Science.gov

Sample records for candida albicans isolated

  1. Genetics of Candida albicans.

    PubMed Central

    Scherer, S; Magee, P T

    1990-01-01

    Candida albicans is among the most common fungal pathogens. Infections caused by C. albicans and other Candida species can be life threatening in individuals with impaired immune function. Genetic analysis of C. albicans pathogenesis is complicated by the diploid nature of the species and the absence of a known sexual cycle. Through a combination of parasexual techniques and molecular approaches, an effective genetic system has been developed. The close relationship of C. albicans to the more extensively studied Saccharomyces cerevisiae has been of great utility in the isolation of Candida genes and development of the C. albicans DNA transformation system. Molecular methods have been used for clarification of taxonomic relationships and more precise epidemiologic investigations. Analysis of the physical and genetic maps of C. albicans and the closely related Candida stellatoidea has provided much information on the highly fluid nature of the Candida genome. The genetic system is seeing increased application to biological questions such as drug resistance, virulence determinants, and the phenomenon of phenotypic variation. Although most molecular analysis to data has been with C. albicans, the same methodologies are proving highly effective with other Candida species. Images PMID:2215421

  2. Rapid and Accurate Identification of Candida albicans Isolates by Use of PNA FISHFlow▿

    PubMed Central

    Trnovsky, Jan; Merz, William; Della-Latta, Phyllis; Wu, Fann; Arendrup, Maiken Cavling; Stender, Henrik

    2008-01-01

    We developed the simple, rapid (1 h), and accurate PNA FISHFlow method for the identification of Candida albicans. The method exploits unique in solution in situ hybridization conditions under which the cells are simultaneously fixed and hybridized. This method facilitates the accurate identification of clinical yeast isolates using two scoring techniques: flow cytometry and fluorescence microscopy. PMID:18287325

  3. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    PubMed Central

    Lee, Seung-Bae

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates. PMID:27280049

  4. Multilocus sequence typing of Candida albicans isolates from a burn intensive care unit in Iran.

    PubMed

    Afsarian, Mohammad H; Badali, Hamid; Boekhout, Teun; Shokohi, Tahereh; Katiraee, Farzad

    2015-03-01

    Burn intensive care unit (BICU) patients are specifically exposed to deep-seated nosocomial infections due to Candida albicans. Superficial carriage of C. albicans is a potential source of infection and dissemination, and typing methods could be useful to trace the different isolates. Multilocus sequence typing is a powerful genotyping method for pathogenic micro-organisms, including Candida albicans. Thirty clinical isolates of C. albicans obtained from 22 patients that were admitted to the BICU from a burn hospital at Sari, Mazandaran state, Iran, were studied epidemiologically by multilocus sequence typing (MLST). Seventy-five variable nucleotide sites were found. Sixty-two alleles were identified among the seven loci of the C. albicans isolates and one new allele was obtained. Eighteen diploid sequence types (DSTs) were identified, and among those 10 were new. These isolates belonged to nine clonal clusters (CCs) while two isolates occurred as singletons. Eleven (36.7 %) isolates belonged to CC 124 after eBURST analysis and 13 isolates (43.3 %) were assigned to clade 4. Approximately 17 % of the 30 isolates belonged to clade 1 (CC 69 and CC 766). Isolates from several patients with burns were found to be related genetically. Some patients yielded multiple isolates with identical DSTs, suggesting colonization or infection caused by cross-contamination between patients. Isolates that show identical or similar allelic profiles are presumed to be identical or closely related and may be used to evaluate the genetic relationships between isolates from a specific environment such as the BICU. PMID:25596113

  5. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    PubMed

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic. PMID:26404657

  6. In Vitro Antifungal Susceptibility Profiles of Candida albicans Complex Isolated from Patients with Respiratory Infections.

    PubMed

    Sharifynia, Somayeh; Badali, Hamid; Sharifi Sorkherizi, Mina; Shidfar, Mohammad Reza; Hadian, Atefe; Shahrokhi, Shadi; Ghandchi, Ghazale; Rezaie, Sassan

    2016-06-01

    Candidiasis, the main opportunistic fungal infection has been increased over the past decades. This study aimed to characterize C.albicans species complex (C.albicans, C.dubliniensis, and C.africana) isolated from patients with respiratory infections by molecular tools and in vitro antifungal susceptibilities by using broth microdilution method according to CLSI M27-A3 guidelines. Totally, 121 respiratory samples were collected from patients with respiratory infections. Of these, 83 strains were germ tube positive and green colonies on chromogenic media, so initially identified as C.albicans species complex and subsequently were classified as C.albicans (89.15%), C.dubliniensis (9.63%), and C.africana (1.2%) based on PCR-RFLP and amplification of hwp1 gene. Minimum inhibitory concentration (MICs) results showed that all tested isolates of C.albicans complex were highly susceptible to triazole drugs. However, caspofungin had highest activity against C.albicans, C.dubliniensis, and C.africana. Our findings indicated the variety of antifungal resistance of Candida strains in different areas. These results may increase the knowledge about the local distribution of the mentioned strains as well as their antifungal susceptibility pattern which play an important role in appropriate therapy. PMID:27306344

  7. Reduced susceptibility of Candida albicans clinical isolates to azoles and detection of mutations in the ERG11 gene.

    PubMed

    Zhang, Lei; Yang, Hai-Fei; Liu, Yan-Yan; Xu, Xi-Hai; Ye, Ying; Li, Jia-Bin

    2013-12-01

    We investigated the susceptibility of Candida albicans isolated from clinic specimens to azole antifungal agents and estimated the association of the ERG11 mutations with azole resistance during recent 5years in China. In this study, novel mutations G346A, A434V, and L480F in ERG11 may be related to azole resistance in C. albicans. PMID:24070847

  8. In vitro effects of glycyrrhetinic acid on the growth of clinical isolates of Candida albicans.

    PubMed

    Pellati, Donatella; Fiore, Cristina; Armanini, Decio; Rassu, Mario; Bertoloni, Giulio

    2009-04-01

    Compounds derived from Glycyrrhiza glabra L. root have been used widely for centuries for their numerous therapeutic properties. The present study aimed to test the in vitro activity against Candida albicans strains of the compound 18-beta glycyrrhetinic acid (18-beta GA), derived from the root of Glycyrrhiza species. This antimicrobial activity was assessed using the National Committee for Clinical Laboratory Standards (NCCLS) method on C. albicans strains that were isolated from patients with recurrent vulvovaginal candidiasis (RVVC). The in vitro growth of the C. albicans strains was markedly reduced, in a pH-dependent manner, by relatively low doses (6.2 microg/mL) of 18-beta GA. The results demonstrate that 18-beta GA is a promising biological alternative for the topical treatment of recurrent vulvovaginal candidiasis (RVVC). PMID:19067381

  9. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

    PubMed Central

    Thawani, Vijay; Mehra, Arti

    2016-01-01

    This study was done to assess the antifungal susceptibility of clinical isolates of Candida albicans and to evaluate its total protein profile based on morphological difference on drug resistance. Hundred and twenty clinical isolates of C. albicans from various clinical specimens were tested for susceptibility against four antifungal agents, namely, fluconazole, itraconazole, amphotericin B, and ketoconazole. A significant increase of drug resistance in clinical isolates of C. albicans was observed. The study showed 50% fluconazole and itraconazole resistance at 32 μg mL−1 with a MIC50 and MIC90 values at 34 and 47 and 36 and 49 μg mL−1, respectively. All isolates were sensitive to amphotericin B and ketoconazole. The SDS-PAGE protein profile showed a prevalent band of ~52.5 kDa, indicating overexpression of gene in 72% strains with fluconazole resistance. Since the opportunistic infections of Candida spp. are increasing along with drug resistance, the total protein profile will help in understanding the evolutionary changes in drug resistance and also to characterize them. PMID:27478638

  10. Hospital Specificity, Region Specificity, and Fluconazole Resistance of Candida albicans Bloodstream Isolates

    PubMed Central

    Pfaller, M. A.; Lockhart, S. R.; Pujol, C.; Swails-Wenger, J. A.; Messer, S. A.; Edmond, M. B.; Jones, R. N.; Wenzel, R. P.; Soll, D. R.

    1998-01-01

    In a survey of bloodstream infection (BSI) isolates across the continental United States, 162 Candida albicans isolates were fingerprinted with the species-specific probe Ca3 and the patterns were analyzed for relatedness with a computer-assisted system. The results demonstrate that particular BSI strains are more highly concentrated in particular geographic locales and that established BSI strains are endemic in some, but not all, hospitals in the study and undergo microevolution in hospital settings. The results, however, indicate no close genetic relationship among fluconazole-resistant BSI isolates in the collection, either from the same geographic locale or the same hospital. This study represents the first of three fingerprinting studies designed to analyze the origin, genetic relatedness, and drug resistance of Candida isolates responsible for BSI. PMID:9620370

  11. Mechanisms of azole resistance in Candida albicans clinical isolates from Shanghai, China.

    PubMed

    Liu, Jin-Yan; Shi, Ce; Wang, Ying; Li, Wen-Jing; Zhao, Yue; Xiang, Ming-Jie

    2015-04-01

    This study was undertaken to characterize the mechanism(s) of azole resistance in clinical isolates of Candida albicans collected in Shanghai, China, focusing on the role of efflux pumps, target enzymes of fluconazole (Erg11), respiratory status and the ergosterol biosynthetic pathway. Clinical isolates of C. albicans (n = 30) were collected from 30 different non-HIV-infected patients in four hospitals in Shanghai. All 30 C. albicans isolates were susceptible to amphotericin B and 5-fluorocytosine. Twelve C. albicans isolates showed resistance to at least one type of triazole antifungal. Flow cytometry analysis of rhodamine 6G efflux showed that azole-resistant isolates had greater efflux pump activity, which was consistent with elevated levels of CDR1 and CDR2 genes that code for ABC efflux pumps. However, we did not observe increased expression of ERG11 and MDR1 or respiratory deficiency. Several mutations of ERG11 and TAC1 genes were detected. The F964Y mutation in the TAC1 gene was identified for the first time. Two main sterols, ergosterol and lanosterol, were identified by GC-MS chromatogram, and no missense mutations were found in ERG3. Furthermore, seven amino acid substitutions in ERG11, A114S, Y132H, Y132F, K143Q, K143R, Y257H and G448E were found, by Type II spectral quantitative analysis, to contribute to low affinity binding between Erg11 and fluconazole. PMID:25748216

  12. Evaluation of APR1 Gene Expression in Candida albicans Strains Isolated From Patients With Multiple Sclerosis

    PubMed Central

    Amri Saroukolaei, Shahla; Ghabaee, Mojdeh; Shokri, Hojjatollah; Khosravi, Alireza; Badiei, Alireza

    2016-01-01

    Background Intracellular aspartic proteinase A enzyme is expressed by the APR1 gene and is one of the important factors in the development of systemic candidiasis caused by Candida albicans. Objectives The aim of this study was to evaluate the expression of the APR1 gene in C. albicans isolates obtained from patients with multiple sclerosis (MS) and from controls. Patients and Methods The samples were obtained from 135 MS patients with candidiasis and 100 matched controls of healthy individuals during 2010 - 2011. The clinical and control isolates of C. albicans obtained from individuals were cultured onto sabouraud dextrose agar (SDA). The evaluation of APR1 gene expression was performed using the reverse transcriptase-polymerase chain reaction (RT-PCR) method. Results There was a statistically significant difference in APR1 gene expression of C. albicans strains between MS patients (mean ± SD: 0.5208 ± 0.11518) and the control group (mean ± SD: 0.7603 ± 0.11405) (P = 0.000). Significant correlations were found between the APR1 gene expression of C. albicans strains from MS patients with regard to age and the expanded disability status scale (EDSS) (P = 0.000). The mean values of EDSS were 1.6074 ± 0.1081 after antifungal treatment and 2.2519 ± 0.1323 before antifungal treatment (P = 0.000). No significant correlation was observed between the APR1 gene expression with regard to sex and MS subtypes. Conclusions The results suggested that APR1 gene expression in C. albicans strains isolated from MS patients may be an important factor for invasive C. albicans strains in the progression of MS disease. PMID:27540458

  13. Prevalence and antifungal susceptibility of Candida albicans and its related species Candida dubliniensis and Candida africana isolated from vulvovaginal samples in a hospital of Argentina.

    PubMed

    Theill, Laura; Dudiuk, Catiana; Morano, Susana; Gamarra, Soledad; Nardin, María Elena; Méndez, Emilce; Garcia-Effron, Guillermo

    2016-01-01

    Candida africana taxonomical status is controversial. It was proposed as a separate species within the Candida albicans species complex; however, phylogenetic analyses suggested that it is an unusual variety of C. albicans. The prevalence of C. albicans-related species (Candida dubliniensis and C. africana) as vulvovaginal pathogens is not known in Argentina. Moreover, data on antifungal susceptibility of isolates causing vulvovaginal candidiasis is scarce. The aims of this study were to establish the prevalence of C. dubliniensis and C. africana in vaginal samples and to evaluate the antifungal susceptibilities of vaginal C. albicans species complex strains. We used a molecular-based method coupled with a new pooled DNA extraction methodology to differentiate C. dubliniensis and C. africana in a collection of 287 strains originally identified as C. albicans isolated from an Argentinian hospital during 2013. Antifungal susceptibilities to fluconazole, clotrimazole, itraconazole, voriconazole, nystatin, amphotericin B and terbinafine were evaluated by using the CLSI M27-A3 and M27-S4 documents. Of the 287 isolates, 4 C. dubliniensis and one C. africana strains (1.39% and 0.35% prevalence, respectively) were identified. This is the first description of C. africana in Argentina and its identification was confirmed by sequencing the ITS2 region and the hwp1 gene. C. dubliniensis and C. africana strains showed very low MIC values for all the tested antifungals. Fluconazole-reduced-susceptibility and azole cross-resistance were observed in 3.55% and 1.41% of the C. albicans isolates, respectively. These results demonstrate that antifungal resistance is still a rare phenomenon in this kind of isolates. PMID:26922471

  14. Evaluation of the new chromogenic medium Candida ID 2 for isolation and identification of Candida albicans and other medically important Candida species.

    PubMed

    Eraso, Elena; Moragues, María D; Villar-Vidal, María; Sahand, Ismail H; González-Gómez, Nagore; Pontón, José; Quindós, Guillermo

    2006-09-01

    The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis. PMID:16954270

  15. Candida albicans clades.

    PubMed

    Soll, David R; Pujol, Claude

    2003-10-24

    DNA fingerprinting with the complex probe Ca3 has revealed the following five Candida albicans clades: group I, group II, group III, group SA and group E. These groups exhibit geographical specificity. Group SA is relatively specific (i.e., highly enriched) to South Africa, group E is relatively specific to Europe, and group II is absent in the Southwest USA and South America. The maintenance of deep-rooted clades side by side in the same geographical locale and the apparent absence of subclade structure suggest little recombination between clades, but higher rates of recombination within clades. Exclusive 5-fluorocytosine resistance in the majority of group I isolates reinforces the above conclusions on recombination, and demonstrates that clades differ phenotypically. The ramifications of these findings with regard to pathogenesis are discussed. In particular, these findings lay to rest the idea that one strain represents all strains of C. albicans, support the need for a worldwide analysis of population structure and clade-specific phenotypic characteristics, and demonstrate that in the future, pathogenic characteristics must be analyzed in representatives from all five clades. PMID:14556989

  16. Azole resistance in oropharyngeal Candida albicans strains isolated from patients infected with human immunodeficiency virus.

    PubMed Central

    He, X; Tiballi, R N; Zarins, L T; Bradley, S F; Sangeorzan, J A; Kauffman, C A

    1994-01-01

    For 212 oropharyngeal isolates of Candida albicans, the fluconazole MICs for 50 and 90% of strains tested were 0.5 and 16 micrograms/ml, respectively, and those of itraconazole were 0.05 and 0.2 micrograms/ml, respectively. Of 16 isolates for which fluconazole MICs were > 64 micrograms/ml, itraconazole MICs for 14 were < or = 0.8 micrograms/ml and for 2 were > 6.4 micrograms/ml. Most fluconazole-resistant strains remained susceptible to itraconazole; whether itraconazole will prove effective for refractory thrush remains to be shown. PMID:7840596

  17. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates.

    PubMed

    Strzelczyk, Joanna Katarzyna; Slemp-Migiel, Anna; Rother, Magdalena; Gołąbek, Karolina; Wiczkowski, Andrzej

    2013-01-01

    One of the mechanisms of Candida albicans resistance to azole drugs used in antifungal therapy relies on increased expression and presence of point mutations in the ERG11 gene that encodes sterol 14α demethylase (14DM), an enzyme which is the primary target for the azole class of antifungals. The aim of the study was to analyze nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. The Candida albicans isolates represented a collection of 122 strains selected from 658 strains isolated from different biological materials. Samples were obtained from hospitalized patients. Fluconazole susceptibility was tested in vitro using a microdilution assay. Candida albicans strains used in this study consisted of two groups: 61 of the isolates were susceptible to azoles and the 61 were resistant to azoles. Four overlapping regions of the ERG11 gene of the isolates of Candida albicans strains were amplified and sequenced. The MSSCP (multitemperature single strand conformation polymorphism) method was performed to select Candida albicans samples presenting genetic differences in the ERG11 gene fragments for subsequent sequence analysis. Based on the sequencing results we managed to detect 19 substitutions of nucleotides in the ERG11 gene fragments. Sequencing revealed 4 different alterations: T495A, A530C, G622A and A945C leading to changes in the corresponding amino acid sequence: D116E, K128T, V159I and E266D. The single nucleotide changes in the ERG11 gene did not affect the sensitivity of Candida albicans strains, whereas multiple nucleotide substitutions in the ERG11 gene fragments indicated a possible relation with the increase in resistance to azole drugs. PMID:24340302

  18. Evaluation of virulence factors of Candida albicans isolated from HIV-positive individuals using HAART.

    PubMed

    de Paula Menezes, Ralciane; de Melo Riceto, Érika Bezerra; Borges, Aércio Sebastião; de Brito Röder, Denise Von Dolingër; dos Santos Pedroso, Reginaldo

    2016-06-01

    The colonization by Candida species is one of the most important factors related to the development of oral candidiasis in HIV-infected individuals. The aim of the study was to evaluate and discuss the phospholipase, proteinase, DNAse and haemolytic activities of Candida albicans isolated from the oral cavity of HIV individuals with high efficiency antiretroviral therapy. Seventy-five isolates of C. albicans obtained from saliva samples of patients with HIV and 41 isolates from HIV-negative individuals were studied. Haemolytic activity was determined in Sabouraud dextrose agar plates containing 3% glucose and 7% sheep red cells. Culture medium containing DNA base-agar, egg yolk, and bovine albumin were used to determine DNase, phospholipase and proteinase activities, respectively. All isolates from the HIV patients group had haemolytic activity, 98% showed phospholipase activity, 92% were positive for proteinase and 32% DNAse activity. Regarding the group of indivídios HIV negative, all 41 isolates presented hemolytic activity, 90.2% showed phospholipase and proteinase activity and 12.2% were positive for DNAse. The phospholipase activity was more intense for the group of HIV positive individuals. DNase production was more frequently observed in the group of HIV-positive individuals. The percentage of isolates having DNAse activity was also significantly different between the groups of patients not using any antiretroviral therapy, those using transcriptase inhibitors and those using transcriptase inhibitor and protease inhibitor in combination. PMID:26913969

  19. Genetic and phenotypic characterization of Candida albicans strains isolated from infectious disease patients in Shanghai.

    PubMed

    Hu, Lvyin; Du, Xin; Li, Tianming; Song, Yan; Zai, Shubei; Hu, Xiangnan; Zhang, Xiaonan; Li, Min

    2015-01-01

    Candida albicans, as an opportunistic pathogen, can cause superficial and life-threatening candidiasis in immunocompromised individuals. The formation of surface-associated biofilms and the appearance of drug resistance pose a significant challenge for clinical intervention. In this study, a total of 104 hospital-acquired C. alibcans clinical isolates were collected from sterile sites and mucosal lesions of 92 infectious disease patients in the Shanghai Public Health Clinical Center and analysed. The resistance rates to fluconazole, itraconazole and voriconazole were 12.5 %, 15.4 % and 11.5 % respectively. Multilocus sequence typing (MLST) analysis identified 63 diploid sequence types (DSTs) with a decentralized phylogeny, of which 37 DSTs (58.7 %) had not been reported in the online MLST database. Loss of heterozygosity was observed in ACC1 and ADP1 sequences obtained from six sequential isolates from a patient receiving antifungal treatment, which exemplified the effect of microevolution on C. albicans genetic alterations. Biofilm formation capability, an important virulence trait of C. albicans, was variable among strains isolated from different anatomical sites (P = 0.0302) and affected by genotypes (P = 0.0185). The mRNA levels of the azole antifungal target ERG11 gene and efflux pump genes (CDR1, CDR2 and MDR1) were detected in 9-18.1 % of azole-resistant and susceptible-dose dependent (S-DD) isolates. Twelve mutations encoding distinct amino acid substitutions in ERG11 were found in azole-resistant and S-DD isolates. Among them, A114S, Y132H and Y257H substitution in the ERG11 gene may be primarily related to azole resistance. Taken together, we observed a high level of diversity within C. albicans isolates. Multiple inter-related underlying mechanisms, including genetic and environmental factors, may account for high surface adhesion or azole resistance in clinical C. albicans infections. PMID:25351710

  20. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans

    PubMed Central

    Adwan, Ghaleb; Salameh, Yousef; Adwan, Kamel; Barakat, Ali

    2012-01-01

    Objective To detect the anticandidal activity of nine toothpastes containing sodium fluoride, sodium monofluorophosphate and herbal extracts as an active ingredients against 45 oral and non oral Candida albicans (C. albicans) isolates. Methods The antifungal activity of these toothpaste formulations was determined using a standard agar well diffusion method. Statistical analysis was performed using a statistical package, SPSS windows version 15, by applying mean values using one-way ANOVA with post-hoc least square differences (LSD) method. A P value of less than 0.05 was considered significant. Results All toothpastes studied in our experiments were effective in inhibiting the growth of all C. albicans isolates. The highest anticandidal activity was obtained from toothpaste that containing both herbal extracts and sodium fluoride as active ingredients, while the lowest activity was obtained from toothpaste containing sodium monofluorophosphate as an active ingredient. Antifungal activity of Parodontax toothpaste showed a significant difference (P< 0.001) against C. albicans isolates compared to toothpastes containing sodium fluoride or herbal products. Conclusions In the present study, it has been demonstrated that toothpaste containing both herbal extracts and sodium fluoride as active ingredients are more effective in control of C. albicans, while toothpaste that containing monofluorophosphate as an active ingredient is less effective against C. albicans. Some herbal toothpaste formulations studied in our experiments, appear to be equally effective as the fluoride dental formulations and it can be used as an alternative to conventional formulations for individuals who have an interest in naturally-based products. Our results may provide invaluable information for dental professionals. PMID:23569933

  1. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    PubMed

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p < 0.001) than non-albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. PMID:27020154

  2. Molecular Diversity of Candida albicans Isolated from Immunocompromised Patients, Based on MLST Method

    PubMed Central

    AFSARIAN, Seyed Mohammad Hosein; BADALI, Hamid; SHOKOHI, Tahereh; NAJAFIPOUR, Sohrab

    2015-01-01

    Background: As regards multilocus sequence typing (MLST) method directly analyze the polymorphism within DNA sequences; we performed the first nationwide study on the genotypic relationships of Candida albicans strains obtained from oropharynx and bronchoalveolar lavage (BAL) samples from immunocompromised patients. Methods: Fourteen epidemiologically unrelated clinical strains of C. albicans were obtained from three hospitals in Mazandaran Province, Iran (2006 to 2012) from seven patients with pulmonary infections and the rest with oropharyngeal samples of immunocompromised patients. Seven loci of housekeeping genes were sequenced for all fourteen isolates. Results: MLST was applied to a subset of 14 unrelated isolates. Seventy-one (2.5%) nucleotide sites were found to be variable. Accordingly, 60 different alleles were identified in seven loci among the isolates, among which two new alleles were obtained. Furthermore, 12 independent diploid sequence types (DSTs) including five novel DSTs were identified. The fourteen unrelated isolates were placed in 10 clonal clusters (CC) while two isolates were singletons, by eBURST analysis. Most of the isolates belonged to CC461 of eBURST analysis from the clade 11 and two isolates assigned to CC172 from the clade 15. Conclusion: Pathogen distribution and relatedness for determining the epidemiology of nosocomial infections is highly recommended for pathogen control methods. PMID:26587501

  3. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis.

    PubMed

    Cernicka, Jana; Subik, Julius

    2006-05-01

    Candida albicans is the most frequently identified yeast species causing mycotic vaginitis. A significant number of vaginal yeast isolates are resistant to azole antifungal agents in vitro. Here we investigated the molecular mechanisms of resistance in 22 randomly selected fluconazole-resistant vaginal C. albicans isolates. Twelve isolates in this collection were found to be cross-resistant to itraconazole and 15 to voriconazole. Most of them also displayed decreased susceptibility to terbinafine. Northern blot analyses revealed overexpression of the MDR1 gene in all isolates, which in some isolates was accompanied by elevated levels of CDR1/CDR2 and ERG11 expression. Sequence analysis of the polymerase chain reaction-amplified ERG11 gene of selected azole-resistant isolates identified D116E and V488I amino acid alterations in Erg11p that are known to be conserved in fluconazole-resistant strains. The results demonstrate that decreased susceptibilities of vaginal yeast isolates to clinically used azole derivatives are the result of a combination of several molecular mechanisms involving drug efflux and alterations in the structure or cellular amount of 14-alpha-lanosterol demethylase. PMID:16621465

  4. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.

    PubMed

    Mane, Arati; Vidhate, Pallavi; Kusro, Chanchal; Waman, Vaishali; Saxena, Vandana; Kulkarni-Kale, Urmila; Risbud, Arun

    2016-02-01

    Resistance to azole antifungals is a significant problem in Candida albicans. An understanding of resistance at molecular level is essential for the development of strategies to tackle resistance and rationale design of newer antifungals and target-based molecular approaches. This study presents the first evaluation of molecular mechanisms associated with fluconazole resistance in clinical C.albicans isolates from India. Target site (ERG11) alterations were determined by DNA sequencing, whereas real-time PCRs were performed to quantify target and efflux pump genes (CDR1, CDR2, MDR1) in 87 [Fluconazole susceptible (n = 30), susceptible-dose dependent (n = 30) and resistant (n = 27)] C.albicans isolates. Cross-resistance to fluconazole, ketoconazole and itraconazole was observed in 74.1% isolates. Six amino acid substitutions were identified, including 4 (E116D, F145L, E226D, I437V) previously reported ones and 2 (P406L, Q474H) new ones. CDR1 over-expression was seen in 77.7% resistant isolates. CDR2 was exclusively expressed with CDR1 and their concomitant over-expression was associated with azole cross-resistance. MDR1 and ERG11 over-expression did not seem to be associated with resistance. Our results show that drug efflux mediated by Adenosine-5'-triphosphate (ATP)-binding cassette transporters, especially CDR1 is the predominant mechanism of fluconazole resistance and azole cross-resistance in C. albicans and indicate the need for research directed towards developing strategies to tackle efflux mediated resistance to salvage azoles. PMID:26648048

  5. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil

    PubMed Central

    2014-01-01

    Background Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. This investigation aimed to study the prevalence of Candida spp. and to analyze the ABC genotypes of 76 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. Methods We typed 48 strains with ABC genotyping and Microsatelitte using primer M13 and tested three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils phagocytosis. Results C. albicans was the most prevalent species (86.4%), followed by C. tropicalis (4.5%). C. albicans genotype A was the most prevalent (58 isolates; 76.4%), followed by genotype C (15 isolates; 19.7%) and genotype B (3 isolates; 3.9%). When Microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. The majority of Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed also better ability to combat PMNs phagocytosis. Conclusions We found a high rate of C. albicans genotype C strains isolated from the oral cavity of this group of patients. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute to a better understanding of the pathogenesis of oral candidiasis. PMID:24628850

  6. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients

    PubMed Central

    Moorhouse, Alexander J.; Rennison, Claire; Raza, Muhammad; Lilic, Desa; Gow, Neil A. R.

    2016-01-01

    Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC. PMID:26849050

  7. Non-albicans Candida Infection: An Emerging Threat

    PubMed Central

    Deorukhkar, Sachin C.; Saini, Santosh

    2014-01-01

    The very nature of infectious diseases has undergone profound changes in the past few decades. Fungi once considered as nonpathogenic or less virulent are now recognized as a primary cause of morbidity and mortality in immunocompromised and severely ill patients. Candida spp. are among the most common fungal pathogens. Candida albicans was the predominant cause of candidiasis. However, a shift toward non-albicans Candida species has been recently observed. These non-albicans Candida species demonstrate reduced susceptibility to commonly used antifungal drugs. In the present study, we investigated the prevalence of non-albicans Candida spp. among Candida isolates from various clinical specimens and analysed their virulence factors and antifungal susceptibility profile. A total of 523 Candida spp. were isolated from various clinical specimens. Non-albicans Candida species were the predominant pathogens isolated. Non-albicans Candida species also demonstrated the production of virulence factors once attributed to Candida albicans. Non-albicans Candida demonstrated high resistance to azole group of antifungal agents. Therefore, it can be concluded that non-albicans Candida species have emerged as an important cause of infections. Their isolation from clinical specimen can no longer be ignored as a nonpathogenic isolate nor can it be dismissed as a contaminant. PMID:25404942

  8. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates.

    PubMed

    Xu, Yonghao; Sheng, Fang; Zhao, Jie; Chen, Lamei; Li, Chunyang

    2015-11-01

    Azole resistance in the pathogenic yeast Candida albicans poses significant challenges for its antibiotic treatment. The conformational change of the target enzyme 14 alpha-demethylase (Erg11p) due to ERG11 gene mutations is one of the mechanisms resulting in the azole resistance. ERG11 of 23 isolates (8 susceptible and 15 resistant) and 6 standard strains of Candida albicans were amplified and sequenced. Nineteen missense mutations were detected. Two mutations, G487T (A114S) and T916C (Y257H), coexisted exclusively in 14 fluconazole-resistant isolates. To identify the resistance mechanisms in the isolates with G487T and T916C mutations, we compared the expression of 5 resistance-related genes in the 14 azole-resistant isolates with those in the susceptible type strain ATCC 10231, Saccharomyces cerevisiae AD/CDR1 and AD/CDR2. The tested values of mRNA transcription of CDR1 and CDR2 were higher than that of control strain, while the semi-quantified Cdr1p values were not higher in all of the 14 resistant isolates. And the data analyzed with t test suggest that both of the differences are significant (P < 0.0005) when the resistant isolates are considered as a whole. Cdr2p was up-regulated in 5 isolates, and down-regulated or even undetectable in the remaining 9 isolates. The transcription of ERG11, MDR1, and FLU1 varied in these isolates. These data suggested that overexpression of the five genes might not be the reason of resistance in the 14 isolates with G487T and T916C, especially in the 5 isolates (GZ09, GZ15, GZ16, GZ58, and 4263) in which neither translation of Cdr1p/Cdr2p nor transcription of ERG11, MDR1, or FLU1 was detected up-regulated. The results suggest that Erg11p conformational change due to the point mutations is most likely responsible for the azole resistance in these isolates. PMID:26349561

  9. Investigation of mutations in Erg11 gene of fluconazole resistant Candida albicans isolates from Turkish hospitals.

    PubMed

    Manastır, Lerzan; Ergon, M Cem; Yücesoy, Mine

    2011-03-01

    Widespread use of fluconazole has resulted in resistance in strains of Candida. The aim of our study was to investigate Y132H and other mutations in the ERG11 gene in conferring fluconazole resistance to C. albicans isolates. Seven fluconazole-resistant (R)/susceptible dose-dependent (SDD)/trailing and 10 fluconazole-susceptible (S) isolates were included. Restriction enzyme analysis was performed on all isolates for Y132H mutation and sequence analysis was performed for other mutations in the ERG11 gene. None of our strains had Y132H mutation. One single mutation (D153E, E266D, D116E, V437I) was detected in isolates 348, 533, 644, 1453, 2157, while the others had more than one nucleotide change. D116E and E266D, which were two mutations found in fluconazole R/SDD/trailing isolates with the highest frequency, were also detected in azole S strains. K143R, G464S, G465S and V488I mutations were determined in three of the R/SDD isolates. S412T and R469K mutations were detected only in this group of strains by sequence analysis. Mutations such as K143R, G464S, G465S, V488I, S412T and R469K in the ERG11 gene were determined to be effective mechanisms in our fluconazole R/SDD C. albicans isolates. Other mechanisms of resistance, such as overexpression of ERG11 and efflux pumps and mutations in the ERG3 gene should also be investigated. PMID:19732347

  10. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans.

    PubMed

    Xiang, Ming-Jie; Liu, Jin-Yan; Ni, Pei-Hua; Wang, Shengzheng; Shi, Ce; Wei, Bing; Ni, Yu-Xing; Ge, Hai-Liang

    2013-06-01

    The widespread use of azoles has led to increasing azole resistance among Candida albicans strains. One mechanism of azole resistance involves point mutations in the ERG11 gene, which encodes the target enzyme (cytochrome P450 lanosterol 14α-demethylase). In the present study, we amplified and sequenced the ERG11 gene of 23 C. albicans clinical isolates. Seventeen mutations encoding distinct amino acid substitutions were found, of which seven (K143Q, Y205E, A255V, E260V, N435V, G472R, and D502E) were novel. We further verified the contribution of the amino acid substitutions to azole resistance using site-directed mutagenesis of the ERG11 gene to recreate these mutations for heterologous expression in Saccharomyces cerevisiae. We observed that substitutions A114S, Y132H, Y132F, K143R, Y257H, and a new K143Q substitution contributed to significant increases (≧fourfold) in fluconazole and voriconazole resistance; changes in itraconazole resistance were not significant (≦twofold). PMID:23480635

  11. Altered hepatic clearance and killing of Candida albicans in the isolated perfused mouse liver model.

    PubMed Central

    Sawyer, R T; Horst, M N; Garner, R E; Hudson, J; Jenkins, P R; Richardson, A L

    1990-01-01

    The adherence of Candida albicans was studied in situ by using the perfused mouse liver model. After exhaustive washing, 10(6) C. albicans were infused into mouse livers. At the time of recovery, 62 +/- 5% (mean +/- standard error of the mean) of the infused C. albicans were recovered from the liver and 14 +/- 3% were recovered from the effluent for a total recovery of 76 +/- 4%. This indicates that 86 +/- 3% of the original inoculum was trapped by the liver and that 24 +/- 4% was killed within the liver. Chemical pretreatment of C. albicans with 8 M urea, 12 mM dithiothreitol, 2% beta-mercaptoethanol, 1% sodium dodecyl sulfate, 10% Triton X-100, or 3 M potassium chloride or enzyme pretreatment with alpha-mannosidase, alpha-chymotrypsin, subtilisin, beta-N-acetyl-glucosaminidase, pronase, trypsin, papain, or lipase did not alter adherence of C. albicans to hepatic tissue. By contrast, pepsin pretreatment significantly decreased hepatic trapping. Simultaneous perfusion with either 100 mg of C. albicans glycoprotein per liter or 100 mg of C. albicans mannan per liter also decreased trapping. Furthermore, both substances eluted previously trapped C. albicans from hepatic tissue. Chemical pretreatment with 8 M urea, 12 mM dithiothreitol, or 3 M KCI or enzymatic pretreatment with alpha-mannosidase, subtilisin, alpha-chymotrypsin, or papain increased killing of C. albicans three- to fivefold within hepatic tissue. The data suggest that mannose-containing structures on the surface of C. albicans, for example. mannans or glucomannoproteins, mediate adherence of C. albicans within the liver. Indirectly, chemical and enzymatic pretreatment renders C. albicans more susceptible to hepatic killing. PMID:2117571

  12. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis

    PubMed Central

    Roudbarmohammadi, Shahla; Roudbary, Maryam; Bakhshi, Bita; Katiraee, Farzad; Mohammadi, Rasoul; Falahati, Mehraban

    2016-01-01

    Background: A cluster of genes are involved in the pathogenesis and adhesion of Candida albicans to mucosa and epithelial cells in the vagina, the important of which is agglutinin-like sequence (ALS) genes. As well as vaginitis is a significant health problem among women, the antifungal resistance of Candida species is continually increasing. This cross-sectional study investigates the expression of ALS1 and ALS3 genes and biofilm formation in C. albicans isolate isolated from vaginitis. Materials and Methods: Fifty-three recognized isolates of C. albicans were collected from women with recurrent vulvovaginal candidiasis in Iran, cultured on sabouraud dextrose agar, and then examined for gene expression. Total messenger RNA (mRNA) extracted from C. albicans isolates and complementary DNA synthesized using reverse transcriptase enzyme. Reverse transcription-polymerase chain reaction (RT-PCR) using specific primer was used to evaluate the expression of ALS1 and ALS3 through housekeeping (ACT1) genes. 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to assess adherence capacity and biofilm formation in the isolated. Results: Forty isolates (75.8%) expressed ALS1 and 41 isolates (77.7%) expressed ALS3 gene. Moreover, 39 isolates (74%) were positive for both ALS1 and ALS3 mRNA by the RT-PCR. Adherence capability in isolates with ALS1 or ALS3 genes expression was greater than the control group (with any gene expression), besides, it was significantly for the most in the isolates that expressed both ALS1 and ALS3 genes simultaneously. Conclusion: The results attained indicated that there is an association between the expression of ALS1 and ALS3 genes and fluconazole resistance in C. albicans. A considerable percent of the isolates expressing the ALS1 and ALS3 genes may have contributed to their adherence to vagina and biofilm formation. PMID:27376044

  13. Typing Candida albicans oral isolates from human immunodeficiency virus-infected patients by multilocus enzyme electrophoresis and DNA fingerprinting.

    PubMed Central

    Boerlin, P; Boerlin-Petzold, F; Goudet, J; Durussel, C; Pagani, J L; Chave, J P; Bille, J

    1996-01-01

    A total of 189 Candida albicans isolates have been typed by multilocus enzyme electrophoresis. The results obtained confirm the clonal mode of reproduction of C. albicans. The C. albicans populations found in the oropharynx of human immunodeficiency virus (HIV)-infected patients, in the oropharynx of healthy carriers, or in association with invasive candidiasis could not be distinguished. No clone or group of clones could be associated with the appearance of clinical disorders or with a reduced in vitro susceptibility to the antifungal agent fluconazole. Multiple and sequential oral isolates from 24 HIV-infected patients were also typed by restriction enzyme analysis with the enzymes EcoRI and HinfI and by use of the Ca3 repetitive probe. The results obtained by the combination of all three typing methods show that all but one patient each carried a unique major C. albicans clone in their oropharynx. The 21 patients with sequential isolates had the same C. albicans clones in their throats during recurrent oropharyngeal candidiasis episodes, independently of clinical status or of changes of in vitro susceptibility to fluconazole. Finally, several isolates of the same C. albicans clone found simultaneously in the oropharynx of a patient may present different levels of susceptibility to fluconazole. PMID:8727910

  14. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element

    SciTech Connect

    Gaur, Naseem Akhtar; Manoharlal, Raman; Saini, Preeti; Prasad, Tulika; Mukhopadhyay, Gauranga; Hoefer, Milan; Morschhaeuser, Joachim; Prasad, Rajendra . E-mail: rp47@hotmail.com

    2005-06-24

    Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.

  15. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.

    PubMed

    Shirazi, F; Kontoyiannis, D P

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains. PMID:26065323

  16. The evolution of drug resistance in clinical isolates of Candida albicans

    PubMed Central

    Guiducci, Candace; Martinez, Diego A; Delorey, Toni; Li, Bi yu; White, Theodore C; Cuomo, Christina; Rao, Reeta P; Berman, Judith; Thompson, Dawn A; Regev, Aviv

    2015-01-01

    Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale aberrations or candidate genes, and do not comprehensively chart the genetic basis of adaptation. Here, we leveraged next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients. We detected newly selected mutations, including single-nucleotide polymorphisms (SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events were commonly associated with acquired resistance, and SNPs in 240 genes may be related to host adaptation. Conversely, most aneuploidies were transient and did not correlate with drug resistance. Our analysis also shows that isolates also varied in adherence, filamentation, and virulence. Our work reveals new molecular mechanisms underlying the evolution of drug resistance and host adaptation. DOI: http://dx.doi.org/10.7554/eLife.00662.001 PMID:25646566

  17. Correlation between azole susceptibilities, genotypes, and ERG11 mutations in Candida albicans isolates associated with vulvovaginal candidiasis in China.

    PubMed

    Ge, Shu-Hua; Wan, Zhe; Li, Juan; Xu, Jianping; Li, Ruo-Yu; Bai, Feng-Yan

    2010-08-01

    The relationship between susceptibilities to fluconazole and itraconazole and microsatellite CAI genotypes were examined from a total of 154 Candida albicans isolates (97 isolates causing vulvovaginitis in Chinese women and 6 vaginal isolates and 51 oral cavity isolates from asymptomatic carriers). The two dominant genotypes, CAI 30-45 (45 isolates) and CAI 32-46 (33 isolates), associated with vulvovaginitis showed significantly different azole susceptibility patterns with strong statistical support. CAI 32-46 isolates were usually less susceptible to both fluconazole and itraconazole than CAI 30-45 isolates and than the oral isolates with other diversified CAI genotypes. Remarkably different mutation patterns in the azole target gene ERG11 were correspondingly observed among C. albicans isolates representing different genotypes and sources. Isolates with the same or similar CAI genotypes usually possessed identical or phylogenetically closely related ERG11 sequences. Loss of heterozygosity in ERG11 was observed in all the CAI 32-46 isolates but not in the CAI 30-45 isolates and most of the oral isolates sequenced. Compared with the ERG11 sequence of strain SC5314 (X13296), two homozygous missense mutations (G487T and T916C) leading to two amino acid changes (A114S and Y257H) in Erg11p were found in CAI 32-46 isolates. The correlation between azole susceptibility and C. albicans genotype may be of potential therapeutic significance. PMID:20516286

  18. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.

    PubMed

    Coste, Alix; Selmecki, Anna; Forche, Anja; Diogo, Dorothée; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe; Berman, Judith; Sanglard, Dominique

    2007-10-01

    TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2, which mediate azole resistance in Candida albicans. While a wild-type TAC1 allele drives high expression of CDR1/2 in response to inducers, we showed previously that TAC1 can be hyperactive by a gain-of-function (GOF) point mutation responsible for constitutive high expression of CDR1/2. High azole resistance levels are achieved when C. albicans carries hyperactive alleles only as a consequence of loss of heterozygosity (LOH) at the TAC1 locus on chromosome 5 (Chr 5), which is linked to the mating-type-like (MTL) locus. Both are located on the Chr 5 left arm along with ERG11 (target of azoles). In this work, five groups of related isolates containing azole-susceptible and -resistant strains were analyzed for the TAC1 and ERG11 alleles and for Chr 5 alterations. While recovered ERG11 alleles contained known mutations, 17 new TAC1 alleles were isolated, including 7 hyperactive alleles with five separate new GOF mutations. Single-nucleotide-polymorphism analysis of Chr 5 revealed that azole-resistant strains acquired TAC1 hyperactive alleles and, in most cases, ERG11 mutant alleles by LOH events not systematically including the MTL locus. TAC1 LOH resulted from mitotic recombination of the left arm of Chr 5, gene conversion within the TAC1 locus, or the loss and reduplication of the entire Chr 5. In one case, two independent TAC1 hyperactive alleles were acquired. Comparative genome hybridization and karyotype analysis revealed the presence of isochromosome 5L [i(5L)] in two azole-resistant strains. i(5L) leads to increased copy numbers of azole resistance genes present on the left arm of Chr 5, among them TAC1 and ERG11. Our work shows that azole resistance was due not only to the presence of specific mutations in azole resistance genes (at least ERG11 and TAC1) but also to their increase in copy number by LOH and to the addition of extra Chr 5

  19. Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects

    PubMed Central

    Uzunoglu, Emel; Dolapci, Istar; Dogan, Arife

    2014-01-01

    PURPOSE This study evaluated the adhesion to acrylic resin specimens and biofilm formation capability of Candida albicans strains isolated from HIV positive subjects' oral rinse solutions. MATERIALS AND METHODS The material tested was a heat-cured acrylic resin (Acron Duo). Using the adhesion and crystal violet assays, 14 oral Candida albicans isolated from HIV-positive subjects and 2 references Candida strains (C. albicans ATCC 90028 and C. albicans ATCC 90128) were compared for their biofilm production and adhesion properties to acrylic surfaces in vitro. RESULTS There were no significant differences in adhesion (P=.52) and biofilm formation assays (P=.42) by statistical analysis with Mann-Whitney test. CONCLUSION Denture stomatitis and increased prevalence of candidal carriage in HIV infected patients is unlikely to be related to the biofilm formation and adhesion abilities of C. albicans to acrylic resin materials. PMID:24605203

  20. High Recovery Rate of Non-albicans Candida Species Isolated From Burn Patients With Candidemia in Iran

    PubMed Central

    Lotfi, Nazanin; Shokohi, Tahereh; Nouranibaladezaei, Seyed Zahra; Nasrolahi Omran, Ayatollah; Kondori, Nahid

    2015-01-01

    Background: Blood stream infections (BSIs) are major causes of morbidity and mortality in burn patients. Microorganisms responsible for BSI are generally bacteria; however, Candida spp. are the infection agents in as many as 8% of all cases. Burn wound colonization and infections are generally the first steps to systemic infection. Candidemia in burn patients has been associated with high mortality and a prolonged hospital stay. Objectives: Candidemia in burn patients has been defined as a preterminal event, leading to high morbidity and mortality rates among these patients. The aim of this study was to establish the incidence of candidemia in burn patients in Iran. Patients and Methods: We consecutively collected 405 blood samples from 113 burn patients. The yeast isolates were identified to the species level using conventional procedures. In vitro antifungal susceptibility of the Candida isolates to amphotericin B, fluconazole, voriconazole and caspofungin was performed using the Etest. Results: Twenty-seven samples (6.7%) of the blood cultures from 13 patients (12%) were positive for Candida species. Candida parapsilosis (38%) and C. tropicalis (38%) were the most commonly found Candida species, followed by C. albicans (15%) and C. guilliermondii (15%) in the patients. The incidence of candidemia was significantly correlated with increased duration of hospitalization, increased time of stay in the intensive care unit, and higher mortality. The antifungal susceptibility tests demonstrated that amphotericin B and voriconazole had the lowest minimum inhibitory concentrations (MICs) against Candida spp. Conclusions: Non-albicans Candida should be considered as significant pathogens in burned patients with candidemia. PMID:26587207

  1. Evaluation of internal transcribed spacer region of ribosomal DNA sequence analysis for molecular characterization of Candida albicans and Candida dubliniensis isolates from HIV-infected patients.

    PubMed

    Millon, L; Piarroux, R; Drobacheff, C; Monod, M; Grenouillet, F; Bulle, B; Bole, J; Blancard, A; Meillet, D

    2002-12-01

    Molecular typing systems have been needed to study Candida colonization in HIV-infected patients, particularly for investigating virulence and fluconazole resistance. Three methods--electrophoretic karyotyping (EK), detection of restriction fragment length polymorphisms (RFLP) and randomly amplified polymorphic DNA analysis (RAPD)--have been most frequently used. In this study, comparative sequence analysis of the internal transcribed spacer (ITS) region of rDNA was evaluated for delineation of Candida isolates from 14 HIV-infected patients. EK, ITS sequence analysis, RFLP and RAPD resulted in 11, 10, 9 and 8 DNA genotypes, respectively, from 39 Candida albicans isolates. The 10 genotypes observed using ITS sequence analysis were defined by six variation sites in the sequence. Molecular typing of sequential oral isolates showed the persistence of the same genotype of C. albicans in nine patients, and genotype variation in one patient. EK and RAPD showed that another patient was co-infected by two distinct genotypes and ITS analysis identified one of the two genotypes as Candida dubliniensis. Comparative ITS sequence analysis is a quick and reproducible method that provides clear and objective results, and it also identifies C. dubliniensis. The discriminatory power of this new typing approach could be improved by concomitant analysis of other DNA polymorphic sequences. PMID:12521117

  2. Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates

    PubMed Central

    You, Jianlan; Du, Lin; King, Jarrod B.; Hall, Brian E.; Cichewicz, Robert H.

    2013-01-01

    A new class of fungal biofilm inhibitors represented by shearinines D (3) and E (4) were obtained from a Penicillium sp. isolate. The inhibitory activities of 3 and 4 were characterized using a new imaging flow-cytometer technique, which enabled the rapid phenotypic analysis of Candida albicans cell types (budding yeast cells, germ tube cells, pseudohyphae, and hyphae) in biofilms populations. The results were confirmed by experimental data obtained from three-dimensional confocal laser scanning microscopy and 2,3- bis-(2-methoxy-4- nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assays. These data indicate that 3 and 4 inhibited C. albicans biofilm formation by blocking the outgrowth of hyphae at a relatively late stage of biofilm development (IC50 = 8.5 μM and 7.6 μM, respectively). However, 3 and 4 demonstrated comparatively weak activity at disrupting existing biofilms. Compounds 3 and 4 also exhibited synergistic activities with amphotericin B against C. albicans and others clinical Candida isolates by enhancing the potency of amphotericin B up to eight-fold against cells in both developing and established biofilms. These data suggest that the Candida biofilm disruption and amphotericin B potentiating effects of 3 and 4 could be mediated through multiple biological targets. The shearinines are good tools for testing the potential advantages of using adjunctive therapies in combination with antifungals. PMID:23387427

  3. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates.

    PubMed

    Szweda, Piotr; Gucwa, Katarzyna; Kurzyk, Ewelina; Romanowska, Ewa; Dzierżanowska-Fangrat, Katarzyna; Zielińska Jurek, Anna; Kuś, Piotr Marek; Milewski, Sławomir

    2015-06-01

    Development of effective and safe therapeutic treatment of fungal infections remains one of the major challenge for modern medicine. The aim of presented investigation was to analyze the in vitro antifungal activity of selected essential oils, ethanolic extracts of propolis and silver nanoparticles dropped on TiO2 against azole-resistant C. albicans (n = 20), C. glabrata (n = 14) and C. krusei (n = 10) clinical isolates. Among tested essential oils, the highest activity has definitely been found in the case of the oil isolated from the bark of Cinnamomum cassia, with MIC and MFC values for all tested strains in the range of 0.0006-0.0097 % (v/v) and 0.0012-0.019 % (v/v), respectively. High activity was also observed for the Lemon, Basil, Thyme, Geranium and Clove (from buds) essential oils. Significant differences in fungicidal activity have been observed in the case of four tested propolis samples. Only one of them revealed high activity, with MFC values in the range from 0.156 to 1.25 % (v/v). Satisfactory fungicidal activity, against C. albicans and C. glabrata isolates, was also observed in the case of silver nanoparticles, however C. krusei isolates were mostly resistant. We also revealed that constituents of most of essential oils and propolis as well as silver nanoparticles are not substrates for drug transporters, which belong to the most important factors affecting resistance of Candida spp. clinical isolates to many of conventional antimycotics. To conclude, the results of our investigation revealed that essential oils, propolis and silver nanoparticles represent high potential for controlling and prevention candidiasis. PMID:25805904

  4. Isolation, characterization, and regulation of the Candida albicans ERG27 gene encoding the sterol 3-keto reductase.

    PubMed

    Pierson, C A; Jia, N; Mo, C; Lees, N D; Sturm, A M; Eckstein, J; Barbuct, R; Bard, M

    2004-10-01

    The Candida albicans ERG27 gene which encodes the 3-keto reductase enzyme required for sterol C-4 demethylation was isolated and found to encode a 349 amino acid protein that is 60% identical at the amino acid level to the Saccharomyces cerevisiae Erg27p. A C. albicans erg27 null was created in a strain containing an integrated ERG27 rescue cassette under the control of the pMAL2 inducible promoter. The C. albicans erg27 strain was able to grow only in the presence of maltose indicating that the ERG27 gene is essential. The C. albicans erg27 null showed complete loss of both 3-keto reductase and oxidosqualene cyclase (Erg7p) activities compromising all sterol synthesis. These results suggest that Erg27p inhibitors might be effective antifungals. To explore ERG27 regulation, an erg11 null strain was generated. C. albicans erg6 and erg24 mutants were also employed along with the inhibitors, itraconazole and zaragozic acid A, to characterize ERG27 expression using Northern analysis. Expression was increased two- to fourfold in erg11, erg6 and erg24 backgrounds. However, itraconazole which targets Erg11p (lanosterol demethylase) increased ERG27 expression 10-fold and zaragozic acid A which targets the Erg9p (squalene synthase) increased ERG27 expression fivefold. The azole and erg11 results support other observations that azoles may affect non-sterol targets. PMID:15552648

  5. Effect of lectins on hepatic clearance and killing of Candida albicans by the isolated perfused mouse liver.

    PubMed Central

    Sawyer, R T; Garner, R E; Hudson, J A

    1992-01-01

    The isolated perfused mouse liver model was used to study the effects of various lectins on hepatic trapping and killing of Candida albicans. After mouse livers were washed with 20 to 30 ml of perfusion buffer, 10(6) C. albicans CFU were infused into the livers. At the time of recovery, 63% +/- 2% (mean +/- standard error of the mean) of the infused C. albicans CFU were recovered from the liver and 14% +/- 1% were recovered from the effluent for a total recovery of 77% +/- 2%. This indicated that 86% +/- 9% of the original inoculum was trapped by the liver and that 23% +/- 2% was killed within the liver. When included in both preperfusion and postperfusion buffers (0.2 mg of lectin per ml), Ulex europeaus lectin (binding specificity for fucose) decreased hepatic trapping of C. albicans by 37% and eluted trapped C. albicans from the liver only when included in postperfusion buffer. By comparison, treatment of C. albicans with U. europeaus lectin before infusion had no effect on the trapping or killing of yeast cells. When Lens culinaris lectin (binding specificity for mannose) was included in the perfusion buffers, hepatic killing of C. albicans increased by 16% with no significant effect on hepatic killing when yeast cells were treated with L. culinaris lectin before infusion. Forty to 55% of the infused C. albicans were killed when concanavalin A (binding specificities for mannose and glucose), Glycine max (binding specificity for N-acetylgalactosamine), or Arachis hypogea (binding specificity for galactose) lectin was included in the perfusion buffer or when yeast cells were treated with these lectins before their infusion. When C. albicans was treated with concanavalin A at a concentration of less than 0.02 mg/ml, hepatic killing of yeast cells was not significantly increased. The data suggest that a fucose-containing receptor on the surface of either sinusoidal endothelial cells or Kupffer cells is involved in the trapping of C. albicans by the perfused mouse

  6. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    SciTech Connect

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms.

  7. Skin Immunity to Candida albicans.

    PubMed

    Kashem, Sakeen W; Kaplan, Daniel H

    2016-07-01

    Candida albicans is a dimorphic commensal fungus that colonizes healthy human skin, mucosa, and the reproductive tract. C. albicans is also a predominantly opportunistic fungal pathogen, leading to disease manifestations such as disseminated candidiasis and chronic mucocutaneous candidiasis (CMC). The differing host susceptibilities for the sites of C. albicans infection have revealed tissue compartmentalization with tailoring of immune responses based on the site of infection. Furthermore, extensive studies of host genetics in rare cases of CMC have identified conserved genetic pathways involved in immune recognition and the response to the extracellular pathogen. We focus here on human and mouse skin as a site of C. albicans infection, and we review established and newly discovered insights into the cellular pathways that promote cutaneous antifungal immunity. PMID:27178391

  8. Candida albicans and C. tropicalis Isolates from the Expired Breathes of Captive Dolphins and Their Environments in an Aquarium

    PubMed Central

    Takahashi, Hideo; Ueda, Keiichi; Itano, Eiko Nakagawa; Yanagisawa, Makio; Murata, Yoshiteru; Murata, Michiko; Yaguchi, Takashi; Murakami, Masaru; Kamei, Katsuhiko; Inomata, Tomo; Miyahara, Hirokazu; Sano, Ayako; Uchida, Senzo

    2010-01-01

    Genotypes of Candida spp. isolated from exhalation of 20 dolphins, 11 water samples from captive pools, and 24 oral cavities of staff members in an aquarium using a combination of multiple drug resistance 1 gene (MDR1) and the internal transcribed spacer (ITS) 1 5.8s-ITS 2 regions of ribosomal RNA gene (ITS rDNA) sequences were studied. The holding ratios of the dolphins, captive pools, and staff members were 70, 90, and 29%, respectively. Isolated pathogenic yeast species common to the dolphins and environments were Candida albicans and C. tropicalis. Identical genotypes in both Candida spp. based on the combination of MDR1 and ITSrDNA were found in some dolphins, between a dolphin and a staff, among dolphins and environments, and among environments. The results indicated the diffusion and exchange of pathogenic yeasts at the aquarium among dolphins and environments. The isolates at the aquarium showed higher rates of resistance to azole antifungals compared to reference isolates. PMID:21234394

  9. Comparative evaluation of three antifungal susceptibility test methods for Candida albicans isolates and correlation with response to fluconazole therapy.

    PubMed Central

    Ruhnke, M; Schmidt-Westhausen, A; Engelmann, E; Trautmann, M

    1996-01-01

    In vitro susceptibilities were determined for 56 Candida albicans isolates obtained from the oral cavities of 41 patients with human immunodeficiency virus infection. The agents tested included fluconazole, itraconazole, ketoconazole, flucytosine, and amphotericin B. MICs were determined by the broth microdilution technique following National Committee for Clinical Laboratory Standards document M27-P (M27-P micro), a broth microdilution technique using high-resolution medium (HR micro), and the Etest with solidified yeast-nitrogen base agar. The in vitro findings were correlated with in vivo response to fluconazole therapy for oropharyngeal candidiasis. For all C. albicans isolates from patients with oropharyngeal candidiasis not responding to fluconazole MICs were found to be > or = 6.25 micrograms/ml by the M27-P micro method and > or = 25 micrograms/ml by the HR micro method as well as the Etest. However, for several C. albicans isolates from patients who responded to fluconazole therapy MICs found to be above the suggested breakpoints of resistance. The appropriate rank order of best agreement between the M27-P micro method and HR micro method was amphotericin B > fluconazole > flucytosine > ketoconazole > itraconazole. The appropriate rank order with best agreement between the M27-P micro method and the Etest was flucytosine > amphotericin B > fluconazole > ketoconazole > or = itraconazole. It could be concluded that a good correlation between in vitro resistance and clinical failure was found with all methods. However, the test methods used in this study did not necessarily predict clinical response to therapy with fluconazole. PMID:8940474

  10. In vitro fluconazole susceptibility of 1,903 clinical isolates of Candida albicans and the identification of ERG11 mutations.

    PubMed

    Ying, Ying; Zhao, Yingjie; Hu, Xuefei; Cai, Zhenyu; Liu, Xin; Jin, Guilin; Zhang, Jieyu; Zhang, Jingyi; Liu, Jinhui; Huang, Xiaotian

    2013-08-01

    Abstract Fluconazole resistance of Candida albicans has been reported to be the result of one or more specific point mutations in ERG11 gene. In this study, we amplified and sequenced the entire ERG11 coding sequence of 72 isolates of C. albicans to search for possible mutations. Twenty-seven silent mutations and 14 missense mutations were identified. While the mutations K342R and V437I were found as single-amino-acid changes in Erg11p, other mutations were detected simultaneously in individual isolates. Several different clinical isolates had the same pattern of multiple amino acid alternations: (1) A114S with Y257H was identified in 11 resistant and 3 susceptible dose-dependent isolates without any other silent mutation and may be associated with resistance; (2) Y132H combined with G450E was identified in two fluconazole-resistant isolates and is known to contribute to resistance; and (3) the coexistence of D116E, K128T, Y132H, and G465S was first described in five reduced-susceptibility isolates, but the correlation of this pattern with resistance is still uncertain. These data indicate that multiple amino acid substitutions in Erg11p were found frequently in clinical isolates and may be associated with fluconazole resistance. PMID:23484590

  11. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Rathod, V; Karuppayil, S Mohan

    2011-07-01

    Fluconazole (FLC) susceptibility of isolates of Candida spp., (n = 42) and efficacy as well as mechanism of anti-Candida activity of three constituents of geranium oil is evaluated in this study. No fluconazole resistance was observed among the clinical isolates tested, however 22% were susceptible-dose-dependent (S-DD) [minimal inhibitory concentration (MIC) ≥ 16 μg ml(-1)] and a standard strain of C. albicans ATCC 10231 was resistant (≥ 64 μg ml(-1)). Geraniol and geranyl acetate were equally effective, fungicidal at 0.064% v/v concentrations i.e. MICs (561 μg ml(-1) and 584 μg ml(-1) respectively) and killed 99.9% inoculum within 15 and 30 min of exposures respectively. Citronellol was least effective and fungistatic. C. albicans dimorphism (Y → H) was highly sensitive to geranium oil constituents tested (IC50 approximately 0.008% v/v). Geraniol, geranyl acetate and citronellol brought down MICs of FLC by 16-, 32- and 64-fold respectively in a FLC-resistant strain. Citronellol and geraniol arrested cells in G1 phase while geranyl acetate in G2-M phase of cell cycle at MIC(50). In vitro cytotoxicity study revealed that geraniol, geranyl acetate and citronellol were non-toxic to HeLa cells at MICs of the C. albicans growth. Our results indicate that two of the three geranium oil constituents tested exhibit excellent anti-Candida activity and significant synergistic activity with fluconazole. PMID:20337938

  12. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans.

    PubMed

    Vieira, Maria Eliza Brambila; Vasconcelos, Ilka Maria; Machado, Olga Lima Tavares; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2015-09-01

    Antimicrobial peptides (AMPs) are produced by a range of organisms as a first line of defense against invaders or competitors. Owing to their broad antimicrobial activity, AMPs have attracted attention as a potential source of chemotherapeutic drugs. The increasing prevalence of infections caused by Candida species as opportunistic pathogens in immunocompromised patients requires new drugs. Lecythis pisonis is a Lecythydaceae tree that grows in Brazil. The AMPs produced by this tree have not been described previously. We describe the isolation of 12 fractions enriched in peptides from L. pisonis seeds. Of the 12 fractions, at 10 μg/ml, the F4 fraction had the strongest growth inhibitory effect (53.7%) in Candida albicans, in addition to a loss of viability of 94.9%. The F4 fraction was separated into seven sub-fractions by reversed-phase chromatography. The F4.7' fraction had the strongest activity at 10 μg/ml, inhibiting C. albicans growth by 38.5% and a 69.3% loss of viability. The peptide in F4.7' was sequenced and was found to be similar to plant defensins. For this reason, the peptide was named L. pisonis defensin 1 (Lp-Def1). The mechanism of action that is responsible for C. albicans inhibition by Lp-Def1 includes a slight increase of reactive oxygen species induction and a significant loss of mitochondrial function. The results described here support the future development of plant defensins, specifically Lp-Def1, as new therapeutic substances against fungi, especially C. albicans. PMID:26245301

  13. Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

    PubMed Central

    Singh, Ashutosh; Yadav, Vipin; Prasad, Rajendra

    2012-01-01

    Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR) matched pair clinical isolates of C. albicans, we could not see consistent differences in the lipid profiles of AS and AR strains because they came from different patients and so in this study, we have used genetically related variant recovered from the same patient collected over a period of 2-years. During this time, the levels of fluconazole (FLC) resistance of the strain increased by over 200-fold. By comparing the lipid profiles of select isolates, we were able to observe gradual and statistically significant changes in several lipid classes, particularly in plasma membrane microdomain specific lipids such as mannosylinositolphosphorylceramides and ergosterol, and in a mitochondrial specific phosphoglyceride, phosphatidyl glycerol. Superimposed with these quantitative and qualitative changes in the lipid profiles, were simultaneous changes at the molecular lipid species levels which again coincided with the development of resistance to FLC. Reverse transcriptase-PCR of the key genes of the lipid metabolism validated lipidomic picture. Taken together, this study illustrates how the gradual corrective changes in Candida lipidome correspond to the development of FLC tolerance. Our study also shows a first instance of the mitochondrial membrane dysfunction and defective cell wall (CW) in clinical AR isolates of C. albicans, and provides evidence of a cross-talk between mitochondrial lipid homeostasis, CW integrity and azole tolerance. PMID:22761908

  14. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity.

    PubMed

    Hellstein, J; Vawter-Hugart, H; Fotos, P; Schmid, J; Soll, D R

    1993-12-01

    Colony phenotype and genetic similarity were assessed within and between groups of commensal and pathogenic strains of Candida albicans collected from the oral cavities of individuals in a single geographical locale. Thirty-eight percent of pathogenic isolates contained predominant or minor variant colony morphologies (other than smooth) when samples from the sites of infection were cultured on plates, while 16% of commensal isolates contained minor variant colony morphologies when samples from the sites of carriage were cultured. The genetic similarities of isolates within and between groups were assessed by DNA fingerprinting by using Southern blot hybridization with the fingerprinting probe Ca3 and analysis with the computer-assisted, automated Dendron system. Both the commensal and the pathogenic groups contained a major cluster of genetically similar C. albicans isolates representing 31 and 33% of the strains in the respective groups. When a combined dendrogram of both commensal and pathogenic isolates was generated, the major clusters of genetically similar isolates in each group mixed into one large cluster. Minor clusters in the individual dendrograms also mixed. These results suggest common clonal origins for commensal and pathogenic strains in the same geographical locale. PMID:8308110

  15. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity.

    PubMed Central

    Hellstein, J; Vawter-Hugart, H; Fotos, P; Schmid, J; Soll, D R

    1993-01-01

    Colony phenotype and genetic similarity were assessed within and between groups of commensal and pathogenic strains of Candida albicans collected from the oral cavities of individuals in a single geographical locale. Thirty-eight percent of pathogenic isolates contained predominant or minor variant colony morphologies (other than smooth) when samples from the sites of infection were cultured on plates, while 16% of commensal isolates contained minor variant colony morphologies when samples from the sites of carriage were cultured. The genetic similarities of isolates within and between groups were assessed by DNA fingerprinting by using Southern blot hybridization with the fingerprinting probe Ca3 and analysis with the computer-assisted, automated Dendron system. Both the commensal and the pathogenic groups contained a major cluster of genetically similar C. albicans isolates representing 31 and 33% of the strains in the respective groups. When a combined dendrogram of both commensal and pathogenic isolates was generated, the major clusters of genetically similar isolates in each group mixed into one large cluster. Minor clusters in the individual dendrograms also mixed. These results suggest common clonal origins for commensal and pathogenic strains in the same geographical locale. Images PMID:8308110

  16. Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae.

    PubMed

    Cannon, R D; Jenkinson, H F; Shepherd, M G

    1990-04-01

    An 8.6-kb fragment was isolated from an EcoRI digest of Candida albicans ATCC 10261 genomic DNA which conferred the property of autonomous replication in Saccharomyces cervisiae on the otherwise non-replicative plasmid pMK155 (5.6 kb). The DNA responsible for the replicative function was subcloned as a 1.2-kb fragment onto a non-replicative plasmid (pRC3915) containing the C. albicans URA3 and LEU2 genes to form plasmid pRC3920. This plasmid was capable of autonomous replication in both S. cerevisiae and C. albicans and transformed S. cerevisiae AH22 (leu2-) to Leu+ at a frequency of 2.15 x 10(3) transformants per microgram DNA, and transformed C. albicans SGY-243 (delta ura3) to Ura+ at a frequency of 1.91 x 10(3) transformants per microgram DNA. Sequence analysis of the cloned DNA revealed the presence of two identical regions of eleven base pairs (5'TTTTATGTTTT3') which agreed with the consensus of autonomously replicating sequence (ARS) cores functional in S. cerevisiae. In addition there were two 10/11 and numerous 9/11 matches to the core consensus. The two 11/11 matches to the consensus, CaARS1 and CaARS2, were located on opposite strands in a non-coding AT-rich region and were separated by 107 bp. Also present on the C. albicans DNA, 538 bp from the ARS cores, was a gene for 5S rRNA which showed sequence homology with several other yeast 5S rRNA genes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2196431

  17. Candida albicans, plasticity and pathogenesis.

    PubMed

    Poulain, Daniel

    2015-06-01

    The yeast Candida albicans has emerged as a major public health problem during the past two decades. The spectrum of diseases caused by this species ranges from vaginal infections, which affect up to 75% of the women at least once in their lifetime, to deep infections in hospitalized patients which lead to high morbidity and mortality rates. Candida albicans may also play a role in the persistence or worsening of some chronic inflammatory bowel diseases. Active research is now improving our understanding of the molecular mechanisms and genetic factors in the yeast and its host which influence the development of disease. Despite these advances and the availability of a more extensive therapeutic arsenal, current progress in the control of nosocomial infections due to Candida remains limited, mainly due to the difficulties in diagnosing these infections. The biologist has a key role to play in establishing a dialogue with the clinician in order to identify the saprophyte/pathogen transition in patients as early as possible. This review provides a quick synopsis of the modern concepts of Candida pathogenesis with some representative examples illustrating the specifics traits of this yeast in terms of pathogenic adaptation. PMID:23962107

  18. Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set of Candida albicans Isolates from Humans and Nonmigratory Wildlife in Central Illinois ▿

    PubMed Central

    Wrobel, Lauren; Whittington, Julia K.; Pujol, Claude; Oh, Soon-Hwan; Ruiz, Marilyn O.; Pfaller, Michael A.; Diekema, Daniel J.; Soll, David R.; Hoyer, Lois L.

    2008-01-01

    This study explored whether wildlife species serve as the reservoir for human Candida albicans strains in a given geographic area. C. albicans isolates were collected from nonmigratory wildlife admitted to the University of Illinois Wildlife Medical Clinic. A geographically and temporally matched set of C. albicans oral isolates was collected from healthy human volunteers. Multilocus sequence typing was used to assign strains to genetic clades. Clade 1 isolates, particularly diploid sequence type 69 (DST 69), were most common in humans. Clade 1 strains were less frequently recovered from wildlife, while clade 8 strains, particularly DST 90, were overrepresented in the wildlife collection. All instances where a wildlife and human isolate shared the same DST occurred within clade 1. Clade distributions between human and wildlife isolates were significantly different, demonstrating population isolation between the groups. These differences may indicate limited strain transfer between groups or differential selection of C. albicans isolates in humans and wildlife. Wildlife strains had an amphotericin B MIC significantly lower than that of human isolates; strains with increased susceptibility were from several clades. C. albicans isolates were collected from domestic animals to provide comparisons with human and wildlife data sets. C. albicans isolation from canine and feline oral and anal swabs was infrequent; companion animal isolates were closely related to clade 1 human isolates. Collectively, the data suggest a greater likelihood of C. albicans transfer from humans to animals than from animals to humans. The nontransient human population may maintain the connection between geography and the C. albicans genetic groups recovered from humans. PMID:18621922

  19. Candida albicans commensalism in the gastrointestinal tract.

    PubMed

    Neville, B Anne; d'Enfert, Christophe; Bougnoux, Marie-Elisabeth

    2015-11-01

    Candida albicans is a polymorphic yeast species that often forms part of the commensal gastrointestinal mycobiota of healthy humans. It is also an important opportunistic pathogen. A tripartite interaction involving C. albicans, the resident microbiota and host immunity maintains C. albicans in its commensal form. The influence of each of these factors on C. albicans carriage is considered herein, with particular focus on the mycobiota and the approaches used to study it, models of gastrointestinal colonization by C. albicans, the C. albicans genes and phenotypes that are necessary for commensalism and the host factors that influence C. albicans carriage. PMID:26347504

  20. Urinary tract infections and Candida albicans

    PubMed Central

    Behzadi, Payam; Behzadi, Elham

    2015-01-01

    Introduction Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. Material and methods For writing this review, Google Scholar –a scholarly search engine– (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Results Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Conclusions Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future. PMID:25914847

  1. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  2. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity

    PubMed Central

    2014-01-01

    Background Candida albicans infections have become increasingly recognised as being biofilm related. Recent studies have shown that there is a relationship between biofilm formation and poor clinical outcomes in patients infected with biofilm proficient strains. Here we have investigated a panel of clinical isolates in an attempt to evaluate their phenotypic and transcriptional properties in an attempt to differentiate and define levels of biofilm formation. Results Biofilm formation was shown to be heterogeneous; with isolates being defined as either high or low biofilm formers (LBF and HBF) based on different biomass quantification. These categories could also be differentiated using a cell surface hydrophobicity assay with 24 h biofilms. HBF isolates were more resistance to amphotericin B (AMB) treatment than LBF, but not voriconazole (VRZ). In a Galleria mellonella model of infection HBF mortality was significantly increased in comparison to LBF. Histological analysis of the HBF showed hyphal elements intertwined indicative of the biofilm phenotype. Transcriptional analysis of 23 genes implicated in biofilm formation showed no significant differential expression profiles between LBF and HBF, except for Cdr1 at 4 and 24 h. Cluster analysis showed similar patterns of expression for different functional classes of genes, though correlation analysis of the 4 h biofilms with overall biomass at 24 h showed that 7 genes were correlated with high levels of biofilm, including Als3, Eap1, Cph1, Sap5, Plb1, Cdr1 and Zap1. Conclusions Our findings show that biofilm formation is variable amongst C. albicans isolates, and categorising isolates depending on this can be used to predict how pathogenic the isolate will behave clinically. We have shown that looking at individual genes in less informative than looking at multiple genes when trying to categorise isolates at LBF or HBF. These findings are important when developing biofilm-specific diagnostics as these could be

  3. Casein Agar: a Useful Medium for Differentiating Candida dubliniensis from Candida albicans

    PubMed Central

    Mosca, Christian O.; Moragues, María D.; Llovo, José; Al Mosaid, Asmaa; Coleman, David C.; Pontón, José

    2003-01-01

    Production of chlamydospores on casein agar at 24°C for 48 h provides a simple means for differentiating Candida dubliniensis from Candida albicans based on chlamydospore production. Of 109 C. dubliniensis isolates tested on this medium, 106 (97.2%) produced abundant chlamydospores and three produced few chlamydospores. In contrast, of the 120 C. albicans isolates tested, 111 (92.5%) failed to produce any chlamydospores, whereas the remaining nine isolates produced few chlamydospores. These findings indicate that abundant chlamydospore production on casein agar is a useful test for discriminating between C. dubliniensis and C. albicans. PMID:12624062

  4. Heterogeneity of metallo and serine extracellular proteinases in oral clinical isolates of Candida albicans in HIV-positive and healthy children from Rio de Janeiro, Brazil.

    PubMed

    de Brito Costa, Edja Maria Melo; dos Santos, André Luis Souza; Cardoso, Abel Silveira; Portela, Maristela Barbosa; Abreu, Celina Monteiro; Alviano, Celuta Sales; Hagler, Allen Norton; de Araújo Soares, Rosangela Maria

    2003-09-22

    Candida yeasts frequently cause life-threatening systemic infections in immunocompromised hosts. In the present study, gelatin-SDS-PAGE analysis was used to characterize extracellular proteinases in 44 oral clinical isolates of Candida albicans from HIV-positive (29/50) and healthy children (15/50). Our survey indicates that these oral clinical isolates of C. albicans have complex extracellular proteolytic activity profiles, which illustrates the heterogeneity of this species. We showed four distinct proteolytic patterns composed of distinct serine (30-58 kDa) and metalloproteinase (64-95 kDa) activities, based on the inhibition profile with phenylmethylsulfonyl fluoride and 1,10-phenanthroline, respectively. This is the first report on secreted serine and metalloproteinases present in the culture supernatant fluids of C. albicans; however, we did not observe a significant correlation between proteolytic profile expressed by the C. albicans isolates from HIV-positive children and CD4(+) T cell count and plasma viral load. PMID:13129652

  5. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species.

    PubMed

    Whibley, Natasha; Gaffen, Sarah L

    2015-11-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  6. GENETIC CONTROL OF CANDIDA ALBICANS BIOFILM DEVELOPMENT

    PubMed Central

    Finkel, Jonathan S.; Mitchell, Aaron P.

    2014-01-01

    Preface Candida species cause frequent infections due to their ability to form biofilms – surface-associated microbial communities – primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in Candida albicans biofilm formation, as well as the regulatory circuitry and networks that control their expression and activity. These studies have revealed new mechanisms and signals that govern C. albicans biofilm formation and associated drug resistance, thus providing biological insight and therapeutic foresight. PMID:21189476

  7. Evaluation of Bichro-Dubli Fumouze to distinguish Candida dubliniensis from Candida albicans.

    PubMed

    Sahand, Ismail H; Moragues, María D; Robert, Raymond; Quindós, Guillermo; Pontón, José

    2006-06-01

    We have evaluated the ability of the Bichro-Dubli Fumouze (Fumouze Diagnostics, Levallois-Perret, France) latex agglutination test to identify colonies of Candida dubliniensis grown on different media. The test was positive for 103 of 106 isolates of C. dubliniensis and negative for Candida albicans and other Candida species studied. The sensitivity and specificity of the test were 97.1% and 100%, respectively. The test is very rapid, simple, and reliable giving the same results independently of whether the colonies are grown previously on Sabouraud dextrose agar, CHROMagar Candida medium, Candida ID2 medium, or CHROMagar-Pal's medium. PMID:16529902

  8. Antifungal susceptibility and molecular typing of 115 Candida albicans isolates obtained from vulvovaginal candidiasis patients in 3 Shanghai maternity hospitals.

    PubMed

    Ying, Chunmei; Zhang, Hongju; Tang, Zhenhua; Chen, Huifen; Gao, Jing; Yue, Chaoyan

    2016-05-01

    In our multicenter study, we studied the distribution ofCandidaspecies in vulvovaginal candidiasis patients and investigated antifungal susceptibility profile and genotype ofCandida albicansin vaginal swab. A total of 115Candida albicansstrains were detected in 135 clinical isolates. Minimum inhibitory concentration determinations showed that 83% and 81% of the 115Candida albicansstrains were susceptible to fluconazole and voriconazole. Randomly amplified polymorphic DNA analysis (RAPD) was applied to identify clonally related isolates from different patients at the local level. All tested strains were classified into genotype A (77.4%), genotype B (18.3%), and genotype C (4.3%). Genotype A was further classified into five subtypes and genotype B into two subtypes.Candida albicanswas the dominant pathogen of vulvovaginal candidiasis, the majority belonging to genotype A in this study. Exposure to azoles is a risk factor for the emergence of azole resistance amongCandida albicansisolated from VVC patients. PMID:26468549

  9. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    PubMed Central

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  10. Comparison of four molecular typing methods for evaluating genetic diversity among Candida albicans isolates from human immunodeficiency virus-positive patients with oral candidiasis.

    PubMed Central

    Díaz-Guerra, T M; Martínez-Suárez, J V; Laguna, F; Rodríguez-Tudela, J L

    1997-01-01

    Candida albicans strain delineation by karyotyping. NotI restriction pattern analysis, hybridization with specific probe 27A, and PCR fingerprinting with the phage M13 core sequence were performed with 30 isolates from the oral cavities of 30 human immunodeficiency virus (HIV)-infected patients and 8 reference strains. Within the panel of clinical isolates, 20 were geographically related, although 10 isolates were susceptible to fluconazole and 10 isolates were resistant to fluconazole. The remaining isolates used in this study were fluconazole resistant and geographically unrelated. A composite DNA type was defined for each of the strains as the combination of types obtained by the four molecular methods. By this procedure, a great diversity of DNA types was found among isolates from the oropharynges of HIV-infected individuals with oral candidiasis. This diversity was not reduced when isolates were evaluated on the basis of whether they came from the same geographical locale and whether they were fluconazole resistant. These data refute the idea of a clonal origin for fluconazole-resistant strains among HIV-positive patients. Karyotyping was the least discriminatory method, yielding 19 DNA types among the 38 strains analyzed. Conversely, hybridization with the 27A probe showed a unique DNA pattern for each of the strains examined in this study. Our results demonstrate that at least two different molecular methods are needed for Candida albicans typing and that there is a great deal of strain variation within the species, irrespective of place of origin or antifungal resistance patterns. PMID:9157142

  11. In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection.

    PubMed Central

    Ruhnke, M; Schmidt-Westhausen, A; Trautmann, M

    1997-01-01

    The susceptibility of Candida albicans to a new antifungal triazole, voriconazole (UK-109,496), was investigated in 105 isolates obtained from the oral cavities of patients with human immunodeficiency virus (HIV) infection to study this drug's activity against fluconazole-susceptible and -resistant isolates. MICs were determined by a broth microdilution technique according to document M27-T from the National Committee for Clinical Laboratory Standards and by using a broth microdilution technique and a synthetic high-resolution medium. These antifungal susceptibility testing methods showed high levels of agreement (93% for fluconazole and 86% for voriconazole). Data from in vitro studies showed that voriconazole has good activity against fluconazole-susceptible and -resistant C. albicans isolates; the MICs at which 90% of all isolates were inhibited were 0.19 to 0.39 microgram/ml. We found that for isolates for which fluconazole MICs were high, voriconazole MICs were proportionally higher than those for fluconazole-susceptible C.albicans (P < 0.001). Pretreatment isolates from six patients with fluconazole-refractory esophageal candidiasis were included in the study. For these isolates the MICs were < or = 0.39 microgram/ml, and all patients responded to voriconazole. These results suggest that voriconazole is effective even in the treatment of fluconazole-refractory esophageal candidiasis and should be studied further to determine its clinical relevance in patients with HIV infection. PMID:9055995

  12. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    PubMed Central

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  13. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. PMID:27261732

  14. Evaluation of caries-associated virulence of biofilms from Candida albicans isolated from saliva of pediatric patients with sickle-cell anemia.

    PubMed

    Brighenti, Fernanda Lourenção; Medeiros, Amanda Coelho; Matos, Bruno Mello; Ribeiro, Zulene Eveline Abreu; Koga-Ito, Cristiane Yumi

    2014-01-01

    A previous study demonstrated that the amount of Candida spp. in saliva is higher in children with sickle-cell disease. The results from a recent study demonstrate its participation in the etiology of dental caries. Objective This study assessed caries-associated virulence (production of acid, extracellular polysaccharides, proteins and metabolic activity) of biofilms from Candida albicans isolated from saliva of patients with sickle-cell anemia in comparison to isolates obtained from matched healthy children. Material and Methods The isolates were previously obtained from 25 children (4-6 years) and their matched controls (healthy children). One isolate of C. albicans per children was used, totaling 25 isolates per group. The C. albicans biofilms were grown for five days and analyzed regarding the production of lactic acid, extracellular polysaccharides, proteins and metabolic activity. The production of lactic acid was determined by the enzymatic method. The concentration of extracellular polysaccharides was determined by the phenol-sulphuric acid method, and the concentration of the protein was analyzed using the QuantiPro BCA kit. The XTT reduction was used to verify the metabolic activity. The data were analyzed with GraphPad Prism at 5%. Results The Mean±standard deviation for acid production, extracellular polysaccharides, proteins and metabolic activity of isolates from sickle-cell group was, respectively: 7.1±5.0 mmol/L; 15.6±2.5 μg glucose/mg biofilm; 7,503±3,097 μg/mL; A490 3.5±0.7. For isolates from control group the values obtained were: 3.5±3.3 mmol/L; 12.8±3.4 μg glucose/mg biofilm; 4,995±682 μg/mL; A490 3.4±0.5. The C. albicans isolates from patients with sickle-cell anemia produced a significantly greater quantity of acids (p=0.025), polysaccharides (p=0.025) and proteins (p=0.047) compared with the isolates from control group. However, there was no difference in metabolic activity (XTT) between groups (p=0.750). Conclusion The C

  15. Evaluation of caries-associated virulence of biofilms from Candida albicans isolated from saliva of pediatric patients with sickle-cell anemia

    PubMed Central

    BRIGHENTI, Fernanda Lourenção; MEDEIROS, Amanda Coelho; MATOS, Bruno Mello; RIBEIRO, Zulene Eveline Abreu; KOGA-ITO, Cristiane Yumi

    2014-01-01

    A previous study demonstrated that the amount of Candida spp. in saliva is higher in children with sickle-cell disease. The results from a recent study demonstrate its participation in the etiology of dental caries. Objective This study assessed caries-associated virulence (production of acid, extracellular polysaccharides, proteins and metabolic activity) of biofilms from Candida albicans isolated from saliva of patients with sickle-cell anemia in comparison to isolates obtained from matched healthy children. Material and Methods The isolates were previously obtained from 25 children (4-6 years) and their matched controls (healthy children). One isolate of C. albicans per children was used, totaling 25 isolates per group. The C. albicans biofilms were grown for five days and analyzed regarding the production of lactic acid, extracellular polysaccharides, proteins and metabolic activity. The production of lactic acid was determined by the enzymatic method. The concentration of extracellular polysaccharides was determined by the phenol-sulphuric acid method, and the concentration of the protein was analyzed using the QuantiPro BCA kit. The XTT reduction was used to verify the metabolic activity. The data were analyzed with GraphPad Prism at 5%. Results The Mean±standard deviation for acid production, extracellular polysaccharides, proteins and metabolic activity of isolates from sickle-cell group was, respectively: 7.1±5.0 mmol/L; 15.6±2.5 μg glucose/mg biofilm; 7,503±3,097 μg/mL; A490 3.5±0.7. For isolates from control group the values obtained were: 3.5±3.3 mmol/L; 12.8±3.4 μg glucose/mg biofilm; 4,995±682 μg/mL; A490 3.4±0.5. The C. albicans isolates from patients with sickle-cell anemia produced a significantly greater quantity of acids (p=0.025), polysaccharides (p=0.025) and proteins (p=0.047) compared with the isolates from control group. However, there was no difference in metabolic activity (XTT) between groups (p=0.750). Conclusion The C

  16. Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

    PubMed

    Rosana, Yeva; Yasmon, Andi; Lestari, Delly Chipta

    2015-09-01

    Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of ERG11, CDR1, CDR2 and MDR1 gene overexpression and mutations in the ERG11 gene as a genetic mechanism of fluconazole resistance in Candida albicans isolated from HIV patients in Indonesia. Overexpression of ERG11, CDR1, CDR2 and MDR1 was analysed by real-time reverse transcription PCR, while ERG11 gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of C. albicans isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of ERG11 was found in C. albicans resistant to single fluconazole, while the highest gene overexpression of CDR2 was detected in all isolates of C. albicans resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of CDR2 and ERG11 and mutation in the ERG11 gene was found to be a genetic mechanism of fluconazole resistance in C. albicans isolated from HIV patients in Indonesia. PMID:26297039

  17. Microbicidal activity of neutrophils is inhibited by isolates from recurrent vaginal candidiasis (RVVC) caused by Candida albicans through fungal thioredoxin reductase.

    PubMed

    Ratti, Bianca Altrão; Godoy, Janine Silva Ribeiro; de Souza Bonfim Mendonça, Patrícia; Bidóia, Danielle Lazarin; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Lopes Consolaro, Marcia Edilaine; Estivalet Svidzinski, Terezinha Inez; de Oliveira Silva, Sueli

    2015-01-01

    Vulvovaginal candidiasis (VVC) is characterized by an infection of the vulva and vagina, mainly caused by Candida albicans, a commensal microorganism that inhabits the vaginal, digestive, and respiratory mucosae. Vulvovaginal candidiasis affects approximately 75% of women, and 5% develop the recurrent form (RVVC). The aim of the present study was to evaluate whether neutrophils microbicidal response is triggered when activated with RVVC isolates caused by C. albicans. Our results showed that RVVC isolates induced neutrophil migration but significantly decrease the microbicidal activity of neutrophils, compared with VVC and ASS isolates. The microbicidal activity of neutrophils is highly dependent on the production of reactive oxygen species/reactive nitrogen species (ROS/RNS). However, this isolate induced detoxification of ROS/RNS produced by neutrophils, reflected by the high level of thiol groups and by the oxygen consumption. Therefore, RVVC isolates induced biochemical changes in the inflammatory response triggered by neutrophils, and these effects were mainly related to the detoxification of ROS/RNS through the thioredoxin reductase (TR), a key antioxidant enzyme in fungi. This might be one of the resistance mechanisms triggered by RVVC caused by C. albicans. PMID:25497972

  18. Sequence Variations and Protein Expression Levels of the Two Immune Evasion Proteins Gpm1 and Pra1 Influence Virulence of Clinical Candida albicans Isolates

    PubMed Central

    Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F.

    2015-01-01

    Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence. PMID:25692293

  19. Development of DNA probes for Candida albicans

    SciTech Connect

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  20. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    PubMed Central

    2011-01-01

    Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs. PMID

  1. Endothelial Cell Stimulation by Candida albicans

    PubMed Central

    Phan, Quynh T.; Filler, Scott G.

    2013-01-01

    The opportunistic fungal pathogen, Candida albicans, enters the bloodstream and causes hematogenously disseminated infection in hospitalized patients. During the initiation of a hematogenously disseminated infection, endothelial cells are one of the first host cells to come in contact with C. albicans. Endothelial cells can significantly influence the local host response to C. albicans by expressing leukocyte adhesion molecules and pro-inflammatory cytokines. Thus, it is of interest to investigate the response of endothelial cells to C. albicans in vitro. We describe the use of real-time PCR and enzyme immunoassays to measure the effects of C. albicans on the endothelial cell production of E-selectin and tumor necrosis factor α in vitro. PMID:19089392

  2. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    SciTech Connect

    Gil, C.; Pomes, R.; Nombela, C. )

    1990-05-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.

  3. Isolation of the MIG1 Gene from Candida albicans and Effects of Its Disruption on Catabolite Repression

    PubMed Central

    Zaragoza, Oscar; Rodríguez, Cristina; Gancedo, Carlos

    2000-01-01

    We have cloned a Candida albicans gene (CaMIG1) that encodes a protein homologous to the DNA-binding protein Mig1 from Saccharomyces cerevisiae (ScMig1). The C. albicans Mig1 protein (CaMig1) differs from ScMig1, in that, among other things, it lacks a putative phosphorylation site for Snf1 and presents several long stretches rich in glutamine or in asparagine, serine, and threonine and has the effector domain located at some distance (50 amino acids) from the carboxy terminus. Expression of CaMIG1 was low and was similar in glucose-, sucrose-, or ethanol-containing media. Disruption of the two CaMIG1 genomic copies had no effect in filamentation or infectivity. Levels of a glucose-repressible α-glucosidase, implicated in both sucrose and maltose utilization, were similar in wild-type or mig1/mig1 cells. Disruption of CaMIG1 had also no effect on the expression of the glucose-repressed gene CaGAL1. CaMIG1 was functional in S. cerevisiae, as judged by its ability to suppress the phenotypes produced by mig1 or tps1 mutations. In addition, CaMig1 formed specific complexes with the URS1 region of the S. cerevisiae FBP1 gene. The existence of a possible functional analogue of CaMIG1 in C. albicans was suggested by the results of band shift experiments. PMID:10629176

  4. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression.

    PubMed

    Zaragoza, O; Rodríguez, C; Gancedo, C

    2000-01-01

    We have cloned a Candida albicans gene (CaMIG1) that encodes a protein homologous to the DNA-binding protein Mig1 from Saccharomyces cerevisiae (ScMig1). The C. albicans Mig1 protein (CaMig1) differs from ScMig1, in that, among other things, it lacks a putative phosphorylation site for Snf1 and presents several long stretches rich in glutamine or in asparagine, serine, and threonine and has the effector domain located at some distance (50 amino acids) from the carboxy terminus. Expression of CaMIG1 was low and was similar in glucose-, sucrose-, or ethanol-containing media. Disruption of the two CaMIG1 genomic copies had no effect in filamentation or infectivity. Levels of a glucose-repressible alpha-glucosidase, implicated in both sucrose and maltose utilization, were similar in wild-type or mig1/mig1 cells. Disruption of CaMIG1 had also no effect on the expression of the glucose-repressed gene CaGAL1. CaMIG1 was functional in S. cerevisiae, as judged by its ability to suppress the phenotypes produced by mig1 or tps1 mutations. In addition, CaMig1 formed specific complexes with the URS1 region of the S. cerevisiae FBP1 gene. The existence of a possible functional analogue of CaMIG1 in C. albicans was suggested by the results of band shift experiments. PMID:10629176

  5. Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans.

    PubMed

    Endo, Eliana Harue; Cortez, Diógenes Aparício Garcia; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; Dias Filho, Benedito Prado

    2010-09-01

    Activity-guided repeated fractionation of crude hydro alcoholic extract prepared from the fruit peel of Punica granatum on a silica-gel column yielded a compound that exhibited strong antifungal activity against Candida spp. Based on spectral analyses, the compound was identified as punicalagin. Punicalagin showed strong activity against Candida albicans and Candida parapsilosis, with MICs of 3.9 and 1.9 microg/ml, respectively. The combination of punicalagin and fluconazole showed a synergistic interaction. MIC for fluconazole decreased twofold when combined with the extract. The FIC index was 0.25. The synergism observed in disk-diffusion and checkerboard assays was confirmed in time-kill curves. The effect of punicalagin on the morphology and ultrastructure in treated yeast cells was examined by scanning and transmission electron microscopy. An irregular budding pattern and pseudohyphae were seen in treated yeasts. By transmission electron microscopy, treated cells showed a thickened cell wall, changes in the space between cell wall and the plasma membrane, vacuoles, and a reduction in cytoplasmic content. Since the punicalagin concentration effective in vitro is achievable in vivo, the combination of this agent with fluconazole represents an attractive prospect for the development of new management strategies for candidiasis, and should be investigated further in in vivo models. PMID:20541606

  6. An A643V amino acid substitution in Upc2p contributes to azole resistance in well-characterized clinical isolates of Candida albicans.

    PubMed

    Hoot, Samantha J; Smith, Adam R; Brown, Ryan P; White, Theodore C

    2011-02-01

    The Candida albicans Upc2p transcription factor regulates ERG11, encoding the target of azole drugs. Gain-of-function mutations that contribute to resistance were recently identified in a series of sequential clinical isolates (N. Dunkel, T. T. Liu, K. S. Barker, R. Homayouni, J. Morschhauser, and P. D. Rogers, Eukaryot. Cell 7:1180-1190, 2008). In the present study, UPC2 was sequenced from a matched set of 17 isolates. An A643V substitution was present in all of the isolates in the series that overexpressed ERG11. Azole susceptibility, ergosterol levels, and expression of ERG genes were elevated in the A643V clinical isolates and in reconstructed strains. PMID:21078937

  7. Comparison of Antimicrobial Activity of Chlorhexidine, Coconut Oil, Probiotics, and Ketoconazole on Candida albicans Isolated in Children with Early Childhood Caries: An In Vitro Study

    PubMed Central

    Ahmed Bijapur, Gufran; Kottayi, Soni; Jose, Deepak

    2016-01-01

    Background. Early childhood caries (ECC) is associated with early colonisation and high levels of cariogenic microorganisms. With C. albicans being one of those, there is a need to determine the effectiveness of various chemotherapeutic agents against it. The study is aimed at isolating Candida species in children with ECC and at studying the antifungal effect of coconut oil, probiotics, Lactobacillus, and 0.2% chlorhexidine on C. albicans in comparison with ketoconazole. Materials and Methods. Samples were collected using sterile cotton swabs, swabbed on the tooth surfaces from children with ECC of 3 to 6 yrs and streaked on Sabouraud dextrose agar (HI Media) plates and incubated in a 5% CO2 enriched atmosphere at 37°C for 24 hours. Candida was isolated and its susceptibility to probiotics, chlorhexidine, ketoconazole, and coconut oil was determined using Disc Diffusion method. Results. The mean zone of inhibition for chlorhexidine was 21.8 mm, whereas for coconut oil it was 16.8 mm, for probiotics it was 13.5 mm, and for ketoconazole it was 22.3 mm. The difference between the groups was not statistically significant (Chi-square value 7.42, P value 0.06). Conclusion. Chlorhexidine and coconut oil have shown significant antifungal activity which is comparable with ketoconazole. PMID:27051559

  8. Comparison of Antimicrobial Activity of Chlorhexidine, Coconut Oil, Probiotics, and Ketoconazole on Candida albicans Isolated in Children with Early Childhood Caries: An In Vitro Study.

    PubMed

    Shino, Beena; Peedikayil, Faizal C; Jaiprakash, Shyamala R; Ahmed Bijapur, Gufran; Kottayi, Soni; Jose, Deepak

    2016-01-01

    Background. Early childhood caries (ECC) is associated with early colonisation and high levels of cariogenic microorganisms. With C. albicans being one of those, there is a need to determine the effectiveness of various chemotherapeutic agents against it. The study is aimed at isolating Candida species in children with ECC and at studying the antifungal effect of coconut oil, probiotics, Lactobacillus, and 0.2% chlorhexidine on C. albicans in comparison with ketoconazole. Materials and Methods. Samples were collected using sterile cotton swabs, swabbed on the tooth surfaces from children with ECC of 3 to 6 yrs and streaked on Sabouraud dextrose agar (HI Media) plates and incubated in a 5% CO2 enriched atmosphere at 37°C for 24 hours. Candida was isolated and its susceptibility to probiotics, chlorhexidine, ketoconazole, and coconut oil was determined using Disc Diffusion method. Results. The mean zone of inhibition for chlorhexidine was 21.8 mm, whereas for coconut oil it was 16.8 mm, for probiotics it was 13.5 mm, and for ketoconazole it was 22.3 mm. The difference between the groups was not statistically significant (Chi-square value 7.42, P value 0.06). Conclusion. Chlorhexidine and coconut oil have shown significant antifungal activity which is comparable with ketoconazole. PMID:27051559

  9. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties. PMID:21741878

  10. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  11. Cloning, purification, and properties of Candida albicans thymidylate synthase.

    PubMed Central

    Singer, S C; Richards, C A; Ferone, R; Benedict, D; Ray, P

    1989-01-01

    The thymidylate synthase (TS) gene was isolated from a genomic Candida albicans library by functional complementation of a Saccharomyces cerevisiae strain deficient in TS. The gene was localized on a 4-kilobase HindIII DNA fragment and was shown to be expressed in a Thy- strain of Escherichia coli. The nucleotide sequence of the TS gene predicted a protein of 315 amino acids with a molecular weight of 36,027. The gene was cloned into a T7 expression vector in E. coli, allowing purification of large amounts of C. albicans TS. It was also purified from a wild-type C. albicans strain. Comparison of several enzyme properties including analysis of amino-terminal amino acid sequences showed the native and cloned C. albicans TS to be the same. PMID:2646281

  12. Mucins Suppress Virulence Traits of Candida albicans

    PubMed Central

    Kavanaugh, Nicole L.; Zhang, Angela Q.; Nobile, Clarissa J.; Johnson, Alexander D.

    2014-01-01

    ABSTRACT Candida albicans is the most prevalent fungal pathogen of humans, causing a variety of diseases ranging from superficial mucosal infections to deep-seated systemic invasions. Mucus, the gel that coats all wet epithelial surfaces, accommodates C. albicans as part of the normal microbiota, where C. albicans resides asymptomatically in healthy humans. Through a series of in vitro experiments combined with gene expression analysis, we show that mucin biopolymers, the main gel-forming constituents of mucus, induce a new oval-shaped morphology in C. albicans in which a range of genes related to adhesion, filamentation, and biofilm formation are downregulated. We also show that corresponding traits are suppressed, rendering C. albicans impaired in forming biofilms on a range of different synthetic surfaces and human epithelial cells. Our data suggest that mucins can manipulate C. albicans physiology, and we hypothesize that they are key environmental signals for retaining C. albicans in the host-compatible, commensal state. PMID:25389175

  13. Molecular Epidemiology of Candida albicans and Its Closely Related Yeasts Candida dubliniensis and Candida africana▿

    PubMed Central

    Romeo, Orazio; Criseo, Giuseppe

    2009-01-01

    We performed a molecular study to determine the occurrence of Candida albicans, Candida africana, and Candida dubliniensis in different clinical samples. The study provides new insights into the epidemiology of candidiasis in hospitalized patients in three hospitals in southern Italy. It also reports the first detailed epidemiological data concerning the occurrence of C. africana in clinical samples. PMID:18987171

  14. Molecular epidemiology of Candida albicans and its closely related yeasts Candida dubliniensis and Candida africana.

    PubMed

    Romeo, Orazio; Criseo, Giuseppe

    2009-01-01

    We performed a molecular study to determine the occurrence of Candida albicans, Candida africana, and Candida dubliniensis in different clinical samples. The study provides new insights into the epidemiology of candidiasis in hospitalized patients in three hospitals in southern Italy. It also reports the first detailed epidemiological data concerning the occurrence of C. africana in clinical samples. PMID:18987171

  15. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade.

    PubMed

    Pujol, Claude; Pfaller, Michael; Soll, David R

    2002-08-01

    It was previously demonstrated by a cluster analysis that 26 unrelated U.S. isolates of Candida albicans separated into three distinct groups (groups I, II, and III) while South African isolates separated into four distinct groups (groups I, II, III, and SA). To verify the absence or underrepresentation of SA isolates in North America, and to identify which groups are represented in Europe and South America, collections of bloodstream isolates from each geographical locale were analyzed by cluster analyses based on genetic fingerprinting with the Ca3 probe. The results verify that North America is almost devoid of SA isolates (2%). However, the results reveal a new clade, designated group E, relatively specific to Europe. While 26% of a European collection of 46 isolates was composed of group E isolates, only 2% of the 164 North American isolates, 5% of 22 South American isolates, and 1% of 361 South African isolates were composed of group E isolates. The North American collection proved to be the least-diverse collection in regard to group representation. In a comparison of collections from the Northeast, Midwest, and Southwest regions of the United States, Canada, and South America, it was demonstrated that both the U.S. Southwest and the South American collections were devoid of group II isolates. Together these results identify for the first time a European-specific clade and demonstrate clear distinctions in the representations of the five demonstrated clades (groups I, II, III, SA, and E) in different geographical locales. PMID:12149321

  16. Typing Candida albicans oral isolates from healthy brazilian schoolchildren using multilocus enzyme electrophoresis reveals two highly polymorphic taxa

    PubMed Central

    Boriollo, Marcelo Fabiano Gomes; Spolidorio, Denise Madalena Palomari; Barros, Letizia Monteiro; Bassi, Rodrigo Carlos; Garcia, José Antonio Dias; Costa, Ana Maria Duarte Dias; Rosa, Edvaldo Antonio Ribeiro; Höfling, José Francisco

    2011-01-01

    The genetic diversity of C. albicans oral isolates from 75 healthy schoolchildren from eight schools located in different geographic areas of Piracicaba city, São Paulo state, Brazil, was established using isoenzymes marker (Multilocus Enzyme Electrophoresis – MLEE) and cluster analysis. Patterns of monoclonal and polyclonal oral colonization by C. albicans within and between groups of schoolchildren were identified. However, significant divergence between the observed and the expected genotypic frequencies (Hardy-Weinberg equilibrium test) was not detected in the geographically adjacent groups, suggesting the hypothesis that populations of healthy schoolchildren do not correspond to the selection factor (differential survival) of strains. Two highly polymorphic and distantly genetically related taxa (A and B) were identified within the total population of yeasts, each contained subgroups (A1, A2, A3, A4, B1 and B2) and clusters of moderately related strains (from I to X), suggesting the existence of strains restricted or not to certain groups of geographically limited, healthy students. However, the coexistence of identical strains in healthy schoolchildren from the same school (geographically related) reinforces the hypothesis of oral transmission, where the sources of propagation could be explored. Furthermore, this could also be used in current and retrospective analyses of C. albicans isolated from immunocompetent and immunocompromised people, in order to detect commensal or potentially pathogenic yeast groups, predominantly in candidiasis, and in the development of strategies to prevent transmission or human propagation. PMID:24031720

  17. Molecular and Phenotypic Characterization of Genotypic Candida albicans Subgroups and Comparison with Candida dubliniensis and Candida stellatoidea

    PubMed Central

    McCullough, Michael J.; Clemons, Karl V.; Stevens, David A.

    1999-01-01

    There have been increased reports of the isolation of unusual genotypic groups of Candida albicans (groups C and D) based on a well-defined genotypic method; this method uses cellular DNA digested with the EcoRI enzyme and the restriction fragment length polymorphisms (RFLPs) generated by agarose gel electrophoresis. The aim of the present study was to use additional molecular tools to characterize these unusual strains and to compare them with authentic strains of C. dubliniensis, a recently delineated species, and type I C. stellatoidea. The RFLPs of PCR products generated from the intergenic transcribed spacer (ITS) region did not differentiate among C. albicans genotypes A, B, and C and type I C. stellatoidea. However, this method did differentiate the C. albicans genotype D strains, which were identical to C. dubliniensis. The RFLPs generated by HaeIII digestion of the PCR products of the V3 region of the 25S rRNA gene (rDNA) could differentiate the same groups as RFLP analysis of the PCR amplicon of the ITS region. C. albicans genotype B isolates have been shown to have a transposable intron in the 25S rDNA, whereas genotype A isolates do not; C. dubliniensis strains also have an intron that is larger than that in genotype B C. albicans strains but that is in the same location. PCR designed to span this region resulted in a single product for C. albicans genotype A (450 bp), B (840 bp), type 1 C. stellatoidea (840 bp), and C. dubliniensis (1,080 bp), whereas the C. albicans genotype C isolates had two major products (450 and 840 bp). All C. albicans genotype D isolates gave a PCR product identical to that given by C. dubliniensis. These results indicate that those strains previously designated C. albicans genotype D are in fact C. dubliniensis, that no differences were found between type 1 C. stellatoidea and C. albicans genotype B strains, and that the C. albicans genotype C strains appear to have the transposable intron incompletely inserted throughout the

  18. In vitro activity of eugenol against Candida albicans biofilms.

    PubMed

    He, Miao; Du, Minquan; Fan, Mingwen; Bian, Zhuan

    2007-03-01

    Most manifestations of candidiasis are associated with biofilm formation occurring on the surfaces of host tissues and medical devices. Candida albicans is the most frequently isolated causative pathogen of candidiasis, and the biofilms display significantly increased levels of resistance to the conventional antifungal agents. Eugenol, the major phenolic component of clove essential oil, possesses potent antifungal activity. The aim of this study was to investigate the effects of eugenol on preformed biofilms, adherent cells, subsequent biofilm formation and cell morphogenesis of C. albicans. Eugenol displayed in vitro activity against C. albicans cells within biofilms, when MIC(50) for sessile cells was 500 mg/L. C. albicans adherent cell populations (after 0, 1, 2 and 4 h of adherence) were treated with various concentrations of eugenol (0, 20, 200 and 2,000 mg/L). The extent of subsequent biofilm formation were then assessed with the tetrazolium salt reduction assay. Effect of eugenol on morphogenesis of C. albicans cells was observed by scanning electron microscopy (SEM). The results indicated that the effect of eugenol on adherent cells and subsequent biofilm formation was dependent on the initial adherence time and the concentration of this compound, and that eugenol can inhibit filamentous growth of C. albicans cells. In addition, using human erythrocytes, eugenol showed low hemolytic activity. These results indicated that eugenol displayed potent activity against C. albicans biofilms in vitro with low cytotoxicity and therefore has potential therapeutic implication for biofilm-associated candidal infections. PMID:17356790

  19. Candida albicans Biofilms and Human Disease

    PubMed Central

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  20. Evaluation of a rapid immunochromatographic assay for identification of Candida albicans and Candida dubliniensis.

    PubMed

    Marot-Leblond, Agnes; Grimaud, Linda; David, Sandrine; Sullivan, Derek J; Coleman, David C; Ponton, Jose; Robert, Raymond

    2004-11-01

    Candida dubliniensis was first established as a novel yeast species in 1995. It is particularly associated with recurrent episodes of oral candidosis in human immunodeficiency virus (HIV)-infected patients, but it has also been detected at other anatomical sites and at a low incidence level in non-HIV-infected patients. It shares so many phenotypic characteristics with C. albicans that it is easily misidentified as such. No rapid, simple, and commercial test that allows differentiation between C. dubliniensis and C. albicans has been developed, until now. Accurate species identification requires the use of genotype-based techniques that are not routinely available in most clinical microbiology diagnostic laboratories. The present study was designed to evaluate the efficiency of a new test (the immunochromatographic membrane [ICM] albi-dubli test; SR2B, Avrille, France) to differentiate between C. albicans and C. dubliniensis. The organisms evaluated were strains whose identities had previously been confirmed by PCR tests and freshly isolated clinical strains and included 58 C. albicans isolates, 60 C. dubliniensis isolates, and 82 isolates belonging to other species of yeast. The ICM albi-dubli test is based on the principle of immunochromatographic analysis and involves the use of two distinct monoclonal antibodies that recognize two unrelated epitopes expressed by both species or specific to only one species. The assay requires no complex instrumentation for analysis and can be recommended for routine use in clinical microbiology laboratories. Results are obtained within 2 h and 30 min and are easy to interpret. This evaluation demonstrated the good performance of this immunochromatographic test for C. albicans and C. dubliniensis isolated on Sabouraud dextrose agar, CHOROMagar Candida, and CandidaSelect, with sensitivities and specificities ranging from 93.1 to 100%. These parameters decreased, however, to 91.4% when the test was performed with yeast isolated

  1. Evaluation of a Rapid Immunochromatographic Assay for Identification of Candida albicans and Candida dubliniensis

    PubMed Central

    Marot-Leblond, Agnes; Grimaud, Linda; David, Sandrine; Sullivan, Derek J.; Coleman, David C.; Ponton, Jose; Robert, Raymond

    2004-01-01

    Candida dubliniensis was first established as a novel yeast species in 1995. It is particularly associated with recurrent episodes of oral candidosis in human immunodeficiency virus (HIV)-infected patients, but it has also been detected at other anatomical sites and at a low incidence level in non-HIV-infected patients. It shares so many phenotypic characteristics with C. albicans that it is easily misidentified as such. No rapid, simple, and commercial test that allows differentiation between C. dubliniensis and C. albicans has been developed, until now. Accurate species identification requires the use of genotype-based techniques that are not routinely available in most clinical microbiology diagnostic laboratories. The present study was designed to evaluate the efficiency of a new test (the immunochromatographic membrane [ICM] albi-dubli test; SR2B, Avrillé, France) to differentiate between C. albicans and C. dubliniensis. The organisms evaluated were strains whose identities had previously been confirmed by PCR tests and freshly isolated clinical strains and included 58 C. albicans isolates, 60 C. dubliniensis isolates, and 82 isolates belonging to other species of yeast. The ICM albi-dubli test is based on the principle of immunochromatographic analysis and involves the use of two distinct monoclonal antibodies that recognize two unrelated epitopes expressed by both species or specific to only one species. The assay requires no complex instrumentation for analysis and can be recommended for routine use in clinical microbiology laboratories. Results are obtained within 2 h and 30 min and are easy to interpret. This evaluation demonstrated the good performance of this immunochromatographic test for C. albicans and C. dubliniensis isolated on Sabouraud dextrose agar, CHOROMagar Candida, and CandidaSelect, with sensitivities and specificities ranging from 93.1 to 100%. These parameters decreased, however, to 91.4% when the test was performed with yeast isolated

  2. A Candida albicans PeptideAtlas

    PubMed Central

    Vialas, Vital; Sun, Zhi; Penha, Carla Verónica Loureiro y; Carrascal, Montserrat; Abian, Joaquin; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2013-01-01

    Candida albicans public proteomic data sets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22000 distinct peptides at a 0.24 % False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C.albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via selected reaction monitoring (SRM) or SWATH-MS. PMID:23811049

  3. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures

    PubMed Central

    AL-Waili, Noori; Al-Ghamdi, Ahmad; Ansari, Mohammad Javed; Al-Attal, Y.; Salom, Khelod

    2012-01-01

    Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested. Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation. Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE. Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or

  4. Adherence and receptor relationships of Candida albicans.

    PubMed Central

    Calderone, R A; Braun, P C

    1991-01-01

    The cell surface of Candida albicans is composed of a variety of polysaccharides such as glucan, chitin, and mannan. The first two components primarily provide structure, while the mannan, often covalently linked to protein, constitutes the major antigen of the organism. Mannoproteins also have enzymatic activity (acid protease) and ligand-receptor functions. The complement receptors of C. albicans appear to be mannoproteins that are required for the adherence of the organism to endothelial cells. This is certainly true of the CR3-like protein of C. albicans. Proof that the CR3 is the Candida receptor for endothelial cells is derived from two observations. First, mutants lacking CR3 activity are less adherent in vitro and, in fact, less virulent. Second, the ligand recognized by the CR3 receptor (C3bi) as well as anti-CR3 antibodies blocks adherence of the organism to endothelial cells. The CR2 of C. albicans appears to promote the adherence of the organism to plastic substrates. Unlike the CR2 of mammalian cells, the Candida CR2 recognizes ligands containing the RGD sequence of amino acids in addition to the C3d ligand, which does not contain the RGD sequence. There is uncertainty as to whether the Candida CR2 and CR3 are, in fact, different proteins. A mannoprotein has also been described as the adhesin for epithelial cells. In this case, the receptor has a lectinlike activity and recognizes fucose- or glucosamine-containing glycoproteins of epithelial cells, depending on the strain of C. albicans. The oligosaccharide component of the receptor is probably not involved in ligand recognition and may serve to stabilize the receptor. However, the oligosaccharide factor 6 epitope of mannan may also provide adhesin activity in the recognition of epithelial cells. Mannoproteins can be extracted from cells by a number of reagents. Zymolyase, for instance, tends to remove structural mannoproteins, which contain relatively little protein and are linked to glucan. Reagents

  5. Growth inhibition and ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms

    PubMed Central

    2009-01-01

    Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole

  6. Activity of 2,4-Di-tert-butylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi.

    PubMed

    Belghit, S; Driche, E H; Bijani, C; Zitouni, A; Sabaou, N; Badji, B; Mathieu, F

    2016-06-01

    In a search for new antifungal antibiotics active against Candida albicans and others pathogenic fungi, a strain of actinobacteria, designated G61, was isolated from a Saharan soil and tested for its activity against these microorganisms. The analysis of its 16S rDNA sequence showed a similarity level of 100% with Streptomyces mutabilis NBRC 12800(T). The highest anticandidal activities produced by the strain G61 were obtained on Bennett medium in the fourth day of incubation. The active product, extracted by n-butanol, contained one bioactive spot detected on thin layer chromatography plates. It was purified by HPLC and its chemical structure was determined by spectroscopic analyses as 2,4-Di-tert-butylphenol. The minimum inhibitory concentrations (MIC) of this product against several strains of pathogenic microorganisms are interesting. PMID:27107984

  7. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans.

    PubMed

    Flowers, Stephanie A; Barker, Katherine S; Berkow, Elizabeth L; Toner, Geoffrey; Chadwick, Sean G; Gygax, Scott E; Morschhäuser, Joachim; Rogers, P David

    2012-10-01

    In Candida albicans, Upc2 is a zinc-cluster transcription factor that targets genes, including those of the ergosterol biosynthesis pathway. To date, three documented UPC2 gain-of-function (GOF) mutations have been recovered from fluconazole-resistant clinical isolates that contribute to an increase in ERG11 expression and decreased fluconazole susceptibility. In a group of 63 isolates with reduced susceptibility to fluconazole, we found that 47 overexpressed ERG11 by at least 2-fold over the average expression levels in 3 unrelated fluconazole-susceptible strains. Of those 47 isolates, 29 contained a mutation in UPC2, whereas the remaining 18 isolates did not. Among the isolates containing mutations in UPC2, we recovered eight distinct mutations resulting in putative single amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V, and W478C. Seven of these resulted in increased ERG11 expression, increased cellular ergosterol, and decreased susceptibility to fluconazole compared to the results for the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S, and Y642F). Genes commonly upregulated by all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by the MDR1 gene, and the uncharacterized ATP binding cassette transporter CDR11. These findings demonstrate that gain-of-function mutations in UPC2 are more prevalent among clinical isolates than previously thought and make a significant contribution to azole antifungal resistance, but the findings do not account for ERG11 overexpression in all such isolates of C. albicans. PMID:22923048

  8. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent.

    PubMed

    Arzmi, Mohd Hafiz; Dashper, Stuart; Catmull, Deanne; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2015-08-01

    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent. PMID:26054855

  9. Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans.

    PubMed

    Khan, Amber; Ahmad, Aijaz; Xess, Immaculata; Khan, Luqman A; Manzoor, Nikhat

    2014-03-15

    Candida albicans is an opportunistic human fungal pathogen which causes disease mainly in immunocompromised patients. Activity of hydrolytic enzymes is essential for virulence of C. albicans and so is the capacity of these cells to undergo transition from yeast to mycelial form of growth. Ocimum sanctum is cultivated worldwide for its essential oil which exhibits medicinal properties. This work evaluates the anti-virulence activity of O. sanctum essential oil (OSEO) on 22 strains of C. albicans (including a standard strain ATCC 90028) isolated from both HIV positive and HIV negative patients. Candida isolates were exposed to sub-MICs of OSEO. In vitro secretion of proteinases and phospholipases was evaluated by plate assay containing BSA and egg yolk respectively. Morphological transition from yeast to filamentous form was monitored microscopically in LSM. For genetic analysis, respective genes associated with morphological transition (HWP1), proteinase (SAP1) and phospholipase (PLB2) were also investigated by Real Time PCR (qRT-PCR). Results were analyzed using Student's t-test. OSEO inhibits morphological transition in C. albicans and had a significant inhibitory effect on extracellular secretion of proteinases and phospholipases. Expression profile of respective selected genes associated with C. albicans virulence by qRT-PCR showed a reduced expression of HWP1, SAP1 and PLB2 genes in cells treated with sub-inhibitory concentrations of OSEO. This work suggests that OSEO inhibits morphological transition in C. albicans and decreases the secretion of hydrolytic enzymes involved in the early stage of infection as well as down regulates the associated genes. Further studies will assess the clinical application of OSEO and its constituents in the treatment of fungal infections. PMID:24252340

  10. Isolation, structure, and biological activity of Phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. Using the Genome-Wide Candida albicans Fitness Test.

    PubMed

    Singh, Sheo B; Ondeyka, John; Harris, Guy; Herath, Kithsiri; Zink, Deborah; Vicente, Francisca; Bills, Gerald; Collado, Javier; Platas, Gonzalo; González del Val, Antonio; Martin, Jesus; Reyes, Fernando; Wang, Hao; Kahn, Jennifer Nielsen; Galuska, Stefan; Giacobbe, Robert; Abruzzo, George; Roemer, Terry; Xu, Deming

    2013-03-22

    Phaeofungin (1), a new cyclic depsipeptide isolated from Phaeosphaeria sp., was discovered by application of reverse genetics technology, using the Candida albicans fitness test (CaFT). Phaeofungin is comprised of seven amino acids and a β,γ-dihydroxy-γ-methylhexadecanoic acid arranged in a 25-membered cyclic depsipeptide. Five of the amino acids were assigned with d-configurations. The structure was elucidated by 2D-NMR and HRMS-MS analysis of the natural product and its hydrolyzed linear peptide. The absolute configuration of the amino acids was determined by Marfey's method by complete and partial hydrolysis of 1. The CaFT profile of the phaeofungin-containing extract overlapped with that of phomafungin (3), another structurally different cyclic lipodepsipeptide isolated from a Phoma sp. using the same approach. Comparative biological characterization further demonstrated that these two fungal lipodepsipeptides are functionally distinct. While phomafungin was potentiated by cyclosporin A (an inhibitor of the calcineurin pathway), phaeofungin was synergized with aureobasidin A (2) (an inhibitor of the sphingolipid biosynthesis) and to some extent caspofungin (an inhibitor of glucan synthase). Furthermore, phaeofungin caused ATP release in wild-type C. albicans strains but phomafungin did not. It showed modest antifungal activity against C. albicans (MIC 16-32 μg/mL) and better activity against Aspergillus fumigatus (MIC 8-16 μg/mL) and Trichophyton mentagrophytes (MIC 4 μg/mL). The linear peptide was inactive, suggesting that the macrocyclic depsipeptide ring is essential for target engagement and antifungal activity. PMID:23259972

  11. [Candida albicans endocarditis after pulmonary artery banding].

    PubMed

    Talvard, M; Paranon, S; Dulac, Y; Mansir, T; Kreitmann, B; Acar, P

    2009-08-01

    Endocarditis is uncommon in infants and is exceptionally related to Candida albicans on pulmonary banding. We report on a case in a 7-month-old infant who had pulmonary artery banding for a ventricular septal defect and who presented with candidal endocarditis. Banding was chosen because of the patient's poor trophic and unstable status, which could be risky for surgery involving extracorporeal circulation. A few weeks after the banding, the patient developed systemic Candida infection, which was treated successfully. At 7 months, cardiac failure appeared without fever or inflammatory signs. Cardiac echography showed that the banding was not protective as well as a hyperechogenic image on the pulmonary bifurcation. The angioscan showed a hypodense thrombus. Emergency surgery was performed consisting of pulmonary artery exploration, thrombectomy, and ventricular septal defect closure. The exploration showed a pulmonary artery perforation caused by the infected pseudoaneurysm and the migration of the banding into the pulmonary artery. The anatomopathologic analysis of the vegetation identified multisensitive Candida albicans. After surgery and prolonged antifungal treatment, progression was satisfactory. PMID:19525096

  12. Candida albicans in oral biofilms could prevent caries.

    PubMed

    Willems, Hubertine Marjoleine; Kos, Kevin; Jabra-Rizk, Mary Ann; Krom, Bastiaan P

    2016-07-01

    Streptococcus mutans is a Gram-positive bacterium involved in development to caries, the most common infectious disease of our time. Streptococcus mutans interacts with other microbes, like the fungus Candida albicans and both are commonly isolated from patients with caries. Since the role of C. albicans in caries remains unknown, our aim was to unravel this using an in vitro dual-species cariogenic oral biofilm model. Biofilms were grown for 24-72 h on glass cover slips or hydroxyapatite (HA) disks to mimic the surface of teeth. Medium pH, lactic acid production capacity and calcium release from HA disks were determined. All 24-h biofilms had external pH values below the critical pH of 5.5 where enamel dissolves. In contrast, 72-h dual-species biofilms had significantly higher pH (above the critical pH) and consequently decreased calcium release compared to single-species S. mutans biofilms. Counter intuitively, lactic acid production and growth of S. mutans were increased in 72-h dual-species biofilms. Candida albicans modulates the pH in dual-species biofilms to values above the critical pH where enamel dissolves. Our results suggest that C. albicans is not by definition a cariogenic microorganism; it could prevent caries by actively increasing pH preventing mineral loss. PMID:27129365

  13. In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fuc alpha 1----2Gal beta-bearing complex carbohydrates.

    PubMed Central

    Brassart, D; Woltz, A; Golliard, M; Neeser, J R

    1991-01-01

    The role of cell surface glycoconjugates as possible adhesion receptors for Candida albicans yeasts on human buccal epithelial cells was investigated by using a quantitative radiometric assay involving 14C-metabolically labeled microorganisms. Various structurally defined soluble glycopeptides and oligosaccharides were tested at a low concentration (1 mg/ml) for their ability to competitively inhibit yeast adhesion to such exfoliated cells. Comparisons were also made with various molecular species previously proposed to act as adhesion molecules. A preparation of glycopeptides derived from pooled human newborn meconiums inhibited the attachment (up to 55%) of all three clinical isolates examined. The mild hydrolysis of fucosyl residues from the above mixture totally abolished its inhibitory potency. By using human milk oligosaccharide probes, the minimal structural requirement for activity was found to be the Fuc alpha 1----2Gal beta determinant (the H sugar sequence found on all blood group substances of the ABO [H] system). By contrast, the fucosylated determinants of the Lewis blood group system were found to be totally inactive. Total adhesion inhibitions were never obtained in the present experiments, suggesting that H disaccharide-bearing cell surface glycoconjugates could act as host receptors for C. albicans on human buccal epithelial cells as a part of a mechanism involving multireceptor specificities. PMID:2019432

  14. Farnesol-induced apoptosis in Candida albicans.

    PubMed

    Shirtliff, Mark E; Krom, Bastiaan P; Meijering, Roelien A M; Peters, Brian M; Zhu, Jingsong; Scheper, Mark A; Harris, Megan L; Jabra-Rizk, Mary Ann

    2009-06-01

    Farnesol, a precursor in the isoprenoid/sterol pathway, was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. Farnesol is involved in the inhibition of germination and biofilm formation by C. albicans and can be cytotoxic at certain concentrations. In addition, we have shown that farnesol can trigger apoptosis in mammalian cells via the classical apoptotic pathways. In order to elucidate the mechanism behind farnesol cytotoxicity in C. albicans, the response to farnesol was investigated, using proteomic analysis. Global protein expression profiles demonstrated significant changes in protein expression resulting from farnesol exposure. Among the downregulated proteins were those involved in metabolism, glycolysis, protein synthesis, and mitochondrial electron transport and the respiratory chain, whereas proteins involved in folding, protection against environmental and oxidative stress, actin cytoskeleton reorganization, and apoptosis were upregulated. Cellular changes that accompany apoptosis (regulated cell death) were further analyzed using fluorescent microscopy and gene expression analysis. The results indicated reactive oxygen species accumulation, mitochondrial degradation, and positive terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) in the farnesol-exposed cells concurrent with increased expression of antioxidant-encoding and drug response genes. More importantly, the results demonstrated farnesol-induced upregulation of the caspase gene MCA1 and the intracellular presence of activated caspases. In conclusion, this study demonstrated that farnesol promotes apoptosis in C. albicans through caspase activation, implying an important physiological role for farnesol in the fungal cell life cycle with important implications for adaptation and survival. PMID:19364863

  15. Effect of Tetrandrine against Candida albicans Biofilms

    PubMed Central

    Zhao, Lan-Xue; Li, De-Dong; Hu, Dan-Dan; Hu, Gan-Hai; Yan, Lan; Wang, Yan; Jiang, Yuan-Ying

    2013-01-01

    Candida albicans is the most common human fungal pathogen and has a high propensity to develop biofilms that are resistant to traditional antifungal agents. In this study, we investigated the effect of tetrandrine (TET) on growth, biofilm formation and yeast-to-hypha transition of C. albicans. We characterized the inhibitory effect of TET on hyphal growth and addressed its possible mechanism of action. Treatment of TET at a low concentration without affecting fungal growth inhibited hyphal growth in both liquid and solid Spider media. Real-time RT-PCR revealed that TET down-regulated the expression of hypha-specific genes ECE1, ALS3 and HWP1, and abrogated the induction of EFG1 and RAS1, regulators of hyphal growth. Addition of cAMP restored the normal phenotype of the SC5314 strain. These results indicate that TET may inhibit hyphal growth through the Ras1p-cAMP-PKA pathway. In vivo, at a range of concentrations from 4 mg/L to 32 mg/L, TET prolonged the survival of C. albicans-infected Caenorhabditis elegans significantly. This study provides useful information for the development of new strategies to reduce the incidence of C. albicans biofilm-associated infections. PMID:24260276

  16. Enhanced production of farnesol by Candida albicans treated with four azoles.

    PubMed

    Hornby, Jacob M; Nickerson, Kenneth W

    2004-06-01

    The dimorphic fungus Candida albicans excretes farnesol, which is produced enzymatically from the sterol biosynthetic intermediate farnesyl pyrophosphate. Inhibition of C. albicans by four azole antifungals, fluconazole, ketoconazole, miconazole, and clotrimazole, caused elevated farnesol production (10- to 45-fold). Furthermore, farnesol production occurs in both laboratory strains and clinical isolates (J. M. Hornby et al., Appl. Environ. Microbiol. 67:2982-2992, 2001) of C. albicans. PMID:15155241

  17. Electron Microscopy of Young Candida albicans Chlamydospores

    PubMed Central

    Miller, Sara E.; Spurlock, Ben O.; Michaels, G. E.

    1974-01-01

    One- to three-day-old cultures of Candida albicans bearing chlamydospores were grown and harvested by a special technique, free of agar, and prepared for ultramicrotomy and electron microscopy. These young chlamydospores exhibited a subcellular structure similar to that of the yeast phase, e.g., cytoplasmic membrane, ribosomes, and mitochondria. Other structural characteristics unique to chlamydospores were a very thick, layered cell wall, the outer layer of which was continuous with the outer layer of the suspensor cell wall and was covered by hair-like projections; membrane bound organelles; and large lipoid inclusions. Only young chlamydospores less than 3 to 4 days old exhibited these ultrastructural characteristics. Images PMID:4368664

  18. Candida albicans keratitis in an immunocompromised patient

    PubMed Central

    Hassan, H Mohammed J; Papanikolaou, Theocharis; Mariatos, Georgios; Hammad, Amany; Hassan, Hala

    2010-01-01

    Purpose When investigating a case of unexplained corneal ulceration, we need to think of fungal infection and any predisposing factors. Methods A case study of a corneal ulceration in a patient who was HIV positive with a devastating visual outcome. Results Therapeutic corneal graft was necessary due to corneal perforation. Immunocompromised state of patient was retrospectively diagnosed. Conclusions Candida albicans keratitis is an opportunistic infection of a compromised cornea, and sometimes unknowingly compromised host, which can be initially misdiagnosed. Despite intensive antifungal therapy, occasionally patients require corneal grafting to improve vision, and before it is possible to establish an accurate diagnosis. PMID:21060674

  19. Melittin induces apoptotic features in Candida albicans

    SciTech Connect

    Park, Cana; Lee, Dong Gun

    2010-03-26

    Melittin is a well-known antimicrobial peptide with membrane-active mechanisms. In this study, it was found that Melittin exerted its antifungal effect via apoptosis. Candida albicans exposed to Melittin showed the increased reactive oxygen species (ROS) production, measured by DHR-123 staining. Fluorescence microscopy staining with FITC-annexin V, TUNEL and DAPI further confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, and DNA and nuclear fragmentation. The current study suggests that Melittin possesses an antifungal effect with another mechanism promoting apoptosis.

  20. Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaoundé (Cameroon) HIV-infected patients.

    PubMed

    Ngouana, Thierry K; Krasteva, Donika; Drakulovski, Pascal; Toghueo, Rufin K; Kouanfack, Charles; Ambe, Akaba; Reynes, Jacques; Delaporte, Eric; Boyom, Fabrice F; Mallié, Michèle; Bertout, Sébastien

    2015-01-01

    Minor species of the Candida albicans complex may cause overestimation of the epidemiology of C. albicans, and misidentifications could mask their implication in human pathology. Authors determined the occurrence of minor species of the C. albicans complex (C. africana, C. dubliniensis and C. stellatoidea) among Yaoundé HIV-infected patients, Cameroon. Stool, vaginal discharge, urine and oropharyngeal samples were analysed by mycological diagnosis. Isolates were identified by conventional methods and mass spectrometry (MS; carried out by the matrix-assisted laser desorption-ionisation time-of-flight MS protocol). Candida albicans isolates were thereafter submitted to the PCR amplification of the Hwp1 gene. The susceptibility of isolates to antifungal drugs was tested using the Clinical and Laboratory Standards Institute M27-A3 protocol. From 115 C. albicans obtained isolates, neither C. dubliniensis nor C. stellatoidea was observed; two strains of C. africana (422PV and 448PV) were identified by PCR electrophoretic profiles at 700 bp. These two C. africana strains were vaginal isolates. The isolate 448PV was resistant to ketoconazole at the minimal inhibitory concentration of 2 μg ml(-1), and showed reduced susceptibility to amphotericin B at 1 μg ml(-1). This first report on C. africana occurrence in Cameroon brings clues for the understanding of the global epidemiology of this yeast as well as that of minor species of the C. albicans complex. PMID:25289589

  1. Polyketide Glycosides from Bionectria ochroleuca Inhibit Candida albicans Biofilm Formation

    PubMed Central

    2015-01-01

    One of the challenges presented by Candida infections is that many of the isolates encountered in the clinic produce biofilms, which can decrease these pathogens’ susceptibilities to standard-of-care antibiotic therapies. Inhibitors of fungal biofilm formation offer a potential solution to counteracting some of the problems associated with Candida infections. A screening campaign utilizing samples from our fungal extract library revealed that a Bionectria ochroleuca isolate cultured on Cheerios breakfast cereal produced metabolites that blocked the in vitro formation of Candida albicans biofilms. A scale-up culture of the fungus was undertaken using mycobags (also known as mushroom bags or spawn bags), which afforded four known [TMC-151s C–F (1–4)] and three new [bionectriols B–D (5–7)] polyketide glycosides. All seven metabolites exhibited potent biofilm inhibition against C. albicans SC5314, as well as exerted synergistic antifungal activities in combination with amphotericin B. In this report, we describe the structure determination of the new metabolites, as well as compare the secondary metabolome profiles of fungi grown in flasks and mycobags. These studies demonstrate that mycobags offer a useful alternative to flask-based cultures for the preparative production of fungal secondary metabolites. PMID:25302529

  2. Antifungal susceptibilities of Candida species isolated from urine culture.

    PubMed

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals. PMID:27452427

  3. Adherence ability of Candida africana: a comparative study with Candida albicans and Candida dubliniensis.

    PubMed

    Romeo, Orazio; De Leo, Filomena; Criseo, Giuseppe

    2011-07-01

    In this study, we compared the adherence ability to human Hela cells and biofilm formation of three closely related Candida yeast. In our experiments, Candida africana showed poor adhesion ability to human Hela cells and the absence of biofilm formation on polyvinyl chloride strips. Conversely, Candida albicans and Candida dubliniensis formed mature biofilms and stable attachment to Hela cells. To our knowledge, this is the first comparative study reporting data on biofilm formation and adherence to human Hela cells by C. africana. PMID:20202113

  4. Performance comparison of phenotypic and molecular methods for detection and differentiation of Candida albicans and Candida dubliniensis

    PubMed Central

    2012-01-01

    Background Candida albicans is the most pathogenic Candida species but shares many phenotypic features with Candida dubliniensis and may, therefore, be misidentified in clinical microbiology laboratories. Candidemia cases due to C. dubliniensis are increasingly being reported in recent years. Accurate identification is warranted since mortality rates are highest for C. albicans infections, however, C. dubliniensis has the propensity to develop resistance against azoles more easily. We developed a duplex PCR assay for rapid detection and differentiation of C. albicans from C. dubliniensis for resource-poor settings equipped with basic PCR technology and compared its performance with three phenotypic methods. Methods Duplex PCR was performed on 122 germ tube positive and 12 germ tube negative isolates of Candida species previously identified by assimilation profiles on Vitek 2 ID-YST system. Typical morphologic characteristics on simplified sunflower seed agar (SSA), and reaction with a commercial (Bichro-Dubli) latex agglutination test were also performed. The assay was further applied on 239 clinical yeast and yeast-like fungi and results were confirmed by DNA sequencing of internal transcribed spacer (ITS) region of rDNA. Results The results of duplex PCR assay for 122 germ tube positive and 12 germ tube negative isolates of Candida species were comparable to their identification by Vitek 2 ID-YST system, colony characteristics on SSA and latex agglutination test. Application of duplex PCR also correctly identified all 148 C. albicans and 50 C. dubliniensis strains among 239 yeast-like fungi. Conclusions The data show that both, duplex PCR and Bichro-Dubli are reliable tests for rapid (within few hours) identification of clinical yeast isolates as C. dubliniensis or C. albicans. However, duplex PCR may be applied directly on clinical yeast isolates for their identification as C. dubliniensis or C. albicans as it does not require prior testing for germ tube

  5. Genetic and phenotypic intra-species variation in Candida albicans

    PubMed Central

    Hirakawa, Matthew P.; Martinez, Diego A.; Sakthikumar, Sharadha; Anderson, Matthew Z.; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M.; Greenberg, Joshua M.; Berman, Judith

    2015-01-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. PMID:25504520

  6. Characterization of two aminotransferases from Candida albicans.

    PubMed

    Rząd, Kamila; Gabriel, Iwona

    2015-01-01

    Aminoadipate aminotransferase (AmAA) is an enzyme of α-aminoadipate pathway (AAP) for L-lysine biosynthesis. AmAA may also participated in biosynthesis or degradation of aromatic amino acids and in D-tryptophan based pigment production. The AAP is unique for fungal microorganisms. Enzymes involved in this pathway have specific structures and properties. These features can be used as potential molecular markers. Enzymes catalyzing reactions of L-lysine biosynthesis in Candida albicans may also become new targets for antifungal chemotherapy. Search of the NCBI database resulted in identification of two putative aminoadipate aminotransferase genes from Candida albicans: ARO8 (ORFs 19.2098 and 19.9645) and YER152C (ORFs 19.1180 and 19.8771). ARO8 from C. albicans exhibits 53% identity to ARO8 from S. cerevisiae, while YER152C exhibits 30% identity to ARO8 and 45% to YER152C from S. cerevisiae. We amplified two genes from the C. albicans genome: ARO8 and YER152C. Both were cloned and expressed as His-tagged fusion proteins in E. coli. The purified Aro8CHp gene product revealed aromatic and α-aminoadipate aminotransferase activity. Basic molecular properties of the purified protein were determined. We obtained catalytic parameters of Aro8CHp with aromatic amino acids and aminoadipate (AA) (Km(L-Phe) 0.05±0.003 mM, Km(L-Tyr) 0.1±0.008 mM, Km(L-AA) 0.02±0.006 mM) and confirmed the enzyme broad substrate spectrum. The assays also demonstrated that this enzyme may use 2-oxoadipate and 2-oxoglutarate (2-OG) as amino acceptors. Aro8-CHp exhibited pH optima range of 8, which is similar to AmAA from S. cerevisiae. Our results also indicate that CaYer152Cp has a possible role only in aromatic amino acids degradation, in contrast to CaAro8CHp. PMID:26619256

  7. Upc2p-associated differential protein expression in Candida albicans.

    PubMed

    Hoehamer, Christopher F; Cummings, Edwin D; Hilliard, George M; Morschhäuser, Joachim; David Rogers, Phillip

    2009-10-01

    The gain-of-function mutation G648D in UPC2 causes ERG11 up-regulation and increased fluconazole resistance in Candida albicans. In this study, we performed 2-DE and PMF to identify proteomic alterations in an ERG11-overexpressing fluconazole-resistant C. albicans clinical isolate compared with its fluconazole-susceptible parent strain. We identified 23 differentially expressed proteins, and among them, seven became differentially expressed in a C. albicans wild-type strain after the introduction of a UPC2 allele carrying this mutation. These Upc2p-regulated proteins may contribute to fluconazole resistance in C. albicans. PMID:19750515

  8. Portrait of Candida albicans Adherence Regulators

    PubMed Central

    Finkel, Jonathan S.; Xu, Wenjie; Huang, David; Hill, Elizabeth M.; Desai, Jigar V.; Woolford, Carol A.; Nett, Jeniel E.; Taff, Heather; Norice, Carmelle T.; Andes, David R.; Lanni, Frederick; Mitchell, Aaron P.

    2012-01-01

    Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans. PMID:22359502

  9. Proinflammatory chemokines during Candida albicans keratitis.

    PubMed

    Yuan, Xiaoyong; Hua, Xia; Wilhelmus, Kirk R

    2010-03-01

    Chemotactic cytokines mediate the recruitment of leukocytes into infected tissues. This study investigated the profile of chemokines during experimental Candida albicans keratitis and determined the effects of chemokine inhibition on leukocyte infiltration and fungal growth during murine keratomycosis. Scarified corneas of BALB/c mice were topically inoculated with C. albicans and monitored daily over one week for fungal keratitis. After a gene microarray for murine chemokines compared infected corneas to controls, real-time reverse transcription polymerase chain reaction (RT-PCR) and immunostaining assessed chemokine expression in infected and mock-inoculated corneas. An anti-chemokine antibody was then administered subconjunctivally and evaluated for effects on clinical severity, corneal inflammation, fungal recovery, and cytokine expression. Of 33 chemokine genes examined by microarray, 6 CC chemokines and 6 CXC chemokines were significantly (P<0.05) upregulated more than two-fold. Chemokine (CC-motif) ligand 3 (CCL3) was upregulated 108-fold (P=0.03) by real-time RT-PCR within one day after fungal inoculation and remained increased 28-fold (P=0.02) at one week, and its in situ expression increased in the epithelium and stroma of infected corneas. Compared to the control antibody-treated group, eyes treated with anti-CCL3 antibody showed reduced clinical severity (P<0.05), less corneal neovascularization (P=0.02), and fewer inflammatory cells infiltrating corneal tissue, but the amount of recoverable fungi was not significantly (P=0.4) affected. Anti-CCL3 treatment significantly (P=0.01) reduced the expression of tumor necrosis factor and interleukin-1beta in infected corneas. These results indicate that chemokines, especially the CC chemokine CCL3, play important roles in the acute inflammatory response to C. albicans corneal infection. PMID:20005222

  10. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  11. Synergistic Activity of Chloroquine with Fluconazole against Fluconazole-Resistant Isolates of Candida Species

    PubMed Central

    Li, Yali; Wan, Zhe; Li, Ruoyu

    2014-01-01

    The in vitro activity of chloroquine and the interactions of chloroquine combined with fluconazole against 37 Candida isolates were tested using the broth microdilution, disk diffusion, and Etest susceptibility tests. Synergistic effect was detected with 6 of 9 fluconazole-resistant Candida albicans isolates, with Candida krusei ATCC 6258, and with all 12 fluconazole-resistant Candida tropicalis isolates. PMID:25512426

  12. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    PubMed Central

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  13. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  14. Distribution of Candida albicans genotypes among family members

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stevens, D. A.; Mishra, S. K.; Feroze, F.; Pierson, D. L.

    1999-01-01

    Thirty-three families (71 subjects) were screened for the presence of Candida albicans in mouthwash or stool specimens; 12 families (28 subjects) were culture-positive for this yeast. An enrichment procedure provided a twofold increase in the recovery of C. albicans from mouthwash specimens. Nine of the twelve culture-positive families had two positive members each, two families had three positive members each, and one family had four positive members. Genetic profiles were obtained by three methods: pulsed-field gel electrophoresis; restriction endonuclease analysis, and random amplification of polymorphic DNA analysis. DNA fingerprinting of C. albicans isolated from one body site three consecutive times revealed that each of the 12 families carried a distinct genotype. No two families shared the same strain, and two or more members of a family commonly shared the same strain. Intrafamily genotypic identity (i.e., each member within the family harbored the same strain) was demonstrated in six families. Genotypes of isolates from husband and wife differed from one another in five families. All three methods were satisfactory in determining genotypes; however, we concluded that restriction endonuclease analysis provided adequate resolving power.

  15. Evaluation of the V404I and V509M amino acid substitutions of ERG11 gene in Candida albicans isolates by pyrosequencing.

    PubMed

    Kim, T-H; Lee, M-K

    2010-05-01

    The molecular mechanisms underlying fluconazole resistance in C. albicans involve mutations and the overexpression of the ERG11 gene and membrane transport proteins. We examined the relationship between the reduced fluconazole susceptibility of C. albicans and mutations of V404I and V509M in the ERG11 gene in 182 C. albicans clinical isolates using the Pyrosequencing method. DNAs from these clinical isolates with different levels of in-vitro fluconazole susceptibility--one resistant, five susceptible dose-dependent (SDD), four trailer, and 172 susceptible--were analyzed. None of the fluconazole-susceptible, SDD, trailer or resistant isolates had mutations of V404I or V509M. Our results showed that no correlation can be found between the V404I or V509M mutation and fluconazole susceptibility in C. albicans. PMID:20526846

  16. Increased phenotypic switching in strains of Candida albicans associated with invasive infections.

    PubMed Central

    Jones, S; White, G; Hunter, P R

    1994-01-01

    This study reports the rates of phenotypic switching in strains of Candida albicans isolated from superficial and invasive infections. Of 19 invasive strains, 68% showed switching activity, often at very high rates, compared with only 28% of 40 strains isolated from superficial sites (P = 0.004). PMID:7852592

  17. Correlation of atherogenesis with an infection of Candida albicans

    PubMed Central

    Nurgeldiyeva, Maya J; Hojakuliyev, Bayram G; Muhammedov, Merdan B

    2014-01-01

    Purpose: To study contents of atherosclerotic plaques for the presence of fungi of the genus Candida; and an analysis of some immunological and biochemical indices in patients with acute coronary syndrome (ACS) that are positive for Candida albicans. Materials and methods: To test for the presence of fungi in an atherosclerotic plaque, we used a method developed by us (patent NO 531, a priority from 6/28/2010). A total of 47 atherosclerotic plaques were obtained during 20 autopsies. In addition, 80 individuals (58 male, 22 female; age range from 29 to 85) with acute coronary syndrome were subjected to a blood biochemical test, including quantification of TNF-α levels and IgG and IgM to Candida albicans was determined. Results: Fungi of the genus Candida were identified in 31.9% (15 out of 47) of atherosclerotic plaques. Particularly, Candida krusii and Candida grabrata were identified in overwhelming majority, although solitary colonies of Candida tropicalis and a single colony of Candida albicans were also detected. 80 (100%) patients were negative for IgM, but 30 (37.5%) were positive for IgG to Candida albicans. TNF-α was detected in a smaller quantity of IgG-negative patients (36.7%) relative to patients of IgG-positive group (70%), however its levels were considerably above in the first group (511.73±195.80 pg/ml) than in the second one (326.68±259.91 pg/ml, P < 0.05). Differences in the levels of ASAT and ALAT in patients positive to Candida albicans and negative for TNF-α were significantly higher than in the rest of patients. Conclusion: It is conceivable that fungi of the genus Candida are capable of inducing an inflammation of the vascular wall that in turn can lead to the development of atherosclerosis. PMID:25232398

  18. Candida albicans strain types from the genitalia of patients with and without Candida infection.

    PubMed

    Odds, F C; Abbott, A B; Reed, T A; Willmott, F E

    1983-04-01

    The strain phenotypes of 266 C. albicans isolates from patients attending a genitourinary clinic were determined on the basis of 9 biochemical tests. Analysis of the strain patterns of isolates from the genitalia showed that there were no statistically significant differences between types associated with clinically overt Candida infection and types isolated in the absence of symptoms of candidosis. This finding accords with the traditional view of C. albicans as an opportunistic pathogen, rather than a species containing some strains of high virulence. In cases where isolations were made from the same patient at different times, or from different anatomical sites in the same patient, it was found that usually, but not always, a patient carried the same phenotype at different sites and different times. Similarly, the same strain type was isolated from the genitalis of both partners in a majority of instances where strains were isolated from consorts; however, this was not the case for a substantial minority of couples, particularly in those where high promiscuity appeared to promote considerable mixture and interchange of the C. albicans genital microflora. PMID:6350074

  19. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata.

    PubMed Central

    Pfaller, M A; Houston, A; Coffmann, S

    1996-01-01

    CHROMagar Candida is a new differential culture medium that allows selective isolation of yeasts and simultaneously identifies colonies of Candida albicans, C. tropicalis, and C. krusei. We evaluated the use of this medium with 316 yeast isolates including 247 isolated directly on CHROMagar from clinical material. Over 95% of stock and clinical isolates of C. albicans, C. tropicalis, and C. krusei were correctly identified on the basis of colony morphology and pigmentation on CHROMagar. Additionally, CHROMagar also allowed the identification of C. (Torulopsis) glabrata at a similar level of accuracy. The overall agreement between two observers in reading the CHROMagar plates was 95%. Growth of Candida sp. isolates on CHROMagar had no adverse effect on antifungal MICs or Vitek identification results. In parallel, cultures of 548 stool and rectal swab specimens set up on CHROMagar and Sabouraud glucose agar (SGA) were positive in 234 instances. CHROMagar was positive and SGA was negative for 11 specimens, and CHROMagar was negative and SGA was positive for 18 specimens. A single yeast species was isolated on both media from 162 specimens, and in 146 (90%) of these specimens the same species was detected on both CHROMagar and SGA. A total of 43 of the 234 positive cultures contained mixtures of yeast species. Twenty (47%) of these mixed cultures were detected only on CHROMagar. CHROMagar is extremely useful in making a rapid presumptive identification of common yeast species. This capability plus the ability to detect mixed cultures of Candida spp. promises to improve and streamline the work flow in the mycology and clinical microbiology laboratory. PMID:8748273

  20. Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and presumptive identification of non-Candida albicans Candida species.

    PubMed

    Zhao, Liang; de Hoog, G Sybren; Cornelissen, Akke; Lyu, Qian; Mou, Lili; Liu, Taohua; Cao, Yu; Vatanshenassan, Mansoureh; Kang, Yingqian

    2016-02-01

    Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue. PMID:26781374

  1. Candida albicans binds to saliva proteins selectively adsorbed to silicone.

    PubMed

    Holmes, Ann R; van der Wielen, Pauline; Cannon, Richard D; Ruske, Dean; Dawes, Patrick

    2006-10-01

    Explanted voice prostheses obtained from 5 patients at the time of prosthesis replacement were consistently colonized by yeast, in particular Candida albicans. A simple, reproducible, in vitro model of C. albicans adherence to saliva-coated voice prosthesis silicone was developed. Whole saliva promoted adherence of C. albicans to silicone in a dose-dependent manner. Saliva rinses from voice prosthesis patients also promoted binding of C. albicans to silicone in vitro (mean adherence 14.9% +/- 2.8% of input C. albicans cells). This was significantly higher than C. albicans adherence to silicone in the absence of saliva (P < .001) or adherence promoted by saliva rinses from healthy volunteers (P < .005). Polyacrylamide gel electrophoresis analysis and a blot overlay adherence assay revealed that certain salivary proteins were selectively adsorbed to silicone and that C. albicans yeast cells adhered specifically to the adsorbed salivary proteins. PMID:16997116

  2. Person-to-person transfer of Candida albicans in the spacecraft environment

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Magee, B. B.; Mishra, S. K.

    1995-01-01

    We assessed the exchange of Candida albicans among crew members during 10 Space Shuttle missions. Throat, nasal, urine and faecal specimens were collected from 61 crew members twice before and once after space flights ranging from 7 to 10 days in duration; crews consisted of groups of five, six or seven men and women. Candida albicans was isolated at least once from 20 of the 61 subjects (33%). Candida strains were identified by restriction-fragment length polymorphism (RFLP) after digestion by the endonucleases EcoRI and HinfI; further discrimination was gained by Southern blot hybridization with the C. albicans repeat fragment 27A. Eighteen of the 20 Candida-positive crew members carried different strains of C. albicans in the specimens collected. Possible transfer of C. albicans between members of the same crew was demonstrated only once in the 10 missions studied. We conclude that the transfer of C. albicans among crew members during Space Shuttle flights is less frequent than had been predicted from earlier reports.

  3. Performance of commercial latex agglutination tests for the differentiation of Candida dubliniensis and Candida albicans in routine diagnostics.

    PubMed

    Chryssanthou, E; Fernandez, V; Petrini, B

    2007-11-01

    Candida dubliniensis is phenotypically similar to Candida albicans and may therefore be underdiagnosed in the clinical microbiology laboratory. The performance of Bichro-Dubli latex agglutination test for rapid species identification of C. dubliniensis was prospectively evaluated on 111 vaginal and 118 respiratory isolates. These had presumptively been identified as C. albicans/C. dubliniensis by their green colonies on CHROMagar Candida plates. Bichro-Dubli test identifed 2 (1.8%) vaginal and 6 (5.1%) respiratory isolates as C. dubliniensis. The test was also positive for 37 C. dubliniensis control strains characterised by 18S-28S DNA-sequencing. Bichro-Dubli test is thus a sensitive and accurate tool for rapid diagnostics in routine laboratories. PMID:18092961

  4. Chlorhexidine markedly potentiates the oxidants scavenging abilities of Candida albicans.

    PubMed

    Ginsburg, I; Koren, E; Feuerstein, O; Zogakis, I P; Shalish, M; Gorelik, S

    2015-10-01

    The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity. PMID:26223507

  5. High-frequency switching in Candida albicans.

    PubMed Central

    Soll, D R

    1992-01-01

    Most strains of Candida albicans are capable of switching frequently and reversibly between a number of phenotypes distinguishable by colony morphology. A number of different switching systems have been defined according to the limited set of phenotypes in each switching repertoire, and each strain appears to possess a single system. Switching can affect many aspects of cellular physiology and morphology and appears to be a second level of phenotypic variability superimposed upon the bud-hypha transition. The most dramatic switching system so far identified is the "white-opaque transition." This system dramatizes the extraordinary effects switching can have on the budding cell phenotype, including the synthesis of opaque-specific antigens, the expression of white-specific and opaque-specific genes, and the genesis of unique cell wall structures. Switching has been demonstrated to occur at sites of infection and between episodes of recurrent vaginitis, and it may function to generate variability in commensal and infecting populations for adaptive reasons. Although the molecular mechanisms involved in the switch event are not understood, recent approaches to its elucidation are discussed and an epigenetic mechanism is proposed. Images PMID:1576587

  6. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  7. Investigation of ERG11 gene expression among fluconazole-resistant Candida albicans: first report from an Iranian referral paediatric hospital.

    PubMed

    Teymuri, M; Mamishi, S; Pourakbari, B; Mahmoudi, S; Ashtiani, M T; Sadeghi, R H; Yadegari, M H

    2015-01-01

    The multiplicity of mechanisms of resistance to azole antifungal agents has been described. As fluconazole-resistant clinical Candida albicans isolates that constitutively over-express ERG11 have been identified in previous studies, the aim of this study is to investigate this molecular mechanism involved in fluconazole resistance of C. albicans clinical isolates. Fluconazole susceptibility testing was carried out on clinical isolates of Candida spp. obtained from hospitalised children in an Iranian referral children's hospital. A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique was used to differentiate Candida spp. The resistant C. albicans isolates were subjected to RT-qPCR using primers that identify ERG11 gene expression. Of the 142 Candida spp. isolates studied, C. albicans was the most predominant isolate, occurring in 68.3% (97/142) of the patients. According to the CLSI method, the majority of the C. albicans isolates (91.7%, 89/97), categorised as susceptible (minimum inhibitory concentration [MIC] ≤8 μg/mL), five isolates were considered resistant (MIC ≤64 μg/mL) and three had dose-dependent susceptibility (MIC = 8.16-32 μg/mL). The ERG11 gene in the five fluconazole-resistant C. albicans isolates was upregulated 4.15-5.84-fold relative to the ATCC 10231 control strain. In this study, the expression of ERG11 was upregulated in all the fluconazole-resistant C. albicans isolates. There are limited data on the antifungal susceptibility of Candida spp. as well as the molecular mechanism of azole resistance in Iran, especially for isolates causing infections in children. Therefore, the surveillance of antifungal resistance patterns and investigation of other mechanisms of azole resistance in all Candida spp. isolates is recommended. PMID:25906488

  8. Direct Isolation of Candida spp. from Blood Cultures on the Chromogenic Medium CHROMagar Candida

    PubMed Central

    Horvath, Lynn L.; Hospenthal, Duane R.; Murray, Clinton K.; Dooley, David P.

    2003-01-01

    CHROMagar Candida is a selective and differential chromogenic medium that has been shown to be useful for identification of Candida albicans, Candida krusei, Candida tropicalis, and perhaps Candida glabrata. Colony morphology and color have been well defined when CHROMagar Candida has been used to isolate yeast directly from clinical specimens, including stool, urine, respiratory, vaginal, oropharyngeal, and esophageal sources. Direct isolation of yeast on CHROMagar Candida from blood cultures has not been evaluated. We evaluated whether the color and colony characteristics produced by Candida spp. on CHROMagar Candida were altered when yeasts were isolated directly from blood cultures. Fifty clinical isolates of Candida were inoculated into aerobic and anaerobic blood culture bottles and incubated at 35°C in an automated blood culture system. When growth was detected, an aliquot was removed and plated onto CHROMagar Candida. As a control, CHROMagar Candida plates were inoculated with the same isolate of yeast grown on Sabouraud dextrose agar simultaneously. No significant difference was detected in color or colony morphology between the blood and control isolates in any of the tested organisms. All C. albicans (n = 12), C. tropicalis (n = 12), C. glabrata (n = 9), and C. krusei (n = 5) isolates exhibited the expected species-specific colony characteristics and color, whether isolated directly from blood or from control cultures. CHROMagar Candida can be reliably used for direct isolation of yeast from blood cultures. Direct isolation could allow mycology laboratories to more rapidly identify Candida spp., enable clinicians to more quickly make antifungal agent selections, and potentially decrease patient morbidity and mortality. PMID:12791890

  9. Candida albicans, the opportunist. A cellular and molecular perspective.

    PubMed

    Dupont, P F

    1995-02-01

    Candida albicans causes the majority of opportunistic fungal infections. The yeast's commensualistic relationship with humans enables it, when environmental conditions are favorable, to multiply and replace much of the normal flora. Virulence factors of C. albicans, enabling the organism to adhere to and penetrate host tissues, involve specific molecular interactions between the cells of the fungus and the host. Localized disease, such as oral candidiasis, onychomycosis, and vaginitis, results. These infections are usually limited to surfaces of the host, and can be quickly and successfully controlled by the use of one of the available antifungal agents. Candida albicans infections typically become systemic and life threatening when the host is immunocompromised. Depending on the immune defect in the host, one of the spectrum of Candida diseases can develop. If successful treatment of these patients is to be achieved, modulation of the immune deficit, as well as the use of an appropriate antifungal drug, must become a routine part of therapeutic interventions. PMID:7877106

  10. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-01

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  11. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue

    PubMed Central

    Schlecht, Lisa Marie; Peters, Brian M.; Krom, Bastiaan P.; Freiberg, Jeffrey A.; Hänsch, Gertrud M.; Filler, Scott G.

    2015-01-01

    Candida albicans and Staphylococcus aureus are often co-isolated in cases of biofilm-associated infections. C. albicans can cause systemic disease through morphological switch from the rounded yeast to the invasive hyphal form. Alternatively, systemic S. aureus infections arise from seeding through breaks in host epithelial layers although many patients have no documented portal of entry. We describe a novel strategy by which S. aureus is able to invade host tissue and disseminate via adherence to the invasive hyphal elements of Candida albicans. In vitro and ex vivo findings demonstrate a specific binding of the staphylococci to the candida hyphal elements. The C. albicans cell wall adhesin Als3p binds to multiple staphylococcal adhesins. Furthermore, Als3p is required for C. albicans to transport S. aureus into the tissue and cause a disseminated infection in an oral co-colonization model. These findings suggest that C. albicans can facilitate the invasion of S. aureus across mucosal barriers, leading to systemic infection in co-colonized patients. PMID:25332378

  12. Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects.

    PubMed

    Cassone, A

    2015-05-01

    Although a number of fungal species belonging to the genus Candida can cause acute vulvovaginal infection (VVC), Candida albicans is by far the most prevalent etiological agent, particularly for the most severe chronic condition known as recurrent vulvovaginal candidiasis (RVVC). This review focuses on recent advances in pathogenic mechanisms and host immune responses to C. albicans and on the utilisation of this information in the development of a vaccine to prevent and/or treat vaginal candidiasis. Currently, two vaccines with main or sole RVVC as clinical indication have completed a phase 1 clinical trial, and one of them has entered a phase 2 trial. PMID:25052208

  13. Analysis of Candida albicans adhesion to salivary mucin.

    PubMed Central

    Hoffman, M P; Haidaris, C G

    1993-01-01

    Clearance of Candida albicans from the oral cavity is thought to be mediated via specific receptor-ligand interactions between salivary constituents and the fungus. Since surfaces in the oral cavity are normally coated with a saliva-derived pellicle, specific interactions between salivary constituents and C. albicans may also contribute to adhesion of C. albicans to the oral mucosa and dental prostheses. Therefore, the purpose of this study was to identify salivary constituents to which C. albicans is capable of binding. A solid-phase overlay assay was used in which electrophoretically separated rat and human salivary constituents bound to membrane filters were incubated with radiolabelled C. albicans cells. C. albicans adhered to a single salivary component from each host. Correlation of cell-binding activity with specific monoclonal antibody (MAb)-binding activity indicated that the constituent bound by C. albicans in human saliva was low-molecular-weight mucin (MG2) and that in rat saliva was rat submandibular gland (RSMG) mucin. Further studies showed an identical cell hybridization signal and MAb colocalization by using RSMG ductal saliva and an aqueous RSMG extract in the solid-phase overlay assay. Analysis of cell binding to the aqueous extract of RSMG fractionated by anion-exchange chromatography demonstrated that C. albicans binding was restricted to an acidic subfraction of the RSMG extract, which also bound the RSMG mucin-specific MAb. The Candida-binding fraction contained predominantly RSMG mucin glycoprotein and also a noncovalently associated, chloroform-extractable material. Furthermore, we identified two strains of C. albicans which differed severalfold in the ability to bind RSMG mucin in the overlay assay. These results suggest that C. albicans binds to only a specific subfraction of RSMG mucin and that the two C. albicans strains tested differ in the ability to bind RSMG mucin subfractions. Images PMID:8478083

  14. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    PubMed Central

    Toprak, Demet; Öcal Demir, Sevliya; Kadayifci, Eda Kepenekli; Türel, Özden; Soysal, Ahmet; Bakir, Mustafa

    2015-01-01

    Central nervous system (CNS) infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL) who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI) showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration. PMID:26558119

  15. Characterization of a fucoside-binding adhesin of Candida albicans.

    PubMed Central

    Tosh, F D; Douglas, L J

    1992-01-01

    Candida albicans GDH 2346 produces extracellular polymeric material (EP) which contains a mannoprotein adhesin with a lectin-like affinity for fucose-containing glycosides. EP isolated from culture supernatants of this strain was used as starting material for purification of the adhesin. The purification protocol involved a stepwise treatment of EP with N-glycanase, papain, and dilute alkali to cleave the protein and carbohydrate portions of the mannoprotein molecule. Fucoside-binding protein fragments were then recovered by affinity adsorption with the trisaccharide determinant of the H (type 2) blood group antigen which terminates in a residue of L-fucose. The purified adhesin was devoid of carbohydrate and inhibited yeast adhesion to buccal epithelial cells 221 times more efficiently, on a protein weight basis, than did EP. Adhesion inhibition reached a maximum of 78 to 80% at an adhesin concentration of 10 micrograms ml-1. Our results indicate that this protein is the major adhesin of yeast-phase cells of C. albicans GDH 2346 but that one or more secondary adhesion mechanisms may operate. PMID:1398983

  16. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans.

    PubMed

    Morio, Florent; Pagniez, Fabrice; Besse, Myriam; Gay-andrieu, Françoise; Miegeville, Michel; Le Pape, Patrice

    2013-11-01

    Several and often combined mechanisms can lead to acquired azole resistance in Candida albicans and subsequent therapeutic failure. The aim of this study was to provide a complete overview of the molecular basis of azole resistance in a set of six C. albicans clinical isolates recovered from patients who failed azole therapy. For this purpose, expression levels of CDR1, MDR1 and ERG11 were investigated by reverse transcription PCR (RT-PCR) together with amplification and sequencing of the genes encoding their transcription factors TAC1, MRR1 and UPC2. In all, the data underline that azole resistance in this set of clinical isolates results from distinct, often combined, mechanisms, being mostly driven by CDR1 and/or MDR1 active efflux. We show that gain-of-function (GOF) mutations in the transcription-factor-encoding genes TAC1, MRR1 and UPC2 are a common event in azole-resistant C. albicans clinical isolates. In addition, together with the finding that these genes are highly permissive to nucleotide changes, we describe several novel mutations that could act as putative GOF mutations involved in fluconazole resistance. PMID:24051054

  17. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B.

    PubMed

    Martel, Claire M; Parker, Josie E; Bader, Oliver; Weig, Michael; Gross, Uwe; Warrilow, Andrew G S; Kelly, Diane E; Kelly, Steven L

    2010-09-01

    A clinical isolate of Candida albicans was identified as an erg5 (encoding sterol C22 desaturase) mutant in which ergosterol was not detectable and ergosta 5,7-dienol comprised >80% of the total sterol fraction. The mutant isolate (CA108) was resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole (MIC values, 64, 8, 2, 1, and 2 microg ml(-1), respectively); azole resistance could not be fully explained by the activity of multidrug resistance pumps. When susceptibility tests were performed in the presence of a multidrug efflux inhibitor (tacrolimus; FK506), CA108 remained resistant to azole concentrations higher than suggested clinical breakpoints for C. albicans (efflux-inhibited MIC values, 16 and 4 microg ml(-1) for fluconazole and voriconazole, respectively). Gene sequencing revealed that CA108 was an erg11 erg5 double mutant harboring a single amino acid substitution (A114S) in sterol 14alpha-demethylase (Erg11p) and sequence repetition (10 duplicated amino acids), which nullified C22 desaturase (Erg5p) function. Owing to a lack of ergosterol, CA108 was also resistant to amphotericin B (MIC, 2 microg ml(-1)). This constitutes the first report of a C. albicans erg5 mutant isolated from the clinic. PMID:20547793

  18. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis.

    PubMed Central

    Hall, G S; Myles, C; Pratt, K J; Washington, J A

    1988-01-01

    Cilofungin (LY121019) is an antifungal agent that interferes with beta-glucan synthesis in the cells walls of fungi. The activity of this agent against 256 clinical isolates of yeasts was determined. It was found to be very active in vitro against Candida albicans (MIC for 90% of isolates [MIC90], less than or equal to 0.31 microgram/ml; minimal fungicidal concentration for 90% of isolates [MFC90], less than or equal to 0.31 micrograms/ml) and C. tropicalis (MIC90, less than or equal to 0.31 microgram/ml; MFC90, less than or equal to 0.31 microgram/ml) and moderately active against Torulopsis glabrata (MIC90 and MFC90, less than or equal to 20 micrograms/ml). All C. parapsilosis, Cryptococcus, and Saccharomyces cerevisiae strains were resistant. The activity of cilofungin was affected by medium and inoculum size. Antibiotic medium no. 3 was used as the standard medium. Isolates of C. albicans and C. tropicalis demonstrated a paradoxical effect in Sabouraud dextrose broth and yeast nitrogen base broth in that growth was partially inhibited at MICs equivalent to those in antibiotic medium no. 3, but growth continued, in many instances, throughout all concentrations tested. There was decreased activity of cilofungin with inocula greater than 10(5) CFU/ml. The temperature and duration of incubation did not affect its activity. Images PMID:3058017

  19. Identification and characterization of nine atypical Candida dubliniensis clinical isolates.

    PubMed

    Albaina, Olatz; Sahand, Ismail H; Brusca, María I; Sullivan, Derek J; Fernández de Larrinoa, Iñigo; Moragues, María D

    2015-02-01

    Candida dubliniensis is a pathogenic yeast of the genus Candida closely related to Candida albicans. The phenotypic similarity of these two species often leads to misidentification of C. dubliniensis isolates in clinical samples. DNA-based methods continue to be the most effective means of discriminating accurately between the two species. Here, we report on the identification of nine unusual Candida isolates that showed ambiguous identification patterns on the basis of their phenotypic and immunological traits. The isolates were categorized into two groups. Group I isolates were unable to produce germ tubes and chlamydospores, and to agglutinate commercial latex particles coated with a mAb highly specific for C. dubliniensis. Group II isolates grew as pink and white colonies on CHROMagar Candida and ChromID Candida, respectively. Carbohydrate assimilation profiles obtained with API/ID32C together with PCR amplification with specific primers and DNA sequencing allowed reliable identification of the nine unusual clinical isolates as C. dubliniensis. PMID:25480879

  20. Candida arthritis: cellular immune responses of synovial fluid and peripheral blood lymphocytes to Candida albicans.

    PubMed Central

    Hermann, E; Mayet, W J; Klein, O; Lohse, A W; Trautwein, C; Michiels, I; Poralla, T; Meyer zum Büschenfelde, K H

    1991-01-01

    A case of septic Candida albicans arthritis of the knee in a patient with systemic candidiasis is presented. Systemic and intra-articular cellular immune responses to C albicans and various bacterial antigens were monitored for 15 weeks. It is shown that the candida induced blastogenesis of synovial fluid lymphocytes was much more stimulated than that of peripheral blood lymphocytes, and that the proportion of activated cells expressing HLA class II antigens was markedly increased in the synovial fluid. Strong cellular immune responses to Candida albicans could still be shown many weeks after the synovial fluid aspirates had become sterile. For the first time synovial fluid derived, CD4 positive T lymphocyte clones with specificity for candida antigens were characterised and further propagated in vitro. Images PMID:1720301

  1. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. PMID:21596542

  2. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  3. Attachment of Candida albicans to denture base acrylic resin processed by three different methods.

    PubMed

    Young, Beth; Jose, Anto; Cameron, Donald; McCord, Fraser; Murray, Colin; Bagg, Jeremy; Ramage, Gordon

    2009-01-01

    Denture stomatitis is a debilitating disease associated with the presence of adherent Candida albicans. This study compared the attachment capacity of C. albicans to three different acrylic resin materials (self-curing [SC], conventional pressure-packed [CPP], and injection-molded [IM]) to determine whether the physical properties of the materials influenced candidal attachment. No significant differences in attachment between the isolates were observed for each acrylic resin. However, a comparison of the mean of all isolates showed significantly less attachment to SC than to CPP (P < .05). These data indicate that choice of denture acrylic resin material may influence the capacity for developing denture stomatitis. PMID:20095199

  4. An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms

    PubMed Central

    Lown, Livia; Peters, Brian M.; Walraven, Carla J.; Noverr, Mairi C.; Lee, Samuel A.

    2016-01-01

    Candida albicans is a major cause of catheter-related bloodstream infections and is associated with high morbidity and mortality. Due to the propensity of C. albicans to form drug-resistant biofilms, the current standard of care includes catheter removal; however, reinsertion may be technically challenging or risky. Prolonged exposure of an antifungal lock solution within the catheter in conjunction with systemic therapy has been experimentally attempted for catheter salvage. Previously, we demonstrated excellent in vitro activity of micafungin, ethanol, and high-dose doxycycline as single agents for prevention and treatment of C. albicans biofilms. Thus, we sought to investigate optimal combinations of micafungin, ethanol, and/or doxycycline as a lock solution. We performed two- and three-drug checkerboard assays to determine the in vitro activity of pairwise or three agents in combination for prevention or treatment of C. albicans biofilms. Optimal lock solutions were tested for activity against C. albicans clinical isolates, reference strains and polymicrobial C. albicans-S. aureus biofilms. A solution containing 20% (v/v) ethanol, 0.01565 μg/mL micafungin, and 800 μg/mL doxycycline demonstrated a reduction of 98% metabolic activity and no fungal regrowth when used to prevent fungal biofilm formation; however there was no advantage over 20% ethanol alone. This solution was also successful in inhibiting the regrowth of C. albicans from mature polymicrobial biofilms, although it was not fully bactericidal. Solutions containing 5% ethanol with low concentrations of micafungin and doxycycline demonstrated synergistic activity when used to prevent monomicrobial C. albicans biofilm formation. A combined solution of micafungin, ethanol and doxycycline is highly effective for the prevention of C. albicans biofilm formation but did not demonstrate an advantage over 20% ethanol alone in these studies. PMID:27428310

  5. Use of CHROMagar Candida medium for isolation of yeasts from dental samples.

    PubMed Central

    Beighton, D; Ludford, R; Clark, D T; Brailsford, S R; Pankhurst, C L; Tinsley, G F; Fiske, J; Lewis, D; Daly, B; Khalifa, N

    1995-01-01

    A new differential medium, CHROMagar Candida, for the isolation of clinically important yeasts was investigated to determine its usefulness in facilitating the study of oral yeasts. The recovery of yeasts on the medium was not significantly different from the recovery on Sabouraud dextrose agar. The identities of 450 green colonies on CHROMagar Candida, presumptively identified as Candida albicans on the basis of the manufacturer's instructions, were confirmed by testing for beta-N-acetylgalactosaminidase. Candida tropicalis also formed distinctive colonies, and other yeasts including Candida (Torulopsis) glabrata, Candida Parapsilosis, Candida Magnoliae, Candida lusitaniae, Candida Famata, Candida kefir, and Saccharomyces cerevisiae were readily distinguished from C. albicans and C. tropicalis isolates. CHROMagar Candida is a very useful medium, and its use will facilitate the study of yeasts associated with dental diseases. PMID:8576366

  6. Two unlike cousins: Candida albicans and C. glabrata infection strategies

    PubMed Central

    Brunke, Sascha; Hube, Bernhard

    2013-01-01

    Candida albicans and C. glabrata are the two most common pathogenic yeasts of humans, yet they are phylogenetically, genetically and phenotypically very different. In this review, we compare and contrast the strategies of C. albicans and C. glabrata to attach to and invade into the host, obtain nutrients and evade the host immune response. Although their strategies share some basic concepts, they differ greatly in their outcome. While C. albicans follows an aggressive strategy to subvert the host response and to obtain nutrients for its survival, C. glabrata seems to have evolved a strategy which is based on stealth, evasion and persistence, without causing severe damage in murine models. However, both fungi are successful as commensals and as pathogens of humans. Understanding these strategies will help in finding novel ways to fight Candida, and fungal infections in general. PMID:23253282

  7. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    PubMed

    Borecká-Melkusová, Silvia; Moran, Gary P; Sullivan, Derek J; Kucharíková, Sona; Chorvát, Dusan; Bujdáková, Helena

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates. PMID:18627475

  8. Uptake and antifungal activity of oligonucleotides in Candida albicans

    PubMed Central

    Disney, Matthew D.; Haidaris, Constantine G.; Turner, Douglas H.

    2003-01-01

    Candida albicans is a significant cause of disease in immunocompromised humans. Because the number of people infected by fungal pathogens is increasing, strategies are being developed to target RNAs in fungi. This work shows that oligonucleotides can serve as therapeutics against C. albicans. In particular, oligonucleotides are taken up from cell culture medium in an energy-dependent process. After uptake, oligonucleotides, including RNA, remain mostly intact after 12 h in culture. For culture conditions designed for mammalian cells, intracellular concentrations of oligonucleotides in C. albicans exceed those in COS-7 mammalian cells, suggesting that uptake can provide selective targeting of fungi over human cells. A 19-mer 2′OMe (oligonucleotide with a 2′-O-methyl backbone) hairpin is described that inhibits growth of a C. albicans strain at pH < 4.0. This pH is easily tolerated in some parts of the body subject to C. albicans infections. In vivo dimethyl sulfate modification of ribosomal RNA and the decreased rate of protein synthesis suggest that this hairpin's activity may be due to targeting the ribosome in a way that does not depend on base pairing. Addition of anti-C. albicans oligonucleotides to COS-7 mammalian cells has no effect on cell growth. Evidently, oligonucleotides can selectively serve as therapeutics toward C. albicans and, presumably, other pathogens. Information from genome sequencing and functional genomics studies on C. albicans and other pathogens should allow rapid design and testing of other approaches for oligonucleotide therapies. PMID:12552085

  9. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate.

    PubMed

    Dunkel, Nico; Liu, Teresa T; Barker, Katherine S; Homayouni, Ramin; Morschhäuser, Joachim; Rogers, P David

    2008-07-01

    In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans. PMID:18487346

  10. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children

    PubMed Central

    Shenoy, Neetha

    2016-01-01

    Introduction C.albicans is the most commonly isolated fungal pathogen in the oral cavity, but isolation of non-albicans Candida is increasing in recent years. We wish to demonstrate the virulence factors of Candida spp. isolated from the dental caries lesion of the children as presence of virulence factors determines the pathogenic potential of any microorganism. Aim To compare biofilm production, phospholipase and haemolytic activity of C.albicans with that of non-albicans species of Candida isolated from dental caries lesions of children to evaluate the role of non- albicans species of Candida in formation of dental caries. Materials and Methods Oral swabs were collected from caries lesion of 100 school children of age 5-10 years with dental caries. Candida isolates were tested for biofilm production, phospholipase and haemolytic activity. Statistical analysis was done by Chi-Square test and Mann-Whitney U test wherever applicable using SPSS version 11.5. Results Out of the 100 children with dental caries 37 were positive for Candida by smear or culture and 31 by culture. C.albicans was the most prevalent isolate followed by C.krusei, C.tropicalis and C.albicans. Out of 21 C.albicans isolates, 10 (47.6%) showed phospholipase activity and 18 (85.71%) produced biofilm. Of the 10 non-albicans strains, 5 (50%) showed phospholipase activity and 6 (60%) produced biofilm. All isolates of Candida produced haemolysin (100%). Conclusion There was no statistically relevant difference between the virulence factor production by C.albicans and non-albicans species of Candida. In other words, our study shows that both C.albicans and non-albicans species of Candida isolated from caries lesions of the children, produce these virulence factors. So we can say that non-albicans species of Candida also are involved in caries formation. PMID:27190803

  11. Fluconazole Resistance Candida albicans in Females With Recurrent Vaginitis and Pir1 Overexpression

    PubMed Central

    Nasrollahi, Zahra; Yadegari, Mohammad Hossein; Roudbar Mohammadi, Shahla; Roudbary, Maryam; Hosseini Poor, Maryam; Nikoomanesh, Fatemeh; Rajabi Bazl, Masumeh

    2015-01-01

    Background: Some genes may be associated with Candida albicans resistance to azoles. Pir1 gene is described as responsible to induce resistance in C. albicans. Objectives: The current study aimed to find the relationship between fluconazole resistance and Pir1 protein (Pir1p) overexpression in the females with recurrent C. albicans vaginitis requiring longer fluconazole therapy. Patients and Methods: A total of 52l vaginal samples were obtained from the females with C. albicans vaginitis. The azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute (CLSI) protocol for disk diffusion method and inhibition zone for fluconazole. Expression of pir1 gene and fluconazole -resistance were evaluated using polymerase chain reaction (PCR) in C. albicans. Results: In the 52 isolates, 49 (94%) were resistant to fluconazole. Overexpression of Pir1 gene was detected in 47 (96%) fluconazole-resistant C. albicans isolates. Conclusions: The findings show fluconazole -resistance in C. albicans isolates with overexpression of Pir1p. PMID:26495107

  12. IL-17 Signaling in Host Defense Against Candida albicans

    PubMed Central

    Gaffen, Sarah L.; Hernandez-Santos, Nydiaris; Peterson, Alanna C.

    2012-01-01

    The discovery of the Th17 lineage in 2005 triggered a major change in how immunity to infectious diseases is viewed. Fungal infections, in particular, have long been a relatively understudied area of investigation in terms of the host immune response. Candida albicans is a commensal yeast that colonizes mucosal sites and skin. In healthy individuals it is non-pathogenic, but in conditions of immune deficiency, this organism can cause a variety of infections associated with considerable morbidity. Candida can also cause disseminated infections that have a high mortality rate and are a major clinical problem in hospital settings. Although immunity to Candida albicans was long considered to be mediated by Th1 cells, new data in both rodent models and in humans have revealed an essential role for the Th17 lineage, and in particular its signature cytokine IL-17. PMID:21717069

  13. Candida species and C. albicans biotypes in women attending clinics in genitourinary medicine.

    PubMed

    Odds, F C; Webster, C E; Fisk, P G; Riley, V C; Mayuranathan, P; Simmons, P D

    1989-05-01

    Yeasts were isolated from two or more anatomical sites in 198 women attending genitourinary clinics on at least two occasions. The yeast biotypes isolated concurrently from the vagina and urethra were the same in 138 (99%) of 140 instances, and 94% of 124 concurrent genital and anal isolates were of matching types, whereas only 75% of concurrent genital and oral isolates were of the same type. Mixtures of Candida spp. or C. albicans biotypes were encountered only five times among 545 yeast-positive samples. In instances where Candida spp. were isolated at successive times from the same site in a patient, the same yeast type was encountered on 97 (87%) of 112 occasions when the interval between samples was less than 15 weeks, and on 19 (66%) of 29 occasions when the interval was 15 weeks or more. These data indicate a tendency to carriage of phenotypically consistent types of Candida among most women attending genitourinary clinics. PMID:2657069

  14. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    SciTech Connect

    Yang, Shulong; Fu, Yingyuan Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  15. Postantifungal Effect of Micafungin against the Species Complexes of Candida albicans and Candida parapsilosis

    PubMed Central

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2015-01-01

    Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log10 reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 ± 2.18 h) differed from C. parapsilosis complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex. PMID:26168269

  16. CHARACTERIZATION OF THE PYROGENICITY OF CANDIDA ALBICANS, SACCHAROMYCES CEREVISIAE, AND CRYPTOCOCCUS NEOFORMANS.

    PubMed

    KOBAYASHI, G S; FRIEDMAN, L

    1964-09-01

    Kobayashi, George S. (Tulane University, New Orleans, La.), and Lorraine Friedman. Characterization of the pyrogenicity of Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. J. Bacteriol. 88:660-666. 1964.-The intravenous injection into rabbits of 10(9) yeast cells of Candida albicans, Saccharomyces cerevisiae, or Cryptococcus neoformans (both slightly and heavily encapsulated forms) induced a febrile response indistinguishable from that elicited by gram-negative bacterial endotoxin. There was a brisk rise in body temperature which began as early as 30 min after injection, peaked once or twice, and then returned to normal after about 10 hr. With viable C. albicans, the febrile response did not return to normal but remained elevated for several days and terminated at death of the animal. Of three extraction procedures employed in attempts to isolate the endotoxin-like pyrogenically active substances from C. albicans, only one, the phenol extraction method, was successful. Pyrogenic substances were more easily extractable from S. cerevisiae, but extracted cells of both species were still highly pyrogenic. It was concluded that the particulate nature of the yeast cell did not contribute to the induction of fever, for latex particles of a similar size were nonpyrogenic. Viable or heat-killed C. albicans, phenol extract of C. albicans, zymosan, and polystyrene latex particles all failed to induce in rabbits increased dermal reactivity to epinephrine. PMID:14208504

  17. Molecular genetic techniques for gene manipulation in Candida albicans

    PubMed Central

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-01-01

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

  18. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation.

    PubMed

    Pemmaraju, Suma C; Padmapriya, Kumar; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-09-01

    Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches. PMID:27472386

  19. Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis

    PubMed Central

    Thibane, Vuyisile S.; Kock, Johan L. F.; Ells, Ruan; van Wyk, Pieter W. J.; Pohl, Carolina H.

    2010-01-01

    The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts. PMID:21116408

  20. Isolation Frequency Characteristics of Candida Species from Clinical Specimens

    PubMed Central

    Kim, Ga-Yeon; Jeon, Jae-Sik

    2016-01-01

    Candida spp. is an invasive infectious fungus, a major risk factor that can increase morbidity and mortality in hospitalized patients. In this study, 2,508 Candida spp. were isolated from various clinical specimens collected from university hospitals from July 2011 to October 2014. They were identified in order to determine isolation frequencies and characteristics by specimen, gender, age group, year, season, and month. The strain-specific isolation rate of Candida spp. is in the order of Candida albicans (1,218 strains, 48.56%), Candida glabrata (416 strains, 16.59%), Candida utilis (305 strains, 12.16%), Candida tropicalis (304 strains, 12.12%), and Candida parapsilosis (116 strains, 4.63%) and these five species accounted for more than 94% of the total strains. Of the specimens, Candida spp. were most frequently isolated from urine-catheter, followed by urine-voided, blood, sputum, other, open pus, vaginal discharge, Tip, ear discharge, bronchial aspiration and bile, in that order. Looking at the age distribution, the detection rate of patients in their 60s and older was significantly higher at 75.8% (1,900/2,508). The detection rate of patients in their 20s and younger was shown to be very low at 2.55% (64/2,508). By year, the detection rate of non-albicans Candida spp. showed a tendency to gradually increase each year compared with C. albicans. As isolation of Candida spp. from clinical samples at the specie level can vary depending on characteristics of the patient, sample, season, etc., continual studies are required. PMID:27433120

  1. Doxorubicin induces drug efflux pumps in Candida albicans.

    PubMed

    Kofla, Grzegorz; Turner, Vincent; Schulz, Bettina; Storch, Ulrike; Froelich, Daniela; Rognon, Bénédicte; Coste, Alix T; Sanglard, Dominique; Ruhnke, Markus

    2011-02-01

    Candida albicans is one of the most important opportunistic fungal pathogens. It can cause serious fungal diseases in immunocompromised patients, including those with cancer. Treatment failures due to the emergence of drug-resistant C. albicans strains have become a serious clinical problem. Resistance incidents were often mediated by fungal efflux pumps which are closely related to the human ABC transporter P-glycoprotein (P-gp). P-gp is often overexpressed in cancer cells and confers resistance to many cytotoxic drugs. We examined whether cytotoxic drugs commonly used for cancer treatment (doxorubicin and cyclophosphamide) could alter the expression of genes responsible for the development of fluconazole resistance in Candida cells in the way they can influence homologous genes in cancer cell lines. ABC transporters (CDR1 and CDR2) and other resistance genes (MDR1 and ERG11) were tested by real-time PCR for their expression in C. albicans cells at the mRNA level after induction by antineoplastic drugs. The results were confirmed by a lacZ gene reporter system and verified at the protein level using GFP and immunoblotting. We showed that doxorubicin is a potent inducer of CDR1/CDR2 expression in C. albicans at both the mRNA and protein level and thus causes an increase in fluconazole MIC values. However, cyclophosphamide, which is not a substrate of human P-gp, did not induce ABC transporter expression in C. albicans. Neither doxorubicin nor cyclophosphamide could influence the expression of the other resistance genes (MDR1 and ERG11). The induction of CDR1/CDR2 by doxorubicin in C. albicans and the resulting alteration of antifungal susceptibility might be of clinical relevance for the antifungal treatment of Candida infections occurring after anticancer chemotherapy with doxorubicin. PMID:20818920

  2. The exocyst in Candida albicans polarized secretion and filamentation.

    PubMed

    Chavez-Dozal, Alba A; Bernardo, Stella M; Lee, Samuel A

    2016-05-01

    The exocyst is an octameric complex that orchestrates the docking and tethering of vesicles to the plasma membrane during exocytosis and is fundamental for key biological processes including growth and establishment of cell polarity. Although components of the exocyst are well conserved among fungi, the specific functions of each component of the exocyst complex unique to Candida albicans biology and pathogenesis are not fully understood. This commentary describes recent findings regarding the role of exocyst subunits Sec6 and Sec15 in C. albicans filamentation and virulence. PMID:26762634

  3. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families

    PubMed Central

    Vyas, Valmik K.; Barrasa, M. Inmaculada; Fink, Gerald R.

    2015-01-01

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen. PMID:25977940

  4. Induction of apoptosis in oral epithelial cells by Candida albicans.

    PubMed

    Villar, C Cunha; Chukwuedum Aniemeke, J; Zhao, X-R; Huynh-Ba, G

    2012-12-01

    During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death. PMID:23134609

  5. Colonization of congenitally athymic, gnotobiotic mice by Candida albicans.

    PubMed Central

    Balish, E; Balish, M J; Salkowski, C A; Lee, K W; Bartizal, K F

    1984-01-01

    Colony counts, scanning electron microscopy, and light microscopy were used to assess the capacity of Candida albicans to colonize (naturally) and infect the alimentary tract of adult and neonatal (athymic [nu/nu] or heterozygous [+/nu] littermates) germfree BALB/c mice. When exposed to yeast-phase C. albicans, the alimentary tract of adult germfree mice (nu/nu or +/nu) is quickly (within 24 to 48 h) colonized with yeast cells. Neither morbidity nor mortality was evident in any mice that were colonized with a pure culture of C. albicans for 6 months. Yeast cells of C. albicans predominated on mucosal surfaces in the oral cavities and vaginas of adult athymic and heterozygous mice. In both genotypes, C. albicans hyphae were observed in keratinized tissue on the dorsal posterior tongue surface and in the cardial-atrium section of the stomach. Conversely, neonatal athymic or heterozygous mice, born to germfree or C. albicans-colonized mothers, do not become heavily colonized or infected with C. albicans until 11 to 15 days after birth. Although yeast cells adhered to some mucosal surfaces in vivo, neither widespread mucocutaneous candidiasis, i.e., invasion of mucosal surfaces with C. albicans hyphae, nor overwhelming systemic candidiasis was evident in neonatal (nu/nu or +/nu) mice. Thus, even in the absence of functional T-cells and a viable bacterial flora, athymic and heterozygous littermate mice (adult or neonatal BALB/c) that are colonized with a pure culture of C. albicans manifest resistance to extensive mucocutaneous and systemic candidiasis. Images PMID:6372689

  6. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes.

    PubMed Central

    Ollert, M W; Söhnchen, R; Korting, H C; Ollert, U; Bräutigam, S; Bräutigam, W

    1993-01-01

    We established an in vitro adherence model with primarily cultured human keratinocytes as target cells which allows for the investigation of the molecular mechanisms that are responsible for Candida albicans host cell attachment in the initiation of cutaneous candidosis. The extent of C. albicans binding to cultured human keratinocytes was dependent on the yeast inoculum size and the incubation temperature. Heat and paraform-aldehyde treatment of yeasts completely abolished the binding activity of C. albicans. Of the different Candida species tested, C. albicans was by far the most adhesive species. C. albicans adherence was blocked by the acid protease inhibitor pepstatin A and the metabolic inhibitor sodium azide. The latter, however, was much less effective when yeasts were preincubated, suggesting that sodium azide was mainly acting on the keratinocytes. The extracellular matrix protein fibronectin was slightly inhibitory, whereas the fibronectin-derived peptides RGD and RGDS were not able to prevent attachment. PepTite-2000, another RGD-containing synthetic peptide, reduced C. albicans adherence by a margin of 25% (P < 0.005). CDPGYIGSR-NH2, which is a synthetic adhesive peptide derived from the laminin B chain, was much more efficient in its inhibitory activity than the RGD peptides and reduced C. albicans adherence to cultured human keratinocytes up to 76% (P < 0.001). Laminin itself and the synthetic pentapeptide YIGSR were less active. A dose-dependent reduction in adherence was also observed with collagen type III. Additionally, saccharides were tested for their potential to inhibit C. albicans attachment to keratinocytes. The most potent competitive saccharide inhibitors of C. albicans adherence to human keratinocytes were the amino sugars D-(+)-glucosamine and D-(+)-galactosamine with one isolate of C. albicans (4918) and D-(+)-glucosamine and alpha-D-(+)-fucose with another C. albicans isolate (Sp-1). Collectively, our data suggest the existence of

  7. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature.

    PubMed

    Morio, Florent; Loge, Cedric; Besse, Bernard; Hennequin, Christophe; Le Pape, Patrice

    2010-04-01

    For several years, azole antifungal drugs have been a treatment option for potentially life-threatening Candida infections. However, azole resistance can occur through various mechanisms such as alterations in ERG11, encoding lanosterol 14alpha-demethylase (CYP51). In this study, we investigated the antifungal susceptibility to fluconazole, itraconazole, and voriconazole of 73 clinical isolates of Candida albicans. Screening for amino acid substitutions in Erg11 was performed on each of the 73 isolates. Twenty isolates displayed a marked decrease in azole susceptibility. Amino acid substitutions were detected in more than two-thirds of the strains. In all, 23 distinct substitutions were identified. Four have not been described previously, among which N136Y and Y447H are suspected to be involved in azole resistance. We suggest that the high genetic polymorphism of ERG11 must be considered in the rationale design of new azole compounds targeting lanosterol 14alpha-demethylase. A review of all Erg11 amino acid polymorphisms described to date is given. PMID:20226328

  8. Identification and Characterization of a Candida albicans Mating Pheromone

    PubMed Central

    Bennett, Richard J.; Uhl, M. Andrew; Miller, Mathew G.; Johnson, Alexander D.

    2003-01-01

    Candida albicans, the most prevalent fungal pathogen of humans, has recently been shown to undergo mating. Here we describe a mating pheromone produced by C. albicans α cells and show that the gene which encodes it (MFα) is required for α cells, but not a cells, to mate. We also identify the receptor for this mating pheromone as the product of the STE2 gene and show that this gene is required for the mating of a cells, but not α cells. Cells of the a mating type respond to the α mating pheromone by producing long polarized projections, similar to those observed in bona fide mating mixtures of C. albicans a and α cells. During this process, transcription of approximately 62 genes is induced. Although some of these genes correspond to those induced in Saccharomyces cerevisiae by S. cerevisiae α-factor, most are specific to the C. albicans pheromone response. The most surprising class encode cell surface and secreted proteins previously implicated in virulence of C. albicans in a mouse model of disseminated candidiasis. This observation suggests that aspects of cell-cell communication in mating may have been evolutionarily adopted for host-pathogen interactions in C. albicans. PMID:14585977

  9. Heparin-Binding Motifs and Biofilm Formation by Candida albicans

    PubMed Central

    Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

    2013-01-01

    Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

  10. Oxidative stress of photodynamic antimicrobial chemotherapy inhibits Candida albicans virulence

    NASA Astrophysics Data System (ADS)

    Kato, Ilka Tiemy; Prates, Renato Araujo; Tegos, George P.; Hamblin, Michael R.; Simões Ribeiro, Martha

    2011-03-01

    Photodynamic antimicrobial chemotherapy (PACT) is based on the principal that microorganisms will be inactivated using a light source combined to a photosensitizing agent in the presence of oxygen. Oxidative damage of cell components occurs by the action of reactive oxygen species leading to cell death for microbial species. It has been demonstrated that PACT is highly efficient in vitro against a wide range of pathogens, however, there is limited information for its in vivo potential. In addition, it has been demonstrated that sublethal photodynamic inactivation may alter the virulence determinants of microorganisms. In this study, we explored the effect of sublethal photodynamic inactivation to the virulence factors of Candida albicans. Methylene Blue (MB) was used as photosensitizer for sublethal photodynamic challenge on C. albicans associated with a diode laser irradiation (λ=660nm). The parameters of irradiation were selected in causing no reduction of viable cells. The potential effects of PACT on virulence determinants of C. albicans cells were investigated by analysis of germ tube formation and in vivo pathogenicity assays. Systemic infection was induced in mice by the injection of fungal suspension in the lateral caudal vein. C. albicans exposed to sublethal photodynamic inactivation formed significantly less germ tube than untreated cells. In addition, mice infected with C. albicans submitted to sublethal PACT survived for a longer period of time than mice infected with untreated cells. The oxidative damage promoted by sublethal photodynamic inactivation inhibited virulence determinants and reduced in vivo pathogenicity of C. albicans.

  11. Molecular identification of Candida orthopsilosis isolated from blood culture.

    PubMed

    Yong, P V C; Chong, P P; Lau, L Y; Yeoh, R S C; Jamal, F

    2008-02-01

    The incidence of candidemia and invasive candidiasis have increased markedly due to the increasing number of immunocompromised patients. There are five major medically important species of Candida with their frequency of isolation in the diminishing order namely Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei. In addition, there are numerous other species of Candida which differ in their genetic makeup, virulence properties, drug susceptibilities and sugar assimilation capabilities. In this report, an unusual Candida species was isolated from the blood of two leukaemic patients. Conventional culture and biochemical tests identified the Candida species as C. parapsilosis. Using fungal-specific oligonucleotide primers ITS1 and ITS4, we managed to amplify the ribosomal RNA gene and its internal transcribed spacer region from the genomic DNA of these isolates. The PCR products were then purified and subjected to automated DNA sequencing using BLAST and CLUSTAL sequence analysis identified these isolates to be Candida orthopsilosis. Candida orthopsilosis is a new species recently identified in 2005, being morphologically indistinguishable from C. parapsilosis and was previously classified as a subspecies of C. parapsilosis. This report highlights the importance of complementing traditional culture and biochemical-based identification methods with DNA-based molecular assays such as PCR as the latter is more superior in terms of its discriminatory power and speed. PMID:18266075

  12. Candida albicans and Enterococcus faecalis in the gut

    PubMed Central

    Garsin, Danielle A; Lorenz, Michael C

    2013-01-01

    The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906

  13. Interleukin 17-Mediated Host Defense against Candida albicans

    PubMed Central

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2015-01-01

    Candida albicans is part of the normal microbiota in most healthy individuals. However, it can cause opportunistic infections if host defenses are breached, with symptoms ranging from superficial lesions to severe systemic disease. The study of rare congenital defects in patients with chronic mucocutaneous candidiasis led to the identification of interleukin-17 (IL-17) as a key factor in host defense against mucosal fungal infection. Experimental infections in mice confirmed the critical role of IL-17 in mucocutaneous immunity against C. albicans. Research on mouse models has also contributed importantly to our current understanding of the regulation of IL-17 production by different cellular sources and its effector functions in distinct tissues. In this review, we highlight recent findings on IL-17-mediated immunity against C. albicans in mouse and man. PMID:26274976

  14. A morphogenetic regulatory role for ethyl alcohol in Candida albicans.

    PubMed

    Chauhan, Nitin M; Raut, Jayant S; Karuppayil, S Mohan

    2011-11-01

    Regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol and farnesol is reported in Candida albicans. The present study focuses on the effect of ethyl alcohol on C. albicans dimorphism and biofilm development. Ethyl alcohol inhibited germ tube formation induced by the four standard inducers in a concentration-dependent manner. The germ tube inhibitory concentration (4%) did not have any effect on the growth and viability of C. albicans cells. Ethyl alcohol also inhibited the elongation of germ tubes. Four percentage of ethyl alcohol significantly inhibited biofilm development on polystyrene and silicone surfaces. We suggest a potential morphogenetic regulatory role for ethyl alcohol, which may influence dissemination, virulence and establishment of infection. PMID:21605190

  15. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme.

    PubMed

    Staib, Peter; Morschhäuser, Joachim

    2007-01-01

    Chlamydospore formation has served for a long time for identification of the human fungal pathogen Candida albicans, but the biological function of these structures still remains a secret. They have been proposed to allow survival in harsh environmental conditions, but this assumption remains to be proven. Chlamydospores are produced only by the two closely related species C. albicans and Candida dubliniensis, whose natural habitats are humans and warm-blooded animals, but not by other Candida species that are also found outside animal hosts. However, no role in the pathogenesis of Candida infections has been assigned to these unusual cells and only a limited number of studies have been conducted in the past to unravel their function. The development of new molecular tools and the recent discovery of mating in C. albicans have also restimulated investigations to understand the morphogenesis and function of chlamydospores. The finding that chlamydospore formation is differentially controlled by certain environmental signals in C. albicans and C. dubliniensis has opened new approaches to study the regulation of this morphogenetic programme. These studies have already identified genes and signalling pathways that are required for chlamydospore production and should lead to a detailed understanding of this fascinating developmental process. PMID:17302741

  16. The effect of thyme and tea tree oils on morphology and metabolism of Candida albicans.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta; Dąbrowska, Mariola

    2014-01-01

    Members of Candida species cause significant problems in medicine and in many industrial branches also. In order to prevent from Candida sp. development, essential oils are more and more frequently applied as natural, non-toxic, non-pollutive and biodegradable agents with a broad spectrum of antimicrobial activity. The aim of the research was to determine changes in morphology and metabolic properties of Candida albicans in the presence of thyme and tea tree oils. Changes of enzymatic activity of isolates were observed in the presence of both tested essential oils, and they were primarily associated with loss or decrease of activity of all enzymes detected for control. Furthermore, only for 3 out of 11 isolates additional activity of N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase and trypsin was detected. Vivid changes in biochemical profiles were found after treatment with tea tree oil and they were related to loss of ability to assimilate D-xylose, D-sorbitol and D-trehalose. The main differences in morphology of isolates compared to the control strain concerned formation of pseudohyphae structures. Both examined essential oils caused changes in cell and colony morphology, as well as in the metabolism of Candida albicans. However, the extent of differences depends on the type and concentration of an essential oil. The most important finding is the broad spectrum of changes in yeast enzymatic profiles induced by thyme and tea tree oils. It can be supposed that these changes, together with loss of ability to assimilate saccharides could significantly impact Candida albicans pathogenicity. PMID:24918492

  17. Effects of Ploidy and Mating Type on Virulence of Candida albicans

    PubMed Central

    Ibrahim, Ashraf S.; Magee, B. B.; Sheppard, D. C.; Yang, Molly; Kauffman, Sarah; Becker, Jeff; Edwards, John E.; Magee, P. T.

    2005-01-01

    Candida albicans is the most common fungal pathogen of humans. The recent discovery of sexuality in this organism has led to the demonstration of a mating type locus which is usually heterozygous, although some isolates are homozygous. Tetraploids can be formed between homozygotes of the opposite mating type. However, the role of the mating process and tetraploid formation in virulence has not been investigated. We describe here experiments using a murine model of disseminated candidiasis which demonstrate that in three strains, including CAI-4, the most commonly used strain background, tetraploids are less virulent than diploids and can undergo changes in ploidy during infection. In contrast to reports with other strains, we find that MTL homozygotes are almost as virulent as the heterozygotes. These results show that the level of ploidy in Candida albicans can affect virulence, but the mating type configuration does not necessarily do so. PMID:16239535

  18. Population Structure of Candida albicans from Three Teaching Hospitals in Ghana.

    PubMed

    Adjapong, Gloria; Hale, Marie; Garrill, Ashley

    2016-02-01

    Previous studies on Candida species in a clinical setting in Ghana have shown a prevalence of Candida albicans. Despite this, very little is known about the various strain types and their population genetic structure. In this study three microsatellite loci, CAI, CAIII and CAVI, were used to investigate the population genetic structure of C. albicans from clinical isolates in Ghana. In all, 240 clinically unrelated C. albicans isolates were recovered from patients reporting at three teaching hospitals. All the isolates were heterozygous for at least one of the three loci, except for one isolate, which was homozygous for all three loci. Sixty-seven unique alleles and 240 different genotypes were generated by the three polymorphic microsatellite loci, resulting in a very high discriminatory potential of approximately 0.98. There was no significant difference in allele frequencies from the small number of anatomical sites sampled, regardless of the host conditions although high genotypic diversities were observed among the isolates. There was evidence for clonal reproduction, including over-expression of observed heterozygotes across the populations. The populations deviated significantly from Hardy-Weinberg equilibrium and pair-wise genotypic linkage disequilibria comparisons across the three loci were significant, also suggesting a clonal population. The overall Wright FIS for the three loci was negative, and the overall FST value was not significantly different from zero for the three loci analyzed, indicating a clonal and homogeneous population across the three sampling locations from Ghana. PMID:26483431

  19. Evaluation of CHROMagar Candida, VITEK2 YST and VITEK® MS for identification of Candida strains isolated from blood cultures.

    PubMed

    Sariguzel, Fatma Mutlu; Berk, Elife; Koc, Ayse Nedret; Sav, Hafize; Aydemir, Gonca

    2015-12-01

    The aim of this study is to compare conventional methods, CHROMagar Candida, VITEK2 YST card and VITEK®MS system for the identification of Candida strains isolated from blood cultures. Fifty-four strains were identified according to conventional methods, CHROMagar Candida, VITEK2 YST card and VITEK®MS. Sequencing was used as the reference method. The 54 strains included 32 Candida parapsilosis, 19 Candida albicans, 1 Candida glabrata and 2 Candida tropicalis according to the reference method. One C. albicans and one C. glabrata isolate were misidentified as C. parapsilosis by CHROMagar Candida. Two C. parapsilosis and three C. albicans isolates were misidentified by VITEK2 YST card. CHROMagar Candida, VITEK2 YST card and VITEK®MS identified correctly 96.2%, 90.7% and 100% of all strains, respectively. We found that the CHROMagar Candida, VITEK2 YST card and VITEK®MS system are easy, rapid and accurate alternative methods for the identification of yeast species in the clinical microbiology laboratory. PMID:26700081

  20. Baicalein induces programmed cell death in Candida albicans.

    PubMed

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( p<0.001) upon BE treatment compared with control. Taken together, our results indicate that BE treatment induces apoptosis in C.albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  1. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration

    PubMed Central

    Hargarten, Jessica C.; Moore, Tyler C.; Petro, Thomas M.; Nickerson, Kenneth W.

    2015-01-01

    The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens, C. albicans provokes recognition by host immune cells less capable of destroying it. To accomplish this, C. albicans white cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from. C. albicans opaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction of C. albicans white and opaque cells with macrophages. E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols. E,E-farnesol results in up to an 8.5-fold increase in macrophage migration in vitro and promotes a 3-fold increase in the peritoneal infiltration of macrophages in vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen. PMID:26195556

  2. A Photonic Crystal Protein Hydrogel Sensor for Candida albicans.

    PubMed

    Cai, Zhongyu; Kwak, Daniel H; Punihaole, David; Hong, Zhenmin; Velankar, Sachin S; Liu, Xinyu; Asher, Sanford A

    2015-10-26

    We report two-dimensional (2D) photonic crystal (PC) sensing materials that selectively detect Candida albicans (C. albicans). These sensors utilize Concanavalin A (Con A) protein hydrogels with a 2D PC embedded on the Con A protein hydrogel surface, that multivalently and selectively bind to mannan on the C. albicans cell surface to form crosslinks. The resulting crosslinks shrink the Con A protein hydrogel, reduce the 2D PC particle spacing, and blue-shift the light diffracted from the PC. The diffraction shifts can be visually monitored, measured with a spectrometer, or determined from the Debye diffraction ring diameter. Our unoptimized hydrogel sensor has a detection limit of around 32 CFU/mL for C. albicans. This sensor distinguishes between C. albicans and those microbes devoid of cell-surface mannan such as the gram-negative bacterium E. coli. This sensor provides a proof-of-concept for utilizing recognition between lectins and microbial cell surface carbohydrates to detect microorganisms in aqueous environments. PMID:26480336

  3. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration.

    PubMed

    Hargarten, Jessica C; Moore, Tyler C; Petro, Thomas M; Nickerson, Kenneth W; Atkin, Audrey L

    2015-10-01

    The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens, C. albicans provokes recognition by host immune cells less capable of destroying it. To accomplish this, C. albicans white cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from. C. albicans opaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction of C. albicans white and opaque cells with macrophages. E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols. E,E-farnesol results in up to an 8.5-fold increase in macrophage migration in vitro and promotes a 3-fold increase in the peritoneal infiltration of macrophages in vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen. PMID:26195556

  4. Oxidative stress responses in the human fungal pathogen, Candida albicans.

    PubMed

    Dantas, Alessandra da Silva; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  5. Spaceflight enhances cell aggregation and random budding in Candida albicans.

    PubMed

    Crabbé, Aurélie; Nielsen-Preiss, Sheila M; Woolley, Christine M; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O; Searles, Stephen C; Nelman-Gonzalez, Mayra A; Ott, C Mark; Wilson, James W; Pierson, Duane L; Stefanyshyn-Piper, Heidemarie M; Hyman, Linda E; Nickerson, Cheryl A

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans-induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  6. Cellular Components Mediating Coadherence of Candida albicans and Fusobacterium nucleatum.

    PubMed

    Wu, T; Cen, L; Kaplan, C; Zhou, X; Lux, R; Shi, W; He, X

    2015-10-01

    Candida albicans is an opportunistic fungal pathogen found as part of the normal oral flora. It can be coisolated with Fusobacterium nucleatum, an opportunistic bacterial pathogen, from oral disease sites, such as those involved in refractory periodontitis and pulp necrosis. The physical coadherence between these 2 clinically important microbes has been well documented and suggested to play a role in facilitating their oral colonization and colocalization and contributing to polymicrobial pathogenesis. Previous studies indicated that the physical interaction between C. albicans and F. nucleatum was mediated by the carbohydrate components on the surface of C. albicans and the protein components on the Fusobaterium cell surface. However, the identities of the components involved still remain elusive. This study was aimed at identifying the genetic determinants involved in coaggregation between the 2 species. By screening a C. albicans SN152 mutant library and a panel of F. nucleatum 23726 outer membrane protein mutants, we identified FLO9, which encodes a putative adhesin-like cell wall mannoprotein of C. albicans and radD, an arginine-inhibitable adhesin-encoding gene in F. nucleatum that is involved in interspecies coadherence. Consistent with these findings, we demonstrated that the strong coaggregation between wild-type F. nucleatum 23726 and C. albicans SN152 in an in vitro assay could be greatly inhibited by arginine and mannose. Our study also suggested a complex multifaceted mechanism underlying physical interaction between C. albicans and F. nucleatum and for the first time revealed the identity of major genetic components involved in mediating the coaggregation. These observations provide useful knowledge for developing new targeted treatments for disrupting interactions between these 2 clinically relevant pathogens. PMID:26152186

  7. Clonal identity of Candida albicans in the oral cavity and the gastrointestinal tract of pre-school children.

    PubMed

    Hossain, H; Ansari, F; Schulz-Weidner, N; Wetzel, W-E; Chakraborty, T; Domann, E

    2003-10-01

    The clonal relationship between oral and fecal Candida albicans isolated from children of pre-school age was examined using RAPD analysis. Significantly higher levels of C. albicans were found in saliva, dental plaque, carious specimens and stools of 56 patients with severe caries as compared to 52 healthy control subjects. The highest prevalence was found in carious specimens and a strong correlation was observed between its presence in saliva, dental plaque, carious specimen and feces. RAPD analysis of isolates from 23 patients with simultaneous oral and fecal C. albicans revealed clonal counterparts present in both oral and stool samples in 15 cases; five patients harbored closely related strains; and three patients harbored unrelated strains. Our results demonstrate a strong correlation between oral and gastrointestinal C. albicans colonization. We assume that carious teeth may constitute an ecologic niche for C. albicans potentially responsible for recurrent oral and non-oral candidiasis. PMID:12930522

  8. Bax-induced cell death in Candida albicans.

    PubMed

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  9. Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase

    PubMed Central

    Santini, Sébastien; Monchois, Vincent; Mouz, Nicolas; Sigoillot, Cécile; Rousselle, Tristan; Claverie, Jean-Michel; Abergel, Chantal

    2008-01-01

    Background In search of new antifungal targets of potential interest for pharmaceutical companies, we initiated a comparative genomics study to identify the most promising protein-coding genes in fungal genomes. One criterion was the protein sequence conservation between reference pathogenic genomes. A second criterion was that the corresponding gene in Saccharomyces cerevisiae should be essential. Since thiamine pyrophosphate is an essential product involved in a variety of metabolic pathways, proteins responsible for its production satisfied these two criteria. Results We report the enzymatic characterization and the crystallographic structure of the Candida albicans Thiamine pyrophosphokinase. The protein was co-crystallized with thiamine or thiamine-PNP. Conclusion The presence of an inorganic phosphate in the crystallographic structure opposite the known AMP binding site relative to the thiamine moiety suggests that a second AMP molecule could be accommodated in the C. albicans structure. Together with the crystallographic structures of the enzyme/substrate complexes this suggests the existence of a secondary, less specific, nucleotide binding site in the Candida albicans thiamine pyrophosphokinase which could transiently serve during the release or the binding of ATP. The structures also highlight a conserved Glutamine residue (Q138) which could interact with the ATP α-phosphate and act as gatekeeper. Finally, the TPK/Thiamine-PNP complex is consistent with a one step mechanism of pyrophosphorylation. PMID:18652651

  10. Nanocapsules with glycerol monolaurate: Effects on Candida albicans biofilms.

    PubMed

    Lopes, Leonardo Quintana Soares; Santos, Cayane Genro; Vaucher, Rodrigo de Almeida; Raffin, Renata Platcheck; Santos, Roberto Christ Vianna

    2016-08-01

    Candida albicans does not only occur in the free living planktonic form but also grows in surface-attached biofilm communities. Moreover, these biofilms appear to be the most common lifestyle and are involved in the majority of human Candida infections. Nanoparticles can be used as an alternative to conventional antimicrobial agents and can also act as carriers for antibiotics and other drugs. In view of this, the aim of the study was develop, characterize and verify the anti-biofilm potential of GML Nanocapsules against C. albicans. The GML Nanocapsules showed mean diameter of 193.2 nm, polydispersion index of 0.044, zeta potential of -23.3 mV and pH 6.32. The microdilution assay showed MIC of 15.5 μg mL(-1) to GML Nanocapsules and 31.25 μg mL(-1) to GML. The anti-biofilm assay showed the significantly reduction of biomass of C. albicans biofilm treated with GML Nanocapsules while the GML does not exhibit effect. The kinetic assay demonstrated that at 48 h, the GML Nanocapsules reduce 94% of formed biofilm. The positive results suggest the promisor alternative for this public health problem that is biofilm infections. PMID:27241236

  11. Germ tube-specific antigens of Candida albicans cell walls

    SciTech Connect

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.

  12. A Human-Curated Annotation of the Candida albicans Genome

    PubMed Central

    Braun, Burkhard R; van het Hoog, Marco; d'Enfert, Christophe; Martchenko, Mikhail; Dungan, Jan; Kuo, Alan; Inglis, Diane O; Uhl, M. Andrew; Hogues, Hervé; Berriman, Matthew; Lorenz, Michael; Levitin, Anastasia; Oberholzer, Ursula; Bachewich, Catherine; Harcus, Doreen; Marcil, Anne; Dignard, Daniel; Iouk, Tatiana; Zito, Rosa; Frangeul, Lionel; Tekaia, Fredj; Rutherford, Kim; Wang, Edwin; Munro, Carol A; Bates, Steve; Gow, Neil A; Hoyer, Lois L; Köhler, Gerwald; Morschhäuser, Joachim; Newport, George; Znaidi, Sadri; Raymond, Martine; Turcotte, Bernard; Sherlock, Gavin; Costanzo, Maria; Ihmels, Jan; Berman, Judith; Sanglard, Dominique; Agabian, Nina; Mitchell, Aaron P; Johnson, Alexander D; Whiteway, Malcolm; Nantel, André

    2005-01-01

    Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications. PMID:16103911

  13. Microsatellite typing identifies the major clades of the human pathogen Candida albicans.

    PubMed

    Chávez-Galarza, Julio; Pais, Célia; Sampaio, Paula

    2010-07-01

    Candida albicans population studies showed that this species could be divided into sub-groups of closely related strains, designated by clades. Since the emergence of microsatellite analysis as a PCR based method, this technique has been successfully used as a tool to differentiate C. albicans isolates but has never been tested regarding clustering of the five major clades. In this study we tested microsatellite length polymorphism (MLP) ability to group 29 C. albicans strains previously defined as belonging to clades I, II, III, E and SA, nine atypical strains from Angola and Madagascar, and 78 Portuguese clinical isolates. MLP typing of the total 116 strains analyzed yielded 87 different multilocus allelic combinations which resulted in a high discriminatory power index, of 0.987, with only two markers, CA1 and CEF3. Cluster analysis of the 29 previously defined strains grouped them according to their clade designation with a matrix cophenetic correlation of r=0.963 after a normalized Mantel statistic. Clustering analysis of the 116 strains maintained the same groupings, clearly defining the five major C. albicans clades. The cophenetic value obtained was of r=0.839, and the one-tail probability of the normalized Mantel statistic out of 1000 random permutations was P=0.0020. The proportion of Portuguese isolates in the groups I, II, III and SA was of 2.7%, 15.4%, 3.8% and 0%, respectively. None of the isolates co-clustered with the atypical strains. These results confirm MLP typing as a good method both to type and differentiate C. albicans isolates and to group isolates, identifying the major C. albicans clades, similarly to Ca3 fingerprinting and multilocus sequence typing (MLST). PMID:20348035

  14. Molecular identification and antifungal susceptibility of 186 Candida isolates from vulvovaginal candidiasis in southern China.

    PubMed

    Shi, Xiao-Yu; Yang, Yan-Ping; Zhang, Ying; Li, Wen; Wang, Jie-Di; Huang, Wen-Ming; Fan, Yi-Ming

    2015-04-01

    There is limited information regarding the molecular epidemiology and antifungal susceptibilities of Candida isolates using the Neo-Sensitabs method in patients with vulvovaginal candidiasis (VVC). From August 2012 to March 2013, 301 non-pregnant patients aged 18-50 years with suspected VVC were prospectively screened at a teaching hospital in southern China. The vaginal isolates were identified by DNA sequencing of internal transcribed spacer and the D1/D2 domain. Antifungal susceptibility testing of seven antifungal agents was performed using the Neo-Sensitabs tablet diffusion method. Candida species were isolated from 186 cases (61.79 %). The most common pathogen was Candida albicans (91.4 %), followed by Candida glabrata (4.3 %), Candida tropicalis (3.2 %) and Candida parapsilosis (1.1 %). The susceptibility rates to C. albicans were higher for caspofungin, voriconazole and fluconazole than those for itraconazole, miconazole, ketoconazole and terbinafine (P<0.01). The resistance rates to C. albicans were 4.7, 6.5, 7.1, 7.6, 12.3, 27.7 and 74.7 % for caspofungin, miconazole, itraconazole, voriconazole, fluconazole, ketoconazole and terbinafine, respectively. No drugs tested apart from fluconazole exhibited differences in resistance between C. albicans and non-albicans Candida isolates. The results demonstrate that, using DNA sequencing, C. albicans is the most common isolate from Chinese patients with VVC. Caspofungin, voriconazole and fluconazole may be preferable to other azoles and terbinafine in the treatment of VVC. PMID:25596116

  15. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    SciTech Connect

    Diener, A.C.; Fink, G.R.

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in both vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.

  16. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment

    PubMed Central

    Lin, Jia; Wester, Michael J.; Graus, Matthew S.; Lidke, Keith A.; Neumann, Aaron K.

    2016-01-01

    The cell wall of Candida albicans is composed largely of polysaccharides. Here we focus on β-glucan, an immunogenic cell-wall polysaccharide whose surface exposure is often restricted, or “masked,” from immune recognition by Dectin-1 on dendritic cells (DCs) and other innate immune cells. Previous research suggested that the physical presentation geometry of β-glucan might determine whether it can be recognized by Dectin-1. We used direct stochastic optical reconstruction microscopy to explore the fine structure of β-glucan exposed on C. albicans cell walls before and after treatment with the antimycotic drug caspofungin, which alters glucan exposure. Most surface-accessible glucan on C. albicans yeast and hyphae is limited to isolated Dectin-1–binding sites. Caspofungin-induced unmasking caused approximately fourfold to sevenfold increase in total glucan exposure, accompanied by increased phagocytosis efficiency of DCs for unmasked yeasts. Nanoscopic imaging of caspofungin-unmasked C. albicans cell walls revealed that the increase in glucan exposure is due to increased density of glucan exposures and increased multiglucan exposure sizes. These findings reveal that glucan exhibits significant nanostructure, which is a previously unknown physical component of the host–Candida interaction that might change during antifungal chemotherapy and affect innate immune activation. PMID:26792838

  17. Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms.

    PubMed

    Yu, Haining; Liu, Xuelian; Wang, Chen; Qiao, Xue; Wu, Sijin; Wang, Hui; Feng, Lan; Wang, Yipeng

    2016-02-01

    As the most common fungal pathogen of humans, severe drug resistance has emerged in the clinically isolated Candida albicans, which lead to the urgency to develop novel antifungal agents. Here, four our previously characterized cathelicidins (cathelicidin-BF, Pc-CATH1, Cc-CATH2, Cc-CATH3) were selected and their antifungal activities against C. albicans were evaluated in vitro and in vivo using amphotericin B and LL-37 as control. Results showed that all four cathelicidins could eradicate standard and clinically isolated C. albicans strains with most MIC values ranging from 1 to 16 μg/ml, in less than 0.5 h revealed by time-kill kinetic assay. Four peptides only exhibited slight hemolytic activity with most HC50 > 200 μg/ml, and retained potent anti-C. albicans activity at salt concentrations below and beyond physiological level. In animal experiment, 50 mg/kg administration of the four cathelicidins could significantly reduce the fungal counts in a murine oral candidiasis model induced by clinically isolated C. albicans. The antibiofilm activity of cathelicidin-BF, the most potent among the five peptides was evaluated, and result showed that cathelicidin-BF strongly inhibited C. albicans biofilm formation at 20 μg/ml. Furthermore, cathelicidin-BF also exhibited potent anti-C. albicans activity in established biofilms as measured by metabolic and fluorescent viability assays. Structure-function analyses suggest that they mainly adopt an α-helical conformations, which enable them to act as a membrane-active molecule. Altogether, the four cathelicidins display great potential for antifungal agent development against candidiasis. PMID:26656137

  18. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong

    PubMed Central

    Seneviratne, Chaminda J.; Rajan, Suhasini; Wong, Sarah S. W.; Tsang, Dominic N. C.; Lai, Christopher K. C.; Samaranayake, Lakshman P.; Jin, Lijian

    2016-01-01

    Candida bloodstream infections (CBI) are one of the most common nosocomial infections globally, and they account for a high mortality rate. The increasing global prevalence of drug-resistant Candida strains has also been posing a challenge to clinicians. In this study, we comprehensively evaluated the biofilm formation and production of hemolysin and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well as their antifungal susceptibility both in the presence and in the absence of human serum, using standard methodology. Candida albicans was the predominant species among the 63 CBI isolates collected, and non-albicans Candida species accounted for approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the most common non-albicans Candida species. A high proportion (31.7%) of the CBI isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole. One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of drug-resistance CBI isolates in Hong Kong was observed with reference to a previous study. Notably, all non-albicans Candida species, showed increased hemolytic activity relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited proteinase activities. Majority of the isolates were capable of forming mature biofilms. Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but not amphotericin B. Taken together, our findings demonstrate that CBI isolates of Candida have the potential to express to varying extent their virulence attributes (e.g., biofilm formation, hemolysin production, and proteinase activity) and these, together with perturbations in their antifungal sensitivity in the presence of serum, may contribute to treatment complication in candidemia. The effect of serum on antifungal activity

  19. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong.

    PubMed

    Seneviratne, Chaminda J; Rajan, Suhasini; Wong, Sarah S W; Tsang, Dominic N C; Lai, Christopher K C; Samaranayake, Lakshman P; Jin, Lijian

    2016-01-01

    Candida bloodstream infections (CBI) are one of the most common nosocomial infections globally, and they account for a high mortality rate. The increasing global prevalence of drug-resistant Candida strains has also been posing a challenge to clinicians. In this study, we comprehensively evaluated the biofilm formation and production of hemolysin and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well as their antifungal susceptibility both in the presence and in the absence of human serum, using standard methodology. Candida albicans was the predominant species among the 63 CBI isolates collected, and non-albicans Candida species accounted for approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the most common non-albicans Candida species. A high proportion (31.7%) of the CBI isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole. One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of drug-resistance CBI isolates in Hong Kong was observed with reference to a previous study. Notably, all non-albicans Candida species, showed increased hemolytic activity relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited proteinase activities. Majority of the isolates were capable of forming mature biofilms. Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but not amphotericin B. Taken together, our findings demonstrate that CBI isolates of Candida have the potential to express to varying extent their virulence attributes (e.g., biofilm formation, hemolysin production, and proteinase activity) and these, together with perturbations in their antifungal sensitivity in the presence of serum, may contribute to treatment complication in candidemia. The effect of serum on antifungal activity

  20. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans.

    PubMed Central

    Jenkinson, H F; Lala, H C; Shepherd, M G

    1990-01-01

    Thirteen strains of viridans group streptococci and two strains of other streptococci were tested for coaggregation with Candida albicans. Streptococcus sanguis strains generally exhibited low levels of adherence to 28 degrees C-grown exponential-phase yeast cells, but starvation of yeast cells for glucose at 37 degrees C (or at 28 degrees C) increased their coaggregating activity with these streptococci by at least tenfold. This was a property common to four C. albicans strains tested, two of which were able to form mycelia (6406 and MEN) and two of which were not (MM2002 and CA2). The expression of the coaggregation adhesin during yeast cell starvation was inhibited by addition of trichodermin or amphotericin B. The strains of S. sanguis, Streptococcus gordonii, and Streptococcus oralis tested for coaggregating activity encompassed a diverse range of physiological and morphological types, yet all exhibited saturable coaggregation with starved C. albicans cells. There was no correlation of cell surface hydrophobicity, of either yeast or streptococcal cells, with their abilities to coaggregate. Strains of Streptococcus anginosus also coaggregated with starved yeast cells; Streptococcus salivarius and Streptococcus pyogenes coaggregated to a lesser degree with C. albicans, and the coaggregation with S. pyogenes was not promoted by yeast cell starvation; Streptococcus mutans and Enterococcus faecalis did not coaggregate with yeast. The coaggregation reactions of S. sanguis and S. gordonii with C. albicans were inhibited by EDTA and by heat or protease treatment of the yeast cells and were not reversible by the addition of lactose or other simple sugars. These observations extend the range of intergeneric coaggregations that are known to occur between oral microbes and suggest that coaggregations of C. albicans with viridans group streptococci may be important for colonization of oral surfaces by the yeast. PMID:2182544

  1. Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans

    PubMed Central

    Woolley, Christine M.; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O.; Searles, Stephen C.; Nelman-Gonzalez, Mayra A.; Ott, C. Mark; Wilson, James W.; Pierson, Duane L.; Stefanyshyn-Piper, Heidemarie M.; Hyman, Linda E.; Nickerson, Cheryl A.

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  2. Factors Supporting Cysteine Tolerance and Sulfite Production in Candida albicans

    PubMed Central

    Hennicke, Florian; Grumbt, Maria; Lermann, Ulrich; Ueberschaar, Nico; Palige, Katja; Böttcher, Bettina; Jacobsen, Ilse D.; Staib, Claudia; Morschhäuser, Joachim; Monod, Michel; Hube, Bernhard; Hertweck, Christian

    2013-01-01

    The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity. PMID:23417561

  3. Medical treatment of a pacemaker endocarditis due to Candida albicans and to Candida glabrata.

    PubMed

    Roger, P M; Boissy, C; Gari-Toussaint, M; Foucher, R; Mondain, V; Vandenbos, F; le Fichoux, Y; Michiels, J F; Dellamonica, P

    2000-09-01

    We describe a case of pacemaker infection due to two fungal species: Candida albicans and C. glabrata. Transthoracic echocardiography showed a large vegetation on the intraventricular wires. Because of severe underlying diseases, surgery was believed to be contraindicated. The patient was treated using high dose of fluconazole, resulting in clinical improvement and negative blood cultures. However, 2 months later, the patient underwent a fatal stroke. At autopsy, a large vegetation was found only all along the wires. Postmortem culture of the infected material was positive for both C. albicans and C. glabrata. PMID:11023765

  4. Zebrafish Egg Infection Model for Studying Candida albicans Adhesion Factors.

    PubMed

    Chen, Yin-Zhi; Yang, Yun-Liang; Chu, Wen-Li; You, May-Su; Lo, Hsiu-Jung

    2015-01-01

    Disseminated candidiasis is associated with 30-40% mortality in severely immunocompromised patients. Among the causal agents, Candida albicans is the dominant one. Various animal models have been developed for investigating gene functions in C. albicans. Zebrafish injection models have increasingly been applied in elucidating C. albicans pathogenesis because of the conserved immunity, prolific fecundity of the zebrafish and the low costs of care systems. In this study, we established a simple, noninvasive zebrafish egg bath infection model, defined its optimal conditions, and evaluated the model with various C. albicans mutant strains. The deletion of SAP6 did not have significant effect on the virulence. By contrast, the deletion of BCR1, CPH1, EFG1, or TEC1 significantly reduced the virulence under current conditions. Furthermore, all embryos survived when co-incubated with bcr1/bcr1, cph1/cph1 efg1/efg1, efg1/efg1, or tec1/tec1 mutant cells. The results indicated that our novel zebrafish model is time-saving and cost effective. PMID:26569623

  5. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    PubMed

    Tafesse, Fikadu G; Rashidfarrokhi, Ali; Schmidt, Florian I; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L

    2015-10-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans. PMID:26431038

  6. Enhanced antibody responses induced by Candida albicans in mice.

    PubMed

    Cutler, J E; Lloyd, R K

    1982-12-01

    Candida albicans may immunopotentiate antibody responses in mice to antigens unrelated to the fungus. This effect occurred best with cell-associated, rather than soluble, antigens. When dead yeasts, cell walls, or a water-soluble candidal polysaccharide were used, immunopotentiation was most dramatic when the antigen and fungal materials were given concomitantly via an intraperitoneal injection. However, mice infected with viable yeasts several days before antigen administration also developed heightened responses to the antigen. The mechanism of the C. albicans-induced adjuvanticity was not defined, but the effect seemed to correlate with induction of inflammation. The presence of C. albicans or other inflammatory agents in the peritoneal cavity caused a more rapid uptake of particulate antigen by the liver. The relationship between this event and immunopotentiation is not known. These studies demonstrate that C. albicans may have profound effects on host immune responses. Because immunological aberrations are commonly found in patients with candidiasis it may be important to determine whether some of these aberrations result from, rather than precede candidiasis. PMID:6185421

  7. Blood group glycolipids as epithelial cell receptors for Candida albicans.

    PubMed Central

    Cameron, B J; Douglas, L J

    1996-01-01

    The role of glycosphingolipids as possible epithelial cell receptors for Candida albicans was examined by investigating the binding of biotinylated yeasts to lipids extracted from human buccal epithelial cells and separated on thin-layer chromatograms. Binding was visualized by the addition of 125I-streptavidin followed by autoradiography. Five C. albicans strains thought from earlier work to have a requirement for fucose-containing receptors all bound to the same three components in the lipid extract. A parallel chromatogram overlaid with biotinylated Ulex europaeus lectin, which is a fucose-binding lectin with a specificity for the H blood group antigen, showed that two of these glycosphingolipids carried this antigenic determinant. Preparations of crude and purified adhesin (a protein with a size of 15.7 kDa which lacked cysteine residues) from one of the strains also bound to these same two components. The third glycosphingolipid, which bound whole cells but neither preparation of adhesin, was recognized by Helix pomatia lectin, indicating that it contained N-acetylgalactosamine, possibly in the form of the A blood group antigen. Overlay assays with a sixth strain of C. albicans (GDH 2023) revealed a completely different binding pattern of four receptors, each of which contained N-acetylglucosamine. These results confirm earlier predictions about the receptor specificity of the strains made on the basis of adhesion inhibition studies and indicate that blood group antigens can act as epithelial cell receptors for C. albicans. PMID:8641797

  8. Local Probiotic Therapy for Vaginal Candida albicans Infections.

    PubMed

    Kovachev, Stefan Miladinov; Vatcheva-Dobrevska, Rossitza Stefanova

    2015-03-01

    The high rate of vaginal Candida albicans recurrence is attributed to azole resistance rates as high as 15%. The aim of this study was to determine the clinical and microbiological efficacy of standard azole therapy for treatment of vaginal C. albicans infection alone and in combination with local probiotic as well as the effects on vaginal microbiota. This study included 436 women with vaginal candidiasis randomly assigned to two treatment groups. The first group, with 207 patients (12 dropouts), was administered 150 mg fluconazole and a single vaginal globule of fenticonazole (600 mg) on the same day. The second group of 209 patients (8 dropouts) followed the same treatment schedule; however, ten applications of a vaginal probiotic containing Lactobacillus acidophilus, L. rhamnosus, Streptococcus thermophilus, and L. delbrueckii subsp. bulgaricus were also administered beginning the fifth day after azole treatment. Microbiological analysis of the therapy efficacy in the first treatment group showed C. albicans resistance in over 30% of patients. Clinical complaints persisted after treatment administration in 79.7% (n = 165) of women in this group. Clinical complaints in the second group decreased to 31.1% (n = 65) and microbiological efficacy also improved among investigated parameters, from 93.7% (n = 193) to 95.2% (n = 198). The local application of probiotics after administration of combined azoles for treatment of vaginal C. albicans infections increases therapy efficacy and could prevent relapse. PMID:25362524

  9. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives.

    PubMed

    Shafreen, Raja Mohamed Beema; Raja Mohamed, Beema Shafreen; Muthamil, Subramanian; Subramanian, Muthamil; Pandian, Shunmugiah Karutha; Shunmugiah, Karutha Pandian

    2014-08-01

    Candida albicans is an important opportunistic fungal pathogen, responsible for biofilm associated infections in immunocompromised patients. The aim of the present study was to investigate the antibiofilm properties of novel levofloxacin derivatives on C. albicans biofilms. The levofloxacin derivatives at their Biofilm Inhibitory Concentrations (BIC) were able to inhibit the biofilms of C. albicans, the yeast-to-hyphal transition and were also able to disrupt their mature biofilms. Furthermore, Real-time PCR analysis showed that the expression of ergosterol biosynthesis pathway gene (ERG11) and the efflux pump-encoding genes (CDR1 and MDR1) was decreased upon treatment with the levofloxacin derivatives. The total ergosterol content quantified using UV spectrophotomer showed decrease in ergosterol in the presence of levofloxacin derivatives. Overall, levofloxacin derivatives (6a, 6c and 7d) are capable of inhibiting C. albicans virulence factors. Therefore, these compounds with potential therapeutic implications can be used as new strategy to treat biofilm-related candidal infections. PMID:24723295

  10. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    SciTech Connect

    Yannai, S.; Berdicevsky, I.; Duek, L. )

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans was the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.

  11. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans

    PubMed Central

    Schmidt, Florian I.; Freinkman, Elizaveta; Dougan, Stephanie; Dougan, Michael; Esteban, Alexandre; Maruyama, Takeshi; Strijbis, Karin; Ploegh, Hidde L.

    2015-01-01

    The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans. PMID:26431038

  12. Two mechanisms of butenafine action in Candida albicans.

    PubMed Central

    Iwatani, W; Arika, T; Yamaguchi, H

    1993-01-01

    The mechanism of action of a new benzylamine antimycotic, butenafine hydrochloride, was studied in Candida albicans by using the thiocarbamate antimycotic tolnaftate as a reference drug. Butenafine completely inhibited the growth of a test strain of C. albicans at 25 micrograms/ml and was cidal at 50 micrograms/ml. Tolnaftate did not show any growth-inhibitory activity up to 100 micrograms/ml. Both butenafine and tolnaftate inhibited squalene epoxidation in C. albicans, with 50% inhibitory concentrations being 0.57 and 0.17 microgram/ml, respectively. Butenafine, but not tolnaftate, induced the release of appreciable amounts of Pi from C. albicans cells at 12.5 micrograms/ml. This effect of butenafine was augmented when the cells were pretreated with tolnaftate. The results suggest that the direct membrane-damaging effect of butenafine may play a major role in its anticandidal activity and that the drug-induced alteration in the cellular sterol composition renders the cell membrane more susceptible to the membrane-damaging effect of this drug. PMID:8494375

  13. Two mechanisms of butenafine action in Candida albicans.

    PubMed

    Iwatani, W; Arika, T; Yamaguchi, H

    1993-04-01

    The mechanism of action of a new benzylamine antimycotic, butenafine hydrochloride, was studied in Candida albicans by using the thiocarbamate antimycotic tolnaftate as a reference drug. Butenafine completely inhibited the growth of a test strain of C. albicans at 25 micrograms/ml and was cidal at 50 micrograms/ml. Tolnaftate did not show any growth-inhibitory activity up to 100 micrograms/ml. Both butenafine and tolnaftate inhibited squalene epoxidation in C. albicans, with 50% inhibitory concentrations being 0.57 and 0.17 microgram/ml, respectively. Butenafine, but not tolnaftate, induced the release of appreciable amounts of Pi from C. albicans cells at 12.5 micrograms/ml. This effect of butenafine was augmented when the cells were pretreated with tolnaftate. The results suggest that the direct membrane-damaging effect of butenafine may play a major role in its anticandidal activity and that the drug-induced alteration in the cellular sterol composition renders the cell membrane more susceptible to the membrane-damaging effect of this drug. PMID:8494375

  14. Effects of ambroxol on Candida albicans growth and biofilm formation.

    PubMed

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis. PMID:24224742

  15. Deltamethrin Increases Candida albicans infection susceptibility in mice.

    PubMed

    Rehman, H; Mohan, A; Tabassum, H; Ahmad, F; Rahman, S; Parvez, S; Raisuddin, S

    2011-05-01

    Deltamethrin, an alpha-cyano type II synthetic pyrethroid insecticide, is used to control a wide range of insects on a variety of crops and vectors of diseases. Deltamethrin has been previously reported for its immunotoxic effects and therefore its exposure may affect the host resistance to infection and tumour challenge. Effect of exposure of deltamethrin on host resistance to Candida albicans infection was examined in Swiss albino mice. The objective of this study was to investigate the modulatory action of deltamethrin in C. albicans infected mice. The dose of deltamethrin was initially tested and selected from our previous study (18 mg/kg). Percentage of infection in deltamethrin treated animals increased faster when compared to that of the controls. Deltamethrin exposure along with C. albicans infection caused alteration of humoral immune response. The number of colony forming unit in liver and spleen were also found to be significantly increased in the treated group. The results from our present study suggest that deltamethrin exhibits an immunosuppressive effect and has a negative impact on host resistance to C. albicans infection. PMID:21272049

  16. Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans.

    PubMed Central

    Smith, H A; Shenbagamurthi, P; Naider, F; Kundu, B; Becker, J M

    1986-01-01

    Two novel polyoxins, N-epsilon-(octanoyl)-lysyl-uracil polyoxin C (Oct-Lys-UPOC) and N-gamma-(octyl)-glutaminyluracil polyoxin C (Oct-Gln-UPOC), were synthesized by reacting uracil polyoxin C with the appropriate amino acid p-nitrophenyl ester. Oct-Lys-UPOC and Oct-Gln-UPOC were strong inhibitors (Kis = 1.7 X 10(-6)M) of chitin synthetase from Candida albicans membrane preparations. In a permeabilized-cell assay, Oct-Gln-UPOC had a 10-fold-lower inhibitory activity toward chitin synthetase than did the Oct-Lys-UPOC analog. Both compounds were resistant to hydrolysis by a cell extract of C. albicans H317; however, Oct-Gln-UPOC was hydrolyzed with a half-life of 23 min by a permeabilized-cell preparation. Oct-Lys-UPOC was resistant to hydrolysis by permeabilized cells. Oct-Gln-UPOC and Oct-Lys-UPOC did not compete with the transport of peptides or uridine into the cell. At concentrations up to 2 mM these two new polyoxins were ineffective in the inhibition of cell growth or reduction of cell viability, but they induced aberrant morphologies in C. albicans at a concentration of 0.25 mM. These data suggest that polyoxins containing hydrophobic amino acids retain strong chitin synthetase inhibitory activity and are resistant to cellular hydrolysis. They provide the first example of effective synthetic chitin synthetase inhibitors which are stable inside C. albicans. PMID:3524423

  17. Persistence of Pigment Production by Yeast Isolates Grown on CHROMagar Candida Medium

    PubMed Central

    Hospenthal, Duane R.; Murray, Clinton K.; Beckius, Miriam L.; Green, Judith A.; Dooley, David P.

    2002-01-01

    We evaluated the persistence of pigmentation in yeast isolates grown on the chromogenic medium CHROMagar Candida over 7 days. Candida, Cryptococcus, and Trichosporon isolates were inoculated alone or mixed onto duplicate sets of plates and incubated at 30 and 35°C. Candida albicans and Candida krusei were readily identified throughout the reading period, but Candida glabrata was difficult to differentiate from other species until the 3- or 4-day time point. Candida tropicalis produced colonies similar to those of rare Cryptococcus and Trichosporon species, and mixed cultures were often difficult to identify as such. PMID:12454192

  18. Th17 cells in immunity to Candida albicans

    PubMed Central

    Hernández-Santos, Nydiaris; Gaffen, Sarah L.

    2012-01-01

    Our understanding of immunity to fungal pathogens has advanced considerably in recent years. Particularly significant have been the parallel discoveries in the C-type lectin receptor family and the Th effector arms of immunity, especially Th17 cells and their signature cytokine IL-17. Many of these studies have focused on the most common human fungal pathogen Candida albicans, which is typically a commensal microbe in healthy individuals but causes various disease manifestations in immunocompromised hosts, ranging from mild mucosal infections to lethal disseminated disease. Here, we discuss emerging fundamental discoveries with C. albicans that have informed our overall molecular understanding of fungal immunity. In particular, we focus on the importance of pattern recognition receptor-mediated fungal recognition and subsequent IL-17 responses in host defense against mucosal candidiasis. In light of these recent advances, we also discuss the implications for anti-cytokine biologic therapy and vaccine development. PMID:22607796

  19. Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans.

    PubMed Central

    Swoboda, R K; Bertram, G; Budge, S; Gooday, G W; Gow, N A; Brown, A J

    1995-01-01

    Candida albicans HSP90 sequences were isolated by screening cDNA and genomic libraries with a probe derived from the Saccharomyces cerevisiae homolog, HSP82, which encodes a member of the heat shock protein 90 family of molecular chaperones. Identical sequences were obtained for the 2,197-bp overlap of the cDNA and gene sequences, which were derived from C. albicans 3153A and ATCC 10261, respectively. The C. albicans HSP90 gene contained no introns, and it showed strong homology (61 to 79% identity) to HSP90 sequences from other fungi, vertebrates, and plants. The C-terminal portion of the predicted Hsp90 amino acid sequence was identical to the 47-kDa protein which is thought to be immunoprotective during C. albicans infections (R. C. Matthews, J. Med. Microbiol. 36:367-370, 1992), confirming that this protein represents the C-terminal portion of the 81-kDa Hsp90 protein. Quantitative Northern (RNA) analyses revealed that C. albicans HSP90 mRNA was heat shock inducible and that its levels changed during batch growth, with its maximum levels being reached during the mid-exponential growth phase. HSP90 mRNA levels increased transiently during the yeast-to-hyphal transition but did not correlate directly with germ tube production per se. These data do not exclude a role for Hsp90 in the dimorphic transition. Southern blotting revealed only one HSP90 locus in the diploid C. albicans genome. Repeated attempts to disrupt both alleles and generate a homozygous C. albicans delta hsp90/delta hsp90 null mutant were unsuccessful. These observations suggest the existence of a single HSP90 locus which is essential for viability in C. albicans. PMID:7591093

  20. Multilocus Sequence Typing for Analyses of Clonality of Candida albicans Strains in Taiwan

    PubMed Central

    Chen, Kuo-Wei; Chen, Yee-Chun; Lo, Hsiu-Jung; Odds, Frank C.; Wang, Tzu-Hui; Lin, Chi-Yang; Li, Shu-Ying

    2006-01-01

    Multilocus sequence typing (MLST) was used to characterize the genetic profiles of 51 Candida albicans isolates collected from 12 hospitals in Taiwan. Among the 51 isolates, 16 were epidemiologically unrelated, 28 were isolates from 11 critically ill, human immunodeficiency virus (HIV)-negative patients, and 7 were long-term serial isolates from 3 HIV-positive patients. Internal regions of seven housekeeping genes were sequenced. A total of 83 polymorphic nucleotide sites were identified. Ten to 20 different genotypes were observed at the different loci, resulting, when combined, in 45 unique genotype combinations or diploid sequence types (DSTs). Thirty (36.1%) of the 83 individual changes were synonymous and 53 (63.9%) were nonsynonymous. Due to the diploid nature of C. albicans, MLST was more discriminatory than the pulsed-field gel electrophoresis-BssHII-restricted fragment method in discriminating epidemiologically related strains. MLST is able to trace the microevolution over time of C. albicans isolates in the same patient. All but one of the DSTs of our Taiwanese strain collections were novel to the internet C. albicans DST database (http://test1.mlst.net/). The DSTs of C. albicans in Taiwan were analyzed together with those of the reference strains and of the strains from the United Kingdom and United States by unweighted-pair group method using average linkages and minimum spanning tree. Our result showed that the DNA type of each isolate was patient specific and associated with ABC type and decade of isolation but not associated with mating type, anatomical source of isolation, hospital origin, or fluconazole resistance patterns. PMID:16757617

  1. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  2. Interactions between amphotericin B and nitroimidazoles against Candida albicans.

    PubMed

    Cury, A E; Hirschfeld, M P

    1997-10-01

    This work proved that nitroimidazole antiprotozoal agents, such as metronidazole, ornidazole, secnidazole and tinidazole, in concentrations of up to 64 micrograms ml-1 did not present any antifungal activity against 17 strains of Candida albicans. The combination of each drug with amphotericin B showed the occurrence of variable interactions according to the studied strain. Promising results were observed based on synergistic and additive interactions of the polyene with the metronidazole; the inhibitory and lethal activities of the drugs were potentiated against all strains in concentrations reachable in vivo. PMID:9476486

  3. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.

    PubMed

    Ricardo, Elisabete; Costa-de-Oliveira, Sofia; Dias, Ana Silva; Guerra, José; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-06-01

    Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida. The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 microg mL(-1)); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1, CDR2, MDR1, encoding for efflux pumps, and ERG11, encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly (P>0.05), probably acting as a Cdrp blocker. PMID:19416368

  4. Rapid Identification of Candida dubliniensis by Indirect Immunofluorescence Based on Differential Localization of Antigens on C. dubliniensis Blastospores and Candida albicans Germ Tubes

    PubMed Central

    Bikandi, Joseba; Millán, Rosario San; Moragues, María D.; Cebas, Gontzal; Clarke, Mary; Coleman, David C.; Sullivan, Derek J.; Quindós, Guillermo; Pontón, José

    1998-01-01

    There is a clear need for the development of a rapid and reliable test for the identification of Candida dubliniensis and for the discrimination of this species from Candida albicans. In the present study we have investigated the potential use of C. dubliniensis-specific antigens as a basis for its identification. We produced an anti-C. dubliniensis serum which, after adsorption with C. albicans blastospores, was found to differentially label C. dubliniensis isolates in an indirect immunofluorescence test. In this test, the antiserum reacted with blastospores and germ tubes of C. dubliniensis and with blastospores of Candida krusei and Rhodotorula rubra but did not react with blastospores of several other Candida species including C. albicans. The antiserum also reacted with C. albicans germ tubes. The anti-C. dubliniensis adsorbed serum reacted with specific components of 25, 28, 37, 40, 52, and 62 kDa in the C. dubliniensis extract and with a variety of antigens from other yeast species. The antigens from non-C. dubliniensis yeasts showing reactivity with the anti-C. dubliniensis adsorbed serum are mostly expressed within the cell walls of these yeast species, and this reactivity does not interfere with the use of the anti-C. dubliniensis adsorbed serum in an indirect immunofluorescence test for the rapid identification of C. dubliniensis. PMID:9705368

  5. Production of virulence factors in Candida strains isolated from patients with denture stomatitis and control individuals.

    PubMed

    Pereira, Cristiane Aparecida; Domingues, Nádia; Araújo, Maria Izabel Daniel Santos Alves; Junqueira, Juliana Campos; Back-Brito, Graziella Nuernberg; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The aim of this study was to evaluate the production of virulence factors in Candida isolates from the oral cavities of 50 patients with different degrees of denture stomatitis (DS, type I, II and III) and 50 individuals without signs of DS. We evaluated the enzymatic and hemolytic activities, the biofilm formation, and the cell surface hydrophobicity (CSH) in all isolates. Germ tube (GT) production was also evaluated in Candida albicans and Candida dubliniensis isolates. In C. albicans and C. dubliniensis the secretion of hemolysin and GT production was significantly different between isolates from patients with DS and individuals without DS. No significant difference was observed in the production of virulence factors by Candida glabrata isolates. Candida isolates expressed a wide range of virulence factors. However, in the majority of isolates from the type III lesions, the production of the virulence factors was higher than for the other groups. PMID:26971635

  6. Candida albicans Ultrastructure: Colonization and Invasion of Oral Epithelium

    PubMed Central

    Howlett, Julie A.; Squier, Christopher A.

    1980-01-01

    The colonization and invasion of various animal oral mucosae by Candida albicans were examined in an organ culture model. Scanning and transmission electron microscopy of the oral epithelium between 12 and 30 h after inoculation with the fungus revealed the morphological relationships between host and parasite. Examination of the fungi in thin sections showed five distinct layers in the cell wall of C. albicans within the epithelium, but changes were evident in the organization and definition of the outer cell wall layers in budding hyphae and in hyphae participating in colonization and invasion of the epithelial cells. Adherence of the fungus to the superficial cells of the oral mucosa appeared to involve intimate contact between the epithelial cell surface and the deeper layers of the fungal cell wall. During invasion a close seal was maintained between the invading hyphae and the surrounding epithelial cell envelope, there being no other evidence of damage to the host cell surface except at the site of entry. Within the epithelial cells there was only occasional loss of cytoplasmic components in the vicinity of the invading hyphae. These findings would suggest that enzymatic lysis associated with the invasive process is localized and that the mechanical support provided by surface adherence and the intimate association between the fungus and the epithelial cell envelope may permit growth of Candida on through the epithelium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6995338

  7. The ABCs of Candida albicans Multidrug Transporter Cdr1

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-01-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  8. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles.

    PubMed

    Shinde, Ravikumar Bapurao; Raut, Jayant Shankar; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2013-01-01

    Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p<0.05) in presence of 250μg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole. PMID:23602464

  9. The ABCs of Candida albicans Multidrug Transporter Cdr1.

    PubMed

    Prasad, Rajendra; Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-12-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  10. SOME CYTOLOGICAL AND PATHOGENIC PROPERTIES OF SPHEROPLASTS OF CANDIDA ALBICANS

    PubMed Central

    Kobayashi, George S.; Friedman, Lorraine; Kofroth, Judith F.

    1964-01-01

    Kobayashi, George S. (Tulane University, New Orleans, La.), Lorraine Friedman, and Judith F. Kofroth. Some cytological and pathogenic properties of spheroplasts of Candida albicans. J. Bacteriol. 88:795–801. 1964.—Spheroplasts of Candida albicans were prepared by use of an enzymatic mixture from the digestive tract of the snail Helix pomatia. Untreated cells exhibited well-defined cell walls, whereas such structures were absent from spheroplasts. The intravenous inoculation of either spheroplasts or intact cells into rabbits produced a fever which was apparent within 30 min, the “immediate” fever response characteristic of microbial endotoxin. Cell-wall fragments of enzyme-treated cells did not induce a convincing pyrogenic response. When the inoculum was viable, body temperatures did not return to normal but remained elevated until death of the animal 1 or more days later, exhibiting the “delayed” fever of infection. The gross pathological picture in animals succumbing to infection by viable spheroplasts was similar to that obtained with untreated yeast cells. Images PMID:14208520

  11. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles

    PubMed Central

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm. PMID:25290909

  12. Isolation of Different Species of Candida in Patients With Vulvovaginal Candidiasis From Sari, Iran

    PubMed Central

    Hedayati, Mohammad Taghi; Taheri, Zahra; Galinimoghadam, Tahereh; Aghili, Seyed Reza; Yazdani Cherati, Jamshid; Mosayebi, Elham

    2015-01-01

    Background: Vulvovaginal Candidiasis (VVC) is a frequent, complex and cumbersome condition that can cause physical and psychological distress for the involved individual. Candida albicans was reported as the most common agent of VVC yet it seems that we are recently encountering changes in the pattern of Candida species in VVC. Objectives: In this study we assessed different species of Candida isolated from patients with VVC, residing in Sari, Iran. Patients and Methods: Two hundred and thirty-four patients with vulvovaginitis were enrolled in this study. Samples were collected by a wet swab. Each vaginal swab was examined microscopically and processed for fungal culture. The identification of Candida species was done by morphological and physiological methods such as culture on CHROMagar Candida media and sugar assimilation test with the HiCandida identification kit (HiMedia, Mumbai, India). Results: Out of 234 patients with vulvovaginitis, 66 (28.2%) patients showed VVC. Of these patients, 16 (24.2%) had recurrent VVC (RVVC). The age group of 20 - 29 year-olds had the highest frequency of VVC (48.5%). Erythema concomitant with itching (40.9%) was the most prevalent sign in VVC patients. Fifty-seven (86.4%) of the collected samples had positive results from both microscopic examination and culture. In total, 73 colonies of Candida spp. were isolated from 66 patients with VVC. The most common identified species of Candida were C. albicans (42.5%), C. glabrata (21.9%) and C. dubliniensis (16.4%). In patients with RVVC and patients without recurrence, C. albicans and non-albicans species of Candida were frequent species, respectively. Conclusions: The results of our study showed that non-albicans species of Candida are more frequent than C. albicans in patients with VVC. This result is in line with some recent studies indicating that non-albicans species of Candida must be considered in gynecology clinics due to the reported azole resistance in these species. PMID

  13. Cloning and characterization of the plasma membrane H(+)-ATPase from Candida albicans.

    PubMed Central

    Monk, B C; Kurtz, M B; Marrinan, J A; Perlin, D S

    1991-01-01

    The Candida albicans PMA1 gene was isolated from a genomic library by using a hybridization probe obtained from the PMA1 gene of Saccharomyces cerevisiae. The gene was localized to chromosome III of the Candida genome. An open reading frame of 2,685 nucleotides predicts an amino acid sequence of 895 amino acids that is 83% homologous at both the DNA and protein levels to its S. cerevisiae equivalent. A polyadenylated mRNA transcript of about 4,000 nucleotides contains a highly folded AU-rich leader of 242 nucleotides. The structure of the gene, codon bias, and levels of approximately 100-kDa H(+)-ATPase protein recovered in plasma membranes indicate a highly expressed gene. The plasma membrane ATPase was purified to about 90% homogeneity and appeared to be blocked at the amino terminus. Three hydrophobic membrane sector tryptic fragments from the partially digested ATPase provided internal sequence information for over 50 amino acids, which agrees with the sequence predicted by the cloned gene. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the C. albicans enzyme is about 3 kDa smaller than its Saccharomyces counterpart and was consistent with a predicted Mr of 97,398. Antibodies to the S. cerevisiae whole ATPase or its carboxyl terminus bound to the C. albicans enzyme but with lower avidity. Kinetic analysis showed that the Candida and Saccharomyces ATPases respond to glucose activation-starvation in nonidentical fashions. The amino-terminal domain of the C. albicans ATPase is marked by a net deletion of 23 amino acids in comparison with the S. cerevisiae ATPase. These differences maintain net charge, occur in nonconserved regions of fungal ATPases, and are sufficient to account for the observed difference in electrophoretic mobility between the two yeast ATPases. Images FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 PMID:1834633

  14. Candida albicans repetitive elements display epigenetic diversity and plasticity

    PubMed Central

    Freire-Benéitez, Verónica; Price, R. Jordan; Tarrant, Daniel; Berman, Judith; Buscaino, Alessia

    2016-01-01

    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30 °C, while robust heterochromatin is assembled over these regions at 39 °C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation. PMID:26971880

  15. Fluconazole Assists Berberine To Kill Fluconazole-Resistant Candida albicans

    PubMed Central

    Li, De-Dong; Xu, Yi; Zhang, Da-Zhi; Quan, Hua; Mylonakis, Eleftherios; Hu, Dan-Dan; Li, Ming-Bang; Zhao, Lan-Xue; Zhu, Liang-Hua

    2013-01-01

    It was found in our previous study that berberine (BBR) and fluconazole (FLC) used concomitantly exhibited a synergism against FLC-resistant Candida albicans in vitro. The aim of the present study was to clarify how BBR and FLC worked synergistically and the underlying mechanism. Antifungal time-kill curves indicated that the synergistic effect of the two drugs was BBR dose dependent rather than FLC dose dependent. In addition, we found that BBR accumulated in C. albicans cells, especially in the nucleus, and resulted in cell cycle arrest and significant change in the transcription of cell cycle-related genes. Besides BBR, other DNA intercalators, including methylene blue, sanguinarine, and acridine orange, were all found to synergize with FLC against FLC-resistant C. albicans. Detection of intracellular BBR accumulation by fluorescence measurement showed that FLC played a role in increasing intracellular BBR concentration, probably due to its effect in disrupting the fungal cell membrane. Similar to the case with FLC, other antifungal agents acting on the cell membrane were able to synergize with BBR. Interestingly, we found that the efflux of intracellular BBR was FLC independent but strongly glucose dependent and associated with the drug efflux pump Cdr2p. These results suggest that BBR plays a major antifungal role in the synergism of FLC and BBR, while FLC plays a role in increasing the intracellular BBR concentration. PMID:24060867

  16. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida albicans.

    PubMed

    Ansari, Moiz A; Fatima, Zeeshan; Hameed, Saif

    2016-01-01

    This study explored the antifungal potential of perillyl alcohol (PA), a natural monoterpene alcohol, against most prevalent human fungal pathogen C. albicans, its clinical isolates and four non-albicans species of Candida. To resolve the potential mechanisms, we used whole genome transcriptome analyses of PA treated Candida cells to examine the affected cellular circuitry of this pathogen. The transcriptome data revealed a link between calcineurin signaling and PA as among the several categories of PA responsive genes the down regulation of calcineurin signaling gene CNB1 was noteworthy which was also confirmed by both molecular docking and susceptibility assays. We observed that PA treated Candida phenocopied compromised calcineurin pathway stress responses and turned sensitive to alkaline pH, ionic, membrane, salinity, endoplasmic reticulum and serum stresses. Indispensability of functional calcineurin was further confirmed as calcineurin mutant was hypersensitive to PA while constitutively expressed calcineurin strain remained resistant. We explored that PA leads to perturbed membrane integrity as depicted through depleted ergosterol levels and disrupted pH homeostasis. Moreover, PA caused cell wall damage which was evident from hypersensitivity against cell wall perturbing agents (congo red, calcoflour white), SEM and enhanced rate of cell sedimentation. Furthermore, PA inhibited potential virulence traits including morphological transition, biofilm formation and displayed diminished capacity to adhere both to the polystyrene surface and buccal epithelial cells. The study also revealed that PA leads to cell cycle arrest and mitochondrial dysfunction in C. albicans. Together, the present study provides enough evidence for further work on PA so that better strategies could be employed to treat Candida infections. PMID:27627759

  17. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans.

    PubMed

    Wang, Xiaoru; You, Jianlan; King, Jarrod B; Powell, Douglas R; Cichewicz, Robert H

    2012-04-27

    A chemically prolific strain of Aspergillus was isolated from a soil sample collected near Waikiki Beach, Honolulu, Hawaii. The fungus produced several secondary metabolites, which were purified and placed in our natural products library and were later screened for substances capable of inhibiting biofilm formation by Candida albicans. It was determined that one of the secondary metabolites from the Hawaiian fungal isolate, a new complex prenylated indole alkaloid named waikialoid A (1), inhibited biofilm formation with an IC(50) value of 1.4 μM. Another structurally unrelated, presumably polyketide metabolite, waikialide A (15), also inhibited C. albicans biofilm formation, but was much less potent (IC(50) value of 32.4 μM). Microscopy studies revealed that compound 1 also inhibited C. albicans hyphal morphogenesis. While metabolite 1 appears ineffective at disrupting preformed biofilms, the accumulated data indicate that the new compound may exert its activity against C. albicans during the early stages of surface colonization involving cell adherence, hyphal development, and/or biofilm assembly. Unlike some other stephacidin/notoamide compounds, metabolite 1 was not cytotoxic to fungi or human cells (up to 200 μM), which makes this an intriguing model compound for studying the adjunctive use of biofilm inhibitors in combination with standard antifungal antibiotics. PMID:22400916

  18. Systematic Analysis of the Lysine Acetylome in Candida albicans.

    PubMed

    Zhou, Xiaowei; Qian, Guanyu; Yi, Xingling; Li, Xiaofang; Liu, Weida

    2016-08-01

    Candida albicans (C. albicans) is a worldwide cause of fungal infectious diseases. As a general post-translational modification (PTM), lysine acetylation of proteins play an important regulatory role in almost every cell. In our research, we used a high-resolution proteomic technique (LC-MS/MS) to present the comprehensive analysis of the acetylome in C. albicans. In general, we detected 477 acetylated proteins among all 9038 proteins (5.28%) in C. albicans, which had 1073 specific acetylated sites. The bioinformatics analysis of the acetylome showed a significant role in the regulation of metabolism. To be more precise, proteins involved in carbon metabolism and biosynthesis were the underlying objectives of acetylation. Besides, through the study of the acetylome, we found a universal rule in acetylated motifs: the +4, +5, or +6 position, which is an alkaline residue with a long side chain (K or R), and the +1 or +2 position, which is a residue with a long side chain (Y, H, W, or F). To the best of our knowledge, all screening acetylated histone sites of this study have not been previously reported. Moreover, protein-protein interaction network (PPI) study demonstrated that a variety of connections in glycolysis/gluconeogenesis, oxidative phosphorylation, and the ribosome were modulated by acetylation and phosphorylation, but the phosphorylated proteins in oxidative phosphorylation PPI network were not abundant, which indicated that acetylation may have a more significant effect than phosphorylation on oxidative phosphorylation. This is the first study of the acetylome in human pathogenic fungi, providing an important starting point for the in-depth discovery of the functional analysis of acetylated proteins in such fungal pathogens. PMID:27297460

  19. Mitochondrial two-component signaling systems in Candida albicans.

    PubMed

    Mavrianos, John; Berkow, Elizabeth L; Desai, Chirayu; Pandey, Alok; Batish, Mona; Rabadi, Marissa J; Barker, Katherine S; Pain, Debkumar; Rogers, P David; Eugenin, Eliseo A; Chauhan, Neeraj

    2013-06-01

    Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis). PMID:23584995

  20. Oxidant-specific regulation of protein synthesis in Candida albicans.

    PubMed

    Sundaram, Arunkumar; Grant, Chris M

    2014-06-01

    Eukaryotic cells typically respond to stress conditions by inhibiting global protein synthesis. The initiation phase is the main target of regulation and represents a key control point for eukaryotic gene expression. In Saccharomyces cerevisiae and mammalian cells this is achieved by phosphorylation of eukaryotic initiation factor 2 (eIF2α). We have examined how the fungal pathogen Candida albicans responds to oxidative stress conditions and show that oxidants including hydrogen peroxide, the heavy metal cadmium and the thiol oxidant diamide inhibit translation initiation. The inhibition in response to hydrogen peroxide and cadmium largely depends on phosphorylation of eIF2α since minimal inhibition is observed in a gcn2 mutant. In contrast, translation initiation is inhibited in a Gcn2-independent manner in response to diamide. Our data indicate that all three oxidants inhibit growth of C. albicans in a dose-dependent manner, however, loss of GCN2 does not improve growth in the presence of hydrogen peroxide or cadmium. Examination of translational activity indicates that these oxidants inhibit translation at a post-initiation phase which may account for the growth inhibition in a gcn2 mutant. As well as inhibiting global translation initiation, phosphorylation of eIF2α also enhances expression of the GCN4 mRNA in yeast via a well-known translational control mechanism. We show that C. albicans GCN4 is similarly induced in response to oxidative stress conditions and Gcn4 is specifically required for hydrogen peroxide tolerance. Thus, the response of C. albicans to oxidative stress is mediated by oxidant-specific regulation of translation initiation and we discuss our findings in comparison to other eukaryotes including the yeast S. cerevisiae. PMID:24699161

  1. Mitochondrial Two-Component Signaling Systems in Candida albicans

    PubMed Central

    Mavrianos, John; Berkow, Elizabeth L.; Desai, Chirayu; Pandey, Alok; Batish, Mona; Rabadi, Marissa J.; Barker, Katherine S.; Pain, Debkumar; Rogers, P. David; Eugenin, Eliseo A.

    2013-01-01

    Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis). PMID:23584995

  2. Binding of the extracellular matrix component entactin to Candida albicans.

    PubMed Central

    López-Ribot, J L; Chaffin, W L

    1994-01-01

    We have investigated the interaction between Candida albicans and entactin, a recently characterized glycoprotein present in the extracellular matrix, especially in the basement membrane. Organisms of both the yeast and the hyphal morphologies of the fungus had the ability to bind recombinant entactin, as detected by an indirect immunofluorescence assay. Material present in the 2-mercaptoethanol cell wall extracts from both C. albicans growth forms was capable of binding to immobilized recombinant entactin in a dose-dependent manner. Binding to entactin was approximately twice that observed for laminin. Binding of an extract component(s) to entactin was partially inhibited by an Arg-Gly-Asp-Ser peptide. A polyclonal antientactin antiserum, as well as a pooled antiserum preparation raised against components present in different C. albicans cell wall extracts, completely or almost completely abolished binding. The existence of morphology-specific receptor-like molecules which bind to different domains of the entactin molecule was ruled out in a competition binding assay. The entactin-binding material(s) in the cell wall also displayed some ability to bind laminin and fibronectin, since preadsorption in the presence of these extracellular matrix components resulted in reduction of binding to entactin. Moieties with a molecular mass of approximately 25, 44, and 65 kDa present in the 2-mercaptoethanol cell wall extracts from both blastoconidia and germ tubes were detected in a ligand affinity blotting experiment as having the ability to bind entactin. Interactions between C. albicans and entactin could be important in mediating adhesion of the fungus to the host tissues and may play a role in the establishment of the disseminated form of the disease. Images PMID:7927722

  3. Evaluation of the in vitro antimicrobial properties of ultraviolet A/riboflavin mediated crosslinking on Candida albicans and Fusarium solani

    PubMed Central

    Sun, Bing; Li, Zhi-Wei; Yu, Hai-Qun; Tao, Xiang-Chen; Zhang, Yong; Mu, Guo-Ying

    2014-01-01

    AIM To evaluate the antimicrobial properties of ultraviolet A (UVA) (365 nm)/riboflavin against Candida albicans and Fusarium solani. METHODS Two fungus isolates were cultured in vitro and prepared with 10-fold serial PBS dilutions of cell concentration. For each dilution of fungus suspension, the concentration (colony-forming units/mL, CFU/mL) and the inactivation ratio of fungal cells were evaluated under 4 conditions: no treatment (control), UVA (365 nm)/riboflavin, riboflavin, and UVA (365 nm). RESULTS The cell concentration decreased in UVA (365 nm)/riboflavin group for Candida albicans at each dilution and Fusarium solani at dilutions of 104, 103, 102 CFU/mL, when compared with that in control, riboflavin, and UVA (365 nm) groups (P<0.01). No difference of cell concentration was detected amongst the culture of control, riboflavin, and UVA (365 nm) groups for the two fungus. There is a negative correlation between suspension concentration (log-transformed) and the inactivation ratio in UVA (365 nm)/riboflavin group for Candida albicans and Fusarium solani (P<0.01). CONCLUSION According to the standard protocol of corneal collagen cross-linking, UVA (365 nm)/riboflavin combination treatment is found to moderately inactivate the viability of Candida albicans and Fusarium solani in vitro. The inactivation ratio was found to increase with the decrease of cell concentration under UVA (365 nm)/riboflavin condition. PMID:24790859

  4. Candida albicans osteomyelitis as a cause of chest pain and visual loss.

    PubMed

    Magano, Rita; Cortez, Joana; Ramos, Evelise; Trindade, Luís

    2015-01-01

    Candida albicans osteomyelitis is a rare disease that occurs in immunocompromised individuals, sometimes with a late diagnosis related to the mismatch between symptoms and candidemia. This case refers to a 36-year-old male patient with a history of oesophageal surgery for achalasia with multiple subsequent surgeries and hospitalisation in the intensive care unit for oesophageal fistula complication. Four months after discharge, the patient was admitted to the infectious diseases department with pain in the 10th-12th left ribs, swelling of the 4th-6th costal cartilage and decreased visual acuity. An MRI study showed thickening and diffuse enhancement, with no defined borders in the cartilage and ribs, compatible with infection. After performing a CT-guided bone biopsy, isolated C. albicans sensitive to antifungal agents was detected. The patient started therapy with liposomal amphotericin B and maintenance fluconazole for 6 months and showed clinical and radiological improvement within this time. PMID:26475877

  5. Azole Drugs Are Imported By Facilitated Diffusion in Candida albicans and Other Pathogenic Fungi

    PubMed Central

    Mansfield, Bryce E.; Oltean, Hanna N.; Oliver, Brian G.; Hoot, Samantha J.; Leyde, Sarah E.; Hedstrom, Lizbeth; White, Theodore C.

    2010-01-01

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a Km of 0.64 uM and Vmax of 0.0056 pmol/min/108 cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs. PMID:20941354

  6. Diorcinol D Exerts Fungicidal Action against Candida albicans through Cytoplasm Membrane Destruction and ROS Accumulation.

    PubMed

    Li, Ying; Chang, Wenqiang; Zhang, Ming; Li, Xiaobin; Jiao, Yang; Lou, Hongxiang

    2015-01-01

    Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections. PMID:26047493

  7. Diorcinol D Exerts Fungicidal Action against Candida albicans through Cytoplasm Membrane Destruction and ROS Accumulation

    PubMed Central

    Li, Ying; Chang, Wenqiang; Zhang, Ming; Li, Xiaobin; Jiao, Yang; Lou, Hongxiang

    2015-01-01

    Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections. PMID:26047493

  8. Antimicrobial effects of three tropical plant extracts on Staphylococcus aureus, Escherichia coli and Candida albicans.

    PubMed

    Okigbo, R N; Mmeka, E C

    2008-01-01

    Antimicrobial activities of the leaf extracts of Cymbopogon citatrus (lemongrass) and Vernonia amygdalina (bitter leaf) and the seed extracts of Garcinia kola (bitter kola) were carried out. G. kola had effect only on Staphylococcus aureus and Escherichia coli with no inhibition on Candida albicans. Ethanol, cold water and hot water extracts of Vernonia amygdalina and Cymbopogon citratus showed inhibition on the three organism but G. kola ethanol, cold water and hot water extracts only inhibited S. aureus and E. coli with no inhibition on Candida albicans. The organism's susceptibility varied with more inhibition to S. aureus and least to Candida albicans. PMID:20161941

  9. Combination of different molecular mechanisms leading to fluconazole resistance in a Candida lusitaniae clinical isolate.

    PubMed

    Reboutier, David; Piednoël, Mathieu; Boisnard, Stéphanie; Conti, Audrey; Chevalier, Virginie; Florent, Martine; Gibot-Leclerc, Stéphanie; Da Silva, Bruno; Chastin, Christiane; Fallague, Karim; Favel, Anne; Noël, Thierry; Ruprich-Robert, Gwenaël; Chapeland-Leclerc, Florence; Papon, Nicolas

    2009-02-01

    We report on the underlying molecular mechanisms likely responsible for the high-level fluconazole resistance in a Candida lusitaniae clinical isolate. Fluconazole resistance correlated with overexpression of ERG11 and of several efflux pump genes, in particular, the orthologs of the Candida albicans MDR1, PDR16, CDR1, CDR2, and YOR1. PMID:19070454

  10. Propargyl-Linked Antifolates are Dual Inhibitors of Candida albicans and Candida glabrata

    PubMed Central

    2015-01-01

    Species of Candida, primarily C. albicans and with increasing prevalence, C. glabrata, are responsible for the majority of fungal bloodstream infections that cause morbidity, especially among immune compromised patients. While the development of new antifungal agents that target the essential enzyme, dihydrofolate reductase (DHFR), in both Candida species would be ideal, previous attempts have resulted in antifolates that exhibit inconsistencies between enzyme inhibition and antifungal properties. In this article, we describe the evaluation of pairs of propargyl-linked antifolates that possess similar physicochemical properties but different shapes. All of these compounds are effective at inhibiting the fungal enzymes and the growth of C. glabrata; however, the inhibition of the growth of C. albicans is shape-dependent with extended para-linked compounds proving more effective than compact, meta-linked compounds. Using crystal structures of DHFR from C. albicans and C. glabrata bound to lead compounds, 13 new para-linked compounds designed to inhibit both species were synthesized. Eight of these compounds potently inhibit the growth of both fungal species with three compounds displaying dual MIC values less than 1 μg/mL. Analysis of the active compounds shows that shape and distribution of polar functionality is critical in achieving dual antifungal activity. PMID:24568657

  11. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections. PMID:26162470

  12. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans.

    PubMed Central

    Devasahayam, Gina; Chaturvedi, Vishnu; Hanes, Steven D

    2002-01-01

    Prolyl-isomerases (PPIases) are found in all organisms and are important for the folding and activity of many proteins. Of the 13 PPIases in Saccharomyces cerevisiae only Ess1, a parvulin-class PPIase, is essential for growth. Ess1 is required to complete mitosis, and Ess1 and its mammalian homolog, Pin1, interact directly with RNA polymerase II. Here, we isolate the ESS1 gene from the pathogenic fungus Candida albicans and show that it is functionally homologous to the S. cerevisiae ESS1. We generate conditional-lethal (ts) alleles of C. albicans ESS1 and use these mutations to demonstrate that ESS1 is essential for growth in C. albicans. We also show that reducing the dosage or activity of ESS1 blocks morphogenetic switching from the yeast to the hyphal and pseudohyphal forms under certain conditions. Analysis of double mutants of ESS1 and TUP1 or CPH1, two genes known to be involved in morphogenetic switching, suggests that ESS1 functions in the same pathway as CPH1 and upstream of or in parallel to TUP1. Given that switching is important for virulence of C. albicans, inhibitors of Ess1 might be useful as antifungal agents. PMID:11805043

  13. Genome-Wide Synthetic Genetic Screening by Transposon Mutagenesis in Candida albicans

    PubMed Central

    Horton, Brooke N.; Kumar, Anuj

    2016-01-01

    Transposon-based mutagenesis is an effective method for genetic screening on a genome-wide scale, with particular applicability in organisms possessing compact genomes where transforming DNA tends to integrate by homologous recombination. Methods for transposon mutagenesis have been applied with great success in the budding yeast Saccharomyces cerevisiae and in the related pathogenic yeast Candida albicans. In C. albicans, we have implemented transposon mutagenesis to generate heterozygous mutations for the analysis of complex haploinsufficiency, a type of synthetic genetic interaction wherein a pair of non-complementing heterozygous mutations results in a stronger phenotype then either individual mutation in isolation. Genes exhibiting complex haploinsufficiency typically function within a regulatory pathway, in parallel pathways, or in parallel branches within a single pathway. Here, we present protocols to implement transposon mutagenesis for complex haploinsufficiency screening in C. albicans, indicating methods for transposon construction, mutagenesis, phenotypic screening, and identification of insertion sites in strains of interest. In total, the approach is a useful means to implement large-scale synthetic genetic screening in the diploid C. albicans. PMID:25636616

  14. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2014-10-01

    In a previous report, a novel antibacterial peptide astacidin 1 (FKVQNQHGQVVKIFHH) was isolated from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. In this study, the antifungal activity and mechanism of astacidin 1 were evaluated. Astacidin 1 exhibited antifungal activity against Candida albicans, Trichosporon beigelii, Malassezia furfur, and Trichophyton rubrum. Also, astacidin 1 had fungal cell selectivity in human erythrocytes without causing hemolysis. To understand the antifungal mechanism, membrane studies were done against C. albicans and T. beigelii. Flow cytometric analysis and K(+) measurement showed membrane damage, resulting in membrane permeabilization and K(+) release-induced membrane depolarization. Furthermore, the calcein leakage from liposomes mimicking C. albicans membrane demonstrated that the membrane-active action was driven by pore-forming mechanism. Live cell imaging using fluorescein isothiocyanate-labeled dextrans of various sizes suggested that the radii of pores formed in the C. albicans membrane were 1.4-2.3 nm. Therefore, the present study suggests that astacidin 1 exerts its antifungal effect by damaging the fungal membrane via pore formation. PMID:24955933

  15. Gastrointestinal granuloma due to Candida albicans in an immunocompetent cat

    PubMed Central

    Duchaussoy, Anne-Claire; Rose, Annie; Talbot, Jessica J.; Barrs, Vanessa R.

    2015-01-01

    A 3.5 year-old cat was admitted to the University of Melbourne Veterinary Teaching Hospital for chronic vomiting. Abdominal ultrasonography revealed a focal, circumferential thickening of the wall of the duodenum extending from the pylorus aborally for 3 cm, and an enlarged gastric lymph node. Cytology of fine-needle aspirates of the intestinal mass and lymph node revealed an eosinophilic inflammatory infiltrate and numerous extracellular septate acute angle branching fungal-type hyphae. Occasional hyphae had globose terminal ends, as well as round to oval blastospores and germ tubes. Candida albicans was cultured from a surgical biopsy of the duodenal mass. No underlying host immunodeficiencies were identified. Passage of an abrasive intestinal foreign body was suspected to have caused intestinal mucosal damage resulting in focal intestinal candidiasis. The cat was treated with a short course of oral itraconazole and all clinical signs resolved. PMID:26862475

  16. Epithelial discrimination of commensal and pathogenic Candida albicans.

    PubMed

    Tang, S X; Moyes, D L; Richardson, J P; Blagojevic, M; Naglik, J R

    2016-04-01

    All mucosal surfaces are lined by epithelial cells and are colonised by opportunistic microbes. In health, these opportunistic microbes remain commensal and are tolerated by the immune system. However, when the correct environmental conditions arise, these microbes can become pathogenic and need to be controlled or cleared by the immune system to prevent disease. The mechanisms that enable epithelial cells to initiate the 'danger' signals activated specifically by pathogenic microbes are critical to mucosal defence and homeostasis but are not well understood. Deciphering these mechanisms will provide essential understanding to how mucosal tissues maintain health and activate immunity, as well as how pathogens promote disease. This review focuses on the interaction of the human fungal pathogen Candida albicans with epithelial cells and the epithelial mechanisms that enable mucosal tissues to discriminate between the commensal and pathogenic state of this medically important fungus. PMID:26843519

  17. Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal Candida albicans

    PubMed Central

    Capoci, Isis Regina Grenier; Bonfim-Mendonça, Patrícia de Souza; Arita, Glaucia Sayuri; Pereira, Raphaela Regina de Araújo; Consolaro, Marcia Edilaine Lopes; Negri, Melyssa; Svidzinski, Terezinha Inez Estivalet

    2015-01-01

    Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production by Candida albicans isolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates of C. albicans and a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation by C. albicans from VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC. PMID:25815029

  18. Molecular tracking of Candida albicans in a neonatal intensive care unit: long-term colonizations versus catheter-related infections.

    PubMed Central

    Ruiz-Diez, B; Martinez, V; Alvarez, M; Rodriguez-Tudela, J L; Martinez-Suarez, J V

    1997-01-01

    Nosocomial neonatal candidiasis is a major problem in infants requiring intensive therapy. The subjects of this retrospective study were nine preterm infants admitted to the neonatal intensive care unit of the Hospital Central de Asturias between March 1993 and August 1994. The infants were infected with or colonized by Candida albicans. Five patients developed C. albicans bloodstream infections. A total of 36 isolates (including isolates from catheters and parenteral nutrition) were examined for molecular relatedness by PCR fingerprinting and restriction fragment length polymorphism (RFLP) analysis. The core sequence of phage M13 was used as a single primer in the PCR-based fingerprinting procedure, and RFLP analysis was performed with C. albicans-specific DNA probe 27A. Both techniques were evaluated with a panel of eight C. albicans reference strains, and each technique showed eight different patterns. With the 36 isolates from neonates, each technique enabled us to identify by PCR and RFLP analysis seven and six different patterns, respectively. The combination of these two methods (composite DNA type) identified eight different profiles. A strain with one of these profiles was present in three patients and in their respective catheters. Patients infected with or colonized by this isolate profile were clustered in time. Among the other patients, each patient was infected over time and at multiple anatomic sites with a C. albicans strain with a distinct DNA type. We conclude that C. albicans was most commonly producing long-term colonizations, although horizontal transmission probably due to catheters also occurred. PMID:9399489

  19. Attenuated virulence of chitin-deficient mutants of Candida albicans.

    PubMed Central

    Bulawa, C E; Miller, D W; Henry, L K; Becker, J M

    1995-01-01

    We have analyzed the role of chitin, a cell-wall polysaccharide, in the virulence of Candida albicans. Mutants with a 5-fold reduction in chitin were obtained in two ways: (i) by selecting mutants resistant to Calcofluor, a fluorescent dye that binds to chitin and inhibits growth, and (ii) by disrupting CHS3, the C. albicans homolog of CSD2/CAL1/DIT101/KT12, a Saccharomyces cerevisiae gene required for synthesis of approximately 90% of the cell-wall chitin. Chitin-deficient mutants have no obvious alterations in growth rate, sugar assimilation, chlamydospore formation, or germ-tube formation in various media. When growing vegetatively in liquid media, the mutants tend to clump and display minor changes in morphology. Staining of cells with the fluorescent dye Calcofluor indicates that CHS3 is required for synthesis of the chitin rings found on the surface of yeast cells but not formation of septa in either yeast cells or germ tubes. Despite their relatively normal growth, the mutants are significantly less virulent than the parental strain in both immunocompetent and immunosuppressed mice; at 13 days after infection, survival was 95% in immunocompetent mice that received chs3/chs3 cells and 10% in immunocompetent mice that received an equal dose of chs3/CHS3 cells. Chitin-deficient strains can colonize the organs of infected mice, suggesting that the reduced virulence of the mutants is not due to accelerated clearing. Images Fig. 1 Fig. 2 PMID:7479842

  20. Modulation of Candida albicans Biofilm by Different Carbon Sources.

    PubMed

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-06-01

    In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component β-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p < 0.05). However, cells exposed to sucrose exhibited highest biofilm formation and matrix polysaccharides secretion after 48 h. The results also correlated with the biofilm height and roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in β-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of β-glucan at 892 cm(-1) in all carbon sources tested. The β(1→6) to β(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component β-glucan. PMID:26899861

  1. Scolopendin 2 leads to cellular stress response in Candida albicans.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2016-07-01

    Centipedes, a kind of arthropod, have been reported to produce antimicrobial peptides as part of an innate immune response. Scolopendin 2 (AGLQFPVGRIGRLLRK) is a novel antimicrobial peptide derived from the body of the centipede Scolopendra subspinipes mutilans by using RNA sequencing. To investigate the intracellular responses induced by scolopendin 2, reactive oxygen species (ROS) and glutathione accumulation and lipid peroxidation were monitored over sublethal and lethal doses. Intracellular ROS and antioxidant molecule levels were elevated and lipids were peroxidized at sublethal concentrations. Moreover, the Ca(2+) released from the endoplasmic reticulum accumulated in the cytosol and mitochondria. These stress responses were considered to be associated with yeast apoptosis. Candida albicans cells exposed to scolopendin 2 were identified using diagnostic markers of apoptotic response. Various responses such as phosphatidylserine externalization, chromatin condensation, and nuclear fragmentation were exhibited. Scolopendin 2 disrupted the mitochondrial membrane potential and activated metacaspase, which was mediated by cytochrome c release. In conclusion, treatment of C. albicans with scolopendin 2 induced the apoptotic response at sublethal doses, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The cationic antimicrobial peptide scolopendin 2 from the centipede is a potential antifungal peptide, triggering the apoptotic response. PMID:27207682

  2. A patient with allergic bronchopulmonary mycosis caused by Aspergillus fumigatus and Candida albicans.

    PubMed

    Wardhana; Datau, E A

    2012-10-01

    Allergic Bronchopulmonary Mycosis (ABPM) is an exagregated immunologic response to fungal colonization in the lower airways. It may cause by many kinds of fungal, but Aspergillus fumigatus is the most common cause of ABPM, although other Aspergillus and other fungal organisms, like Candida albicans, have been implicated. Aspergllus fumigatus and Candida albicans may be found as outdoor and indoor fungi, and cause the sensitization, elicitation of the disease pathology, and its clinical manifestations. Several diagnostic procedurs may be impicated to support the diagnosis of ABPM caused by Aspergillus fumigatus and Candida albicans. A case of allergic bronchopulmonary mycosis caused by Aspergillus fumigatus and Candida albicans in a 48 year old man was discussed. The patient was treated with antifungal, corticosteroids, and antibiotic for the secondary bacterial infection. The patient's condition is improved without any significant side effects. PMID:23314973

  3. Functional diversity of complex I subunits in Candida albicans mitochondria.

    PubMed

    Li, Dongmei; She, Xiaodong; Calderone, Richard

    2016-02-01

    Our interest in the mitochondria of Candida albicans has progressed to the identification of several proteins that are critical to complex I (CI) activity. We speculated that there should be major functional differences at the protein level between mammalian and fungal mitochondria CI. In our pursuit of this idea, we were helped by published data of CI subunit proteins from a broad diversity of species that included two subunit proteins that are not found in mammals. These subunit proteins have been designated as Nuo1p and Nuo2p (NADH-ubiquinone oxidoreductases). Since functional assignments of both C. albicans proteins were unknown, other than having a putative NADH-oxidoreductase activity, we constructed knock-out strains that could be compared to parental cells. The relevance of our research relates to the critical roles of both proteins in cell biology and pathogenesis and their absence in mammals. These features suggest they may be exploited in antifungal drug discovery. Initially, we characterized Goa1p that apparently regulates CI activity but is not a CI subunit protein. We have used the goa1∆ for comparisons to Nuo1p and Nuo2p. We have demonstrated the critical role of these proteins in maintaining CI activities, virulence, and prolonging life span. More recently, transcriptional profiling of the three mutants and an ndh51∆ (protein is a highly conserved CI subunit) has revealed that there are overlapping yet also different functional assignments that suggest subunit specificity. The differences and similarities of each are described below along with our hypotheses to explain these data. Our conclusion and perspective is that the C. albicans CI subunit proteins are highly conserved except for two that define non-mammalian functions. PMID:26373419

  4. Early detection of Candida albicans biofilms at porous electrodes.

    PubMed

    Congdon, Robert B; Feldberg, Alexander S; Ben-Yakar, Natalie; McGee, Dennis; Ober, Christopher; Sammakia, Bahgat; Sadik, Omowunmi A

    2013-02-15

    We describe the development of an electrochemical sensor for early detection of biofilm using Candida albicans. The electrochemical sensor used the ability of biofilms to accept electrons from redox mediators relative to the number of metabolically active cells present. Cyclic voltammetry and differential pulse voltammetry techniques were used to monitor the redox reaction of K(3)Fe(CN)(6) at porous reticulated vitreous carbon (RVC) (238.7 cm(2)) working electrodes versus Ag/AgCl reference. A shift in the peak potential occurred after 12 h of film growth, which is attributed to the presence of C. albicans. Moreover, the intensity of the ferricyanide reduction peak first increased as C. albicans deposited onto the porous electrodes at various growth times. The peak current subsequently decreased at extended periods of growth of 48 h. The reduction in peak current was attributed to the biofilm reaching its maximum growth thickness, which correlated with the maximum number of metabolically active cells. The observed diffusion coefficients for the bare RVC and biofilm-coated electrodes were 2.2 × 10(-3) and 7.0 × 10(-6) cm(2)/s, respectively. The increase in diffusivity from the bare electrode to the biofilm-coated electrode indicated some enhancement of electron transfer mediated by the biofilm to the porous electrode. Verification of the growth of biofilm was achieved using scanning electron microcopy and laser scanning confocal imaging microscopy. Validation with conventional plating techniques confirmed that the correlation (R(2) = 0.9392) could be achieved between the electrochemical sensors data and colony-forming units. PMID:23107627

  5. In vitro biofilm production of Candida bloodstream isolates: any association with clinical characteristics?

    PubMed

    Pongrácz, Júlia; Benedek, Kálmán; Juhász, Emese; Iván, Miklós; Kristóf, Katalin

    2016-04-01

    Candida spp. are a leading cause of bloodstream infection (BSI) and are associated with high mortality rates. Biofilm production is a virulence factor of Candida spp., and has been linked with poor clinical outcome. The aim of our study was to assess biofilm production of Candida bloodstream isolates at our institute, and to determine whether in vitro biofilm production is associated with any clinical characteristics of infection. During the four-year study period, 93 cases of Candida BSI were analysed. The most frequently isolated species was C. albicans (66.7 %), followed by C. glabrata (9.7 %), C. parapsilosis (9.7 %), C. tropicalis (9.7 %) and C. krusei (4.3 %). Biofilm production was more prevalent among non-albicans Candida spp. (77.4 %) than C. albicans (30.6 %) (P = 0.02). Abdominal surgery was identified as a risk factor of BSI caused by biofilm producing non-albicans Candida isolates. No risk factors predisposing to bloodstream infection caused by a biofilm producing C. albicans isolate were identified. Biofilm production was not verified as a risk factor of mortality. PMID:26678484

  6. Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candida albicans.

    PubMed Central

    Brawner, D L; Cutler, J E

    1986-01-01

    Variability in the expression of two different cell surface carbohydrate determinants was examined with two agglutinating immunoglobulin M monoclonal antibodies (H9 and C6) and immunoelectron microscopy during growth of three strains of Candida albicans. A single strain of Candida parapsilosis did not express either antigen at any time during growth. Antigens were detected on the surface of C. albicans by agglutination tests with either H9 or C6 over a 48-h growth period. The difference in specificities of the monoclonal antibodies was demonstrated by Ouchterlony double-diffusion tests with solubilized antigens and by variabilities in the reactivity of the agglutinins among yeast strains. The antigenic determinants were isolated by specific immunoprecipitation and protease digestion and characterized by methods including high-pressure liquid chromatography, gas-liquid chromatography, and mass spectroscopy with both chemical and electron ionization. These determinants both contain mannose and glucose. In the case of antigen H9, an additional carbohydrate was detected with gas chromatography and mass spectroscopy. The location of antigens on individual cells was determined by indirect labeling of the determinants, first reacting cells with H9 or C6 followed by goat anti-mouse antibody conjugated with 20-nm colloidal gold particles. Transmission electron microscopy was used to examine cells. The antigens that were reactive with the monoclonal antibodies were associated with a flocculent surface layer. Expression of this layer and expression of the antigens is a dynamic process which is growth phase and strain dependent. The antigens were not expressed on very young cells and disappeared from the cell surface of most C. albicans strains with age. The use of monoclonal antibody to cell surface determinants may allow characterization of cell surface antigens of C. albicans and be helpful in establishing receptors which mediate adherence. Images PMID:3510174

  7. Waikialoid A Suppresses Hyphal Morphogenesis and Inhibits Biofilm Development in Pathogenic Candida albicans

    PubMed Central

    Wang, Xiaoru; You, Jianlan; King, Jarrod B.; Powell, Douglas R.; Cichewicz, Robert H.

    2012-01-01

    A chemically prolific strain of Aspergillus was isolated from a soil sample collected near Waikiki Beach, Honolulu, Hawaii. The fungus produced several secondary metabolites that were purified and placed in our natural products library, which was later screened for substances capable of inhibiting biofilm formation by Candida albicans. It was determined that one of the secondary metabolites from the Hawaiian fungal isolate, a new complex prenylated indole alkaloid named waikialoid A (1), inhibited biofilm formation with an IC50 value of 1.4 μM. Another structurally unrelated, presumably polyketide metabolite, waikialide A (15), also inhibited C. albicans biofilm formation, but was much less potent (IC50 value of 32.4 μM). Microscopy studies revealed that compound 1 also inhibited C. albicans hyphal morphogenesis. While metabolite 1 appears ineffective at disrupting preformed biofilms, the accumulated data indicate that the new compound may exert its activity against C. ablicans during the early stages of surface colonization involving cell adherence, hyphal development, and/or biofilm assembly. Unlike some other stephacidin/notoamide compounds, metabolite 1 was not cytotoxic to fungi or human cells (up to 200 μM), which makes this an intriguing model compound for studying the adjunctive use of biofilm inhibitors in combination with standard antifungal antibiotics. PMID:22400916

  8. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  9. Candida ciferrii and Candida chiropterorum isolated from clinical specimens.

    PubMed Central

    Furman, R M; Ahearn, D G

    1983-01-01

    Ten clinical yeast isolates submitted to the Centers for Disease Control from diverse geographic areas were identified as Candida ciferrii and Candida chiropterorum. The association of C. ciferrii with clinical specimens, particularly its repeated isolation from a case of onychomycosis, suggests that this species may be an etiological agent of superficial yeast infections. Images PMID:6227630

  10. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012-2013.

    PubMed

    Rajendran, R; Sherry, L; Nile, C J; Sherriff, A; Johnson, E M; Hanson, M F; Williams, C; Munro, C A; Jones, B J; Ramage, G

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012-2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  11. National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program.

    PubMed

    Pfaller, M A; Jones, R N; Messer, S A; Edmond, M B; Wenzel, R P

    1998-05-01

    Surveillance of nosocomial blood stream infections (BSI) in the USA between April 1995 and June 1996 revealed that Candida was the fourth leading cause of nosocomial BSI, accounting for 8% of all infections. Fifty-two percent of 379 episodes of candidemia were due to Candida albicans. In vitro susceptibility studies using the 1997 National Committee for Clinical Laboratory Standards reference method demonstrated that 92% of C. albicans isolates were susceptible to 5-fluorocytosine and 90% were susceptible to fluconazole and itraconazole. Geographic variation in susceptibility of fluconazole and itraconazole was observed. Isolates from the Northwest and Southeast regions were more frequently resistant to fluconazole (13.3-15.5%) and to itraconazole (17.2-20.0%) than those from the Northeast and Southwest regions (2.9-5.5% resistant to fluconazole and itraconazole). Continued surveillance for infections caused by C. albicans and other species of Candida among hospitalized patients is recommended. PMID:9597393

  12. Morphological, biochemical and molecular characterisation of the first Italian Candida africana isolate.

    PubMed

    Romeo, Orazio; Criseo, Giuseppe

    2009-09-01

    One atypical isolate of the pathogenic yeast Candida albicans was isolated from an Italian patient with vulvovaginitis. The strain, germ tube positive and chlamydospore-negative showed white-thin turquoise colonies on Candida ID 2 medium. The yeast was identified as Candida africana by using morphological and biochemical tests. On the basis of the molecular results obtained in this study as well as in other studies, C. africana cannot be yet considered as a new species of Candida. It is possible that C. africana represents a new variant of C. albicans like the well-known Candida stellatoidea. To our knowledge, this is the first isolation of C. africana in Italy. PMID:18983430

  13. Quercetin Sensitizes Fluconazole-Resistant Candida albicans To Induce Apoptotic Cell Death by Modulating Quorum Sensing

    PubMed Central

    Singh, B. R.; Pandey, G.; Verma, S.; Roy, S.; Naqvi, A. H.

    2015-01-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons—biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  14. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing.

    PubMed

    Singh, B N; Upreti, D K; Singh, B R; Pandey, G; Verma, S; Roy, S; Naqvi, A H; Rawat, A K S

    2015-04-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  15. Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells.

    PubMed Central

    Miyakawa, Y; Kuribayashi, T; Kagaya, K; Suzuki, M; Nakase, T; Fukazawa, Y

    1992-01-01

    Candida albicans serotype A (C. albicans A) possesses a specific antigen, designated antigen 6, which resides in mannans on the cell surface. To determine the role of the mannan moiety of the C. albicans cell wall in adherence to buccal epithelial cells, we used antigen 6-deficient mutants which had been isolated by screening with an agglutinating monoclonal antibody against antigen 6 (MAb-6). 1H nuclear magnetic resonance spectral analysis of the purified mannans from the mutants showed a loss of the signals related to that beta-linkage of the side chains. Moreover, acetolyzed fragments of the mutant mannans showed a decreased amount of mannohexaose and mannopentaose. The mutant yeast cells exhibited significantly reduced ability to adhere both to exfoliated buccal epithelial cells and to a human buccal cell line. A number of strains of C. albicans A, C. tropicalis, and C. glabrata, all of which bear antigen 6, showed significantly higher adherence to the cell line than did those of C. albicans serotype B, which lack antigen 6. The whole mannan from the C. albicans A parent inhibited the adherence of C. albicans A to epithelial cells dose dependently, whereas mannan from a mutant strains did not. Moreover, C. albicans A treated with MAb-6 or polyclonal factor 6 serum showed reduced adherence. A close correlation was found between adhesive ability and agglutinability with MAb-6 in the C. albicans A parent, the antigenic mutants, and their spontaneous revertants. These results suggest that so far as mannan adhesion is concerned, serotype A-specific determinants are largely involved in the mechanisms of adherence of C. albicans A to human buccal epithelial cells. PMID:1375200

  16. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. PMID:26755532

  17. Epidemiology of Candida infection. II. Application of biochemical methods for typing of Candida albicans strains.

    PubMed

    Budak, A

    1990-01-01

    Biochemical profiles of 350 C. albicans isolates from five towns in Poland and from Freiburg in Germany were determined on the basis of nine biochemical tests of Odds and Abbott method. API 20 C AUX system and additionally a resistogram. The analysis of the strains according to Odds' and Abbotts's system showed that investigated strains can be typed into 9 profile codes of common biochemical patterns. There were some differences among the profiles according to their geographical origin and anatomical sources of the isolation. On the basis of the ability C. albicans strains to assimilate of carbon sources, 350 isolates were categorised into 13 separate auxotrophic profiles with the major one: 2,576,174 accounting for 81% of the total. The majority of the investigated isolates were susceptible to antifungal agents (83%). A disproportionate distribution of auxotrophic profiles limited the use of resistogram method and API 20 C AUX as systems for typing C. albicans strains. On the other hand, the method of Odds and Abbott provides valuable criteria for typing of C. albicans. PMID:2130802

  18. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines?

    PubMed Central

    Puel, Anne; Picard, Capucine; Cypowyj, Sophie; Lilic, Desa; Abel, Laurent; Casanova, Jean-Laurent

    2013-01-01

    The various clinical manifestations of chronic mucocutaneous candidiasis (CMC) often result from acquired T-cell immunodeficiencies. More rarely, CMC results from inborn errors of immunity, the recent dissection of which has shed light on the molecular mechanisms of mucocutaneous immunity to Candida albicans. CMC may accompany various other infectious diseases in patients with almost any broad and profound T-cell primary immunodeficiency. By contrast, CMC is one of the few key infections in patients with autosomal dominant hyper IgE syndrome (mutations in STAT3), and in rare patients with autosomal recessive predisposition to mucocutaneous and invasive fungal infections (mutation in CARD9). In patients with mutations in STAT3 and CARD9 the development of IL-17-producing T cells is impaired. Moreover, CMC is the principal, if not only infection in patients with autosomal recessive autoimmune polyendocrinopathy syndrome-I (mutations in AIRE). Patients with this condition have high titers of neutralizing autoantibodies (auto-Abs) against the IL-17 cytokines IL-17A, IL-17F, and IL-22. Collectively, these data suggest that human IL-17A, IL-17F, and IL-22 are essential for mucocutaneous immunity to Candida albicans. They also suggest that the distinct syndrome of isolated CMC, without autoimmunity or other infections, may be caused by inborn errors of IL-17 immunity. PMID:20674321

  19. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species.

    PubMed Central

    Odds, F C; Bernaerts, R

    1994-01-01

    CHROMagar Candida is a novel, differential culture medium that is claimed to facilitate the isolation and presumptive identification of some clinically important yeast species. We evaluated the use of this medium with 726 yeast isolates, including 82 isolated directly on the medium from clinical material. After 2 days of incubation at 37 degrees C, 285 C. albicans isolates gave distinctive green colonies that were not seen with any of 441 other yeast isolates representing 21 different species. A total of 54 C. tropicalis isolates also developed distinctive dark blue-gray colonies with a halo of dark brownish purple in the surrounding agar. C. krusei isolates (n = 43) also formed highly characteristic rough, spreading colonies with pale pink centers and a white edge that was otherwise encountered only rarely with isolates of C. norvegensis. Trichosporon spp. (n = 34) formed small, pale colonies that became larger and characteristically rough with prolonged incubation. Most of the other 310 yeasts studied formed colonies with a color that ranged from white to pink to purple with a brownish tint. The only exceptions were found among isolates identified as Geotrichum sp. or Pichia sp., some of which formed colonies with a gray to blue color and which in two instances formed a green pigment or a dark halo in the agar. The specificity and sensitivity of the new medium for the presumptive identification of C. albicans, C. krusei, and C. tropicalis exceeded 99% for all three species. A blinded reading test involving four personnel and 57 yeast isolates representing nine clinically important species confirmed that colonial appearance after 48 h of incubation on CHROMagar Candida afforded the correct presumptive recognition of C. albicans, C. tropicalis, C, krusei, and Trichosporon spp. None of nine bacterial isolates grew on CHROMagar Candida within 72 h, and bacteria (Escherichia coli) grew from only 4 of 104 vaginal, 100 oral, and 99 anorectal swabs. The new medium

  20. Differential Gene Expression of Heat Shock Protein 90 (Hsp90) of Candida albicans obtained from Malaysian and Iranian Patients

    PubMed Central

    Khalili, Vajihe; Shokri, Hojjatollah; Md Akim, Abdah; Khosravi, Ali Reza

    2016-01-01

    Background Candida albicans (C. albicans) has several virulence factors, in particular heat shock protein 90 (Hsp90), which is expressed by Hsp90 gene. The purposes of this study were to assess the expression of Hsp90 gene in clinical and control isolates of C. albicans obtained from different geographical regions (Malaysia and Iran), different temperatures (25°C, 37°C and 42°C) and mice with candidiasis. Methods C. albicans isolates were cultured onto sabouraud dextrose agar (SDA). The assessment of the expression of Hsp90 gene was performed using real time-polymerase chain reaction (RT-PCR). Results The results showed a significant increase in the expression of C. albicans Hsp90 gene under high thermal shock (42°C) when compared to other temperatures tested (P-value = 0.001). The mean differences in the expression of Hsp90 gene at 37°C were 0.20 (95% confidence interval (CI) 0.13–0.29) between Malaysian and Iranian controls (P-value = 0.040) and 0.47 (95% CI 0.27–0.60) between Malaysian and Iranian patients (P-value = 0.040). Conclusion The results demonstrated that the expression of C. albicans Hsp90 gene varied between Malaysian and Iranian subjects, representing the efficacy of geographical and thermal conditions on virulence gene expression.

  1. [In vitro nystatin sensitivity of vaginal isolates of Candida spp].

    PubMed

    Andreu, C M; Medina, Y E; Gonzáles, T C; Llanes, D M

    2001-01-01

    The minimum inhibitory concentration (MIC) of nistatine, one of the most used antifungal agents for this micosis, was determined in 68 Candida strains isolated from vaginal smears. Candida albicans represented 75% of the total strains whereas C. parapsilosis, C. krusei and C. glabrata were much less frequently found. The predisposing factors were pregnancy and antibacterial treatment whereas leukorrhea and itching were the prevailing symptoms in most of the cases. MIC values from the use of a broth dilution method ranged from 0,5-8mg/mL and the geometric mean was 1.36mg/ mL. For C. albicans, MIC was 4mg/mL due to two strains that showed the highest MIC values (8 mg/mL). Similarly, the strains showed low MIC values, this means that therapeutic failures are not inherent to the emergence of resistant strains. PMID:15846923

  2. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  3. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons.

    PubMed

    Simões, João; Bezerra, Ana R; Moura, Gabriela R; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A S

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  4. Function and Regulation of Cph2 in Candida albicans

    PubMed Central

    Lane, Shelley; Di Lena, Pietro; Tormanen, Kati; Baldi, Pierre

    2015-01-01

    Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. PMID:26342020

  5. Humoral Immunity Links Candida albicans Infection and Celiac Disease

    PubMed Central

    Fradin, Chantal; Salleron, Julia; Damiens, Sébastien; Moragues, Maria Dolores; Souplet, Vianney; Jouault, Thierry; Robert, Raymond; Dubucquoi, Sylvain; Sendid, Boualem; Colombel, Jean Fréderic; Poulain, Daniel

    2015-01-01

    Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p=0.0005 and p=0.004) and anti-gliadin (p=0.002 and p=0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p=0.0001 and p=0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by γIII gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals. PMID:25793717

  6. Functional characterization of Candida albicans Hos2 histone deacetylase

    PubMed Central

    Karthikeyan, G; Paul-Satyaseela, Maneesh; Dhatchana Moorthy, Nachiappan; Gopalaswamy, Radha; Narayanan, Shridhar

    2014-01-01

    Candida albicans is a mucosal commensal organism capable of causing superficial (oral and vaginal thrush) infections in immune normal hosts, but is a major pathogen causing systemic and mucosal infections in immunocompromised individuals. Azoles have been very effective anti-fungal agents and the mainstay in treating opportunistic mold and yeast infections. Azole resistant strains have emerged compromising the utility of this class of drugs. It has been shown that azole resistance can be reversed by the co-administration of a histone deacetylase (HDAC) inhibitor, suggesting that resistance is mediated by epigenetic mechanisms possibly involving Hos2, a fungal deacetylase. We report here the cloning and functional characterization of  HOS2 (High Osmolarity  Sensitive) , a gene coding for fungal histone deacetylase from  C. albicans. Inhibition studies showed that Hos2 is susceptible to pan inhibitors such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), but is not inhibited by class I inhibitors such as MS-275. This  in  vitro enzymatic assay, which is amenable to high throughput could be used for screening potent fungal Hos2 inhibitors that could be a potential anti-fungal adjuvant. Purified Hos2 protein consistently deacetylated tubulins, rather than histones from TSA-treated cells. Hos2 has been reported to be a putative NAD+ dependent histone deacetylase, a feature of sirtuins. We assayed for sirtuin activation with resveratrol and purified Hos2 protein and did not find any sirtuin activity. PMID:25110576

  7. Function and Regulation of Cph2 in Candida albicans.

    PubMed

    Lane, Shelley; Di Lena, Pietro; Tormanen, Kati; Baldi, Pierre; Liu, Haoping

    2015-11-01

    Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia. PMID:26342020

  8. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum.

    PubMed

    Bor, Batbileg; Cen, Lujia; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2016-01-01

    Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies. PMID:27295972

  9. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum

    PubMed Central

    Bor, Batbileg; Cen, Lujia; Agnello, Melissa; Shi, Wenyuan; He, Xuesong

    2016-01-01

    Candida albicans and Fusobacterium nucleatum are well-studied oral commensal microbes with pathogenic potential that are involved in various oral polymicrobial infectious diseases. Recently, we demonstrated that F. nucleatum ATCC 23726 coaggregates with C. albicans SN152, a process mainly mediated by fusobacterial membrane protein RadD and Candida cell wall protein Flo9. The aim of this study was to investigate the potential biological impact of this inter-kingdom interaction. We found that F. nucleatum ATCC 23726 inhibits growth and hyphal morphogenesis of C. albicans SN152 in a contact-dependent manner. Further analysis revealed that the inhibition of Candida hyphal morphogenesis is mediated via RadD and Flo9 protein pair. Using a murine macrophage cell line, we showed that the F. nucleatum-induced inhibition of Candida hyphal morphogenesis promotes C. albicans survival and negatively impacts the macrophage-killing capability of C. albicans. Furthermore, the yeast form of C. albicans repressed F. nucleatum-induced MCP-1 and TNFα production in macrophages. Our study suggests that the interaction between C. albicans and F. nucleatum leads to a mutual attenuation of virulence, which may function to promote a long-term commensal lifestyle within the oral cavity. This finding has significant implications for our understanding of inter-kingdom interaction and may impact clinical treatment strategies. PMID:27295972

  10. Variation in morphotype, karyotype and DNA type of fluconazole resistant Candida albicans from an AIDS patient.

    PubMed

    Takasuka, T; Baily, G G; Birch, M; Anderson, M J; Law, D; Denning, D W

    1998-01-01

    Azole-resistant oropharyngeal and oesophageal candidiasis is a recent phenomenon observed in patients with AIDS usually previously treated with fluconazole. Some variation has been observed in antifungal susceptibility testing among separate colonies of Candida albicans from the same patient. This raises the question of whether there are multiple clones present or simply phenotypic variation in expression of azole resistance. To address this question we took 18 isolates grown from multiple swabs taken before and after experimental azole therapy from a single HIV-positive individual with fluconazole-resistant oral candidiasis and compared morphotype, karyotype, PCR-based DNA typing and azole susceptibility. Ten of the isolates were from a single 2-day period. Amongst these 10 there were seven morphotypes, five karyotypes and four polymerase chain reaction (PCR) types. Three further morphotypes, one karyotype and two PCR types were found amongst the eight isolates obtained during the subsequent 4 months. Limited variation in susceptibility to two azoles--fluconazole and D0870--was also seen. This work emphasizes both the large genotype and phenotypic variability of C. albicans isolates in the mouth of AIDS patients with fluconazole resistance, and the difficulties in interpretation of present typing methods. PMID:9515670

  11. In Vivo Inhibitory Effect on the Biofilm Formation of Candida albicans by Liverwort Derived Riccardin D

    PubMed Central

    Li, Yan; Ma, Yukui; Zhang, Li; Guo, Feng; Ren, Lei; Yang, Rui; Li, Ying; Lou, Hongxiang

    2012-01-01

    Riccardin D, a macrocyclic bisbibenzyl isolated from Chinese liverwort Dumortiera hirsute, has been proved to have inhibitory effect on biofilms formation of Candida albicans in in vitro study. Our present study aims to investigate the in vivo effect and mechanisms of riccardin D against C. albicans biofilms when used alone or in combination with clinical using antifungal agent fluconazole. XTT reduction assay revealed riccardin D had both prophylactic and therapeutic effect against C. albicans biofilms formation in a dose-dependent manner when using a central venous catheter related infective animal model. Scanning electron microscope and laser confocal scanning microscope showed that the morphology of biofilms was altered remarkably after riccardin D treatment, especially hypha growth inhibition. To uncover the underlying molecular mechanisms, quantitative real-time RT-PCR was performed to observe the variation of related genes. The downregulation of hypha-specific genes such as ALS1, ALS3, ECE1, EFG1, HWP1 and CDC35 following riccardin D treatment suggested riccardin D inhibited the Ras-cAMP-Efg pathway to retard the hypha formation, then leading to the defect of biofilms maturation. Moreover, riccardin D displayed an increased antifungal activity when administered in combination with fluconazole. Our study provides a potential clinical application to eliminate the biofilms of relevant pathogens. PMID:22545115

  12. Activity of Hoechst 33258 against Pneumocystis carinii f. sp. muris, Candida albicans, and Candida dubliniensis

    PubMed Central

    Disney, Matthew D.; Stephenson, Ruth; Wright, Terry W.; Haidaris, Constantine G.; Turner, Douglas H.; Gigliotti, Francis

    2005-01-01

    Hoechst 33258 is a compound that binds nucleic acids. We report that Hoechst 33258 exhibits antimicrobial activity against Pneumocystis carinii f. sp. muris in a mouse model for P. carinii pneumonia and against Candida albicans and Candida dubliniensis in vitro. Relative to saline treatment, a 14-day, daily treatment of mice with 37.5 mg of Hoechst 33258/kg of body weight after inoculation with P. carinii reduced by about 100-fold the number of P. carinii organisms detected by either PCR or by microscopy after silver staining. For comparison, treatment based on a dose of 15 to 20 mg of the trimethoprim component in trimethoprim-sulfamethoxazole/kg reduced the number of P. carinii by about fourfold. In vitro inhibition of P. carinii group I intron splicing was observed with a 50% inhibitory concentration (IC50)of 30 μM in 2 or 4 mM Mg2+, suggesting RNA as a possible target. However, Hoechst 33258 inhibits growth of Candida strains with and without group I introns. IC50s ranged from 1 to 9 μM for strains with group I introns and were 12 and 32 μM for two strains without group I introns. These studies demonstrate that compounds that bind fungal nucleic acids have the potential to be developed as new therapeutics for Pneumocystis and possibly other fungi, especially if they could be directed to structures that are not present in mammalian cells, such as self-splicing introns. PMID:15793106

  13. Study of the prevalence and association of ocular chlamydial conjunctivitis in women with genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans attending outpatient clinic

    PubMed Central

    Khattab, Rania Abdelmonem; Abdelfattah, Maha Mohssen

    2016-01-01

    AIM To determine the association between chlamydial conjunctivitis and genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans, in addition to the possible relationship between cultured bacterial pathogens and oculogenital chlamydial infection. METHODS This study was performed on 100 (50 symptomatic and 50 asymptomatic) women attending the Gynecological and Obstetric outpatient clinic of Alzahra hospital, Alazhar University. Simultaneously a conjunctival swab was taken from these patients. Polymerase chain reaction (PCR) was done on DNA extracted from both vaginal and conjunctival swab samples. Culture for both vaginal and conjunctival swabs was also done. RESULTS Candida albicans was the predominant organism isolated by culture in 20% and 40% of conjunctival and vaginal swabs respectively. By the PCR method, ocular Chlamydia trachomatis was present in 60% of symptomatic women, while genital Chlamydia trachomatis infection was present in 30% of symptomatic women. The results of this method also indicated that 25/50 (50%) vaginal swabs were positive with PCR for Candida albicans versus 15/50 (30%) were PCR positive in conjunctival swab. Mycoplasma genitalium was present in only 10% of vaginal swabs. Concomitant oculogenital PCR positive results for Chlamydia trachomatis and Candida albicans were 30% and 28% respectively. CONCLUSION Ocular Chlamydia trachomatis was associated with genital Chlamydia trachomatis in a high percentage of women followed by Candida albicans. Cultured bacterial organisms do not play a role in enhancement of Chlamydia trachomatis infection. PMID:27588273

  14. Characterization of recombinant homocitrate synthase from Candida albicans.

    PubMed

    Gabriel, Iwona; Milewski, Sławomir

    2016-09-01

    LYS21 and LYS22 genes from Candida albicans encoding isoforms of homocitrate synthase (HCS), an enzyme catalyzing the first committed step in the l-lysine biosynthetic pathway, were cloned and expressed as N-oligoHistagged fusion proteins in Escherichia coli. The purified gene products revealed HCS activity, i.e. catalyzed the condensation of α-ketoglutarate with acetyl-coenzyme A to yield homocitrate. The recombinant enzymes were purified to homogeneity and characterized for their physical properties and substrate specificities. As determined by size-exclusion chromatography (SEC) and native page electrophoresis, both isoenzymes adopt multiple quaternary structures, with the homotetrameric one being the most abundant. The KM (acetyl-CoA)=0.8±0.15mM and KM (α-ketoglutarate)=0.113±0.02mM for His6CaLys21p and KM (acetyl-CoA)=0.48±0.09mM and KM (α-ketoglutarate)=0.152±0.03mM values for His6CaLys22p were determined. Both enzyme versions were inhibited by l-Lys, i.e. the end product of the α-aminoadipate pathway but Lys22p was more sensitive than Lys21p, with Ki (L-Lys)=128±8μM for His6CaLys21p and Ki (L-Lys)=4.37±0.68μM for His6CaLys22p. The isoforms of C. albicans HCS exhibited differential sensitivity to several l-Lys analogues. Most notably, dl-α-difluoromethyllysine strongly inhibited His6CaLys22p (IC50 32±3μM) but was not inhibitory at all towards His6CaLys21p. Differential sensitivity of recombinant C. albicans Δlys21/LYS22, LYS21/Δlys22 and Δlys21/Δlys22 mutant strains to lysine analog, 2-aminoethyl-l-cysteine and biochemical properties of homocitrate synthase isoforms suggest different roles of two HCS isoenzymes in α-aminoadipate pathway. PMID:26363118

  15. Species distribution & antifungal susceptibility pattern of oropharyngeal Candida isolates from human immunodeficiency virus infected individuals

    PubMed Central

    Das, Partha Pratim; Saikia, Lahari; Nath, Reema; Phukan, Sanjib Kumar

    2016-01-01

    Background & objectives: The changing spectrum of Candida species in causation of oropharyngeal candidiasis and their antifungal susceptibility pattern among the HIV infected individuals has made the identification to species level mandatory and detection of drug resistance necessary for patient care. The present study was carried out to determine the species distribution and antifungal susceptibility profile of oral Candida isolates colonizing or infecting both HIV seropositive and seronegative individuals. Methods: A case-control study was conducted including 141 consecutive, non-repeat HIV-seropositive individuals and an equal number of sex and age matched HIV-seronegative control. Speciation of the oropharyngeal Candida isolates was done using standard yeast identification protocol. Antifungal susceptibility testing was done by the disk-diffusion method as well as by Fungitest method. Results: From the 59 culture positive HIV seropositive cases, 61 Candida isolates were recovered; Candida albicans (n=47, 77.0%), C. dubliniensis (n=9, 14.7%), C. parapsilosis (n=2, 3.2%), C. glabrata (n=2, 3.2%), and C. famata (n=1, 1.6%). Candida colonization in HIV-seropositive individuals was significantly higher than that of HIV-seronegative (control) group. Antifungal susceptibility testing revealed (n=6, 9.3%) C. albicans isolates resistant to voriconazole and fluconazole by disk-diffusion method whereas no resistance was seen by Fungitest method. Interpretation & conclusions: C. albicans was the commonest Candida species infecting or colonizing HIV seropositive individuals. Oropharyngeal Candida isolates had high level susceptibility to all the major antifungals commonly in use. Increased level of immunosuppression in HIV-seropositives and drug resistance of non-albicans Candida species makes identification and susceptibility testing of Candida species necessary in different geographical areas of the country. PMID:27377507

  16. Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom.

    PubMed

    Borman, Andrew M; Szekely, Adrien; Linton, Chistopher J; Palmer, Michael D; Brown, Phillipa; Johnson, Elizabeth M

    2013-03-01

    Candida africana was previously proposed as a new species within the Candida albicans species complex, together with C. albicans and C. dubliniensis, although further phylogenetic analyses better support its status as an unusual variant within C. albicans. Here we show that C. africana can be distinguished from C. albicans and C. dubliniensis by pyrosequencing of a short region of ITS2, and we have evaluated its occurrence in clinical samples by pyrosequencing all presumptive isolates of C. albicans submitted to the Mycology Reference Laboratory over a 9-month period. The C. albicans complex constituted 826/1,839 (44.9%) of yeast isolates received over the study period and included 783 isolates of C. albicans, 28 isolates of C. dubliniensis, and 15 isolates of C. africana. In agreement with previous reports, C. africana was isolated exclusively from genital specimens, in women in the 18-to-35-year age group. Indeed, C. africana constituted 15/251 (6%) of "C. albicans" isolates from female genital specimens during the study period. C. africana isolates were germ tube positive, grew significantly more slowly than C. albicans and C. dubliniensis on conventional mycological media, could be distinguished from the other members of the C. albicans complex by appearance on chromogenic agar, and were incapable of forming chlamydospores. Here we present the detailed evaluation of epidemiological, phenotypic, and clinical features and antifungal susceptibility profiles of United Kingdom isolates of C. africana. Furthermore, we demonstrate that C. africana is significantly less pathogenic than C. albicans and C. dubliniensis in the Galleria mellonella insect systemic infection model. PMID:23303503

  17. Oral administration of the broad-spectrum antibiofilm compound toremifene inhibits Candida albicans and Staphylococcus aureus biofilm formation in vivo.

    PubMed

    De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Cammue, Bruno P A; Thevissen, Karin

    2014-12-01

    We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093

  18. Identification of local clinical Candida isolates using CHROMagar Candida™ as a primary identification method for various Candida species.

    PubMed

    Madhavan, P; Jamal, F; Chong, P P; Ng, K P

    2011-08-01

    The objective of our study was to study the effectiveness of CHROMagar Candida™ as the primary identification method for various clinical Candida isolates, other than the three suggested species by the manufacturer. We studied 34 clinical isolates which were isolated from patients in a local teaching hospital and 7 ATCC strains. These strains were first cultured in Sabouraud dextrose broth (SDB) for 36 hours at 35ºC, then on CHROMagar plates at 30ºC, 35ºC and 37ºC. The sensitivity of this agar to identify Candida albicans, Candida dubliniensis, Candida tropicalis, Candida glabrata, Candida rugosa, Candida krusei and Candida parapsilosis ranged between 25 and 100% at 30ºC, 14% and 100% at 35ºC, 56% and 100% at 37ºC. The specificity of this agar was 100% at 30ºC, between 97% and 100% at 35ºC, 92% and 100% at 37ºC. The efficiency of this agar ranged between 88 and 100% at 30ºC, 83% and 100% at 35ºC, 88% and 100% at 37ºC. Each species also gave rise to a variety of colony colours ranging from pink to green to blue of different colony characteristics. Therefore, the chromogenic agar was found to be useful in our study for identifying clinical Candida isolates. PMID:22041745

  19. Antifungal Efficacy of Green Tea Extract against Candida Albicans Biofilm on Tooth Substrate

    PubMed Central

    Farhad Mollashahi, Narges; Bokaeian, Mohammad; Afrougheh, Arezoo

    2015-01-01

    Objectives: Biomechanical preparation and irrigation with antimicrobial solutions are necessary to disinfect the root canal space. This in vitro study aimed to examine the antifungal effect of green tea extract on Candida albicans biofilm formed on tooth substrate. Materials and Methods: Minimum fungicidal concentration (MFC) and minimum inhibitory concentration at which 90% of the isolates were inhibited (MIC90) were studied using green tea extract and sodium hypochlorite with the broth macro-dilution method. Then, anti-candida effects of this extract were tested on tooth substrates of 45 extracted single-canal premolar teeth. After biomechanical cleaning of the root canals, the teeth were sectioned vertically and randomly divided into three groups of 30. All the samples were infected with C. albicans (PTCC 5027) and exposed to the test solutions (sodium hypochlorite, green tea, normal saline) for five, 10 and 15 minutes. Data analyses of the samples were performed using two-way ANOVA. Results: The average number of microorganisms showed a significant decrease after five, 10 and 15 minutes of exposure to green tea extract and sodium hypochlorite. The average number of C. albicans in green tea extract and sodium hypochlorite groups decreased to 1/3 and 1/2 of the initial values, respectively. Conclusion: Antifungal activity of green tea extract was time-dependent and its inhibitory action did not decrease significantly over time. It is recommended to consider other properties of green tea such as tissue solubility, impact on dentin structure and use as an intracanal medicament or for smear layer removal in the clinical setting. PMID:27123019

  20. Regulation of copper toxicity by Candida albicans GPA2.

    PubMed

    Schwartz, Jennifer A; Olarte, Karen T; Michalek, Jamie L; Jandu, Gurjinder S; Michel, Sarah L J; Bruno, Vincent M

    2013-07-01

    Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae. PMID:23584994

  1. Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine.

    PubMed Central

    Smail, E H; Briza, P; Panagos, A; Berenfeld, L

    1995-01-01

    Several clinical and laboratory isolates of Candida albicans have a natural blue surface fluorescence when cultured and observed with sensitive optics. The localization and color of the fluorescence are similar to those of the natural fluorescence of sporulated Saccharomyces cerevisiae which is caused by the generation and surface deposition of the cross-linking amino acid dityrosine. In S. cerevisiae, dityrosine production results from the direct action of at least two genes and is responsible for resistance of the ascospores to lytic enzymes and physicochemical trauma. Among the criteria for the identification of dityrosine is pH sensitivity of the fluorescence intensity and a highly characteristic shift of the fluorescence excitation maximum with a change in pH. Video microscopy of whole Candida organisms revealed the characteristic dityrosine intensity maximum at pH approximately 10 and the intensity minimum at pH approximately 2. Separation of an acid hydrolysate of Candida cell walls by reverse-phase high-performance liquid chromatography revealed a fluorescence peak that coelutes with the reagent dityrosine. At pH approximately 10, this peak has a fluorescence excitation maximum of 320 to 325 nm, while at pH approximately 2, the excitation maximum is 285 to 290 nm. This excitation maximum shift and the observed emission maximum of approximately 410 nm are characteristic of dityrosine. Two separate strains of C. albicans were injected intraperitoneally into mice and harvested at 24 h. Blue surface fluorescence was observed, suggesting that dityrosine generation occurs in vivo as well as in vitro. This is the first report of the presence of dityrosine in a human fungal pathogen. PMID:7558322

  2. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida albicans

    PubMed Central

    Flowers, Stephanie A.; Colón, Brendan; Whaley, Sarah G.; Schuler, Mary A.

    2014-01-01

    In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities. PMID:25385095

  3. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans.

    PubMed

    Flowers, Stephanie A; Colón, Brendan; Whaley, Sarah G; Schuler, Mary A; Rogers, P David

    2015-01-01

    In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥ 4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities. PMID:25385095

  4. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans

    PubMed Central

    Thevissen, Karin; de Mello Tavares, Patricia; Xu, Deming; Blankenship, Jill; Vandenbosch, Davy; Idkowiak-Baldys, Jolanta; Govaert, Gilmer; Bink, Anna; Rozental, Sonia; de Groot, Piet W.J.; Davis, Talya R.; Kumamoto, Carol A.; Vargas, Gabriele; Nimrichter, Leonardo; Coenye, Tom; Mitchell, Aaron; Roemer, Terry; Hannun, Yusuf A.; Cammue, Bruno P.A.

    2012-01-01

    Summary The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2,868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analyzed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation. PMID:22384976

  5. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    SciTech Connect

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.

  6. Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine

    PubMed Central

    Nikiforou, Maria; Jacobs, Esmee M.R.; Kemp, Matthew W.; Hornef, Mathias W.; Payne, Matthew S.; Saito, Masatoshi; Newnham, John P.; Janssen, Leon E.W.; Jobe, Alan H.; Kallapur, Suhas G.; Kramer, Boris W.; Wolfs, Tim G.A.M.

    2016-01-01

    Chorioamnionitis is caused by intrauterine infection with microorganisms including Candida albicans (C.albicans). Chorioamnionitis is associated with postnatal intestinal pathologies including necrotizing enterocolitis. The underlying mechanisms by which intra-amniotic C.albicans infection adversely affects the fetal gut remain unknown. Therefore, we assessed whether intra-amniotic C.albicans infection would cause intestinal inflammation and mucosal injury in an ovine model. Additionally, we tested whether treatment with the fungistatic fluconazole ameliorated the adverse intestinal outcome of intra-amniotic C.albicans infection. Pregnant sheep received intra-amniotic injections with 107 colony-forming units C.albicans or saline at 3 or 5 days before preterm delivery at 122 days of gestation. Fetuses were given intra-amniotic and intra-peritoneal fluconazole treatments 2 days after intra-amniotic administration of C.albicans. Intra-amniotic C.albicans caused intestinal colonization and invasive growth within the fetal gut with mucosal injury and intestinal inflammation, characterized by increased CD3+ lymphocytes, MPO+ cells and elevated TNF-α and IL-17 mRNA levels. Fluconazole treatment in utero decreased intestinal C.albicans colonization, mucosal injury but failed to attenuate intestinal inflammation. Intra-amniotic C.albicans caused intestinal infection, injury and inflammation. Fluconazole treatment decreased mucosal injury but failed to ameliorate C.albicans-mediated mucosal inflammation emphasizing the need to optimize the applied antifungal therapeutic strategy. PMID:27411776

  7. Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine.

    PubMed

    Nikiforou, Maria; Jacobs, Esmee M R; Kemp, Matthew W; Hornef, Mathias W; Payne, Matthew S; Saito, Masatoshi; Newnham, John P; Janssen, Leon E W; Jobe, Alan H; Kallapur, Suhas G; Kramer, Boris W; Wolfs, Tim G A M

    2016-01-01

    Chorioamnionitis is caused by intrauterine infection with microorganisms including Candida albicans (C.albicans). Chorioamnionitis is associated with postnatal intestinal pathologies including necrotizing enterocolitis. The underlying mechanisms by which intra-amniotic C.albicans infection adversely affects the fetal gut remain unknown. Therefore, we assessed whether intra-amniotic C.albicans infection would cause intestinal inflammation and mucosal injury in an ovine model. Additionally, we tested whether treatment with the fungistatic fluconazole ameliorated the adverse intestinal outcome of intra-amniotic C.albicans infection. Pregnant sheep received intra-amniotic injections with 10(7) colony-forming units C.albicans or saline at 3 or 5 days before preterm delivery at 122 days of gestation. Fetuses were given intra-amniotic and intra-peritoneal fluconazole treatments 2 days after intra-amniotic administration of C.albicans. Intra-amniotic C.albicans caused intestinal colonization and invasive growth within the fetal gut with mucosal injury and intestinal inflammation, characterized by increased CD3(+) lymphocytes, MPO(+) cells and elevated TNF-α and IL-17 mRNA levels. Fluconazole treatment in utero decreased intestinal C.albicans colonization, mucosal injury but failed to attenuate intestinal inflammation. Intra-amniotic C.albicans caused intestinal infection, injury and inflammation. Fluconazole treatment decreased mucosal injury but failed to ameliorate C.albicans-mediated mucosal inflammation emphasizing the need to optimize the applied antifungal therapeutic strategy. PMID:27411776

  8. Phenotypic diversity and correlation between white-opaque switching and the CAI microsatellite locus in Candida albicans.

    PubMed

    Hu, Jian; Guan, Guobo; Dai, Yu; Tao, Li; Zhang, Jianzhong; Li, Houmin; Huang, Guanghua

    2016-08-01

    Candida albicans is a commensal fungal pathogen that is often found as part of the human microbial flora. The aim of the present study was to establish a relationship between diverse genotypes and phenotypes of clinical isolates of C. albicans. Totally 231 clinical isolates were collected and used for genotyping and phenotypic switching analysis. Based on the microsatellite locus (CAI) genotyping assay, 65 different genotypes were identified, and some dominant types were found in certain human niches. For example, the genotypes of 30-44 and 30-45 were enriched in vaginal infection samples. C. albicans has a number of morphological forms including the single-celled yeasts, multicellular filaments, white, and opaque cell types. The relationship between the CAI genotype and the ability to undergo phenotypic switching was examined in the clinical isolates. We found that the strains with longer CAA/G repeats in both alleles of the CAI locus were more opaque competent. We also discovered that some MTL heterozygous (a/alpha) isolates could undergo white-opaque switching when grown on regular culture medium (containing glucose as the sole carbon source). Our study establishes a link between phenotypic switching and genotypes of the CAI microsatellite locus in clinical isolates of C. albicans. PMID:26832141

  9. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic.

    PubMed

    Pfaller, M A; Jones, R N; Messer, S A; Edmond, M B; Wenzel, R P

    1998-02-01

    A national surveillance program of nosocomial blood stream infections (BSI) in the USA between April 1995 and June 1996 revealed that Candida was the fourth leading cause of nosocomial BSI, accounting for 8% of all infections. Forty-eight percent of 379 episodes of candidemia were due to species other than Candida albicans. The rank order of non-C. albicans species was C. glabrata (20%) > C. tropicalis (11%) > C. parapsilosis (8%) > C. krusei (5%) > other Candida spp. (4%). The species distribution varied according to geographic region, with non-C. albicans species predominating in the Northeast (54%) and Southeast (53%) regions, and C. albicans predominating in the Northwest (60%) and Southwest (70%) regions. In vitro susceptibility studies demonstrated that 95% of non-C. albicans isolates were susceptible to 5-fluorocytosine, and 84% and 75% were susceptible to fluconazole and itraconazole, respectively. Geographic variation in susceptibility to itraconazole, but not other agents, was observed. Isolates from the Northwest and Southeast regions were more frequently resistant to itraconazole (29-30%) than those from the Northeast and Southwest regions (17-18%). Molecular epidemiologic studies revealed possible nosocomial transmission (five medical centers). Continued surveillance for the presence of non-C. albicans species among hospitalized patients is recommended. PMID:9554180

  10. [A case report of pulmonary infiltration with eosinophilia syndrome induced by Candida albicans].

    PubMed

    Miyagawa, H; Yokota, S; Kajimoto, K; Makimoto, K; Sato, K; Nabe, M; Tada, S; Kimura, I

    1992-01-01

    A sixty six-year-old female who had been treated for bronchial asthma for about 25 years was admitted to the hospital with complaints of episodes of dyspnea, eosinophilia and infiltrative shadows in the chest X-ray film. An infiltrative shadow appeared to move from the left to the right lung field and finally formed a shadow of atelectasis in the middle field of the right lung. A sputum culture showed only Candida albicans. Allergic and immunologic examination revealed high IgE serum levels with specific IgE against Candida albicans in high titer, and Aspergillus fumigatus in low titer. The precipitating antibody was shown only against Candida antigen. Additionally, the blastogenic response to Candida antigen was high in comparison with other fungal antigens including Aspergillus fumigatus. The clinical features and laboratory findings of this patient were found to satisfy Rosenberg's criteria for allergic bronchopulmonary aspergillosis (ABPA), except for the existence of Candida albicans in place of Aspergillus species as the causative antigen. The pathogenesis of PIE syndrome has been studied and various allergic mechanisms against many antigens reported. In this patient Candida albicans could be playing the crucial role in the formation of PIE syndrome, which might be best described as allergic bronchopulmonary candidiasis (ABPC). PMID:1554325

  11. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    SciTech Connect

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  12. Imaging morphogenesis of Candida albicans during infection in a live animal

    NASA Astrophysics Data System (ADS)

    Mitra, Soumya; Dolan, Kristy; Foster, Thomas H.; Wellington, Melanie

    2010-01-01

    Candida albicans is an opportunistic human fungal pathogen that requires an intact host immune response to prevent disease. Thus, studying host-pathogen interactions is critical to understanding and preventing this disease. We report a new model infection system in which ongoing C. albicans infections can be imaged at high spatial resolution in the ears of living mice. Intradermal inoculation into mouse ears with a C. albicans strain expressing green fluorescent protein results in systemic C. albicans infection that can be imaged in vivo using confocal microscopy. We observed filamentous growth of the organism in vivo as well as formation of microabscesses. This model system will allow us to gain significant new information about C. albicans pathogenesis through studies of host-C. albicans interactions in the native environment.

  13. The polymorphism of protein phosphatase Z1 gene in Candida albicans.

    PubMed

    Kovács, László; Farkas, Ilona; Majoros, László; Miskei, Márton; Pócsi, István; Dombrádi, Viktor

    2010-12-01

    The gene of protein phosphatase Z1 (CaPPZ1) that codes a fungus specific regulatory enzyme was investigated in Candida albicans. After cloning and sequencing CaPPZ1 we revealed the heterozygous nature of the ATCC 10231 reference strain, and identified two new alleles termed CaPPZ1-2 and CaPPZ1-3. The genetic polymorphism in CaPPZ1 was extended by finding a fourth allele CaPPZ1-4 in a clinical isolate. Single nucleotide replacements and short in/del mutations were identified in the gene, some of which resulted in amino acid changes in the protein. The analysis of the hypervariable 3'-noncoding gene region in 27 DNA sequences obtained from reference strains and clinical samples confirmed the presence of four distinct DNA sequence-groups that correspond to the four main alleles of CaPPZ1. In addition to the allelic combinations, we detected individual mutations elevating genetic variability of the opportunistic pathogen. We utilized the hypervariable gene region for genotyping C. albicans in clinical isolates by sequencing the cloned amplified region, by direct sequencing of the PCR products, or by RFLP analysis. The comparison of the genotypes of the strains originating from different body parts of the same patient proved to be useful in delineating the origin of the infection. PMID:20473966

  14. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters

    PubMed Central

    Li, Peng; Alpi, Emanuele; Vizcaino, Juan A.

    2015-01-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. PMID:26195524

  15. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy

    PubMed Central

    Alenzi, Faris Q.B.

    2016-01-01

    Objective: Fungal urinary tract infections due to Candida have increased significantly in recent years. Our research objective was to study Candida species in urine samples of patients with urinary tract infections (UTIs) associated with obstructive uropathy and to investigate the virulence factors of the isolated Candida. Methods: Patients were divided into two groups: Group I (cases): 50 patients with UTIs and obstructive uropathy. Group II (control): 50 patients with UTIs but with no functional or anatomical obstruction of their urinary tract. Clinical histories and physical examinations, together with laboratory investigations of urine samples were carried out in all patients in this study. Mid stream urine samples were examined microscopically and by fungal cell culture. The isolated Candida species were identified by analytical profile index (API). Candida Virulence factors were determined for the isolated Candida. The susceptibility to fluconazole was evaluated. Results: This study revealed an overall isolation rate of 27% of Candida species among all patient groups. The rate was 36% in cases, and 18% in controls, a difference found to be statistically significant (P<0.05). By API, C.albicans was detected in 44% of Candida species in cases, and in 33% in controls. While C.glabrata was detected in 28% of Candida species in cases, and in 22% in controls. C.tropicalis was detected in 17% of Candida species in cases, and in 22% in controls. Both C.krusei and C.kyfr were detected in 5.5% of Candida species in cases, and in 11% in controls. In terms of virulence factors the study showed that 11 out of 27 (40.5%) of Candida isolates were biofilm positive by tube adherence. Phospholipase activity was demonstrated in 12 out of 27 (44.5%) of Candida isolates. Secretory aspartic proteinase activity was demonstrated in 13 out of 27 (48%) of the Candida isolates. Conclusion: Candida is an important cause of UTIs and obstructive uropathy is a major predisposing factor

  16. The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains

    PubMed Central

    Forche, Anja; Alby, Kevin; Schaefer, Dana; Johnson, Alexander D; Berman, Judith; Bennett, Richard J

    2008-01-01

    Candida albicans has an elaborate, yet efficient, mating system that promotes conjugation between diploid a and α strains. The product of mating is a tetraploid a/α cell that must undergo a reductional division to return to the diploid state. Despite the presence of several “meiosis-specific” genes in the C. albicans genome, a meiotic program has not been observed. Instead, tetraploid products of mating can be induced to undergo efficient, random chromosome loss, often producing strains that are diploid, or close to diploid, in ploidy. Using SNP and comparative genome hybridization arrays we have now analyzed the genotypes of products from the C. albicans parasexual cycle. We show that the parasexual cycle generates progeny strains with shuffled combinations of the eight C. albicans chromosomes. In addition, several isolates had undergone extensive genetic recombination between homologous chromosomes, including multiple gene conversion events. Progeny strains exhibited altered colony morphologies on laboratory media, demonstrating that the parasexual cycle generates phenotypic variants of C. albicans. In several fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, the conserved Spo11 protein is integral to meiotic recombination, where it is required for the formation of DNA double-strand breaks. We show that deletion of SPO11 prevented genetic recombination between homologous chromosomes during the C. albicans parasexual cycle. These findings suggest that at least one meiosis-specific gene has been re-programmed to mediate genetic recombination during the alternative parasexual life cycle of C. albicans. We discuss, in light of the long association of C. albicans with warm-blooded animals, the potential advantages of a parasexual cycle over a conventional sexual cycle. PMID:18462019

  17. Fluconazole- and itraconazole-resistant Candida albicans strains from AIDS patients: multilocus enzyme electrophoresis analysis and antifungal susceptibilities.

    PubMed Central

    Le Guennec, R; Reynes, J; Mallié, M; Pujol, C; Janbon, F; Bastide, J M

    1995-01-01

    Multilocus enzyme electrophoresis and in vitro susceptibility testing with a broth microdilution method were used to analyze Candida albicans strain diversity in four AIDS patients with recurrent oropharyngeal candidiasis who successively developed clinical resistance to fluconazole (FCZ) and itraconazole (ITZ). One to ten colonies per sample were randomly chosen from oral washings collected before the initial FCZ treatment and just before every other antifungal treatment; a total of 98 isolates were analyzed. Multilocus enzyme electrophoresis analysis revealed 14 different electrophoretic types (ETs). Statistical analysis of genetic distances showed that C. albicans isolates clustered into five subpopulations (I to V). In each subpopulation, isolates are closely related, and genetic distances between subpopulations I to IV are short. In contrast, subpopulation V, which contained isolates typed as ET8 and ET14, is strongly divergent from the others; these isolates may represent atypical C. albicans isolates. Only one patient was infected with a single strain during the course of azole therapy; for the three remaining patients, variants of the same strain and different strains were concurrently isolated. Clinical FCZ resistance was clearly correlated with in vitro data for three patients. Moreover, MICs of ITZ increased during FCZ therapy, and MICs of ITZ which were > or = 1.56 micrograms/ml were found when clinical ITZ resistance occurred; isolates from subpopulation V showed the highest MICs of ITZ. Because of the emergence of clinical ITZ resistance after clinical FCZ resistance, the feasibility of long-term azole therapy for mucosal candidiasis in AIDS patients is questioned. PMID:8567915

  18. Clinical significance of the isolation of Candida species from hospitalized patients

    PubMed Central

    Magalhães, Yankee C.; Bomfim, Maria Rosa Q.; Melônio, Luciane C.; Ribeiro, Patrícia C.S.; Cosme, Lécia M.; Rhoden, Cristianne R.; Marques, Sirlei G.

    2015-01-01

    In this study, we isolated and phenotypically identified 108 yeast strains from various clinical specimens collected from 100 hospitalized patients at three tertiary hospitals in São Luís-Maranhão, Brazil, from July to December 2010. The isolates were analyzed for their susceptibility to four of the most widely used antifungal agents in the surveyed hospitals, amphotericin B, fluconazole, 5-flucytosine and voriconazole. The species identified were Candida albicans (41.4%), Candida tropicalis (30.1%), C. glabrata (7.4%), Candida parapsilosis (5.5%), Candida krusei (4.6%), Cryptococcus neoformans (4.6%), Trichosporon spp . (3.7%), Candida norvegensis (0.9%), Rhodotorula glutinis (0.9%) and Pichia farinosa (0.9%). A higher isolation rate was observed in the following clinical specimens: urine (54 isolates; 50%), respiratory tract samples (21 isolates; 19.4%) and blood (20 isolates; 18.6%). Candida albicans isolates were 100% sensitive to all antifungal agents tested, whereas Candida krusei and Crytococcus neoformans displayed intermediate resistance to 5-flucytosine, with Minimal Inhibitory Concentration (MIC) values of 8 mg/mL and 16 mg/mL, respectively. Both strains were also S-DD to fluconazole with an MIC of 16 mg/mL. C. tropicalis was resistant to 5-flucytosine with an MIC of 32 μg/mL. This study demonstrates the importance of identifying the yeast species involved in community and nosocomial infections. PMID:26221096

  19. Clinical significance of the isolation of Candida species from hospitalized patients.

    PubMed

    Magalhães, Yankee C; Bomfim, Maria Rosa Q; Melônio, Luciane C; Ribeiro, Patrícia C S; Cosme, Lécia M; Rhoden, Cristianne R; Marques, Sirlei G

    2015-03-01

    In this study, we isolated and phenotypically identified 108 yeast strains from various clinical specimens collected from 100 hospitalized patients at three tertiary hospitals in São Luís-Maranhão, Brazil, from July to December 2010. The isolates were analyzed for their susceptibility to four of the most widely used antifungal agents in the surveyed hospitals, amphotericin B, fluconazole, 5-flucytosine and voriconazole. The species identified were Candida albicans (41.4%), Candida tropicalis (30.1%), C. glabrata (7.4%), Candida parapsilosis (5.5%), Candida krusei (4.6%), Cryptococcus neoformans (4.6%), Trichosporon spp . (3.7%), Candida norvegensis (0.9%), Rhodotorula glutinis (0.9%) and Pichia farinosa (0.9%). A higher isolation rate was observed in the following clinical specimens: urine (54 isolates; 50%), respiratory tract samples (21 isolates; 19.4%) and blood (20 isolates; 18.6%). Candida albicans isolates were 100% sensitive to all antifungal agents tested, whereas Candida krusei and Crytococcus neoformans displayed intermediate resistance to 5-flucytosine, with Minimal Inhibitory Concentration (MIC) values of 8 mg/mL and 16 mg/mL, respectively. Both strains were also S-DD to fluconazole with an MIC of 16 mg/mL. C. tropicalis was resistant to 5-flucytosine with an MIC of 32 μg/mL. This study demonstrates the importance of identifying the yeast species involved in community and nosocomial infections. PMID:26221096

  20. Effects of simulated microgravity by RCCS on the biological features of Candida albicans.

    PubMed

    Jiang, Wenjun; Xu, Bingxin; Yi, Yong; Huang, Yuling; Li, Xiao-Ou; Jiang, Fuquan; Zhou, Jinlian; Zhang, Jianzhong; Cui, Yan

    2014-01-01

    During the spaceflight, a wide variety of microorganisms may be carried to the outer space by astronauts and aviation component. The yeast Candida albicans is an important opportunistic pathogen responsible for a variety of cutaneous and systemic human infections in human body, and the yeast cell itself could be affected by various stressful environmental factors including the weightless environment. We evaluated the effects of simulated microgravity on biological features of Candida albicans using the rotary cell culture system (RCCS). The growth curves of Candida albicans cultured in RCCS were recorded by spectrophotometer, the morphogenic switches were observed by optical microscope, and the viability of cells exposed to the various concentrations of fluconazole solution was assayed by flow cytometry at 7th, 14th and 21st day of experiment. The results showed that Candida albicans SC5314 under modeled microgravity were manifested as the growth curves leftward-shifted, lag phase shortened, along with logarithmic phase and stationary phase forwarded (P < 0.05). The simulated microgravity increased the growth rate and mycelia formation of Candida albicans. A statistically significant decrease in viability was detected in cells cultured for 7 d, 14 d and 21 d in group of simulated microgravity compared with the control group (P < 0.05). The increase of exposure time to simulate microgravity resulted in the decrease of viability of cells accordingly in same drug concentration compared with the control group. The study demonstrated that the three weeks' simulated microgravity in RCCS had a noticeable affect on the growth status of mycelia and spores and the morphogenic switches of Candida albicans, meanwhile, the yeast cells under simulated microgravity showed an increased antifungal susceptibility to fluconazole. PMID:25120754

  1. Reduced inhibition of Candida albicans adhesion by saliva from patients receiving oral cancer therapy.

    PubMed Central

    Umazume, M; Ueta, E; Osaki, T

    1995-01-01

    The effect of saliva on the adhesion of Candida albicans to epithelial cells was examined in vitro by using saliva from healthy controls and patients with oral squamous cell carcinoma. The adhesion of C. albicans to established epithelial tumor cells was reduced by 40% by salivary treatment of the C. albicans or epithelial cells. The inhibitory activity of saliva was almost completely abolished by anti-secretory immunoglobulin A antibody, concanavalin A, and mannose. Compared with saliva from healthy individuals, that from patients who had received chemoradiotherapy for oral carcinoma showed reduced suppression of C. albicans adhesion, which accompanied decreased salivary secretory immunoglobulin A and lactoferrin concentrations. A greater number of C. albicans cells adhered to buccal cells obtained from patients who had received chemoradiotherapy than to those from healthy individuals. Treatment of either epithelial cells or C. albicans with anticancer drugs induced an increase in adherence of epithelial cells and yeast cells. In contrast, concanavalin A- and mannose-pretreated C. albicans exhibited reduced adhesion to epithelial cells. No further decrease of C. albicans adhesion was observed when both epithelial cells and yeast phase C. albicans were treated with mannose. In conclusion, the inhibition of C. albicans adhesion by saliva depends largely on mannose residues on salivary glycoproteins and mannose is one of the binding ligands on both C. albicans and epithelial cells. In addition, anticancer therapy may induce oral C. albicans overgrowth by decreasing salivation and the concentrations of glycoproteins in saliva inhibiting C. albicans adhesion and by increasing the adhesive properties of both C. albicans and oral epithelial cells. PMID:7714204

  2. A Trypsin Inhibitor from Tecoma stans Leaves Inhibits Growth and Promotes ATP Depletion and Lipid Peroxidation in Candida albicans and Candida krusei

    PubMed Central

    Patriota, Leydianne L. S.; Procópio, Thamara F.; de Souza, Maria F. D.; de Oliveira, Ana Patrícia S.; Carvalho, Lidiane V. N.; Pitta, Maira G. R.; Rego, Moacyr J. B. M.; Paiva, Patrícia M. G.; Pontual, Emmanuel V.; Napoleão, Thiago H.

    2016-01-01

    Tecoma stans (yellow elder) has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI), which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs) was evaluated. TesTI was isolated from saline extract by ammonium sulfate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC) and fungicide (MFC) concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, Ki 43 nM) inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 μg/mL. The MFCs were 200 μg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC) was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells. PMID:27199940

  3. A Trypsin Inhibitor from Tecoma stans Leaves Inhibits Growth and Promotes ATP Depletion and Lipid Peroxidation in Candida albicans and Candida krusei.

    PubMed

    Patriota, Leydianne L S; Procópio, Thamara F; de Souza, Maria F D; de Oliveira, Ana Patrícia S; Carvalho, Lidiane V N; Pitta, Maira G R; Rego, Moacyr J B M; Paiva, Patrícia M G; Pontual, Emmanuel V; Napoleão, Thiago H

    2016-01-01

    Tecoma stans (yellow elder) has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI), which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs) was evaluated. TesTI was isolated from saline extract by ammonium sulfate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC) and fungicide (MFC) concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, K i 43 nM) inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 μg/mL. The MFCs were 200 μg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC) was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells. PMID:27199940

  4. Construction of an SfiI macrorestriction map of the Candida albicans genome.

    PubMed Central

    Chu, W S; Magee, B B; Magee, P T

    1993-01-01

    The opportunistic fungal pathogen, Candida albicans, is diploid as usually isolated and has no apparent sexual cycle. Genetic analysis has therefore been very difficult. Molecular genetics has yielded important information in the past few years, but it too is hampered by the lack of a good genetic map. Using the well-characterized strain 1006 and strain WO-1, which undergoes the white-opaque phenotypic transition, we have developed a genomic restriction map of C. albicans with the enzyme SfiI. There are approximately 34 SfiI restriction sites in the C. albicans genome. Restriction fragments were separated by pulsed-field electrophoresis and were assigned to chromosomes by hybridization of complete and partial digests with known chromosome-specific probes as well as by digestion of isolated chromosomes. Telomeric fragments were identified by hybridization with a telomere-specific probe (C. Sadhu, M.J. McEachern, E.P. Rustchenko-Bulgac, J. Schmid, D.R. Soll, and J.B. Hicks, J. Bacteriol. 173:842-850, 1991). WO-1 differs from 1006 in that it has undergone three reciprocal chromosomal translocations. Analysis of the translocation products indicates that each translocation has occurred at or near an SfiI site; thus, the SfiI fragments from the two strains are similar or identical. The tendency for translocation to occur at or near SfiI sites may be related to the repeated sequence RPS 1, which contains four such sites and could provide homology for ectopic pairing and crossing over. The genome size of both strains is about 16 to 17 megabases, in good agreement with previous determinations. Images PMID:8407841

  5. RAPID IDENTIFICATION OF CANDIDA ALBICANS DIRECTLY FROM YEAST POSITIVE BLOOD CULTURE BOTTLES BY FLUORESCENCE IN SITU HYBRIDIZATION USING PNA PROBES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes for identification of Candida albicans directly from yeast-positive blood culture bottles is described. The test (C. albicans PNA FISH) is based on a fluorescein-labeled PNA probe targeting C. albicans 26...

  6. Molecular and Histological Association Between Candida albicans from Oral Soft Tissue and Carious Dentine of HIV-Positive Children.

    PubMed

    Blignaut, Elaine; van Heerden, Willie F P

    2015-10-01

    Candida albicans and caries are frequently investigated among healthy and immunosuppressed individuals. The objective of this study was to demonstrate the presence of C. albicans on both oral soft and hard tissue and to investigate, at molecular level, the genetic subtype of the organism from the two oral sites. Tongue swabs and dentine scrapings from 362 HIV-positive children, referred for the extraction of carious primary teeth, were cultured on CHROMagar and identified to species level with ID32C. Histological staining of extracted carious teeth was also done. In patients with positive C. albicans cultures from both the tongue and carious dentine, DNA fingerprinting of such paired isolates was performed, using Southern blot hybridisation with the Ca3 probe. Yeasts were cultured from the tongue of 151 (41.7 %) individuals and 57 (37.7 %) simultaneously yielded positive C. albicans cultures from carious dentine. Nine different yeast spp. were identified from the tongue using the ID32C commercial system, but C. albicans was the only species recovered from carious dentine and histological investigation demonstrated fungal elements penetrated into the dentine and not limited to superficial debris on the floor of the cavity. Twelve of 13 paired isolates of C. albicans revealed identical fingerprinting patterns. The findings from this study demonstrated that in a particular individual, the same genetic subtype of C. albicans was capable of colonising both oral soft tissue and carious dentine. This renders carious teeth a constant source, or reservoir, of potentially infectious agents and, particularly among immunosuppressed individuals, should therefore not be left unattended. PMID:26153022

  7. Cerebral candidiasis: case report of brain abscess secondary to Candida albicans, and review of literature

    PubMed Central

    Black, Joseph T.

    1970-01-01

    A patient with a brain abscess due to Candida albicans is reported. This patient had three episodes of systemic candidiasis in spite of the fact that she had no underlying debilitating disease and had never received prior antibiotic or adrenocortical steroid therapy. A review of the literature reveals 42 cases of central nervous system Candida albicans infection. The salient features of these cases are tabulated and discussed. The clinical features, pathology, pathogenesis, treatment, and aetiology of cerebral candidiasis are also discussed. Images PMID:5531906

  8. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans.

    PubMed

    Wang, Yuan-Hua; Dong, Huai-Huai; Zhao, Fei; Wang, Jie; Yan, Fang; Jiang, Yuan-Ying; Jin, Yong-Sheng

    2016-07-01

    To identify effective and low toxicity synergistic antifungal compounds, 24 derivatives of chalcone were synthesized to restore the effectiveness of fluconazole against fluconazole-resistant Candida albicans. The minimal inhibitory concentration (MIC80) and the fractional inhibitory concentration index (FICI) of the antifungal synergist fluconazole were measured against fluconazole-resistant Candida albicans. This was done via methods established by the clinical and laboratory standards institute (CLSI). Of the synthesized compounds, 2'-hydroxy-4'-methoxychalcone (8) exhibited the most potent in vitro (FICI=0.007) effects. The structure activity relationship of the compounds are then discussed. PMID:27210436

  9. Scanning electron and confocal scanning laser microscopy imaging of the ultrastructure and viability of vaginal Candida albicans and non- albicans species adhered to an intrauterine contraceptive device.

    PubMed

    Paiva, Luciene C Farias; Donatti, Lucélia; Patussi, Eliana V; Svizdinski, Terezinha I E; Lopes-Consolaro, Márcia E

    2010-10-01

    Although bacterial biofilms have been studied in detail, adhesion of Candida albicans and non-albicans species to an intrauterine contraceptive device (IUD) is not clear. The objective of this study was to evaluate aspects of imaging of the ultrastructure and viability of vaginal yeasts adhered to different parts of an IUD, through scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). We studied yeasts isolated from different patients with vulvovaginal candidiasis: C. albicans, C. glabrata, C. guillermondii, C. parapsilosis, C. tropicalis, and Saccharomyces cerevisiae. A suspension of the each yeast was prepared and incubated with IUD parts (tail, without copper, and copper-covered). SEM and CSLM showed that all the vaginal yeasts adhered to all the parts of the IUD and demonstrated viability, including 30 days after contact for C. albicans. Possibly irregularities of IUD surface contribute to the adherence process. Although all of the IUD parts contribute to retention of yeasts in the genital tract, high concentration of yeast cells on the tail may indicate the importance of this segment in maintaining the colonization by yeast cells because the tail forms a bridge between the external environment, the vagina that is colonized by yeast cells, and the upper genital tract where there is no colonization. PMID:20804637

  10. Molecular epidemiology of Candida species isolated from urine at an intensive care unit.

    PubMed

    Ergon, M C; Gülay, Z

    2005-03-01

    Candida spp. has been the leading microorganism isolated from the urine specimens of patients hospitalized at the Anesthesiology and Reanimation intensive care unit (ICU) of Dokuz Eylul University Hospital, Izmir, since 1998. This study was undertaken to investigate the clonal relationship of Candida urine isolates in order to find the mode of spread among the patients. Epidemiological surveillance of 38 Candida albicans, 15 Candida tropicalis and 12 Candida glabrata recovered from the urine specimens of patients who were hospitalized in the ICU between June 11, 2000 and October 15, 2001 was carried out by antifungal susceptibility testing and randomly amplified polymorphic DNA (RAPD) analysis. Two short primers [Cnd3 (5'-CCAGATGCAC-3') and Cnd4 (5'-ACGGTACACT-3')] were used for RAPD. None of the isolates had high minimal inhibitory concentration (MIC) values (>1 microg ml(-1)) against amphotericin B with MIC50 values of 0.5 microg ml(-1), 0.5 microg ml(-1) and 0.125 microg ml(-1) for C. albicans, C. tropicalis and C. glabrata isolates, respectively. However, three C. glabrata isolates were resistant and one C. albicans and five C. glabrata isolates were dose-dependent susceptible (D-DS) to fluconazole. Among C. albicans isolates 19 and 20 patterns were detected with primers Cnd3 and Cnd4, respectively. When primers Cnd3 and Cnd4 were evaluated together, three and four genotypes were identified for C. tropicalis and C. glabrata isolates, respectively. Our results suggest that the source of C. albicans isolates was mostly endogenous. It is difficult to interpret the mode of spread of C. tropicalis and C. glabrata urine isolates as we obtained insufficient banding patterns for these species. PMID:15743431

  11. A Monoclonal Antibody Directed against a Candida albicans Cell Wall Mannoprotein Exerts Three Anti-C. albicans Activities

    PubMed Central

    Moragues, María D.; Omaetxebarria, Miren J.; Elguezabal, Natalia; Sevilla, María J.; Conti, Stefania; Polonelli, Luciano; Pontón, José

    2003-01-01

    Antibodies are believed to play a role in the protection against Candida albicans infections by a number of mechanisms, including the inhibition of adhesion or germ tube formation, opsonization, neutralization of virulence-related enzymes, and direct candidacidal activity. Although some of these biological activities have been demonstrated individually in monoclonal antibodies (MAbs), it is not clear if all these anti-C. albicans activities can be displayed by a single antibody. In this report, we characterized a monoclonal antibody raised against the main target of salivary secretory immunoglobulin A in the cell wall of C. albicans, which exerts three anti-C. albicans activities: (i) inhibition of adherence to HEp-2 cells, (ii) inhibition of germination, and (iii) direct candidacidal activity. MAb C7 reacted with a proteinic epitope from a mannoprotein with a molecular mass of >200 kDa predominantly expressed on the C. albicans germ tube cell wall surface as well as with a number of antigens from Candida lusitaniae, Cryptococcus neoformans, Aspergillus fumigatus, and Scedosporium prolificans. MAb C7 caused a 31.1% inhibition in the adhesion of C. albicans to HEp-2 monolayers and a 55.3% inhibition in the adhesion of C. albicans to buccal epithelial cells, produced a 38.5% decrease in the filamentation of C. albicans, and exhibited a potent fungicidal effect against C. albicans, C. lusitaniae, Cryptococcus neoformans, A. fumigatus, and S. prolificans, showing reductions in fungal growth ranging from 34.2 to 88.7%. The fungicidal activity showed by MAb C7 seems to be related to that reported by antibodies mimicking the activity of a killer toxin produced by the yeast Pichia anomala, since one of these MAbs also reacted with the C. albicans mannoprotein with a molecular mass of >200 kDa. Results presented in this study support the concept of a family of microbicidal antibodies that could be useful in the treatment of a wide range of microbial infections when used

  12. Inhibitory Effect of Alpha-Mangostin on Adhesion of Candida albicans to Denture Acrylic

    PubMed Central

    Kaomongkolgit, Ruchadaporn; Jamdee, Kusuma

    2015-01-01

    Objective: Candida-associated denture stomatitis is a very common disease affecting denture wearers. It is characterized by the presence of yeast biofilm on the denture, primarily associated with C. albicans. The investigation of agents that can reduce C. albicans adhesion may represent a significant advancement in the prevention and treatment of this disease. This study aims to investigate the effect of alpha-mangostin on the in vitro adhesion of C. albicans to denture acrylic and germ tube formation by C. albicans and to compare its activity with clotrimazole which is a topical antifungal agent commonly used for the treatment of Candida-associated denture stomatitis. Materials and Methodology: Alpha-mangostin was extracted by thin layer chromatography. The effect of alpha-mangostin on adhesion of C. albicans to denture acrylic was determined by using a colorimetric tetrazolium assay and germ tube formation by C. albicans was determined by using the counting chamber. Results: A significant reduction of C. albicans adhesion to denture acrylic was evident after exposure to 2,000 µg/ml of alpha-mangostin for only 15 min. In addition, the 2,000 µg/ml of the alpha-mangostin-treated C. albicans had a reduced ability for germ tube formation. These inhibitory effects of alpha-mangostin were as effective as clotrimazole. Conclusion: Alpha-mangostin has antifungal property against C. albicans by inhibiting the adhesion to denture acrylic and germ tube formation in vitro. These results suggest the potential application of alpha-mangostin as a topical medication or a natural oral hygiene product for treatment of Candida-associated denture stomatitis. PMID:26962371

  13. The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains

    PubMed Central

    Garbusińska, Aleksandra; Kowalska, Magdalena; Król, Wojciech

    2015-01-01

    The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans, and C. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 μg/mL to an average of 38.46 μg/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 μg/mL to an average of 66.62 μg/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections. PMID:25722982

  14. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.

    PubMed

    Kim, Min-Jeong; Kil, Minkwang; Jung, Jong-Hwan; Kim, Jinmi

    2008-02-01

    In the fungal pathogen Candida albicans, the yeast-to-hyphal transition occurs in response to a broad range of environmental stimuli and is considered to be a major virulence factor. To address whether the zinc homeostasis affects the growth or pathogenicity of C. albicans, we functionally characterized the zinc-finger protein Csr1 during filamentation. The deduced amino acid sequence of Csr1 showed a 49% similarity to the zinc-specific transcription factor, Zap1 of Saccharomyces cerevisiae. Sequential disruptions of CSR1 were carried out in diploid C. albicans. The csr1/csr1 mutant strain showed severe growth defects under zinc-limited growth conditions and the filamentation defect under hyphainducing media. The colony morphology and the germ-tube formation were significantly affected by the csr1 mutation. The expression of the hyphae-specific gene HWP1 was also impaired in csr1/csr1 cells. The C. albicans homologs of ZRT1 and ZRT2, which are zinc-transporter genes in S. cerevisiae, were isolated. High-copy number plasmids of these genes suppressed the filamentation defect of the csr1/csr1 mutant strain. We propose that the filamentation phenotype of C. albicans is closely associated with the zinc homeostasis in the cells and that Csr1 plays a critical role in this regulation. PMID:18309267

  15. pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans.

    PubMed Central

    Matthews, G D; Goodwin, T J; Butler, M I; Berryman, T A; Poulter, R T

    1997-01-01

    Retrotransposons are mobile genetic elements. They can transpose via the reverse transcription of mRNA into double-stranded DNA (dsDNA) followed by the insertion of this dsDNA into new sites within the host genome. The unintegrated, linear, dsDNA form of retrotransposons is usually very rare. We report here the isolation of a retrotransposon from Candida albicans which is unusual in this respect. This element, which we have named pCal, was first identified as a distinct band when uncut C. albicans DNA was examined on an agarose gel. Sequence analysis of the cloned element revealed that it is a retrotransposon belonging to the Ty1/copia group. It is estimated that pCal produces 50 to 100 free, linear, dsDNA copies of itself per cell. This is a much higher level of expression than even that of the system in which Ty1 is expressed behind the highly active GAL1 promoter on a high-copy-number plasmid (about 10 copies per cell). Another unusual feature of pCal is that its Pol enzymes are likely to be expressed via the pseudoknot-assisted suppression of an upstream, in-phase stop codon, as has been shown for Moloney murine leukemia virus. PMID:9371461

  16. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  17. Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline

    SciTech Connect

    Klig, L.S.; Friedli, L.; Schmid, E. )

    1990-08-01

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed.

  18. Influence of radiation therapy on oral Candida albicans colonization: a quantitative assessment

    SciTech Connect

    Rossie, K.M.; Taylor, J.; Beck, F.M.; Hodgson, S.E.; Blozis, G.G.

    1987-12-01

    An increase in quantity of oral Candida albicans was documented in patients receiving head and neck radiation therapy during and after therapy, as assessed by an oral-rinse culturing technique. The amount of the increase was greater in denture wearers and directly related to increasing radiation dose and increasing volume of parotid gland included in the radiation portal. A significant number of patients who did not carry C. albicans prior to radiation therapy developed positive cultures by 1 month after radiation therapy. The percentage of patients receiving head and neck radiation therapy who carried C. albicans prior to radiation therapy did not differ significantly from matched dental patient controls.

  19. Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

    PubMed Central

    Li, Xiuyun; Hou, Yinglong; Yue, Longtao; Liu, Shuyuan; Du, Juan

    2015-01-01

    Fungal infections, especially infections caused by Candida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets in C. albicans are needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence in C. albicans and examines potential targets for the development of new antifungal drugs. PMID:26195510

  20. Use of immunoblotting to identify antigenic differences between the yeast and mycelial phases of Candida albicans.

    PubMed Central

    Burnie, J P; Matthews, R C; Fox, A; Tabaqchali, S

    1985-01-01

    Western blotting was applied to the analysis of Candida albicans in the yeast and mycelial phases in an attempt to recognise mycelial specific antigens which might be of serodiagnostic value. The antisera were prepared in rabbits by immunising them with pressates of C albicans type A NCTC 3153 in the yeast phase or the mycelial phase. These were blotted against C albicans in the yeast and mycelial phases and the yeast phase of C parapsilosis, C krusei, C tropicalis, and Torulopsis glabrata. Cross reactivity was greatest against C parapsilosis. One yeast specific mannoprotein was identified with a molecular weight of 49 000. No mycelial specific antigens could be identified. Images PMID:3891792

  1. CX3CL1 expression induced by Candida albicans in oral fibroblasts.

    PubMed

    Ohta, Kouji; Nishi, Hiromi; Fukui, Akiko; Shigeishi, Hideo; Takechi, Masaaki; Kamata, Nobuyuki

    2010-11-01

    Oral fibroblasts as well as keratinocytes are thought to influence host inflammatory responses against Candida albicans. However, little is known about chemokine expressions in oral fibroblasts against C. albicans infection. We therefore examined whether C. albicans induced several chemokines including fractalkine/CX3CL1 (CX3CL1), a unique chemokine that has properties of both chemoattractants and adhesion molecules, in fibroblasts and keratinocytes. The addition of C. albicans live cells to human immortalized oral keratinocytes (RT7) resulted in increases in the mRNA levels of multiple chemokines, but not of CX3CL1. In contrast, live and heat-killed C. albicans caused an increase in CX3CL1 mRNA and protein expression in human immortalized oral fibroblasts (GT1). CX3CL1 mRNA expression in GT1 cells was also enhanced by stimulation with a nonalbicans species of Candida. Further, the CX3CL1 chemokine domain showed antifungal activity against C. albicans. CX3CL1 secreted by oral fibroblasts appears to play an important role in the oral immune response to C. albicans infection. PMID:20880200

  2. Gene expression profile of THP-1 cells treated with heat-killed Candida albicans

    PubMed Central

    Hu, Zhi-De; Wei, Ting-Ting; Tang, Qing-Qin; Ma, Ning; Wang, Li-Li; Qin, Bao-Dong; Yin, Jian-Rong

    2016-01-01

    Background Mechanisms under immune response against Candida albicans (C. albicans) remain largely unknown. To better understand the mechanisms of innate immune response against C. albicans, we analyzed the gene expression profile of THP-1 cells stimulated with heat-killed C. albicans. Methods THP-1 cells were stimulated with heat-killed C. albicans for 9 hours at a ratio of 1:1, and gene expression profile of the cells was analyzed using Whole Human Genome Oligo Microarray. Differentially expressed genes were defined as change folds more than 2 and with statistical significance. Gene ontology (GO) and pathway analysis were used to systematically identify biological connections of differentially expressed genes, as well as the pathways associated with the immune response against C. albicans. Results A total of 355 genes were up-regulated and 715 genes were down-regulated significantly. The up-regulated genes were particularly involved in biological process of RNA processing and pathway of the spliceosome. In case of down-regulated genes, the particularly involved immune-related pathways were G-protein coupled receptor signaling pathway, calcium signaling pathway, MAPK signaling pathway and Ras pathway. Conclusions We depict the gene expression profile of heat-killed C. albicans stimulated THP-1 cells, and identify the major pathways involved in immune response against C. albicans. These pathways are potential candidate targets for developing anti-C. albicans agent. PMID:27275483

  3. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

    PubMed Central

    Rast, Timothy J.; Kullas, Amy L.; Southern, Peter J.; Davis, Dana A.

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage. PMID:27088599

  4. Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis

    PubMed Central

    Mason, Katie L.; Erb Downward, John R.; Falkowski, Nicole R.; Young, Vincent B.; Kao, John Y.

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent. PMID:21986629

  5. Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans.

    PubMed

    Li, De-Dong; Yang, Chang-Chun; Liu, Ping; Wang, Yan; Sun, Yan

    2016-06-01

    Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles. PMID:27570314

  6. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  7. Molecular epidemiology of Candida isolates from AIDS patients showing different fluconazole resistance profiles.

    PubMed Central

    Lischewski, A; Ruhnke, M; Tennagen, I; Schönian, G; Morschhäuser, J; Hacker, J

    1995-01-01

    Thirty Candida isolates obtained from the oropharynxes of three AIDS patients were genotypically characterized. In vitro fluconazole MIC determination revealed increasing fluconazole resistances during treatment, thereby confirming the in vivo situation. Pulsed-field gel electrophoresis karyotyping, randomly amplified polymorphic DNA analysis, and hybridizations with Candida albicans repetitive element 2 were used to determine possible genotypic changes. The isolates from two patients showed genetic homogeneity, suggesting the selection for resistant variants. One patient experienced a strain switch to Candida krusei. Horizontal spread of identical strains between the patients could be excluded. However, the molecular methods used might not be sufficient to detect the underlying genetic basis of resistance to fluconazole. PMID:7751395

  8. Selected mechanisms of molecular resistance of Candida albicans to azole drugs.

    PubMed

    Gołąbek, Karolina; Strzelczyk, Joanna Katarzyna; Owczarek, Aleksander; Cuber, Piotr; Ślemp-Migiel, Anna; Wiczkowski, Andrzej

    2015-01-01

    A phenomenon of increasing resistance of Candida spp. to azoles has been observed for several years now. One of the mechanisms of lack of sensitivity to azoles is associated with CDR1, CDR2, MRD1 genes (their products are active transport pumps conditioning drug efflux from pathogen's cell), and ERG11 gene (encoding lanosterol 14α-demethylase). Test material was 120 strains of Candida albicans (60 resistant and 60 susceptible to azole drugs) obtained from clinical samples. The first stage of experiment assessed the expression of CDR1, CDR2, MDR1 and ERG11 genes by Q-PCR. The impact of ERG11 gene's mutations on the expression of this gene was analysed. The final stage of the experiment assessed the level of genome methylation of Candida albicans strains. An increase in the expression of CDR2, MDR1 and ERG11 was observed in azole-resistant strains of Candida albicans in comparison to strains sensitive to this class of drugs. Furthermore, 19 changes in the sequence of ERG11 were detected in tested strains. Four of the discovered mutations: T495A, A530C, G622A and A945C led to the following amino acid substitutions: D116E, K128T, V159I and E266D, respectively. It has also been found that statistically five mutations: T462C, G1309A, C216T, C1257T and A945C affected the expression of ERG11. The applied method of assessing the level of methylation of Candida albicans genome did not confirm its role in the development of resistance to azoles. The results indicate however, that resistance of Candida albicans strains to azole drugs is multifactorial. PMID:25901298

  9. Candida albicans Airway Colonization Facilitates Subsequent Acinetobacter baumannii Pneumonia in a Rat Model.

    PubMed

    Tan, Xiaojiang; Chen, Ruilan; Zhu, Song; Wang, Huijun; Yan, Dongxing; Zhang, Xiangdong; Farmakiotis, Dimitrios; Mylonakis, Eleftherios

    2016-06-01

    The objective of the study was to determine the effects of Candida albicans respiratory tract colonization on Acinetobacter baumannii pneumonia in a rat model. Rats were colonized with C. albicans by instillation of 3 × 10(6) CFU into their airways, while sterile saline was instilled in the control group. The colonized rats were further divided into two groups: treated with amphotericin B or not. The rats were subsequently infected with A. baumannii (10(8) CFU by tracheobronchial instillation). A. baumannii lung CFU counts, cytokine lung levels, and rates of A. baumannii pneumonia were compared between groups. In vitro expression of A. baumannii virulence genes was measured by reverse transcription (RT)-PCR after 24-hour incubation with C. albicans or with Mueller-Hinton (MH) broth alone. Rats with Candida colonization developed A. baumannii pneumonia more frequently and had higher A. baumannii CFU burdens and heavier lungs than controls. After A. baumannii infection, lung interleukin 17 (IL-17) concentrations were lower and gamma interferon (IFN-γ) concentrations were higher in Candida-colonized rats than in controls. Candida-colonized rats treated with amphotericin B had a decreased rate of A. baumannii pneumonia and lower IFN-γ levels but higher IL-17 levels than untreated rats. Expression of basC, barB, bauA, ptk, plc2, and pld2 was induced while expression of ompA and abaI was suppressed in A. baumannii cultured in the presence of C. albicans C. albicans colonization facilitated the development of A. baumannii pneumonia in a rat model. Among Candida-colonized rats, antifungal treatment lowered the incidence of A. baumannii pneumonia. These findings could be due to modification of the host immune response and/or expression of A. baumannii virulence genes by Candida spp. PMID:27001817

  10. Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals.

    PubMed

    Luna-Tapia, Arturo; Kerns, Morgan E; Eberle, Karen E; Jursic, Branko S; Palmer, Glen E

    2015-04-01

    The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy. PMID:25666149

  11. Trafficking through the Late Endosome Significantly Impacts Candida albicans Tolerance of the Azole Antifungals

    PubMed Central

    Luna-Tapia, Arturo; Kerns, Morgan E.; Eberle, Karen E.; Jursic, Branko S.

    2015-01-01

    The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of “toxic” sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of “trailing growth” that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular “redistribution” of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy. PMID:25666149

  12. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans.

    PubMed

    Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01

    We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs. PMID:26694966

  13. Disruption of the Transcriptional Regulator Cas5 Results in Enhanced Killing of Candida albicans by Fluconazole

    PubMed Central

    Vasicek, Erin M.; Berkow, Elizabeth L.; Bruno, Vincent M.; Mitchell, Aaron P.; Wiederhold, Nathan P.; Barker, Katherine S.

    2014-01-01

    Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 μg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 μg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals

  14. Candida isolates from pregnant women and their antifungal susceptibility in a Malaysian tertiary-care hospital

    PubMed Central

    Masri, Siti Norbaya; Noor, Sabariah Md; Nor, Lailatul Akmar Mat; Osman, Malina; Rahman, MM

    2015-01-01

    Objective: Pregnant women are susceptible to vaginal colonization and infection by yeast. The purpose of the study was to determine the prevalence of Candida spp in high vaginal swabs of pregnant women and their antifungal susceptibility. Methods: High vaginal swab samples received from Serdang Hospital, Selangor, Malaysia during 2011 initially had microscopic examination, Gram-staining and fungal culture. These were finally confirmed by growth in chromogenic medium (CHROMagarCandida; Difco BBL, USA) and commercial biochemical identification kit (API 20C AUX; bioMérieux, Lyon, France). Antifungal susceptibility was performed by E-test method. Results: Out of 1163 specimens 200 (17.2%) candida spp were confirmed from high vaginal swabs of pregnant women. Candida albicans (83.5%) is the most common species detected followed by Candida glabrata (16%) and Candida famata (0.05%). All C. albicans and C.famata isolates were susceptible to fluconazole while C.glabrata isolates were dose dependent susceptibility. First and second trimester, and diabetes were considered significant factors in patients for the vaginal candidiasis (p < 0.001). Conclusions: In pregnant women, C. albicans was the frequently isolated yeast from high vaginal swabs. Routine screening and treatment are important of pregnant women regardless of symptoms. PMID:26150863

  15. Candida albicans pancreatitis in a child with cystic fibrosis post lung transplantation.

    PubMed

    Hammer, Mark M; Zhang, Lingxin; Stoll, Janis M; Sheybani, Elizabeth F

    2016-04-01

    We present a case of Candida albicans infection of a previously intact pancreas in a child with cystic fibrosis status post lung transplantation. Although Candida superinfection in necrotizing pancreatitis is not uncommon, this is a unique case of Candida infection of non-necrotic pancreatic parenchyma. This case presented a diagnostic dilemma for radiologists because it appeared virtually identical to acute interstitial edematous pancreatitis on imaging. Ultimately, endoscopic US-based biopsy was pursued for diagnosis. Although difficult to treat and compounded by the immunocompromised status of the child, the pancreatic infection improved with antifungal therapy. PMID:26546567

  16. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface

    PubMed Central

    Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha

    2015-01-01

    Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in

  17. Candida duobushaemulonii: an emerging rare pathogenic yeast isolated from recurrent vulvovaginal candidiasis in Brazil.

    PubMed

    Boatto, Humberto Fabio; Cavalcanti, Sarah Desirée Barbosa; Del Negro, Gilda Mb; Girão, Manoel João Bc; Francisco, Elaine Cristina; Ishida, Kelly; Gompertz, Olga Fischman

    2016-06-01

    The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14 Candida albicans, six Candida duobushaemulonii, four Candida glabrata, and two Candida tropicalis. Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 µg/mL), two C. glabrata isolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ. PMID:27304096

  18. A Thioether-Stabilized d-Proline-l-Proline-Induced β-Hairpin Peptide of Defensin Segment Increases Its Anti-Candida albicans Ability.

    PubMed

    Zhao, Bingchuan; Yang, Dan; Wong, Jack Ho; Wang, Jianpeng; Yin, Cuiming; Zhu, Yuxia; Fan, Shangrong; Ng, Tzi Bun; Xia, Jiang; Li, Zigang

    2016-08-01

    We report a β-hairpin dual stabilizing strategy: a d-proline-l-proline (d-Pro-l-Pro) dipeptide as the nucleating turn, and a thioether tether as a side-chain linkage at a precisely designed position to stabilize the β-hairpin. This method was used to modify the C-terminal β-hairpin moiety of the plant defensin, pv-defensin, in order to obtain a stabilized peptide with enhanced anti-Candida albicans activity (MIC 84-3.0 μm), high serum stability (50 % remaining after 48 h) and low hemolysis (<10 % at 152 μm). This modified peptide penetrated the C. albicans cell membrane within 5 min and showed high activity against clinically isolated antibiotic-resistant C. albicans and Candida glabrata strains. PMID:27194395

  19. Host responses to Candida albicans: Th17 cells and mucosal candidiasis

    PubMed Central

    Conti, Heather R.; Gaffen, Sarah L.

    2010-01-01

    Candida albicans causes mucosal and disseminated candidiasis, which represent serious problems for the rapidly expanding immunocompromised population. Until recently, Th1-mediated immunity was thought to confer the primary protection, particularly for oral candidiasis. However, emerging data indicate that the newly-defined Th17 compartment appears to play the predominant role in mucosal candidiasis. PMID:20381638

  20. Cerebral macroabscess caused by Candida albicans in an immunocompetent patient: A diagnostic challenge

    PubMed Central

    Figueiredo, Sônia M.; Campolina, Sabrina; Rosa, Carlos A.; Gontijo, Marcus; Tirone, Thelma; Assunção, Claudia B.; Freire, Tarcísio F.A.; Christo, Paulo P.; Caligiorne, Rachel B.

    2014-01-01

    We describe the history of a 24-year-old immunocompetent man with an expansive lesion in the brainstem that, after many misdiagnoses, was found to be caused by a Candida albicans abscess. One year after surgery and 3 months of fluconazole treatment, the patient was asymptomatic and all image and laboratory tests were normal. PMID:24567895

  1. Kinetic Patterns of Candida albicans Germ Tube Antibody in Critically Ill Patients: Influence on Mortality▿

    PubMed Central

    Zaragoza, Rafael; Pemán, Javier; Quindós, Guillermo; Iruretagoyena, Jose R.; Cuétara, María S.; Ramírez, Paula; Gómez, Maria D.; Camarena, Juan J.; Viudes, Angel; Pontón, José

    2009-01-01

    The influence of kinetic patterns of Candida albicans germ tube antibodies (CAGTA) on mortality was analyzed in six intensive care units. Statistically significant lower mortality rates were found in patients with patterns of increasing CAGTA titers who had been treated with antifungal agents. Thus, antifungal treatment should be considered when CAGTA titers are increasing in critically ill patients. PMID:19675223

  2. Effect of surface treatments of porcelain on adhesion of Candida albicans.

    PubMed

    Lawaf, Shirin; Azizi, Arash; Farzad, Azin; Adimi, Parvaneh

    2016-01-01

    Surface treatment of porcelain is required to minimize the adhesion of microorganisms to surfaces of the restoration. This study sought to assess the effects of 3 different porcelain surface treatments on adhesion of Candida albicans. This in vitro experimental study was conducted on 60 porcelain disks (10 × 3 mm) randomly divided into 4 groups of 15. The nonglazed group received no surface treatment; specimens in the other 3 groups were glazed in the furnace, overglazed with liquid glaze, or polished using a polishing kit. The specimens were washed, sterilized, and separately incubated with 350 µL of Candida albicans suspension for 24 hours. Specimens were then rinsed for 20 seconds and shaken in 1 mL of saline solution for 1 minute, and 20 µL of this suspension was cultured in a plate and incubated at 37°C for 48 hours. Candida albicans colonies were counted to assess the number of microorganisms adhering to each disk. Data were analyzed with the Kruskal-Wallis test. Statistically significant differences were found among the 4 groups in terms of C albicans adherence (P = 0.001). The nonglazed porcelain had the highest and the overglazed porcelain had the lowest mean adherence value. No statistically significant difference was noted between glazed and polished specimens. Based on the obtained results, overglazing resulted in the least adhesion of C albicans, and polishing provided a surface as smooth as a glazed surface. PMID:27367639

  3. Evaluation of Candida albicans formation on feldspathic porcelain subjected to four surface treatment methods.

    PubMed

    Karayazgan, Banu; Atay, Arzu; Saracli, Mehmet Ali; Gunay, Yumushan

    2010-03-01

    Candida albicans, known for its adhesion on prosthetic materials and oral tissues, is the most frequently encountered fungal infection in dentistry. The aim of this study was to evaluate the effects of four different surface treatment methods and immersion in artificial saliva on the surface roughness of and candida adhesion on dental porcelains. The four surface treatment methods were namely: natural glaze, overglaze, dual ion exchange, and polishing. Surface roughness of porcelain was evaluated using a surface profilometer and by SEM. Candida adhesion was examined by culturing two Candida strains on porcelain specimens followed by a colorimetric method using XTT/Coenzyme Q0. It became evident that Candida adhesion was found more in the specimens treated with natural glaze and polishing. Further, by the visual inspection of SEM images and comparison of surface roughness, polished and natural-glazed specimens showed rougher surface characteristics than overglazed and dual-ion-exchanged specimens. PMID:20379024

  4. Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in Candida albicans

    PubMed Central

    Hickman, Meleah A.; Paulson, Carsten; Dudley, Aimee; Berman, Judith

    2015-01-01

    The opportunistic pathogen Candida albicans has a large repertoire of mechanisms to generate genetic and phenotypic diversity despite the lack of meiosis in its life cycle. Its parasexual cycle enables shifts in ploidy, which in turn facilitate recombination, aneuploidy, and homozygosis of whole chromosomes to fuel rapid adaptation. Here we show that the tetraploid state potentiates ploidy variation and drives population heterogeneity. In tetraploids, the rate of losing a single heterozygous marker [loss of heterozygosity (LOH)] is elevated ∼30-fold higher than the rate in diploid cells. Furthermore, isolates recovered after selection for LOH of one, two, or three markers were highly aneuploid, with a broad range of karyotypes including strains with a combination of di-, tri-, and tetrasomic chromosomes. We followed the ploidy trajectories for these tetraploid- and aneuploid-derived isolates, using a combination of flow cytometry and double-digestion restriction-site-associated DNA analyzed with next-generation sequencing. Isolates derived from either tetraploid or aneuploid isolates predominately resolved to a stable euploid state. The majority of isolates reduced to the conventional diploid state; however, stable triploid and tetraploid states were observed in ∼30% of the isolates. Notably, aneuploid isolates were more transient than tetraploid isolates, resolving to a euploid state within a few passages. Furthermore, the likelihood that a particular isolate will resolve to the same ploidy state in replicate evolution experiments is only ∼50%, supporting the idea that the chromosome loss process of the parasexual cycle is random and does not follow trajectories involving specific combinations of chromosomes. Together, our results indicate that tetraploid progenitors can produce populations of progeny cells with a high degree of genomic diversity, from altered ploidy to homozygosis, providing an excellent source of genetic variation upon which selection can

  5. Antifungal Effect of Zataria multiflora Essence on Experimentally Contaminated Acryl Resin Plates With Candida albicans

    PubMed Central

    Jafari, Abbas Ali; Falah Tafti, Abbas; Hoseiny, Seyed Mehdi; Kazemi, Abdolhossein

    2015-01-01

    Background: Adherence and colonization of Candida species particularly C. albicans on denture surfaces, forms a microbial biofilm, which may result denture stomatitis in complete denture users. Objectives: The purpose of the present study was to evaluate the antifungal effect Zataria multiflora essence in removing of Candida albicans biofilms on experimentally contaminated resin acryl plates. Materials and Methods: In the present experimental study, 160 resin acrylic plates (10 × 10 × 1 mm) were contaminated by immersion in 1 × 103 C. albicans suspension for 24 hours to prepare experimental Candida biofilms. The total number of Candida cells, which adhered to 20 randomly selected acryl resin plates was determined as the Candia load before cleaning. The remaining 140 plates were divided to seven groups of 20 and immersed in five concentrations of Zataria multiflora essence from 50 to 3.125 mg/mL as test, 100000 IU nystatin as the positive and sterile physiologic serum as the negative control. The remaining Candida cells on each acryl plate were also enumerated and data were analyzed using the SPSS 16 software with Kruskal-Wallis and Wilcoxon tests. Results: Zataria essence at concentrations of 50 and 25 mg/mL removed 100% of attached Candida cells similar to nystatine (MFC), while weaker Zataria essence solutions cleaned 88%, 60.5% and 44.7% of attached Candida cells. Kruskal-wallis test showed a statistically significant difference between all test groups (P = 0.0001). In this study 12.5 mg/mL concentration of Zataria multiflora was considered as the minimum inhibitory concentration (MIC90). Conclusions: Zataria essence, at concentrations of 50 and 25 mg/mL, effectively removed Candida cells that had adhered to the denture surface, similar to the level of removal observed for 100000 IU nystatin. PMID:25763273

  6. Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study

    PubMed Central

    Liu, Fu-Chen; Hsu, Po-Chen; Chen, Hsueh-Fen; Peng, Shih-Chi; Chuang, Yung-Jen; Lan, Chung-Yu; Hsieh, Wen-Ping; Wong, David Shan Hill

    2013-01-01

    Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis. PMID:24019870

  7. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  8. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization

    PubMed Central

    Fan, Di; Coughlin, Laura A.; Neubauer, Megan M.; Kim, Jiwoong; Kim, Minsoo; Zhan, Xiaowei; Simms-Waldrip, Tiffany R.; Xie, Yang; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Candida albicans colonization is required for invasive disease1-3. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization2,4. But the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria – specifically Clostridial Firmicutes (Clusters IV and XIVa) and Bacteroidetes – are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that HIF-1α, a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL37-CRAMP are key determinants of C. albicans colonization resistance. While antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Cramp are required for B. thetaiotamicron-induced protection against CA colonization of the gut. Thus, C. albicans GI colonization modulation by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans. PMID:26053625

  9. Candida albicans chronic colonisation in cystic fibrosis may be associated with inhaled antibiotics.

    PubMed

    Noni, Maria; Katelari, Anna; Kaditis, Athanasios; Theochari, Ioanna; Lympari, Ioulia; Alexandrou-Athanassoulis, Helen; Doudounakis, Stavros-Eleftherios; Dimopoulos, George

    2015-07-01

    Candida albicans is increasingly recognised as a coloniser of the respiratory tract in cystic fibrosis (CF) patients. Yet, the potential role, if any, of the micro-organism in the progress of the disease remains unclear. In this study, we investigated the association between inhaled antibiotics and C. albicans chronic colonisation in patients with CF. A cohort of 121 CF patients born from 1988 to 1996 was, respectively, studied. The medical records of each patient were reviewed from the first time they attended the CF Centre until the occurrence of C. albicans chronic colonisation or their last visit for the year 2010. Chronic colonisation was defined as the presence of C. albicans in more than 50% of cultures in a given year. A number of possible confounders were included in the multivariate logistic regression analysis to identify an independent association between inhaled antibiotics and C. albicans chronic colonisation. Fifty-four (44.6%) of the 121 patients enrolled in the study developed chronic colonisation by the micro-organism. Multivariate logistic regression analysis determined the independent effect of inhaled antibiotic treatment on the odds of chronic colonisation (OR 1.112, 95% CI [1.007-1.229], P = 0.036). Candida albicans chronic colonisation may be associated with the duration of inhaled antibiotic treatment. PMID:26058475

  10. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.

    PubMed

    Aoki, Wataru; Ueda, Tomomi; Tatsukami, Yohei; Kitahara, Nao; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-02-01

    Candida albicans is a commensal organism; however, it causes fatal diseases if the host immunity is compromised. The mortality rate is very high due to the lack of effective treatment, leading to ceaseless demand for novel pharmaceuticals. In this study, time-course proteomics of C. albicans during adaptation to fetal bovine serum (FBS) was described. Time-course proteomics is a promising way to understand the exact process of going adaptation in dynamically changing environments. Candida albicans was cultivated in yeast nitrogen base (YNB) ± FBS media, and we identified 1418 proteins in the endpoint samples incubated for 0 or 60 min by a LC-MS/MS system with a long monolithic silica capillary column. Next, we carried out time-course proteomics of the YNB + FBS samples to identify top-priority proteins for adaption to FBS. We identified 16 proteins as nascent/newly synthesized proteins, and they were recognized as candidates of important virulent factors. Gene ontology analysis revealed that transport-related proteins were enriched in the 16 proteins, indicating that C. albicans probably put priority in time on the acquisition of essential elements. Time-course proteomics of C. albicans revealed the order of priority to adapt to FBS. Depicting time-course dynamics will lead to profound understandings of virulence of C. albicans. PMID:23620121

  11. Detection of Salmonella spp., Candida albicans, Aspergillus spp., and Antimicrobial Residues in Raw and Processed Cow Milk from Selected Smallholder Farms of Zimbabwe

    PubMed Central

    Mhone, Tryness Anastazia; Matope, Gift; Saidi, Petronella Tapiwa

    2012-01-01

    A cross-sectional study was conducted to detect the presence of Salmonella spp., Candida albicans, Aspergillus spp., and antimicrobial residues in raw milk (n = 120) and processed cow milk (n = 20) from smallholder dairy farms from three sites in Zimbabwe. Culture and isolation of Salmonella spp., C. albicans, and Aspergillus spp. were performed using selective media, while antimicrobial residues were detected by a dye reduction test. No Salmonella, but C. albicans (17.5%; 21/120), Aspergillus spp. (0.8%; 1/120), and antimicrobial residues (2.5%; 3/120) were detected from raw milk. C. albicans was isolated from all three sites, while Aspergillus spp. and antimicrobial residues were detected from sites 1 and 3, respectively. From processed milk, only C. albicans (5%) was isolated while Aspergillus spp. and antimicrobial residues were not detected. These results suggested low prevalence of Salmonella spp. and Aspergillus spp. and a relatively high prevalence of C. albicans in raw milk from the smallholder farms. The potential public health risks of C. albicans and the detected antimicrobial residues need to be considered. Thus, educating farmers on improving milking hygiene and storage of milk and establishing programmes for monitoring antimicrobial residues may help to improve the safety of milk from smallholder farms. PMID:23050199

  12. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

    PubMed

    James, K M; MacDonald, K W; Chanyi, R M; Cadieux, P A; Burton, J P

    2016-04-01

    Oral candidiasis is a disease caused by opportunistic species of Candida that normally reside on human mucosal surfaces. The transition of Candida from budding yeast to filamentous hyphae allows for covalent attachment to oral epithelial cells, followed by biofilm formation, invasion and tissue damage. In this study, combinations of Lactobacillus plantarum SD5870, Lactobacillus helveticus CBS N116411 and Streptococcus salivarius DSM 14685 were assessed for their ability to inhibit the formation of and disrupt Candida albicans biofilms. Co-incubation with probiotic supernatants under hyphae-inducing conditions reduced C. albicans biofilm formation by >75 % in all treatment groups. Likewise, combinations of live probiotics reduced biofilm formation of C. albicans by >67 %. When live probiotics or their supernatants were overlaid on preformed C. albicans biofilms, biofilm size was reduced by >63 and >65 % respectively. Quantitative real-time PCR results indicated that the combined supernatants of SD5870 and CBS N116411 significantly reduced the expression of several C. albicans genes involved in the yeast-hyphae transition: ALS3 (adhesin/invasin) by 70 % (P < 0.0001), EFG1 (hyphae-specific gene activator) by 47 % (P = 0.0061), SAP5 (secreted protease) by 49 % (P < 0.0001) and HWP1 (hyphal wall protein critical to biofilm formation) by >99 % (P < 0.0001). These findings suggest the combination of L. plantarum SD5870, L. helveticus CBS N116411 and S. salivarius DSM 14685 is effective at both preventing the formation of and removing preformed C. albicans biofilms. Our novel results point to the downregulation of several Candida genes critical to the yeast-hyphae transition, biofilm formation, tissue invasion and cellular damage. PMID:26847045

  13. Candida duobushaemulonii: an emerging rare pathogenic yeast isolated from recurrent vulvovaginal candidiasis in Brazil

    PubMed Central

    Boatto, Humberto Fabio; Cavalcanti, Sarah Desirée Barbosa; Del Negro, Gilda MB; Girão, Manoel João BC; Francisco, Elaine Cristina; Ishida, Kelly; Gompertz, Olga Fischman

    2016-01-01

    The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14Candida albicans, six Candida duobushaemulonii, four Candida glabrata, and twoCandida tropicalis. Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 µg/mL), two C. glabrataisolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ. PMID:27304096

  14. The proteolytic potential of Candida albicans in human saliva supplemented with glucose.

    PubMed

    Samaranayake, L P; Hughes, A; MacFarlane, T W

    1984-02-01

    The production of proteases by Candida albicans in batch cultures of human saliva supplemented with glucose was investigated with two clinical strains of Candida and both individual and pooled samples of whole saliva from volunteers. Salivary proteolysis during a 48-h period was estimated by biochemical and isoelectric focusing techniques. Candidal growth in saliva was associated with acid production and salivary proteolysis and there was a highly significant positive correlation between these two activities. Neither candidal growth nor proteolysis was observed in glucose-free control samples and with one strain of Candida cultured in the saliva of one individual. Isotachophoretic analysis of culture liquor showed a significant increase in acetate and pyruvate ions. The oral cavity provides niches that have a low pH and are periodically supplemented with dietary carbohydrates. The acidic proteases of C. albicans may play a role in the pathogenesis of oral candidoses. PMID:6363704

  15. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    PubMed Central

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-01-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates were, respectively, 37.0 and 6.0% after 24 h of incubation and 93.6 and 92.2% after 72 h of incubation, with specificities of 99.8 and 100%. Furthermore, CHROMagar Candida plates identified 13 of 14 Candida tropicalis and 9 of 12 Candida krusei strains after 48 h of incubation. PMID:8789038

  16. Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies.

    PubMed

    Zhang, Yunsong; Zhu, Yingbo; Chen, Jia; Wang, Yucheng; Sherwood, Margaret E; Murray, Clinton K; Vrahas, Mark S; Hooper, David C; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Fungal infections are a common cause of morbidity, mortality and cost in critical care populations. The increasing emergence of antimicrobial resistance necessitates the development of new therapeutic approaches for fungal infections. In the present study, we investigated the effectiveness of an innovative approach, antimicrobial blue light (aBL), for inactivation of Candida albicans in vitro and in infected mouse burns. A bioluminescent strain of C. albicans was used. The susceptibilities to aBL (415 nm) were compared between C. albicans and human keratinocytes. The potential development of aBL resistance by C. albicans was investigated via 10 serial passages of C. albicans on aBL exposure. For the animal study, a mouse model of thermal burn infected with the bioluminescent C. albicans strain was used. aBL was delivered to mouse burns approximately 12 h after fungal inoculation. Bioluminescence imaging was performed to monitor in real time the extent of infection in mice. The results obtained from the studies demonstrated that C. albicans was approximately 42-fold more susceptible to aBL than human keratinocytes. Serial passaging of C. albicans on aBL exposure implied a tendency of reduced aBL susceptibility of C. albicans with increasing numbers of passages; however, no statistically significant difference was observed in the post-aBL survival rate of C. albicans between the first and the last passage (P>0.05). A single exposure of 432 J/cm(2) aBL reduced the fungal burden in infected mouse burns by 1.75-log10 (P=0.015). Taken together, our findings suggest aBL is a potential therapeutic for C. albicans infections. PMID:26909654

  17. Genetic similarity of Candida albicans strains from vaginitis patients and their partners.

    PubMed Central

    Schmid, J; Rotman, M; Reed, B; Pierson, C L; Soll, D R

    1993-01-01

    The moderately repetitive sequence Ca3 was used to fingerprint strains of Candida albicans isolated from vulvovaginal infections of 10 women and strains isolated from their male partners. The Dendron software package was then used to compare the DNA fingerprints of these strains with those of vaginal commensals from women from the same geographical locale, vaginal commensals from women from a different geographical locale, and commensals from male partners of asymptomatic women from the same geographical locale. The results demonstrate that, in the majority of cases (8 of 10), strains from symptomatic patients and their partners are either identical or more similar to each other than to other strains, infecting strains do not represent a group genetically distinguishable from vaginal commensal isolates from women from the same geographical locale, and both infecting strains and commensals from individuals in the test locale can be distinguished from commensals obtained in another geographical locale. The results also suggest that women with vaginal infections are responsible for strain replacement in their male partners. Images PMID:8417030

  18. Identification of a new antifungal oligoacetal derivative produced by Streptomyces toxytricini against Candida albicans.

    PubMed

    Abdel Azeiz, Ahmed Z; Hanafi, Donia K; Hasanein, Sameh E

    2016-08-01

    Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by diethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240 nm in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analyses. The elucidated molecular formula was C36H54O14. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligo-acetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- {[tricycle(3.2.1.1(1,3))non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid} (2,4,5,6,7,8,9 heptaoxa, 3-ethoxy, 5,6,7,9-tetramethyl unidecane). PMID:26336904

  19. The anti-candidal activity of Satureja khuzistanica ethanol extract against clinical isolates of C. albicans.

    PubMed

    Mahboubi, M; Kazempour, N

    2016-03-01

    Candida albicans is the common cause of some infectious diseases such as vaginal candidiasis or candidemia. Due to the emergence of drug resistant isolates of C. albicans, finding a new anti-Candida agent is a new strategy for current treatments. This study evaluated the anti-candidal activity of Satureja khuzistanica ethanol extract against clinical isolates of C. albicans. S. khuzistanica ethanol extract from aerial parts of plant at full flowering stage was evaluated against 30 clinical isolates and two ATCC reference strains of C. albicans by disc diffusion and micro-broth dilution assay. Also, in this study we evaluated the synergistic effects of amphotericin B, clotrimazole and ketoconazole with S. khuzistanica ethanol extract. The means of MIC and MFC of S. khuzistanica ethanol extract against clinical isolates were 299.4 and 722.6 (μg/mL), respectively. S. khuzistanica ethanol extract increased the anti-candidal effect of amphotericin B and ketoconazole, while it had no synergistic effect on clotrimazole against clinical isolates of C. albicans. Therefore, S. khuzistanica ethanol extract can be introduced as a new source of anti-candidal agent against clinical isolates of C. albicans. PMID:26849903

  20. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    PubMed

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-01

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  1. Selective Advantages of a Parasexual Cycle for the Yeast Candida albicans.

    PubMed

    Zhang, Ningxin; Magee, Beatrice B; Magee, Paul T; Holland, Barbara R; Rodrigues, Ely; Holmes, Ann R; Cannon, Richard D; Schmid, Jan

    2015-08-01

    The yeast Candida albicans can mate. However, in the natural environment mating may generate progeny (fusants) fitter than clonal lineages too rarely to render mating biologically significant: C. albicans has never been observed to mate in its natural environment, the human host, and the population structure of the species is largely clonal. It seems incapable of meiosis, and most isolates are diploid and carry both mating-type-like (MTL) locus alleles, preventing mating. Only chromosome loss or localized loss of heterozygosity can generate mating-competent cells, and recombination of parental alleles is limited. To determine if mating is a biologically significant process, we investigated if mating is under selection. The ratio of nonsynonymous to synonymous mutations in mating genes and the frequency of mutations abolishing mating indicated that mating is under selection. The MTL locus is located on chromosome 5, and when we induced chromosome 5 loss in 10 clinical isolates, most of the resulting MTL-homozygotes could mate with each other, producing fusants. In laboratory culture, a novel environment favoring novel genotypes, some fusants grew faster than their parents, in which loss of heterozygosity had reduced growth rates, and also faster than their MTL-heterozygous ancestors-albeit often only after serial propagation. In a small number of experiments in which co-inoculation of an oral colonization model with MTL-homozygotes yielded small numbers of fusants, their numbers declined over time relative to those of the parents. Overall, our results indicate that mating generates genotypes superior to existing MTL-heterozygotes often enough to be under selection. PMID:26063661

  2. Physiological traits associated with success of Candida albicans strains as commensal colonizers and pathogens.

    PubMed Central

    Schmid, J; Hunter, P R; White, G C; Nand, A K; Cannon, R D

    1995-01-01

    DNA fingerprinting with the moderately repetitive sequence Ca3 has repeatedly identified groups of genetically similar strains of Candida albicans that are more frequently isolated than other groups of strains from human hosts in a geographical locale. Members of these groups are found in approximately 30% of healthy individuals and in up to 70% of patients suffering from candidiasis. The high prevalence of these strains implies that they are more successful in colonizing human hosts and in causing disease than other strains (J. Schmid, Clin. Adv. Treatment Fungal Infect. 4(6):12-16, 1993). In the present study, we have compared one such group of highly prevalent strains with other strains from the same locale to identify physiological traits a larger number of chemicals than other strains in a resistogram assay. When resistance to individual chemicals used in the resistogram assay was analyzed, strains from the group of highly prevalent strains were significantly more often resistant to boric acid, cetrimide, chlorhexidine, 5-fluorocytosine, and high sodium chloride concentrations than other strains. Strains from the group of highly prevalent strains also adhered significantly (1.5 times) better to saliva-coated surfaces than did other strains. Because members of highly prevalent groups of strains are the most common infectious agents in candidiasis, these physiological traits may be involved in determining not only the success of C. albicans in colonizing human hosts in general but also its ability to cause disease. Sodium chloride resistance and increased adherence were also associated with infectious isolates outside the group of highly prevalent strains, indicating that they may be of particular importance in pathogenesis. PMID:8576346

  3. The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen.

    PubMed

    Morschhäuser, Joachim

    2016-03-01

    The yeast Candida albicans is a member of the microbiota in the gastrointestinal and urogenital tracts of most healthy persons, but it can also cause symptomatic infections, especially in immunocompromised patients. During the life-long association with its human host, C. albicans generates genetically altered variants that are better adapted to changes in their environment. A prime example of this microevolution is the development of resistance to the commonly used drug fluconazole, which inhibits ergosterol biosynthesis, during antimycotic therapy. Fluconazole resistance can be caused by mutations in the drug target, by changes in the sterol biosynthesis pathway, and by gain-of-function mutations in transcription factors that result in the constitutive upregulation of ergosterol biosynthesis genes and multidrug efflux pumps. Fluconazole also induces genomic rearrangements that result in gene amplification and loss of heterozygosity for resistance mutations, which further increases drug resistance. These genome alterations may affect extended chromosomal regions and have additional phenotypic consequences. A striking case is the loss of heterozygosity for the mating type locus MTL in many fluconazole-resistant clinical isolates, which allows the cells to switch to the mating-competent opaque phenotype. This, in turn, raises the possibility that sexual recombination between different variants of an originally clonal, drug-susceptible population may contribute to the generation of highly fluconazole-resistant strains with multiple resistance mechanisms. The gain-of-function mutations in transcription factors, which result in deregulated gene expression, also cause reduced fitness. In spite of this, many clinical isolates that contain such mutations do not exhibit fitness defects, indicating that they have overcome the costs of drug resistance with further evolution by still unknown mechanisms. PMID:26920879

  4. Increase of mouse resistance to Candida albicans infection by thymosin alpha 1.

    PubMed Central

    Bistoni, F; Marconi, P; Frati, L; Bonmassar, E; Garaci, E

    1982-01-01

    Studies were carried out to assess the ability of thymosin alpha 1 to prolong the survival of mice challenged with Candida albicans. Two- to four-month-old mice were treated with graded doses of thymosin alpha 1 before, after, or before and after intravenous challenge with C. albicans. Significant resistance ot lethal infection was afforded by 100 micrograms of thymosin alpha 1 per kg given before or before and after challenge, whereas no protection was found in mice treated with thymosin alpha 1 administered at any dose level after inoculation. Pretreatment with thymosin alpha 1 also prevented the increased susceptibility to C. albicans infection of mice pretreated with cyclophosphamide on day -6. The results showed that thymosin alpha 1 was capable of protecting untreated or cyclophosphamide-pretreated mice from C. albicans infection at an optimal dose and schedule of administration. PMID:7085074

  5. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae.

    PubMed

    Brennan, Marc; Thomas, David Y; Whiteway, Malcolm; Kavanagh, Kevin

    2002-10-11

    Candida albicans is a dimorphic human pathogen in which the yeast to hyphal switch may be an important factor in virulence in mammals. This pathogen has recently been shown to also kill insects such as the Greater Wax Moth Galleria mellonella when injected into the haemocoel of the insect larvae. We have investigated the effect of previously characterised C. albicans mutations that influence the yeast to hyphal transition on virulence in G. mellonella larvae. There is a good correlation between the virulence of these mutants in the insect host and the virulence measured through systemic infection of mice. Although the predominant cellular species detected in G. mellonella infections is the yeast form of C. albicans, mutations that influence the hyphal transition also reduce pathogenicity in the insect. The correlation with virulence measured in the mouse infection system suggests that Galleria may provide a convenient and inexpensive model for the in vivo screening of mutants of C. albicans. PMID:12381467

  6. DNA content, kinetic complexity, and the ploidy question in Candida albicans

    SciTech Connect

    Riggsby, W.S.; Torres-Bauza, L.J.; Wills, J.W.; Townes, T.M.

    1982-07-01

    Candida albicans is a dimorphic fungus that is pathogenic for humans. No sexual cycle has been reported for this fungus, and earlier reports have differed on whether typical strains of C. albicans are haploid or diploid. Previous estimates of the DNA content of C. albicans varied by one order of magnitude. The authors used three independent methods to measure the kinetic complexity of the single-copy DNA from a typical strain of C. albicans (strain H317) to determine the DNA content per haploid genote; they obtained values of 15 and 20 fg per cell by using S1 nuclease and hydroxyapatite assays, respectively. Optical assays for DNA reassociation kinetics, although not definitive in themselves, yielded values in this range. Chemical measurements of the DNA content of several typical strains, including strain H317, yielded values clustered about a mean of 37 fg per cell. They concluded that these strains are diploid.

  7. Influence of tumour condition on the macrophage activity in Candida albicans infection.

    PubMed

    Venturini, J; de Camargo, M R; Félix, M C; Vilani-Moreno, F R; de Arruda, M S P

    2009-07-01

    To better understand the interactions between opportunistic fungi and their hosts, we investigated hydrogen peroxide (H2O2), nitric oxide and TNF-alpha production by peritoneal macrophages from Ehrlich tumour-bearing mice (TBM) during microbial infections. For this purpose, TBM at days 7, 14 and 21 of tumour progression were inoculated intraperitoneally with C. albicans and evaluated after 24 and 72 h. We observed that TBM showed significant increases in H2O2, TNF-alpha levels and fungal clearance at day 7 after C. albicans infection. However, as the tumour advanced, there was a progressive decline in the release of H2O2 and TNF-alpha that was paired with the dissemination of C. albicans. These results demonstrate that protective macrophage activities against Candida albicans are limited to the initial stages of tumour growth; continued solid tumour growth weakened the macrophage response and as a consequence, weakened the host's susceptibility to opportunistic infections. PMID:19522762

  8. The effect of cryptolepine on the morphology and survival of Escherichia coli, Candida albicans and Saccharomyces cerevisiae.

    PubMed

    Sawer, I K; Berry, M I; Brown, M W; Ford, J L

    1995-09-01

    The antimicrobial activity of the indoloquinoline alkaloid, cryptolepine, isolated from Cryptolepis sanguinolenta (Fam. Periplocaceae) was determined against selected micro-organisms. The minimum inhibitory concentration (MIC) ranges obtained, expressed as microgram ml-1, were: 5-10 for Saccharomyces cerevisiae NCPF 3139; 10-20 for S. cerevisiae NCPF 3178; 20-40 for Escherichia coli NCTC 10418; 40-80 for E. coli NCTC 11560, Candida albicans ATCC 10231 and C. tropicalis NCPF; and 80-160 for C. albicans NCPF 3242 and NCPF 3262. Biocidal effects were noted at concentrations 2-4 times those of the MIC of the alkaloid following challenge with 10(6) cfu ml-1 of micro-organisms. Time-kill studies showed a reduction in viable count from 10(6) to < 10 cfu ml-1 in 4 h in C. albicans ATCC 10231 exposed to 320 micrograms ml-1 of the agent; 3 log cycle reductions were recorded for the 6 h counts of E. coli NCTC 10418 and S. cerevisiae NCPF 3139 exposed to 40 micrograms ml-1 and 160 micrograms ml-1 of the alkaloid respectively. These results were consistent with findings using scanning electron microscopy. Exposure of cells to biocidal concentrations of cryptolepine produced filamentation prior to lysis in E. coli NCTC 10418 and extreme disturbance of surface structure, including partial and total collapse, followed by lysis in C. albicans ATCC 10231 and S. cerevisiae NCPF 3139. PMID:7592125

  9. A New Endogenous Overexpression System of Multidrug Transporters of Candida albicans Suitable for Structural and Functional Studies

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh K.; Sanglard, Dominique; Prasad, Rajendra

    2016-01-01

    Fungal pathogens have a robust array of multidrug transporters which aid in active expulsion of drugs and xenobiotics to help them evade toxic effects of drugs. Thus, these transporters impose a major impediment to effective chemotherapy. Although the Saccharomyces cerevisiae strain AD1-8u− has catered well to the need of an overexpression system to study drug transport by multidrug transporters of Candida albicans, artifacts associated with a heterologous system could not be excluded. To avoid the issue, we exploited a azole-resistant clinical isolate of C. albicans to develop a new system devoid of three major multidrug transporters (Cdr1p, Cdr2p, and Mdr1p) for the overexpression of multidrug transporters under native hyperactive CDR1 promoter due to gain of function (GOF) mutation in TAC1. The study deals with overexpression and functional characterization of representatives of two major classes of multidrug transporters, Cdr1p and Mdr1p, to prove the functionality of this newly developed endogenous expression system. Expression of native Cdr1 and Mdr1 protein in C. albicans cells was confirmed by confocal microscopy and immunodetection and resulted in increased resistance to the putative substrates as compared to control. The system was further validated by overexpressing a few key mutant variants of Cdr1p and Mdr1p. Together, our data confirms the utility of new endogenous overexpression system which is devoid of artifactual factors as most suited for functional characterization of multidrug transporter proteins of C. albicans. PMID:26973635

  10. Colonization and antifungals susceptibility patterns of Candida species isolated from hospitalized patients in ICUs and NICUs

    PubMed Central

    Zarei Mahmoudabadi, Ali; Rezaei-Matehkolaei, Ali; Navid, Mojgan; Torabizadeh, Mehdi; Mazdarani, Shahnam

    2015-01-01

    Background: Several studies have shown that there are an increasing in invasive candidiasis during 2-3 last decades. Although, Candida albicans is considered as the most common candidiasis agents, other non-albicans such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis were raised as infectious agents. Resistance to fluconazole among non-albicans species is an important problem for clinicians during therapy and prophylaxis. Objectives: The aim of current study was to detect the Candida species from hospitalized neonatal and children in intensive care units (ICUs) and neonatal intensive care units (NICUs). In addition, the susceptibility of isolated agents were also evaluated against three antifungals. Materials and Methods: In the present study 298 samples including 98 blood samples, 100 urines and 100 swabs from oral cavity were inoculated on CHROMagar Candida. Initial detection was done according to the coloration colonies on CHROMagar Candida . Morphology on cornmeal agar, germ tube formation and growth at 45°C were confirmed isolates. Amphotericin B, fluconazole and terbinafine (Lamisil) were used for the susceptibility tests using microdilution method. Results: In the present study 21% and 34% of urines and swabs from oral cavity were positive for Candida species, respectively. The most common species was C. albicans (62.5%) followed by C. tropicalis (15.6%), C. glabrata (6.3%) and Candida species (15.6%). Our study indicated that the most tested species of Candida, 70.3% were sensitive to fluconazole at the concentration of ≤8 μg/mL. Whereas 9 (14.1%) of isolates were resistant to amphotericine B at ≥8 μg/mL. Conclusions: This study demonstrates the importance of species identification and antifungals susceptibility testing for hospitalized patients in ICUs and NICUs wards. PMID:26312235

  11. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder.

    PubMed

    Severance, Emily G; Gressitt, Kristin L; Stallings, Catherine R; Katsafanas, Emily; Schweinfurth, Lucy A; Savage, Christina L; Adamos, Maria B; Sweeney, Kevin M; Origoni, Andrea E; Khushalani, Sunil; Leweke, F Markus; Dickerson, Faith B; Yolken, Robert H

    2016-01-01

    Immune aberrations in schizophrenia and bipolar disorder have led to the hypotheses that infectious agents or corresponding immune responses might contribute to psychiatric etiopathogeneses. We investigated case-control differences in exposure to the opportunistic fungal pathogen, Candida albicans, and examined associations with cognition, medication, lifestyle, and somatic conditions. We quantified C. albicans IgG antibodies in two cohorts totaling 947 individuals and evaluated odds ratios (OR) of exposure with psychiatric disorder using multivariate regressions. The case-control cohort included 261 with schizophrenia, 270 with bipolar disorder, and 277 non-psychiatric controls; the second included 139 with first-episode schizophrenia, 78 of whom were antipsychotic naive. No differences in C. albicans exposures were found until diagnostic groups were stratified by sex. In males, C. albicans seropositivity conferred increased odds for a schizophrenia diagnosis (OR 2.04-9.53, P⩽0.0001). In females, C. albicans seropositivity conferred increased odds for lower cognitive scores on Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in schizophrenia (OR 1.12, P⩽0.004), with significant decreases on memory modules for both disorders (P⩽0.0007-0.03). C. albicans IgG levels were not impacted by antipsychotic medications. Gastrointestinal (GI) disturbances were associated with elevated C. albicans in males with schizophrenia and females with bipolar disorder (P⩽0.009-0.02). C. albicans exposure was associated with homelessness in bipolar males (P⩽0.0015). In conclusion, sex-specific C. albicans immune responses were evident in psychiatric disorder subsets. Inquiry regarding C. albicans infection or symptoms may expedite amelioration of this treatable comorbid condition. Yeast exposure as a risk factor for schizophrenia and its associated cognitive and GI effects require further investigation including the possible contribution of gut

  12. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  13. Effect of UV irradiation on lethal infection of mice with Candida albicans.

    PubMed

    Denkins, Y M; Kripke, M L

    1993-02-01

    Exposure of mice to UV radiation inhibits the induction and elicitation of the delayed-type hypersensitivity (DTH) response to Candida albicans. To determine whether UV irradiation also affects the pathogenesis of systemic C. albicans infection, C3H mice were exposed to a single dose of 48 kJ/m2 UV-B radiation from FS40 sunlamps 5 days before or 5 days after sensitization with formalin-fixed C. albicans and challenged intravenously (i.v.) with a lethal dose of viable fungi 6 days after sensitization (11 or 1 days after UV irradiation). Exposing unsensitized mice to UV radiation 11 days before lethal challenge had no effect on survival, but the survival time of mice exposed to UV radiation 1 day before challenge was reduced by more than 50%. In the latter group, decreased survival time correlated with persistence of C. albicans in the brain and progressive growth of C. albicans in the kidneys. Sensitization of unirradiated mice with formalin-fixed C. albicans extended their survival time following lethal i.v. challenge with viable C. albicans. Exposing the mice to UV radiation 5 days before sensitization did not abrogate this beneficial effect of sensitization on survival, even though it significantly reduced the DTH response. Thus, immunity to systemic infection did not depend on the ability of the mice to exhibit a DTH response to C. albicans. The beneficial effect of sensitization on survival after lethal infection was abrogated, however, in mice exposed to UV radiation 1 day before lethal challenge with C. albicans. Furthermore, these mice were unable to contain the progressive growth of C. albicans in the kidneys, in contrast to sensitized, unirradiated mice. PMID:8451288

  14. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder

    PubMed Central

    Severance, Emily G; Gressitt, Kristin L; Stallings, Catherine R; Katsafanas, Emily; Schweinfurth, Lucy A; Savage, Christina L; Adamos, Maria B; Sweeney, Kevin M; Origoni, Andrea E; Khushalani, Sunil; Leweke, F Markus; Dickerson, Faith B; Yolken, Robert H

    2016-01-01

    Immune aberrations in schizophrenia and bipolar disorder have led to the hypotheses that infectious agents or corresponding immune responses might contribute to psychiatric etiopathogeneses. We investigated case–control differences in exposure to the opportunistic fungal pathogen, Candida albicans, and examined associations with cognition, medication, lifestyle, and somatic conditions. We quantified C. albicans IgG antibodies in two cohorts totaling 947 individuals and evaluated odds ratios (OR) of exposure with psychiatric disorder using multivariate regressions. The case–control cohort included 261 with schizophrenia, 270 with bipolar disorder, and 277 non-psychiatric controls; the second included 139 with first-episode schizophrenia, 78 of whom were antipsychotic naive. No differences in C. albicans exposures were found until diagnostic groups were stratified by sex. In males, C. albicans seropositivity conferred increased odds for a schizophrenia diagnosis (OR 2.04–9.53, P⩽0.0001). In females, C. albicans seropositivity conferred increased odds for lower cognitive scores on Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in schizophrenia (OR 1.12, P⩽0.004), with significant decreases on memory modules for both disorders (P⩽0.0007–0.03). C. albicans IgG levels were not impacted by antipsychotic medications. Gastrointestinal (GI) disturbances were associated with elevated C. albicans in males with schizophrenia and females with bipolar disorder (P⩽0.009–0.02). C. albicans exposure was associated with homelessness in bipolar males (P⩽0.0015). In conclusion, sex-specific C. albicans immune responses were evident in psychiatric disorder subsets. Inquiry regarding C. albicans infection or symptoms may expedite amelioration of this treatable comorbid condition. Yeast exposure as a risk factor for schizophrenia and its associated cognitive and GI effects require further investigation including the possible contribution of

  15. Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats

    PubMed Central

    Yan, Lei; Wu, Chun-Rong; Wang, Chen; Yang, Chun-Hui; Tong, Guang-Zhi; Tang, Jian-Guo

    2016-01-01

    Background: Inflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI), and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa. This study aimed to explore the effect of C. albicans on IIRI. Methods: Fifty female Wistar rats were divided into five groups according to the status of C. albicans infection and IIRI operation: group blank and sham; group blank and IIRI; group cefoperazone plus IIRI; group C. albicans plus cefoperazone and IIRI (CCI); and group C. albicans plus cefoperazone and sham. The levels of inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and diamine oxidase (DAO) measured by enzyme-linked immunosorbent assay were used to evaluate the inflammation reactivity as well as the integrity of small intestine. Histological scores were used to assess the mucosal damage, and the C. albicans blood translocation was detected to judge the permeability of intestinal mucosal barrier. Results: The levels of inflammatory factors TNF-α, IL-6, and IL-1β in serum and intestine were higher in rats undergone both C. albicans infection and IIRI operation compared with rats in other groups. The levels of DAO (serum: 44.13 ± 4.30 pg/ml, intestine: 346.21 ± 37.03 pg/g) and Chiu scores (3.41 ± 1.09) which reflected intestinal mucosal disruption were highest in group CCI after the operation. The number of C. albicans translocated into blood was most in group CCI ([33.80 ± 6.60] ×102 colony forming unit (CFU)/ml). Conclusion: Intestinal C. albicans infection worsened the IIRI-induced disruption of intestinal mucosal barrier and facilitated the subsequent C. albicans translocation and dissemination. PMID:27411459

  16. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    PubMed

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs. PMID:24623107

  17. Candida albicans-induced agglutinin and immunoglobulin E responses in mice.

    PubMed Central

    Winterrowd, G E; Cutler, J E

    1983-01-01

    Mice varied in their ability to make detectable antibody responses to cell surface determinants of Candida albicans depending upon the antigen preparation and the immunization schedule used. Immunoglobulin M (IgM) appeared to be the major class of antibody responsible for the C. albicans-agglutinating activity of the immune sera. Various inbred strains of mice injected with a ribosomal fraction from C. albicans produced a low titer (average, 4 to 8) of yeast cell agglutinins and a higher titer (64 to 512) of IgE antibodies detected by passive cutaneous anaphylaxis (PCA) in rats. The two kinds of antibodies appeared to be specific for different antigens because the agglutinin, but not IgE, could be removed by absorbing the serum with a polysaccharide from the cell wall of C. albicans, but the polysaccharide did not provoke the PCA reaction. C. albicans-specific IgE antibodies showed cross-reactivity (PCA) with ribosomal antigens from a strain of C. albicans and C. tropicalis, but PCA reactions could not be elicited with similar antigen preparations from other yeast species. IgE responses were also detected in over 20% of the mice infected intravenously or intraperitoneally with live C. albicans. PMID:6190755

  18. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans

    PubMed Central

    Jack, Alison A.; Daniels, Debbie E.; Jepson, Mark A.; Vickerman, M. Margaret; Lamont, Richard J.; Jenkinson, Howard F.

    2015-01-01

    Candida albicans is a pleiomorphic fungus that forms mixed species biofilms with Streptococcus gordonii, an early colonizer of oral cavity surfaces. Activation of quorum sensing (QS; intercellular signalling) promotes monospecies biofilm development by these micro-organisms, but the role of QS in mixed species communities is not understood. The comCDE genes in S. gordonii encode a sensor–regulator system (ComDE), which is activated by the comC gene product (CSP, competence stimulating peptide) and modulates expression of QS-regulated genes. Dual species biofilms of S. gordonii ΔcomCDE or ΔcomC mutants with C. albicans showed increased biomass compared to biofilms of S. gordonii DL1 wild-type with C. albicans. The ΔcomCDE mutant dual species biofilms in particular contained more extracellular DNA (eDNA), and could be dispersed with DNase I or protease treatment. Exogenous CSP complemented the S. gordonii ΔcomC transformation deficiency, as well as the ΔcomC-C. albicans biofilm phenotype. Purified CSP did not affect C. albicans hyphal filament formation but inhibited monospecies biofilm formation by C. albicans. The results suggest that the S. gordonii comCDE QS-system modulates the production of eDNA and the incorporation of C. albicans into dual species biofilms. PMID:25505189

  19. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    PubMed Central

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2014-01-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C.albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance. PMID:20012895

  20. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  1. Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections

    PubMed Central

    Tsai, I-Chun; Lin, Che; Chuang, Yung-Jen

    2014-01-01

    The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection. PMID:24757665

  2. Regulation of Candida albicans Interaction with Macrophages through the Activation of HOG Pathway by Genistein.

    PubMed

    Cui, Shuna; Hassan, Rabeay Y A; Heintz-Buschart, Anna; Bilitewski, Ursula

    2016-01-01

    The severity of infections caused by Candida albicans, the most common opportunistic human fungal pathogen, needs rapid and effective antifungal treatments. One of the effective ways is to control the virulence factors of the pathogen. Therefore, the current study examined the effects of genistein, a natural isoflavone present in soybeans, on C. albicans. The genistein-treated C. albicans cells were then exposed to macrophages. Although no inhibition effect on the growth rates of C. albicans was noted an enhancement of the immune response to macrophages has been observed, indicated by phagocytosis and release of cytokines TNF-α and IL-10. The effect of genistein on the enhanced phagocytosis can be mimicked by the fungicides fludioxonil or iprodione, which inhibit the histidine kinase Cos1p and lead to activation of HOG pathway. The western blot results showed a clear phosphorylation of Hog1p in the wild type strain of C. albicans after incubation with genistein. In addition, effects of genistein on the phosphorylation of Hog1p in the histidine kinase mutants Δcos1 and Δsln1 were also observed. Our results thus indicate a new bio-activity of genistein on C. albicans by activation of the HOG pathway of the human pathogen C. albicans. PMID:26828477

  3. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    PubMed

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans. PMID:26891940

  4. Quantitative and qualitative analyses of the cell death process in Candida albicans treated by antifungal agents.

    PubMed

    Kim, Kyung Sook; Kim, Young-Sun; Han, Ihn; Kim, Mi-Hyun; Jung, Min Hyung; Park, Hun-Kuk

    2011-01-01

    The death process of Candida albicans was investigated after treatment with the antifungal agents flucytosine and amphotericin B by assessing morphological and biophysical properties associated with cell death. C. albicans was treated varying time periods (from 6 to 48 hours) and examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM and AFM images clearly showed changes in morphology and biophysical properties. After drug treatment, the membrane of C. albicans was perforated, deformed, and shrunken. Compared to the control, C. albicans treated with flucytosine was softer and initially showed a greater adhesive force. Conversely, C. albicans treated with amphotericin B was harder and had a lower adhesive force. In both cases, the surface roughness increased as the treatment time increased. The relationships between morphological changes and the drugs were observed by AFM clearly; the surface of C. albicans treated with flucytosine underwent membrane collapse, expansion of holes, and shrinkage, while the membranes of cells treated with amphotericin B peeled off. According to these observations, the death process of C. albicans was divided into 4 phases, CDP(0), CDP(1), CDP(2), and CDP(4), which were determined based on morphological changes. Our results could be employed to further investigate the antifungal activity of compounds derived from natural sources. PMID:22174777

  5. Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism.

    PubMed

    Xie, Chunfeng; Sun, Lingmei; Meng, Linghao; Wang, Meicheng; Xu, Jing; Bartlam, Mark; Guo, Yuanqiang

    2015-11-15

    One new xanthanolide, 4-(2-methybutyryl)-4H-tomentosin (1) was isolated from the whole plant of Carpesium macrocephalum together with nine known sesquiterpenes (2-10), including four eudesmane sesquiterpenes (2, 4, 5, and 10), one guaianolide (3), two xanthanolides (6 and 9) and two carabranolides (7 and 8). Their structures were elucidated on the basis of detailed spectroscopic analyses. All isolates were evaluated for their antifungal activities against the growth, biofilm formation and yeast-hyphal transition in Candida albicans. All compounds lacked the antifungal activity (MIC50>256 μg/ml) except compound 6 with the MIC50 value of 128 μg/ml. However, compounds 3, 5 and 10 strongly inhibited biofilm formation with IC50 values ranging from 15.4 to 38.0 μg/mL, and compounds 1, 3, 4, 6 and 7 inhibited the yeast-to-hyphae morphogenetic transition with the IC50 values between 31.6 and 118.4 μg/mL. The above results indicated that sesquiterpenes from C. macrocephalum may have therapeutic potential for candidiasis as virulence inhibitors. PMID:26394911

  6. Beyond the wall: Candida albicans secret(e)s to survive.

    PubMed

    Sorgo, Alice G; Heilmann, Clemens J; Brul, Stanley; de Koster, Chris G; Klis, Frans M

    2013-01-01

    The opportunistic fungal pathogen Candida albicans occupies various niches of the human body such as the skin and the mucosal surfaces of the gastrointestinal and urogenital tracts. It can also enter the blood stream and cause deadly, systemic infections, especially in immunocompromised patients, but also in immunocompetent individuals through inserted medical devices. To survive in these diverse host environments, C. albicans has developed specialized virulence attributes and rapidly adapts itself to local growth conditions and defense mechanisms. Candida albicans secretes a considerable number of proteins that are involved in biofilm formation, tissue invasion, immune evasion, and wall maintenance, as well as acquisition of nutrients including metal ions. The secretome of C. albicans is predicted to comprise 225 proteins. On a proteomic level, however, analysis of the secretome of C. albicans is incomplete as many secreted proteins are only produced under certain conditions. Interestingly, glycosylphosphatidylinositol proteins and known cytoplasmic proteins are also consistently detected in the growth medium. Importantly, a core set of seven wall polysaccharide-processing enzymes seems to be consistently present, including the diagnostic marker Mp65. Overall, we discuss the importance of the secretome for virulence and suggest potential targets for better and faster diagnostic methods. PMID:23170918

  7. The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans

    PubMed Central

    2014-01-01

    Background Lactic acid bacteria are considered important probiotics for prevention of some infections. The aim of this work was to investigate the effect of selenium dioxide on the antifungal activity of Lactobacillus plantarum and L. johnsonii against Candida albicans. Methods Lactobacillus plantarum and L. johnsonii cells, grown in the presence and absence of selenium dioxide, and their cell-free spent culture media were tested for antifungal activity against C. albicans ATCC 14053 by a hole-plate diffusion method and a time-kill assay. Results Both L. plantarum and L. johnsonii reduced selenium dioxide to cell-associated elemental selenium nanoparticles. The cell-free spent culture media, from both Lactobacillus species that had been grown with selenium dioxide for 48 h, showed enhanced antifungal activity against C. albicans. Enhanced antifungal activity of cell biomass against C. albicans was also observed in cultures grown with selenium dioxide. Conclusions Selenium dioxide-treated Lactobacillus spp. or their cell-free spent broth inhibited the growth of C. albicans and should be investigated for possible use in anti-Candida probiotic formulations in future. PMID:24906455

  8. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  9. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

    PubMed

    Watamoto, T; Samaranayake, L P; Egusa, H; Yatani, H; Seneviratne, C J

    2011-09-01

    Biofilm formation is a major virulence attribute of Candida albicans and is directly associated with therapeutic failure. One method by which Candida acquires antifungal resistance is the expression of drug-resistance genes. This study aimed to evaluate the transcriptional regulation of several genes associated with antifungal resistance of C. albicans under planktonic, recently adhered and biofilm growth modes and in C. albicans biofilms in response to antifungal agents. Initially, the antifungal susceptibility of C. albicans cultures in different growth modes was evaluated by standard antifungal susceptibility testing. Next, to assess CDR1, CDR2, MDR1, ERG11, FKS1 and PIL1 expression, RNA was harvested from cells in each growth mode, and from biofilms after drug treatment, and subjected to quantitative real-time RT-PCR (qRT-PCR). Biofilm C. albicans was more resistant to antifungals than recently adhered cells and stationary-phase planktonic cultures. Transcriptional expression of CDR1, CDR2, MDR1, ERG11 and FKS1 was lower in recently adhered C. albicans than in the stationary-phase planktonic cultures. In contrast, PIL1 levels were significantly increased in recently adhered and biofilm modes of growth. The expression of MDR1 in biofilms greatly increased on challenge with amphotericin B but not with the other drugs tested (P<0.01). ERG11 was significantly upregulated by ketoconazole (P<0.01). Caspofungin and amphotericin B significantly upregulated FKS1 expression, whereas they significantly downregulated PIL1 expression (P<0.01). These results indicate that the expression of drug-resistance genes is associated with higher drug resistance of Candida biofilms, and lay a foundation for future large-scale genome-wide expression analysis. PMID:21474609

  10. The Candida albicans KRE9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose

    PubMed Central

    Lussier, Marc; Sdicu, Anne-Marie; Shahinian, Serge; Bussey, Howard

    1998-01-01

    We have isolated CaKRE9, a gene from Candida albicans, that is a functional homologue of the Saccharomyces cerevisiae KRE9 gene involved in β-1,6-glucan synthesis. Disruption of the CaKRE9 gene in C. albicans shows that CaKre9p is required for the synthesis or assembly of this fungal polymer. Homozygous null disruptants of CaKRE9 grow poorly on galactose and fail to form hyphae in serum, and, in growth medium containing glucose, the gene is essential. Thus, the CaKRE9 gene product is a potentially useful candidate as a target for fungal-specific drugs. PMID:9707560

  11. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface

    PubMed Central

    Moyes, David L; Richardson, Jonathan P; Naglik, Julian R

    2015-01-01

    Until recently, epithelial cells have been a largely ignored component of host responses to microbes. However, this has been largely overturned over the last decade as an ever increasing number of studies have highlighted the key role that these cells play in many of our interactions with our microbiota and pathogens. Interactions of these cells with Candida albicans have been shown to be critical not just in host responses, but also in fungal cell responses, regulating fungal morphology and gene expression profile. In this review, we will explore the interactions between C. albicans and epithelial cells, and discuss how these interactions affect our relationship with this fungus. PMID:25714110

  12. Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans

    PubMed Central

    Martínez-Duncker, Iván; Díaz-Jímenez, Diana F.; Mora-Montes, Héctor M.

    2014-01-01

    Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection. PMID:25104959

  13. Post-transcriptional gene regulation in the biology and virulence of Candida albicans.

    PubMed

    Verma-Gaur, Jiyoti; Traven, Ana

    2016-06-01

    In the human fungal pathogen Candida albicans, remodelling of gene expression drives host adaptation and virulence. Recent studies revealed that in addition to transcription, post-transcriptional mRNA control plays important roles in virulence-related pathways. Hyphal morphogenesis, biofilm formation, stress responses, antifungal drug susceptibility and virulence in animal models require post-transcriptional regulators. This includes RNA binding proteins that control mRNA localization, decay and translation, as well as the cytoplasmic mRNA decay pathway. Comprehensive understanding of how modulation of gene expression networks drives C. albicans virulence will necessitate integration of our knowledge on transcriptional and post-transcriptional mRNA control. PMID:26999710

  14. Antagonism of Fluconazole and a Proton Pump Inhibitor against Candida albicans

    PubMed Central

    Liu, Ning-Ning

    2015-01-01

    Hospitalized ill patients, at risk for invasive candidiasis, often receive multiple medications, including proton pump inhibitors (PPIs). The antifungal fluconazole perturbs the vacuolar proton ATPase. The PPI omeprazole antagonized Candida albicans growth inhibition by fluconazole. A C. albicans codon-adapted pHluorin, Ca.pHluorin, was generated to measure cytosolic pH. The fungal cytosol was acidified by omeprazole and realkalinized by coexposure to fluconazole. Vacuolar pH was alkalinized by fluconazole. Off-target effects of any medication on fungal pathogens may occur. PMID:26596946

  15. Roles of IL-33 in Resistance and Tolerance to Systemic Candida albicans Infections

    PubMed Central

    Park, Sang Jun; Cho, Hong Rae

    2016-01-01

    IL-33 is a multifunctional cytokine that is released in response to a variety of intrinsic and extrinsic stimuli. The role of IL-33 in Candida albicans infections is just beginning to be revealed. This cytokine has beneficial effects on host defense against systemic C. albicans infections, and it promotes resistance mechanisms by which the immune system eliminates the invading fungal pathogens; and it also elevates host tolerance by reducing the inflammatory response and thereby, potentially, tissue damage. Thus, IL-33 is classified as a cytokine that has evolved functionally to protect the host from damage by pathogens and immunopathology. PMID:27340384

  16. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations.

    PubMed

    Chen, L M; Xu, Y H; Zhou, C L; Zhao, J; Li, C Y; Wang, R

    2010-01-01

    This study was designed to investigate potential resistance mechanisms by studying the expression of resistant genes in 14 fluconazole-resistant Candida albicans isolates, with G487T and T916C mutations in the 14alpha-demethylase (ERG11) gene, collected from human immunodeficiency virus uninfected patients and a fluconazole-susceptible control strain. The in vitro susceptibilities of the C. albicans isolates to fluconazole were determined using the broth microdilution method and a disc diffusion assay. Expression of Candida drug resistance (CDR)1, CDR2, ERG11, fluconazole resistance (FLU)1 and multidrug resistance (MDR)1 genes was measured using real-time reverse transcription-polymerase chain reaction and evaluated relative to the expression of the control gene 18SrRNA. The CDR1 and CDR2 genes were upregulated in all the fluconazole-resistant C. albicans isolates, whereas only a few isolates showed high expression of MDR1, FLU1 and ERG11 genes compared with the control strain. In conclusion, overexpression of the CDR1 and CDR2 genes may play an important role in fluconazole-resistant C. albicans with G487T and T916C mutations. PMID:20515567

  17. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis

    PubMed Central

    Pujol, Claude; Daniels, Karla J.

    2015-01-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved. PMID:26432632

  18. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole.

    PubMed

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2013-11-01

    The current treatment options for Candida albicans biofilm-device related infections are very scarce due to their intrinsic increased tolerance to antimycotics. The aim of this work was to study synergistic action of terpenes (eugenol, menthol and thymol) with fluconazole (FLA) on C. albicans biofilm inhibition. The minimum inhibitory concentration (MIC) assayed using CLSI M27-A3 broth micro-dilution method showed antifungal activity against C. albicans MTCC 227 at a concentration of 0.12 % (v/v) for both thymol and eugenol as compared to 0.25 % (v/v) for menthol. FLA was taken as positive control. The effect of these terpenes on metabolic activity of preformed C. albicans biofilm cells was evaluated using 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay in 96-well polystyrene microtiter plate. Thymol and eugenol were more effective at lower concentrations of > or = 1.0 % (v/v) than menthol. Synergistic studies using checkerboard micro-dilution assay showed fractional inhibitory concentration index (sigma FIC = 0.31) between thymol/FLA followed by eugenol/FLA (sigma FIC = 0.37) and menthol/FLA (sigma FIC < 0.5) against pre-formed C. albicans biofilms. Thymol with fluconazole showed highest synergy in reduction of biofilm formation than eugenol and menthol which was not observed when their activities were observed independently. Adherence assay showed 30% viability of C. albicans cells after 2 h of treatment with 0.05 % (v/v) thymol/FLA. Effect of thymol/FLA on C. albicans adhesion visualized by SEM micrographs showed disruption in number of candidal cells and alteration in structural design of C. albicans. Thus, the study demonstrated synergistic effect of terpenes with fluconazole on C. albicans biofilm, which could be future medications for biofilm infections. PMID:24416942

  19. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.

    PubMed

    Chang, Peng; Fan, Xueyi; Chen, Jiangye

    2015-08-01

    Candida albicans is an opportunistic fungal pathogen commonly found in humans. It has the ability to switch reversibly between three growth forms: budding yeast, pseudohypha, and hypha. The transition between yeast and hyphal growth forms is critical for the pathogenesis of C. albicans. During the yeast-to-hypha morphologic transition, gene expression is regulated by transcriptional regulators including histone modifying complexes and chromatin remodeling complexes. We previously reported that Esa1, a catalytic subunit in the histone acetyltransferase complex NuA4, is essential for the hyphal development of C. albicans. In this study, we analyzed the functional roles of Gcn5, a catalytic subunit in the histone acetyltransferase complex SAGA, in C. albicans. Gcn5 is required for the invasive and filamentous growth of C. albicans. Deletion of GCN5 impaired hyphal elongation in sensing serum and attenuated the virulence of C. albicans in a mouse systemic infection model. The C. albicans gcn5/gcn5 mutant cells also exhibited sensitivity to cell wall stress. Functional analysis showed that the HAT domain and Bromodomain in Gcn5 play distinct roles in morphogenesis and cell wall stress response of C. albicans. Our results show that the conserved residue Glu188 is crucial for the Gcn5 HAT activity and for Gcn5 function during filamentous growth. In addition, the subcellular distribution of ectopically expressed GFP-Gcn5 correlates with the different growth states of C. albicans. In stationary phase, Gcn5 accumulated in the nucleus, while during vegetative growth it localized in the cytoplasm in a morpha-independent manner. Our results suggest that the nuclear localization of Gcn5 depends on the existence of its N-terminal NLS and HAT domains. PMID:25656079

  20. Macrolides from a Marine-Derived Fungus, Penicillium meleagrinum var. viridiflavum, Showing Synergistic Effects with Fluconazole against Azole-Resistant Candida albicans.

    PubMed

    Okabe, Miki; Sugita, Takashi; Kinoshita, Kaoru; Koyama, Kiyotaka

    2016-04-22

    Two new 13-membered macrolides (1, 7), along with known 13-membered macrolides PF1163A, B, D, H, and F (2-6), were isolated from a strain of a marine-derived fungus, Penicillium meleagrinum var. viridiflavum. The structures of 1 and 7 were elucidated from spectroscopic data (NMR, MS, IR). Compounds 1-7 showed synergistic effects with fluconazole against azole-resistant Candida albicans by a checkerboard assay. PMID:27014845

  1. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance?

    PubMed

    Castelo-Branco, D S C M; Brilhante, R S N; Paiva, M A N; Teixeira, C E C; Caetano, E P; Ribeiro, J F; Cordeiro, R A; Sidrim, J J C; Monteiro, A J; Rocha, M F G

    2013-07-01

    This study aimed at evaluating the in vitro antifungal susceptibility of Candida albicans isolates obtained during necropsy of a wild Brazilian porcupine and the mechanism of azole resistance. Initially, we investigated the in vitro susceptibility of the three isolates to amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole. Afterwards, three sub-inhibitory concentrations (47, 21 and 12 mg/l) of promethazine, an efflux pump inhibitor, were tested in combination with the antifungal drugs in order to evaluate the role of these pumps in the development of antifungal resistance. In addition, the three isolates were submitted to RAPD-PCR and M13-fingerprinting analyses. The minimum inhibitory concentrations (MICs) obtained with the isolates were 1, 0.03125, 250, 125, 8 and 250 mg/l for amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole and voriconazole, respectively, and the isolates were found to be resistant to all tested azoles. The addition of the three subinhibitory concentrations of promethazine resulted in statistically significant (P < 0.05) reductions in the MICs for all tested drugs, with decreases to azoles being statistically greater than those for amphotericin B and caspofungin (P < 0.05). The molecular analyses showed a genetic similarity among the three tested isolates, suggesting the occurrence of candidemia in the studied animal. These findings highlight the importance of monitoring antifungal susceptibility of Candida spp. from veterinary sources, especially as they may indicate the occurrence of primary azole resistance even in wild animals. PMID:23286353

  2. Candida albicans--adriamycin interactions: ultrastructural and spectrofluorometric study of whole yeasts and spheroplasts.

    PubMed

    Bobichon, H; Bussy, V; Angiboust, J F; Manfait, M; Bouchet, P; Jardillier, J C

    1990-01-01

    The occurrence of candidiasis in cancer patients who undergo chemotherapy requires the interrelation of Candida albicans and the antimitotic drug Adriamycin (ADM) which is well known as an intercalating agent. The whole yeasts were not affected by 2 h of contact with the drug at 10(-4) M neither for their growth curve nor for their ultrastructure, despite the presence of free ADM on their surface. Spheroplasts displayed a delay in their growth and exhibited altered nucleoli with segregation of their granular and fibrillar components. The modified emission spectrum of ADM, determined by spectrofluorometry, corresponded neither to the free ADM nor to the DNA-bound drug, but it could be related to a metabolite of the drug. The cell wall appeared to be one of the main sites for ADM resistance of Candida albicans in vitro. PMID:2085691

  3. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Estrada-Mata, Eine; Navarro-Arias, María J.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Csonka, Katalin; Gacser, Attila; Mora-Montes, Héctor M.

    2016-01-01

    The systemic infections caused by members of the Candida parapsilosis complex are currently associated to high morbility and mortality rates, and are considered as relevant as those caused by Candida albicans. Since the fungal cell wall is the first point of contact with the host cells, here we performed a comparison of this organelle in members of the C. parapsilosis complex, and its relevance during interaction with human peripheral blood mononuclear cells (PBMCs). We found that the wall of the C. parapsilosis complex members is similar in composition, but differs to that from C. albicans, with less mannan content and more β-glucan and porosity levels. Furthermore, lectin-based analysis showed increased chitin and β1,3-glucan exposure at the surface of C. parapsilosis sensu lato when compared to C. albicans. Yeast cells of members of the C. parapsilosis complex stimulated more cytokine production by human PBMCs than C. albicans cells; and this significantly changed upon removal of O-linked mannans, indicating this wall component plays a significant role in cytokine stimulation by C. parapsilosis sensu lato. When inner wall components were exposed on the wall surface, C. parapsilosis sensu stricto and C. metapsilosis, but not C. orthopsilosis, stimulated higher cytokine production. Moreover, we found a strong dependency on β1,3-glucan recognition for the members of the C. parapsilosis complex, but not for live C. albicans cells; whereas TLR4 was required for TNFα production by the three members of the complex, and stimulation of IL-6 by C. orthopsilosis. Mannose receptor had a significant role during TNFα and IL-1β stimulation by members of the complex. Finally, we demonstrated that purified N- and O-mannans from either C. parapsilosis sensu lato or C. albicans are capable to block the recognition of these pathogens by human PBMCs. Together; our results suggest that the innate immune recognition of the members of the C. parapsilosis complex is differential

  4. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. PMID:25308076

  5. Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis.

    PubMed

    Kong, W J; Wang, J B; Jin, C; Zhao, Y L; Dai, C M; Xiao, X H; Li, Z L

    2009-07-01

    Using the 3114/3115 thermal activity monitor (TAM) air isothermal microcalorimeter, ampoule mode, the heat output of Candida albicans growth at 37 degrees C was measured, and the effect of emodin on C. albicans growth was evaluated by microcalorimetry coupled with chemometric methods. The similarities between the heat flow power (HFP)-time curves of C. albicans growth affected by different concentrations of emodin were calculated by similarity analysis (SA). In the correspondence analysis (CA) diagram of eight quantitative parameters taken from the HFP-time curves, it could be deduced that emodin had definite dose-effect relationship as the distance between different concentrations of it increased along with the dosage and the effect. From the principal component analysis (PCA) on eight quantitative parameters, the action of emodin on C. albicans growth could be easily evaluated by analyzing the change of values of the main two parameters, growth rate constant k (2) and maximum power output P(2)(m). The coherent results of SA, CA, and PCA showed that emodin at different concentrations had different effects on C. albicans growth metabolism: A low concentration (0-10 microg ml(-1)) poorly inhibited the growth of C. albicans, and a high concentration (15-35 microg ml(-1)) could notably inhibit growth of this fungus. This work provided a useful idea of the combination of microcalorimetry and chemometric analysis for investigating the effect of drug and other compounds on microbes. PMID:19543891

  6. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase

    PubMed Central

    Li, Cissy X.; Gleason, Julie E.; Zhang, Sean X.; Bruno, Vincent M.; Cormack, Brendan P.; Culotta, Valeria Cizewski

    2015-01-01

    Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs. PMID:26351691

  7. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection.

    PubMed

    López-García, Belén; Lee, Phillip H A; Yamasaki, Kenshi; Gallo, Richard L

    2005-07-01

    Cathelicidins have broad anti-microbial capacity and are important for host defense against skin infections by some bacterial and viral pathogens. This study investigated the activity of cathelicidins against Candida albicans. The human cathelicidin LL-37, and mouse cathelicidin mCRAMP, killed C. albicans, but this fungicidal activity was dependent on culture conditions. Evaluation of the fungal membrane by fluorescent dye penetration after incubation with cathelicidins correlated membrane permeabilization and inhibition of fungal growth. Anti-fungal assays carried out in an ionic environment that mimicked human sweat and with the processed forms of cathelicidin such as are present in sweat found that the cleavage of LL-37 to forms such as RK-31 conferred additional activity against C. albicans. C. albicans also induced an increase in the expression of cathelicidin in mouse skin, but this induction did not confer systemic or subcutaneous resistance as mCRAMP-deficient mice were not more susceptible to