages, thus contributing to the systemic chronic low-grade inflammation associated with visceral obesity, which represents a favorable niche for tumor development. The adipocyte itself participates as a central mediator of this inflammatory response in obese individuals by secreting hormones, growth factors and proinflammatory cytokines, which are of particular relevance for the pathogenesis of CRC. Among adipocyte-secreted hormones, the most relevant to colorectal tumorigenesis are adiponectin, leptin, resistin and ghrelin. All these molecules have been involved in cell growth and proliferation, as well as tumor angiogenesis and it has been demonstrated that their expression changes from normal colonic mucosa to adenoma and adenocarcinoma, suggesting their involvement in multistep colorectal carcinogenesis. These findings have led to the hypothesis that an unfavorable adipokine profile, with a reduction of those with an anti-inflammatory and anti-cancerous activity, might serve as a prognostic factor in CRC patients and that adipokines or their analogues/antagonists might become useful agents in the management or chemoprevention of CRC. PMID:24833848

  4. Stochastic dynamics of cancer initiation

    NASA Astrophysics Data System (ADS)

    Foo, Jasmine; Leder, Kevin; Michor, Franziska

    2011-02-01

    Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.

  5. Translation initiation in colorectal cancer.

    PubMed

    Parsyan, Armen; Hernández, Greco; Meterissian, Sarkis

    2012-06-01

    Colorectal cancers (CRC) are one of the most common causes of morbidity and mortality in high-income countries. Targeted screening programs have resulted in early treatment and a substantial decrease in mortality. However, treatment strategies for CRC still require improvement. Understanding the etiology and pathogenesis of CRC would provide tools for improving treatment of patients with this disease. It is only recently that deregulation of the protein synthesis apparatus has begun to gain attention as a major player in cancer development and progression. Among the numerous steps of protein synthesis, deregulation of the process of translation initiation appears to play a key role in cancer growth and proliferation. This manuscript discusses a fascinating and rapidly growing field exploring translation initiation as a fundamental component in CRC development and progression and summarizing CRC treatment perspectives based on agents targeting translation initiation. PMID:22418835

  6. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression

    PubMed Central

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  7. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression.

    PubMed

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  8. EMAST is a Form of Microsatellite Instability That is Initiated by Inflammation and Modulates Colorectal Cancer Progression

    PubMed Central

    Carethers, John M.; Koi, Minoru; Tseng-Rogenski, Stephanie S.

    2015-01-01

    DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among

  9. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer

    PubMed Central

    Saloman, Jami L.; Albers, Kathryn M.; Li, Dongjun; Hartman, Douglas J.; Crawford, Howard C.; Muha, Emily A.; Rhim, Andrew D.; Davis, Brian M.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations. PMID:26929329

  10. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.

    PubMed

    Saloman, Jami L; Albers, Kathryn M; Li, Dongjun; Hartman, Douglas J; Crawford, Howard C; Muha, Emily A; Rhim, Andrew D; Davis, Brian M

    2016-03-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations. PMID:26929329

  11. Initial Study of Radiological and Clinical Efficacy Radioembolization Using 188Re-Human Serum Albumin (HSA) Microspheres in Patients with Progressive, Unresectable Primary or Secondary Liver Cancers

    PubMed Central

    Nowicki, Mirosław L.; Ćwikła, Jarosław B.; Sankowski, Artur J.; Shcherbinin, Sergey; Grimes, Josh; Celler, Anna; Buscombe, John R.; Bator, Andrzej; Pech, Maciej; Mikołajczak, Renata; Pawlak, Dariusz

    2014-01-01

    Background The aim of this initial study was to evaluate the clinical and radiological effectiveness of radioembolization (RE) using 188Re-Human Serum Albumin (HSA) microspheres in patients with advanced, progressive, unresectable primary or secondary liver cancers, not suitable to any other form of therapy. Material/Methods Overall, we included 13 patients with 20 therapy sessions. Clinical and radiological responses were assessed at 6 weeks after therapy, and then every 3 months. The objective radiological response was classified according to Response Evaluation Criteria in Solid Tumors (RECIST) v.1.0 by sequential MRI. Adverse events were evaluated using NCI CTCAE v.4.03. Results There were 4 patients with hepatocellular carcinoma (HCC), 6 with metastatic colorectal cancer (mCRC), 2 with neuroendocrine carcinoma (NEC), and 1 patient with ovarian carcinoma. Mean administered activity of 188Re HSA was 7.24 GBq (range 3.8–12.4) A high microspheres labeling efficacy of over 97±2.1% and low urinary excretion of 188Re (6.5±2.3%) during first 48-h follow-up. Median overall survival (OS) for all patients was 7.1 months (CI 6.2–13.3) and progression-free survival (PFS) was 5.1 months (CI 2.4–9.9). In those patients who had a clinical partial response (PR), stable disease (SD), and disease progression (DP) as assessed 6 weeks after therapy, the median OS was 9/5/4 months, respectively, and PFS was 5/2/0 months, respectively. The treatment adverse events (toxicity) were at an acceptable level. Initially and after 6 weeks, the CTC AE was grade 2, while after 3 months it increased to grade 3 in 4 subjects. This effect was mostly related to rapid cancer progression in this patient subgroup. Conclusions The results of this preliminary study indicate that RE using 188Re HSA is feasible and a viable option for palliative therapy in patients with extensive progressive liver cancer. It was well tolerated by most patients, with a low level of toxicity during the 3 months of

  12. Sphingosylphosphorylcholine in cancer progress

    PubMed Central

    Yue, Hong-Wei; Jing, Qing-Chuan; Liu, Ping-Ping; Liu, Jing; Li, Wen-Jing; Zhao, Jing

    2015-01-01

    Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive sphingolipid in blood plasma, metabolizing from the hydrolysis of the membrane sphingolipid. It has been shown to exert multifunctional role in cell physiological regulation either as an intracellular second messenger or as an extracellular agent through G protein coupled receptors (GPCRs). Because of elevated levels of SPC in malicious ascites of patients with cancer, the role of SPC in tumor progression has prompted wide interest. The factor was reported to affect the proliferation and/or migration of many cancer cells, including pancreatic cancer cells, epithelial ovarian carcinoma cells, rat C6 glioma cells, neuroblastoma cells, melanoma cells, and human leukemia cells. This review covers current knowledge of the role of SPC in tumor. PMID:26550104

  13. Preventing Breast Cancer: Making Progress

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Preventing Breast Cancer: Making Progress Past Issues / Fall 2006 Table of ... inhibitor, can do an even better job of preventing breast cancer than the SERMs. Aromatase inhibitors stop an enzyme ...

  14. Targeting ECM Disrupts Cancer Progression

    PubMed Central

    Venning, Freja A.; Wullkopf, Lena; Erler, Janine T.

    2015-01-01

    Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression. PMID:26539408

  15. Biobehavioral Influences on Cancer Progression

    PubMed Central

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  16. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells

    PubMed Central

    Xie, Han; Hanai, Jun-ichi; Ren, Jian-Guo; Kats, Lev; Burgess, Kerri; Bhargava, Parul; Signoretti, Sabina; Billiard, Julia; Duffy, Kevin J.; Grant, Aaron; Wang, Xiaoen; Lorkiewicz, Pawel K.; Schatzman, Sabrina; Bousamra, Michael; Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W.M.; Pandolfi, Pier Paolo; Sukhatme, Vikas P.; Seth, Pankaj

    2014-01-01

    Summary The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the inter-conversion of pyruvate and lactate, is upregulated in human cancers and is associated with aggressive tumor outcomes. Here we use a novel inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by re-activation of mitochondrial function in vitro but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC including cancer stem cell-dependent drug resistant tumors. PMID:24726384

  17. Progress on the childhood immunization initiative.

    PubMed Central

    Robinson, C A; Evans, W B; Mahanes, J A; Sepe, S J

    1994-01-01

    President Clinton submitted the Comprehensive Childhood Immunization Initiative Act to Congress in April 1993. The objective of the legislation is to protect all children in the United States by their second birthday against nine vaccine-preventable infectious diseases. As originally introduced in the Congress the initiative called for (a) Federal purchase and distribution of recommended childhood vaccines for all children, (b) improving the public health capacity to deliver vaccine, (c) establishing a State-based national immunization information and tracking system, and (d) expanding immunization education and mobilization efforts directed to health care providers and parents. The authors review the progress and current status of the initiative, updating a previous progress report. The President's legislative proposal, modified by Congress, was enacted August 10, 1993. Several key provisions of the original legislation, deferred by Congress, may be incorporated in subsequent legislation or implemented through existing authorities. Therefore, the evolving framework for the initiative derives not from a single legislative mandate, but expands current immunization program activities and adds important new and complementary activities. As mentioned in the original title of the legislation, this is a "comprehensive" effort to address the problem of under-immunization in U.S. preschool children. PMID:7938378

  18. Ursolic Acid Inhibits the Initiation, Progression of Prostate Cancer and Prolongs the Survival of TRAMP Mice by Modulating Pro-Inflammatory Pathways

    PubMed Central

    Shanmugam, Muthu K.; Ong, Tina H.; Kumar, Alan Prem; Lun, Chang K.; Ho, Paul C.; Wong, Peter T. H.; Hui, Kam M.; Sethi, Gautam

    2012-01-01

    Prostate cancer is one of the leading causes of cancer death among men worldwide. In this study, using transgenic adenocarcinoma of mouse prostate (TRAMP) mice, the effect of diet enriched with 1% w/w ursolic acid (UA) was investigated to evaluate the stage specific chemopreventive activity against prostate cancer. We found that TRAMP mice fed with UA diet for 8 weeks (weeks 4 to 12) delayed formation of prostate intraepithelial neoplasia (PIN). Similarly, mice fed with UA diet for 6 weeks (weeks 12 to 18) inhibited progression of PIN to adenocarcinoma as determined by hematoxylin and eosin staining. Finally, TRAMP mice fed with UA diet for 12 weeks (weeks 24 to 36) demonstrated markedly reduced tumor growth without any significant effects on total body weight and prolonged overall survival. With respect to the molecular mechanism, we found that UA down-regulated activation of various pro-inflammatory mediators including, NF-κB, STAT3, AKT and IKKα/β phosphorylation in the dorsolateral prostate (DLP) tissues that correlated with the reduction in serum levels of TNF-α and IL-6. In addition, UA significantly down-regulated the expression levels of cyclin D1 and COX-2 but up-regulated the levels of caspase-3 as revealed by immunohistochemical analysis of tumor tissue sections. Finally, UA was detected in serum samples obtained from various mice groups fed with enriched diet in nanogram quantity indicating that it is well absorbed in the GI tract. Overall, our findings provide strong evidence that UA can be an excellent agent for both the prevention and treatment of prostate cancer. PMID:22427843

  19. Roles for Growth Factors in Cancer Progression

    PubMed Central

    Witsch, Esther; Sela, Michael; Yarden, Yosef

    2011-01-01

    Under physiological conditions, cells receive fate-determining signals from their tissue surroundings, primarily in the form of polypeptide growth factors. Integration of these extracellular signals underlies tissue homeostasis. Although departure from homeostasis and tumor initiation are instigated by oncogenic mutations rather than by growth factors, the latter are the major regulators of all subsequent steps of tumor progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches. Here, we discuss the relevant growth factor families, their roles in tumor biology, as well as the respective downstream signaling pathways. Importantly, cancer-associated activating mutations that impinge on these pathways often relieve, in part, the reliance of tumors on growth factors. On the other hand, growth factors are frequently involved in evolvement of resistance to therapeutic regimens, which extends the roles for polypeptide factors to very late phases of tumor progression and offers opportunities for cancer therapy. PMID:20430953

  20. An evolutionary model for initiation, promotion, and progression in carcinogenesis.

    PubMed

    Vincent, T L; Gatenby, R A

    2008-04-01

    Human carcinogenesis is a multistep process in which epithelial cells progress through a series of premalignant phenotypes until an invasive cancer emerges. Extensive experimental observations in carcinogenesis have demonstrated this process can be divided into three general eras: initiation, promotion, and progression. However, this empirically derived, tissue-level explanation of carcinogenesis has not been reconciled with the step-wise genotypic and phenotypic changes encompassed in evolutionary paradigms such as the Feoron-Vogelstein diagram. Here, we analyze an evolutionary model of cellular dynamics that defines mutual interactions of cellular and subcellular events and tissue level changes in tumor growth and morphology. Results are expressed using an adaptive landscape that illustrates the evolutionary potential of cells that allow them to adapt to specific microenvironmental selection forces. It is shown that normal epithelial cells have a novel adaptive landscape that permits coexistence of normal cellular populations but also allows invasion by mutant phenotypes. Subsequent cancer evolution is possible due to a relaxation of tissue growth constraints (as mediated by cell-cell and cell-extracellular matrix interactions) and adaptations in response to perturbations in microenvironmental substrate concentrations (due to separation of evolving tumor cells from their blood supply by an intact basement membrane). Simulations, based on the dynamic model, produce three distinct stages of carcinogenesis that are consistent with the initiation, promotion, and progression stages observed experimentally. The simulations provide insight into the underlying cellular and microenvironmental dynamics that govern these empirical observations and suggest novel prevention strategies that may be tested experimentally. PMID:18360700

  1. Nuclear morphometry, nucleomics and prostate cancer progression

    PubMed Central

    Veltri, Robert W; Christudass, Christhunesa S; Isharwal, Sumit

    2012-01-01

    Prostate cancer (PCa) results from a multistep process. This process includes initiation, which occurs through various aging events and multiple insults (such as chronic infection, inflammation and genetic instability through reactive oxygen species causing DNA double-strand breaks), followed by a multistep process of progression. These steps include several genetic and epigenetic alterations, as well as alterations to the chromatin structure, which occur in response to the carcinogenic stress-related events that sustain proliferative signaling. Events such as evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis are readily observed. In addition, in conjunction with these critical drivers of carcinogenesis, other factors related to the etiopathogenesis of PCa, involving energy metabolism and evasion of the immune surveillance system, appear to be involved. In addition, when cancer spread and metastasis occur, the ‘tumor microenvironment' in the bone of PCa patients may provide a way to sustain dormancy or senescence and eventually establish a ‘seed and soil' site where PCa proliferation and growth may occur over time. When PCa is initiated and progression ensues, significant alterations in nuclear size, shape and heterochromatin (DNA transcription) organization are found, and key nuclear transcriptional and structural proteins, as well as multiple nuclear bodies can lead to precancerous and malignant changes. These series of cellular and tissue-related malignancy-associated events can be quantified to assess disease progression and management. PMID:22504875

  2. Spatial Moran models, II: cancer initiation in spatially structured tissue

    PubMed Central

    Foo, J; Leder, K

    2016-01-01

    We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947

  3. Basic Research and Progress against Pediatric Cancer

    Cancer.gov

    An infographic about the importance of basic research for making progress against childhood cancers. The graphic shows the research milestones that led to the development and approval of Unituxin to treat neuroblastoma, a cancer seen mainly in children.

  4. Heme oxygenase-1 in macrophages controls prostate cancer progression

    PubMed Central

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-01-01

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  5. Heme oxygenase-1 in macrophages controls prostate cancer progression.

    PubMed

    Nemeth, Zsuzsanna; Li, Mailin; Csizmadia, Eva; Döme, Balazs; Johansson, Martin; Persson, Jenny Liao; Seth, Pankaj; Otterbein, Leo; Wegiel, Barbara

    2015-10-20

    Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression.We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells.In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression. PMID:26418896

  6. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs.

  7. Insidious Changes in Stromal Matrix Fuel Cancer Progression

    PubMed Central

    Miles, Fayth L.

    2014-01-01

    Reciprocal interactions between tumor and stromal cells propel cancer progression and metastasis. An understanding of the complex contributions of the tumor stroma to cancer progression necessitates a careful examination of the extracellular matrix (ECM), which is largely synthesized and modulated by Cancer Associated Fibroblasts (CAFs). This structurally supportive meshwork serves as a signaling scaffold for a myriad of biological processes and responses favoring tumor progression. The ECM is a repository for growth factors and cytokines that promote tumor growth, proliferation, and metastasis through diverse interactions with soluble and insoluble ECM components. Growth factors activated by proteases are involved in the initiation of cell signaling pathways essential to invasion and survival. Various transmembrane proteins produced by the cancer stroma bind the collagen and fibronectin-rich matrix to induce proliferation, adhesion and migration of cancer cells, as well as protease activation. Integrins are critical liaisons between tumor cells and the surrounding stroma, and with their mechano-sensing ability induce cell signaling pathways associated with contractility and migration. Proteoglycans also bind and interact with various matrix proteins in the tumor microenvironment to promote cancer progression. Together, these components function to mediate crosstalk between tumor cells and fibroblasts ultimately to promote tumor survival and metastasis. These stromal factors, which may be expressed differentially according to cancer stage, have prognostic utility and potential. In this review, we examine changes in the ECM of cancer associated fibroblasts induced through carcinogenesis, and the implications of these changes on cancer progression. PMID:24452359

  8. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    SciTech Connect

    Moolgavkar, S.H.

    1994-10-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward.

  9. Microgravity alters cancer growth and progression.

    PubMed

    Jhala, Dhwani V; Kale, Raosaheb K; Singh, Rana P

    2014-01-01

    Study of the process of cancer initiation, growth and progression in altered gravity is of utmost importance considering the health status of researchers visiting in space and future scope of space tourism. Microgravity affects various cells in the body differently; however, the mechanisms of such effects are not understood completely. Therefore, it is imperative to explore various physiological and biochemical processes, particularly those which can influence the process of carcinogenesis. If the changes in physiological or biochemical processes do not revert back to normalcy even after returning from the space to earth, it may lead to various aberrations and morphological changes during the life span. Such changes could lead to pathological conditions including cancer. For example, microgravity is observed to suppress the activity of immune cells, which itself increases the risk of cancer development. It is little known how the microgravity affects cellular and molecular events that determine physiological and biological responses. There is also a possibility of changes in epigenetic signatures during microgravity exposure which remains unexplored. Herein, we have reviewed the effect of microgravity on relevant molecular and biological processes, and how it could influence the course of cancer development. In this regard, we have also highlighted the areas of research that require more attention to bridge the gap of understanding for such biological processes. PMID:24720362

  10. Role of mitochondrial dysfunction in cancer progression.

    PubMed

    Hsu, Chia-Chi; Tseng, Ling-Ming; Lee, Hsin-Chen

    2016-06-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  11. Chromosome 6p amplification and cancer progression

    PubMed Central

    Santos, Gda C; Zielenska, M; Prasad, M; Squire, J A

    2007-01-01

    Chromosomal imbalances represent an important mechanism in cancer progression. A clear association between DNA copy‐number aberrations and prognosis has been found in a variety of tumours. Comparative genomic hybridisation studies have detected copy‐number increases affecting chromosome 6p in several types of cancer. A systematic analysis of large tumour cohorts is required to identify genomic imbalances of 6p that correlate with a distinct clinical feature of disease progression. Recent findings suggest that a central part of the short arm of chromosome 6p harbours one or more oncogenes directly involved in tumour progression. Gains at 6p have been associated with advanced or metastatic disease, poor prognosis, venous invasion in bladder, colorectal, ovarian and hepatocellular carcinomas. Copy number gains of 6p DNA have been described in a series of patients who presented initially with follicle centre lymphoma, which subsequently transformed to diffuse large B cell lymphoma. Melanoma cytogenetics has consistently identified aberrations of chromosome 6, and a correlation with lower overall survival has been described. Most of the changes observed in tumours to date map to the 6p21–p23 region, which encompasses approximately half of the genes on all of chromosome 6 and one third of the number of CpG islands in this chromosome. Analyses of the genes that cluster to the commonly amplified regions of chromosome 6p have helped to identify a small number of molecular pathways that become deregulated during tumour progression in diverse tumour types. Such pathways offer promise for new treatments in the future. PMID:16790693

  12. Liver cancer stem cell markers: Progression and therapeutic implications.

    PubMed

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-04-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  13. Liver cancer stem cell markers: Progression and therapeutic implications

    PubMed Central

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  14. Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    PubMed Central

    Strell, Carina; Rundqvist, Helene

    2012-01-01

    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed. PMID:22509805

  15. SOX4 is essential for prostate tumorigenesis initiated by PTEN ablation | Office of Cancer Genomics

    Cancer.gov

    Understanding remains incomplete of the mechanisms underlying initiation and progression of prostate cancer, the most commonly diagnosed cancer in American men. The transcription factor SOX4 is overexpressed in many human cancers, including prostate cancer, suggesting it may participate in prostate tumorigenesis. In this study, we investigated this possibility by genetically deleting Sox4 in a mouse model of prostate cancer initiated by loss of the tumor suppressor Pten.

  16. Quantifying Collective Cell Migration during Cancer Progression

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Stuelten, Christina; Nordstrom, Kerstin; Parent, Carole; Losert, Wolfgang

    2014-03-01

    As tumors become more malignant, cells invade the surrounding tissue and migrate throughout the body to form secondary, metastatic tumors. This metastatic process is initiated when cells leave the primary tumor, either individually or as groups of collectively migrating cells. The mechanisms regulating how groups of cells collectively migrate are not well characterized. Here we study the migration dynamics of epithelial sheets composed of many cells using quantitative image analysis techniques. By extracting motion information from time-lapse images of cell lines of varying malignancy, we are able to measure how migration dynamics change during cancer progression. We further investigate the role that cell-cell adhesion plays in these collective dynamics by analyzing the migration of cell lines with varying levels of E-cadherin (a cell-cell adhesion protein) expression.

  17. Regulation of prostate cancer progression by the tumor microenvironment.

    PubMed

    Shiao, Stephen L; Chu, Gina Chia-Yi; Chung, Leland W K

    2016-09-28

    Prostate cancer remains the most frequently diagnosed cancer in men in North America, and despite recent advances in treatment patients with metastatic disease continue to have poor five-year survival rates. Recent studies in prostate cancer have revealed the critical role of the tumor microenvironment in the initiation and progression to advanced disease. Experimental data have uncovered a reciprocal relationship between the cells in the microenvironment and malignant tumor cells in which early changes in normal tissue microenvironment can promote tumorigenesis and in turn tumor cells can promote further pro-tumor changes in the microenvironment. In the tumor microenvironment, the presence of persistent immune infiltrates contributes to the recruitment and reprogramming of other non-immune stromal cells including cancer-associated fibroblasts and a unique recently identified population of metastasis-initiating cells (MICs). These MICs, which can also be found as part of the circulating tumor cell (CTC) population in PC patients, promote cancer cell transformation, enhance metastatic potential and confer therapeutic resistance. MICs act can on other cells within the tumor microenvironment in part by secreting exosomes that reprogram adjacent stromal cells to create a more favorable tumor microenvironment to support continued cancer growth and progression. We review here the current data on the intricate relationship between inflammation, reactive stroma, tumor cells and disease progression in prostate cancer. PMID:26828013

  18. Specialized Initiatives - Cancer Imaging Program

    Cancer.gov

    CIP has sponsored a number of programs for specific purposes, using set-aside funds. Among these are Phase 2 N01 ProgramIn-Vivo Cellular & Molecular Imaging Centers (ICMICs) Quantitative Imaging for Evaluation of Responses to Cancer Therapies (QIN) Network for Translational Research (NTR): Optical Imaging in Multimodal Platforms Small Animal Imaging Resource Program (SAIRP) Development of Preclinical Drugs and Enhancers (DCIDE) program.

  19. Progress with the PUB Initiative in Canada

    NASA Astrophysics Data System (ADS)

    Spence, C.; Whitfield, P.; Ouarda, T.; Metcalfe, R.; Pomeroy, J.; Pietroniro, A.

    2008-12-01

    Practicing hydrologists continually face the challenge of prediction in ungauged basins. They are well aware of the difficulties and risks inherent in making predictions and forecasts of the state of water resources. They are cognizant of the climate and landscape change that is forcing our community to address some of the long held assumptions in our methodologies - notably that of stationarity. Furthermore, as resources have become scarcer due to availability or quality limitations, decision makers' demands not only include reports of mere abundance or state but also change. Interactions among hydrological, biochemical and ecological processes now need to be understood and incorporated into new predictive tools. In Canada, progress has been slow but steady. Priorities were identified, including improving prediction in small basins, incorporating process algorithms into deterministic models, implementing new information generating methods, and expanding outreach of new knowledge and techniques. Individual successes are reflective of the needs of each segment of the community. Large utilities and operational forecast offices, with their larger infrastructure, have made progress incorporating new algorithms into deterministic models and applying advanced regionalization tools. The majority of consulting engineers remain constrained by time, budgets and access to data. They remain comfortable reducing uncertainty and building confidence with calibration and reproduction of past conditions. Conservative assumptions are a mainstay for reducing risk. Progress in reducing uncertainty for this segment is made by developing relationships and exchanging information so that practicing hydrologists are aware of the new tools and knowledge they need to ensure wise water management decisions.

  20. Progress of molecular targeted therapies for prostate cancers

    PubMed Central

    Fu, Weihua; Madan, Elena; Yee, Marla; Zhang, Hongtao

    2011-01-01

    Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients. PMID:22146293

  1. Algorithmic methods to infer the evolutionary trajectories in cancer progression.

    PubMed

    Caravagna, Giulio; Graudenzi, Alex; Ramazzotti, Daniele; Sanz-Pamplona, Rebeca; De Sano, Luca; Mauri, Giancarlo; Moreno, Victor; Antoniotti, Marco; Mishra, Bud

    2016-07-12

    The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the "selective advantage" relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc's ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses. PMID:27357673

  2. Recent Progress in Pancreatic Cancer

    PubMed Central

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  3. National Cancer Moonshot Initiative platform | Office of Cancer Genomics

    Cancer.gov

    As part of the Vice President’s National Cancer Moonshot Initiative, the National Cancer Institute has launched an online engagement platform to enable the research community and the public to submit cancer research ideas to a Blue Ribbon Panel of scientific experts. Any member of the public is encouraged to submit his or her ideas for reducing the incidence of cancer and developing better ways to prevent, treat, and cure all types of cancer. Research ideas may be submitted in the following areas:

  4. rs712 polymorphism within let-7 microRNA-binding site might be involved in the initiation and progression of colorectal cancer in Chinese population

    PubMed Central

    Jiang, Qiang-Hua; Peng, Hong-Xin; Zhang, Yi; Tian, Peng; Xi, Zu-Lian; Chen, Hao

    2015-01-01

    rs712 within 3′-untranslated region of KRAS can affect the specific binding between the mRNA and its targeted microRNAs, leading to the activation of KRAS oncogene. However, the possible association between the locus and susceptibility to colorectal cancer (CRC) remains unclear. We investigated genotypes of the locus in 586 cases and 476 controls to explore the possible association between them. Results of our case–control study showed that genotypes TT (6.5% vs 2.5%, P=0.002, adjusted odds ratio [OR] =2.810, 95% confidence interval [CI] =1.342–5.488) and GT/TT (36.5% vs 30.5%, P=0.038, adjusted OR =1.342, 95% CI =1.030–1.712) and allele T (21.5% vs 6.5%, P=0.004, adjusted OR =1.328, 95% CI =1.105–1.722) of rs712 were significantly associated with an increased risk of CRC, and the significant association was also observed in the recessive model (TT vs GG/GT, 6.5% vs 2.5%, P=0.003, adjusted OR =0.372, 95% CI =0.191–0.725). However, there was no association between genotype GT and risk of CRC (30.0% vs 28.0%, P=0.235, adjusted OR =1.210, 95% CI =0.903–1.548). Furthermore, genotype GT (P=0.003) and allele T (P=0.003) were significantly associated with poor differentiation, and genotypes GT and TT and allele T were significantly associated with tumor-node-metastases stage III (P=0.001 for GT vs GG, P<0.001 for TT vs GG, and P<0.001 for T vs G) and node metastasis (P<0.001 for GT vs GG, P=0.001 for TT vs GG, and P<0.001 for T vs G), respectively. These findings indicated that allele T and genotypes TT and GT/TT of rs712 might be susceptible factors for CRC, and mutated allele and genotypes of the locus might predict a poor clinical outcome in Chinese population. PMID:26543374

  5. Preventing Breast Cancer: Making Progress

    MedlinePlus

    ... medical literature, the Study of Tamoxifen and Raloxifene (STAR) trial was started in 1998. That study enrolled ... in the BCPT. Studies, such as BCPT and STAR, involve women who have not had breast cancer, ...

  6. Membrane potential and cancer progression

    PubMed Central

    Yang, Ming; Brackenbury, William J.

    2013-01-01

    Membrane potential (Vm), the voltage across the plasma membrane, arises because of the presence of different ion channels/transporters with specific ion selectivity and permeability. Vm is a key biophysical signal in non-excitable cells, modulating important cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of various ion channels/transporters expressed on different cells are finely tuned in order to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical properties. Notably, electrophysiological analyses in many cancer cell types have revealed a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume and migration, and emerging data also suggest that the level of Vm has functional roles in cancer cell migration. In addition, hyperpolarization is necessary for stem cell differentiation. For example, both osteogenesis and adipogenesis are hindered in human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the context of cancer, membrane depolarization might be important for the emergence and maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer cells by examining several key types of ion channels that contribute to its regulation. The mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation will be discussed. In the long term, Vm might be a valuable clinical marker for tumor detection with prognostic value, and could even be artificially modified in order to inhibit tumor growth and metastasis. PMID:23882223

  7. Multifunctional nanoparticles: recent progress in cancer therapeutics.

    PubMed

    Seeta Rama Raju, G; Benton, Leah; Pavitra, E; Yu, Jae Su

    2015-09-01

    Although much progress has been made in treating cancers, cancer death rates in and around the United States are still high. Current treatments are either ineffective against some cancers or detrimental to patients, which decreases their quality of life. The use of nanotechnology in cancer therapy can potentially increase patient survival, reduce side effects, and reduce mortality rates because nanoparticles (NPs) have the potential to target only tumors and bypass healthy cells. NPs possess many features, including size, shape, charge, and composition, which allow them to carry chemotherapeutics to cancer cells. NPs can also be used in radiotherapy as radiosensitizers and in imaging as contrast agents. Many studies have performed in vitro and/or in vivo experiments on these particles in human and animal cell lines. This review discusses recent studies on different NPs and their potential use in cancer therapy. PMID:26234539

  8. Progress in immunoconjugate cancer therapeutics.

    PubMed

    Payne, Gillian

    2003-03-01

    Advances in immunoconjugate technology have revitalized the "magic bullet" concept of immunotherapeutics for the treatment of cancer. The growing availability of "human" antibodies, the increased epitope repertoire due to genomics and proteomics efforts, and advances in the means of identification and production of tumor-specific antibodies have greatly increased the potential for cancer therapeutic opportunities. Furthermore, the realization that effector molecule potency must be sufficiently high to be effective at concentrations that might realistically be delivered to the tumor site on an antibody carrier has greatly spurred the fields of medicinal chemistry and radionuclide chelate chemistry to produce such molecules. PMID:12676579

  9. Catalog of genetic progression of human cancers: breast cancer.

    PubMed

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making. PMID:26951551

  10. Progress in Rectal Cancer Treatment

    PubMed Central

    Ceelen, Wim P.

    2012-01-01

    The dramatic improvement in local control of rectal cancer observed during the last decades is to be attributed to attention to surgical technique and to the introduction of neoadjuvant therapy regimens. Nevertheless, systemic relapse remains frequent and is currently insufficiently addressed. Intensification of neoadjuvant therapy by incorporating chemotherapy with or without targeted agents before the start of (chemo)radiation or during the waiting period to surgery may present an opportunity to improve overall survival. An increasing number of patients can nowadays undergo sphincter preserving surgery. In selected patients, local excision or even a “wait and see” approach may be feasible following active neoadjuvant therapy. Molecular and genetic biomarkers as well as innovative imaging techniques may in the future allow better selection of patients for this treatment option. Controversy persists concerning the selection of patients for adjuvant chemotherapy and/or targeted therapy after neoadjuvant regimens. The currently available evidence suggests that in complete pathological responders long-term outcome is excellent and adjuvant therapy may be omitted. The results of ongoing trials will help to establish the ideal tailored approach in resectable rectal cancer. PMID:22970381

  11. Prostate cancer progression. Implications of histopathology.

    PubMed Central

    Ware, J. L.

    1994-01-01

    This review examines selected areas of contemporary prostate cancer research in terms of the impact of prostatic cellular and histopathological heterogeneity. Prostate tumor progression is accompanied by dysregulation of multiple growth factor networks as well as disruption of normal patterns of cell-cell interactions. Molecular and cytogenetic studies demonstrate that prostate cancer results from the accumulation of several different genetic defects. No single event predominates, but modifications in tumor suppressor genes or functional elimination of the suppressor gene product are more common than activation of known oncogenes. Intratumor heterogeneity is also detectable at the genetic level. This further complicates efforts to correlate modifications at specific loci with progression or outcome. The development of new in vitro and in vivo systems for the study of human prostate cancer should increase our understanding of this complex disease. In each approach, knowledge of the histopathology of the normal and neoplastic prostate is essential. PMID:7977655

  12. Biobehavioral Approaches to Cancer Progression and Survival

    PubMed Central

    Lutgendorf, Susan K.; Andersen, Barbara L.

    2014-01-01

    Over the last decade, there have been groundbreaking strides in our understanding of the multiple biological pathways by which psychosocial and behavioral factors can affect cancer progression. It is now clear that biobehavioral factors not only affect cellular immunity but both directly and indirectly modulate fundamental processes in cancer growth, including inflammation, angiogenesis, invasion, and metastasis. There is also an emerging understanding of how psychological and behavioral factors used in interventions can impact these physiological processes. This review outlines our current understanding of the physiological mechanisms by which psychological, social, and behavioral processes can affect cancer progression. The intervention literature is discussed, along with recommendations for future research to move the field of biobehavioral oncology forward. PMID:25730724

  13. HOXB13 promotes ovarian cancer progression

    PubMed Central

    Miao, Jiangyong; Wang, Zuncai; Provencher, Heather; Muir, Beth; Dahiya, Sonika; Carney, Erin; Leong, Chee-Onn; Sgroi, Dennis C.; Orsulic, Sandra

    2007-01-01

    Deregulated expression of HOXB13 in a subset of estrogen receptor-positive breast cancer patients treated with tamoxifen monotherapy is associated with an aggressive clinical course and poor outcome. Because the ovary is another hormone-responsive organ, we investigated whether HOXB13 plays a role in ovarian cancer progression. We show that HOXB13 is expressed in multiple human ovarian cancer cell lines and tumors and that knockdown of endogenous HOXB13 by RNA interference in human ovarian cancer cell lines is associated with reduced cell proliferation. Ectopic expression of HOXB13 is capable of transforming p53−/− mouse embryonic fibroblasts and promotes cell proliferation and anchorage-independent growth in mouse ovarian cancer cell lines that contain genetic alterations in p53, myc, and ras. In this genetically defined cell line model of ovarian cancer, we demonstrate that HOXB13 collaborates with activated ras to markedly promote tumor growth in vivo and that HOXB13 confers resistance to tamoxifen-mediated apoptosis. Taken together, our results support a pro-proliferative and pro-survival role for HOXB13 in ovarian cancer. PMID:17942676

  14. Progress Against Prostate Cancer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Prostate Cancer Progress Against Prostate Cancer Past Issues / Winter 2010 Table of Contents Click ... This can narrow the urethra, decreasing urine flow. Prostate cancer is made up of cells the body does ...

  15. In vitro Enrichment of Ovarian Cancer Tumor-initiating Cells

    PubMed Central

    House, Carrie D.; Hernandez, Lidia; Annunziata, Christina M.

    2015-01-01

    Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies. Ovarian cancer is a heterogeneous and highly recurrent disease. Recent studies suggest TICs may play an important role in disease biology. We have identified culture conditions that enrich for TICs from ovarian cancer cell lines. Growing either adherent cells or non-adherent ‘floater’ cells in a low attachment plate with serum free media in the presence of growth factors supports the propagation of ovarian cancer TICs with stem cell markers (CD133 and ALDH activity) and increased tumorigenicity without the need to physically separate the TICs from other cell types within the culture. Although the presence of floater cells is not common for all cell lines, this population of cells with innate low adherence may have high tumorigenic potential.Compared to adherent cells grown in the presence of serum, TICs readily form spheres, are significantly more tumorigenic in mice, and express putative stem cell markers. The conditions are easy to establish in a timely manner and can be used to study signaling pathways important for maintaining stem characteristics, and to identify drugs or combinations of drugs targeting TICs. The culture conditions described herein are applicable for a variety of ovarian cancer cells of epithelial origin and will be critical in providing new information about the role of TICs in tumor initiation, progression, and relapse. PMID:25742116

  16. Src Kinase Regulation in Progressively Invasive Cancer

    PubMed Central

    Xu, Weichen; Allbritton, Nancy; Lawrence, David S.

    2012-01-01

    Metastatic progression is a multistep process that involves tumor growth and survival, motility and invasion, and subsequent proliferation in an inappropriate environment. The Src protein tyrosine kinase has been implicated in many of the biochemical pathways that drive these behaviors. Although Src itself is only rarely mutated in human tumors, its aberrant activity has been noted in various cancers and suggested to serve as a barometer of metastatic potential. With these features in mind, we examined Src kinase regulation at the structural, enzymatic, and expression levels as a function of progressively invasive prostate cancer cell lines. Surprisingly, both total Src content and kinase activity decrease with increasing cell line aggressiveness, an observation that appears to be inconsistent with the well-documented role of Src in the signaling pathways that drive growth and invasion. However, we do observe a direct correlation between Src kinase specific activity (total Src kinase activity/total Src content) and metastatic aggressiveness, possibly suggesting that in highly aggressive cell lines, key signaling enzymes are globally recruited to drive the cancerous phenotype. In addition, although the expected enhanced phosphorylation of Src at Tyr-416 (activation site) is present in the most aggressive prostate cancer cell lines, unexpectedly high phosphorylation levels at the Tyr-527 inhibitory site are observed as well. The latter, rather than representative of inhibited enzyme, is more indicative of primed Src responsive to local phosphorylated binding partners. PMID:23145001

  17. Noncoding RNAs in gastric cancer: Research progress and prospects

    PubMed Central

    Zhang, Meng; Du, Xiang

    2016-01-01

    Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC. PMID:27547004

  18. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362918

  19. Testosterone regulates thyroid cancer progression by modifying tumor suppressor genes and tumor immunity

    PubMed Central

    Zhang, Lisa J.; Xiong, Yin; Nilubol, Naris; He, Mei; Bommareddi, Swaroop; Zhu, Xuguang; Jia, Li; Xiao, Zhen; Park, Jeong-Won; Xu, Xia; Patel, Dhaval; Willingham, Mark C.; Cheng, Sheue-yann; Kebebew, Electron

    2015-01-01

    Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression. Using a transgenic mouse model of follicular thyroid cancer (FTC), we found castration led to lower rates of cancer in females and less advanced cancer in males. Mechanistically, less advanced cancer in castrated males was due to increased expression of tumor suppressor (Glipr1, Sfrp1) and immune-regulatory genes and higher tumor infiltration with M1 macrophages and CD8 cells. Functional study showed that GLIPR1 reduced cell growth and increased chemokine secretion (Ccl5) that activates immune cells. Our data demonstrate that testosterone regulates thyroid cancer progression by reducing tumor suppressor gene expression and tumor immunity. PMID:25576159

  20. The role of human cervical cancer oncogene in cancer progression.

    PubMed

    Li, Xin-Yu; Wang, Xin

    2015-01-01

    Human cervical cancer oncogene (HCCR) was identified by differential display RT-PCR by screened abnormally expressed genes in cervical human cancers. The overexpressed gene is not only identified in cervical tissues, but also in various human cancers as leukemia/lymphoma, breast, stomach, colon, liver, kidney and ovarian cancer. For its special sensitivities and specificities in human breast cancer and hepatocellular carcinoma, it is expected to be a new biomarker to replace or combine with the existing biomarkers in the diagnose. The HCCR manifests as a negative regulator of the p53 tumor suppressor gene, and its expression is regulated by the PI3K/Akt signaling pathway, modulated by TCF/β-catenin, it also participates in induction of the c-kit proto-oncogene, in activation of PKC and telomerase activities, but the accurate biochemical mechanisms of how HCCR contributes to the malignancies is still unknown. The aim of this review is to summarize the roles of HCCR in cancer progression and the molecular mechanisms involved. PMID:26309489

  1. Pancreatic Cancer: Current Progress and Future Challenges

    PubMed Central

    Hussain, S. Perwez

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, remains one of the highly lethal malignancies. The highly refractory nature of clinically advanced disease and lack of a reliable biomarker for early detection are major obstructions in improving patient outcome. The recent efforts, however, in understanding the pancreatic tumor biology have resulted in the recognition of novel addictions as well as vulnerabilities of tumor cells and are being assessed for their clinical potential. This special issue highlights some of the recent progress, complexity and challenges towards improving disease outcome in patients with this lethal malignancy. PMID:26929733

  2. RNA editing, epitranscriptomics, and processing in cancer progression

    PubMed Central

    Witkin, Keren L; Hanlon, Sean E; Strasburger, Jennifer A; Coffin, John M; Jaffrey, Samie R; Howcroft, T Kevin; Dedon, Peter C; Steitz, Joan A; Daschner, Phil J; Read-Connole, Elizabeth

    2015-01-01

    The transcriptome is extensively and dynamically regulated by a network of RNA modifying factors. RNA editing enzymes APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and ADAR (adenosine deaminase, RNA-specific) irreversibly recode primary RNA sequences, whereas newly described methylases (writers) and de-methylases (erasers) dynamically alter RNA molecules in response to environmental conditions. RNA modifications can affect RNA splicing, nuclear-cytoplasmic transport, translation, and regulation of gene expression by RNA interference. In addition, tRNA base modifications, processing, and regulated cleavage have been shown to alter global patterns of mRNA translation in response to cellular stress pathways. Recent studies, some of which were discussed at this workshop, have rekindled interest in the emerging roles of RNA modifications in health and disease. On September 10th, 2014, the Division of Cancer Biology, NCI sponsored a workshop to explore the role of epitranscriptomic RNA modifications and tRNA processing in cancer progression. The workshop attendees spanned a scientific range including chemists, virologists, and RNA and cancer biologists. The goal of the workshop was to explore the interrelationships between RNA editing, epitranscriptomics, and RNA processing and the enzymatic pathways that regulate these activities in cancer initiation and progression. At the conclusion of the workshop, a general discussion focused on defining the major challenges and opportunities in this field, as well as identifying the tools, technologies, resources and community efforts required to accelerate research in this emerging area. PMID:25455629

  3. Antioxidants accelerate lung cancer progression in mice.

    PubMed

    Sayin, Volkan I; Ibrahim, Mohamed X; Larsson, Erik; Nilsson, Jonas A; Lindahl, Per; Bergo, Martin O

    2014-01-29

    Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. We show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by disrupting the ROS-p53 axis. Because somatic mutations in p53 occur late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production. PMID:24477002

  4. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  5. Chemokines in Cancer Development and Progression and Their Potential as Targeting Molecules for Cancer Treatment

    PubMed Central

    Mukaida, Naofumi; Sasaki, So-ichiro; Baba, Tomohisa

    2014-01-01

    Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer. PMID:24966464

  6. Post-Newtonian initial data with waves: progress in evolution

    NASA Astrophysics Data System (ADS)

    Kelly, B. J.; Tichy, W.; Zlochower, Y.; Campanelli, M.; Whiting, B.

    2010-06-01

    In Kelly et al (2007 Phys. Rev. D 76 024008), we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. These data satisfy the constraint equations to 2.5 post-Newtonian order, and contain a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving these data with a modern moving puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted.

  7. Post-Newtonian Initial Data with Waves: Progress in Evolution

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Tichy, Wolfgang; Zlochower, Yosef; Campanelli, Manuela; Whiting, Bernard

    2010-01-01

    "In Kelly \\et al [Phys. Rev. D, 76:024008, (2007)], we presented new binary black-hole initial data adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to 2.5 post-Newtonian order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. We report on progress in evolving this data with a modem moving-puncture implementation of the BSSN equations in several numerical codes. We discuss the effect of the new metric terms on junk radiation and continuity of physical radiation extracted."

  8. Hornerin Is Involved in Breast Cancer Progression

    PubMed Central

    Choi, Jinhyuk; Kim, Dong-Il; Kim, Jinkyoung; Kim, Baek-Hui

    2016-01-01

    Purpose The S100 gene family, which comprises over 20 members, including S100A1, S100A2, S100A8, S100A9, profilaggrin, and hornerin encodes low molecular weight calcium-binding proteins with physiological and pathological roles in keratinization. Recent studies have suggested a link between S100 proteins and human cancer progression. The purpose of the present study was to determine the expression levels of hornerin, S100A8, and S100A9 and evaluate their roles in the progression of invasive ductal carcinoma (IDC). Methods Seventy cases of ductal carcinoma in situ (DCIS), IDC, and metastatic carcinoma in lymph nodes (MCN) were included. Tissue microarrays were constructed from lesions of DCIS, IDC, and MCN from the same patients. Expression of hornerin, S100A8, and S100A9 was analyzed using immunohistochemistry. Results The expression of hornerin was associated with the estrogen receptor-negative (p=0.003) and the human epidermal growth factor receptor 2-positive (p=0.002) groups. The expression of S100A8 was associated with a higher pT stage (p=0.017). A significant (p<0.001) correlation between the expression of S100A9 and S100A8 was also found. The mean percentages of hornerin-positive tumor cells in DCIS, IDC, and MCN were 1.0%±3.3% (mean±standard deviation), 12.0%±24.0%, and 75.3%± 27.6%, respectively. The expression of hornerin significantly (p<0.001) increased with the progression of carcinoma. The mean levels of S100A8 and S100A9 in DCIS, IDC, and MCN were not significantly (p>0.050) different. The expression of hornerin increased in a stepwise manner (DCIScancer progression and malignant transformation from preinvasive lesions. PMID:27382389

  9. Autophagy in malignant transformation and cancer progression

    PubMed Central

    Galluzzi, Lorenzo; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Amaravadi, Ravi K; Baehrecke, Eric H; Cecconi, Francesco; Codogno, Patrice; Debnath, Jayanta; Gewirtz, David A; Karantza, Vassiliki; Kimmelman, Alec; Kumar, Sharad; Levine, Beth; Maiuri, Maria Chiara; Martin, Seamus J; Penninger, Josef; Piacentini, Mauro; Rubinsztein, David C; Simon, Hans-Uwe; Simonsen, Anne; Thorburn, Andrew M; Velasco, Guillermo; Ryan, Kevin M; Kroemer, Guido

    2015-01-01

    Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy. PMID:25712477

  10. Towards Predictive Stochastic Dynamical Modeling of Cancer Genesis and Progression

    PubMed Central

    Ao, P.; Galas, D.; Hood, L.; Yin, L.; Zhu, X.M.

    2011-01-01

    Based on an innovative endogenous network hypothesis on cancer genesis and progression we have been working towards a quantitative cancer theory along the systems biology perspective. Here we give a brief report on our progress and illustrate that combing ideas from evolutionary and molecular biology, mathematics, engineering, and physics, such quantitative approach is feasible. PMID:20640781

  11. Progress of Photodynamic Therapy in Gastric Cancer

    PubMed Central

    Narahara, Hiroyuki; Otani, Toru; Okuda, Shigeru

    1999-01-01

    Progress of photodynamic therapy (PDT) in gastric cancer and the clinical outcome are described in this paper. (1) We included the whole lesion and a 5 mm margin in the field for irradiation. Marking by injection of India-ink showing the irradiation field was performed beforehand. (2) We established the standard light dose to be 90 J/cm2 for an argon dye laser and 60 J/cm2 for a pulse wave laser. (3) The size of cancerous lesion curable by PDT was expanded from 3 cm in diameter, i.e. 7 cm2 in area to 4 cm in diameter, i.e. 13 cm2 by employing a new excimer dye laser model, which could emit 4mJ/pulse with 80 Hz pulse frequency. (4) The depth of cancer invasion which could be treated by PDT was increased from about 4 mm, i.e. the superficial part of the submucosal layer (SM-1) to more than 10 mm in depth, i.e. the proper muscular layer. These improvements owe much to the pulse laser, the photodynamic action induced by which permits deeper penetration than that of a continuous wave laser. (5) We employed a side-viewing fiberscope for gastric PDT to irradiate the lesion from an angle of 90°. (6) We designed a simple cut quartz fiber for photoradiation with a spiral spring thickened toward the end. (7) We developed an endoscopic device for photoradiation in PDT which achieves accurate and efficient irradiation. As a result of these improvements a higher cure rate was obtained even with a lower light dose of irradiation. PMID:18493500

  12. The DACH/EYA/SIX gene network and its role in tumor initiation and progression.

    PubMed

    Liu, Yu; Han, Na; Zhou, Si; Zhou, Rong; Yuan, Xun; Xu, Hanxiao; Zhang, Cuntai; Yin, Tiejun; Wu, Kongming

    2016-03-01

    The functional abnormality of developmental genes is a common phenomenon in cancer initiation and progression. The retinal determination gene network (RDGN) is a key signal in Drosophila eye specification, and this conservative pathway is also required for the development of multiple organs in mammalian species. Recent studies demonstrated that aberrant expressions of RDGN components in vertebrates, mainly Dach, Six, and Eya, represent a novel tumor signal. RDGN regulates proliferation, apoptosis, tumor growth and metastasis through interactions with multiple signaling pathways in a co-ordinated fashion; Dach acts as a tumor suppressor, whereas Six and Eya function as oncogenes. Clinical analyses demonstrated that the expression levels of RDGN correlate with tumor stage, metastasis and survival, suggesting that combinational detection of this pathway might be used as a promising biomarker for the stratification of therapy and for the prediction of the prognosis of cancer patients. PMID:26096807

  13. Regulated lysosomal exocytosis mediates cancer progression

    PubMed Central

    Machado, Eda; White-Gilbertson, Shai; van de Vlekkert, Diantha; Janke, Laura; Moshiach, Simon; Campos, Yvan; Finkelstein, David; Gomero, Elida; Mosca, Rosario; Qiu, Xiaohui; Morton, Christopher L.; Annunziata, Ida; d’Azzo, Alessandra

    2015-01-01

    Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf−⁄− mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance. PMID:26824057

  14. CXCL5 Promotes Prostate Cancer Progression1

    PubMed Central

    Begley, Lesa A; Kasina, Sathish; Mehra, Rohit; Adsule, Shreelekha; Admon, Andrew J; Lonigro, Robert J; Chinnaiyan, Arul M; Macoska, Jill A

    2008-01-01

    CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage) and nonimmune (epithelial, endothelial, and fibroblastic) cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate. PMID:18320069

  15. Role of cyclooxygenase-2 in gastric cancer development and progression

    PubMed Central

    Cheng, Jian; Fan, Xiao-Ming

    2013-01-01

    Although the incidence of gastric cancer has been declining in recent decades, it remains a major public health issue as the second leading cause of cancer death worldwide. In China, gastric cancer is still the main cause of death in patients with malignant tumors. Most patients are diagnosed at an advanced stage and mortality is high. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostanoid synthesis and plays an important role in the development and progression of gastric cancer. The expression of COX-2 in gastric cancer is upregulated and its molecular mechanisms have been investigated. Helicobacter pylori infection, tumor suppressor gene mutation and the activation of nuclear factor-kappa B may be responsible for the elevated expression of COX-2 in gastric cancer. The mechanisms of COX-2 in the development and progression of gastric cancer are probably through promoting the proliferation of gastric cancer cells, while inhibiting apoptosis, assisting angiogenesis and lymphatic metastasis, and participating in cancer invasion and immunosuppression. This review is intended to discuss, comment and summarize recent research progress on the role of COX-2 in gastric cancer development and progression, and elucidate the molecular mechanisms which might be involved in the carcinogenesis. PMID:24259966

  16. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma.

    PubMed

    Farazi, Paraskevi A; Glickman, Jonathan; Jiang, Shan; Yu, Alice; Rudolph, Karl Lenhard; DePinho, Ronald A

    2003-08-15

    Telomere maintenance and telomerase reactivation are near universal features of human hepatocellular carcinoma (HCC), yet the shorter telomeres and highly abnormal cytogenetic profiles of HCC suggest that telomere erosion and dysfunction may be operative during the formative stages of tumorigenesis. Previous studies have established that the cancer-enhancing or suppressing impact of telomere dysfunction is highly dependent on several parameters including cell type, tumor stage, and p53 status. Here, to understand better the pathogenetic role of telomere dysfunction in the initiation and progression in human HCC, we have used three mechanistically distinct liver cancer-prone model systems (urokinase plasminogen activator transgenic mice, carbon tetrachloride exposure, and diethylnistrosamine treatment) in the context of successive generations of telomerase-deficient mice null for the telomerase RNA component, mTERC. Across all of the HCC model systems, telomere dysfunction suppressed both the incidence and growth of HCC lesions, a trend that mirrored the level of intratumoral proliferative arrest and apoptosis. On the histological level, telomere dysfunction was associated with a significant increase in the number of early stage neoplastic lesions and a reciprocal decline in the occurrence of high-grade malignancies. These genetic data in the mouse indicate that telomere dysfunction exerts an opposing role in the initiation versus progression of HCC and provide a framework for understanding the intimate link among chronic liver disease, chromosomal instability, and increased HCC in humans. PMID:12941829

  17. Heparanase procoagulant activity in cancer progression.

    PubMed

    Nadir, Yona; Brenner, Benjamin

    2016-04-01

    Heparanase is an endo-β-D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix. This activity is strongly implicated in tumor metastasis and angiogenesis. We have earlier demonstrated that apart of its well characterized enzymatic activity, heparanase may also affect the hemostatic system in a non-enzymatic manner. We showed that heparanase up-regulated the expression of the blood coagulation initiator-tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we demonstrated that heparanase directly enhanced TF activity, which led to increased factor Xa production and subsequent activation of the coagulation system. In patients with cancer, increased heparanase procoagulant activity appeared to be a potential predictor of survival. We have also shown that JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor, a finding that may point to a new mechanism of thrombosis in JAK-2 positive patents with essential thrombocytosis. Recently, we found that the solvent accessible surface of TFPI-2 first Kunitz domain had a role in TF/heparanase complex inhibition. Peptides derived from TFPI-2 inhibitory site were shown to reduce coagulation activation induced by heparanase and to attenuate sepsis severity and tumor growth in a mouse model, without predisposing to significant bleeding tendency. These data imply that inhibition of heparanase procoagulant domain is potentially a good target for sepsis and cancer therapy. PMID:27067977

  18. The AURORA initiative for metastatic breast cancer.

    PubMed

    Zardavas, D; Maetens, M; Irrthum, A; Goulioti, T; Engelen, K; Fumagalli, D; Salgado, R; Aftimos, P; Saini, K S; Sotiriou, C; Campbell, P; Dinh, P; von Minckwitz, G; Gelber, R D; Dowsett, M; Di Leo, A; Cameron, D; Baselga, J; Gnant, M; Goldhirsch, A; Norton, L; Piccart, M

    2014-11-11

    Metastatic breast cancer is one of the leading causes of cancer-related mortality among women in the Western world. To date most research efforts have focused on the molecular analysis of the primary tumour to dissect the genotypes of the disease. However, accumulating evidence supports a molecular evolution of breast cancer during its life cycle, with metastatic lesions acquiring new molecular aberrations. Recognising this critical gap of knowledge, the Breast International Group is launching AURORA, a large, multinational, collaborative metastatic breast cancer molecular screening programme. Approximately 1300 patients with metastatic breast cancer who have received no more than one line of systemic treatment for advanced disease will, after giving informed consent, donate archived primary tumour tissue, as well as will donate tissue collected prospectively from the biopsy of metastatic lesions and blood. Both tumour tissue types, together with a blood sample, will then be subjected to next generation sequencing for a panel of cancer-related genes. The patients will be treated at the discretion of their treating physicians per standard local practice, and they will be followed for clinical outcome for 10 years. Alternatively, depending on the molecular profiles found, patients will be directed to innovative clinical trials assessing molecularly targeted agents. Samples of outlier patients considered as 'exceptional responders' or as 'rapid progressors' based on the clinical follow-up will be subjected to deeper molecular characterisation in order to identify new prognostic and predictive biomarkers. AURORA, through its innovative design, will shed light onto some of the unknown areas of metastatic breast cancer, helping to improve the clinical outcome of breast cancer patients. PMID:25225904

  19. The AURORA initiative for metastatic breast cancer

    PubMed Central

    Zardavas, D; Maetens, M; Irrthum, A; Goulioti, T; Engelen, K; Fumagalli, D; Salgado, R; Aftimos, P; Saini, K S; Sotiriou, C; Campbell, P; Dinh, P; von Minckwitz, G; Gelber, R D; Dowsett, M; Di Leo, A; Cameron, D; Baselga, J; Gnant, M; Goldhirsch, A; Norton, L; Piccart, M

    2014-01-01

    Metastatic breast cancer is one of the leading causes of cancer-related mortality among women in the Western world. To date most research efforts have focused on the molecular analysis of the primary tumour to dissect the genotypes of the disease. However, accumulating evidence supports a molecular evolution of breast cancer during its life cycle, with metastatic lesions acquiring new molecular aberrations. Recognising this critical gap of knowledge, the Breast International Group is launching AURORA, a large, multinational, collaborative metastatic breast cancer molecular screening programme. Approximately 1300 patients with metastatic breast cancer who have received no more than one line of systemic treatment for advanced disease will, after giving informed consent, donate archived primary tumour tissue, as well as will donate tissue collected prospectively from the biopsy of metastatic lesions and blood. Both tumour tissue types, together with a blood sample, will then be subjected to next generation sequencing for a panel of cancer-related genes. The patients will be treated at the discretion of their treating physicians per standard local practice, and they will be followed for clinical outcome for 10 years. Alternatively, depending on the molecular profiles found, patients will be directed to innovative clinical trials assessing molecularly targeted agents. Samples of outlier patients considered as ‘exceptional responders' or as ‘rapid progressors' based on the clinical follow-up will be subjected to deeper molecular characterisation in order to identify new prognostic and predictive biomarkers. AURORA, through its innovative design, will shed light onto some of the unknown areas of metastatic breast cancer, helping to improve the clinical outcome of breast cancer patients. PMID:25225904

  20. Metastatic prostate cancer initially presenting as chylothorax: A case report

    PubMed Central

    YANG, YU-JIN; SEO, MINJUNG; JEON, HEE-JEONG; NOH, JIN-HEE; PARK, SEOL HOON; CHOI, YUNSUK; JO, JAE-CHEOL; BAEK, JIN HO; KOH, SU-JIN; KIM, HAWK; MIN, YOUNG JOO

    2016-01-01

    Chylothorax is caused by disruption or obstruction of the thoracic duct, which results in leakage of chyle in the pleural space. The most common etiologies are malignancy and trauma. Among the causative malignancies, lymphoma is the most common, followed by primary lung cancer, mediastinal tumors, and other metastatic malignancies. Conversely, prostate cancer has rarely been reported as the cause of chylothorax. We herein report a case of metastatic prostate cancer initially presenting as chylothorax, with disappearance of the pleural effusion after the initiation of androgen deprivation therapy. Moreover, we also discuss the various rare manifestations of metastatic prostate cancer, including chylothorax. PMID:27313861

  1. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    SciTech Connect

    Dunbar, J.B.

    1994-05-01

    The US DOE funded this grant to the Medical University of South Carolina for a cancer and birth defects registry for an initial three year period which was completed as of April 29, 1994. While this Technical Progress Report is prepared principally to document the activities of year 03, it also summarizes the accomplishments of the first two years in order to put into perspective the energy and progress of the program over the entire three year funding cycle.

  2. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    PubMed Central

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  3. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome.

    PubMed

    Huang, Yi; Ma, Chunling; Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A; Hoft, Daniel F; Hsueh, Eddy C; Peng, Guangyong

    2015-07-10

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  4. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    PubMed

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies. PMID:26795349

  5. Progranulin: a novel regulator of gastrointestinal cancer progression

    PubMed Central

    DeMorrow, Sharon

    2013-01-01

    Progranulin (PGRN) is a soluble factor that regulates cell proliferation, motility and inflammation. A role for PGRN in the progression of ovarian and breast cancers is well established. However, the expression and subsequent consequences of PGRN on the progression of gastrointestinal tumors is not well recognized. This review briefly summarizes our current knowledge of the mechanisms of action of PGRN and highlights the role of this signaling molecule in various gastrointestinal cancers. PMID:24040621

  6. Fibroblasts, an inconspicuous but essential player in colon cancer development and progression

    PubMed Central

    Mukaida, Naofumi; Sasaki, Soichiro

    2016-01-01

    Tumor microenvironments have a crucial role in cancer initiation and progression, and share many molecular and pathological features with wound healing process. Unless treated, tumors, however, do not heal in contrast to wounds that heal within a limited time framework. Wounds heal in coordination of a myriad of types of cells, particularly endothelial cells, leukocytes, and fibroblasts. Similar sets of cells also contribute to cancer initiation and progression, and as a consequence, anti-cancer treatment strategies have been proposed and tested by targeting endothelial cells and/or leukocytes. Compared with endothelial cells and leukocytes, less attention has been paid to the roles of cancer-associated fibroblasts (CAFs), fibroblasts present in tumor tissues, because their heterogeneity hinders the elucidation on them at cellular and molecular levels. Here, we will discuss the origin of CAFs and their crucial roles in cancer initiation and progression, and the possibility to develop a novel type of anti-cancer treatment by manipulating the migration and functions of CAFs. PMID:27340347

  7. Cancer Progression and Tumor Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Blagoev, Krastan; Kalpathy-Cramer, Jayashree; Wilkerson, Julia; Sprinkhuizen, Sara; Song, Yi-Qiao; Bates, Susan; Rosen, Bruce; Fojo, Tito

    2013-03-01

    We present and analyze tumor growth data from prostate and brain cancer. Scaling the data from different patients shows that early stage prostate tumors show non-exponential growth while advanced prostate and brain tumors enter a stage of exponential growth. The scaling analysis points to the existence of cancer stem cells and/or massive apoptosis in early stage prostate cancer and that late stage cancer growth is not dominated by cancer stem cells. Statistical models of these two growth modes are discussed. Work supported by the National Science Foundation and the National Institutes of Health

  8. Optimizing initial chemotherapy for metastatic pancreatic cancer.

    PubMed

    Mantripragada, Kalyan C; Safran, Howard

    2016-05-01

    The two combination chemotherapy regimens FOLFIRINOX and gemcitabine plus nab-paclitaxel represent major breakthroughs in the management of metastatic pancreatic cancer. Both regimens showed unprecedented survival advantage in the setting of front-line therapy. However, their application for treatment of patients in the community is challenging because of significant toxicities, thus limiting potential benefits to a narrow population of patients. Modifications to the dose intensity or schedule of those regimens improve their tolerability, while likely retaining survival advantage over single-agent chemotherapy. Newer strategies to optimize these two active regimens in advanced pancreatic cancer are being explored that can help personalize treatment to individual patients. PMID:26939741

  9. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  10. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  11. The progression of gliomas is associated with cancer stem cell phenotype.

    PubMed

    Kong, Doo-Sik; Kim, Mi Hyun; Park, Woong-Yang; Suh, Yeon-Lim; Lee, Jung-Il; Park, Kwan; Kim, Jong Hyun; Nam, Do-Hyun

    2008-03-01

    Since cancer stem cells in brain tumors were introduced, there have been few explanations regarding the role of cancer stem cells in the progression of glioma. Here, we investigated their major molecular changes in tumor progression in relation to the stem cell subpopulation. Using 12 surgical specimens of gliomatosis cerebri (GC) in the early and advanced stages, we measured the expression of a panel of cell proliferation, microvessel density, microvessel areas, angiogenic factors and their associated receptors. In addition, expression of neural stem cell markers and associated cytokines were examined in tumor tissues by quantitative real-time RT-PCR. Comparing the biological characteristics between the initial infiltrating lesions (n=7) and progressed lesions (n=5), Sox2 and Musashi-1 were expressed in the tumor tissue at an early and a progressed state. Contrary to the early infiltrative phase representing angiogenesis-independent growth, GC with progression showed that nestin (+), PCNA (+) cells and total vessel area (angioectasia) were markedly increased with a higher expression of proangiogenic molecules and their receptors. These results suggest that tumor progression is mediated by cancer stem cells and cross-talk of cancer stem cells along with their environment and are closely associated with angiogenesis-dependent progression and -independent growth. PMID:18288395

  12. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    PubMed Central

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  13. Is human cytomegalovirus associated with breast cancer progression?

    PubMed Central

    2013-01-01

    Background It has been hypothesized that human cytomegalovirus (HCMV) may be associated with breast cancer progression. However, the role of HCMV infection in breast cancer remains controversial. We aimed to assess whether HCMV genes (UL122 and UL83) could be detected in breast carcinomas and reinvestigated their possible association with breast cancer progression. DNA from paraffin-embedded tissues was analyzed by real-time PCR. We investigated 20 fibroadenomas and 27 primary breast carcinomas (stages II, III, and IV). Findings Two carcinomas were positive for HCMV, one was positive for two TaqMan viral detection probes, and one was positive for a sole TaqMan viral detection probe (UL83), whereas the remainder of the samples was negative. Conclusions Samples studied showed no association between HCMV infection and breast cancer progression. PMID:23557440

  14. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer

    PubMed Central

    Bernstein, Carol; Bernstein, Harris

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. PMID:25987950

  15. Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer

    MedlinePlus

    ... Prevention Lung Cancer Screening Research Crizotinib Improves Progression-Free Survival in Some Patients with Advanced Lung Cancer ( ... starting treatment without their disease getting worse (progression-free survival), as assessed by radiologic review. Results Progression- ...

  16. Activation of Akt Signaling in Prostate Induces a TGFβ Mediated Restraint on Cancer Progression and Metastasis

    PubMed Central

    Bjerke, Glen A.; Yang, Chun-Song; Frierson, Henry F.; Paschal, Bryce M.; Wotton, David

    2014-01-01

    Mutations in the PTEN tumor suppressor gene are found in a high proportion of human prostate cancers, and in mice, Pten deletion induces high-grade prostate intra-epithelial neoplasia (HGPIN). However, progression from HGPIN to invasive cancer occurs slowly, suggesting that tumorigenesis is subject to restraint. We show that Pten deletion, or constitutive activation of the downstream kinase AKT, activates the transforming growth factor (TGF) β pathway in prostate epithelial cells. TGFβ signaling is known to play a tumor suppressive role in many cancer types, and reduced expression of TGFβ receptors correlates with advanced human prostate cancer. We demonstrate that in combination either with loss of Pten, or expression of constitutively active AKT1, inactivation of TGFβ signaling by deletion of the TGFβ type II receptor gene relieves a restraint on tumorigenesis. This results in rapid progession to lethal prostate cancer, including metastasis to lymph node and lung. In prostate epithelium, inactivation of TGFβ signaling alone is insufficient to initiate tumorigenesis, but greatly accelerates cancer progression. The activation of TGFβ signaling by Pten loss or AKT activation suggests that the same signaling events that play key roles in tumor initiation also induce the activity of a pathway that restrains disease progression. PMID:23995785

  17. Initiation of Massive Landsliding through Progressive Strength Reduction in Volcanoes

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Keith, T. C.; Kayen, R. E.; Iverson, N. R.; Iverson, R. M.; Brien, D. L.

    2011-12-01

    Landslides that sculpt deeply into volcano edifices can be extremely large. For example, the 1980 collapse of Mount St. Helens (MSH) volcano generated a 2.8 km3 debris-avalanche deposit from a series of massive retrogressive failures. Rock shear strength plays a fundamental role in such landsliding, yet pertinent data from modern volcano collapse surfaces are rare. The collapse crater at MSH affords access to rocks directly from the failure surface of the1980 massive landslide. We used a combination of field observations, laboratory strength tests designed to mimic conditions in the pre-collapse edifice, and quasi-3D slope-stability analyses to investigate the effects of progressive strength reduction, caused by pre-collapse deformation, on the instability of the volcano's edifice. Within the MSH crater, we observed that the basal shear zone from the outermost initial landslide block (Block I) of the 1980 failure formed primarily in pervasively shattered older dacitic dome rocks; shearing was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. We collected relatively undisturbed tube samples and disturbed bulk samples of the shattered dacite from near the slip surface of Block I. Using a triaxial testing device, equipped with high-pressure components to mimic overburden stresses in the pre-collapse edifice, we determined the quasi-static drained shear strength of the undisturbed samples. These tests indicated a peak angle of internal friction, φ, of 35° and a residual φ (after undergoing axial strain up to 20%) of 29°. We also determined residual shear strength using a specially constructed large-volume ring-shear apparatus that imposed large quasi-static shear strains exceeding 100%. These tests yielded a similar residual strength, with φ of 27°. Prior to its catastrophic collapse in 1980, the MSH edifice was deformed northward tens of meters by an intruding cryptodome, which likely caused shearing along a summit fault and

  18. A dietary restriction influences the progression but not the initiation of MSG-Induced nonalcoholic steatohepatitis.

    PubMed

    Fujimoto, Makoto; Tsuneyama, Koichi; Nakanishi, Yuko; Salunga, Thucydides L; Nomoto, Kazuhiro; Sasaki, Yoshiyuki; Iizuka, Seiichi; Nagata, Mitsunobu; Suzuki, Wataru; Shimada, Tsutomu; Aburada, Masaki; Shimada, Yutaka; Gershwin, M Eric; Selmi, Carlo

    2014-03-01

    The metabolic syndrome is a major worldwide health care issue and a dominant risk factor for cardiovascular disease. The liver manifestations of this syndrome include nonalcoholic fatty liver disease (NAFLD) and its progressive variant nonalcoholic steatohepatitis (NASH). Although significant research has been performed, the basic pathogenesis of NAFLD/NASH remains controversial and effective treatments are still unavailable. We have previously reported on a murine model of NASH induced by the neonatal injection of monosodium glutamate (MSG), which includes the clinical manifestations of central obesity, diabetes, hyperlipidemia, and ultimately liver inflammation, fibrosis, and cancer. Although MSG is considered a safe food additive, its administration to pregnant rats increases the voracity and growth hormone levels in the offspring. To further understand the biology of this model, we have investigated the influence of the calorie intake on these clinical manifestations by feeding animals a restrictive diet. MSG-treated animals fed a restrictive diet continue to manifest obesity and early stage NASH but have improvements in serum lipid profiles. At 12 months of age, mice had manifestations of obesity, whether animals were fed a restricted or control diet, but animals fed a restrictive diet had a reduction in the progression of NASH. In conclusion, MSG appears to be a critical factor in the initiation of obesity, whereas calorie intake may modulate the progression of disease. PMID:24588719

  19. Comprehensive cancer control: progress and accomplishments.

    PubMed

    Rochester, Phyllis W; Townsend, Julie S; Given, Leslie; Krebill, Hope; Balderrama, Sandra; Vinson, Cynthia

    2010-12-01

    The potential for Comprehensive Cancer Control (CCC) across the nation has been realized in the last decade with 69 Coalitions developing and implementing CCC plans. Many partners at all levels--national, state, jurisdictional, tribal and communities--have contributed to this success. This article details the contribution of these partners across these various levels, with a selection of the many activities contributing to this success. Consequently the cancer burden, although still of major importance, continues to be addressed in significant ways. Although there are future challenges, CCC coalitions continue to play an important role in addressing the cancer burden. PMID:21069448

  20. Neither Saints nor Sinners: Initial Reporting of the "Progressive" Case.

    ERIC Educational Resources Information Center

    Swain, Bruce M.

    1980-01-01

    Examines the circumstances of the 1979 "Progressive" case, in which the federal government quashed an article about hydrogen bomb production. Notes reportorial lapses that prevented a full and balanced account of the situation. (RL)

  1. PPARgamma, Bioactive Lipids, and Cancer Progression

    PubMed Central

    Robbins, Gregory T.; Nie, Daotai

    2012-01-01

    In this article we review the evolution of cancer research involving PPARgamma, including mechanisms, target genes, and clinical applications. For the last thirteen years, the effects of PPARgamma activity on tumor biology have been studied intensely. Most of this research has focused upon the potential for employing agonists of this nuclear receptor in cancer treatment. As a monotherapy such agonists have shown little success in clinical trials, while they have shown promise as components of combination treatments both in culture and in animal models. Other investigations have explored a possible role for PPARgamma as a tumor suppressor, and as an inducer of differentiation of cancer stem cells. Whereas early studies have yielded variable conclusions regarding the prevalence of PPARgamma mutations in cancer, the protein level of this receptor has been more recently identified as a significant prognostic marker. We predict that indicators of PPARgamma activity may also serve as predictive markers for tailoring treatments. PMID:22201838

  2. Time course of risk factors in cancer etiology and progression.

    PubMed

    Wei, Esther K; Wolin, Kathleen Y; Colditz, Graham A

    2010-09-10

    Patients with cancer increasingly ask what they can do to change their lifestyles and improve outcomes. Risk factors for onset of cancer may differ substantially from those that modify survival with implications for counseling. This review focuses on recent data derived from population-based studies of causes of cancer and of patients with cancer to contrast risk factors for etiology with those that impact survival. For different cancer sites, the level of information to inform the timing of lifestyle exposures and risk of disease onset or progression after diagnosis is often limited. For breast cancer, timing of some exposures, such as radiation, is particularly important. For other exposures, such as physical activity, higher levels may prevent onset and also improve survival. For colon cancer, study of precursor polyps has provided additional insight to timing. Extensive data indicate that physical activity reduces risk of colon cancer, and more limited data suggest that exposure after diagnosis improves survival. Dietary factors including folate and calcium may also reduce risk of onset. More limited data on prostate cancer point to obesity increasing risk of aggressive or advanced disease. Timing of change in lifestyle for change in risk of onset and for survival is important but understudied among patients with cancer. Counseling patients with cancer to increase physical activity and avoid weight gain may improve outcomes. Advice to family members on lifestyle may become increasingly important for breast and other cancers where family history is a strong risk factor. PMID:20644083

  3. Time Course of Risk Factors in Cancer Etiology and Progression

    PubMed Central

    Wei, Esther K.; Wolin, Kathleen Y.; Colditz, Graham A.

    2010-01-01

    Patients with cancer increasingly ask what they can do to change their lifestyles and improve outcomes. Risk factors for onset of cancer may differ substantially from those that modify survival with implications for counseling. This review focuses on recent data derived from population-based studies of causes of cancer and of patients with cancer to contrast risk factors for etiology with those that impact survival. For different cancer sites, the level of information to inform the timing of lifestyle exposures and risk of disease onset or progression after diagnosis is often limited. For breast cancer, timing of some exposures, such as radiation, is particularly important. For other exposures, such as physical activity, higher levels may prevent onset and also improve survival. For colon cancer, study of precursor polyps has provided additional insight to timing. Extensive data indicate that physical activity reduces risk of colon cancer, and more limited data suggest that exposure after diagnosis improves survival. Dietary factors including folate and calcium may also reduce risk of onset. More limited data on prostate cancer point to obesity increasing risk of aggressive or advanced disease. Timing of change in lifestyle for change in risk of onset and for survival is important but understudied among patients with cancer. Counseling patients with cancer to increase physical activity and avoid weight gain may improve outcomes. Advice to family members on lifestyle may become increasingly important for breast and other cancers where family history is a strong risk factor. PMID:20644083

  4. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    DOE PAGESBeta

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hung, Ming -Szu; Hsieh, David; Au, Alfred; Jablons, David M.; You, Liang

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods:more » Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.« less

  5. Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene

    SciTech Connect

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; Hung, Ming -Szu; Hsieh, David; Au, Alfred; Jablons, David M.; You, Liang

    2015-06-08

    Background: Lung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. Methods: Viral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. Results: Here we show that the use of a recombinant adenovirus expressing Cre-recombinase (“AdenoCre”) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. Conclusion: Our findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A.

  6. Putative cancer-initiating stem cells in cell culture models for molecular subtypes of clinical breast cancer

    PubMed Central

    TELANG, NITIN

    2015-01-01

    Cancer-initiating stem cells (CISC) represent a minor subpopulation of heterogeneous breast cancer. CISC are responsible for the acquired resistance to conventional chemoendocrine therapy and eventual relapse observed in patients with breast cancer. Certain molecular subtypes of clinical breast cancer that exhibit differential expression of genes coding for hormone and growth factor receptors differ in their response to conventional chemoendocrine therapy and targeted therapeutic inhibitors. Thus, the development of reliable cell culture models for CISC may provide a valuable experimental approach for the study of stem cell-targeted therapy for the treatment of breast cancer. The present study utilized optimized cell culture systems as experimental models for different molecular subtypes of clinical breast cancer, including luminal A, human epidermal growth factor receptor (HER)-2-enriched and triple negative breast cancer. Biomarker end points, including control of homeostatic growth, cancer risk and drug resistance, were quantitatively analyzed in the selected models. The results of the analyses indicated that, compared with the non-tumorigenic controls, the cell models representing the aforementioned molecular subtypes of clinical breast cancer exhibited aberrant cell cycle progression, downregulated cellular apoptosis and loss of control of homeostatic growth, as evidenced by hyperproliferation. Additionally, these models displayed persistent cancer risk, as indicated by their high incidence and frequency of anchorage-independent (AI) colony formation in vitro and their tumor development capacity in vivo. Furthermore, in the presence of maximum cytostatic drug concentrations, the drug-resistant phenotypes isolated from the parental drug-sensitive cell lines representing luminal A, HER-2-enriched and triple negative breast cancer exhibited an 11.5, 5.0 and 6.2 fold increase in cell growth, and a 5.6, 5.4 and 4.4 fold increase in the number of AI colonies

  7. Oct-4 is associated with gastric cancer progression and prognosis

    PubMed Central

    Jiang, Wen-Li; Zhang, Peng-Fei; Li, Guo-Feng; Dong, Jian-Hua; Wang, Xue-Song; Wang, Yuan-Yu

    2016-01-01

    Aim To investigate the clinical significance of Oct-4 in the development and progression of gastric cancer. Methods Immunohistochemistry was used to analyze Oct-4 expression in 412 gastric cancer cases. Oct-4 protein levels were upregulated in gastric cancer tissues compared with adjacent noncancerous tissues. Results Positive expression of Oct-4 correlated with age, depth of invasion, Lauren classification, lymph node metastasis, distant metastasis, and TNM stage. In stages I, II, and III, the 5-year survival rate of patients with high expression of Oct-4 was significantly lower than that in patients with low expression of Oct-4. In stage IV, Oct-4 expression did not correlate with the 5-year survival rate. Furthermore, multivariate analysis suggested that the depth of invasion, lymph node metastasis, distant metastasis, TNM stage, and upregulation of Oct-4 were independent prognostic factors of gastric cancer. Conclusion Oct-4 protein is a useful marker in predicting tumor progression and prognosis. PMID:26869797

  8. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis.

    PubMed

    Colombo, Michela; Mirandola, Leonardo; Reidy, Adair; Suvorava, Natallia; Konala, Venu; Chiaramonte, Raffaella; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Nugyen, Diane D; Dalhbeck, Scott; Cobos, Everardo; Figueroa, Jose A; Chiriva-Internati, Maurizio

    2015-03-01

    Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer. PMID:25901861

  9. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  10. Chemokines: key players in cancer progression and metastasis

    PubMed Central

    Singh, Rajesh; Lilladr, James W.; Singh, Shailesh

    2013-01-01

    Instructed cell migration is a fundamental component of various biological systems and is critical to the pathogenesis of many diseases including cancer. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. However, functional mechanisms of chemokine are not well implicit, which is crucial for designing new therapeutics to control tumor growth and metastasis. Multiple functions and mode of actions have been advocated for chemokines and their receptors in the progression of primary and secondary tumors. In this review, we have discussed current advances in understanding the role of the chemokines and their corresponding receptor in tumor progression and metastasis. PMID:21622291

  11. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids. PMID:16515531

  12. Neutrophils support lung colonization of metastasis-initiating breast cancer cells.

    PubMed

    Wculek, Stefanie K; Malanchi, Ilaria

    2015-12-17

    Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression. PMID:26649828

  13. Somatic LKB1 Mutations Promote Cervical Cancer Progression

    PubMed Central

    Wingo, Shana N.; Gallardo, Teresa D.; Akbay, Esra A.; Liang, Mei-Chi; Contreras, Cristina M.; Boren, Todd; Shimamura, Takeshi; Miller, David S.; Sharpless, Norman E.; Bardeesy, Nabeel; Kwiatkowski, David J.; Schorge, John O.; Wong, Kwok-Kin; Castrillon, Diego H.

    2009-01-01

    Human Papilloma Virus (HPV) is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA). Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77). LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence. PMID:19340305

  14. Recent Progress on Nutraceutical Research in Prostate Cancer

    PubMed Central

    Li, Yiwei; Ahmad, Aamir; Kong, Dejuan; Bao, Bin; Sarkar, Fazlul H.

    2014-01-01

    Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate Cancer (PCa) is most frequently diagnosed cancer and second leading cause of cancer-related death in men in US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3’-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to down-regulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC) related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug-resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival. PMID:24375392

  15. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention.

    PubMed

    Cavalieri, Ercole L; Rogan, Eleanor G

    2016-03-01

    Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens. PMID:26979321

  16. Tumor-promoting functions of transforming growth factor-β in progression of cancer

    PubMed Central

    2012-01-01

    Transforming growth factor-β (TGF-β) elicits both tumor-suppressive and tumor-promoting functions during cancer progression. Here, we describe the tumor-promoting functions of TGF-β and how these functions play a role in cancer progression. Normal epithelial cells undergo epithelial-mesenchymal transition (EMT) through the action of TGF-β, while treatment with TGF-β and fibroblast growth factor (FGF)-2 results in transdifferentiation into activated fibroblastic cells that are highly migratory, thereby facilitating cancer invasion and metastasis. TGF-β also induces EMT in tumor cells, which can be regulated by oncogenic and anti-oncogenic signals. In addition to EMT promotion, invasion and metastasis of cancer are facilitated by TGF-β through other mechanisms, such as regulation of cell survival, angiogenesis, and vascular integrity, and interaction with the tumor microenvironment. TGF-β also plays a critical role in regulating the cancer-initiating properties of certain types of cells, including glioma-initiating cells. These findings thus may be useful for establishing treatment strategies for advanced cancer by inhibiting TGF-β signaling. PMID:22111550

  17. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    NASA Astrophysics Data System (ADS)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S.; Baudement, Marie-Odile; Forné, Thierry; Lesne, Annick

    2016-08-01

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  18. Pancreatic Cancer: Progress in Systemic Therapy

    PubMed Central

    Perkhofer, Lukas; Ettrich, Thomas J.; Seufferlein, Thomas

    2014-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths in the Western world. Due to lack of specific symptoms and no accessible precursor lesions, primary diagnosis is commonly delayed, resulting in the identification of only 15-20% of patients with potentially curable disease. The major limiting factor is an already locally advanced or metastatic disease at the time of diagnosis. Consequently, systemic therapy forms the backbone of treatment strategy for the majority of patients. Summary A deeper understanding of the molecular characteristics of pancreatic cancer has led to the identification of several potential therapeutic targets. A variety of targeted therapies are currently under clinical evaluation as single agents or in combination with chemotherapy for PDAC. This review highlights the current state of chemotherapy in pancreatic cancer and provides an outlook on its future perspectives. Key Message This review focuses on the current chemotherapy regimens for the systemic treatment of PDAC. Practical Implications Various neoadjuvant approaches have been explored, including chemoradiation, chemotherapy followed by chemoradiation or intensified chemotherapy without defining a standard of care so far. The standard of care is gemcitabine or 5-fluorouracil. The oral fluoropyrimidine S-1 may be a promising new agent in this setting. For first-line treatment of metastatic pancreatic cancer, no targeted therapy has yet demonstrated clinical benefit apart from the combination of the tyrosine kinase inhibitor erlotinib plus gemcitabine. Recently, novel chemotherapeutic regimens such as FOLFIRINOX and gemcitabine plus nanoparticle albumin-bound paclitaxel have been introduced. Both combinations have proved to be superior to the standard gemcitabine regimen. For second-line treatment the combination of 5-fluorouracil/leucovorin and oxaliplatin yields improved results compared to best supportive care. PMID:26672477

  19. Wound healing and cancer progression in Opisthorchis viverrini associated cholangiocarcinoma.

    PubMed

    Botelho, Monica C; Alves, Helena; Richter, Joachim

    2016-07-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). It was shown previously that O. viverrini-secreted proteins accelerate wound resolution in human cholangiocytes. Recombinant Ov-GRN-1 (O. viverrini-derived gene encoding granulin-like growth factor) induced angiogenesis and accelerated mouse wound healing. Given the striking similarities of wound healing and cancer progression, here we discuss the major implications of this finding for an infection-induced cancer of major public health significance in the developing world. PMID:27130317

  20. Lineage factors and differentiation states in lung cancer progression.

    PubMed

    Cheung, W K C; Nguyen, D X

    2015-11-19

    Lung cancer encompasses a heterogeneous group of malignancies. Here we discuss how the remarkable diversity of major lung cancer subtypes is manifested in their transforming cell of origin, oncogenic dependencies, phenotypic plasticity, metastatic competence and response to therapy. More specifically, we review the increasing evidence that links this biological heterogeneity to the deregulation of cell lineage-specific pathways and the transcription factors that ultimately control them. As determinants of pulmonary epithelial differentiation, these poorly characterized transcriptional networks may underlie the etiology and biological progression of distinct lung cancers, while providing insight into innovative therapeutic strategies. PMID:25823023

  1. c-FOS suppresses ovarian cancer progression by changing adhesion

    PubMed Central

    Oliveira-Ferrer, L; Rößler, K; Haustein, V; Schröder, C; Wicklein, D; Maltseva, D; Khaustova, N; Samatov, T; Tonevitsky, A; Mahner, S; Jänicke, F; Schumacher, U; Milde-Langosch, K

    2014-01-01

    Background: C-Fos was initially described as oncogene, but was associated with favourable prognosis in ovarian cancer (OvCa) patients. The molecular and functional aspects underlying this effect are still unknown. Methods: Using stable transfectants of SKOV3 and OVCAR8 cells, proliferation, migration, invasion and apoptotic potential of c-FOS-overexpressing clones and controls were compared. Adherence to components of the extracellular matrix was analysed in static assays, and adhesion to E-selectin, endothelial and mesothelial cells in dynamic flow assays. The effect of c-FOS in vivo was studied after intraperitoneal injection of SKOV3 clones into SCID mice, and changes in gene expression were determined by microarray analysis. Results: Tumour growth after injection into SCID mice was strongly delayed by c-FOS overexpression, with reduction of lung metastases and circulating tumour cells. In vitro, c-FOS had only weak influence on proliferation and migration, but was strongly pro-apoptotic. Adhesion to components of the extracellular matrix (collagen I, IV) and to E-selectin, endothelial and mesothelial cells was significantly reduced in c-FOS-overexpressing OvCa cells. This corresponds to deregulation of adhesion proteins and glycosylation enzymes in microarray analysis. Conclusion: In addition to its known pro-apoptotic effect, c-FOS might influence OvCa progression by changing the adhesion of OvCa cells to peritoneal surfaces. PMID:24322891

  2. 78 FR 44136 - Submission for OMB review; 30-day Comment Request: National Cancer Institute (NCI) Cancer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Cancer Institute (NCI) Cancer Nanotechnology Platform Partnership Scientific Progress Reports SUMMARY..., Center for Strategic Scientific Initiatives, Office of Cancer Nanotechnology Research, National Cancer... (NCI) Alliance for Nanotechnology in Cancer Platform Partnership Scientific Progress Reports,...

  3. Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo

    SciTech Connect

    Hashimoto, Kae; Morishige, Ken-ichirou . E-mail: mken@gyne.med.osaka-u.ac.jp; Sawada, Kenjiro; Ogata, Seiji; Tahara, Masahiro; Shimizu, Shoko; Sakata, Masahiro; Tasaka, Keiichi; Kimura, Tadashi

    2007-04-27

    Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.

  4. New Progress of Epigenetic Biomarkers in Urological Cancer

    PubMed Central

    Cao, Ziyi

    2016-01-01

    Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers. PMID:27594736

  5. New Progress of Epigenetic Biomarkers in Urological Cancer.

    PubMed

    Wu, Peng; Cao, Ziyi; Wu, Song

    2016-01-01

    Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers. PMID:27594736

  6. [Research progress of tumor infiltrating lymphocytes in breast cancer].

    PubMed

    Huang, Jiahui; Chen, Xiaosong; Shen, Kunwei

    2015-09-01

    Breast cancer is a heterogeneous disease. The formation and progression of tumor and the sensitivity to treatment differs from patient to patient. In addition to the widely used molecular subtype, novel markers are needed to better personalize the treatment of breast cancer. Tumor infiltrating lymphocyte (TIL) have been consistently documented in breast cancer lesions especially in triple negative and human epidermal growth factor receptor-2 positive breast cancer. Several clinical trials have revealed that TIL are associated with prognosis and can predict therapeutic efficacy of special therapy. TIL could be divided to different subtypes including CD8 + TIL, CD4 + TIL, cytotoxic T lymphocyte-associated antigen-4 + TIL, programmed death-1 + TIL. They play different roles in the process of anti-tumor immunity and can predict different prognosis. Screening out special TIL subtype which is well associated with prognosis and therapeutic efficacy and developing targeting immunotherapy can help to improve outcomes of breast cancer patients. PMID:26654152

  7. 76 FR 66932 - The National Cancer Institute (NCI) Announces the Initiation of a Public Private Industry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Initiation of a Public Private Industry Partnership on Translation of Nanotechnology in Cancer (TONIC) To Promote Translational Research and Development Opportunities of Nanotechnology-Based Cancer Solutions AGENCY: National Cancer Institute (NCI), Office of Cancer Nanotechnology Research (OCNR),...

  8. Vitamin D, intermediary metabolism and prostate cancer tumor progression

    PubMed Central

    Wang, Wei-Lin W.; Tenniswood, Martin

    2014-01-01

    Epidemiological data have demonstrated an inverse association between serum vitamin D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on prostate cancer biology and its utility for prevention of prostate cancer progression are not as well-defined. The data are often conflicting: some reports suggest that vitamin D3 induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA and miRNA expression, adding an additional layer of post-transcriptional regulation to the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient metabolic pathway that converts glucose to lactate for rapid energy generation, is a phenomenon common to many different types of cancer. This process supports cell proliferation and promotes cancer progression via alteration of glucose, glutamine and lipid metabolism. Prostate cancer is a notable exception to this general process since the metabolic switch that occurs early during malignancy is the reverse of the Warburg effect. This “anti-Warburg effect” is due to the unique biology of normal prostate cells that harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3 and androgen maintain normal prostate metabolism by blocking citrate oxidation. These data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D in prostate cancer and highlight the importance of understanding the crosstalk between these two signaling pathways. PMID:24860512

  9. Vitamin D, intermediary metabolism and prostate cancer tumor progression.

    PubMed

    Wang, Wei-Lin W; Tenniswood, Martin

    2014-01-01

    Epidemiological data have demonstrated an inverse association between serum vitamin D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on prostate cancer biology and its utility for prevention of prostate cancer progression are not as well-defined. The data are often conflicting: some reports suggest that vitamin D3 induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA and miRNA expression, adding an additional layer of post-transcriptional regulation to the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient metabolic pathway that converts glucose to lactate for rapid energy generation, is a phenomenon common to many different types of cancer. This process supports cell proliferation and promotes cancer progression via alteration of glucose, glutamine and lipid metabolism. Prostate cancer is a notable exception to this general process since the metabolic switch that occurs early during malignancy is the reverse of the Warburg effect. This "anti-Warburg effect" is due to the unique biology of normal prostate cells that harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3 and androgen maintain normal prostate metabolism by blocking citrate oxidation. These data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D in prostate cancer and highlight the importance of understanding the crosstalk between these two signaling pathways. PMID:24860512

  10. Genetic progression and the waiting time to cancer.

    PubMed

    Beerenwinkel, Niko; Antal, Tibor; Dingli, David; Traulsen, Arne; Kinzler, Kenneth W; Velculescu, Victor E; Vogelstein, Bert; Nowak, Martin A

    2007-11-01

    Cancer results from genetic alterations that disturb the normal cooperative behavior of cells. Recent high-throughput genomic studies of cancer cells have shown that the mutational landscape of cancer is complex and that individual cancers may evolve through mutations in as many as 20 different cancer-associated genes. We use data published by Sjöblom et al. (2006) to develop a new mathematical model for the somatic evolution of colorectal cancers. We employ the Wright-Fisher process for exploring the basic parameters of this evolutionary process and derive an analytical approximation for the expected waiting time to the cancer phenotype. Our results highlight the relative importance of selection over both the size of the cell population at risk and the mutation rate. The model predicts that the observed genetic diversity of cancer genomes can arise under a normal mutation rate if the average selective advantage per mutation is on the order of 1%. Increased mutation rates due to genetic instability would allow even smaller selective advantages during tumorigenesis. The complexity of cancer progression can be understood as the result of multiple sequential mutations, each of which has a relatively small but positive effect on net cell growth. PMID:17997597

  11. CCN6: a modulator of breast cancer progression.

    PubMed

    Leask, Andrew

    2016-06-01

    The expression of the CCN family of matricellular proteins is highly dysregulated in connective tissue pathologies such as fibrosis and highly metastatic cancers. Strategies targeting members of this family, especially CCN2, are under development as novel therapeutic approaches to highly metastatic cancers such as pancreatic cancer. In prior reports, the Kleer laboratory and colleagues have linked reduced expression of CCN6 (WISP3) with aggressive breast cancers. Loss of CCN6 was associated with elevated Akt phosphorylation and TAK1 activation. In a recent report, the same group reports that, by modulating Notch signaling, CCN6 can promote the maintenance of an epithelial phenotype and also reduce cancer cell migration and invasion, tumor initiation, and metastasis (Oncotarget in press DOI: 10.18632/oncotarget.7734 ). These results are consistent with the hypothesis that addition of CCN6 peptides may represent a novel, viable therapeutic approach to blocking aggressive breast cancers. PMID:27086280

  12. Progressing from Initially Ambiguous Functional Analyses: Three Case Examples

    ERIC Educational Resources Information Center

    Tiger, Jeffrey H.; Fisher, Wayne W.; Toussaint, Karen A.; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman [Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). "Toward a functional analysis of self-injury." "Journal of Applied Behavior Analysis, 27", 197-209…

  13. Education For All (EFA) - Fast Track Initiative Progress Report 30046

    ERIC Educational Resources Information Center

    World Bank Education Advisory Service, 2004

    2004-01-01

    Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…

  14. Abdominal pain as initial presentation of lung cancer

    PubMed Central

    Eisa, Naseem; Alhafez, Bishr; Alraiyes, Abdul Hamid; Alraies, M Chadi

    2014-01-01

    Isolated spleen metastasis (ISM) in general is very rare with a reported incidence of 2.3–7.1% for all solid cancers. Lung cancers rarely metastasise to the spleen. It is very atypical for ISM to be the initial presentation of lung cancer as well. In our case, a 55-year-old woman presented with a 3-week history of left-sided abdominal fullness and dull pain. Workup was remarkable for splenic mass that turns out to be adenocarcinoma with unknown primary tumour. Biopsy of the mass with immunohistochemistry and whole body position emission tomography scan was able to identify lung cancer as the primary tumour. The patient underwent splenectomy, wedge resection of the lung mass along with short-course of chemotherapy. She never had any recurrences since then. PMID:24835801

  15. Extracellular metabolic energetics can promote cancer progression.

    PubMed

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B; Tavazoie, Sohail F

    2015-01-29

    Colorectal cancer primarily metastasizes to the liver and globally kills over 600,000 people annually. By functionally screening 661 microRNAs (miRNAs) in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastasis, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  16. Extracellular Metabolic Energetics Can Promote Cancer Progression

    PubMed Central

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B.; Tavazoie, Sohail F.

    2014-01-01

    Summary Colorectal cancer primarily metastasizes to the liver and kills over 600,000 people annually. By functionally screening 661 miRNAs in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of extracellular phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastatic colonization, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  17. Molecular therapy of colorectal cancer: progress and future directions.

    PubMed

    Weng, Wenhao; Feng, Junlan; Qin, Huanlong; Ma, Yanlei

    2015-02-01

    Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy. PMID:24420815

  18. Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.

    PubMed

    Tabach, Yuval; Kogan-Sakin, Ira; Buganim, Yosef; Solomon, Hilla; Goldfinger, Naomi; Hovland, Randi; Ke, Xi-Song; Oyan, Anne M; Kalland, Karl-H; Rotter, Varda; Domany, Eytan

    2011-01-01

    Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification. PMID:21297939

  19. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer

    PubMed Central

    Buganim, Yosef; Solomon, Hilla; Goldfinger, Naomi; Hovland, Randi; Ke, Xi-Song; Oyan, Anne M.; Kalland, Karl-H.; Rotter, Varda; Domany, Eytan

    2011-01-01

    Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification. PMID:21297939

  20. Regulation of cancer progression by β-endorphin neuron.

    PubMed

    Sarkar, Dipak K; Murugan, Sengottuvelan; Zhang, Changqing; Boyadjieva, Nadka

    2012-02-15

    It is becoming increasingly clear that stressful life events can affect cancer growth and metastasis by modulating nervous, endocrine, and immune systems. The purpose of this review is to briefly describe the process by which stress may potentiate carcinogenesis and how reducing body stress may prevent cancer growth and progression. The opioid peptide β-endorphin plays a critical role in bringing the stress axis to a state of homeostasis. We have recently shown that enhancement of endogenous levels of β-endorphin in the hypothalamus via β-endorphin neuron transplantation suppresses stress response, promotes immune function, and reduces the incidence of cancer in rat models of prostate and breast cancers. The cancer-preventive effect of β-endorphin is mediated through the suppression of sympathetic neuronal function, which results in increased peripheral natural killer cell and macrophage activities, elevated levels of anti-inflammatory cytokines, and reduced levels of inflammatory cytokines. β-endorphin inhibition of tumor progression also involves alteration in the tumor microenvironment, possibly because of suppression of catecholamine and inflammatory cytokine production, which are known to alter DNA repair, cell-matrix attachments, angiogenic process, and epithelial-mesenchymal transition. Thus, β-endorphin cell therapy may offer some therapeutic value in cancer prevention. PMID:22287549

  1. Therapeutic Cancer Vaccines in Prostate Cancer: The Paradox of Improved Survival Without Changes in Time to Progression

    PubMed Central

    Madan, Ravi A.; Fojo, Tito; Dahut, William L.

    2010-01-01

    Therapeutic cancer vaccines represent a new class of agents in the treatment of cancer. Sipuleucel-T is an antigen-presenting cell–based vaccine that recently demonstrated a significant 4.8-month improvement in overall survival in advanced prostate cancer patients and was well tolerated. The findings of that study have been met with skepticism, primarily because the agent did not change initial disease progression and yet led to longer survival. Although the commonly accepted treatment paradigm suggests that treatments should initially decrease tumor volume, perhaps vaccines work differently. Vaccines may induce delayed responses not seen in the first few months of therapy or they may initiate a dynamic immune response that ultimately slows the tumor growth rate, resulting in longer survival. Subsequent therapies may also combine with the induced immune response, resulting in a combination that is more effective than conventional treatments alone. Also, other treatments may alter tumor-associated antigen expression, enhancing the immune response. Future trials are currently planned to investigate these hypotheses; however, the results of the sipuleucel-T vaccine in prostate cancer should not be dismissed. Results with another vaccine in prostate cancer are similar, perhaps suggesting a class effect. In a broader context, clinicians may need to reconsider how they measure success. Several agents have been approved that produce superior disease progression results, but do not affect overall survival. Given the toxicity and costs of cancer therapies, perhaps studies should put more weight on long-term survival endpoints than on short-term endpoints that may be less consequential. PMID:20798195

  2. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology.

    PubMed

    Vogelzang, Nicholas J; Benowitz, Steven I; Adams, Sylvia; Aghajanian, Carol; Chang, Susan Marina; Dreyer, Zoann Eckert; Janne, Pasi A; Ko, Andrew H; Masters, Greg A; Odenike, Olatoyosi; Patel, Jyoti D; Roth, Bruce J; Samlowski, Wolfram E; Seidman, Andrew D; Tap, William D; Temel, Jennifer S; Von Roenn, Jamie H; Kris, Mark G

    2012-01-01

    A message from ASCO'S President. It has been forty years since President Richard Nixon signed the National Cancer Act of 1971, which many view as the nation's declaration of the "War on Cancer." The bill has led to major investments in cancer research and significant increases in cancer survival. Today, two-thirds of patients survive at least five years after being diagnosed with cancer compared with just half of all diagnosed patients surviving five years after diagnosis in 1975. The research advances detailed in this year's Clinical Cancer Advances demonstrate that improvements in cancer screening, treatment, and prevention save and improve lives. But although much progress has been made, cancer remains one of the world's most serious health problems. In the United States, the disease is expected to become the nation's leading cause of death in the years ahead as our population ages. I believe we can accelerate the pace of progress, provided that everyone involved in cancer care works together to achieve this goal. It is this viewpoint that has shaped the theme for my presidential term: Collaborating to Conquer Cancer. In practice, this means that physicians and researchers must learn from every patient's experience, ensure greater collaboration between members of a patient's medical team, and involve more patients in the search for cures through clinical trials. Cancer advocates, insurers, and government agencies also have important roles to play. Today, we have an incredible opportunity to improve the quality of cancer care by drawing lessons from the real-world experiences of patients. The American Society of Clinical Oncology (ASCO) is taking the lead in this area, in part through innovative use of health information technology. In addition to our existing quality initiatives, ASCO is working with partners to develop a comprehensive rapid-learning system for cancer care. When complete, this system will provide physicians with personalized, real

  3. Cancer care. Cancer plan--progress report: must try even harder.

    PubMed

    Coombes, Rebecca

    2004-11-25

    Despite progress in some areas, major obstacle achieving a uniformly good service for cancer patients remain. PCTs' lack of expertise is holding back progress ending delays in diagnosis and treatment. SHAs need to be clearer with PCTs about the importance of meeting national targets. PMID:15597927

  4. The Role of Cytokines in Breast Cancer Development and Progression

    PubMed Central

    Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Palacios-Arreola, Margarita Isabel; Nava-Castro, Karen E.; Castro, Julieta Ivonne

    2015-01-01

    Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders. PMID:25068787

  5. Progress on Simulating the Initiation of Vacuum Insulator Flashover

    SciTech Connect

    Perkins, M P; Houck, T L; Javedani, J B; Vogtlin, G E; Goerz, D A

    2009-06-26

    Vacuum insulators are critical components in many pulsed power systems. The insulators separate the vacuum and non-vacuum regions, often under great stress due to high electric fields. The insulators will often flashover at the dielectric vacuum interface for electric field values much lower than for the bulk breakdown through the material. Better predictive models and computational tools are needed to enable insulator designs in a timely and inexpensive manner for advanced pulsed power systems. In this article we will discuss physics models that have been implemented in a PIC code to better understand the initiation of flashover. The PIC code VORPAL has been ran on the Linux cluster Hera at LLNL. Some of the important physics modules that have been implemented to this point will be discussed for simple angled insulators. These physics modules include field distortion due to the dielectric, field emission, secondary electron emission, insulator charging, and the effects of magnitude fields. In the future we will incorporate physics modules to investigate the effects of photoemission, electron stimulated desorption, and gas ionization. This work will lead to an improved understanding of flashover initiation and better computational tools for advanced insulator design.

  6. Progress in the Development of a Shock Initiation Model

    NASA Astrophysics Data System (ADS)

    Howe, Philip M.; Benson, David J.

    2004-07-01

    We used an Eulerian hydrocode to guide the development of an engineering model of shock initiation. The model in its current form has two types of hotspots- one from void collapse, and one from interactions at grain boundaries. The dependence of hotspot and bulk temperatures upon shock strength is estimated using a Gruneisen equation of state for the bulk solid, calibrated against measurements of reaction times for steady state detonation. Arrhenius kinetics are used to predict ignition times associated with hotspot temperatures. The hotspots contribute a small amount of energy to the shock front, thereby causing some shock front acceleration, and also serve to initiate erosive burning. The two erosive burn reactions that result from the two different types of hotspots compete to consume the material. The energy release rate resulting from the competition of these reactions was used as input to a method of characteristics code. This in turn was used to calculate particle velocity — time profiles at various simulated gauge locations. These calculated profiles were compared with experiment.

  7. Clinical trial designs for rare diseases: Studies developed and discussed by the International Rare Cancers Initiative

    PubMed Central

    Bogaerts, Jan; Sydes, Matthew R.; Keat, Nicola; McConnell, Andrea; Benson, Al; Ho, Alan; Roth, Arnaud; Fortpied, Catherine; Eng, Cathy; Peckitt, Clare; Coens, Corneel; Pettaway, Curtis; Arnold, Dirk; Hall, Emma; Marshall, Ernie; Sclafani, Francesco; Hatcher, Helen; Earl, Helena; Ray-Coquard, Isabelle; Paul, James; Blay, Jean-Yves; Whelan, Jeremy; Panageas, Kathy; Wheatley, Keith; Harrington, Kevin; Licitra, Lisa; Billingham, Lucinda; Hensley, Martee; McCabe, Martin; Patel, Poulam M.; Carvajal, Richard; Wilson, Richard; Glynne-Jones, Rob; McWilliams, Rob; Leyvraz, Serge; Rao, Sheela; Nicholson, Steve; Filiaci, Virginia; Negrouk, Anastassia; Lacombe, Denis; Dupont, Elisabeth; Pauporté, Iris; Welch, John J.; Law, Kate; Trimble, Ted; Seymour, Matthew

    2015-01-01

    Background The past three decades have seen rapid improvements in the diagnosis and treatment of most cancers and the most important contributor has been research. Progress in rare cancers has been slower, not least because of the challenges of undertaking research. Settings The International Rare Cancers Initiative (IRCI) is a partnership which aims to stimulate and facilitate the development of international clinical trials for patients with rare cancers. It is focused on interventional – usually randomised – clinical trials with the clear goal of improving outcomes for patients. The key challenges are organisational and methodological. A multi-disciplinary workshop to review the methods used in ICRI portfolio trials was held in Amsterdam in September 2013. Other as-yet unrealised methods were also discussed. Results The IRCI trials are each presented to exemplify possible approaches to designing credible trials in rare cancers. Researchers may consider these for use in future trials and understand the choices made for each design. Interpretation Trials can be designed using a wide array of possibilities. There is no ‘one size fits all’ solution. In order to make progress in the rare diseases, decisions to change practice will have to be based on less direct evidence from clinical trials than in more common diseases. PMID:25542058

  8. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Palma, Giuseppe; Luciano, Antonio; Cuomo, Arturo; Arra, Claudio; Izzo, Francesco

    2015-01-01

    Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression. PMID:26064880

  9. CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    PubMed Central

    Alameda, J P; Fernández-Aceñero, M J; Moreno-Maldonado, R; Navarro, M; Quintana, R; Page, A; Ramírez, A; Bravo, A; Casanova, M L

    2011-01-01

    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies. PMID:21900959

  10. Dual role of GRK5 in cancer development and progression

    PubMed Central

    Gambardella, J; Franco, A; Giudice, C Del; Fiordelisi, A; Cipolletta, E; Ciccarelli, M; Trimarco, B; Iaccarino, G; Sorriento, D

    2016-01-01

    GRK5 is a multifunctional protein that is able to move within the cell in response to various stimuli to regulate key intracellular signaling from receptor activation, on plasmamembrane, to gene transcription, in the nucleus. Thus, GRK5 is involved in the development and progression of several pathological conditions including cancer. Several reports underline the involvement of GRK5 in the regulation of tumor growth even if they appear controversial. Indeed, depending on its subcellular localization and on the type of cancer, GRK5 is able to both inhibit cancer progression, through the desensitization of GPCR and non GPCR-receptors (TSH, PGE2R, PDGFR), and induce tumor growth, acting on non-receptor substrates (p53, AUKA and NPM1). All these findings suggest that targeting GRK5 could be an useful anti-cancer strategy, for specific tumor types. In this review, we will discuss the different effects of this kinase in the induction and progression of tumorigenesis, the molecular mechanisms by which GRK5 exerts its effects, and the potential therapeutic strategies to modulate them. PMID:27326393

  11. The role of MT2-MMP in cancer progression

    SciTech Connect

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-03-05

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  12. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test. PMID:26383164

  14. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo

    PubMed Central

    Kuang, Yi; Du, Xuewen; Zhou, Jie; Xu, Bing

    2014-01-01

    The recent discovery of the inverse comorbidity between cancer and Alzheimer’s disease implies that one may use amyloids to inhibit tumors. During the conversion of a dipeptide segment (Phe-Phe) in β-amyloid into a supramolecular hydrogelator, we obtained a small molecule (1) that can self-assembly into nanofibrils via multiple intermolecular hydrogen bonding and aromatic-aromatic interactions. Interestingly, while the monomers of 1 are innocuous, the nanofibrils formed by 1 can selectively inhibit the growth of glioblastoma cells over neuronal cells. To further assess the potential of this small molecular nanofibrils as anti-cancer agent, we exam the biological activity of the nanofibrils and demonstrate that the nanofibrils of 1 efficiently inhibit the progression of cancer cells (e.g., HeLa cells) both in cell assays and on xenograft mice model. This work suggests that nanofibrils derived from core motif of amyloid are effective agents for inhibiting cancer progression. Thus, this work contributes to a new approach that uses supramolecular nanofibrils as de novo molecular amyloids for inhibiting the growth of cancer cells. PMID:24574174

  15. Progress and remaining challenges for cancer control in Latin America and the Caribbean.

    PubMed

    Strasser-Weippl, Kathrin; Chavarri-Guerra, Yanin; Villarreal-Garza, Cynthia; Bychkovsky, Brittany L; Debiasi, Marcio; Liedke, Pedro E R; Soto-Perez-de-Celis, Enrique; Dizon, Don; Cazap, Eduardo; de Lima Lopes, Gilberto; Touya, Diego; Nunes, Joāo Soares; St Louis, Jessica; Vail, Caroline; Bukowski, Alexandra; Ramos-Elias, Pier; Unger-Saldaña, Karla; Brandao, Denise Froes; Ferreyra, Mayra E; Luciani, Silvana; Nogueira-Rodrigues, Angelica; de Carvalho Calabrich, Aknar Freire; Del Carmen, Marcela G; Rauh-Hain, Jose Alejandro; Schmeler, Kathleen; Sala, Raúl; Goss, Paul E

    2015-10-01

    Cancer is one of the leading causes of mortality worldwide, and an increasing threat in low-income and middle-income countries. Our findings in the 2013 Commission in The Lancet Oncology showed several discrepancies between the cancer landscape in Latin America and more developed countries. We reported that funding for health care was a small percentage of national gross domestic product and the percentage of health-care funds diverted to cancer care was even lower. Funds, insurance coverage, doctors, health-care workers, resources, and equipment were also very inequitably distributed between and within countries. We reported that a scarcity of cancer registries hampered the design of credible cancer plans, including initiatives for primary prevention. When we were commissioned by The Lancet Oncology to write an update to our report, we were sceptical that we would uncover much change. To our surprise and gratification much progress has been made in this short time. We are pleased to highlight structural reforms in health-care systems, new programmes for disenfranchised populations, expansion of cancer registries and cancer plans, and implementation of policies to improve primary cancer prevention. PMID:26522157

  16. [The mechanisms of prostate cancer progression through androgen receptor].

    PubMed

    Goto, Yusuke; Sakamoto, Shinichi; Ichikawa, Tomohiko

    2016-01-01

    Androgen receptor(AR) has a critical role in prostate cancer(PCa) progression and targeting AR axis signaling by androgen deprivation therapy is a standard treatment for advanced PCa. Recently, the role of AR even in castration-resistant PCa(CRPC) is well recognized and emerging evidence suggests survival advantages of treatment by targeting AR in CRPC. This review outlines AR functions that contribute to PCa progression, AR structural alterations and AR activation via intracrine, co-factors, and kinase pathways in CRPC. Finally, we describe about recently reported bipolar androgen therapy as a novel treatment for CRPC targeting AR. PMID:26793880

  17. Targeting Cancer-initiating Cells With Oncolytic Viruses

    PubMed Central

    Cripe, Timothy P; Wang, Pin-Yi; Marcato, Paola; Mahller, Yonatan Y; Lee, Patrick WK

    2009-01-01

    Recent studies in a variety of leukemias and solid tumors indicate that there is significant heterogeneity with respect to tumor-forming ability within a given population of tumor cells, suggesting that only a subpopulation of cells is responsible for tumorigenesis. These cells have been commonly referred to as cancer stem cells (CSCs) or cancer-initiating cells (CICs). CICs have been shown to be relatively resistant to conventional anticancer therapies and are thus thought to be responsible for disease relapse. As such, they represent a potentially critical therapeutic target. Oncolytic viruses are in clinical trials for cancer and kill cells through mechanisms different from conventional therapeutics. Because these viruses are not susceptible to the same pathways of drug or radiation resistance, it is important to learn whether CICs are susceptible to oncolytic virus infection. Here we review the available data regarding the ability of several different oncolytic virus types to target CICs for destruction. PMID:19672244

  18. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?

    PubMed Central

    Sabharwal, Simran S.; Schumacker, Paul T.

    2015-01-01

    Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy. PMID:25342630

  19. A new model of time scheme for progression of colorectal cancer

    PubMed Central

    2014-01-01

    Background tumourigenesis can be regarded as an evolutionary process, in which the transformation of a normal cell into a tumour cell involves a number of limiting genetic and epigenetic events. To study the progression process, time schemes have been proposed for studying the process of colorectal cancer based on extensive clinical investigations. Moreover, a number of mathematical models have been designed to describe this evolutionary process. These models assumed that the mutation rate of genes is constant during different stages. However, it has been pointed that the subsequent driver mutations appear faster than the previous ones and the cumulative time to have more driver mutations grows with the growing number of gene mutations. Thus it is still a challenge to calculate the time when the first mutation occurs and to determine the influence of tumour size on the mutation rate. Results In this work we present a general framework to remedy the shortcoming of existing models. Rather than considering the information of gene mutations based on a population of patients, we for the first time determine the values of the selective advantage of cancer cells and initial mutation rate for individual patients. The averaged values of doubling time and selective advantage coefficient determined by our model are consistent with the predictions made by the published models. Our calculation showed that the values of biological parameters, such as the selective advantage coefficient, initial mutation rate and cell doubling time diversely depend on individuals. Our model has successfully predicted the values of several important parameters in cancer progression, such as the selective advantage coefficient, initial mutation rate and cell doubling time. In addition, experimental data validated our predicted initial mutation rate and cell doubling time. Conclusions The introduced new parameter makes our proposed model more flexible to fix various types of information based on

  20. Erlotinib Resistance in Lung Cancer: Current Progress and Future Perspectives

    PubMed Central

    Tang, Joy; Salama, Rasha; Gadgeel, Shirish M.; Sarkar, Fazlul H.; Ahmad, Aamir

    2012-01-01

    Lung cancer is the most common cancer in the world. Despite modern advancements in surgeries, chemotherapies, and radiotherapies over the past few years, lung cancer still remains a very difficult disease to treat. This has left the death rate from lung cancer victims largely unchanged throughout the past few decades. A key cause for the high mortality rate is the drug resistance that builds up for patients being currently treated with the chemotherapeutic agents. Although certain chemotherapeutic agents may initially effectively treat lung cancer patients, there is a high probability that there will be a reoccurrence of the cancer after the patient develops resistance to the drug. Erlotinib, the epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitor, has been approved for localized as well as metastatic non-small cell lung cancer where it seems to be more effective in patients with EGFR mutations. Resistance to erlotinib is a common observation in clinics and this review details our current knowledge on the subject. We discuss the causes of such resistance as well as innovative research to overcome it. Evidently, new chemotherapy strategies are desperately needed in order to better treat lung cancer patients. Current research is investigating alternative treatment plans to enhance the chemotherapy that is already offered. Better insight into the molecular mechanisms behind combination therapy pathways and even single molecular pathways may help improve the efficacy of the current treatment options. PMID:23407898

  1. Dietary energy balance modulates ovarian cancer progression and metastasis

    PubMed Central

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A.; Morris, Robert T.; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R.; Rattan, Ramandeep

    2014-01-01

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer. PMID:25026276

  2. The wound healing, chronic fibrosis, and cancer progression triad

    PubMed Central

    Rybinski, Brad; Franco-Barraza, Janusz

    2014-01-01

    For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152

  3. Initial Progress in Developing the New ICSU World Data System

    NASA Astrophysics Data System (ADS)

    Minster, J. H.; Capitaine, N.; Clark, D. M.; Mokrane, M.

    2009-12-01

    On October 24, 2008, at the 29th International Council for Science (ICSU) General Assembly in Maputo, Mozambique, a decision to form a new ICSU World Data System (WDS) was taken. The new ICSU World Data System (WDS) will replace the framework within which the current ICSU World Data Centers (WDCs) and services of the Federation of Astronomical and Geophysical data-analysis Services (FAGS) are currently organized. The transition from the old organizations to the new WDS was facilitated by the ICSU ad-hoc WDS Transition Team which developed a white paper with recommendations for the new WDS Scientific Committee (WDS-SC). The WDS-SC was appointed by ICSU and reports to the Executive Board and the General Assembly of ICSU. The WDSSC met for the first time in October 2009. WDS-SC shall be the governing body of WDS with the following tasks: 1) to ensure that the WDS clearly supports ICSU’s mission and objectives by ensuring the long-term stewardship and provision of quality-assessed data and data services to the international science community and other stakeholders; 2) to develop, and keep under continuous review, an implementation plan for the creation of the WDS by incorporating the ICSU WDCs, the Services of FAGS and a wide range of other data centers and services; 3) to define agreed standards, establish and oversee the procedures for the review and accreditation of existing and new facilities; 4) to monitor the geographic and disciplinary scope of the system and to develop strategies for the recruitment and establishment of new WDS facilities as necessary; 5) to consider resource issues and provide guidance on funding mechanisms for facilities within WDS when appropriate; 6) to develop strong cooperative links with the ICSU Strategic Coordinating Committee on Information and Data (SCCID);and 7) to cooperate closely with the ICSU Committee on Data for Science and Technology (CODATA). WDS development will proceed from these initial concepts: history and legacy of

  4. Graphene as cancer theranostic tool: progress and future challenges.

    PubMed

    Orecchioni, Marco; Cabizza, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2015-01-01

    Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible

  5. Graphene as Cancer Theranostic Tool: Progress and Future Challenges

    PubMed Central

    Orecchioni, Marco; Cabizza, Roberto; Bianco, Alberto; Delogu, Lucia Gemma

    2015-01-01

    Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible

  6. Spinning Reserve From Hotel Load Response: Initial Progress

    SciTech Connect

    Kueck, John D; Kirby, Brendan J

    2008-11-01

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial

  7. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse.

    PubMed

    White, James P; Baynes, John W; Welle, Stephen L; Kostek, Matthew C; Matesic, Lydia E; Sato, Shuichi; Carson, James A

    2011-01-01

    Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6-19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. PMID:21949739

  8. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis.

    PubMed

    Ma, Huabin; Pan, Jin-Shui; Jin, Li-Xin; Wu, Jianfeng; Ren, Yan-Dan; Chen, Pengda; Xiao, Changchun; Han, Jiahuai

    2016-07-01

    The miR-17~92 microRNA (miRNA) cluster host gene is upregulated in a broad spectrum of human cancers including colorectal cancer (CRC). Previous studies have shown that miR-17~92 promotes tumorigenesis and cancer angiogenesis in some tumor models. However, its role in the initiation and progression of CRC remains unknown. In this study, we found that transgenic mice overexpressing miR-17~92 specifically in epithelial cells of the small and large intestines exhibited decreased tumor size and tumor angiogenesis in azoxymethane and dextran sulfate sodium salt (AOM-DSS)-induced CRC model as compared to their littermates control. Further study showed that miR-17~92 inhibited the progression of CRC via suppressing tumor angiogenesis through targeting multiple tumor angiogenesis-inducing genes, TGFBR2, HIF1α, and VEGFA in vivo and in vitro. Collectively, we demonstrated that miR-17~92 suppressed tumor progression by inhibiting tumor angiogenesis in a genetically engineered mouse model, indicating the presence of cellular context-dependent pro- and anti-cancer effects of miR-17~92. PMID:27080303

  9. Anoikis molecular pathways and its role in cancer progression.

    PubMed

    Paoli, Paolo; Giannoni, Elisa; Chiarugi, Paola

    2013-12-01

    Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways. PMID:23830918

  10. Chemokines and their receptors in lung cancer progression and metastasis*

    PubMed Central

    Cheng, Zeng-hui; Shi, Yu-xin; Yuan, Min; Xiong, Dan; Zheng, Jiang-hua; Zhang, Zhi-yong

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality around the world. Despite advancements in diagnosis, surgical techniques, and neoadjuvant chemoradiotherapy over the last decade, the mortality rate is still high and the 5-year survival is a dismal 15%. Fortunately, early detection by low-dose computed tomography (LDCT) scans has reduced mortality by 20%; yet, overall, 5-year-survival remains low at less than 20%. Therefore, in order to ameliorate this situation, a thorough understanding of the underlying molecular mechanisms is urgently needed. Chemokines and their receptors, crucial microenvironmental factors, play important roles in lung tumor genesis, progression, and metastasis, and exploring the mechanisms of this might bring new insights into early diagnosis and precisely targeted treatment. Consequently, this review will mainly focus on recent advancements on the axes of chemokines and their receptors of lung cancer. PMID:27143261

  11. Export of sphingosine-1-phosphate and cancer progression

    PubMed Central

    Takabe, Kazuaki; Spiegel, Sarah

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis, lymphangiogenesis, and immune response; all are critical processes of cancer progression. Although some important roles of intracellular S1P have recently been uncovered, the majority of its biological effects are known to be mediated via activation of five specific G protein-coupled receptors [S1P receptor (S1PR)1–S1PR5] located on the cell surface. Secretion of S1P produced inside cells by sphingosine kinases can then signal through these receptors in autocrine, paracrine, and/or endocrine manners, coined “inside-out” signaling of S1P. Numerous studies suggest that secreted S1P plays important roles in cancer progression; thus, understanding the mechanism by which S1P is exported out of cells, particularly cancer cells, is both interesting and important. Here we will review the current understanding of the transport of S1P out of cancer cells and its potential roles in the tumor microenvironment. PMID:24474820

  12. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients. PMID:26099173

  13. Tpl2 induces castration resistant prostate cancer progression and metastasis.

    PubMed

    Lee, Hye Won; Cho, Hyun Jung; Lee, Se Jeong; Song, Hye Jin; Cho, Hee Jin; Park, Min Chul; Seol, Ho Jun; Lee, Jung-Il; Kim, Sunghoon; Lee, Hyun Moo; Choi, Han Yong; Nam, Do-Hyun; Joo, Kyeung Min

    2015-05-01

    Progression to metastatic castration resistant prostate cancer (CRPC) is the major lethal pathway of prostate cancer (PC). Herein, we demonstrated that tumor progression locus 2 (Tpl2) kinase is the fundamental molecule provoking progression and metastasis of CRPC. Tpl2 upregulates CXCR4 and focal adhesion kinase (FAK) to activate CXCL12/CXCR4 and FAK/Akt signalling pathway. Consequently, epithelial-mesenchymal transition (EMT) and stemness of androgen depletion independent (ADI) PC cells are induced, which is dependent on the kinase activity of Tpl2. In vitro, proliferation, clonogenicity, migration, invasion and chemoresistance of ADI PC cells were enhanced by Tpl2. In vivo, Tpl2 overexpression and downregulation showed significant stimulatory and inhibitory effects on tumorigenic and metastatic potential of ADI PC cells, respectively. Moreover, the prognostic effects of Tpl2 and expressional correlation between Tpl2 and EMT-related molecules/CXCR4 were validated in clinical PC databases. Since Tpl2 exerts metastatic progression promoting activities in CRPC, Tpl2 could serve as a novel therapeutic target for metastatic CRPC. PMID:25274482

  14. Relating Single Cell Heterogeneity To Genotype During Cancer Progression

    NASA Astrophysics Data System (ADS)

    Rajaram, Satwik

    2013-03-01

    Progression of normal cells towards cancer is driven by a series of genetic changes. Traditional population-averaged measurements have found that cell signalling activities are increasingly altered during this progression. Despite the fact that cancer cells are known to be highly heterogeneous, the response of individual pathways to specific genetic changes remains poorly characterized at a single cell level. Do signalling alterations in a pathway reflect a shift of the whole population, or changes to specific subpopulations? Are alterations to pathways independent, or are cells with alterations in one pathway more likely to be abnormal in another due to crosstalk? We are building a computational framework that analyzes immunofluorescence microscopy images of cells to identify alterations in individual pathways at a single-cell level. A primary novelty of our approach is a ``change of basis'' that allows us to understand signalling in cancer cells in terms of the much better understood patterns of signalling in normal cells. This allows us to model heterogeneous populations of cancer cells as a mixture of distinct subpopulations, each with a specific combination of signalling pathways altered beyond the normal baseline. We used this framework to analyze human bronchial epithelial cell lines containing a series of genetic modifications commonly seen in lung cancer. We confirmed expected trends (such as a population-wide epithelial mesenchymal transition following the last of our series of modifications) and are presently studying the relation between the mutational profiles of cancer cells and pathway crosstalk. Our framework will help establish a more natural basis for future investigations into the phenotype-genotype relationship in heterogeneous populations.

  15. A role for STEAP2 in prostate cancer progression.

    PubMed

    Whiteland, Helen; Spencer-Harty, Samantha; Morgan, Claire; Kynaston, Howard; Thomas, David Hywel; Bose, Pradeep; Fenn, Neil; Lewis, Paul; Jenkins, Spencer; Doak, Shareen H

    2014-12-01

    Prostate adenocarcinoma is the second most frequent cancer worldwide and is one of the leading causes of male cancer-related deaths. However, it varies greatly in its behaviour, from indolent non-progressive disease to metastatic cancers with high associated mortality. The aim of this study was to identify predictive biomarkers for patients with localised prostate tumours most likely to progress to aggressive disease, to facilitate future tailored clinical treatment and identify novel therapeutic targets. The expression of 602 genes was profiled using oligoarrays, across three prostate cancer cell lines: CA-HPV-10, LNCaP and PC3, qualitatively identifying several potential prognostic biomarkers. Of particular interest was six transmembrane epithelial antigen of the prostate (STEAP) 1 and STEAP 2 which was subsequently analysed further in prostate cancer tissue samples following optimisation of an RNA extraction method from laser captured cells isolated from formalin-fixed paraffin-embedded biopsy samples. Quantitative analysis of STEAP1 and 2 gene expression were statistically significantly associated with the metastatic cell lines DU145 and PC3 as compared to the normal prostate epithelial cell line, PNT2. This expression pattern was also mirrored at the protein level in the cells. Furthermore, STEAP2 up-regulation was observed within a small patient cohort and was associated with those that had locally advanced disease. Subsequent mechanistic studies in the PNT2 cell line demonstrated that an over-expression of STEAP2 resulted in these normal prostate cells gaining an ability to migrate and invade, suggesting that STEAP2 expression may be a crucial molecule in driving the invasive ability of prostate cancer cells. PMID:25248617

  16. SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression

    PubMed Central

    Tiwari, R; Pandey, S K; Goel, S; Bhatia, V; Shukla, S; Jing, X; Dhanasekaran, S M; Ateeq, B

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world, and second leading cause of cancer deaths in the US. Although, anti-EGFR therapy is commonly prescribed for CRC, patients harboring mutations in KRAS or BRAF show poor treatment response, indicating an ardent demand for new therapeutic targets discovery. SPINK1 (serine peptidase inhibitor, Kazal type 1) overexpression has been identified in many cancers including the colon, lung, breast and prostate. Our study demonstrates the functional significance of SPINK1 in CRC progression and metastases. Stable knockdown of SPINK1 significantly decreases cell proliferation, invasion and soft agar colony formation in the colon adenocarcinoma WiDr cells. Conversely, an increase in these oncogenic phenotypes was observed on stimulation with SPINK1-enriched conditioned media (CM) in multiple benign models such as murine colonic epithelial cell lines, MSIE and YAMC (SPINK3-negative). Mechanistically, SPINK1 promotes tumorigenic phenotype by activating phosphatidylinositol 3-kinase (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways, and the SPINK1-positive WiDr cells are sensitive to AKT and MEK inhibitors. Importantly, SPINK1 silencing mediated upregulation of various Metallothionein isoforms, considered as tumor suppressors in CRC, confer sensitivity to doxorubicin, which strengthens the rationale for using the combinatorial treatment approach for the SPINK1-positive CRC patients. Furthermore, in vivo studies using chicken chorioallantoic membrane assay, murine xenograft studies and metastasis models further suggest a pivotal role of SPINK1 in CRC progression and metastasis. Taken together, our study demonstrates an important role for the overexpressed SPINK1 in CRC disease progression, a phenomenon that needs careful evaluation towards effective therapeutic target development. PMID:26258891

  17. Differential remodeling of extracellular matrices by breast cancer initiating cells.

    PubMed

    Raja, Anju M; Xu, Shuoyu; Zhuo, Shuangmu; Tai, Dean C S; Sun, Wanxin; So, Peter T C; Welsch, Roy E; Chen, Chien-Shing; Yu, Hanry

    2015-10-01

    Cancer initiating cells (CICs) have been the focus of recent anti-cancer therapies, exhibiting strong invasion capability via potentially enhanced ability to remodel extracellular matrices (ECM). We have identified CICs in a human breast cancer cell line, MX-1, and developed a xenograft model in SCID mice. We investigated the CICs' matrix-remodeling effects using Second Harmonic Generation (SHG) microscopy to identify potential phenotypic signatures of the CIC-rich tumors. The isolated CICs exhibit higher proliferation, drug efflux and drug resistant properties in vitro; were more tumorigenic than non-CICs, resulting in more and larger tumors in the xenograft model. The CIC-rich tumors have less collagen in the tumor interior than in the CIC-poor tumors supporting the idea that the CICs can remodel the collagen more effectively. The collagen fibers were preferentially aligned perpendicular to the CIC-rich tumor boundary while parallel to the CIC-poor tumor boundary suggesting more invasive behavior of the CIC-rich tumors. These findings would provide potential translational values in quantifying and monitoring CIC-rich tumors in future anti-cancer therapies. CIC-rich tumors remodel the collagen matrix more than CIC-poor tumors. PMID:25597396

  18. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    PubMed

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  19. Cancer-associated mesenchymal stem cells aggravate tumor progression

    PubMed Central

    Kudo-Saito, Chie

    2015-01-01

    Mesenchymal stem cells (MSCs) have both stemness and multi-modulatory activities on other cells, and the immunosuppressive and tumor-promotive mechanisms have been intensively investigated in cancer. The role of MSCs appears to be revealed in tumor aggravation, and targeting MSCs seems to be a promising strategy for treating cancer patients. However, it is still impractical in clinical therapy, since the precise MSCs are poorly understood in the in vivo setting. In previous studies, MSCs were obtained from different sources, and were prepared by ex vivo expansion for a long term. The inconsistent experimental conditions made the in vivo MSCs obscure. To define the MSCs in the host is a priority issue for targeting MSCs in cancer therapy. We recently identified a unique subpopulation of MSCs increasing in mice and human with cancer metastasis. These MSCs are specifically expanded by metastatic tumor cells, and promote tumor progression and dissemination accompanied by immune suppression and dysfunction in the host, more powerfully than normal MSCs growing without interference of cancer. In this review, we summarize current knowledge of the role of MSCs in tumor aggravation, along with our new findings of the bizarre MSCs. PMID:25883937

  20. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    SciTech Connect

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-02-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  1. Cyr61 promotes breast tumorigenesis and cancer progression

    SciTech Connect

    Tsai, Miaw-Sheue; Bogart, Daphne F.; Castaneda, Jessica M.; Li, Patricia; Lupu, Ruth

    2002-01-16

    Cyr61, a member of the CCN family of genes, is an angiogenic factor. We have shown that it is overexpressed in invasive and metastatic human breast cancer cells and tissues. Here, we investigated whether Cyr61 is necessary and/or sufficient to bypass the ''normal'' estrogen (E2) requirements for breast cancer cell growth. Our results demonstrate that under E2-depleted condition, Cyr61 is sufficient to induce MCF-7 cells grow in the absence of E2. MCF-7 cells transfected with Cyr61 (MCF-7/Cyr61) became E2-independent but still E2-responsive. On the other hand, MCF-7/vector cells remain E2-dependent. MCF-7/Cyr61 cells acquire an antiestrogen-resistant phenotype, one of the most common clinical occurrences during breast cancer progression. MCF-7/Cyr61 cells are anchorage-independent and capable of forming Matrigel outgrowth patterns in the absence of E2. ERa expression in MCF-7/Cyr61 cells is decreased although still functional. Additionally, MCF-7/Cyr61 cells are tumorigenic in ovariectomized athymic nude mice. The tumors resemble human invasive carcinomas with increased vascularization and overexpression of vascular endothelial growth factor (VEGF). Our results demonstrate that Cyr61 is a tumor-promoting factor and a key regulator of breast cancer progression. This study provides evidence that Cyr61 is sufficient to induce E2-independence and anti-E2 resistance, and to promote invasiveness in vitro, and to induce tumorigenesis in vivo, all of which are characteristics of an aggressive breast cancer phenotype.

  2. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression

    PubMed Central

    Chan, Chia-Hsin; Morrow, John Kenneth; Li, Chien-Feng; Gao, Yuan; Jin, Guoxiang; Moten, Asad; Stagg, Loren J.; Ladbury, John E.; Cai, Zhen; Xu, Dazhi; Logothetis, Christopher J.; Hung, Mien-Chie; Zhang, Shuxing; Lin, Hui-Kuan

    2013-01-01

    Skp2 E3 ligase is overexpressed in numerous human cancers and plays a critical role in cell cycle progression, senescence, metabolism, cancer progression and metastasis. In the present study, we identified a specific Skp2 inhibitor using high-throughput in silico screening of large and diverse chemical libraries. This Skp2 inhibitor selectively suppresses Skp2 E3 ligase activity, but not activity of other SCF complexes. It also phenocopies the effects observed upon genetic Skp2 deficiency, such as suppressing survival, Akt-mediated glycolysis as well as triggering p53-independent cellular senescence. Strikingly, we discovered a critical function of Skp2 in positively regulating cancer stem cell populations and self-renewal ability through genetic and pharmacological approaches. Notably, Skp2 inhibitor exhibits potent anti-tumor activities in multiple animal models and cooperates with chemotherapeutic agents to reduce cancer cell survival. Our study thus provides pharmacological evidence that Skp2 is a promising target for restricting cancer stem cell and cancer progression. PMID:23911321

  3. Comprehensive nucleosome mapping of the human genome in cancer progression

    PubMed Central

    Druliner, Brooke R.; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M.; Dimalanta, Eileen T.; Stewart, Fiona J.; Boardman, Lisa; Dennis, Jonathan H.

    2016-01-01

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. PMID:26735342

  4. [Role of cancer stem cells in the progression and heterogeneity of melanoma].

    PubMed

    Széky, Balázs; Silló, Pálma; Fábián, Melinda; Mayer, Balázs; Kárpáti, Sarolta; Németh, Krisztián

    2016-08-01

    Over the past decade a rare cell population called cancer stem cells has been identified in both solid tumors and hematologic cancers. These cells are reminiscent of somatic and embryonic stem cells and play a critical role in the initiation and progression of malignancies. As all stem cells, they are able to undergo asymmetric cell division and hence renew themselves and create various other progenies with heterogenous phenotypes. A growing body of literature suggested that stem cell subpopulations contribute significantly to the growth and metastatic properties of melanoma. This review gives a comprehensive overview of the current literature on melanoma stem cells, with a special emphasis on the signaling pathways responsible for the homeostatic growth of melanocytes and the uncontrolled proliferation of melanoma cells. The importance of the local microenvironment are demonstrated through summarizing the role of various cell types, soluble factors and cell adhesion molecules in the progression of melanoma and the creation of treatment resistant cancer cell clones. Last but not least, the models of melanoma progression will be introduced and a variety of cellular markers will be presented that may be used to identify and therapeutically target melanoma. Orv. Hetil., 2016, 157(34), 1339-1348. PMID:27546799

  5. Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression

    PubMed Central

    Cammarota, Francesca; Laukkanen, Mikko O.

    2016-01-01

    The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes, cytokines, and various types of macromolecules comprising the extracellular matrix (ECM). The tumor stroma develops gradually in response to the needs of epithelial cancer cells during malignant progression initiating from increased local vascular permeability and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells, maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion, metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new strategies to overcome cancer treatment failure and relapse of the disease. PMID:26798356

  6. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells

    PubMed Central

    Scarlett, Uciane K.; Rutkowski, Melanie R.; Rauwerdink, Adam M.; Fields, Jennifer; Escovar-Fadul, Ximena; Baird, Jason; Cubillos-Ruiz, Juan R.; Jacobs, Ana C.; Gonzalez, Jorge L.; Weaver, John; Fiering, Steven

    2012-01-01

    We characterized the initiation and evolution of the immune response against a new inducible p53-dependent model of aggressive ovarian carcinoma that recapitulates the leukocyte infiltrates and cytokine milieu of advanced human tumors. Unlike other models that initiate tumors before the development of a mature immune system, we detect measurable anti-tumor immunity from very early stages, which is driven by infiltrating dendritic cells (DCs) and prevents steady tumor growth for prolonged periods. Coinciding with a phenotypic switch in expanding DC infiltrates, tumors aggressively progress to terminal disease in a comparatively short time. Notably, tumor cells remain immunogenic at advanced stages, but anti-tumor T cells become less responsive, whereas their enduring activity is abrogated by different microenvironmental immunosuppressive DCs. Correspondingly, depleting DCs early in the disease course accelerates tumor expansion, but DC depletion at advanced stages significantly delays aggressive malignant progression. Our results indicate that phenotypically divergent DCs drive both immunosurveillance and accelerated malignant growth. We provide experimental support for the cancer immunoediting hypothesis, but we also show that aggressive cancer progression after a comparatively long latency period is primarily driven by the mobilization of immunosuppressive microenvironmental leukocytes, rather than loss of tumor immunogenicity. PMID:22351930

  7. Effects of Progressive Muscle Relaxation Therapy in Colorectal Cancer Patients.

    PubMed

    Kim, Kyeng Jin; Na, Yeon Kyung; Hong, Hae Sook

    2016-08-01

    This study aimed to examine the effect of progressive muscle relaxation therapy (PMRT) on cortisol level, the Stress Arousal Checklist (SACL) score, blood pressure, and heart rate in colorectal cancer patients undergoing laparoscopic surgery. Forty-six patients were divided into control and experimental groups. Cortisol levels, blood pressure, and heart rate were measured before surgery and between 8:00 and 11:00 a.m. on the first, third, and fifth days after surgery. SACL score was measured before surgery and on the fifth day after surgery at the same time points. PMRT was performed twice a day for 5 days. Analyses of covariance with advanced covariate levels and t tests showed that PMRT helps colorectal cancer patients achieve a lower stress response and provides an important basis for stress control. PMID:26945016

  8. Checkpoint inhibition for colorectal cancer: progress and possibilities.

    PubMed

    Paul, Barry; O'Neil, Bert H; McRee, Autumn J

    2016-06-01

    Colorectal cancer (CRC) remains the third most common cause of cancer death in the USA. Despite an increase in the repertoire of treatment options available for CRC, median overall survival has plateaued at approximately 2.5 years. Strategies that engage the patient's native immune system to overcome checkpoint inhibition have proven to be promising in subsets of CRCs, specifically those with mismatch repair deficiency. Further studies are required to determine combinations of standard therapies with immunotherapy drugs and to discover the best biomarkers to predict response. This review provides insight into the progress made in treating patients with advanced CRC with immunotherapeutics and the areas that demand further research to make these drugs more effective in this patient population. PMID:27197538

  9. Role of the tumor microenvironment in regulating apoptosis and cancer progression.

    PubMed

    Yaacoub, Katherine; Pedeux, Remy; Tarte, Karin; Guillaudeux, Thierry

    2016-08-10

    Apoptosis is a gene-directed program that is engaged to efficiently eliminate dysfunctional cells. Evasion of apoptosis may be an important gate to tumor initiation and therapy resistance. Like any other developmental program, apoptosis can be disrupted by several genetic aberrations driving malignant cells into an uncontrolled progression and survival. For its sustained growth, cancer develops in a complex environment, which provides survival signals and rescues malignant cells from apoptosis. Recent studies have clearly shown a wide interaction between tumor cells and their microenvironment, confirming the influence of the surrounding cells on tumor expansion and invasion. These non-malignant cells not only intensify tumor cells growth but also upgrade the process of metastasis. The strong crosstalk between malignant cells and a reactive microenvironment is mediated by soluble chemokines and cytokines, which act on tumor cells through surface receptors. Disturbing the microenvironment signaling might be an encouraging approach for patient's treatment. Therefore, the ultimate knowledge of "tumor-microenvironment" interactions facilitates the identification of novel therapeutic procedures that mobilize cancer cells from their supportive cells. This review focuses on cancer progression mediated by the dysfunction of apoptosis and by the fundamental relationship between tumor and reactive cells. New insights and valuable targets for cancer prevention and therapy are also presented. PMID:27224890

  10. Tissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathway

    PubMed Central

    Zhou, Quan; Wu, Xiongyan; Chen, Xuehua; Li, Jianfang; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2016-01-01

    Gastric cancer (GC) is one of the most common tumors worldwide and involves extensive local tumor invasion, metastasis, and poor prognosis. Understanding mechanisms regulating progression of GC is necessary for developing effective therapeutic strategies. Tissue transglutaminase-2 (TG2), a multifunctional member of the transglutaminase family, has been shown to be critical for tumor initiation and progression. However, how TG2 promotes the progression of GC is unknown. We report that TG2 was highly expressed in GC tissues and positively associated with depth of tumor invasion and late TNM stage. With gain- and loss-of-function approaches, we observed that TG2 promoted GC cell proliferation, migration, invasion, as well as tumorigenesis and peritoneal metastasis in vivo. These events were associated with the ERK1/2 pathway activation and an ERK1/2 inhibitor (U0126) inhibited cell proliferation, migration, and invasion induced by overexpression of TG2. In summary, TG2 contributes to tumorigenesis and progression of GC by activating the ERK1/2 signaling pathway and is a potential therapeutic target of metastatic gastric cancer. PMID:26771235

  11. EGFR Mutation Positive Stage IV Non-Small-Cell Lung Cancer: Treatment Beyond Progression

    PubMed Central

    Van Assche, Katrijn; Ferdinande, Liesbeth; Lievens, Yolande; Vandecasteele, Katrien; Surmont, Veerle

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of death from cancer for both men and women. Chemotherapy is the mainstay of treatment in advanced disease, but is only marginally effective. In about 30% of patients with advanced NSCLC in East Asia and in 10–15% in Western countries, epidermal growth factor receptor (EGFR) mutations are found. In this population, first-line treatment with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib, or afatinib is recommended. The treatment beyond progression is less well-defined. In this paper, we present three patients, EGFR mutation positive, with local progression after an initial treatment with TKI. These patients were treated with local radiotherapy. TKI was temporarily stopped and restarted after radiotherapy. We give an overview of the literature and discuss the different treatment options in case of progression after TKI: TKI continuation with or without chemotherapy, TKI continuation with local therapy, alternative dosing or switch to next-generation TKI or combination therapy. There are different options for treatment beyond progression in EGFR mutation positive metastatic NSCLC, but the optimal strategy is still to be defined. Further research on this topic is ongoing. PMID:25538894

  12. When Urothelial Differentiation Pathways Go Wrong: Implications for Bladder Cancer Development and Progression

    PubMed Central

    DeGraff, David J.; Cates, Justin M.; Mauney, Joshua R.; Clark, Peter E.; Matusik, Robert; Adam, Rosalyn M.

    2016-01-01

    Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic

  13. Potential role of tumor microenvironment in the progression of oral cancer.

    PubMed

    Patil, Shankargouda; Rao, Roopa; Raj, Thirumal

    2015-03-01

    The stromal cells adjacent to the tumor including the fibroblasts, infammatory cells, lymphatic and vascular endothelial cells constitute the 'tumor microenvironment' (TM).(1) Recent in vivo and invitro studies have emphasized the role of stromal components on the growth, differentiation and invasiveness of the tumor cells. In addition, vascular, lymphatic or perineural invasion have proven to have independent prognostic value.(2) Despite the compelling evidence correlating the TM with the initiation and progression of cancer, our knowledge on the role of the genes mediating the various cellular interactions in the tumour stroma is limited.(2,3). PMID:26057928

  14. Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression

    PubMed Central

    2009-01-01

    Background It is well recognized that colorectal cancer does not frequently metastasize to bone. The aim of this retrospective study was to establish whether colorectal cancer ever bypasses other organs and metastasizes directly to bone and whether the presence of lung lesions is superior to liver as a better predictor of the likelihood and timing of bone metastasis. Methods We performed a retrospective analysis on patients with a clinical diagnosis of colon cancer referred for staging using whole-body 18F-FDG PET and CT or PET/CT. We combined PET and CT reports from 252 individuals with information concerning patient history, other imaging modalities, and treatments to analyze disease progression. Results No patient had isolated osseous metastasis at the time of diagnosis, and none developed isolated bone metastasis without other organ involvement during our survey period. It took significantly longer for colorectal cancer patients to develop metastasis to the lungs (23.3 months) or to bone (21.2 months) than to the liver (9.8 months). Conclusion: Metastasis only to bone without other organ involvement in colorectal cancer patients is extremely rare, perhaps more rare than we previously thought. Our findings suggest that resistant metastasis to the lungs predicts potential disease progression to bone in the colorectal cancer population better than liver metastasis does. PMID:19664211

  15. Osteoarthritis disease progression model using six year follow-up data from the osteoarthritis initiative.

    PubMed

    Passey, Chaitali; Kimko, Holly; Nandy, Partha; Kagan, Leonid

    2015-03-01

    The objective was to develop a quantitative model of disease progression of knee osteoarthritis over 6 years using the total WOMAC score from patients enrolled into the Osteoarthritis Initiative (OAI) study. The analysis was performed using data from the Osteoarthritis Initiative database. The time course of the total WOMAC score of patients enrolled into the progression cohort was characterized using non-linear mixed effect modeling in NONMEM. The effect of covariates on the status of the disease and the progression rate was investigated. The final model provided a good description of the experimental data using a linear progression model with a common baseline (19 units of the total WOMAC score). The WOMAC score decreased by 1.77 units/year in 89% of the population or increased by 1.74 units/year in 11% of the population. Multiple covariates were found to affect the baseline and the rate of progression, including BMI, sex, race, the use of pain medications, and the limitation in activity due to symptoms. A mathematical model to describe the disease progression of osteoarthritis in the studied population was developed. The model identified two sub-populations with increasing or decreasing total WOMAC score over time, and the effect of important covariates was quantified. PMID:25212288

  16. 48 CFR 32.503-3 - Initiation of progress payments and review of accounting system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... payments and review of accounting system. 32.503-3 Section 32.503-3 Federal Acquisition Regulations System... on Costs 32.503-3 Initiation of progress payments and review of accounting system. (a) For..., (2) possessed of an adequate accounting system and controls, and (3) in sound financial...

  17. Initial Progress of Children Identified with Disabilities in Michigan's Reading First Schools

    ERIC Educational Resources Information Center

    Katz, Lauren A.; Stone, C. Addison; Carlisle, Joanne F.; Corey, Douglas Lyman; Zeng, Ji

    2008-01-01

    This 2-year longitudinal study examined initial evidence of progress in reading for 1,512 children with and without identified speech-language and/or learning disabilities (LD-SLD) in the context of the explicit literacy instruction provided in Michigan's Reading First (RF)schools. The findings suggested that children with LD-SLD labels…

  18. Tumor-derived exosomes in cancer progression and treatment failure

    PubMed Central

    Shen, Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  19. Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment.

    PubMed

    Zhang, Pengcheng; Hu, Chunhua; Ran, Wei; Meng, Jia; Yin, Qi; Li, Yaping

    2016-01-01

    Treatments of high specificity are desirable for cancer therapy. Light-triggered nanotheranostics (LTN) mediated cancer therapy could be one such treatment, as they make it possible to visualize and treat the tumor specifically in a light-controlled manner with a single injection. Because of their great potential in cancer therapy, many novel and powerful LTNs have been developed, and are mainly prepared from photosensitizers (PSs) ranging from small organic dyes such as porphyrin- and cyanine-based dyes, semiconducting polymers, to inorganic nanomaterials such as gold nanoparticles, transition metal chalcogenides, carbon nanotubes and graphene. Using LTNs and localized irradiation in combination, complete tumor ablation could be achieved in tumor-bearing animal models without causing significant toxicity. Given their great advances and promising future, we herein review LTNs that have been tested in vivo with a highlight on progress that has been made in the past a couple of years. The current challenges faced by these LTNs are also briefly discussed. PMID:27217830

  20. Tumor-derived exosomes in cancer progression and treatment failure.

    PubMed

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  1. Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment

    PubMed Central

    Zhang, Pengcheng; Hu, Chunhua; Ran, Wei; Meng, Jia; Yin, Qi; Li, Yaping

    2016-01-01

    Treatments of high specificity are desirable for cancer therapy. Light-triggered nanotheranostics (LTN) mediated cancer therapy could be one such treatment, as they make it possible to visualize and treat the tumor specifically in a light-controlled manner with a single injection. Because of their great potential in cancer therapy, many novel and powerful LTNs have been developed, and are mainly prepared from photosensitizers (PSs) ranging from small organic dyes such as porphyrin- and cyanine-based dyes, semiconducting polymers, to inorganic nanomaterials such as gold nanoparticles, transition metal chalcogenides, carbon nanotubes and graphene. Using LTNs and localized irradiation in combination, complete tumor ablation could be achieved in tumor-bearing animal models without causing significant toxicity. Given their great advances and promising future, we herein review LTNs that have been tested in vivo with a highlight on progress that has been made in the past a couple of years. The current challenges faced by these LTNs are also briefly discussed. PMID:27217830

  2. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression?

    PubMed Central

    Petrosyan, Armen

    2015-01-01

    The Golgi apparatus-complex is a highly dynamic organelle which is considered the “heart” of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the “black reaction,” and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins. PMID:27064441

  3. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians.

    PubMed

    Van Cutsem, Eric; Verheul, Henk M W; Flamen, Patrik; Rougier, Philippe; Beets-Tan, Regina; Glynne-Jones, Rob; Seufferlein, Thomas

    2016-01-01

    The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner. PMID:27589804

  4. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases.

    PubMed

    Tabarés-Seisdedos, Rafael; Dumont, Nancy; Baudot, Anaïs; Valderas, Jose M; Climent, Joan; Valencia, Alfonso; Crespo-Facorro, Benedicto; Vieta, Eduard; Gómez-Beneyto, Manuel; Martínez, Salvador; Rubenstein, John L

    2011-06-01

    In the past 5 years, several leading groups have attempted to explain why individuals with Down's syndrome have a reduced risk of many solid tumours and an increased risk of leukaemia and testicular cancer. Niels Bohr, the Danish physicist, noted that a paradox could initiate progress. We think that the paradox of a medical disorder protecting against cancer could be formalised in a new model of inverse cancer morbidity in people with other serious diseases. In this Personal View, we review evidence from epidemiological and clinical studies that supports a consistently lower than expected occurrence of cancer in patients with Down's syndrome, Parkinson's disease, schizophrenia, diabetes, Alzheimer's disease, multiple sclerosis, and anorexia nervosa. Intriguingly, most comorbidities are neuropsychiatric or CNS disorders. We provide a brief overview of evidence indicating genetic and molecular connections between cancer and these complex diseases. Inverse comorbidity could be a valuable model to investigate common or related pathways or processes and test new therapies, but, most importantly, to understand why certain people are protected from the malignancy. PMID:21498115

  5. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer.

    PubMed

    Wu, Y-C; Tang, S-J; Sun, G-H; Sun, K-H

    2016-04-21

    In the tumor microenvironment, chemokine system has a critical role in tumorigenesis and metastasis. The acquisition of stem-like properties by cancer cells is involved in metastasis and drug resistance, which are pivotal problems that result in poor outcomes in patients with lung cancer. Patients with advanced lung cancer present high plasma levels of transforming growth factor-β1 (TGFβ1), which correlate with poor prognostic features. Therefore, TGFβ1 may be important in the tumor microenvironment, where chemokines are widely expressed. However, the role of chemokines in TGFβ1-induced tumor progression still remains unclear. In our study, TGFβ1 upregulated CXC chemokine receptor expression, migration, invasion, epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation in lung adenocarcinoma. We found that CXCR7 was the most upregulated chemokine receptor induced by TGFβ1. CXCR7 knockdown resulted in reduction of migration, invasion and EMT induced by TGFβ1, whereas CXCR4 knockdown did not reverse TGFβ1-promoted EMT. CXCR7 silencing significantly decreased cancer sphere-forming capacity, stem-like properties, chemoresistance and TGFβ1-induced CSC tumor initiation in vivo. In clinical samples, high TGFβ1 and CXCR7 expression was significantly associated with the late stages of lung adenocarcinoma. Moreover, TGFβ1 and CXCR7 coexpression was positively correlated with the CSC marker, CD44, which is associated with lymph node metastasis. Besides, patients with high expression of both CXCR7 and TGFβ1 presented a significantly worse survival rate. These results suggest that the TGFβ1-CXCR7 axis may be a prognostic marker and may provide novel targets for combinational therapies to be used in the treatment of advanced lung cancer in the future. PMID:26212008

  6. Progress in the mechanism and drug development of castration-resistant prostate cancer.

    PubMed

    Zuo, Minzan; Xu, Xi; Li, Tinghan; Ge, Raoling; Li, Zhiyu

    2016-05-01

    Although prostate cancer can initially respond to androgen deprivation therapy, it will inevitably relapse and switch to a castration-resistant state. The progress in understanding the mechanism of castration-resistant prostate cancer (CRPC) has led to the evolution of novel agents, including sipuleucel-T as an immunomodulant agent, enzalutamide as an androgen receptor antagonist, docetaxel as a chemotherapeutic agent and radium-223 as a radiopharmaceutical agent. In this review, we discuss the main mechanisms of CRPC and the development of promising agents along with the novel therapies in the clinic. New therapeutic challenges remain, such as the identification of predictive biomarkers and the optimal combinations of agents. Future investigation is still needed for a better understanding of CRPC. PMID:27149562

  7. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance

    PubMed Central

    Gabay, Meital; Li, Yulin; Felsher, Dean W.

    2014-01-01

    The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the “hallmark” features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be “addicted” to MYC because of both tumor cell–intrinsic, cell-autonomous and host-dependent, immune cell–dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis. PMID:24890832

  8. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer.

    PubMed

    Zhang, Yi; Wang, Zhi; Yu, Jin; Shi, Jia zhong; Wang, Chun; Fu, Wei hua; Chen, Zhi wen; Yang, Jin

    2012-09-01

    A variety of cancer stem-like cells (CSCs) have been shown to be responsible for cancer tumorigenicity, relapse and metastasis. Despite several reports demonstrating the presence of CSCs in human bladder cancer, their identities are still under debate, and few studies have examined their roles in cisplatin resistance and related tumor progression. In this study, a subpopulation of CSCs was enriched following cisplatin selection from the bladder cell line T24. The cisplatin-resistant T24 cells displayed a greater self-renewal capacity as demonstrated by higher levels of sphere formation and stem cell marker expression, contained a larger proportion of side population cells and exhibited higher tumorigenicity. They also possessed epithelial-mesenchymal transition characteristics. Furthermore, a strong correlation between the levels of Bmi1 and Nanog expression and the degree of malignancy of urothelial cell carcinomas tissues was observed. We provide the first direct evidence that CSC-like cells exist in the population of cisplatin-resistant bladder cancer cells and may play a role in the progression and drug resistance of bladder cancer. PMID:22343321

  9. Role of MTA1 in Cancer Progression and Metastasis

    PubMed Central

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-01-01

    The MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA-repair, angiogenesis, hormone-independence, metastasis and therapeutic resistance. MTA proteins control a spectrum of cancer promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins. In the case of MTA1, these functions are manifested through post-translational modifications of MTA1 in response to upstream signals, MTA1 interaction with binding proteins and the expression of target gene products. The MTA1 coregulator interacts with nucleosomes through modified histones and is an integrator of extracellular signaling and gene activator. Studies delineating the molecular basis of dual functionality of MTA1 reveal that the functions of MTA1-chromatin modifying complexes in the context of target gene regulation are dynamic in nature. The nature and targets of MTA1-chromatin modifying complexes are also governed by the dynamic plasticity of the nucleosome landscape as well as kinetics of activation and inactivation of enzymes responsible for post-translational modifications on the MTA1 protein. These broadly applicable functions also explain why MTA1 may be a ‘hub’ gene, whose current understanding is limited to selective influences on gene with roles in cancer but further research may reveal a more global influence. Because the deregulation of enzymes and their substrates with roles in MTA1-biology is not necessarily limited to cancer, we speculate that the lessons from MTA1 as a prototype dual master coregulator will be relevant for other human diseases. In this context, the concept of the dynamic nature of corepressor versus coactivator complexes and the MTA1 proteome as a function of time to signal is likely to be generally applicable to other multi-proteins regulatory complexes

  10. Aberrant nocturnal cortisol and disease progression in women with breast cancer.

    PubMed

    Zeitzer, Jamie M; Nouriani, Bita; Rissling, Michelle B; Sledge, George W; Kaplan, Katherine A; Aasly, Linn; Palesh, Oxana; Jo, Booil; Neri, Eric; Dhabhar, Firdaus S; Spiegel, David

    2016-07-01

    While a relationship between disruption of circadian rhythms and the progression of cancer has been hypothesized in field and epidemiologic studies, it has never been unequivocally demonstrated. We determined the circadian rhythm of cortisol and sleep in women with advanced breast cancer (ABC) under the conditions necessary to allow for the precise measurement of these variables. Women with ABC (n = 97) and age-matched controls (n = 24) took part in a 24-h intensive physiological monitoring study involving polysomnographic sleep measures and high-density plasma sampling. Sleep was scored using both standard clinical metrics and power spectral analysis. Three-harmonic regression analysis and functional data analysis were used to assess the 24-h and sleep-associated patterns of plasma cortisol, respectively. The circadian pattern of plasma cortisol as described by its timing, timing relative to sleep, or amplitude was indistinguishable between women with ABC and age-matched controls (p's > 0.11, t-tests). There was, however, an aberrant spike of cortisol during the sleep of a subset of women, during which there was an eightfold increase in the amount of objectively measured wake time (p < 0.004, Wilcoxon Signed-Rank). This cortisol aberration was associated with cancer progression such that the larger the aberration, the shorter the disease-free interval (time from initial diagnosis to metastasis; r = -0.30, p = 0.004; linear regression). The same aberrant spike was present in a similar percent of women without ABC and associated with concomitant sleep disruption. A greater understanding of this sleep-related cortisol abnormality, possibly a vulnerability trait, is likely important in our understanding of individual variation in the progression of cancer. PMID:27314577

  11. The effect of vascular endothelial growth factor in the progression of bladder cancer and diabetic retinopathy

    PubMed Central

    Aldebasi, Yousef H; Rahmani, Arshad H; Khan, Amjad A; Aly, Salah Mesalhy

    2013-01-01

    Bladder cancer and diabetic retinopathy is a major public health and economical burden worldwide. Despite its high prevalence, the molecular mechanisms that induce or develop bladder carcinomas and diabetic retinopathy progression are poorly understood but it might be due to the disturbance in balance between angiogenic factors such as VEGF and antiangiogenic factors such as pigment epithelium derived growth factor. VEGF is one of the important survival factors for endothelial cells in the process of normal physiological and abnormal angiogenesis and induce the expression of antiapoptotic proteins in the endothelial cells. It is also the major initiator of angiogenesis in cancer and diabetic retinopathy, where it is up-regulated by oncogenic expression and different type of growth factors. The alteration in VEGF and VEGF receptors gene and overexpression, determines a diseases phenotype and ultimately the patient’s clinical outcome. However, expressional and molecular studies were made on VEGF to understand the exact mechanism of action in the genesis and progression of bladder carcinoma and diabetic retinopathy , but still how VEGF mechanism involve in such type of disease progression are not well defined. Some other factors also play a significant role in the process of activation of VEGF pathways. Therefore, further detailed analysis via molecular and therapeutic is needed to know the exact mechanisms of VEGF in the angiogenesis pathway. The detection of these types of diseases at an early stage, predict how it will behave and act in response to treatment through regulation of VEGF pathways. The present review aimed to summarize the mechanism of alteration of VEGF gene pathways, which play a vital role in the development and progression of bladder cancer and diabetic retinopathy. PMID:23641300

  12. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  13. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    SciTech Connect

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  14. Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression.

    PubMed

    Weigert, Andreas; Mora, Javier; Sekar, Divya; Syed, Shahzad; Brüne, Bernhard

    2016-01-01

    Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence. PMID:27558823

  15. ZNF367 Inhibits Cancer Progression and Is Targeted by miR-195

    PubMed Central

    Jain, Meenu; Zhang, Lisa; Boufraqech, Myriem; Liu-Chittenden, Yi; Bussey, Kimberly; Demeure, Michael J.; Wu, Xiaolin; Su, Ling; Pacak, Karel; Stratakis, Constantine A.; Kebebew, Electron

    2014-01-01

    Background Several members of the zinc finger protein family have been recently shown to have a role in cancer initiation and progression. Zinc finger protein 367 (ZNF367) is a member of the zinc finger protein family and is expressed in embryonic or fetal erythroid tissue but is absent in normal adult tissue. Methodology/Principal Findings We show that ZNF367 is overexpressed in adrenocortical carcinoma, malignant pheochromocytoma/paraganglioma and thyroid cancer as compared to normal tissue and benign tumors. Using both functional knockdown and ectopic overexpression in multiple cell lines, we show that ZNF367 inhibits cellular proliferation, invasion, migration, and adhesion to extracellular proteins in vitro and in vivo. Integrated gene and microRNA expression analyses showed an inverse correlation between ZNF367 and miR-195 expression. Luciferase assays demonstrated that miR-195 directly regulates ZNF367 expression and that miR-195 regulates cellular invasion. Moreover, integrin alpha 3 (ITGA3) expression was regulated by ZNF367. Conclusions/Significance Our findings taken together suggest that ZNF367 regulates cancer progression. PMID:25047265

  16. Primary progressive aphasia as the initial manifestation of corticobasal degeneration. A "three in one " syndrome?

    PubMed

    Ioannides, Panos; Karacostas, Dimitris; Hatzipantazi, Maria; Ioannis, Milonas

    2005-01-01

    In 1994, the term "Pick complex" was proposed to indicate significant clinical and pathological overlapping between primary progressive aphasia, frontal lobe dementia and corticobasal degeneration. We report the case of a 60-year-old man, who initially presented progressive non-fluent aphasia with orofacial apraxia, and subsequently, over a period of 3 years, developed mutism, pathological laughter, extrapyramidal rigidity, dystonia, alien hand syndrome and bulbar signs. An extensive haematological, immunological and biochemical work up was normal. The results of neuroimaging studies and neuropsychological tests, along with the clinical evolution, finally led us to the ?three in one? diagnosis, supporting the concept of Pick complex. PMID:16324238

  17. Changes in cellular mechanical properties during onset or progression of colorectal cancer

    PubMed Central

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-01-01

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC. PMID:27621568

  18. Changes in cellular mechanical properties during onset or progression of colorectal cancer.

    PubMed

    Ciasca, Gabriele; Papi, Massimiliano; Minelli, Eleonora; Palmieri, Valentina; De Spirito, Marco

    2016-08-28

    Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC. PMID:27621568

  19. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression

    PubMed Central

    Skubitz, Amy P.N.; Taras, Elizabeth P.; Boylan, Kristin L.M.; Waldron, Nate N.; Oh, Seunguk; Panoskaltsis-Mortari, Angela; Vallera, Daniel A.

    2013-01-01

    Objectives While most women with ovarian cancer will achieve complete remission after treatment, the majority will relapse within two years, highlighting the need for novel therapies. Cancer stem cells (CSC) have been identified in ovarian cancer and most other carcinomas as a small population of cells that can self-renew. CSC are more chemoresistant and radio-resistant than the bulk tumor cells; it is likely that CSC are responsible for relapse, the major problem in cancer treatment. CD133 has emerged as one of the most promising markers for CSC in ovarian cancer. The hypothesis driving this study is that despite their low numbers in ovarian cancer tumors, CSC can be eradicated using CD133 targeted therapy and tumor growth can be inhibited. Methods Ovarian cancer cell lines were evaluated using flow cytometry for expression of CD133. In vitro viability studies with an anti-CD133 targeted toxin were performed on one of the cell lines, NIH:OVCAR5. The drug was tested in vivo using a stably transfected luciferase-expressing NIH:OVCAR5 subline in nude mice, so that tumor growth could be monitored by digital imaging in real time. Results Ovarian cancer cell lines showed 5.6% to 16.0% CD133 expression. dCD133KDEL inhibited the in vitro growth of NIH:OVCAR5 cells. Despite low numbers of CD133-expressing cells in the tumor population, intraperitoneal drug therapy caused a selective decrease in tumor progression in intraperitoneal NIH: OVCAR5-luc tumors. Conclusions Directly targeting CSC that are a major cause of drug resistant tumor relapse with an anti-CD133 targeted toxin shows promise for ovarian cancer therapy. PMID:23721800

  20. In situ quantification of genomic instability in breast cancer progression

    SciTech Connect

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  1. A fluid model of cancer progression and treatment

    NASA Astrophysics Data System (ADS)

    Wise, Steven; Cristini, Vittorio; Lowengrub, John; Zheng, Xiaoming

    2003-11-01

    In this talk, we will present recent progress on a computer simulator of cancer based on a fluid model of tumor growth. The tumor is represented as an incompressible fluid with a source that represents cell-proliferation. Angiogenesis and its complex nonlinear interplay with cell-growth are included as well as the effects of traditional and new therapies. We find that tumors while growing develop shape instabilities that lead to tissue invasion and possible metastasization. In addition, traditional therapy may have a two-fold effect while causing a tumor to shrink by killing the tumor cells, a shape instability may occur leading to tumor fragmentation leading to migration of small cell-clusters through the external tissue and blood vessels thus enhancing the potential for mestastasization.

  2. Numerical indices based on circulating tumor DNA for the evaluation of therapeutic response and disease progression in lung cancer patients.

    PubMed

    Kato, Kikuya; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Imamura, Fumio

    2016-01-01

    Monitoring of disease/therapeutic conditions is an important application of circulating tumor DNA (ctDNA). We devised numerical indices, based on ctDNA dynamics, for therapeutic response and disease progression. 52 lung cancer patients subjected to the EGFR-TKI treatment were prospectively collected, and ctDNA levels represented by the activating and T790M mutations were measured using deep sequencing. Typically, ctDNA levels decreased sharply upon initiation of EGFR-TKI, however this did not occur in progressive disease (PD) cases. All 3 PD cases at initiation of EGFR-TKI were separated from other 27 cases in a two-dimensional space generated by the ratio of the ctDNA levels before and after therapy initiation (mutation allele ratio in therapy, MART) and the average ctDNA level. For responses to various agents after disease progression, PD/stable disease cases were separated from partial response cases using MART (accuracy, 94.7%; 95% CI, 73.5-100). For disease progression, the initiation of ctDNA elevation (initial positive point) was compared with the onset of objective disease progression. In 11 out of 28 eligible patients, both occurred within ±100 day range, suggesting a detection of the same change in disease condition. Our numerical indices have potential applicability in clinical practice, pending confirmation with designed prospective studies. PMID:27381430

  3. Numerical indices based on circulating tumor DNA for the evaluation of therapeutic response and disease progression in lung cancer patients

    PubMed Central

    Kato, Kikuya; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Imamura, Fumio

    2016-01-01

    Monitoring of disease/therapeutic conditions is an important application of circulating tumor DNA (ctDNA). We devised numerical indices, based on ctDNA dynamics, for therapeutic response and disease progression. 52 lung cancer patients subjected to the EGFR-TKI treatment were prospectively collected, and ctDNA levels represented by the activating and T790M mutations were measured using deep sequencing. Typically, ctDNA levels decreased sharply upon initiation of EGFR-TKI, however this did not occur in progressive disease (PD) cases. All 3 PD cases at initiation of EGFR-TKI were separated from other 27 cases in a two-dimensional space generated by the ratio of the ctDNA levels before and after therapy initiation (mutation allele ratio in therapy, MART) and the average ctDNA level. For responses to various agents after disease progression, PD/stable disease cases were separated from partial response cases using MART (accuracy, 94.7%; 95% CI, 73.5–100). For disease progression, the initiation of ctDNA elevation (initial positive point) was compared with the onset of objective disease progression. In 11 out of 28 eligible patients, both occurred within ±100 day range, suggesting a detection of the same change in disease condition. Our numerical indices have potential applicability in clinical practice, pending confirmation with designed prospective studies. PMID:27381430

  4. Alterations in mechanical properties are associated with prostate cancer progression.

    PubMed

    Wang, Xuejian; Wang, Jianbo; Liu, Yingxi; Zong, Huafeng; Che, Xiangyu; Zheng, Wei; Chen, Feng; Zhu, Zheng; Yang, Deyong; Song, Xishuang

    2014-03-01

    Cancer progression and metastasis have been shown to be accompanied by alterations in the mechanical properties of tissues, but the relationship between the mechanical properties and malignant behavior in prostate cancer (Pca) is less clear. The aims of this study were to detect the mechanical properties of benign prostatic hyperplasia (BPH) and Pca tissues on both the macro- and micro-scales, to explore the relationships between mechanical properties and malignant behavior and, finally, to identify the important molecules in the mechanotransduction signaling pathway. We demonstrated that the strain index of Pca tissue was significantly higher than that of BPH tissue on the macro-scale but the Young's modulus of the Pca tissues, especially in advanced Pca, was lower than that of BPH tissues on the micro-scale. These two seemingly contradictory results can be explained by the excessive proliferation of tumor cells (Ki-67) and the degradation of scaffold proteins (collagens). These data indicate that alterations of the macro- and micro-mechanical properties of Pca tissues with malignant behavior are contradictory. The mechanical properties of tissues might be useful as a new risk factor for malignancy and metastasis in Pca. Furthermore, collagens, matrix metalloproteinase, fibronectin, and integrins might be the important molecules in the mechanotransduction signaling pathway. PMID:24504844

  5. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    PubMed

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways. PMID:26435478

  6. Loss of SPARC in bladder cancer enhances carcinogenesis and progression

    PubMed Central

    Said, Neveen; Frierson, Henry F.; Sanchez-Carbayo, Marta; Brekken, Rolf A.; Theodorescu, Dan

    2013-01-01

    Secreted protein acidic and rich in cysteine (SPARC) has been implicated in multiple aspects of human cancer. However, its role in bladder carcinogenesis and metastasis are unclear,with some studies suggesting it may be a promoter and others arguing the opposite. Using a chemical carcinogenesis model in Sparc-deficient mice and their wild-type littermates, we found that loss of SPARC accelerated the development of urothelial preneoplasia (atypia and dysplasia), neoplasia, and metastasis and was associated with decreased survival. SPARC reduced carcinogen-induced inflammation and accumulation of reactive oxygen species as well as urothelial cell proliferation. Loss of SPARC was associated with an inflammatory phenotype of tumor-associated macrophages and fibroblasts, with concomitant increased activation of urothelial and stromal NF-κB and AP1 in vivo and in vitro. Syngeneic spontaneous and experimental metastasis models revealed that tumor- and stroma-derived SPARC reduced tumor growth and metastasis through inhibition of cancer-associated inflammation and lung colonization. In human bladder tumor tissues, the frequency and intensity of SPARC expression were inversely correlated with disease-specific survival. These results indicate that SPARC is produced by benign and malignant compartments of bladder carcinomas where it functions to suppress bladder carcinogenesis, progression, and metastasis. PMID:23321672

  7. Syndecans as Modulators and Potential Pharmacological Targets in Cancer Progression

    PubMed Central

    Barbouri, Despoina; Afratis, Nikolaos; Gialeli, Chrisostomi; Vynios, Demitrios H.; Theocharis, Achilleas D.; Karamanos, Nikos K.

    2014-01-01

    Extracellular matrix (ECM) components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs), a family of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate (HS) chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases, ADAM as well as ADAMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble SDCs “shed SDCs” in the ECM interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed SDCs, upon binding to several matrix effectors, such as growth factors, chemokines, and cytokines, have the ability to act as competitive inhibitors for membrane proteoglycans, and modulate the inflammatory microenvironment of cancer cells. It is notable that SDCs and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of SDCs in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma. PMID:24551591

  8. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  9. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells.

    PubMed

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O'Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  10. Progression in Substance Use Initiation: A Multilevel Discordant Monozygotic Twin Design

    PubMed Central

    Richmond-Rakerd, Leah S.; Slutske, Wendy S.; Deutsch, Arielle R.; Lynskey, Michael T.; Agrawal, Arpana; Madden, Pamela A.F.; Bucholz, Kathleen K.; Heath, Andrew C.; Martin, Nicholas G.

    2015-01-01

    Considerable attention has been paid to the “gateway” pattern of drug use initiation in which individuals progress from tobacco and alcohol use to cannabis and other illicit drugs. The extent to which this sequence reflects a causal impact of licit substance use on illicit substance involvement remains unclear. Clarifying the mechanisms underlying substance use initiation may help inform our understanding of risk for psychopathology, as increasing research is demonstrating associations between initiation patterns and heavier involvement. This study examined patterns of substance use initiation using a discordant twin design. Participants were 3,476 monozygotic twins (37% male) from the Australian Twin Registry who reported on their ages of tobacco, alcohol, and cannabis initiation. Multilevel proportional hazard regression models were employed to (a) estimate within-twin-pair and between-twin-pair contributions to associations between the ages of onset of different drugs; and (b) examine whether the magnitude of effects differed as a function of the order of substance use initiation. Finding significant effects within twin pairs would support the hypothesis that the age of initiation of one substance causally influences the age of initiation of a subsequent substance. Finding significant effects between twin pairs would support the operation of familial influences that explain variation in the ages of initiation of multiple drugs. Within-twin-pair effects for typical patterns were modest. When initiation was atypical, however, larger within-twin-pair effects were observed and causal influences were more strongly implicated. Results support the utility of examining the timing and ordering of substance use initiation within sophisticated, genetically informative designs. PMID:26098047

  11. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  12. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.

    2015-03-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  13. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    PubMed Central

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044

  14. Interaction of the Oncofetal Thomsen–Friedenreich Antigen with Galectins in Cancer Progression and Metastasis

    PubMed Central

    Sindrewicz, Paulina; Lian, Lu-Yun; Yu, Lu-Gang

    2016-01-01

    Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis. PMID:27066458

  15. Long Island Breast Cancer Study Project (Past Initiative)

    Cancer.gov

    The Long Island Breast Cancer Study Project is a multistudy effort to investigate whether environmental factors are responsible for breast cancer in Suffolk and Nassau counties, NY, as well as in Schoharie County, NY, and Tolland County, CT.

  16. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    PubMed Central

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and phosphorylates a key molecule for translation initiation, eukaryotic translation initiation factor (eIF) 5. Using MS, we show that Ser-389 and -390 of eIF5 are major sites of phosphorylation by CK2. This is confirmed using eIF5 mutants that lack CK2 sites; the phosphorylation levels of mutant eIF5 proteins are significantly reduced, relative to WT eIF5, both in vitro and in vivo. Expression of these mutants reveals that they have a dominant-negative effect on phosphorylation of endogenous eIF5, and that they perturb synchronous progression of cells through S to M phase, resulting in a significant reduction in growth rate. Furthermore, the formation of mature eIF5/eIF2/eIF3 complex is reduced in these cells, and, in fact, restricted diffusional motion of WT eIF5 was almost abolished in a GFP-tagged eIF5 mutant lacking CK2 phosphorylation sites, as measured by fluorescence correlation spectroscopy. These results suggest that CK2 may be involved in the regulation of cell cycle progression by associating with and phosphorylating a key molecule for translation initiation. PMID:16227438

  17. [Research hotspot and progress of preoperative chemoradiotherapy for rectal cancer].

    PubMed

    Peng, Jianhong; Pan, Zhizhong

    2016-06-01

    Preoperative chemoradiotherapy (CRT) has become an important component of comprehensive treatment for rectal cancer. Although local recurrent risk has been remarkably reduced by CRT, distant metastasis remains the main cause of therapeutic failure. Therefore, more and more studies focused on controlling distant metastasis in order to prolong long-term survival. Recently, CRT has achieved certain progression in rectal cancer: (1)Patients with stage T3 should be classified into specific subgroups to formulate individualized treatment regimen. For stage T3a, it is feasible to perform surgery alone or administrate low intensity preoperative CRT; for stage T3b and T3c, conventional preoperative CRT should be performed in order to reduce the risk of recurrence postoperatively. (2)With regard to combined regimen for chemotherapy, oral capecitabine superiors to intravenous bolus 5-fluorouracil (5-FU) and is comparable to continuous intravenous infusion 5-FU with a better safety. Therefore, capecitabine is recommended for older patients and those with poor tolerance to chemotherapy. Compared to single 5-FU concurrent CRT, addition of oxaliplatin into preoperative CRT may result in a higher survival benefit in Chinese patients. As to the application of irinotecan, bevacizumab or cetuximab, unless there are more evidence to confirm their efficacy and safety from randomized controlled trial, they should not be recommended for adding to preoperative CRT routinely. (3)On the optimization in CRT pattern, the application values of induction chemotherapy before concurrent CRT, consolidation chemotherapy after concurrent CRT, neoadjuvant sandwich CRT, neoadjuvant chemotherapy alone and short-course preoperative radiotherapy remain further exploration. (4)On the treatment strategy for clinical complete response (cCR) after CRT, whether "wait and see" strategy is able to be adopted, it is still a hot topic with controversy. PMID:27353093

  18. Circular RNA: a novel biomarker for progressive laryngeal cancer

    PubMed Central

    Xuan, Lijia; Qu, Lingmei; Zhou, Han; Wang, Peng; Yu, Haoyang; Wu, Tianyi; Wang, Xin; Li, Qiuying; Tian, Linli; Liu, Ming; Sun, Yanan

    2016-01-01

    Circular RNAs (circRNAs), a class of endogenous RNAs, are characterized by covalently closed continuous loop without 5’ to 3’ polarity and polyadenylated tail. Recent studies indicated that circRNAs might play an important role in cancer. However, the function of circRNA in laryngeal squamous cell cancer tissues (LSCC) is still unknown. In this study, we investigated the expression of circRNAs in 4 paired LSCC tissues and adjacent non-tumor tissues by microarray analysis. Results showed significant upregulation (n = 302) of or downregulation (n = 396) of 698 circRNAs in LSCC tissues. We further detected hsa_circRNA_100855 as the most upregulated circRNA and hsa_circRNA_104912 as the most downregulated circRNA using qRT-PCR methods. Results showed that hsa_circRNA_100855 level was significantly higher in LSCC than in the corresponding adjacent non-neoplastic tissues. Patients with T3-4 stage, neck nodal metastasis or advanced clinical stage had higher hsa_circRNA_100855 expression. The hsa_circRNA_104912 level was significantly lower in LSCC than in corresponding adjacent non-neoplastic tissues. Patients with T3-4 stage, neck nodal metastasis, poor differentiation or advanced clinical stage had a lower hsa_circRNA_104912 expression. Overall, our data suggest that circRNAs play an important role in the tumorigenesis of LSCC and may serve as novel and stable biomarkers for the diagnosis and progress of LSCC. PMID:27158380

  19. YAP/TEAD Co-Activator Regulated Pluripotency and Chemoresistance in Ovarian Cancer Initiated Cells

    PubMed Central

    Yu, Chao; Chang, Ting; Fan, Heng-Yu

    2014-01-01

    Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical. PMID:25369529

  20. Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression

    PubMed Central

    2014-01-01

    Background Prostate cancer is one of the most common complex diseases with high leading cause of death in men. Identifications of prostate cancer associated genes and biomarkers are thus essential as they can gain insights into the mechanisms underlying disease progression and advancing for early diagnosis and developing effective therapies. Methods In this study, we presented an integrative analysis of gene expression profiling and protein interaction network at a systematic level to reveal candidate disease-associated genes and biomarkers for prostate cancer progression. At first, we reconstructed the human prostate cancer protein-protein interaction network (HPC-PPIN) and the network was then integrated with the prostate cancer gene expression data to identify modules related to different phases in prostate cancer. At last, the candidate module biomarkers were validated by its predictive ability of prostate cancer progression. Results Different phases-specific modules were identified for prostate cancer. Among these modules, transcription Androgen Receptor (AR) nuclear signaling and Epidermal Growth Factor Receptor (EGFR) signalling pathway were shown to be the pathway targets for prostate cancer progression. The identified candidate disease-associated genes showed better predictive ability of prostate cancer progression than those of published biomarkers. In context of functional enrichment analysis, interestingly candidate disease-associated genes were enriched in the nucleus and different functions were encoded for potential transcription factors, for examples key players as AR, Myc, ESR1 and hidden player as Sp1 which was considered as a potential novel biomarker for prostate cancer. Conclusions The successful results on prostate cancer samples demonstrated that the integrative analysis is powerful and useful approach to detect candidate disease-associate genes and modules which can be used as the potential biomarkers for prostate cancer progression. The

  1. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer.

    PubMed

    Dobbin, Zachary C; Landen, Charles N

    2013-01-01

    Ovarian cancer is the fifth most common cause of death due to cancer in women despite being the tenth in incidence. Unfortunately, the five-year survival rate is only 45%, which has not improved much in the past 30 years. Even though the majority of women have successful initial therapy, the low rate of survival is due to the eventual recurrence and succumbing to their disease. With the recent release of the Cancer Genome Atlas for ovarian cancer, it was shown that the PI3K/AKT/mTOR pathway was one of the most frequently mutated or altered pathways in patients' tumors. Researching how the PI3K/AKT/mTOR pathway affects the progression and tumorigensis of ovarian cancer will hopefully lead to new therapies that will increase survival for women. This review focuses on recent research on the PI3K/AKT/mTOR pathway and its role in the progression and tumorigensis of ovarian cancer. PMID:23591839

  2. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  3. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression

    PubMed Central

    Reavie, Linsey; Buckley, Shannon M.; Loizou, Evangelia; Takeishi, Shoichiro; Aranda-Orgilles, Beatriz; Ndiaye-Lobry, Delphine; Abdel-Wahab, Omar; Ibrahim, Sherif; Nakayama, Keiichi I.; Aifantis, Iannis

    2013-01-01

    The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML), as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis and the eventual inhibition of tumor progression. Decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML. PMID:23518350

  4. Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24.

    PubMed

    Bhutia, Sujit K; Das, Swadesh K; Azab, Belal; Menezes, Mitchell E; Dent, Paul; Wang, Xiang-Yang; Sarkar, Devanand; Fisher, Paul B

    2013-12-01

    Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent "bystander" activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival. PMID:23720015

  5. Characterization of Molecular Markers Indicative of Cervical Cancer Progression

    PubMed Central

    Arnouk, Hilal; Merkley, Mark A.; Podolsky, Robert H.; Stöppler, Hubert; Santos, Carlos; Álvarez, Manuel; Mariategui, Julio; Ferris, Daron; Lee, Jeffrey R.; Dynan, William S.

    2009-01-01

    Cervical cancer originates with human papillomavirus (HPV) infection and progresses via histologically-defined premalignant stages. Here we compare normal cervical epithelium and patient-matched high grade squamous intraepithelial lesions (HSIL) with cervical carcinoma tissue from the same patient population (n=10 per group). Specimens were analyzed by combined laser capture microdissection and 2D-DIGE. Significant expression changes were seen with 53 spots resulting in identification of 23 unique proteins at the molecular level. These include eight that uniquely distinguish normal epithelium and HSIL and four that uniquely distinguish HSIL and carcinoma. In addition, one protein, cornulin, distinguishes all three states. Other identified proteins included differentiation markers, oncogene DJ-1, serpins, stress and interferon-responsive proteins, detoxifying enzymes, and serum transporters. A literature review, performed for all identified proteins, allowed most changes to be assigned to one of three causes: direct or indirect HPV oncoprotein interactions, growth selection during latency, or interactions in the lesion microenvironment. Selected findings were confirmed by immunohistochemistry using either frozen sections from the same cohort or formalin fixed paraffin embedded samples from a tissue microarray. Novel markers described here have potential applications for increasing the predictive value of current screening methods. PMID:19834583

  6. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33

    PubMed Central

    Deng, Kaiyuan; Wang, Hao; Shan, Ting; Chen, Yigang; Zhou, Hong; Zhao, Qin; Xia, Jiazeng

    2016-01-01

    Tristetraprolin (TTP) is an adenine/uridine (AU)-rich element (ARE)-binding protein that can induce degradation of mRNAs. In this study, we report that TTP suppresses the expression of interleukin-33 (IL-33), a tumor-promoting inflammatory cytokine, and thereby inhibits the progression of gastric cancer (GC). Overexpression of TTP decreased the level of IL-33, whereas knockdown of TTP increased IL-33 levels. We also discovered that TTP inhibited the proliferation, migration, and invasion of GC cell lines through regulation of IL-33. Furthermore, TTP RNA and protein levels were remarkably reduced in GC and inversely correlated with IL-33 level, and they were also closely associated with depth of invasion, lymph node metastasis, advanced TNM stage, as well as survival rate. Taken together, these findings identified TTP as a downregulator of IL-33, and further suggest that TTP can serve as a novel biomarker for the diagnosis of GC and as a potential therapeutic target for GC treatment. PMID:27074834

  7. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    PubMed Central

    Loomans, Holli A.; Andl, Claudia D.

    2014-01-01

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion. PMID:25560921

  8. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression.

    PubMed

    Liu, Che-Ming; Hsieh, Chia-Ling; Shen, Chia-Ning; Lin, Cheng-Chieh; Shigemura, Katsumi; Sung, Shian-Ying

    2016-09-01

    Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells. PMID:27397852

  9. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    PubMed

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs. PMID:20855539

  10. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites

    PubMed Central

    Ammerman, Michelle L.; Presnyak, Vladimir; Fisk, John C.; Foda, Bardees M.; Read, Laurie K.

    2010-01-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs. PMID:20855539

  11. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  12. Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells.

    PubMed

    Yu, Xiaojun; Zheng, Bo'an; Chai, Rui

    2014-01-01

    Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression. PMID:25370813

  13. Haploinsufficiency in the prometastasis Kiss1 Receptor Gpr54 delays breast tumor initiation, progression and lung metastasis

    PubMed Central

    Cho, Sung-Gook; Wang, Ying; Rodriguez, Melissa; Tan, Kunrong; Zhang, Wenzheng; Luo, Jian; Li, Dali; Liu, Mingyao

    2016-01-01

    Activation of KISS1 receptor (KISS1R or GPR54) by its ligands (kisspeptins) regulates a diverse function both in normal physiology and pathophysiology. In cancer, KISS1-induced KISS1R signaling is known to inhibit tumor angiogenesis and metastasis. However, roles of KISS1 and KISS1R in earlier stages of tumor progression and metastasis in vivo are still unknown. In this study, we demonstrate a critical role for Kiss1r in early stages of tumor progression using mouse tumor models. PyMT/Kiss1r mice with different Kiss1r genotypes were obtained by crossing MMTV-PyMT transgenic mouse with Kiss1r heterozygous mouse (Kiss1r+/−). Kiss1r heterozygosity attenuated breast tumor initiation, growth, latency, multiplicity and metastasis in MMTV-PyMT/Kiss1r+/− mouse models. To confirm the effects of Kiss1r in tumor progression and limit any effect of endogenous hormones, we isolated primary tumor cells from PyMT/Kiss1r+/+ or PyMT/Kiss1r+/− mice and performed in vitro and in vivo tumorigenesis assays. Kiss1r heterozygosity inhibited PyMT-induced in vitro tumorigeneity and in vivo tumor growth in NOD.SCID/NCr mice. To understand the underlying mechanism, we showed that activation of KISS1R by kisspeptin-10 led to RhoA activation and RhoA-dependent gene expression through Gαq-p63RhoGEF signaling pathway. Furthermore, anchorage-independent growth was tightly linked to the dosage-dependent regulation of RhoA by KISS1R. When MCF10A cells overexpressing H-RasV12 were subjected to in vitro tumorigenesis assays, knockdown of KISS1R or inactivation of RhoA in MCF10A cells reduced Ras-induced anchorage-independent growth, similar to our data obtained from PyMT-Kiss1r+/− mouse models. Altogether, we conclude that Kiss1r haploinsufficiency delays breast tumor initiation, progression and metastasis through its downstream Gαq-p63RhoGEF-RhoA signaling pathway. PMID:21852382

  14. FGFs: crucial factors that regulate tumour initiation and progression.

    PubMed

    Jing, Qian; Wang, Yuanyuan; Liu, Hao; Deng, Xiaowei; Jiang, Lin; Liu, Rui; Song, Haixing; Li, Jingyi

    2016-08-01

    Fibroblast growth factors (FGFs) are crucial signalling molecules involved in normal cell growth, differentiation and proliferation. Over the past few decades, a large body of research has illustrated effects of individual FGFs on tumour initiation and progression. Tumour development is commonly accompanied with generation of new blood and lymph vessels, which support enhanced cell proliferation. Moreover, acquisition of tumour cells of the epithelial-mesenchymal transition (EMT) phenotype, enhances tumour cell migration and invasion potentials, crucial steps in tumour metastasis. This review summarizes recent findings concerning roles of FGFs in angiogenesis, lymphangiogenesis and EMT. PMID:27383016

  15. Primary progressive aphasia as the initial manifestation of corticobasal degeneration and unusual tauopathies.

    PubMed

    Ferrer, I; Hernández, I; Boada, M; Llorente, A; Rey, M J; Cardozo, A; Ezquerra, M; Puig, B

    2003-11-01

    and combined CBD as causes of primary progressive aphasia, and they extend the hypothesis that primary progressive aphasia may be the initial symptom of distinct tauopathies. PMID:12955398

  16. Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy.

    PubMed

    Shen, Bing; Tan, Mingyue; Mu, Xinyu; Qin, Yan; Zhang, Fang; Liu, Yong; Fan, Yu

    2016-06-01

    The recent discovery of a large number of histone methyltransferases reveals important roles of these enzymes in regulating tumor development and progression. SMYD3, a histone methyltransferase, is associated with poor prognosis of patients with prostate and gastric cancer. In the study, we attempted to investigate its putative oncogenic role on bladder cancer. Here, we report that SMYD3 frequently amplified in bladder cancer is correlated with bladder cancer progression and poor prognosis. Overexpression of SMYD3 promotes bladder cancer cell proliferation and invasion, whereas SMYD3 knockdown inhibits cancer cell growth and invasion. Mechanically, SMYD3 positively regulates the expression of BCL2-associated transcription factor 1 (BCLAF1). SMYD3 physically interacts with the promoter of BCLAF1 and upregulates its expression by accumulating di- and trimethylation of H3K4 at the BCLAF1 locus. We further show that SMYD3 overexpression in bladder cancer cells promotes autophagy activation, whereas BCLAF1 depletion inhibits SMYD3-induced autophagy. Finally, we demonstrate that SMYD3 promotes bladder cancer progression, at least in part by increasing BCLAF1 expression and activating autophagy. Our results establish a function for SMYD3 in autophagy activation and bladder cancer progression and suggest its candidacy as a new prognostic biomarker and target for clinical management of bladder cancer. PMID:26676636

  17. The role of inflammation in progression of breast cancer: Friend or foe? (Review).

    PubMed

    Allen, Michael D; Jones, Louise J

    2015-09-01

    There is a growing interest in the role of the microenvironment in cancer, however, it has been known for over one hundred years that the immune system plays a prominent role in cancer. Recent decades have revealed more and more data on how our own host response to cancer cells can help or hinder progression of the disease. Despite all this work it is surprising how little is known about the role of the immune system in human breast cancer development, as compared to other cancers. Recent successes of PD-1 blockade in treating multiple cancers, and new developments with other immune targets such as CTLA-4 and CSF-1 inhibitors, highlight that it is becoming ever more important that we understand the complexity of the immune and inflammatory systems in the development and progression of breast cancer. With this knowledge it may be possible to not only target therapy but also more accurately predict those patients that truly need it. This review summarises some of the most significant findings for the role of the immune system and inflammatory response in breast cancer progression. Focusing on how the inflammatory microenvironment may be involved in the progression of pre-invasive ductal carcinoma in situ to invasive breast cancer. It will also discuss the use of immune markers as diagnostic and prognostic tools and summarise the state of the art of immune-therapeutics in breast cancer treatment. PMID:26165857

  18. Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies.

    PubMed

    Fan, C-W; Chen, T; Shang, Y-N; Gu, Y-Z; Zhang, S-L; Lu, R; OuYang, S-R; Zhou, X; Li, Y; Meng, W-T; Hu, J-K; Lu, Y; Sun, X-F; Bu, H; Zhou, Z-G; Mo, X-M

    2013-01-01

    Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial-mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients. PMID:24091671

  19. Do subtle breast cancers attract visual attention during initial impression?

    NASA Astrophysics Data System (ADS)

    Nodine, Calvin F.; Mello-Thoms, Claudia; Weinstein, Susan P.; Kundel, Harold L.; Toto, Lawrence C.

    2000-04-01

    Women who undergo regular mammographic screening afford mammographers a unique opportunity to compare current mammograms with prior exams. This comparison greatly assists mammographers in detecting early breast cancer. A question that commonly arises when a cancer is detected under regular periodic screening conditions is whether the caner is new, or was it missed on the prior exam? This is a difficult question to answer by retrospective analysis, because knowledge of the status of the current exam biases the interpretation of the prior exam. To eliminate this bias and provide some degree of objectivity in studying this question, we looked at whether experienced mammographers who had no prior knowledge of a set of test cases fixated on potential cancer-containing regions on mammograms from cases penultimate to cancer detection. The results show that experienced mammographers cannot recognize most malignant cancers selected by retrospective analysis.

  20. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression

    PubMed Central

    Lucas, Morghan C.; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  1. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression.

    PubMed

    Vennin, Claire; Herrmann, David; Lucas, Morghan C; Timpson, Paul

    2016-01-01

    Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression. PMID:27239290

  2. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance

    PubMed Central

    2014-01-01

    Background Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. Results In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. Conclusions We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT. PMID:24387052

  3. Inactivation of the Transcription Factor GLI1 Accelerates Pancreatic Cancer Progression*

    PubMed Central

    Mills, Lisa D.; Zhang, Lizhi; Marler, Ronald; Svingen, Phyllis; Fernandez-Barrena, Maite G.; Dave, Maneesh; Bamlet, William; McWilliams, Robert R.; Petersen, Gloria M.; Faubion, William; Fernandez-Zapico, Martin E.

    2014-01-01

    The role of GLI1 in pancreatic tumor initiation promoting the progression of preneoplastic lesions into tumors is well established. However, its function at later stages of pancreatic carcinogenesis remains poorly understood. To address this issue, we crossed the gli1 knock-out (GKO) animal with cre-dependent pancreatic activation of oncogenic kras concomitant with loss of the tumor suppressor tp53 (KPC). Interestingly, in this model, GLI1 played a tumor-protective function, where survival of GKO/KPC mice was reduced compared with KPC littermates. Both cohorts developed pancreatic cancer without significant histopathological differences in survival studies. However, analysis of mice using ultrasound-based imaging at earlier time points showed increased tumor burden in GKO/KPC mice. These animals have larger tumors, decreased body weight, increased lactate dehydrogenase production, and severe leukopenia. In vivo and in vitro expression studies identified FAS and FAS ligand (FASL) as potential mediators of this phenomenon. The FAS/FASL axis, an apoptotic inducer, plays a role in the progression of pancreatic cancer, where its expression is usually lost or significantly reduced in advanced stages of the disease. Chromatin immunoprecipitation and reporter assays identified FAS and FASL as direct targets of GLI1, whereas GKO/KPC mice showed lower levels of this ligand compared with KPC animals. Finally, decreased levels of apoptosis were detected in tumor tissue in the absence of GLI1 by TUNEL staining. Together, these findings define a novel pathway regulated by GLI1 controlling pancreatic tumor progression and provide a new theoretical framework to help with the design and analysis of trials targeting GLI1-related pathways. PMID:24737325

  4. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective.

    PubMed

    Betof, Allison S; Dewhirst, Mark W; Jones, Lee W

    2013-03-01

    Over the past decade there has been increasing research and clinical interest in the role of exercise therapy/rehabilitation as an adjunct therapy to improve symptom control and management following a cancer diagnosis. More recently, the field of 'exercise - oncology' has broadened in scope to investigate whether the benefits extend beyond symptom control to modulate cancer-specific outcomes (i.e., cancer progression and metastasis). Here we review the extant epidemiological evidence examining the association between exercise behavior, functional capacity/exercise capacity, and cancer-specific recurrence and mortality as well as all-cause mortality individuals following a cancer diagnosis. We also evaluate evidence from clinical studies investigating the effects of structured exercise on blood-based biomarkers associated with cancer progression/metastasis as well findings from preclinical investigations examining the effects and molecular mechanisms of exercise in mouse models of cancer. Current gaps in knowledge are also discussed. PMID:22610066

  5. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy

    PubMed Central

    Park, Soyeun

    2016-01-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs. PMID:27390735

  6. Progress of cancer research on astrocyte elevated gene-1/Metadherin (Review).

    PubMed

    Huang, Yong; Li, LE-Ping

    2014-08-01

    Tumor development is initiated by an accumulation of numerous genetic and epigenetic alterations that promote tumor initiation, invasion and metastasis. Astrocyte elevated gene-1 [AEG-1; also known as Metadherin (MTDH) and Lysine-rich CEACAM1 co-isolated (LYRIC)] has emerged in recent years as a potentially crucial mediator of tumor malignancy, and a key converging point of a complex network of oncogenic signaling pathways. AEG-1/MTDH has a multifunctional role in tumor development that has been found to be involved in the following signaling cascades: i) The Ha-Ras and PI3K/Akt pathways; ii) the nuclear factor-κB signaling pathway; iii) the ERK/mitogen-activated protein kinase and Wnt/β-catenin pathways; and iv) the Aurora-A kinase signaling pathway. Studies have established that AEG-1/MTDH is crucial in tumor progression, including transformation, the evasion of apoptosis, invasion, angiogenesis and metastasis. In addition, recent clinical studies have convincingly associated AEG-1/MTDH with tumor progression and poor prognosis in a number of cancer types, including hepatocellular, esophageal squamous cell, gallbladder and renal cell carcinomas, breast, non-small cell lung, prostate, gastric and colorectal cancers, and glioma, melanoma, neuroblastoma and osteosarcoma. AEG-1/MTDH may be used as a biomarker to identify subgroups of patients who require more intensive treatments and who are likely to benefit from AEG-1/MTDH-targeted therapies. The therapeutic targeting of AEG-1/MTDH may simultaneously block metastasis, suppress tumor growth and enhance the efficacy of chemotherapeutic treatments. PMID:25009642

  7. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation

    PubMed Central

    Le Rolle, Anne-France; Chiu, Thang K.; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R.; Paty, Philip B.; Chiu, Vi K.

    2016-01-01

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer. PMID:26744320

  8. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.

    PubMed

    Rogalinska, Malgorzata

    2016-01-01

    Mitochondria play important roles as energetic centers. Mutations in mitochondrial DNA (mtDNA) were found in several diseases, including cancers. Studies on cytoplasmic hybrids (cybrids) confirm that directed mutation introduced into mtDNA could be a reason for cancer induction. Mitochondria could also be a factor linking cancer transformation and progression. The importance of mitochondria in cancer also confirms their involvement in the resistance to treatment. Resistance to treatment of cancer cells can frequently be a reason for glycolysis acceleration. It could be explained by cancer cells' high proliferation index and high energy request. The involvement of mitochondria in metabolic disturbances of several metabolic diseases, including cancers, was reported. These data confirm that cancer induction, as well as cancer progression, could have metabolic roots. The aberrant products observed in prostate cells involved in the Krebs cycle could promote cancer progression. These multiple relationships between alterations on a genetic level translated into disturbances in cellular metabolism and their potential relation with epigenetic control of gene expression make cancerogenesis more complicated and prognoses' success in studies on cancer etiology more distant in time. PMID:26471969

  9. Current status and progress of pancreatic cancer in China

    PubMed Central

    Lin, Quan-Jun; Yang, Feng; Jin, Chen; Fu, De-Liang

    2015-01-01

    Cancer is currently one of the most important public health problems in the world. Pancreatic cancer is a fatal disease with poor prognosis. As in most other countries, the health burden of pancreatic cancer in China is increasing, with annual mortality rates almost equal to incidence rates. The increasing trend of pancreatic cancer incidence is more significant in the rural areas than in the urban areas. Annual diagnoses and deaths of pancreatic cancer in China are now beyond the number of cases in the United States. GLOBOCAN 2012 estimates that cases in China account for 19.45% (65727/337872) of all newly diagnosed pancreatic cancer and 19.27% (63662/330391) of all deaths from pancreatic cancer worldwide. The population’s growing socioeconomic status contributes to the rapid increase of China’s proportional contribution to global rates. Here, we present an overview of control programs for pancreatic cancer in China focusing on prevention, early diagnosis and treatment. In addition, we describe key epidemiological, demographic, and socioeconomic differences between China and developed countries. Facts including no nationwide screening program for pancreatic cancer, delay in early detection resulting in a late stage at presentation, lack of awareness of pancreatic cancer in the Chinese population, and low investment compared with other cancer types by government have led to backwardness in China’s pancreatic cancer diagnosis and treatment. Finally, we suggest measures to improve health outcomes of pancreatic cancer patients in China. PMID:26185370

  10. Ets2-dependent trophoblast signalling is required for gastrulation progression after primitive streak initiation.

    PubMed

    Polydorou, Christiana; Georgiades, Pantelis

    2013-01-01

    Although extraembryonic ectoderm trophoblast signals the embryo for primitive streak initiation, a prerequisite for gastrulation, it is unknown whether it also signals for the progression of gastrulation after primitive streak initiation. Here, using Ets2-/- mice, we show that trophoblast signalling is also required in vivo for primitive streak elongation, completion of intraembryonic mesoderm epithelial-mesenchymal transition and the development of anterior primitive streak derivatives such as the node. We show that Ets2-dependent trophoblast signalling is required for the maintenance of high levels of Nodal and Wnt3 expression in the epiblast and for the induction of Snail expression in the primitive streak, between embryonic day 6.3 and 6.7. Within extraembryonic ectoderm trophoblast, Ets2 maintains the expression of the transcription factors Elf5, Cdx2 and Eomes, and that of the signalling molecule Bmp4. We propose a model that provides a genetic explanation as to how Ets2 in trophoblast mediates the progression of gastrulation within the epiblast. PMID:23552073

  11. FGF19 Contributes to Tumor Progression in Gastric Cancer by Promoting Migration and Invasion.

    PubMed

    Wang, Shuang; Zhao, Daqi; Tian, Ruihua; Shi, Hailong; Chen, Xiangming; Liu, Wenzhi; Wei, Lin

    2016-01-01

    Gastric cancer is the fourth most common type of cancer and second leading cause of cancer-related death in the world. Since patients are often diagnosed at a late stage, very few effective therapies are left in the arsenal. FGF19, as a hormone, has been reported to promote tumor growth in various types of cancer; however, its function in gastric cancer remains unknown. In the current study, we showed that FGF19 is overexpressed in gastric cancer and is associated with depth of invasion, lymph node metastasis, and TNM stage. In addition, in vitro experiments demonstrated that FGF19 is able to enhance migration and invasion abilities of gastric cancer cells. Given its great potency in gastric cancer progression, FGF19 may be an effective target of treatment for advanced gastric cancer patients. PMID:27053348

  12. Kidney cancer progression linked to shifts in tumor metabolism

    Cancer.gov

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  13. Progress through Collaboration - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the areas of sharing proteomics reagents and protocols and also in regulatory science.

  14. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression

    PubMed Central

    Xie, Dacheng; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Wang, Liang; Wei, Wenfei; Zhu, Anna; Gao, Yong; Xie, Keping; Quan, Ming

    2015-01-01

    Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer. PMID:26416426

  15. Dermatosis as the initial presentation of gastric cancer: two cases

    PubMed Central

    Ge, Wei; Teng, Bu-Wei; Yu, De-Cai; Zheng, Li-Ming; Ding, Yi-Tao

    2014-01-01

    Paraneoplastic dermatoses are known to be certain dermatosis related with tumor. The common paraneoplastic dermatoses are acanthosis nigricans, acquired ichthyosis, dermatomyositis, erythroderma, and so on. Here we report two cases of paraneoplastic dermatoses associated with gastric cancer. One case was a 57-year-old man with dermatomyositis and proved to be associated with gastric cancer through stomachoscopy. The other was a 66-year-old man with erythroderma and proved to be associated with gastric cancer through stomachoscopy. Both cases were treated with radical total gastrectomy with lymphadenectomy (D2) and esophagojejunostomy of Roux-en-Y. The skin symptom of both cases had improved a lot but still existed after operation. Paraneoplastic dermatoses can be seen as the early manifestation of visceral carcinomas. As a result, gastric cancers should be excluded in the patients with paraneoplastic dermatoses. PMID:25400431

  16. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities.

    PubMed

    DeSantis, Carol E; Siegel, Rebecca L; Sauer, Ann Goding; Miller, Kimberly D; Fedewa, Stacey A; Alcaraz, Kassandra I; Jemal, Ahmedin

    2016-07-01

    In this article, the American Cancer Society provides the estimated number of new cancer cases and deaths for blacks in the United States and the most recent data on cancer incidence, mortality, survival, screening, and risk factors for cancer. Incidence data are from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries, and mortality data are from the National Center for Health Statistics. Approximately 189,910 new cases of cancer and 69,410 cancer deaths will occur among blacks in 2016. Although blacks continue to have higher cancer death rates than whites, the disparity has narrowed for all cancers combined in men and women and for lung and prostate cancers in men. In contrast, the racial gap in death rates has widened for breast cancer in women and remained level for colorectal cancer in men. The reduction in overall cancer death rates since the early 1990s translates to the avoidance of more than 300,000 deaths among blacks. In men, incidence rates from 2003 to 2012 decreased for all cancers combined (by 2.0% per year) as well as for the top 3 cancer sites (prostate, lung, and colorectal). In women, overall rates during the corresponding time period remained unchanged, reflecting increasing trends in breast cancer combined with decreasing trends in lung and colorectal cancer rates. Five-year relative survival is lower for blacks than whites for most cancers at each stage of diagnosis. The extent to which these disparities reflect unequal access to health care versus other factors remains an active area of research. Progress in reducing cancer death rates could be accelerated by ensuring equitable access to prevention, early detection, and high-quality treatment. CA Cancer J Clin 2016;66:290-308. © 2016 American Cancer Society. PMID:26910411

  17. Can I lower the Risk of My Cancer Progressing or Coming Back?

    MedlinePlus

    ... Topic Getting emotional support Can I lower the risk of my cancer progressing or coming back? If ... of Use State Fundraising Notices Site Comments Better Business Bureau Health On The Net National Health Council © ...

  18. Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression

    NASA Astrophysics Data System (ADS)

    Uttam, Shikhar; Pham, Hoa V.; LaFace, Justin; Hartman, Douglas J.; Liu, Yang

    2016-03-01

    Effective management of patients who are at risk of developing invasive cancer is a primary challenge in early cancer detection. Techniques that can help establish clear-cut protocols for successful triaging of at-risk patients have the potential of providing critical help in improving patient care while simultaneously reducing patient cost. We have developed such a technique for early prediction of cancer progression that uses unstained tissue sections to provide depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of heterogeneity in optical density alterations manifested in precancerous lesions during cancer progression. We present nanoNAM and its application to predicting cancer progression in a well-established mouse model of spontaneous carcinogenesis: ApcMin/+ mice.

  19. PACE Continuous Innovation Indicators-a novel tool to measure progress in cancer treatments.

    PubMed

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about 'progress' and 'value' in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes 'value' to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their efforts to

  20. Helicobacter pylori infection in relation to gastric cancer progression.

    PubMed

    Venkateshwari, A; Krishnaveni, D; Venugopal, S; Shashikumar, P; Vidyasagar, A; Jyothy, A

    2011-01-01

    Gastric cancer is a major cause of cancer death worldwide, especially in developing countries. The incidence of gastric cancer varies from country to country, probably as a result of genetic, epigenetic, and environmental factors. H. pylori infection is considered as a major risk factor in the development of gastric cancer. However, the scenario varies in Asian countries, exhibiting a higher rate of H. pylori infection and low incidence of gastric cancer, which could be attributed to strain-specific virulence factors and host genetic makeup. In this review, we discuss the various virulence factors expressed by this bacterium and their interaction with the host factors, to influence pathogenesis. PMID:21248438

  1. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents.

    PubMed

    Joshi, Gaurav; Singh, Pankaj Kumar; Negi, Arvind; Rana, Anil; Singh, Sandeep; Kumar, Raj

    2015-10-01

    Cancer is one of the leading causes of mortality amongst world's population, in which prostate cancer is one of the most encountered malignancies among men. Globally, it is the sixth leading cause of cancer-related death in men. Prostate cancer is more prevalent in the developed world and is increasing at alarming rates in the developing countries. Prostate cancer is mostly a very sluggish progressing disease, caused by the overproduction of steroidal hormones like dihydrotestosterone or due to over-expression of enzymes such as 5-α-reductase. Various studies have revealed that growth factors play a crucial role in the progression of prostate cancer as they act either by directly elevating the level of steroidal hormones or upregulating enzyme efficacy by the active feedback mechanism. Presently, treatment options for prostate cancer include radiotherapy, surgery and chemotherapy. If treatment is done with prevailing traditional chemotherapy; it leads to resistance and development of androgen-independent prostate cancer that further complicates the situation with no cure option left. The current review article is an attempt to cover and establish an understanding of some major signalling pathways intervened through survival factors (IGF-1R), growth factors (TGF-α, EGF), Wnt, Hedgehog, interleukin, cytokinins and death factor receptor which are frequently dysregulated in prostate cancer. This will enable the researchers to design and develop better therapeutic strategies targeting growth factors and their cross talks mediated prostate cancer cell signalling. PMID:26297992

  2. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy

    PubMed Central

    Semenza, Gregg L.

    2012-01-01

    Hypoxia-inducible factors (HIFs) mediate adaptive physiological responses to hypoxia. In human cancers that are accessible for O2 electrode measurements, intratumoral hypoxia is common and is associated with increased risk of mortality. HIF activity in regions of intratumoral hypoxia mediates angiogenesis, epithelial-mesenchymal transition, stem cell maintenance, invasion, metastasis, and resistance to radiation therapy and chemotherapy. A growing number of drugs have been identified that inhibit HIF activity by a variety of molecular mechanisms. Because many of these drugs are already FDA-approved for other indications, clinical trials can (and should) be initiated to test the hypothesis that incorporation of HIF inhibitors into current standard-of-care therapy will increase the survival of cancer patients. PMID:22398146

  3. The global state of palliative care-progress and challenges in cancer care.

    PubMed

    Reville, Barbara; Foxwell, Anessa M

    2014-07-01

    All persons have a right to palliative care during cancer treatment and at the end-of-life. The World Health Organization (WHO) defines palliative care as a medical specialty that addresses physical, psychological, social, legal, and spiritual domains of care by an interdisciplinary team of professional and lay health care providers. Widespread adoption of this universal definition will aid policy development and educational initiatives on a national level. The need for palliative care is expanding due to the aging of the world's population and the increase in the rate of cancer in both developed and developing countries. However, in one third of the world there is no access to palliative care for persons with serious or terminal illness. Palliative care improves symptoms, most frequently pain, and improves quality of life for patients and their families, especially in the terminal disease phase. Accessibility to palliative care services, adequately trained health care professionals, availability of essential medicines, and gaps in education vary greatly throughout the world. Pain management is an integral concept in the practice of palliative care; however, opioiphobia, insufficient supply of opioids, and regulatory restrictions contribute to undue suffering for millions. Ongoing advocacy efforts call for increased awareness, palliative care integration with cancer care, and public and professional education. Enacting necessary change will require the engagement of health ministries and the recognition of the unique needs and resources of each country. The aim of this review is to examine progress in palliative care development and explore some of the barriers influencing cancer care across the globe. PMID:25841689

  4. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer.

    PubMed

    Rehman, Ishtiaq; Evans, Caroline A; Glen, Adam; Cross, Simon S; Eaton, Colby L; Down, Jenny; Pesce, Giancarlo; Phillips, Joshua T; Yen, Ow Saw; Thalmann, George N; Wright, Phillip C; Hamdy, Freddie C

    2012-01-01

    A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation. PMID:22355332

  5. The Project Data Sphere Initiative: Accelerating Cancer Research by Sharing Data

    PubMed Central

    Reeder-Hayes, Katherine E.; Corty, Robert W.; Basch, Ethan; Milowsky, Mathew I.; Dusetzina, Stacie B.; Bennett, Antonia V.; Wood, William A.

    2015-01-01

    Background. In this paper, we provide background and context regarding the potential for a new data-sharing platform, the Project Data Sphere (PDS) initiative, funded by financial and in-kind contributions from the CEO Roundtable on Cancer, to transform cancer research and improve patient outcomes. Given the relatively modest decline in cancer death rates over the past several years, a new research paradigm is needed to accelerate therapeutic approaches for oncologic diseases. Phase III clinical trials generate large volumes of potentially usable information, often on hundreds of patients, including patients treated with standard of care therapies (i.e., controls). Both nationally and internationally, a variety of stakeholders have pursued data-sharing efforts to make individual patient-level clinical trial data available to the scientific research community. Potential Benefits and Risks of Data Sharing. For researchers, shared data have the potential to foster a more collaborative environment, to answer research questions in a shorter time frame than traditional randomized control trials, to reduce duplication of effort, and to improve efficiency. For industry participants, use of trial data to answer additional clinical questions could increase research and development efficiency and guide future projects through validation of surrogate end points, development of prognostic or predictive models, selection of patients for phase II trials, stratification in phase III studies, and identification of patient subgroups for development of novel therapies. Data transparency also helps promote a public image of collaboration and altruism among industry participants. For patient participants, data sharing maximizes their contribution to public health and increases access to information that may be used to develop better treatments. Concerns about data-sharing efforts include protection of patient privacy and confidentiality. To alleviate these concerns, data sets are

  6. Hemorrhagic small intestine cancer with solitary pulmonary metastasis initially presented as suspected primary lung cancer: an autopsy report.

    PubMed

    Iwata, Takashi; Inoue, Kiyotoshi; Kiriike, Sachiko; Izumi, Nobuhiro; Mizuguchi, Shinjiro; Tsukioka, Takuma; Morita, Ryuhei; Nishiyama, Noritoshi; Takemura, Masashi; Osugi, Harusi; Wakasa, Kenichi; Suehiro, Shigefumi

    2007-12-01

    Cancer of the small intestine presenting with a solitary pulmonary metastasis is rare. Diagnosis and treatment of hemorrhagic small intestinal disease is clinically problematic due to its anatomic aspect, especially after multiple laparotomies. The case that we present here was a 79-year-old man who was initially diagnosed with suspected T2N2M0 lung cancer. After non-diagnostic results on two bronchoscopic biopsies and computed tomography-guided needle biopsy, he was admitted for thoracoscopic biopsy and possible curative operation. The patient had a history of multiple laparotomies for gastric ulcer and had no abdominal symptoms. A fecal occult blood test was positive; this was thought to be because of persistent bloody sputum. During the preoperative evaluation period, massive intestinal hemorrhage occurred. Intestinal tumor was identified by double-balloon enteroscopy and emergency laparotomy was performed to control the bleeding. The histopathological diagnosis was metastatic adenocarcinoma. However, intestinal bleeding started again. His systemic status deteriorated progressively, resulting in death. Autopsy revealed a large polypoid tumor with hemorrhagic necrosis in the jejunum that was histologically and immunohistochemically diagnosed as primary poorly differentiated adenocarcinoma in the small intestine. Multiple small submucosal tumors with central ulceration were confirmed as intramural metastases. A lung mass in the right lower lobe was diagnosed as a metastatic lesion. In the diagnosis and treatment of the disease, we faced several clinically difficult problems. We here describe in detail the clinical course and the diagnostic and therapeutic difficulties of this rare case, with some references to the literature. PMID:18432067

  7. Global Cancer Disparities and the Need for New Initiatives.

    PubMed

    LeBaron, Virginia T

    2016-01-01

    The field of oncology is evolving at breakneck speed. Keeping up with the latest research findings, clinical best practices, and new chemotherapy agents is challenging, even with the help of the Internet. These oncologic advances, however, are far from uniformly available, and disturbing global disparities persist. In much of the world, a diagnosis of cancer remains a death sentence, and too many patients struggle to obtain access to screening, treatment, and basic symptom management. The harsh reality is that patients' chances of dying from cancer depends largely on where they live.  
. PMID:26679452

  8. Cancer prevention as biomodulation: targeting the initiating stimulus and secondary adaptations.

    PubMed

    Furth, Priscilla A

    2012-10-01

    In a medical sense, biomodulation could be considered a biochemical or cellular response to a disease or therapeutic stimulus. In cancer pathophysiology, the initial oncogenic stimulus leads to cellular and biochemical changes that allow cells, tissue, and organism to accommodate and accept the oncogenic insult. In epithelial cell cancer development, the process of carcinogenesis is frequently characterized by sequential cellular and biochemical adaptations as cells transition through hyperplasia, dysplasia, atypical dysplasia, carcinoma in situ, and invasive cancer. In some cases, the adaptations may persist after the initial oncogenic stimulus is gone in a type of "hit-and-run" oncogenesis. These pathophysiological changes may interfere with cancer prevention therapies targeted solely to the initial oncogenic insult, perhaps contributing to resistance development. Characterization of these accommodating adaptations could provide insight for the development of cancer preventive regimens that might more effectively biomodulate preneoplastic cells toward a more normal state. PMID:23050958

  9. Cancer stem cells, cancer-initiating cells and methods for their detection.

    PubMed

    Akbari-Birgani, Shiva; Paranjothy, Ted; Zuse, Anna; Janikowski, Tomasz; Cieślar-Pobuda, Artur; Likus, Wirginia; Urasińska, Elżbieta; Schweizer, Frank; Ghavami, Saeid; Klonisch, Thomas; Łos, Marek J

    2016-05-01

    The cancer stem cell (CSC) hypothesis considers CSCs as the main culprits of tumor initiation, propagation, metastasis and therapy failure. CSCs represent a minority subpopulation of cells within a tumor. Their detection, characterization and monitoring are crucial steps toward a better understanding of the biological roles of these special cells in the development and propagation of tumors which, in turn, improves clinical reasoning and treatment options. Nowadays, in vitro and in vivo assays are available that address the self-renewal and differentiation potential of CSCs, and advanced in vivo molecular imaging technology facilitates the detection and provides an unprecedented in vivo observation platform to study the behavior of CSCs in their natural environment. Here, we provide a brief overview of CSCs and describe modern cellular models and labeling techniques to study and trace CSCs. PMID:26976692

  10. PACE Continuous Innovation Indicators—a novel tool to measure progress in cancer treatments

    PubMed Central

    Paddock, Silvia; Brum, Lauren; Sorrow, Kathleen; Thomas, Samuel; Spence, Susan; Maulbecker-Armstrong, Catharina; Goodman, Clifford; Peake, Michael; McVie, Gordon; Geipel, Gary; Li, Rose

    2015-01-01

    Concerns about rising health care costs and the often incremental nature of improvements in health outcomes continue to fuel intense debates about ‘progress’ and ‘value’ in cancer research. In times of tightening fiscal constraints, it is increasingly important for patients and their representatives to define what constitutes ’value’ to them. It is clear that diverse stakeholders have different priorities. Harmonisation of values may be neither possible nor desirable. Stakeholders lack tools to visualise or otherwise express these differences and to track progress in cancer treatments based on variable sets of values. The Patient Access to Cancer care Excellence (PACE) Continuous Innovation Indicators are novel, scientifically rigorous progress trackers that employ a three-step process to quantify progress in cancer treatments: 1) mine the literature to determine the strength of the evidence supporting each treatment; 2) allow users to weight the analysis according to their priorities and values; and 3) calculate Evidence Scores (E-Scores), a novel measure to track progress, based on the strength of the evidence weighted by the assigned value. We herein introduce a novel, flexible value model, show how the values from the model can be used to weight the evidence from the scientific literature to obtain E-Scores, and illustrate how assigning different values to new treatments influences the E-Scores. The Indicators allow users to learn how differing values lead to differing assessments of progress in cancer research and to check whether current incentives for innovation are aligned with their value model. By comparing E-Scores generated by this tool, users are able to visualise the relative pace of innovation across areas of cancer research and how stepwise innovation can contribute to substantial progress against cancer over time. Learning from experience and mapping current unmet needs will help to support a broad audience of stakeholders in their

  11. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression

    PubMed Central

    Palaniappan, Ashok; Ramar, Karthick; Ramalingam, Satish

    2016-01-01

    It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge. PMID:27243824

  12. NAC, Tiron and Trolox Impair Survival of Cell Cultures Containing Glioblastoma Tumorigenic Initiating Cells by Inhibition of Cell Cycle Progression

    PubMed Central

    Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression. PMID:24587218

  13. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium.

    PubMed

    Tucker, Matthew R; Okada, Takashi; Johnson, Susan D; Takaiwa, Fumio; Koltunow, Anna M G

    2012-05-01

    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA. PMID:22378948

  14. Effect of Metformin on Progression of Head and Neck Cancers, Occurrence of Second Primary Cancers, and Cause-Specific Survival

    PubMed Central

    Kwon, Minsu; Song, Jihyun; Lee, Sang-Wook; Kim, Sung-Bae; Choi, Seung-Ho; Nam, Soon Yuhl

    2015-01-01

    Background. This study aimed to investigate the effect of metformin on progression of head and neck cancers, occurrence of second primary cancers, and cause-specific survival. Methods. This study analyzed a retrospective cohort of 1,151 consecutive patients with head and neck squamous cell carcinoma who were treated at our hospital. Patients were divided into three groups: nondiabetic, nonmetformin, and metformin. Clinical characteristics, recurrence of index head and neck cancer, occurrence of second primary cancer, and survival were compared among the different groups. Results. Of 1,151 patients, 99 (8.6%) were included in the metformin group, 79 (6.8%) were in the nonmetformin group, and 973 (84.5%) were in the nondiabetic group. Diabetic status and metformin exposure had no significant impact on index head and neck cancer recurrence or second primary cancer development (p > .2). The nonmetformin group showed relatively lower overall (p = .017) and cancer-specific (p = .054) survival rates than the other groups in univariate analyses, but these results were not confirmed in multivariate analyses. Conclusion. Metformin use did not show beneficial effects on index tumor progression, second primary cancer occurrence, and cause-specific survival in patients with head and neck cancer compared with nonmetformin users and nondiabetic patients. PMID:25802404

  15. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition

    PubMed Central

    Piao, Junjie; Sun, Jie; Han, Longzhe; Chen, Liyan; Yan, Guanghai; Lin, Zhenhua

    2016-01-01

    Cervical cancer is the third most common cancer in females worldwide. The treatment options for advanced cervical cancer are limited, leading to high mortality. Ezrin is a membrane-cytoskeleton-binding protein recently reported to act as a tumor promoter, and we previously indicated that the aberrant localization and overexpression of Ezrin could be an independent effective biomarker for prognostic evaluation of cervical cancers. In this study, we identified Ezrin as a regulator of epithelial-mesenchymal transition (EMT) and metastasis in cervical cancer. Ezrin knock-down inhibited anchorage-independent growth, cell migration, and invasion of cervical cancer cell lines in vitro and in vivo. EMT was inhibited in Ezrin-depleted cells, with up-regulation of E-cadherin and Cytokeratin-18 (CK-18) and down-regulation of mesenchymal markers. Ezrin knock-down also induced Akt phosphorylation. These results implicate Ezrin as an EMT regulator and tumor promoter in cervical cancer, and down-regulation of Ezrin suppressed cervical cancer progression, possibly via the phosphoinositide 3-kinase/Akt pathway. Furthermore, the expression pattern of Ezrin protein was closely related with the lymphovascular invasion status of cervical cancer by immunohistochemistry, and the survival analysis revealed that the cervical cancer patients with the perinuclear Ezrin expression pattern had longer survival time than those with the cytoplasmic Ezrin expression pattern. Ezrin thus represents a promising target for the development of novel and effective strategies aimed at preventing the progression of cervical cancer. PMID:26933912

  16. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling

    PubMed Central

    Forloni, Matteo; Dogra, Shaillay Kumar; Dong, Yuying; Conte, Darryl; Ou, Jianhong; Zhu, Lihua Julie; Deng, April; Mahalingam, Meera; Green, Michael R; Wajapeyee, Narendra

    2014-01-01

    Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. In this study, we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. DOI: http://dx.doi.org/10.7554/eLife.01460.001 PMID:24550252

  17. Honokiol targets mitochondria to halt cancer progression and metastasis.

    PubMed

    Pan, Jing; Lee, Yongik; Wang, Yian; You, Ming

    2016-06-01

    Cancer continues to be the leading cause of death worldwide. Plants have a long history of use in the treatment of cancer. Honokiol (HNK) is an important bioactive compound found in the bark of Magnolia tree, and has been shown to inhibit cancer growth and metastasis in many cell types in vitro and in animal models. Resistance to chemotherapy and radiotherapy is the major obstacle for cure of cancer. Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death, suggesting that HNK not only directly inhibits primary cancers and metastasis, but also has potential to overcome drug resistance. Ultimately, this may mean that HNK could be combined with traditional chemotherapies administered at lower doses to significantly reduce toxicity, meanwhile enhance efficacy. As a natural compound, HNK is composed of polyphenols and has been described in many studies targeting multiple key cell signaling molecules. Mitochondria are the main hub for cellular energy production and play an important role in cell survival, and are the key target identified for HNK to mediate cancer cell death, survival, and metastasis. In this review, we have summarized different aspects of HNK's anti-cancer effects from recent accumulated literature, as well as the underlying molecular mechanisms. This review is primarily focused on the effects of HNK on epidermal growth factor receptor (EGFR) and signal transduction and activator of transcription 3 (STAT3) signaling, as well as the broader regulation of mitochondrial function and cancer cell metabolism. PMID:27276215

  18. The development of a functionally relevant cell culture model of progressive human breast cancer.

    PubMed

    Weaver, V M; Howlett, A R; Langton-Webster, B; Petersen, O W; Bissell, M J

    1995-06-01

    Normal mammary homeostasis, and by implication tumorigenesis, are dependent upon the dynamic interplay between epithelial cells, stromal components and the extracellular matrix. To study the evolution of human breast cancer, a functionally relevant cell culture model is required which recognizes the complexity of the mammary gland's microenvironment. The development of an appropriate breast epithelial cancer cell model will be dependent on the ability to recreate the 'normal' and 'neoplastic' tissue microenvironment in culture. Towards this goal, a 3-dimensional extracellular matrix (ECM) assay, employing a reconstituted basement membrane, has been developed which allows for the rapid and accurate discrimination of normal and neoplastic cells when cultured. To investigate stromal/epithelial cell interactions, we have developed a tumor environment assay which essentially mirrors the tumor microenvironment histologically. The use of a novel, near diploid, human breast epithelial cell line, HMT-3522, which has transformed spontaneously with passage in culture, together with these 3-dimensional culture assays is expected to provide meaningful markers of initiation and progression. PMID:7495986

  19. Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: Recent Progress and Future Directions.

    PubMed

    Cameron, Laird; Solomon, Benjamin

    2015-07-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) gene originally discovered nearly 20 years ago in the context of anaplastic large cell lymphoma were identified as oncogenic drivers in a subset of non-small cell lung cancers (NSCLCs) in 2007. These ALK gene rearrangements are present in 3-5 % of NSCLC patients, typically younger, never or light smokers with adenocarcinomas. Crizotinib is a first-in-class ALK tyrosine kinase inhibitor with significant activity in ALK-positive NSCLC that received accelerated US Food and Drug Administration approval for treatment of ALK-positive NSCLC in 2011, just 4 years after identification of ALK rearrangements in this setting. Subsequently, two phase III trials have shown crizotinib to have a tolerable toxicity profile and to be superior to standard chemotherapy for the first- or second-line treatment of advanced ALK-positive lung cancer and numerous countries have approved its use. Despite initial responses, acquired resistance to crizotinib invariably leads to disease progression. Mechanisms of resistance have been described to include ALK tyrosine kinase mutations, activation of bypass signalling pathways and pharmacokinetic failure of crizotinib. Several next-generation ALK inhibitors, including ceritinib and alectinib, are in clinical development and show efficacy in both the crizotinib naïve and crizotinib refractory settings. Ongoing clinical trials will identify the optimal strategy to incorporate these novel agents in the treatment of patients with ALK-positive NSCLC. PMID:26076736

  20. Recent progress in gene-directed enzyme prodrug therapy: an emerging cancer treatment.

    PubMed

    Both, Gerald W

    2009-08-01

    The principle of gene-directed enzyme prodrug therapy (GDEPT) has existed for many years but, while simple in concept, the effective practical application of this therapy has proven to be challenging. Improvements in the efficacy of GDEPT have been achieved principally through the choice and development of more effective vectors, by optimizing and controlling gene expression and by increasing the activity of the delivered enzyme through mutation. While innovation continues in this field, the pioneering GDEPT systems designed to treat glioma and prostate cancer have completed or are now entering late-stage clinical trials, respectively. As the pace of innovation in GDEPT technology far exceeds its clinical application, these initial products are anticipated to be replaced by next-generation biologicals. This review highlights recent progress in the strategies and development of GDEPT and summarizes the status of current clinical trials. With the first GDEPT product for treatment of resected gliomas poised to gain marketing approval, a new era in cancer gene medicine is emerging. PMID:19649987

  1. S100A4 promotes endometrial cancer progress through epithelial-mesenchymal transition regulation.

    PubMed

    Hua, Teng; Liu, Shuangge; Xin, Xiaoyan; Cai, Liqiong; Shi, Rui; Chi, Shuqi; Feng, Dilu; Wang, Hongbo

    2016-06-01

    Epithelial-mesenchymal transition (EMT) is a major cause of endometrial cancer (EC) to initiate invasion and metastasis. S100A4, a calcium-binding protein, is implicated in multistage of tumorigenesis and tumor progression. The correlation between S100A4 and EMT in EC is still unclear. This study was aimed to clarify the role of S100A4 in EC and the relationship between S100A4 expression and EMT markers. S100A4, E-cadherin, and vimentin were detected in tissues of EC patients (n=50) by immunohistochemistry. The impact of S100A4 on EC cell proliferation, migration and invasion was investigated via RNA interference, and the correlation between S100A4 and EMT markers were also explored. The results showed that S100A4 was significantly increased in epithelial cells of EC compared with the normal endometrium (P<0.05), also S100A4 level was positively related to age (P=0.021), histological grade (P<0.001), and lymph node metastasis (P<0.001). Additionally, silencing of S100A4 remarkably attenuated EC cell migration and invasion. Significant morphological change accompanied with the downregulation of EMT markers, E-cadherin and vimentin were also observed. Aberrant S100A4 expression may predict EC progression and play an important role in regulating EC cell invasion through EMT regulation. Hence, S100A4 is a promising therapeutic target. PMID:27109209

  2. Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers.

    PubMed

    Elgui de Oliveira, Deilson; Müller-Coan, Bárbara G; Pagano, Joseph S

    2016-08-01

    Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression is the most relevant stage in the natural history of cancers. A given virus is usually regarded as oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, oncogenic viruses may also be important for the progression of infection-associated cancers. Recently this hypothesis has been addressed because of studies on the contribution of the Epstein-Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV products modulate cancer progression phenomena, such as the epithelial-mesenchymal transition, cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs (EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms and players involved in the contribution of EBV infection to the aggressiveness of NPC are discussed in this review. Overall, this conceptual framework may be valuable for the understanding of the contribution of some infectious agents in the progression of cancers. PMID:27068530

  3. The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer

    PubMed Central

    Bishop, Jennifer L.; Thaper, Daksh; Zoubeidi, Amina

    2014-01-01

    The signal transducer and activator of transcription (STAT)3 governs essential functions of epithelial and hematopoietic cells that are often dysregulated in cancer. While the role for STAT3 in promoting the progression of many solid and hematopoietic malignancies is well established, this review will focus on the importance of STAT3 in prostate cancer progression to the incurable metastatic castration-resistant prostate cancer (mCRPC). Indeed, STAT3 integrates different signaling pathways involved in the reactivation of androgen receptor pathway, stem like cells and the epithelial to mesenchymal transition that drive progression to mCRPC. As equally important, STAT3 regulates interactions between tumor cells and the microenvironment as well as immune cell activation. This makes it a major factor in facilitating prostate cancer escape from detection of the immune response, promoting an immunosuppressive environment that allows growth and metastasis. Based on the multifaceted nature of STAT3 signaling in the progression to mCRPC, the promise of STAT3 as a therapeutic target to prevent prostate cancer progression and the variety of STAT3 inhibitors used in cancer therapies is discussed. PMID:24722453

  4. How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression

    PubMed Central

    Bischof, Ashley G.; Mannix, Robert J.; Tobin, Heather; Bar-Yam, Yaneer; Bellin, Robert M.; Ingber, Donald E.

    2013-01-01

    Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation. PMID:24098430

  5. A favorable view: progress in cancer prevention and screening.

    PubMed

    Greenwald, Peter

    2007-01-01

    Clifton Leaf, in his article "Why We're Losing the War on Cancer," presents criticisms of past research approaches and the small impact of this research thus far on producing cures or substantially extending the life of many cancer patients. It is true that gains in long-term survival for people with advanced cancers have been modest, hindered in part by the heterogeneity of tumors, which allows the cancers to persist using alternate molecular pathways and so evade many cancer therapeutics. In contrast, clinical trials have demonstrated that it is possible to reduce the incidence or improve cancer survival through prevention and early detection. Strides have been made in preventing or detecting early the four deadliest cancers in the United States (i.e., lung, breast, prostate, and colorectal). For example, 7-year follow-up data from the Breast Cancer Prevention Trial (BCPT) provides evidence that tamoxifen reduces the occurrence of invasive breast tumors by more than 40%; recent studies using aromatase inhibitors and raloxifene are also promising. The Prostate Cancer Prevention Trial (PCPT) showed that finasteride reduced prostate cancer incidence by 25%, and the ongoing Selenium and Vitamin E Cancer Prevention Trial (SELECT) is investigating selenium and vitamin E for prostate cancer prevention based on encouraging results from earlier studies. Living a healthy lifestyle, including regular physical activity, avoiding obesity, and eating primarily a plant-based diet has been associated with a lower risk of colorectal cancer. In addition, noninvasive stool DNA tests for early detection are being studied, which may lessen the reluctance of people to be screened for colorectal polyps and cancer. Behavioral and medical approaches for smoking prevention are ways to reduce the incidence of lung cancer, with antinicotine vaccines on the horizon that may help former smokers to avoid relapse. The US National Lung Screening Trial is testing whether early detection via

  6. [Aspects of progesterone receptor (PR) activity regulation - impact on breast cancer progression].

    PubMed

    Piasecka, Dominika; Składanowski, Andrzej C; Kordek, Radzisław; Romańska, Hanna M; Sądej, Rafał

    2015-01-01

    Progesterone receptor (PR) and its specific ligand play a key role in development and physiology of mammary gland. The role of PR in initiation and progression of breast carcinoma (BCa) is unquestionable, although molecular mechanism of PR action is complex and not fully understood. It is known that increased risk of breast cancer is associated with progestin-based (synthetic ligands of progesterone) hormonal contraception or hormone replacement therapies. It is estimated that ER/PR-positive tumours represent approximately 50-70% of all BCa cases, and the loss of PR is associated with resistance to hormonal therapy and increased tumour invasiveness. In classical, genomic signalling pathway cytoplasmic PR, following ligand binding, translocates to the nucleus and regulates expression of genes with the PRE sequence. PR is also involved in a large number of alternative, non-genomic signalling cascades, e.g. PR is able to activate MAPK and PI3K/AKT pathways, which leads to regulation of gene expression. The cross-talk between PR and Growth Factors Receptors (GFR) results in progesterone-independent activation of PR as well as PR-regulated GFR expression and activation. Growth factors signalling promotes formation of a pool of hypersensitive PR responsive to even very low ligand concentration. Transcriptional activity of PR as well as its dynamic impact on processes such as cell migration and adhesion are crucial for BCa progression. Further studies of multifaceted mechanisms of PR action may contribute to new PR-targeting therapeutic strategies for breast cancer patients. PMID:26689013

  7. 78 FR 27974 - Proposed Collection; 60-Day Comment Request: National Cancer Institute (NCI) Alliance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Cancer Institute (NCI) Alliance for Nanotechnology in Cancer Platform Partnership Scientific Progress... for Strategic Scientific Initiatives, Office of Cancer Nanotechnology Research, National Cancer... this publication. Proposed Collection: National Cancer Institute (NCI) Alliance for Nanotechnology...

  8. Epigenetic regulator RBP2 is critical for breast cancer progression and metastasis

    PubMed Central

    Cao, Jian; Liu, Zongzhi; Cheung, William K.C.; Zhao, Minghui; Chen, Sophia Y.; Chan, Siew Wee; Booth, Carmen J.; Nguyen, Don X.; Yan, Qin

    2014-01-01

    Summary Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that epigenetic aberrations contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene expression datasets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes. In addition, RBP2 loss suppresses tumor formation in the MMTV-neu transgenic mice. These results suggest that therapeutically targeting RBP2 is a potential strategy to inhibit tumor progression and metastasis. PMID:24582965

  9. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer.

    PubMed

    Khoogar, Roxane; Kim, Byung-Chang; Morris, Jay; Wargovich, Michael J

    2016-05-01

    The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery. PMID:26893159

  10. Antibody-based immunotherapy of solid cancers: progress and possibilities.

    PubMed

    Nicodemus, Christopher F

    2015-01-01

    Monoclonal antibodies remain a primary product option for novel cancer treatment. The properties of an antibody are a function of the antigen specificity and constant region incorporated. The rapid advance in molecular understanding of cancer biology and the host-tumor interaction has defined a new range of targets for antibody development. The clinical success of the checkpoint inhibitors has validated immune modulation and mobilization as a therapeutic approach. Solid cancers are distinguished from hematologic malignancies because the solid tumor stroma contains significant tumor promoting and immune dampening elements less prominent in hematologic cancer. This review highlights how engineered monoclonal antibody products are emerging as potential cornerstones of new more personalized cancer treatment paradigms that target both tumor and the stromal environment. PMID:26314410

  11. [Mechanisms responsible for the progression of scirrhous gastric cancer].

    PubMed

    Yashiro, Masakazu; Ohira, Masaichi; Muguruma, Kazuya; Shinto, Osamu; Hirakawa, Kosei

    2012-10-01

    Scirrhous gastric carcinoma is characterized by rapid cancer cell infiltration and proliferation accompanied by extensive stromal fibrosis. The proliferative and invasive ability of scirrhous gastric cancer cells are closely associated with the growth factors, FGF7 and TGFbeta produced by organ-specific fibroblasts. Peritoneal fibroblasts morphologically change mesothelial cells, and stimulate the migratory capability of cancer cells. A FGFR2 phosphorylation inhibitor prolongs the survival of mice with peritoneal metastasis of scirrhous gastric cancer. A TGFbetaR inhibitor decreases the growth of fibroblast, and invasion-stimulating activity of fibroblasts on cancer cells. A FGFR2 phosphorylation inhibitor or TGFbetaR inhibitor appears therapeutically promising in scirrhous gastric carcinoma. PMID:23198567

  12. Antibody-based immunotherapy of solid cancers: progress and possibilities

    PubMed Central

    Nicodemus, Christopher F

    2015-01-01

    Monoclonal antibodies remain a primary product option for novel cancer treatment. The properties of an antibody are a function of the antigen specificity and constant region incorporated. The rapid advance in molecular understanding of cancer biology and the host–tumor interaction has defined a new range of targets for antibody development. The clinical success of the checkpoint inhibitors has validated immune modulation and mobilization as a therapeutic approach. Solid cancers are distinguished from hematologic malignancies because the solid tumor stroma contains significant tumor promoting and immune dampening elements less prominent in hematologic cancer. This review highlights how engineered monoclonal antibody products are emerging as potential cornerstones of new more personalized cancer treatment paradigms that target both tumor and the stromal environment. PMID:26314410

  13. Initial Validation of the Sleep Disturbances in Pediatric Cancer Model.

    PubMed

    Daniel, Lauren C; Schwartz, Lisa A; Mindell, Jodi A; Tucker, Carole A; Barakat, Lamia P

    2016-07-01

    OBJECTIVE : The current study evaluates content validity of the Sleep Disturbance in Pediatric Cancer (SDPC) model using qualitative and quantitative stakeholder input.  METHODS : Parents of children (aged: 3-12 years) with acute lymphoblastic leukemia (n = 20) and medical providers (n = 6) participated in semi-structured interviews about child sleep during cancer treatment. They also rated SDPC model component importance on a 0-4 scale and selected the most relevant sleep-related intervention targets.  RESULTS : Qualitatively, parents and providers endorsed that changes in the child's psychosocial, environmental, and biological processes affect sleep. Stakeholders rated most model components (parent: 32 of 40; provider: 39 of 41) as important (>2) to child sleep. Parents were most interested in interventions targeting difficulty falling asleep and providers selected irregular sleep habits/scheduling, though groups did not differ significantly. CONCLUSIONS : Stakeholders supported SDPC content validity. The model will inform subsequent measure and intervention development focusing on biological and behavioral factors most salient to sleep disturbances in pediatric cancer. PMID:26994058

  14. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    SciTech Connect

    Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  15. Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman.

    PubMed

    Mirzal, Andri; Chaudhry, Shafique Ahmad

    2016-01-01

    Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide. PMID:27268600

  16. Genetics and metabolic deregulation following cancer initiation: A world to explore.

    PubMed

    Araldi, Rodrigo Pinheiro; Módolo, Diego Grando; de Sá Júnior, Paulo Luiz; Consonni, Sílvio Roberto; de Carvalho, Rodrigo Franco; Roperto, Franco Peppino; Beçak, Willy; de Cassia Stocco, Rita

    2016-08-01

    Cancer is a group of highly complex and heterogeneous diseases with several causes. According to the stochastic model, cancer initiates from mutation in somatic cells, leading to genomic instability and cell transformation. This canonical pathway of carcinogenesis is related to the discovery of important mechanisms that regulate cancer initiation. However, there are few studies describing genetic and metabolic alterations that deregulate transformed cells, resulting in epithelial-mesenchymal transition (EMT) and its most dramatic consequence, the metastasis. This review summarizes the main genetics and metabolic changes induced by reactive oxygen species (ROS) that lead to EMT. PMID:27470384

  17. Fucoidan from Turbinaria conoides: a multifaceted 'deliverable' to combat pancreatic cancer progression.

    PubMed

    Delma, Caroline R; Somasundaram, Somasundaram T; Srinivasan, Guru Prasad; Khursheed, Md; Bashyam, Murali D; Aravindan, Natarajan

    2015-03-01

    The presence of occult metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutics for pancreatic cancer. Fucoidans from brown algae can be regarded as potential candidates in view of their antioxidant, anti-cancer and anti-angiogenic potential. Herein, we investigated the antioxidant and anti-cancer effects of fucoidans, sulfated polysaccharides from Turbinaria conoides (TCFE) in pancreatic cancer cell lines. TCFE exerted significant antioxidant activities against various free radicals. Significant inhibition of cell proliferation and, induction of apoptotic cell death were observed in pancreatic cancer cells in response to TCFE. Also, TCFE exhibited significant anti-angiogenic potential. Evidently, gelatin zymography revealed that TCFE inhibited matrix metalloproteases -2 and -9 activities in pancreatic cancer cells. These results clearly indicate that TCFE could serve as a potential 'deliverable' to alleviate pancreatic cancer progression by inhibiting tumor cell proliferation and angiogenesis. PMID:25541359

  18. Cancer Therapeutic Resistance: Progress and Perspectives (April 7-8, 2016 - Barcelona, Spain).

    PubMed

    Hutchinson, E; Pujana, M A; Arribas, J

    2016-06-01

    At the Cancer Therapeutic Resistance: Progress and Perspectives conference, in Barcelona, Spain, April 7-8, 2016, researchers, clinicians and students gathered to discuss our current understanding of intrinsic and acquired resistance of tumors to cancer therapies and to explore how to translate strategies to predict risk or overcome resistance to the clinic. The sessions covered a wide range of topics, including cancer omics, molecular classification, clinically relevant tumor models, biomarkers and novel therapeutic targets, and personalized medicine, with talks from many international experts in the field. This report highlights the main presentations that demonstrate the progress being made in predicting and identifying drug resistance in patients with cancer, personalized approaches to direct treatment and understanding the mechanisms involved. With better models of human cancer and powerful high-throughput screening techniques, translation to the clinic leading to tangible benefits for patients is attainable. PMID:27458611

  19. Joint modeling of progression-free survival and death in advanced cancer clinical trials.

    PubMed

    Dejardin, David; Lesaffre, Emmanuel; Verbeke, Geert

    2010-07-20

    Progression-related endpoints (such as time to progression or progression-free survival) and time to death are common endpoints in cancer clinical trials. It is of interest to study the link between progression-related endpoints and time to death (e.g. to evaluate the degree of surrogacy). However, current methods ignore some aspects of the definitions of progression-related endpoints. We review those definitions and investigate their impact on modeling the joint distribution. Further, we propose a multi-state model in which the association between the endpoints is modeled through a frailty term. We also argue that interval-censoring needs to be taken into account to more closely match the latent disease evolution. The joint distribution and an expression for Kendall's tau are derived. The model is applied to data from a clinical trial in advanced metastatic ovarian cancer. PMID:20572123

  20. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer.

    PubMed

    Zhang, S; Chung, W-C; Xu, K

    2016-05-12

    Notch controls pancreatic differentiation during development and is reactivated in pancreatic cancer. In recent years, the importance of Notch signaling in pancreatic tumorigenesis has become increasingly evident; however, it remains unclear how Notch activities are regulated in this context. Here we report differential regulation of Notch receptors by Lunatic Fringe (Lfng), which encodes an O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats in the Notch extracellular domain, during pathogenesis of Kras-induced pancreatic ductal adenocarcinoma (PDAC). We show that Lfng is uniquely expressed in a subset of acinar cells in the adult pancreas. Deletion of Lfng in the Kras(LSL-G12D/+);Pdx1-Cre mouse model caused increased activation of Notch3 throughout PDAC initiation and progression, and Notch1 after the onset of disease, associated with marked upregulation of Notch target gene Hes1. Deletion of Lfng also resulted in accumulation of Aldh1-positive cell population. We found that loss of Lfng significantly accelerated Kras-initiated PDAC development and shortened survival of the PDAC mice. Interestingly, Lfng-deficient tumors showed a propensity for a poorly differentiated state with features of epithelial-to-mesenchymal transition. Likewise, knockdown of LFNG in human PDAC cell lines caused elevated Notch activation, associated with either accelerated cell proliferation or expanded Aldh1-positive cell population. Deletion of Lfng resulted in downregulation of Tgfb1, Tgfb2 and Tgfbr2 expression in the wild-type pancreas at all ages examined, and in the Kras(LSL-G12D/+);Pdx1-Cre pancreas after PDAC onset, as well as reduced phospho-Smad2 levels in pancreatic tumors. We provide evidence that Lfng regulates transforming growth factor (TGF)-β signaling through Notch-mediated transcriptional repression of TGF-β pathway genes. Taken together, our results reveal a potent tumor-suppressive function for Lfng and crosstalk

  1. Pak Signaling in the Development and Progression of Cancer

    PubMed Central

    Radu, Maria; Semenova, Galina; Kosoff, Rachelle; Chernoff, Jonathan

    2014-01-01

    p21-activated kinases (Paks) are positioned at the nexus of several oncogenic signaling pathways. Overexpression or mutational activation of Pak isoforms is frequently seen in various human tumors, and recent data suggests that excessive Pak activity drives many cellular processes that are the hallmarks of cancer. In this review, we discuss the mechanisms of Pak activation in cancer, the key substrates for this family of kinases that mediate their developmental and oncogenic effects, and how small molecule inhibitors of these enzymes might best be developed and deployed in the treatment of cancer. PMID:24505617

  2. Prostate Cancer Unit Initiative in Europe: A position paper by the European School of Oncology.

    PubMed

    Valdagni, Riccardo; Van Poppel, Hendrik; Aitchison, Michael; Albers, Peter; Berthold, Dominik; Bossi, Alberto; Brausi, Maurizio; Denis, Louis; Drudge-Coates, Lawrence; De Santis, Maria; Feick, Günther; Harrison, Chris; Haustermans, Karin; Hollywood, Donal; Hoyer, Morton; Hummel, Henk; Mason, Malcolm; Mirone, Vincenzo; Müller, Stefan C; Parker, Chris; Saghatchian, Mahasti; Sternberg, Cora N; Tombal, Bertrand; van Muilekom, Erik; Watson, Maggie; Wesselmann, Simone; Wiegel, Thomas; Magnani, Tiziana; Costa, Alberto

    2015-08-01

    The Prostate Cancer Programme of the European School of Oncology developed the concept of specialised interdisciplinary and multiprofessional prostate cancer care to be formalized in Prostate Cancer Units (PCU). After the publication in 2011 of the collaborative article "The Requirements of a Specialist Prostate Cancer Unit: A Discussion Paper from the European School of Oncology", in 2012 the PCU Initiative in Europe was launched. A multiprofessional Task Force of internationally recognized opinion leaders, among whom representatives of scientific societies, and patient advocates gathered to set standards for quality comprehensive prostate cancer care and designate care pathways in PCUs. The result was a consensus on 40 mandatory and recommended standards and items, covering several macro-areas, from general requirements to personnel to organization and case management. This position paper describes the relevant, feasible and applicable core criteria for defining PCUs in most European countries delivered by PCU Initiative in Europe Task Force. PMID:26092320

  3. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages

    PubMed Central

    Tsuboki, Junko; Fujiwara, Yukio; Horlad, Hasita; Shiraishi, Daisuke; Nohara, Toshihiro; Tayama, Shingo; Motohara, Takeshi; Saito, Yoichi; Ikeda, Tsuyoshi; Takaishi, Kiyomi; Tashiro, Hironori; Yonemoto, Yukihiro; Katabuchi, Hidetaka; Takeya, Motohiro; Komohara, Yoshihiro

    2016-01-01

    It is well known that tumour-associated macrophages (TAMs) play an important role in tumour development by modulating the tumour microenvironment, and targeting of protumour activation or the M2 polarization of TAMs is expected to be an effective therapy for cancer patients. We previously demonstrated that onionin A (ONA), a natural low molecular weight compound isolated from onions, has an inhibitory effect on M2 macrophage polarization. In the present study, we investigated whether ONA had a therapeutic anti-ovarian cancer effect using in vitro and in vivo studies. We found that ONA reduced the extent of ovarian cancer cell proliferation induced by co-culture with human macrophages. In addition, we also found that ONA directly suppressed cancer cell proliferation. A combinatorial effect with ONA and anti-cancer drugs was also observed. The activation of signal transducer and activator of transcription 3 (STAT3), which is involved in cell proliferation and chemo-resistance, was significantly abrogated by ONA in ovarian cancer cells. Furthermore, the administration of ONA suppressed cancer progression and prolonged the survival time in a murine ovarian cancer model under single and combined treatment conditions. Thus, ONA is considered useful for the additional treatment of patients with ovarian cancer owing to its suppression of the protumour activation of TAMs and direct cytotoxicity against cancer cells. PMID:27404320

  4. Onionin A inhibits ovarian cancer progression by suppressing cancer cell proliferation and the protumour function of macrophages.

    PubMed

    Tsuboki, Junko; Fujiwara, Yukio; Horlad, Hasita; Shiraishi, Daisuke; Nohara, Toshihiro; Tayama, Shingo; Motohara, Takeshi; Saito, Yoichi; Ikeda, Tsuyoshi; Takaishi, Kiyomi; Tashiro, Hironori; Yonemoto, Yukihiro; Katabuchi, Hidetaka; Takeya, Motohiro; Komohara, Yoshihiro

    2016-01-01

    It is well known that tumour-associated macrophages (TAMs) play an important role in tumour development by modulating the tumour microenvironment, and targeting of protumour activation or the M2 polarization of TAMs is expected to be an effective therapy for cancer patients. We previously demonstrated that onionin A (ONA), a natural low molecular weight compound isolated from onions, has an inhibitory effect on M2 macrophage polarization. In the present study, we investigated whether ONA had a therapeutic anti-ovarian cancer effect using in vitro and in vivo studies. We found that ONA reduced the extent of ovarian cancer cell proliferation induced by co-culture with human macrophages. In addition, we also found that ONA directly suppressed cancer cell proliferation. A combinatorial effect with ONA and anti-cancer drugs was also observed. The activation of signal transducer and activator of transcription 3 (STAT3), which is involved in cell proliferation and chemo-resistance, was significantly abrogated by ONA in ovarian cancer cells. Furthermore, the administration of ONA suppressed cancer progression and prolonged the survival time in a murine ovarian cancer model under single and combined treatment conditions. Thus, ONA is considered useful for the additional treatment of patients with ovarian cancer owing to its suppression of the protumour activation of TAMs and direct cytotoxicity against cancer cells. PMID:27404320

  5. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  6. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer

    PubMed Central

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-01-01

    Purpose Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. Materials and Methods This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. Results A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Conclusion Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer. PMID:26511801

  7. Progress Against Prostate Cancer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... below the bladder. The urethra (the tube carrying urine from the bladder to outside the body) runs ... in size. This can narrow the urethra, decreasing urine flow. Prostate cancer is made up of cells ...

  8. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin

    PubMed Central

    Kwon, Oh-Joon; Zhang, Li; Ittmann, Michael M.; Xin, Li

    2014-01-01

    Chronic inflammation has been shown to promote the initiation and progression of diverse malignancies by inducing genetic and epigenetic alterations. In this study, we investigate an alternative mechanism through which inflammation promotes the initiation of prostate cancer. Adult murine prostate epithelia are composed predominantly of basal and luminal cells. Previous studies revealed that the two lineages are largely self-sustained when residing in their native microenvironment. To interrogate whether tissue inflammation alters the differentiation program of basal cells, we conducted lineage tracing of basal cells using a K14-CreER;mTmG model in concert with a murine model of prostatitis induced by infection from the uropathogenic bacteria CP9. We show that acute prostatitis causes tissue damage and creates a tissue microenvironment that induces the differentiation of basal cells into luminal cells, an alteration that rarely occurs under normal physiological conditions. Previously we showed that a mouse model with prostate basal cell-specific deletion of Phosphatase and tensin homolog (K14-CreER;Ptenfl/fl) develops prostate cancer with a long latency, because disease initiation in this model requires and is limited by the differentiation of transformation-resistant basal cells into transformation-competent luminal cells. Here, we show that CP9-induced prostatitis significantly accelerates the initiation of prostatic intraepithelial neoplasia in this model. Our results demonstrate that inflammation results in a tissue microenvironment that alters the normal prostate epithelial cell differentiation program and that through this cellular process inflammation accelerates the initiation of prostate cancer with a basal cell origin. PMID:24367088

  9. Comparative lineage tracing reveals cellular preferences for prostate cancer initiation

    PubMed Central

    Wang, Zhu A; Shen, Michael M

    2015-01-01

    The interplay of different cell types of origin and distinct oncogenic mutations may determine the tumor subtype. We have recently found that although both basal and luminal epithelial cells can initiate prostate tumorigenesis, the latter are more likely to undergo transformation in response to a range of oncogenic events. PMID:27308462

  10. CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study.

    PubMed

    Kang, Ju-Hee; Mollenhauer, Brit; Coffey, Christopher S; Toledo, Jon B; Weintraub, Daniel; Galasko, Douglas R; Irwin, David J; Van Deerlin, Vivianna; Chen-Plotkin, Alice S; Caspell-Garcia, Chelsea; Waligórska, Teresa; Taylor, Peggy; Shah, Nirali; Pan, Sarah; Zero, Pawel; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Tanner, Caroline M; Simuni, Tanya; Singleton, Andrew; Toga, Arthur W; Chowdhury, Sohini; Trojanowski, John Q; Shaw, Leslie M

    2016-06-01

    The development of biomarkers to predict the progression of Parkinson's disease (PD) from its earliest stage through its heterogeneous course is critical for research and therapeutic development. The Parkinson's Progression Markers Initiative (PPMI) study is an ongoing international multicenter, prospective study to validate biomarkers in drug-naïve PD patients and matched healthy controls (HC). We quantified cerebrospinal fluid (CSF) alpha-synuclein (α-syn), amyloid-beta1-42 (Aβ1-42), total tau (t-tau), and tau phosphorylated at Thr181 (p-tau) in 660 PPMI subjects at baseline, and correlated these data with measures of the clinical features of these subjects. We found that CSF α-syn, t-tau and p-tau levels, but not Aβ1-42, were significantly lower in PD compared with HC, while the diagnostic value of the individual CSF biomarkers for PD diagnosis was limited due to large overlap. The level of α-syn, but not other biomarkers, was significantly lower in PD patients with non-tremor-dominant phenotype compared with tremor-dominant phenotype. In addition, in PD patients the lowest Aβ1-42, or highest t-tau/Aβ1-42 and t-tau/α-syn quintile in PD patients were associated with more severe non-motor dysfunction compared with the highest or lowest quintiles, respectively. In a multivariate regression model, lower α-syn was significantly associated with worse cognitive test performance. APOE ε4 genotype was associated with lower levels of Aβ1-42, but neither with PD diagnosis nor cognition. Our data suggest that the measurement of CSF biomarkers in early-stage PD patients may relate to disease heterogeneity seen in PD. Longitudinal observations in PPMI subjects are needed to define their prognostic performance. PMID:27021906

  11. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression

    PubMed Central

    Feinberg, Andrew P.; Koldobskiy, Michael A.; Göndör, Anita

    2016-01-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  12. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.

    PubMed

    Feinberg, Andrew P; Koldobskiy, Michael A; Göndör, Anita

    2016-05-01

    This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587

  13. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

    PubMed Central

    Krstić, Jelena; Trivanović, Drenka; Mojsilović, Slavko; Santibanez, Juan F.

    2015-01-01

    Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies. PMID:26078812

  14. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model

    PubMed Central

    Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso

    2012-01-01

    It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175

  15. UNESCO's Astronomy and World Heritage Initiative: Progress to Date and Future Priorities

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2013-01-01

    UNESCO’s thematic initiative on Astronomy and World Heritage was created in 2005 “to establish a link between science and culture on the basis of research aimed at acknowledging the cultural and scientific values of properties connected with astronomy”. Since 2008, when a formal Memorandum of Understanding (MoU) was signed between the IAU and UNESCO to work together to advance the Initiative, the IAU, through its Working Group on Astronomy and World Heritage, has been working to help identify, safeguard and promote the world’s most valuable cultural properties connected with astronomy. The Working Group’s first major deliverable was the Thematic Study on the Heritage Sites of Astronomy and Archaeoastronomy, which was prepared in collaboration with ICOMOS, the Advisory Body to UNESCO that assesses World Heritage List applications relating to cultural heritage. Published in 2010, this has been endorsed by the World Heritage Centre as a basis for developing specific guidelines for UNESCO member states on the inscription of astronomical properties. The IAU’s General Assembly in Beijing saw the launch of perhaps the most significant deliverable from the Initiative to date, the Portal to the Heritage of Astronomy (www.astronomicalheritage.net) which is a dynamic, publicly accessible database, discussion forum, and document-repository on astronomical heritage sites throughout the world, whether or not they are on UNESCO’s World Heritage List. In recent months the Working Group has completed a set of nine “Extended Case Studies", which raise a wide range of general issues, varying from the integrity of astronomical sightlines at ancient sites to the preservation of dark skies at modern observatories. Given the progress that has been made to date, how would we wish to see the Initiative develop in the future and what should be the Working Group’s priorities in the coming months and years? Among the suggestions I shall be discussing is that the WG should

  16. Florida Initiative for Quality Cancer Care: Improvements on Colorectal Cancer Quality of Care Indicators during a 3-Year Interval

    PubMed Central

    Siegel, Erin M; Jacobsen, Paul B; Lee, Ji-Hyun; Malafa, Mokenge; Fulp, William; Fletcher, Michelle; Smith, Jesusa Corazon R; Brown, Richard; Levine, Richard; Cartwright, Thomas; Abesada-Terk, Guillermo; Kim, George; Alemany, Carlos; Faig, Douglas; Sharp, Philip; Markham, Merry-Jennifer; Shibata, David

    2015-01-01

    BACKGROUND The quality of cancer care has become a national priority; however, there are few ongoing efforts to assist medical oncology practices in identifying areas for improvement. The Florida Initiative for Quality Cancer Care is a consortium of 11 medical oncology practices that evaluates the quality of cancer care across Florida. Within this practice-based system of self-assessment, we determined adherence to colorectal cancer quality of care indicators (QCIs) in 2006, disseminated results to each practice and reassessed adherence in 2009. The current report focuses on evaluating the direction and magnitude of change in adherence to QCIs for colorectal cancer patients between the 2 assessments. STUDY DESIGN Medical records were reviewed for all colorectal cancer patients seen by a medical oncologist in 2006 (n = 489) and 2009 (n = 511) at 10 participating practices. Thirty-five indicators were evaluated individually and changes in QCI adherence over time and by site were examined. RESULTS Significant improvements were noted from 2006 to 2009, with large gains in surgical/pathological QCIs (eg, documenting rectal radial margin status, lymphovascular invasion, and the review of ≥12 lymph nodes) and medical oncology QCIs (documenting planned treatment regimen and providing recommended neoadjuvant regimens). Documentation of perineural invasion and radial margins significantly improved; however, adherence remained low (47% and 71%, respectively). There was significant variability in adherence for some QCIs across institutions at follow-up. CONCLUSIONS The Florida Initiative for Quality Cancer Care practices conducted self-directed quality-improvement efforts during a 3-year interval and overall adherence to QCIs improved. However, adherence remained low for several indicators, suggesting that organized improvement efforts might be needed for QCIs that remained consistently low over time. Findings demonstrate how efforts such as the Florida Initiative for

  17. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies.

    PubMed

    Vera-Ramirez, Laura; Sanchez-Rovira, Pedro; Ramirez-Tortosa, M Carmen; Ramirez-Tortosa, Cesar L; Granados-Principal, Sergio; Lorente, Jose A; Quiles, Jose L

    2011-12-01

    Oxidative stress leads to lipid, carbohydrate, protein and DNA damage in biological systems and affects cell structure and function. Breast cancer cells are subjected to a high level of oxidative stress, both intracellular and extracellular. To survive, cancer cells must acquire adaptive mechanisms that counteract the toxic effects of free radicals exposure. These mechanisms may involve the activation of redox-sensitive transcription factors, increased expression of antioxidant enzymes and antiapoptotic proteins. Moreover, recent data maintain that different breast cancer cell types, show different intracellular antioxidant capacities that may determine their ability to resist radio and chemotherapy. The resistant cell type has been shown to correspond with tumor initiating cells, also known as cancer stem cells (CSCs), which are thought to be responsible for tumor initiation and metastasis. Abrogation of the above-mentioned adaptive mechanisms by redox regulation in cancer cells opens a promising research line that could have significant therapeutic applications. PMID:21288735

  18. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer.

    PubMed

    Scott, Emma C; Gardner, Eugene J; Masood, Ashiq; Chuang, Nelson T; Vertino, Paula M; Devine, Scott E

    2016-06-01

    Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient's genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk. PMID:27197217

  19. California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention.

    PubMed

    Sutton, P; Kavanaugh-Lynch, M H E; Plumb, M; Yen, I H; Sarantis, H; Thomsen, C L; Campleman, S; Galpern, E; Dickenson, C; Woodruff, T J

    2015-07-01

    The environment is an underutilized pathway to breast cancer prevention. Current research approaches and funding streams related to breast cancer and the environment are unequal to the task at hand. We undertook the California Breast Cancer Prevention Initiatives, a four-year comprehensive effort to set a research agenda related to breast cancer, the environment, disparities and prevention. We identified 20 topics for Concept Proposals reflecting a life-course approach and the complex etiology of breast cancer; considering the environment as chemical, physical and socially constructed exposures that are experienced concurrently: at home, in the community and at work; and addressing how we should be modifying the world around us to promote a less carcinogenic environment. Redirecting breast cancer research toward prevention-oriented discovery could significantly reduce the incidence and associated disparities of the disease among future generations. PMID:25277312

  20. Role of Procalcitonin and Interleukin-6 in Predicting Cancer, and Its Progression Independent of Infection.

    PubMed

    Chaftari, Anne-Marie; Hachem, Ray; Reitzel, Ruth; Jordan, Mary; Jiang, Ying; Yousif, Ammar; Garoge, Kumait; Deshmukh, Poonam; Al Hamal, Zanaib; Jabbour, Joseph; Hanania, Alexander; Raad, Sammy; Jamal, Mohamed; Raad, Issam

    2015-01-01

    Procalcitonin (PCT) and Interleukin-6 (IL-6) have emerged as biomarkers for different inflammatory conditions. The purpose of the study was to evaluate the role of PCT and IL-6 as biomarkers of cancer and its progression in a large cohort of patients. This cross-sectional study included residual plasma samples collected from cancer patients, and control subjects without cancer. Levels of PCT and IL-6 were determined by Kryptor compact bioanalyzer. We identified 575 febrile cancer patients, 410 non-febrile cancer patients, and 79 non-cancer individuals. The median PCT level was lower in control subjects (0.029 ng/ml) compared to cancer patients with stage I-III disease (0.127 ng/ml) (p<0.0001) and stage IV disease (0.190 ng/ml) (p<0.0001). It was also higher in febrile cancer patients (0.310 ng/ml) compared to non-febrile cancer patients (0.1 ng/ml) (p<0.0001). Median IL-6 level was significantly lower in the control group (0 pg/ml) than in non-febrile cancer patients with stages I-III (7.376 pg/ml) or stage IV (9.635 pg/ml) (p<0.0001). Our results suggest a potential role for PCT and IL-6 in predicting cancer in non-febrile patients. In addition, PCT is useful in detecting progression of cancer and predicting bacteremia or sepsis in febrile cancer patients. PMID:26148092

  1. Role of Procalcitonin and Interleukin-6 in Predicting Cancer, and Its Progression Independent of Infection

    PubMed Central

    Chaftari, Anne-Marie; Hachem, Ray; Reitzel, Ruth; Jordan, Mary; Jiang, Ying; Yousif, Ammar; Garoge, Kumait; Deshmukh, Poonam; Al Hamal, Zanaib; Jabbour, Joseph; Hanania, Alexander; Raad, Sammy; Jamal, Mohamed; Raad, Issam

    2015-01-01

    Procalcitonin (PCT) and Interleukin-6 (IL-6) have emerged as biomarkers for different inflammatory conditions. The purpose of the study was to evaluate the role of PCT and IL-6 as biomarkers of cancer and its progression in a large cohort of patients. This cross-sectional study included residual plasma samples collected from cancer patients, and control subjects without cancer. Levels of PCT and IL-6 were determined by Kryptor compact bioanalyzer. We identified 575 febrile cancer patients, 410 non-febrile cancer patients, and 79 non-cancer individuals. The median PCT level was lower in control subjects (0.029 ng/ml) compared to cancer patients with stage I-III disease (0.127 ng/ml) (p<0.0001) and stage IV disease (0.190 ng/ml) (p<0.0001). It was also higher in febrile cancer patients (0.310 ng/ml) compared to non-febrile cancer patients (0.1 ng/ml) (p<0.0001). Median IL-6 level was significantly lower in the control group (0 pg/ml) than in non-febrile cancer patients with stages I-III (7.376 pg/ml) or stage IV (9.635 pg/ml) (p<0.0001). Our results suggest a potential role for PCT and IL-6 in predicting cancer in non-febrile patients. In addition, PCT is useful in detecting progression of cancer and predicting bacteremia or sepsis in febrile cancer patients. PMID:26148092

  2. Biomarkers to Distinguish Aggressive Cancers from Non-aggressive or Non-progressing Cancer — EDRN Public Portal

    Cancer.gov

    Distinguishing aggressive cancers from non-aggressive or non-progressing cancers is an issue of both clinical and public health importance particularly for those cancers with an available screening test. With respect to breast cancer, mammographic screening has been shown in randomized trials to reduce breast cancer mortality, but given the limitations of its sensitivity and specificity some breast cancers are missed by screening. These so called interval detected breast cancers diagnosed between regular screenings are known to have a more aggressive clinical profile. In addition, of those cancers detected by mammography some are indolent while others are more likely to recur despite treatment. The pilot study proposed herein is highly responsive to the EDRN supplement titled “Biomarkers to Distinguish Aggressive Cancers from Nonaggressive or Non-progressing Cancers” in that it addresses both of the research objectives related to these issues outlined in the notice for this supplement: Aim 1: To identify biomarkers in tumor tissue related to risk of interval detected vs. mammography screen detected breast cancer focusing on early stage invasive disease. We will compare gene expression profiles using the whole genome-cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay of 50 screen detected cancers to those of 50 interval detected cancers. Through this approach we will advance our understanding of the molecular characteristics of interval vs. screen detected breast cancers and discover novel biomarkers that distinguish between them. Aim 2: To identify biomarkers in tumor tissue related to risk of cancer recurrence among patients with screen detected early stage invasive breast cancer. Using the DASL assay we will compare gene expression profiles from screen detected early stage breast cancer that either recurred within five years or never recurred within five years. These two groups of patients will be matched on multiple factors including

  3. A comprehensive review on host genetic susceptibility to human papillomavirus infection and progression to cervical cancer

    PubMed Central

    Chattopadhyay, Koushik

    2011-01-01

    Cervical cancer is the second most common cancer in women worldwide. This is caused by oncogenic types of human papillomavirus (HPV) infection. Although large numbers of young sexually active women get HPV-infected, only a small fraction develop cervical cancer. This points to different co-factors for regression of HPV infection or progression to cervical cancer. Host genetic factors play an important role in the outcome of such complex or multifactor diseases such as cervical cancer and are also known to regulate the rate of disease progression. The aim of this review is to compile the advances in the field of host genetics of cervical cancer. MEDLINE database was searched using the terms, ‘HPV’, ‘cervical’, ‘CIN’, ‘polymorphism(s)’, ‘cervical’+ *the name of the gene* and ‘HPV’+ *the name of the gene*. This review focuses on the major host genes reported to affect the progression to cervical cancer in HPV infected individuals. PMID:22345983

  4. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. PMID:24740818

  5. Salt Reduction Initiatives around the World – A Systematic Review of Progress towards the Global Target

    PubMed Central

    Trieu, Kathy; Neal, Bruce; Hawkes, Corinna; Dunford, Elizabeth; Campbell, Norm; Rodriguez-Fernandez, Rodrigo; Legetic, Branka; McLaren, Lindsay; Barberio, Amanda; Webster, Jacqui

    2015-01-01

    Objective To quantify progress with the initiation of salt reduction strategies around the world in the context of the global target to reduce population salt intake by 30% by 2025. Methods A systematic review of the published and grey literature was supplemented by questionnaires sent to country program leaders. Core characteristics of strategies were extracted and categorised according to a pre-defined framework. Results A total of 75 countries now have a national salt reduction strategy, more than double the number reported in a similar review done in 2010. The majority of programs are multifaceted and include industry engagement to reformulate products (n = 61), establishment of sodium content targets for foods (39), consumer education (71), front-of-pack labelling schemes (31), taxation on high-salt foods (3) and interventions in public institutions (54). Legislative action related to salt reduction such as mandatory targets, front of pack labelling, food procurement policies and taxation have been implemented in 33 countries. 12 countries have reported reductions in population salt intake, 19 reduced salt content in foods and 6 improvements in consumer knowledge, attitudes or behaviours relating to salt. Conclusion The large and increasing number of countries with salt reduction strategies in place is encouraging although activity remains limited in low- and middle-income regions. The absence of a consistent approach to implementation highlights uncertainty about the elements most important to success. Rigorous evaluation of ongoing programs and initiation of salt reduction programs, particularly in low- and middle- income countries, will be vital to achieving the targeted 30% reduction in salt intake. PMID:26201031

  6. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression

    PubMed Central

    Tang, Binwu; Vu, Mary; Booker, Timberly; Santner, Steven J.; Miller, Fred R.; Anver, Miriam R.; Wakefield, Lalage M.

    2003-01-01

    The TGF-β signaling network plays a complex role in carcinogenesis because it has the potential to act as either a tumor suppressor or a pro-oncogenic pathway. Currently, it is not known whether TGF-β can switch from tumor suppressor to pro-oncogenic factor during the course of carcinogenic progression in a single cell lineage with a defined initiating oncogenic event or whether the specific nature of the response is determined by cell type and molecular etiology. To address this question, we have introduced a dominant negative type II TGF-β receptor into a series of genetically related human breast–derived cell lines representing different stages in the progression process. We show that decreased TGF-β responsiveness alone cannot initiate tumorigenesis but that it can cooperate with an initiating oncogenic lesion to make a premalignant breast cell tumorigenic and a low-grade tumorigenic cell line histologically and proliferatively more aggressive. In a high-grade tumorigenic cell line, however, reduced TGF-β responsiveness has no effect on primary tumorigenesis but significantly decreases metastasis. Our results demonstrate a causal role for loss of TGF-β responsiveness in promoting breast cancer progression up to the stage of advanced, histologically aggressive, but nonmetastatic disease and suggest that at that point TGF-β switches from tumor suppressor to prometastatic factor. PMID:14523048

  7. Targeting matriptase in breast cancer abrogates tumor progression via impairment of stromal-epithelial growth factor signaling

    PubMed Central

    Zoratti, Gina L.; Tanabe, Lauren M.; Varela, Fausto A.; Murray, Andrew S.; Bergum, Christopher; Colombo, Eloic; Lang, Julie; Molinolo, Alfredo A.; Leduc, Richard; Marsault, Eric; Boerner, Julie; List, Karin

    2015-01-01

    Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years due to its consistent dysregulation in human epithelial tumors, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumor formation and blunted tumor growth. The abated tumor growth is associated with a decrease in cancer cell proliferation. Here we demonstrate by genetic deletion and silencing that the proliferation impairment in matriptase deficient breast cancer cells is caused by their inability to initiate activation of the c-Met signaling pathway in response to fibroblast-secreted pro-HGF. Similarly, inhibition of matriptase catalytic activity using a selective small-molecule inhibitor abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally leads to attenuated proliferation in breast carcinoma cells. We conclude that matriptase is critically involved in breast cancer progression and represents a potential therapeutic target in breast cancer. PMID:25873032

  8. PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation

    PubMed Central

    Levesque, Christine; Couture, Frédéric; Kwiatkowska, Anna; Desjardins, Roxane; Guérin, Brigitte; Neugebauer, Witold A.; Day, Robert

    2015-01-01

    Prostate cancer is the leading cancer in North American men. Current pharmacological treatments are limited to anti-androgen strategies and the development of new therapeutic approaches remains a challenge. As a fundamentally new approach, we propose the inhibition of PACE4, a member of the proprotein convertases family of enzymes, as a therapeutic target in prostate cancer. We developed an inhibitor named the Multi-Leu peptide, with potent in vitro anti-proliferative effects. However, the Multi-Leu peptide has not been tested under in vivo conditions and its potency under such conditions is most likely limited, due to the labile characteristics of peptides in general. Using a peptidomimetic approach, we modified the initial scaffold, generating the analog Ac-[DLeu]LLLRVK-Amba, which demonstrates increased inhibitory potency and stability. The systemic administration of this peptidomimetic significantly inhibits tumor progression in the LNCaP xenograft model of prostate cancer by inducing tumor cell quiescence, increased apoptosis and neovascularization impairment. Pharmacokinetic and biodistribution profiles of this inhibitor confirm adequate tumor delivery properties of the compound. We conclude that PACE4 peptidomimetic inhibitors could result in stable and potent drugs for a novel therapeutic strategy for prostate cancer. PMID:25682874

  9. Absence of alphavbeta6 integrin is linked to initiation and progression of periodontal disease.

    PubMed

    Ghannad, Farzin; Nica, Daniela; Fulle, Maria I Garcia; Grenier, Daniel; Putnins, Edward E; Johnston, Sarah; Eslami, Ameneh; Koivisto, Leeni; Jiang, Guoqiao; McKee, Marc D; Häkkinen, Lari; Larjava, Hannu

    2008-05-01

    Integrin alphavbeta6 is generally not expressed in adult epithelia but is induced in wound healing, cancer, and certain fibrotic disorders. Despite this generalized absence, we observed that alphavbeta6 integrin is constitutively expressed in the healthy junctional epithelium linking the gingiva to tooth enamel. Moreover, expression of alphavbeta6 integrin was down-regulated in human periodontal disease, a common medical condition causing tooth loss and also contributing to the development of cardiovascular diseases by increasing the total systemic inflammatory burden. Remarkably, integrin beta6 knockout mice developed classic signs of spontaneous, chronic periodontal disease with characteristic inflammation, epithelial down-growth, pocket formation, and bone loss around the teeth. Integrin alphavbeta6 acts as a major activator of transforming growth factor-beta1 (TGF-beta1), a key anti-inflammatory regulator in the immune system. Co-expression of TGF-beta1 and alphavbeta6 integrin was observed in the healthy junctional epithelium. Moreover, an antibody that blocks alphavbeta6 integrin-mediated activation of TGF-beta1 initiated inflammatory periodontal disease in a rat model of gingival inflammation. Thus, alphavbeta6 integrin is constitutively expressed in the epithelium sealing the gingiva to the tooth and plays a central role in protection against inflammatory periodontal disease through activation of TGF-beta1. PMID:18385522

  10. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    PubMed

    Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  11. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  12. Measuring quality in cancer care: overview of initiatives in selected countries.

    PubMed

    Wild, C; Patera, N

    2013-11-01

    To inform the Austrian National Cancer Plan on possible generic quality indicators that might be derived from routine data a systematic literature search in three databases, followed by extensive hand-searching to locate initiatives and their publications was carried out in spring 2011. Twenty-one initiatives that developed indicators for measuring quality of cancer care were identified: longer standing and decentralised initiatives are characteristics of the USA. The Canadian province of Ontario publishes the Cancer System Quality Index, centralised audit and peer review programmes are undertaken in the National Health Service in the UK. Methodologically sound cancer type-specific pilot projects in Belgium have been implemented, the Netherlands and Denmark are running national initiatives. Germany recently started quality measurement activities, too. Generic indicators often focus on end-of-life care, multidisciplinarity, advance care planning and documentation. Indicators measuring the quality of care during an entire episode of cancer are rare, as are those for less common cancers and for care in the outpatient setting. Access, equity and the patient's perspective are only beginning to be incorporated into indicators. After having identified a range of candidate indicators that can be implemented with routinely collected data alone, piloting them in Austria would be the next step to go. PMID:23808585

  13. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression.

    PubMed

    Chang, Shuai; Liu, Junsong; Guo, Shaochun; He, Shicai; Qiu, Guanglin; Lu, Jing; Wang, Jin; Fan, Lin; Zhao, Wei; Che, Xiangming

    2016-06-01

    A long non-coding RNA named HOTTIP (HOXA transcript at the distal tip) coordinates the activation of various 5' HOXA genes which encode master regulators of development through targeting the WDR5/MLL complex. HOTTIP acts as an oncogene in several types of cancers, whereas its biological function in gastric cancer has never been studied. In the present study, we investigated the role of HOTTIP in gastric cancer. We found that HOTTIP was upregulated in gastric cancer cell lines. Knockdown of HOTTIP in gastric cancer cells inhibited cell proliferation, migration and invasion. Moreover, downregulation of HOTTIP led to decreased expression of homeobox protein Hox-A13 (HOXA13) in gastric cancer cell lines. HOXA13 was involved in HOTTIP‑induced malignant phenotypes of gastric cancer cells. Our data showed that the levels of HOTTIP and HOXA13 were both markedly upregulated in gastric cancer tissues compared with their counterparts in non-tumorous tissues. Furthermore, the expression levels of HOTTIP and HOXA13 were both higher in gastric cancer which was poorly differentiated, at advanced TNM stages and exhibited lymph node-metastasis. Spearman analyses indicated that HOTTIP and HOXA13 had a highly positive correlation both in non-tumor mucosae and cancer lesions. Collectively, these findings suggest that HOTTIP and HOXA13 play important roles in gastric cancer progression and provide a new insight into therapeutic treatment for the disease. PMID:27108607

  14. The Alzheimer’s Disease Neuroimaging Initiative: Progress report and future plans

    PubMed Central

    Weiner, Michael W.; Aisen, Paul S.; Jack, Clifford R.; Jagust, William J.; Trojanowski, John Q.; Shaw, Leslie; Saykin, Andrew J.; Morris, John C.; Cairns, Nigel; Beckett, Laurel A.; Toga, Arthur; Green, Robert; Walter, Sarah; Soares, Holly; Snyder, Peter; Siemers, Eric; Potter, William; Cole, Patricia E.; Schmidt, Mark

    2010-01-01

    The Alzheimer’s Disease Neuroimaging Initiative (ADNI) beginning in October 2004, is a 6-year re-search project that studies changes of cognition, function, brain structure and function, and biomarkers in elderly controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease (AD). A major goal is to determine and validate MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers as predictors and outcomes for use in clinical trials of AD treatments. Structural MRI, FDG PET, C-11 Pittsburgh compound B (PIB) PET, CSF measurements of amyloid β (Aβ) and species of tau, with clinical/cognitive measurements were performed on elderly controls, subjects with mild cognitive impairment, and subjects with AD. Structural MRI shows high rates of brain atrophy, and has high statistical power for determining treatment effects. FDG PET, C-11 Pittsburgh compound B PET, and CSF measurements of Aβ and tau were significant predictors of cognitive decline and brain atrophy. All data are available at UCLA/LONI/ADNI, without embargo. ADNI-like projects started in Australia, Europe, Japan, and Korea. ADNI provides significant new information concerning the progression of AD. PMID:20451868

  15. Interface Finite Elements for the Analysis of Fracture Initiation and Progression

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Technical Monitor); Johnson, Eric R.

    2003-01-01

    Progressive failure analyses (PFA) are important for the prediction of residual strength and damage tolerance of vehicle structures, and to predict the energy absorbing capability of vehicle structures under crash-type loads. Typically continuum damage mechanics (CDM) and fracture mechanics (FM) are the methods used for PFA. The method of interfacial damage mechanics (IDM) is used for PFA in this research. IDM has capabilities intermediate between CDM and FM, and is used to numerically model the initiation, growth, and arrest of cracks. IDM smooths the stress singularity at the crack tip, and is easily adaptable with other nonlinearties such as plasticity and material damage. IDM is implemented by user-defined interface elements in the ABAQUS/ Standard structural analysis software package. The structural components selected to demonstrate the effectiveness PFA using interface elements are, for the most part, those with published test data. These structural components were subjected to quasi-static loading in the tests. Thus, the ABAQUS analyses are used to predict geometrically and materially nonlinear equilibrium states. Impact loading, dynamic fracture, reflected stress waves, inertia, and time dependent material behavior are not considered.

  16. Evidence for the role of environmental agents in the initiation or progression of autoimmune conditions.

    PubMed Central

    Powell, J J; Van de Water, J; Gershwin, M E

    1999-01-01

    The concordance of autoimmune disease among identical twins is virtually always less than 50% and often in the 25-40% range. This observation, as well as epidemic clustering of some autoimmune diseases following xenobiotic exposure, reinforces the thesis that autoimmune disease is secondary to both genetic and environmental factors. Because nonliving agents do not have genomes, disease characteristics involving nonliving xenobiotics are primarily secondary to host phenotype and function. In addition, because of individual genetic susceptibilities based not only on major histocompatibility complex differences but also on differences in toxin metabolism, lifestyles, and exposure rates, individuals will react differently to the same chemicals. With these comments in mind it is important to note that there have been associations of a number of xenobiotics with human autoimmune disease, including mercury, iodine, vinyl chloride, canavanine, organic solvents, silica, l-tryptophan, particulates, ultraviolet radiation, and ozone. In addition, there is discussion in the literature that raises the possibility that xenobiotics may also exacerbate an existing autoimmune disease. In this article we discuss these issues and, in particular, the evidence for the role of environmental agents in the initiation or progression of autoimmune conditions. With the worldwide deterioration of the environment, this is a particularly important subject for human health. PMID:10970167

  17. The Haiti Breast Cancer Initiative: Initial Findings and Analysis of Barriers-to-Care Delaying Patient Presentation

    PubMed Central

    Sharma, Ketan; Costas, Ainhoa; Damuse, Ruth; Hamiltong-Pierre, Jean; Pyda, Jordan; Ong, Cecilia T.; Shulman, Lawrence N.; Meara, John G.

    2013-01-01

    Background. In Haiti, breast cancer patients present at such advanced stages that even modern therapies offer modest survival benefit. Identifying the personal, sociocultural, and economic barriers-to-care delaying patient presentation is crucial to controlling disease. Methods. Patients presenting to the Hôpital Bon Sauveur in Cange were prospectively accrued. Delay was defined as 12 weeks or longer from initial sign/symptom discovery to presentation, as durations greater than this cutoff correlate with reduced survival. A matched case-control analysis with multivariate logistic regression was used to identify factors predicting delay. Results. Of N = 123 patients accrued, 90 (73%) reported symptom-presentation duration and formed the basis of this study: 52 patients presented within 12 weeks of symptoms, while 38 patients waited longer than 12 weeks. On logistic regression, lower education status (OR = 5.6, P = 0.03), failure to initially recognize mass as important (OR = 13.0, P < 0.01), and fear of treatment cost (OR = 8.3, P = 0.03) were shown to independently predict delayed patient presentation. Conclusion. To reduce stage at presentation, future interventions must educate patients on the recognition of initial breast cancer signs and symptoms and address cost concerns by providing care free of charge and/or advertising that existing care is already free. PMID:23840209

  18. Recent progress and future direction of cancer epidemiological research in Japan.

    PubMed

    Sobue, Tomotaka

    2015-06-01

    In 2006, the Cancer Control Act was approved and a Basic Plan, to Promote the Cancer Control Program at the national level, was developed in 2007. Cancer research is recognized as a fundamental component to provide evidence in cancer control program. Cancer epidemiology plays central role in connecting research and policy, since it directly deals with data from humans. Research for cancer epidemiology in Japan made substantial progress, in the field of descriptive studies, cohort studies, intervention studies and activities for summarizing evidences. In future, promoting high-quality large-scale intervention studies, individual-level linkage studies, simulation models and studies for elderly population will be of great importance, but at the same time research should be promoted in well-balanced fashion not placing too much emphasis on one particular research field. PMID:25762798

  19. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research. PMID:25234700

  20. Phosphofructokinase: a mediator of glycolytic flux in cancer progression.

    PubMed

    Al Hasawi, Nada; Alkandari, Mariam F; Luqmani, Yunus A

    2014-12-01

    In view of the current limitations of cancer chemotherapy, there has been resurgent interest in re-visiting glycolysis to determine whether tumors could be killed by energy deprivation rather than solely by strategies to inhibit proliferation. Cancer cells exhibit a uniquely high rate of glucose utilization, converting it into lactate whose export subsequently creates an acidic extracellular environment that is thought to promote invasion and metastasis, in preference to its complete oxidation even in the presence of adequate oxygen supply. Reductive analysis of each step of glycolysis shows that, of the three rate limiting enzymes of the pathway, isoforms of phosphofructokinase may afford the greatest opportunity as targets to deprive cancer cells from essential energy and substrates for macromolecular synthesis for proliferation while allowing normal cells to survive. Strategies discussed include restricting the substrate for this enzyme. While prospects for monotherapy with glycolytic inhibitors are poor, combination therapy may be productive. PMID:24910089

  1. FYN promotes breast cancer progression through epithelial-mesenchymal transition.

    PubMed

    Xie, Ye-Gong; Yu, Yue; Hou, Li-Kun; Wang, Xin; Zhang, Bin; Cao, Xu-Chen

    2016-08-01

    FYN, one of the members of the Src family of kinases (SFKs), has been reported to be overexpressed in various types of cancers and correlated with cell motility and proliferation. However, the mechanism is still unclear. In the present study, we found that FYN was overexpressed in breast cancer and overexpression of FYN promoted cell proliferation, migration and invasion in the MCF10A cells, whereas depletion of FYN suppressed cell proliferation, migration and invasion in the MDA-MB-231 cells. Moreover, FYN upregulated the expression of mesenchymal markers and epithelial-mesenchymal transition (EMT)-related transcription factors, and downregulated the expression of epithelial markers, suggesting that FYN induces EMT in breast cancer cells. Furthermore, FYN was transcriptionally regulated by FOXO1 and mediated FGF2-induced EMT through both the PI3K/AKT and ERK/MAPK pathways. PMID:27349276

  2. [Mechanism and clinical progress of molecular targeted cancer therapy].

    PubMed

    Hu, Hong-xiang; Wang, Xue-qing; Zhang, Hua; Zhang, Qiang

    2015-10-01

    Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy. PMID:26837167

  3. JNK Signaling in the Control of the Tumor-Initiating Capacity Associated with Cancer Stem Cells

    PubMed Central

    Sato, Atsushi; Okada, Masashi

    2013-01-01

    Deregulation of c-Jun NH2-terminal kinase (JNK) signaling occurs frequently in a variety of human cancers, yet the exact role(s) of JNK deregulation in cancer cell biology remains to be fully elucidated. Our recent demonstration that the activity of JNK is required not only for self-renewal of glioma stem cells but also for their tumor initiation has, however, identified a new role for JNK in the control of the stemness and tumor-initiating capacity of cancer cells. Significantly, transient JNK inhibition was sufficient to cause sustained loss of the tumor-initiating capacity of glioma stem cells, suggesting that the phenotype of “lost tumor-initiating capacity” may be as stable as the differentiated state and that the tumor-initiating capacity might therefore be under the control of JNK through an epigenetic mechanism that also governs stemness and differentiation. Here, in this article, we review the role and mechanism of JNK in the control of this “stemness-associated tumor-initiating capacity” (STATIC), a new hypothetical concept we introduce in this review article. Since the idea of STATIC is essentially applicable to both cancer types that do and do not follow the cancer stem cell hypothesis, we also give consideration to the possible involvement of JNK-mediated control of STATIC in a wide range of human cancers in which JNK is aberrantly activated. Theoretically, successful targeting of STATIC through JNK could contribute to long-term control of cancer. Issues to be considered before clinical application of therapies targeting this JNK-STATIC axis are also discussed. PMID:24349636

  4. The characteristics and spatial distributions of initially missed and rebiopsy-detected prostate cancers

    PubMed Central

    2016-01-01

    Purpose: The purpose of this study was to analyze the characteristics of initially missed and rebiopsy-detected prostate cancers following 12-core transrectal biopsy. Methods: A total of 45 patients with prostate cancers detected on rebiopsy and 45 patients with prostate cancers initially detected on transrectal ultrasound-guided biopsy were included in the study. For result analysis, the prostate was divided into six compartments, and the cancer positive rates, estimated tumor burden, and agreement rates between biopsy and surgical specimens, along with clinical data, were evaluated. Results: The largest mean tumor burden was located in the medial apex in both groups. There were significantly more tumors in this location in the rebiopsy group (44.9%) than in the control group (30.1%, P=0.015). The overall sensitivity of biopsy was significantly lower in the rebiopsy group (22.5% vs. 43.4%, P<0.001). The agreement rate of cancer positive cores between biopsy and surgical specimens was significantly lower in the medial apex in the rebiopsy group compared with that of the control group (50.0% vs. 65.6%, P=0.035). The cancer positive rates of target biopsy cores and premalignant lesions in the rebiopsy group were 63.1% and 42.3%, respectively. Conclusion: Rebiopsy-detected prostate cancers showed different spatial distribution and lower cancer detection rate of biopsy cores compared with initially diagnosed cancers. To overcome lower cancer detection rate, target biopsy of abnormal sonographic findings, premalignant lesions and medial apex which revealed larger tumor burden would be recommended when performing rebiopsy. PMID:27048261

  5. [Research progress of relationship between exosomes and breast cancer].

    PubMed

    Bi, Tao-Ling; Sun, Jin-Jian; Tian, Yu-Zi; Zhou, Ye-Fang

    2016-06-25

    Exosomes are nanosized small membrane microvesicles of endocytic origin secreted by most cell types. Exosomes, through its carrying protein or RNA from derived cells, affect gene regulation networks or epigenetic reorganization of receptor cell, and then modulate the physiological processes of cells. Studies have shown that external exosomes secreted by breast cancer cells or other cells play an important role in the development of tumor, including cell migration, cell differentiation and the immune response, etc. In this article, the latest studies were summarized to provide an overview of current understanding of exosomes in breast cancer. PMID:27350208

  6. Recent Progress in Cancer-Related Lymphedema Treatment and Prevention

    PubMed Central

    Shaitelman, Simona F.; Cromwell, Kate D.; Rasmussen, John C.; Stout, Nicole L.; Armer, Jane M.; Lasinski, Bonnie B.; Cormier, Janice N.

    2016-01-01

    This article provides an overview of the recent developments in the diagnosis, treatment, and prevention of cancer-related lymphedema. Lymphedema incidence by tumor site is evaluated. Measurement techniques and trends in patient education and treatment are also summarized to include current trends in therapeutic and surgical treatment options as well as longer-term management. Finally, an overview of the policies related to insurance coverage and reimbursement will give the clinician an overview of important trends in the diagnosis, treatment, and management of cancer-related lymphedema. PMID:25410402

  7. Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin

    PubMed Central

    Reichert, Maximilian; Blume, Karin; Kleger, Alexander; Hartmann, Daniel; von Figura, Guido

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis, since it is usually diagnosed at advanced stages. In order to employ tools for early detection, a better understanding of the early stages of PDA development from its main precursors, pancreatic intraepithelial neoplasia (PanIN), and intraductal papillary mucinous neoplasm (IPMN) is needed. Recent studies on murine PDA models have identified a different exocrine origin for PanINs and IPMNs. In both processes, developmental pathways direct the initiation of PDA precursors from their cellular ancestors. In this review, the current understanding of early PDA development is summarized. PMID:26681957

  8. Downregulation of lncRNA-ATB correlates with clinical progression and unfavorable prognosis in pancreatic cancer.

    PubMed

    Qu, Shibin; Yang, Xisheng; Song, Wenjie; Sun, Wei; Li, Xiaolei; Wang, Jianlin; Zhong, Yue; Shang, Runze; Ruan, Bai; Zhang, Zhuochao; Zhang, Xuan; Li, Haimin

    2016-03-01

    Long noncoding RNAs (lncRNAs) have been shown to play critical roles in the development and progression of diseases. lncRNA activated by transforming growth factor beta (TGF-β) (lncRNA-ATB) was discovered as a prognostic factor in hepatocellular carcinoma, gastric cancer, and colorectal cancer. However, little is known about the role of lncRNA-ATB in pancreatic cancer. This study aimed to assess lncRNA-ATB expression in pancreatic cancer and explore its role in pancreatic cancer pathogenesis. Quantitative real-time polymerase chain reaction was performed to detect lncRNA-ATB expression in 150 pancreatic cancer tissues and five pancreatic cancer cell lines compared to paired adjacent normal tissues and normal human pancreatic ductal epithelial cell line HPDE6c-7. The correlations between lncRNA-ATB expression and clinicopathological characteristics and prognosis were also analyzed. We found that lncRNA-ATB expression was decreased in pancreatic cancer tissues and pancreatic cancer cell lines. Low lncRNA-ATB expression levels were significantly correlated with lymph node metastases (yes vs. no, P = 0.009), neural invasion (positive vs. negative, P = 0.049), and clinical stage (early stage vs. advanced stage, P = 0.014). Moreover, patients with low lncRNA-ATB expression levels exhibited markedly worse overall survival prognoses (P < 0.001). Multivariate analysis indicated that decreased lncRNA-ATB expression was an independent predictor of poor prognosis in pancreatic cancer patients (P = 0.005). In conclusion, lncRNA-ATB may play a critical role in pancreatic cancer progression and prognosis and may serve as a potential prognostic biomarker in pancreatic cancer patients. PMID:26482611

  9. Serum deprivation response inhibits breast cancer progression by blocking transforming growth factor-β signaling.

    PubMed

    Tian, Yao; Yu, Yue; Hou, Li-Kun; Chi, Jiang-Rui; Mao, Jie-Fei; Xia, Li; Wang, Xin; Wang, Ping; Cao, Xu-Chen

    2016-03-01

    Serum deprivation response (SDPR), a key substrate for protein kinase C, play a critical role in inducing membrane curvature and participate in the formation of caveolae. However, the function of SDPR in cancer development and progression is still not clear. Here, we found that SDPR is downregulated in human breast cancer. Overexpression of SDPR suppresses cell proliferation and invasion in MDA-MB-231 cells, while depletion of SDPR promotes cell proliferation and invasion in MCF10A cells. Subsequently, SDPR depletion induces epithelial-mesenchymal transition (EMT)-like phenotype. Finally, knockdown of SDPR activates transforming growth factor-β (TGF-β) signaling by upregulation of TGF-β1 expression. In conclusion, our results showed that SDPR inhibits breast cancer progression by blocking TGF-β signaling. Serum deprivation response suppresses cell proliferation and invasion in breast cancer cells. SDPR depletion induces epithelial-mesenchymal transition by activation of TGF-β signaling. PMID:26749136

  10. Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression12

    PubMed Central

    Wang, Rui; Asangani, Irfan A; Chakravarthi, Balabhadrapatruni VSK; Ateeq, Bushra; Lonigro, Robert J; Cao, Qi; Mani, Ram-Shankar; Camacho, Daniel F; McGregor, Natalie; Schumann, Taibriana EW; Jing, Xiaojun; Menawat, Radhika; Tomlins, Scott A; Zheng, Heng; Otte, Arie P; Mehra, Rohit; Siddiqui, Javed; Dhanasekaran, Saravana M; Nyati, Mukesh K; Pienta, Kenneth J; Palanisamy, Nallasivam; Kunju, Lakshmi P; Rubin, Mark A; Chinnaiyan, Arul M; Varambally, Sooryanarayana

    2012-01-01

    Transcriptional repressors and corepressors play a critical role in cellular homeostasis and are frequently altered in cancer. C-terminal binding protein 1 (CtBP1), a transcriptional corepressor that regulates the expression of tumor suppressors and genes involved in cell death, is known to play a role in multiple cancers. In this study, we observed the overexpression and mislocalization of CtBP1 in metastatic prostate cancer and demonstrated the functional significance of CtBP1 in prostate cancer progression. Transient and stable knockdown of CtBP1 in prostate cancer cells inhibited their proliferation and invasion. Expression profiling studies of prostate cancer cell lines revealed that multiple tumor suppressor genes are repressed by CtBP1. Furthermore, our studies indicate a role for CtBP1 in conferring radiation resistance to prostate cancer cell lines. In vivo studies using chicken chorioallantoic membrane assay, xenograft studies, and murine metastasis models suggested a role for CtBP1 in prostate tumor growth and metastasis. Taken together, our studies demonstrated that dysregulated expression of CtBP1 plays an important role in prostate cancer progression and may serve as a viable therapeutic target. PMID:23097625

  11. Association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer

    PubMed Central

    Jin, Jing Hui; Kim, Hyun-Jung; Kim, Chan Young; Kim, Yun Hwan; Ju, Woong

    2016-01-01

    Objective Decreased adiponectin and increased leptin plasma concentrations are believed to be associated with the occurrence and progression of cancers such as endometrial cancer and breast cancer. The aim of this study was to explore the association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer. Methods For patients with ovarian cancer and the control group, adiponectin and leptin levels were measured; anthropometric data were obtained during a chart review. Statistical comparisons between groups were analyzed using the Student's t-test; correlations were confirmed using the Pearson correlation. Results The mean adiponectin and leptin concentrations in patients with ovarian cancer were lower than those of the control group (8.25 vs. 11.44 µg/mL, respectively; P=0.026) (7.09 vs. 15.4 ng/mL, respectively; P=0.001). However, there was no significant difference in adiponectin and leptin levels between early-stage (I/II) and advanced-stage (III/IV) disease (P=0.078). Conclusion Compared with other gynecological cancers, the level of adiponectin and leptin were decreased in ovarian cancer that may have some diagnostic value; additional study to elucidate the function of these two hormones in the development of ovarian carcinogenesis is necessitated. PMID:27462594

  12. Special cancer microenvironment in human colonic cancer: Concept of cancer microenvironment formed by peritoneal invasion (CMPI) and implication of subperitoneal fibroblast in cancer progression

    PubMed Central

    Ochiai, Atsushi

    2016-01-01

    Clinical outcomes of colorectal cancer are influenced not by tumor size, but by spread into the bowel wall. Although assessment of serosal involvement is an important pathological feature for classification of colon cancer, its diagnostic consistency has been questioned. Using elastic staining, we assessed elastic laminal invasion (ELI) for more objective stratification of deep tumor invasion around the peritoneal surface. In addition, pathological characteristic features of marked tumor budding, fibrosis, and macrophage infiltration in the tumor area with ELI was elucidated. This characteristic tumor area was termed cancer microenvironment formed by peritoneal elastic laminal invasion (CMPI). We elucidated histoanatomical layer‐dependent heterogeneity of fibroblast in colonic tissue. Furthermore, subperitoneal fibroblasts (SPFs) play a crucial role in tumor progression and metastasis in CMPI. Our ELI and CMPI concept contributes not only to objective pathological diagnosis, but also sheds light on biological research of special cancer microenvironments detectable in human colorectal cancers. Herein, we describe the diagnostic utility of ELI and morphological alteration in advanced colorectal cancers to determine the phenomenon that occurs when tumors invade around the peritoneal surface. Next, biological research of CMPI is reviewed to stress the importance of pathological research to establish new biological concepts. PMID:26816328

  13. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  14. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  15. miR-340 and ZEB1 negative feedback loop regulates TGF-β- mediated breast cancer progression.

    PubMed

    Hou, Li-Kun; Yu, Yue; Xie, Ye-Gong; Wang, Jie; Mao, Jie-Fei; Zhang, Bin; Wang, Xin; Cao, Xu-Chen

    2016-05-01

    MicroRNAs act as key regulators in carcinogenesis and progression in various cancers. In present study, we explored the role of miR-340 in the breast cancer progression. Our results showed that overexpression of miR-340 inhibits breast cancer cell proliferation and invasion, whereas depletion of miR-340 promotes breast cancer progression. Molecularly, ZEB1 was identified as a target gene of miR-340 and miR-340 suppressed the expression of ZEB1 by directly binding to the 3'-UTR of ZEB1. Furthermore, ZEB1 transcriptionally suppresses miR-340 expression. The negative feedback loop regulated TGF-β-mediated breast cancer progression. In conclusion, our data suggested that miR-340 acted as a tumor suppressor in breast cancer progression. PMID:27036021

  16. Current progress in suicide gene therapy for cancer.

    PubMed

    Yazawa, Kazuyuki; Fisher, William E; Brunicardi, F Charles

    2002-07-01

    Standard chemotherapeutic agents and ionizing radiation destroy dividing cells. Because tumor cells divide more rapidly than normal cells, there is a therapeutic index in which damage to the cancer cells is maximized while keeping the toxicity to the normal host cells acceptable. Suicide gene therapy strives to deliver genes to the cancer cells, which convert nontoxic prodrugs into active chemotherapeutic agents. With this strategy, the systemically administered prodrug is converted to the active chemotherapeutic agent only in cancer cells, thereby allowing a maximal therapeutic effect while limiting systemic toxicity. A literature search was conducted using the MEDLINE database from 1990 to 2001 to identify articles related to suicide gene therapy for cancer. A number of suicide gene systems have been identified, including the herpes simplex virus thymidine kinase gene, the cytosine deaminase gene, the varicella-zoster virus thymidine kinase gene, the nitroreductase gene, the Escherichia coli gpt gene, and the E. coli Deo gene. Various vectors, including liposomes, retroviruses, and adenoviruses, have been used to transfer these suicide genes to tumor cells. These strategies have been effective in cell culture experiments, laboratory animals, and some early clinical trials. Advances in tissue- and cell-specific delivery of suicide genes using specific promoters will improve the clinical utility of suicide gene therapy. PMID:11948367

  17. Targeting EZH2 for Cancer Therapy: Progress and Perspective

    PubMed Central

    Li, Chi Han; Chen, Yangchao

    2015-01-01

    Enhancer of Zeste Homolog 2 (EZH2) is the core component of the polycomb repressive complex 2 (PRC2), possessing the enzymatic activity in generating di/tri-methylated lysine 27 in histone H3. EZH2 has important roles during early development, and its dysregulation is heavily linked to oncogenesis in various tissue types. Accumulating evidences suggest a remarkable therapeutic potential by targeting EZH2 in cancer cells. The first part reviews current strategies to target EZH2 in cancers, and evaluates the available compounds and agents used to disrupt EZH2 functions. Then we provide insight to the future direction of the research on targeting EZH2 in different cancer types. We comprehensively discuss the current understandings of the 1) structure and biological activity of EZH2, 2) its role during the assembling of PRC2 and recruitment of other protein components, 3) the molecular events directing EZH2 to target genomic regions, and 4) post-translational modification at EZH2 protein. The discussion provides the basis to inspire the development of novel strategies to abolish EZH2-related effects in cancer cells. PMID:25854924

  18. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  19. Drug withdrawal in women with progressive metastatic breast cancer while on aromatase inhibitor therapy

    PubMed Central

    Chavarri-Guerra, Y; Higgins, M J; Szymonifka, J; Cigler, T; Liedke, P; Partridge, A; Ligibel, J; Come, S E; Finkelstein, D; Ryan, P D; Goss, P E

    2014-01-01

    Background: Acquiring resistance to endocrine therapy is common in metastatic hormone-receptor-positive breast cancer (MBC). These patients most often transition either to next-line endocrine therapy or to systemic chemotherapy. However, withdrawal of endocrine therapy and observation as is selectively practiced in prostate cancer is another potential strategy for breast cancer patients. Methods: A prospective, single-arm phase II trial of aromatase inhibitor (AI) withdrawal was performed in women with MBC, who had disease progression on AI therapy. The primary objective was to estimate the clinical benefit rate (defined as complete or partial response, or stable disease for at least 24 weeks, by RECIST criteria). Participants were monitored clinically and radiographically off all therapy at 8, 16 and 24 weeks after treatment and every 12 weeks thereafter until disease progression. Results: Twenty-four patients (of 40 intended) were enrolled when the study was closed due to slow accrual. Clinical benefit rate overall was 46% (95% CI 26% to 67%). Median progression-free survival from time of AI withdrawal was 4 months. Two patients have remained progression free, off all treatment, for over 60 months. Conclusions: Despite suboptimal patient accrual, our results suggest that selected patients with metastatic breast cancer progressing on AI therapy can experience disease stabilisation and a period of observation after AI withdrawal. A randomised phase II trial is planned. PMID:25233398

  20. MIEN1 promotes oral cancer progression and implicates poor overall survival

    PubMed Central

    Rajendiran, Smrithi; Kpetemey, Marilyne; Maji, Sayantan; Gibbs, Lee D; Dasgupta, Subhamoy; Mantsch, Rebecca; Hare, Richard J; Vishwanatha, Jamboor K

    2015-01-01

    Oral squamous cell carcinoma is a highly malignant tumor with the potential to invade local and distant sites and promote lymph node metastasis. Major players underlying the molecular mechanisms behind tumor progression are yet to be fully explored. Migration and invasion enhancer 1 (MIEN1), a novel protein overexpressed in various cancers, facilitates cell migration and invasion. In the present study we investigated the expression and role of MIEN1 in oral cancer progression using an in vitro model, patient derived oral tissues and existing TCGA data. Expression analysis using immortalized normal and cancer cells demonstrated increased expression of MIEN1 in cancer. Assays performed after MIEN1 knockdown in OSC-2 cells showed decreased migration, invasion and filopodia formation; while MIEN1 overexpression in DOK cells increased these characteristics and also up-regulated some Akt/NF-κB effectors, thereby suggesting an important role for MIEN1 in oral cancer progression. Immunohistochemical staining and analyses of oral tissue specimens, collected from patients over multiple visits, revealed significantly more staining in severe dysplasia and squamous cell carcinoma compared to mildly dysplastic or hyperplastic tissues. Finally, this was corroborated with the TCGA dataset, where MIEN1 expression was not only higher in intermediate and high grade cancer with significantly lower survival but also correlated with smoking. In summary, we demonstrate that MIEN1 expression not only positively correlates with oral cancer progression but also seems to be a critical molecular determinant in migration and invasion of oral cancer cells, thereby, playing a possible role in their metastatic dissemination. PMID:25996585

  1. Continuation of trastuzumab beyond disease progression in HER2-positive metastatic gastric cancer: the MD Anderson experience

    PubMed Central

    Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Rogers, Jane E.; Mares, Jeannette Elizabeth; Blum, Mariela A.; Estrella, Jeannelyn; Matamoros, Aurelio; Sagebiel, Tara; Devine, Catherine E.; Badgwell, Brian D.; Lin, Quan D.; Das, Prajnan; Ajani, Jaffer A.

    2016-01-01

    Background Despite the wide spread use of trastuzumab in human epidermal growth factor receptor 2 (HER2) overexpressing metastatic gastric cancer patients, its optimal duration of administration beyond first-line disease progression is unknown. In HER2 overexpressing metastatic breast cancer, trastuzumab continuation beyond first-line disease progression has shown improvement in time to progression (TTP) without an increased risk of treatment related toxicity. Methods HER2-overexpressing metastatic gastric cancer patients were identified from our database between January 2010 and December 2014. We retrospectively reviewed the medical records of 43 patients who received trastuzumab in combination with chemotherapy as first-line and continued trastuzumab beyond disease progression. Results Forty-three cases were identified, 27 males (62.8%), median age of the patients was 58 years. Thirty-five (81.4%) presented with stage 4 as their initial presentation. Eighty one percent had 3+ HER2 overexpression by immunohistochemistry (IHC) and 18% had 2+ HER2 overexpression confirmed by fluorescence in situ hybridization (FISH). Thirteen (52%) were moderately differentiated, 16 (37.1%) were poorly differentiated. The most common sites of metastasis were liver 35 (81.4%) and lung 14 (32.5%). The most commonly used first-line regimen was oxaliplatin, 5-fluorouracil (5-FU), and trastuzumab in 22 (51.1%) patients. Twenty-five (58.1%) patients received irinotecan, 5-FU and trastuzumab in the second-line. Progression-free survival (PFS) was 5 months (95% CI: 4.01–5.99 months). Five patients are still alive and excluded from calculating the median overall survival (OS) which was 11 months (range, 5–53 months) for the remaining 20 subjects of this second-line group. Trastuzumab was not discontinued due to side effects in any of the study population. Conclusions In conclusion, this retrospective analysis suggests that continuation of trastuzumab beyond disease progression in

  2. Latest research progress in the correlation between baicalein and breast cancer invasion and metastasis

    PubMed Central

    YAN, WAN-JUN; MA, XING-CONG; GAO, XIAO-YAN; XUE, XING-HUAN; ZHANG, SHU-QUN

    2016-01-01

    Breast cancer is one of the most commonly occurring female malignant tumors. According to the 2012 GLOBOCAN statistics, produced by the International Agency for Research On Cancer (‘IARC’), nearly 1.7 million women were diagnosed with breast cancer, with 522,000 related deaths: An increase in the incidence of breast cancer and associated mortality by nearly 18% from 2008. Metastasis is the final step in breast cancer progression, and represents the most common cause of mortality in patients with breast cancer. Therefore, a search for low-toxicity, safe and effective anti-breast cancer drugs in the form of natural compounds has become an intense focus of research. Baicalein, a widely used Chinese herbal medicine, has extensive antitumor activity. The present review briefly describes the research that has been performed on the association between baicalein and breast cancer metastasis, and further illustrates the influence of baicalein on the underlying mechanisms of breast cancer metastasis, adding a novel theory basis for baicalein antitumor research. In conclusion, baicalein may represent a promising target for the prevention and therapy of breast cancer. PMID:27073644

  3. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer

    PubMed Central

    Nomura, Alice; Banerjee, Sulagna; Chugh, Rohit; Dudeja, Vikas; Yamamoto, Masato; Vickers, Selwyn M.; Saluja, Ashok K.

    2015-01-01

    CD133 has been implicated as a cancer stem cell (CSC) surface marker in several malignancies including pancreatic cancer. However, the functional role of this surface glycoprotein in the cancer stem cell remains elusive. In this study, we determined that CD133 overexpression induced “stemness” properties in MIA-PaCa2 cells along with increased tumorigenicity, tumor progression, and metastasis in vivo. Additionally, CD133 expression induced epithelial-mesenchymal transition (EMT) and increased in vitro invasion. EMT induction and increased invasiveness were mediated by NF-κB activation, as inhibition of NF-κB mitigated these effects. This study showed that CD133 expression contributes to pancreatic cancer “stemness,” tumorigenicity, EMT induction, invasion, and metastasis. PMID:25829252

  4. Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2014-01-01

    The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell–like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial–mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3′ kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell–like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer. PMID:24273063

  5. Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies

    PubMed Central

    Väänänen, Riina-Minna; Mattsson, Jesse; Li, Yifeng; Tallgrén, Terhi; Tong Ochoa, Natalia; Bjartell, Anders; Åkerfelt, Malin; Taimen, Pekka; Boström, Peter J.

    2016-01-01

    The identification and validation of biomarkers for clinical applications remains an important issue for improving diagnostics and therapy in many diseases, including prostate cancer. Gene expression profiles are routinely applied to identify diagnostic and predictive biomarkers or novel targets for cancer. However, only few predictive markers identified in silico have also been validated for clinical, functional or mechanistic relevance in disease progression. In this study, we have used a broad, bioinformatics-based approach to identify such biomarkers across a spectrum of progression stages, including normal and tumor-adjacent, premalignant, primary and late stage lesions. Bioinformatics data mining combined with clinical validation of biomarkers by sensitive, quantitative reverse-transcription PCR (qRT-PCR), followed by functional evaluation of candidate genes in disease-relevant processes, such as cancer cell proliferation, motility and invasion. From 300 initial candidates, eight genes were selected for validation by several layers of data mining and filtering. For clinical validation, differential mRNA expression of selected genes was measured by qRT-PCR in 197 clinical prostate tissue samples including normal prostate, compared against histologically benign and cancerous tissues. Based on the qRT-PCR results, significantly different mRNA expression was confirmed in normal prostate versus malignant PCa samples (for all eight genes), but also in cancer-adjacent tissues, even in the absence of detectable cancer cells, thus pointing to the possibility of pronounced field effects in prostate lesions. For the validation of the functional properties of these genes, and to demonstrate their putative relevance for disease-relevant processes, siRNA knock-down studies were performed in both 2D and 3D organotypic cell culture models. Silencing of three genes (DLX1, PLA2G7 and RHOU) in the prostate cancer cell lines PC3 and VCaP by siRNA resulted in marked growth arrest

  6. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling.

    PubMed

    Rovigatti, Ugo

    2015-11-01

    It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part. PMID:26427785

  7. TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT

    PubMed Central

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2014-01-01

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor (eIF) 4F, the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and pre-clinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes such as cell growth and proliferation, enhanced cell survival, and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g. Ras, PI3K/AKT/TOR, and Myc), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as anti-neoplastic agents. PMID:25593033

  8. SOCE and cancer: Recent progress and new perspectives.

    PubMed

    Xie, Jiansheng; Pan, Hongming; Yao, Junlin; Zhou, Yubin; Han, Weidong

    2016-05-01

    Ca(2+) acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store-operated Ca(2+) entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca(2+) stores triggers activation of the endoplasmic reticulum (ER)-resident Ca(2+) sensor protein STIM to gate and open the ORAI Ca(2+) channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed. PMID:26355642

  9. Physician-Initiated Stop-Smoking Program for Patients Receiving Treatment for Early-Stage Cancer

    ClinicalTrials.gov

    2015-10-06

    Bladder Cancer; Breast Cancer; Colorectal Cancer; Head and Neck Cancer; Lung Cancer; Lymphoma; Prostate Cancer; Testicular Germ Cell Tumor; Tobacco Use Disorder; Unspecified Adult Solid Tumor, Protocol Specific

  10. Obesity and cancer progression: is there a role of fatty acid metabolism?

    PubMed

    Balaban, Seher; Lee, Lisa S; Schreuder, Mark; Hoy, Andrew J

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  11. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention.

    PubMed

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-03-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  12. HIG2 promotes colorectal cancer progression via hypoxia-dependent and independent pathways.

    PubMed

    Kim, Sun-Hee; Wang, Dingzhi; Park, Yun-Yong; Katoh, Hiroshi; Margalit, Ofer; Sheffer, Michal; Wu, Hong; Holla, Vijaykumar R; Lee, Ju-Seog; DuBois, Raymond N

    2013-12-01

    HIG2 (hypoxia-inducible gene 2) is a biomarker of hypoxia and elevated in several cancers. Here, we show that HIG2 also upregulated HIF-1α expression under hypoxic conditions and enhanced AP-1 expression under normoxic conditions, which affects colorectal cancer cell survival. Importantly, over-expression of HIG2 promoted tumor growth by suppressing apoptosis in a mouse orthotopic model. These results are likely relevant to human disease since we found that the expression of HIG2 is gradually elevated as tumors progress. Collectively, these findings suggest that HIG2 plays an important role in promoting colorectal cancer growth in hypoxia-dependent and independent manners. PMID:23916472

  13. The role of N-glycans in colorectal cancer progression: potential biomarkers and therapeutic applications

    PubMed Central

    de Freitas Junior, Julio Cesar Madureira; Morgado-Díaz, José Andrés

    2016-01-01

    Changes in glycosylation, which is one of the most common protein post-translational modifications, are considered to be a hallmark of cancer. N-glycans can modulate cell migration, cell-cell adhesion, cell signaling, growth and metastasis. The colorectal cancer (CRC) is a leading cause of cancer-related mortality and the correlation between CRC progression and changes in the pattern of expression of N-glycans is being considered in the search for new biomarkers. Here, we review the role of N-glycans in CRC cell biology. The perspectives on emerging N-glycan-related anticancer therapies, along with new insights and challenges, are also discussed. PMID:26539643

  14. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  15. The Potential Role of Nitric Oxide in Halting Cancer Progression Through Chemoprevention

    PubMed Central

    Vahora, Huzefa; Khan, Munawwar Ali; Alalami, Usama; Hussain, Arif

    2016-01-01

    Nitric oxide (NO) in general plays a beneficial physiological role as a vasorelaxant and the role of NO is decided by its concentration present in physiological environments. NO either facilitates cancer-promoting characters or act as an anti-cancer agent. The dilemma in this regard still remains unanswered. This review summarizes the recent information on NO and its role in carcinogenesis and tumor progression, as well as dietary chemopreventive agents which have NO-modulating properties with safe cytotoxic profile. Understanding the molecular mechanisms and cross-talk modulating NO effect by these chemopreventive agents can allow us to develop better therapeutic strategies for cancer treatment. PMID:27051643

  16. The epigenetics of tumour initiation: cancer stem cells and their chromatin.

    PubMed

    Avgustinova, Alexandra; Benitah, Salvador Aznar

    2016-02-01

    Cancer stem cells (CSCs) have been identified in various tumours and are defined by their potential to initiate tumours upon transplantation, self-renew and reconstitute tumour heterogeneity. Modifications of the epigenome can favour tumour initiation by affecting genome integrity, DNA repair and tumour cell plasticity. Importantly, an in-depth understanding of the epigenomic alterations underlying neoplastic transformation may open new avenues for chromatin-targeted cancer treatment, as these epigenetic changes could be inherently more amenable to inhibition and reversal than hard-wired genomic alterations. Here we discuss how CSC function is affected by chromatin state and epigenomic instability. PMID:26874045

  17. Simultaneous inference of cancer pathways and tumor progression from cross-sectional mutation data.

    PubMed

    Raphael, Benjamin J; Vandin, Fabio

    2015-06-01

    Recent cancer sequencing studies provide a wealth of somatic mutation data from a large number of patients. One of the most intriguing and challenging questions arising from this data is to determine whether the temporal order of somatic mutations in a cancer follows any common progression. Since we usually obtain only one sample from a patient, such inferences are commonly made from cross-sectional data from different patients. This analysis is complicated by the extensive variation in the somatic mutations across different patients, variation that is reduced by examining combinations of mutations in various pathways. Thus far, methods to reconstruct tumor progression at the pathway level have restricted attention to known, a priori defined pathways. In this work we show how to simultaneously infer pathways and the temporal order of their mutations from cross-sectional data, leveraging on the exclusivity property of driver mutations within a pathway. We define the pathway linear progression model, and derive a combinatorial formulation for the problem of finding the optimal model from mutation data. We show that with enough samples the optimal solution to this problem uniquely identifies the correct model with high probability even when errors are present in the mutation data. We then formulate the problem as an integer linear program (ILP), which allows the analysis of datasets from recent studies with large numbers of samples. We use our algorithm to analyze somatic mutation data from three cancer studies, including two studies from The Cancer Genome Atlas (TCGA) on large number of samples on colorectal cancer and glioblastoma. The models reconstructed with our method capture most of the current knowledge of the progression of somatic mutations in these cancer types, while also providing new insights on the tumor progression at the pathway level. PMID:25785493

  18. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer

    PubMed Central

    Wadosky, Kristine M; Koochekpour, Shahriar

    2016-01-01

    Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels. PMID:27019626

  19. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. PMID:24798404

  20. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting.

    PubMed

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  1. Zebrafish as a model to assess cancer heterogeneity, progression and relapse

    PubMed Central

    Blackburn, Jessica S.; Langenau, David M.

    2014-01-01

    Clonal evolution is the process by which genetic and epigenetic diversity is created within malignant tumor cells. This process culminates in a heterogeneous tumor, consisting of multiple subpopulations of cancer cells that often do not contain the same underlying mutations. Continuous selective pressure permits outgrowth of clones that harbor lesions that are capable of enhancing disease progression, including those that contribute to therapy resistance, metastasis and relapse. Clonal evolution and the resulting intratumoral heterogeneity pose a substantial challenge to biomarker identification, personalized cancer therapies and the discovery of underlying driver mutations in cancer. The purpose of this Review is to highlight the unique strengths of zebrafish cancer models in assessing the roles that intratumoral heterogeneity and clonal evolution play in cancer, including transgenesis, imaging technologies, high-throughput cell transplantation approaches and in vivo single-cell functional assays. PMID:24973745

  2. Assessing the impact of an English national initiative for early cancer diagnosis in primary care

    PubMed Central

    Rubin, G; Gildea, C; Wild, S; Shelton, J; Ablett-Spence, I

    2015-01-01

    Background: The Cancer Networks Supporting Primary Care programme was a National Health Service (NHS) initiative in England between 2011 and 2013 that aimed to better understand and improve referral practices for suspected cancer. Methods: A mixed methods evaluation using semi-structured interviews with purposefully sampled key stakeholders and an analysis of Cancer Waiting Times and Hospital Episode Statistics data for all 8179 practices in England were undertaken. We compared periods before (2009/10) and at the end (2012/13) of the initiative for practices taking up any one of four specified quality improvement initiatives expected to change referral practice in the short to medium term and those that did not. Results: Overall, 38% of general practices were involved in at least one of four quality improvement activities (clinical audit, significant event analysis, use of risk assessment tools and development of practice plans). Against an overall 29% increase in urgent cancer referrals between 2009/10 and 2012/13, these practices had a significantly higher increase in referral rate, with reduced between-practice variation. There were no significant differences between the two groups in conversion, detection or emergency presentation rates. Key features of successful implementation at practice and network level reported by participants included leadership, organisational culture and physician involvement. Concurrent health service reforms created organisational uncertainty and limited the programme's effectiveness. Conclusions: Specific primary care initiatives promoted by cancer networks had an additional and positive impact on urgent referrals for suspected cancer. Successful engagement with the programmes depended on effective and well-supported leadership by cancer networks and their general practitioner (GP) leads. PMID:25734381

  3. E2F4 Program Is Predictive of Progression and Intravesical Immunotherapy Efficacy in Bladder Cancer

    PubMed Central

    Cheng, Chao; Varn, Frederick S.; Marsit, Carmen J.

    2016-01-01

    Bladder cancer is a common malignant disease, with non–muscle-invasive bladder cancer (NMIBC) representing the majority of tumors. This cancer subtype is typically treated by transurethral resection. In spite of treatment, up to 70% of patients show local recurrences. Intravesical BCG (Bacillus Calmette-Guerin) immunotherapy has been widely used to treat NMIBC, but it fails to suppress recurrence of bladder tumors in up to 40% of patients. Therefore, the development of prognostic markers is needed to predict the progression of bladder cancer and the efficacy of intravesical BCG treatment. This study demonstrates the effectiveness of an E2F4 signature for prognostic prediction of bladder cancer. E2F4 scores for each sample in a bladder cancer expression dataset were calculated by summarizing the relative expression levels of E2F4 target genes identified by ChIP-seq, and then the scores were used to stratify patients into good- and poor-outcome groups. The molecular signature was investigated in a single bladder cancer dataset and then its effectiveness was confirmed in two meta-bladder datasets consisting of specimens from multiple independent studies. These results were consistent in different datasets and demonstrate that the E2F4 score is predictive of clinical outcomes in bladder cancer, with patients whose tumors exhibit an E2F4 score >0 having significantly shorter survival times than those with an E2F4 score <0, in both non–muscle-invasive, and muscle-invasive bladder cancer. Furthermore, although intravesical BCG immunotherapy can significantly improve the clinical outcome of NMIBC patients with positive E2F4 scores (E2F4>0 group), it does not show significant treatment effect for those with negative scores (E2F4<0 group). Implications The E2F4 signature can be applied to predict the progression/recurrence and the responsiveness of patients to intravesical BCG immunotherapy in bladder cancer. PMID:26032289

  4. Variants on the promoter region of PTEN affect breast cancer progression and patient survival

    PubMed Central

    2011-01-01

    Introduction The PTEN gene, a regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt oncogenic pathway, is mutated in various cancers and its expression has been associated with tumor progression in a dose-dependent fashion. We investigated the effect of germline variation in the promoter region of the PTEN gene on clinical characteristics and survival in breast cancer. Methods We screened the promoter region of the PTEN gene for germline variation in 330 familial breast cancer cases and further determined the genotypes of three detected PTEN promoter polymorphisms -903GA, -975GC, and -1026CA in a total of 2,412 breast cancer patients to evaluate the effects of the variants on tumor characteristics and disease outcome. We compared the gene expression profiles in breast cancers of 10 variant carriers and 10 matched non-carriers and performed further survival analyses based on the differentially expressed genes. Results All three promoter variants associated with worse prognosis. The Cox's regression hazard ratio for 10-year breast cancer specific survival in multivariate analysis was 2.01 (95% CI 1.17 to 3.46) P = 0.0119, and for 5-year breast cancer death or distant metastasis free survival 1.79 (95% CI 1.03 to 3.11) P = 0.0381 for the variant carriers, indicating PTEN promoter variants as an independent prognostic factor. The breast tumors from the promoter variant carriers exhibited a similar gene expression signature of 160 differentially expressed genes compared to matched non-carrier tumors. The signature further stratified patients into two groups with different recurrence free survival in independent breast cancer gene expression data sets. Conclusions Inherited variation in the PTEN promoter region affects the tumor progression and gene expression profile in breast cancer. Further studies are warranted to establish PTEN promoter variants as clinical markers for prognosis in breast cancer. PMID:22171747

  5. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  6. Modified Logistic Regression Models Using Gene Coexpression and Clinical Features to Predict Prostate Cancer Progression

    PubMed Central

    Zhao, Hongya; Logothetis, Christopher J.; Gorlov, Ivan P.; Zeng, Jia; Dai, Jianguo

    2013-01-01

    Predicting disease progression is one of the most challenging problems in prostate cancer research. Adding gene expression data to prediction models that are based on clinical features has been proposed to improve accuracy. In the current study, we applied a logistic regression (LR) model combining clinical features and gene co-expression data to improve the accuracy of the prediction of prostate cancer progression. The top-scoring pair (TSP) method was used to select genes for the model. The proposed models not only preserved the basic properties of the TSP algorithm but also incorporated the clinical features into the prognostic models. Based on the statistical inference with the iterative cross validation, we demonstrated that prediction LR models that included genes selected by the TSP method provided better predictions of prostate cancer progression than those using clinical variables only and/or those that included genes selected by the one-gene-at-a-time approach. Thus, we conclude that TSP selection is a useful tool for feature (and/or gene) selection to use in prognostic models and our model also provides an alternative for predicting prostate cancer progression. PMID:24367394

  7. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Cancer.gov

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  8. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer

    PubMed Central

    Rubin, John R.; Hayward, Alexandra; Cates, Angelica L.; Day, Kathleen C.; El-Sawy, Layla; Kunju, L. Priya; Daignault, Stephanie; Lee, Cheryl T.; Liebert, Monica; Hussain, Maha; Day, Mark L.

    2016-01-01

    ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable therapeutic target in

  9. MUC1 Regulates PDGFA Expression During Pancreatic Cancer Progression

    PubMed Central

    Sahraei, Mahnaz; Roy, Lopamudra Das; Curry, Jennifer M; Teresa, Tinder L; Nath, Sritama; Besmer, Dahlia; Kidiyoor, Amritha; Dalia, Ritu; Gendler, Sandra J; Mukherjee, Pinku

    2012-01-01

    Pancreatic Ductal Adenocarcinoma (PDA) has one of the worst prognoses of all cancers. Mucin 1 (MUC1), a transmembrane mucin glycoprotein, is a key modulator of several signaling pathways that affect oncogenesis, motility, and metastasis. Its expression is known to be associated with poor prognosis in patients. However, the precise mechanism remains elusive. We report a novel association of MUC1 with Platelet-Derived Growth Factor-A (PDGFA). PDGFA is one of the many drivers of tumor growth, angiogenesis, and metastasis in PDA. Using mouse PDA models as well as human samples, we show clear evidence that MUC1 regulates the expression and secretion of PDGFA. This, in turn, influences proliferation and invasion of pancreatic cancer cells leading to higher tumor burden in vivo. In addition, we reveal that MUC1 over expressing cells are heavily dependent on PDGFA both for proliferation and invasion while MUC1-null cells are not. Moreover, PDGFA and MUC1 are critical for translocation of βcatenin to the nucleus for oncogenesis to ensue. Finally, we elucidate the underlying mechanism by which MUC1 regulates PDGFA expression and secretion in pancreatic cancer cells. We show that MUC1 associates with Hif1-α, a known transcription factor involved in controlling PDGFA expression. Furthermore, MUC1 facilitates Hif1-α translocation to the nucleus. In summary, we have demonstrated that MUC1-induced invasion and proliferation occurs via increased exogenous production of PDGFA. Thus, impeding MUC1 regulation of PDGFA signaling may be therapeutically beneficial for patients with PDA. PMID:22266848

  10. The Lymphatic System in Disease Processes and Cancer Progression.

    PubMed

    Padera, Timothy P; Meijer, Eelco F J; Munn, Lance L

    2016-07-11

    Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema. PMID:26863922

  11. Efficacy of Trastuzumab in Routine Clinical Practice and After Progression for Metastatic Breast Cancer Patients: The Observational Hermine Study

    PubMed Central

    Antoine, Eric C.; Vincent-Salomon, Anne; Delozier, Thierry; Kerbrat, Pierre; Bethune-Volters, Anne; Guastalla, Jean-Paul; Spielmann, Marc; Mauriac, Louis; Misset, Jean-Louis; Serin, Daniel; Campone, Mario; Hebert, Christophe; Remblier, Céline; Bergougnoux, Loïc; Campana, Frank; Namer, Moïse

    2010-01-01

    Background. The Hermine study observed the use of trastuzumab for metastatic breast cancer (MBC) in routine practice, including patients who received trastuzumab treatment beyond progression (TBP). Patients and Methods. The study observed 623 patients for ≥2 years. Treatment was given according to oncologists' normal clinical practices. Endpoints included duration of treatment, efficacy, and cardiac safety. The TBP subanalysis compared overall survival (OS) in 177 patients who received first-line trastuzumab and either continued trastuzumab for ≥30 days following progression or stopped at or before progression. Results. The median treatment duration was 13.3 months. In the first-, second-, and third-line or beyond treatment groups, the median time to progression (TTP) were 10.3 months, 9.0 months, and 6.3 months, and the median OS times were 30.3 months, 27.1 months, and 23.2 months, respectively. Heart failure was observed in 2.6% of patients, although no cardiac-associated deaths occurred. In the TBP subanalysis, the median OS duration from treatment initiation and time of disease progression were longer in patients who continued receiving trastuzumab TBP (>27.8 months and 21.3 months, respectively) than in those who stopped (16.8 months and 4.6 months, respectively). However, the groups were not completely comparable, because patients who continued trastuzumab TBP had better prognoses at treatment initiation. The median TTP was longer in patients who continued trastuzumab TBP (10.2 months) than in those who stopped (7.1 months). Conclusion. The Hermine findings confirm that the pivotal trials of first-line trastuzumab treatment in MBC patients are applicable in clinical practice. The subanalysis suggests that trastuzumab TBP offers a survival benefit to MBC patients treated with first-line trastuzumab. PMID:20671105

  12. Targeted Therapy for Metastatic Urothelial Cancer: A Work in Progress.

    PubMed

    Plimack, Elizabeth R; Geynisman, Daniel M

    2016-06-20

    The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.A 64-year-old man presented to the clinic to discuss treatment options for progressive metastatic urothelial carcinoma (UC). At age 57 years, he underwent cystoprostatectomy for bacillus Calmette-Guérin-refractory, high-grade noninvasive UC. He was well until age 61 years, when he developed a left upper-tract UC. He underwent left nephroureterectomy, revealing locally advanced high-grade UC invading the renal parenchyma (pT3). Postoperatively, his renal function precluded adjuvant cisplatin-based chemotherapy. He enrolled onto a clinical trial of autologous cellular immunotherapy targeting human epidermal growth factor receptor 2, for which he was eligible on the basis of human epidermal growth factor receptor 2 positivity (≥ 1+ by immunohistochemistry) in his nephrectomy tumor specimen. He was randomly assigned to observation. Two years later, he developed a left pelvic mass. Biopsy confirmed metastatic high-grade UC. He was briefly treated with gemcitabine and carboplatin, but this was discontinued as a result of rapid symptomatic and radiographic progression at 8 weeks. He underwent palliative radiation to the left pelvic mass to relieve symptoms of pain and leg edema and subsequently elected to enroll onto a clinical trial of a programmed death 1 inhibitor. Concurrently, his previously obtained pelvic mass biopsy sample was sent for panel-based genomic profiling. He now returns for his first restaging evaluation. Imaging shows marked progression on

  13. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment.

    PubMed

    Peña, Christopher G; Nakada, Yuji; Saatcioglu, Hatice D; Aloisio, Gina M; Cuevas, Ileana; Zhang, Song; Miller, David S; Lea, Jayanthi S; Wong, Kwok-Kin; DeBerardinis, Ralph J; Amelio, Antonio L; Brekken, Rolf A; Castrillon, Diego H

    2015-11-01

    Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities. PMID:26413869

  14. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment

    PubMed Central

    Peña, Christopher G.; Nakada, Yuji; Saatcioglu, Hatice D.; Aloisio, Gina M.; Cuevas, Ileana; Zhang, Song; Miller, David S.; Lea, Jayanthi S.; Wong, Kwok-Kin; DeBerardinis, Ralph J.; Amelio, Antonio L.; Brekken, Rolf A.; Castrillon, Diego H.

    2015-01-01

    Endometrial cancer is the most common gynecologic malignancy and the fourth most common malignancy in women. For most patients in whom the disease is confined to the uterus, treatment results in successful remission; however, there are no curative treatments for tumors that have progressed beyond the uterus. The serine/threonine kinase LKB1 has been identified as a potent suppressor of uterine cancer, but the biological modes of action of LKB1 in this context remain incompletely understood. Here, we have shown that LKB1 suppresses tumor progression by altering gene expression in the tumor microenvironment. We determined that LKB1 inactivation results in abnormal, cell-autonomous production of the inflammatory cytokine chemokine (C-C motif) ligand 2 (CCL2) within tumors, which leads to increased recruitment of macrophages with prominent tumor-promoting activities. Inactivation of Ccl2 in an Lkb1-driven mouse model of endometrial cancer slowed tumor progression and increased survival. In human primary endometrial cancers, loss of LKB1 protein was strongly associated with increased CCL2 expression by tumor cells as well as increased macrophage density in the tumor microenvironment. These data demonstrate that CCL2 is a potent effector of LKB1 loss in endometrial cancer, creating potential avenues for therapeutic opportunities. PMID:26413869

  15. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness.

    PubMed

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  16. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    PubMed

    Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease. PMID:26107383

  17. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression

    PubMed Central

    Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R.; Altieri, Dario C.; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the “stemness” marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease. PMID:26107383

  18. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    PubMed Central

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-01-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer. PMID:27534915

  19. Cancer Stem-like Cells Act via Distinct Signaling Pathways in Promoting Late Stages of Malignant Progression.

    PubMed

    da Silva-Diz, Victoria; Simón-Extremera, Pilar; Bernat-Peguera, Adrià; de Sostoa, Jana; Urpí, Maria; Penín, Rosa M; Sidelnikova, Diana Pérez; Bermejo, Oriol; Viñals, Joan Maria; Rodolosse, Annie; González-Suárez, Eva; Moruno, Antonio Gómez; Pujana, Miguel Ángel; Esteller, Manel; Villanueva, Alberto; Viñals, Francesc; Muñoz, Purificación

    2016-03-01

    Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. β-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC. PMID:26719534

  20. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer.

    PubMed

    Lesurf, Robert; Aure, Miriam Ragle; Mørk, Hanne Håberg; Vitelli, Valeria; Lundgren, Steinar; Børresen-Dale, Anne-Lise; Kristensen, Vessela; Wärnberg, Fredrik; Hallett, Michael; Sørlie, Therese

    2016-07-26

    Breast cancer consists of at least five main molecular "intrinsic" subtypes that are reflected in both pre-invasive and invasive disease. Although previous studies have suggested that many of the molecular features of invasive breast cancer are established early, it is unclear what mechanisms drive progression and whether the mechanisms of progression are dependent or independent of subtype. We have generated mRNA, miRNA, and DNA copy-number profiles from a total of 59 in situ lesions and 85 invasive tumors in order to comprehensively identify those genes, signaling pathways, processes, and cell types that are involved in breast cancer progression. Our work provides evidence that there are molecular features associated with disease progression that are unique to the intrinsic subtypes. We additionally establish subtype-specific signatures that are able to identify a small proportion of pre-invasive tumors with expression profiles that resemble invasive carcinoma, indicating a higher likelihood of future disease progression. PMID:27396337

  1. Conditional ablation of TGF-β signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model

    PubMed Central

    Liang, Yu; Zhu, Fengyu; Zhang, Haojie; Chen, Demeng; Zhang, Xiuhong; Gao, Qian; Li, Yang

    2016-01-01

    The role of transforming growth factor-β (TGF-β) signaling in cancer progression is still under debate. To determine the function of TGF-β signaling in bladder cancer progression, we conditionally knocked out the Tgfbr2 in mouse model after a N-butyl-N-4-hydroxybutyl Nitrosamine induced bladder carcinogenesis. We found the ablation of TGF-β signaling could inhibit the cancer cell proliferation, cancer stem cell population and EMT, hence suppressed the invasive cancer progression, which is similar with the result of TGF-β receptor I inhibitor treatment. These findings recognize the roles and mechanisms of TGF-β signaling in bladder cancer progression in vivo for the first time. PMID:27378170

  2. Apoptotic cell signaling in cancer progression and therapy.

    PubMed

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-04-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  3. The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression

    PubMed Central

    Nardy, Ana Flávia Fernandes Ribas; Freire-de-Lima, Leonardo; Freire-de-Lima, Célio Geraldo; Morrot, Alexandre

    2016-01-01

    Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes, including cell differentiation, adhesion, motility, signal transduction, host–pathogen interactions, tumor cell invasion, and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune-resistant cancer cells. The involvement of glycans in cancer progression is related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field. PMID:27014629

  4. [Role of Interleukin 17 in Lung Carcinogenesis and Lung Cancer Progression].

    PubMed

    Mei, Jiandong; Liu, Lunxu

    2016-01-01

    Interleukin 17 (IL-17) is an important pro-inflammatory cytokine. It plays a critical role in mediating pathogen defense reactions, and the pathological inflammation of autoimmune diseases. IL-17 is also involved in various inflammation-related carcinogenesis. Cigarette smoking is one of the most important risk factors of lung cancer. Chronic inflammation caused by smoking and other factors is accompanied with overexpression of IL-17 within the airway, which reveals a potential relationship between IL-17 and lung carcinogenesis. Furthermore, IL-17 also plays a role in lung cancer progression via different mechanisms. In this paper, we summarized the results of current studies on IL-17 and lung carcinogenesis, as well as lung cancer progression. PMID:26805737

  5. The dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment

    PubMed Central

    Moon, Eui Jung; Giaccia, Amato

    2015-01-01

    The Cap’N’Collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains,. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression. PMID:25458917

  6. Technical progress report. Private sector initiatives between the United States and Japan. January 1989 - December 1989

    SciTech Connect

    1990-02-01

    This annual report for calendar year 1989 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  7. Technical progress report. Private sector initiatives between the United States and Japan. January 1990 - December 1990

    SciTech Connect

    1993-07-01

    OAK A271 This annual report for calendar year 1990 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  8. Technical progress report. Private sector initiatives between the United States and Japan. January 1992 - December 1992

    SciTech Connect

    1993-08-01

    OAK A271 This annual report for calendar year 1992 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  9. Technical progress report. Private sector initiatives between the United States and Japan. January 1991 - December 1991

    SciTech Connect

    1993-07-01

    This annual report for calendar year 1991 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  10. The Baby-Friendly Hospital Initiative 20 years on: facts, progress, and the way forward.

    PubMed

    Saadeh, Randa Jarudi

    2012-08-01

    The BFHI provides a framework for addressing the major factors that have contributed to the erosion of breastfeeding, that is, maternity care practices that interfere with breastfeeding. Until practices improve, attempts to promote breastfeeding outside the health service will be impeded. Although inappropriate maternity care cannot be held solely responsible for low exclusive breastfeeding rates and short breastfeeding duration, appropriate care may be a prerequisite for raising them. In many industrialized countries, BFHI activities were slow to start. Over the past 10 years and as the evidence was becoming increasingly solid and the commitment of health workers and decision makers has become stronger, considerable efforts are being made in most industrialized countries to implement the BFHI. However, coordinators of the BFHI in industrialized countries face obstacles to successful implementation that appear unique to these countries. Problems reported include opposition from the health care establishment, lack of support from national authorities, and lack of awareness or acceptance of the need for the initiative among government departments, the health care system, and parents. It is worth highlighting these facts to enable the BFHI coordinators in these countries to make well-designed and targeted plans with achievable objectives. Strengthening and scaling up the BFHI is an undisputed way to reduce infant mortality and improve quality of care for mothers and children. The BFHI has had great impact on breastfeeding practices. Reflecting new infant feeding research findings and recommendations, the tools and courses used to change hospital practices in line with Baby-Friendly criteria are available and ready to be used and implemented. Governments should ensure that all personnel who are involved in health, nutrition, child survival, or maternal health are fully informed and energized to take advantage of an environment that is conducive to revitalizing the BFHI

  11. Current trends in initial management of laryngeal cancer: the declining use of open surgery.

    PubMed

    Silver, Carl E; Beitler, Jonathan J; Shaha, Ashok R; Rinaldo, Alessandra; Ferlito, Alfio

    2009-09-01

    The role of open surgery for management of laryngeal cancer has been greatly diminished during the past decade. The development of transoral endoscopic laser microsurgery (TLS), improvements in delivery of radiation therapy (RT) and the advent of multimodality protocols, particularly concomitant chemoradiotherapy (CCRT) have supplanted the previously standard techniques of open partial laryngectomy for early cancer and total laryngectomy followed by adjuvant RT for advanced cancer. A review of the recent literature revealed virtually no new reports of conventional conservation surgery as initial treatment for early stage glottic and supraglottic cancer. TLS and RT, with or without laser surgery or CCRT, have become the standard initial treatments for T1, T2 and selected T3 laryngeal cancer. Photodynamic therapy (PDT) may have an emerging role in the treatment of early laryngeal cancer. Anterior commissure involvement presents particular difficulties in application of TLS, although no definitive conclusions have been reached with regard to optimal treatment of these lesions. Results of TLS are equivalent to those obtained by conventional conservation surgery, with considerably less morbidity, less hospital time and better postoperative function. Oncologic results of TLS and RT are equivalent for glottic cancer, but with better voice results for RT in patients who require more extensive cordectomy. The preferred treatment for early supraglottic cancer, particularly for bulkier or T3 lesions is TLS, with or without postoperative RT. The Veterans Administration Study published in 1991 established the fact that the response to neoadjuvant CT predicts the response of a tumor to RT. Patients with advanced tumors that responded either partially or completely to CT were treated with RT, and total laryngectomy was reserved for non-responders. This resulted in the ability to preserve the larynx in a significant number of patients with locally advanced laryngeal cancer, while

  12. Identification of serum proteome components associated with progression of non-small cell lung cancer.

    PubMed

    Pietrowska, Monika; Jelonek, Karol; Michalak, Malwina; Roś, Małgorzata; Rodziewicz, Paweł; Chmielewska, Klaudia; Polański, Krzysztof; Polańska, Joanna; Gdowicz-Kłosok, Agnieszka; Giglok, Monika; Suwiński, Rafał; Tarnawski, Rafał; Dziadziuszko, Rafał; Rzyman, Witold; Widłak, Piotr

    2014-01-01

    The aim of the present study was to perform comparative analysis of serum from patients with different stages of non-small cell lung cancer (NSCLC) using the three complementary proteomic approaches to identify proteome components associated with the progression of cancer. Serum samples were collected before any treatment from 200 patients with NSCLC, including 103 early stage, 64 locally advanced and 33 metastatic cancer samples, and from 200 donors without malignancy. The low-molecular-weight fraction of serum proteome was MALDI-profiled in all samples. Serum proteins were characterized using 2D-PAGE and LC-MS/MS approaches in a representative group of 30 donors. Several significant differences were detected between serum samples collected from patients with early stage cancer and patients with locally advanced cancer, as well as between patients with metastatic cancer and patients with local disease. Of note, serum components discriminating samples from early stage cancer and healthy persons were also detected. In general, about 70 differentiating serum proteins were identified, including inflammatory and acute phase proteins already reported to be associated with the progression of lung cancer (serum amyloid A or haptoglobin). Several differentiating proteins, including apolipoprotein H or apolipoprotein A1, were not previously associated with NSCLC. No significant differences in patterns of serum proteome components were detected between patients with adenocarcinoma and squamous cell carcinoma. In conclusion, we identified the biomarker candidates with potential importance for molecular proteomic staging of NSCLC. Additionally, several serum proteome components revealed their potential applicability in early detection of the lung cancer. PMID:24872961

  13. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression.

    PubMed

    Corrales, Leticia; Ajona, Daniel; Rafail, Stavros; Lasarte, Juan J; Riezu-Boj, Jose I; Lambris, John D; Rouzaut, Ana; Pajares, Maria J; Montuenga, Luis M; Pio, Ruben

    2012-11-01

    The complement system contributes to various immune and inflammatory diseases, including cancer. In this study, we investigated the capacity of lung cancer cells to activate complement and characterized the consequences of complement activation on tumor progression. We focused our study on the production and role of the anaphylatoxin C5a, a potent immune mediator generated after complement activation. We first measured the capacity of lung cancer cell lines to deposit C5 and release C5a. C5 deposition, after incubation with normal human serum, was higher in lung cancer cell lines than in nonmalignant bronchial epithelial cells. Notably, lung malignant cells produced complement C5a even in the absence of serum. We also found a significant increase of C5a in plasma from patients with non-small cell lung cancer, suggesting that the local production of C5a is followed by its systemic diffusion. The contribution of C5a to lung cancer growth in vivo was evaluated in the Lewis lung cancer model. Syngeneic tumors of 3LL cells grew slower in mice treated with an antagonist of the C5a receptor. C5a did not modify 3LL cell proliferation in vitro but induced endothelial cell chemotaxis and blood-vessels formation. C5a also contributed to the immunosuppressive microenvironment required for tumor growth. In particular, blockade of C5a receptor significantly reduced myeloid-derived suppressor cells and immunomodulators ARG1, CTLA-4, IL-6, IL-10, LAG3, and PDL1 (B7H1). In conclusion, lung cancer cells have the capacity to generate C5a, a molecule that creates a favorable tumor microenvironment for lung cancer progression. PMID:23028051

  14. An improved syngeneic orthotopic murine model of human breast cancer progression.

    PubMed

    Rashid, Omar M; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-10-01

    Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development . PMID:25200444

  15. Research progress of oncogene and tumor suppressor gene in bladder cancer.

    PubMed

    Zhang, X; Han, C; He, J

    2015-12-01

    Bladder cancer is amongst the most common malignant tumor of the urinary tract system and has the worst outcomes. The factors related to the occurrence and progression of this urological cancer has received considerable research attention. The discovery of marker genes enhances the sensitivity and specificity of early diagnosis and treatment of bladder cancer. Furthermore, these genes can be used as targets for antitumor drugs. Biomarkers that prospectively evaluate disease aggressiveness, progression risk, probability of recurrence and overall prognosis could improve patient care. Integration of molecular markers with conventional pathologic staging of bladder cancers may refine clinical decision making for the selection of adjuvant and salvage therapy. In the past decade, numerous bladder cancer biomarkers have been identified, including various tumor suppressor genes, oncogenes, growth factors, growth factor receptors, hormone receptors, proliferation and apoptosis markers, cell adhesion molecules, stromal factors, and oncoproteins. Several studies on the biological characters and mechanism of the related proteins have provided a theoretical basis for the diagnosis and treatment of bladder cancer. In this review article, we summarized the status of the current studies in this field. PMID:25634585

  16. THE PI3K-AKT-mTOR PATHWAY IN INITIATION AND PROGRESSION OF THYROID TUMORS

    PubMed Central

    Saji, Motoyasu; Ringel, Matthew D.

    2009-01-01

    The Phosphoinositide 3 (OH) kinase (PI3K) signaling cascade is involved in regulating glucose uptake and metabolism, growth, motility, and other essential functions for cell survival. Unregulated activation of this pathway commonly occurs in cancer through a variety of mechanisms, including genetic mutations of kinases and regulatory proteins, epigenetic alterations that alter gene expression and translation, and posttranslational modifications. In thyroid cancer, constitutive activation of PI3K signaling has been shown to play a role in the genetic predisposition for thyroid neoplasia in Cowden’s syndrome, and is recognized to be frequently overactivated in sporadic forms of thyroid cancer including those with aggressive clinical behaviors. In this review, the key signaling molecules in the PI3K signaling cascade, the abnormalities known to occur in thyroid cancer, and the potential for therapeutic targeting of PI3K pathway members will be discussed. PMID:19897009

  17. Recent progress and clinical importance on pharmacogenetics in cancer therapy

    PubMed Central

    Soh, Thomas I Peng; Yong, Wei Peng; Innocenti, Federico

    2013-01-01

    Recent advances have provided unprecedented opportunities to identify prognostic and predictive markers of efficacy of cancer therapy. Genetic markers can be used to exclude patients who will not benefit from therapy, exclude patients at high risk of severe toxicity, and adjust dosing. Genomic approaches for marker discovery now include genome-wide association studies and tumor DNA sequencing. The challenge is now to select markers for which there is enough evidence to transition them to the clinic. The hurdles include the inherent low frequency of many of these markers, the lengthy validation process through trials, as well as legislative and economic hurdles. Attempts to answer questions about certain markers more quickly have led to an increased popularity of trials with enrichment design, especially in the light of the dramatic phase I results seen in recent months. Personalized medicine in oncology is a step closer to reality. PMID:21950596

  18. Cancer radioimmunotherapy: Development of an effective approach. Progress report, 1985

    SciTech Connect

    DeNardo, S.J.

    1985-12-31

    The objective of this program is the development of effective approaches for delivering radiation therapy to patients with cancer using radiopharmaceuticals produced from monoclonal antibodies. One major achievement of this program has been the development of a new, Cu-67 chelator (Teta). This chelator firmly holds copper even in the presence of competitive serum proteins. Copper has proven to be labile with other chelators. Also, a single photon emission tomographic camera was purchased with University and philanthropic funds specifically for this program. This allows full-time developmental work on quantitative imaging approaches and in vivo kinetics of our various radiopharmaceutical antibody products. The pharmakinetics of I-123 antibody and antibody fragments have been obtained in patients utilizing quantitative imaging and have demonstrated significant differences as well as the need for long- term studies with I-131 and Cu-67.

  19. Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion.

    PubMed Central

    Gelderblom, W C; Abel, S; Smuts, C M; Marnewick, J; Marasas, W F; Lemmer, E R; Ramljak, D

    2001-01-01

    We review the hepatocarcinogenic effects of fungal cultures of Fusarium verticillioides(= Fusarium moniliforme) strain MRC 826 in male BD IX rats. Subsequent chemical analyses of the fumonisin B (FB) mycotoxin content in the culture material used and long-term carcinogenesis studies with purified FB1 provide information about dose-response effects, relevance of hepatotoxicity during FB1-induced carcinogenesis, and the existence of a no-effect threshold. Fumonisin intake levels of between 0.08 and 0.16 mg FB/100 g body weight (bw)/day over approximately 2 years produce liver cancer in male BD IX rats. Exposure levels < 0.08 mg FB/100 g bw/day fail to induce cancer, although mild toxic and preneoplastic lesions are induced. The nutritional status of the diets used in the long-term experiments was marginally deficient in lipotropes and vitamins and could have played an important modulating role in fumonisin-induced hepatocarcinogenesis. Short-term studies in a cancer initiation/promotion model in rat liver provided important information about the possible mechanisms involved during the initial stages of cancer development by this apparently nongenotoxic mycotoxin. These studies supported the findings of long-term investigations indicating that a cytotoxic/proliferative response is required for cancer induction and that a no-effect threshold exists for cancer induction. The mechanisms proposed for cancer induction are highlighted and include the possible role of oxidative damage during initiation and the disruption of lipid metabolism, integrity of cellular membranes, and altered growth-regulatory responses as important events during promotion. PMID:11359698

  20. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    PubMed

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia. PMID:27150920

  1. MiR-654-5p attenuates breast cancer progression by targeting EPSTI1

    PubMed Central

    Tan, Yu-Yan; Xu, Xiao-Yun; Wang, Jin-Feng; Zhang, Cheng-Wu; Zhang, Sheng-Chu

    2016-01-01

    MicroRNAs (miRNAs) dysregulation is a common event in a variety of human diseases including breast cancer. However, clinical relevance and biological role of miR-654-5p in the progression of breast cancer remain greatly elusive. Herein, the expression levels of miR-654-5p were aberrantly downregulated in human breast cancer specimens and four breast cancer cell lines. Low expression of miR-654-5p was strongly associated with advanced TNM stage and lymph node metastasis as well as a poor survival. Functional analysis showed that miR-654-5p overexpression inhibited cell growth and invasion, and induced cell apoptosis in two aggressive breast cancer cells. Further studies demonstrated that Epithelial stromal interaction 1 (EPSTI1) was a direct target gene of miR-654-5p and showed an inverse correlation with miR-654-5p expression. Forced expression of EPSTI1 could abrogate the inhibitory effect of miR-654-5p on the growth and invasion of breast cancer cells as well as apoptosis-induced ability. In conclusion, the present study highlights that miR-654-5p acts as a tumor suppressor in breast cancer through directly targeting EPSTI1, and their functional regulation may open a novel avenue with regard to the therapeutic target for breast cancer.

  2. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression

    PubMed Central

    Aljarah, Ali Kadhim; Ide, Hiroki; Li, Yi; Kashiwagi, Eiji; Netto, George J.; Zheng, Yichun; Miyamoto, Hiroshi

    2015-01-01

    Little is known about biological significance of ELK1, a transcriptional factor that activates downstream targets including c-fos proto-oncogene, in bladder cancer. Recent preclinical evidence also suggests the involvement of androgen receptor (AR) signaling in bladder cancer progression. In this study, we aim to investigate the functions of ELK1 in bladder cancer growth and their regulation by AR signals. Immunohistochemistry in bladder tumor specimens showed that the levels of phospho-ELK1 (p-ELK1) expression were significantly elevated in urothelial neoplasms, compared with non-neoplastic urothelium tissues, and were also correlated with AR positivity. Patients with p-ELK1-positive non-muscle-invasive and muscle-invasive tumors had significantly higher risks for tumor recurrence and progression, respectively. In AR-positive bladder cancer cell lines, dihydrotestosterone treatment increased ELK1 expression (mRNA, protein) and its nuclear translocation, ELK1 transcriptional activity, and c-fos expression, which was restored by an anti-androgen hydroxyflutamide. ELK1 silencing via short hairpin RNA (shRNA) resulted in decreases in cell viability/colony formation, and cell migration/invasion as well as an increase in apoptosis. Importantly, ELK1 appears to require activated AR to regulate bladder cancer cell proliferation, but not cell migration. Androgen also failed to significantly induce AR transactivation in ELK1-knockdown cells. In accordance with our in vitro findings, ELK1-shRNA expression considerably retarded tumor formation as well as its growth in xenograft-bearing male mice. Our results suggest that ELK1 plays an important role in bladder tumorigenesis and cancer progression, which is further induced by AR activation. Accordingly, ELK1 inhibition, together with AR inactivation, has the potential of being a therapeutic approach for bladder cancer. PMID:26342199

  3. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  4. Effects of flaxseed lignan secoisolariciresinol diglucoside on preneoplastic biomarkers of cancer progression in a model of simultaneous breast and ovarian cancer development

    PubMed Central

    Delman, Devora M.; Fabian, Carol J.; Kimler, Bruce F.; Yeh, Henry; Petroff, Brian K.

    2016-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator (SERM)-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n=8–10/group) received 0, 10 or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 months after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology and dysplasia scores as well as expression of selected genes involved in proliferation, estrogen signaling and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes pre-neoplastic progression in the ovarian epithelium. PMID:26010915

  5. Effects of Flaxseed Lignan Secoisolariciresinol Diglucosideon Preneoplastic Biomarkers of Cancer Progression in a Model of Simultaneous Breast and Ovarian Cancer Development.

    PubMed

    Delman, Devora M; Fabian, Carol J; Kimler, Bruce F; Yeh, Henry; Petroff, Brian K

    2015-01-01

    Breast cancer prevention efforts are focused increasingly on potentially beneficial dietary modifications due to their ease of implementation and wide acceptance. Secoisolariciresinol diglucoside (SDG) is a lignan found in high concentration in flaxseed that may have selective estrogen receptor modulator-like effects resulting in antiestrogenic activity in a high estrogen environment. In parallel with a human phase II prevention trial, female ACI rats (n = 8-10/group) received 0, 10, or 100 ppm SDG in the feed. The 100 ppm SDG treatment produced similar blood lignan levels as those observed in our human pilot study. Mammary and ovarian cancer progression were induced using local ovarian DMBA treatment and subcutaneous sustained release 17β-estradiol administered starting at 7 weeks of age. Mammary gland and ovarian tissues were collected at 3 mo after initiation of treatment and examined for changes in epithelial cell proliferation (Ki-67, cell counts), histopathology, and dysplasia scores, as well as expression of selected genes involved in proliferation, estrogen signaling, and cell adhesion. Treatment with SDG normalized several biomarkers in mammary gland tissue (dysplasia, cell number, and expression of several genes) that had been altered by carcinogen. There is no indication that SDG promotes preneoplastic progression in the ovarian epithelium. PMID:26010915

  6. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  7. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases.

    PubMed

    Singh, Anukriti; Nunes, Jessica J; Ateeq, Bushra

    2015-09-15

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  8. The steady progress of targeted therapies, promising advances for lung cancer

    PubMed Central

    Bombardelli, Lorenzo; Berns, Anton

    2016-01-01

    Lung cancer remains one of the most complex and challenging cancers, being responsible for almost a third of all cancer deaths. This grim picture seems however to be changing, for at least a subset of lung cancers. The number of patients who can benefit from targeted therapies is steadily increasing thanks to the progress made in identifying actionable driver lesions in lung tumours. The success of the latest generation of EGFR and ALK inhibitors in the clinic not only illustrates the value of targeted therapies, but also shows how almost inevitably drug resistance develops. Therefore, more sophisticated approaches are needed to achieve long-term remissions. Although there are still significant barriers to be overcome, technological advances in early detection of relevant mutations and the opportunity to test new drugs in predictive preclinical models justify the hope that we will overcome these obstacles. PMID:27350784

  9. Lung cancer epidemiology in New Mexico uranium miners. Progress report, March 1, 1991--November 30, 1991

    SciTech Connect

    Samet, J.M.

    1991-11-01

    This investigation assesses the health effects of radon progeny exposure in New Mexico uranium miners. Cumulative exposures sustained by most New Mexico miners are well below those received earlier in the Colorado Plateau. This project utilizes the research opportunity offered by New Mexico miners to address unresolved issues related to radon progeny exposure: (1) the lung cancer risk of lower levels of exposure, (2) interaction between radon progeny exposure and cigarette smoking in the causation of lung cancer, (3) the relationship between lung cancer histologic type and radon progeny exposure, and (4) possible effects of radon progeny exposure other than lung cancer. A cohort study of 3800 men with at least one year of underground uranium mining experience in New Mexico is in progress. Results are discussed.

  10. [The mechanism of progression without androgen receptor interaction in prostate cancer].

    PubMed

    Matsuyama, Hideyasu; Matsumoto, Hiroaki

    2016-01-01

    Recently, new generation androgen receptor (AK) targeted agents enzautamide or abiraterone etc.) has been clinically utilized in patients with castration-resistant prostate cancer (CRPC). However, metastatic CRPC has also AR-independent survival pathway which leads to lethal phenotype by either adaptation or clonal selection resistant mechanism after AR targeted therapy. There are many studies regarding the progression mechanisms without AR signal transduction, such as growth factor, anti-apoptotic factor, and PTEN/mTOR pathway and so on. Also, cancer microenvironment and cancer stem cell is a hot research area for CRPC. It is very important to repress both AR-dependent and -independent signaling pathway to improve the clinical outcome in CRPC patients. Application of the new technology, such as next generation sequencing, would be developing for the prostate cancer research, providing pre-clinical proof-of-principle as a promising approach in CRPC. PMID:26793881

  11. [Progress in breast cancer treatment over a quarter of a century].

    PubMed

    Tominaga, T

    1999-06-01

    The treatment of breast cancer has changed greatly over the last 25 years in Japan. The use of Halsted's surgical procedure has been reduced in breast conserving treatment, and even the ommision of axillary dissection has been argued recently. On the other hand, endocrine therapy has progressed remarkably with acceptance of tamoxifen in the clinic. Approval of LH-RH analogs and aromatase inhibitors has brought a new era in breast cancer treatment. The introduction of adriamycin, a powerful anticancer drug brought about a rapid increase in response rate and the development of oral type 5-fluorouracil (5-FU) derivatives made new treatments possible. S-1 and capecitabine, newly licensed 5-FU derivatives developed in Japan, have attracted notice worldwide. In 1992 the Japan Breast Cancer Society was founded and the level of breast cancer research in Japan has improved remarkably. Treatment results are now camparable to those of western countries. PMID:10410664

  12. Simultaneous radical cystectomy and colorectal cancer resection for synchronous muscle invasive bladder cancer and cT3 colorectal cancer: Our initial experience in five patients

    PubMed Central

    Liu, Zhuo; Chen, Guiping; Zhu, Yuping; Li, Dechuan

    2014-01-01

    To review cases of simultaneous radical cystectomy and colorectal cancer (CRC) resection for synchronous carcinoma of bladder and colorectum. Between May 1997 and September 2010, five patients were diagnosed with synchronous bladder cancer and CRCs. The primary colorectal tumors included three sigmoid cancers, one ascending colon cancer and one rectal cancer. All patients underwent simultaneous radical cystectomy and CRC resection. Pathologic types were confirmed by the biopsies of cystoscopy and colonoscopy. All patients were performed synchronous radical cystectomy and CRC resection. Four of them received adjuvant chemotherapies for CRC. Two of them died of liver metastasis 32.8 months and 13 months after surgery. Although patients with synchronous carcinoma of bladder and colorectum are rare, the Urologist should be alerted to this possibility when evaluating patients for the initially presenting symptoms and/or detected tumors. The simultaneous surgery is technically feasible for the selected patients. PMID:25538788

  13. Anterior prostate biopsy at initial and repeat evaluation: is it useful to detect significant prostate cancer?

    PubMed Central

    Pepe, Pietro; Pennisi, Michele; Fraggetta, Filippo

    2015-01-01

    ABSTRACT Purpose: Detection rate for anterior prostate cancer (PCa) in men who underwent initial and repeat biopsy has been prospectively evaluated. Materials and Methods: From January 2013 to March 2014, 400 patients all of Caucasian origin (median age 63.5 years) underwent initial (285 cases) and repeat (115 cases) prostate biopsy; all the men had negative digital rectal examination and the indications to biopsy were: PSA values > 10 ng/mL, PSA between 4.1-10 or 2.6-4 ng/mL with free/total PSA≤25% and ≤20%, respectively. A median of 22 (initial biopsy) and 31 cores (repeat biopsy) were transperineally performed including 4 cores of the anterior zone (AZ) and 4 cores of the AZ plus 2 cores of the transition zone (TZ), respectively. Results: Median PSA was 7.9 ng/mL; overall, a PCa was found in 180 (45%) patients: in 135 (47.4%) and 45 (36%) of the men who underwent initial and repeat biopsy, respectively. An exclusive PCa of the anterior zone was found in the 8.9 (initial biopsy) vs 13.3% (repeat biopsy) of the men: a single microfocus of cancer was found in the 61.2% of the cases; moreover, in 7 out 18 AZ PCa the biopsy histology was predictive of significant cancer in 2 (28.5%) and 5 (71.5%) men who underwent initial and repeat biopsy, respectively. Conclusions: However AZ biopsies increased detection rate for PCa (10% of the cases), the majority of AZ PCa with histological findings predictive of clinically significant cancer were found at repeat biopsy (about 70% of the cases). PMID:26689509

  14. PRL-3 activates mTORC1 in Cancer Progression

    PubMed Central

    Ye, Zu; Al-aidaroos, Abdul Qader Omer; Park, Jung Eun; Yuen, Hiu Fung; Zhang, Shu Dong; Gupta, Abhishek; Lin, Youbin; Shen, Han-Ming; Zeng, Qi

    2015-01-01

    PRL-3, a metastasis-associated phosphatase, is known to exert its oncogenic functions through activation of PI3K/Akt, which is a key regulator of the rapamycin-sensitive mTOR complex 1 (mTORC1), but a coherent link between PRL-3 and activation of mTOR has not yet been formally demonstrated. We report a positive correlation between PRL-3 expression and mTOR phospho-activation in clinical tumour samples and mouse models of cancer and demonstrate that PRL-3 increased downstream signalling to the mTOR substrates, p70S6K and 4E-BP1, by increasing PI3K/Akt-mediated activation of Rheb-GTP via TSC2 suppression. We also show that PRL-3 increases mTOR translocation to lysosomes via increased mTOR binding affinity to Rag GTPases in an Akt-independent manner, demonstrating a previously undescribed mechanism of action for PRL-3. PRL-3 also enhanced matrix metalloproteinase-2 secretion and cellular invasiveness via activation of mTOR, attributes which were sensitive to rapamycin treatment. The downstream effects of PRL-3 were maintained even under conditions of environmental stress, suggesting that PRL-3 provides a strategic survival advantage to tumour cells via its effects on mTOR. PMID:26597054

  15. Novel Fusion Transcripts Associate with Progressive Prostate Cancer

    PubMed Central

    Yu, Yan P.; Ding, Ying; Chen, Zhanghui; Liu, Silvia; Michalopoulos, Amantha; Chen, Rui; Gulzar, Zulfiqar G.; Yang, Bing; Cieply, Kathleen M.; Luvison, Alyssa; Ren, Bao-Guo; Brooks, James D.; Jarrard, David; Nelson, Joel B.; Michalopoulos, George K.; Tseng, George C.; Luo, Jian-Hua

    2015-01-01

    The mechanisms underlying the potential for aggressive behavior of prostate cancer (PCa) remain elusive. In this study, whole genome and/or transcriptome sequencing was performed on 19 specimens of PCa, matched adjacent benign prostate tissues, matched blood specimens, and organ donor prostates. A set of novel fusion transcripts was discovered in PCa. Eight of these fusion transcripts were validated through multiple approaches. The occurrence of these fusion transcripts was then analyzed in 289 prostate samples from three institutes, with clinical follow-up ranging from 1 to 15 years. The analyses indicated that most patients [69 (91%) of 76] positive for any of these fusion transcripts (TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-FLJ60017, TMEM135-CCDC67, KDM4-AC011523.2, MAN2A1-FER, and CCNH-C5orf30) experienced PCa recurrence, metastases, and/or PCa-specific death after radical prostatectomy. These outcomes occurred in only 37% (58/157) of patients without carrying those fusion transcripts. Three fusion transcripts occurred exclusively in PCa samples from patients