Science.gov

Sample records for candidate antiviral compounds

  1. Antiviral effect of cationic compounds on bacteriophages

    PubMed Central

    Ly-Chatain, Mai H.; Moussaoui, Saliha; Vera, Annabelle; Rigobello, Véronique; Demarigny, Yann

    2013-01-01

    The antiviral activity of several cationic compounds – cetyltrimethylammonium bromide (CTAB), chitosan, nisin, and lysozyme – was investigated on the bacteriophage c2 (DNA head and non-contractile tail) infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA) infecting E. coli. Firstly, these activities were evaluated in a phosphate buffer pH 7 – 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 to 1.5 log(pfu)/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min). These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds. PMID:23487495

  2. Antiviral Lead Compounds from Marine Sponges

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. PMID:21116410

  3. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  4. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  5. In Vitro Efficacy of Antiviral Compounds against Enterovirus D68

    PubMed Central

    Rhoden, Eric; Zhang, Mingyu; Nix, W. Allan

    2015-01-01

    In 2014, the United States experienced a large outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68). We used a homogeneous, cell-based assay to assess the antiviral activity of compounds developed for EV/rhinovirus infection or other indications. Three of 15 compounds were highly active against all four strains tested (the prototype and three 2014 strains), with 50% effective concentrations of 0.0012 to 0.027 μM. Additional studies are needed to assess their in vivo efficacy against EV-D68. PMID:26149998

  6. Isolation of the anthropogenic compound fluoranthene in a screening of Chinese medicinal plants for antiviral compounds.

    PubMed

    Yip, L; Hudson, J B; Towers, G H

    1995-04-01

    Thirty-one species of medicinal plants used in the treatment of diseases of viral origin in Yunnan Province of China were assayed for inhibition of Sindbis and murine cytomegalovirus in mammalian cell cultures. Sixteen species displayed antiviral activity. A compound, which exhibited long wavelength UV-mediated antiviral activity, was isolated from leaves and twigs of Elsholtzia ciliata (Lamiaceae) using bioassay-guided fractionation and identified as the polycyclic aromatic hydrocarbon, fluoranthene. The discovery of an anthropogenic photosensitizer with antiviral activity in a plant has implications in studies of plants as sources of bioactive constituents. PMID:7753931

  7. Hepatitis C Virus and Natural Compounds: a New Antiviral Approach?

    PubMed Central

    Calland, Noémie; Dubuisson, Jean; Rouillé, Yves; Séron, Karin

    2012-01-01

    Hepatitis C is a major global health burden with an estimated 160 million infected individuals worldwide. This long-term disease evolves slowly, often leading to chronicity and potentially to liver failure. There is no anti-HCV vaccine, and, until recently, the only treatment available, based on pegylated interferon and ribavirin, was partially effective, and had considerable side effects. With recent advances in the understanding of the HCV life cycle, the development of promising direct acting antivirals (DAAs) has been achieved. Their use in combination with the current treatment has led to encouraging results for HCV genotype 1 patients. However, this therapy is quite expensive and will probably not be accessible for all patients worldwide. For this reason, constant efforts are being made to identify new antiviral molecules. Recent reports about natural compounds highlight their antiviral activity against HCV. Here, we aim to review the natural molecules that interfere with the HCV life cycle and discuss their potential use in HCV therapy. PMID:23202460

  8. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  9. Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State.

    PubMed

    Chung, Dong-Hoon; Golden, Jennifer E; Adcock, Robert S; Schroeder, Chad E; Chu, Yong-Kyu; Sotsky, Julie B; Cramer, Daniel E; Chilton, Paula M; Song, Chisu; Anantpadma, Manu; Davey, Robert A; Prodhan, Aminul I; Yin, Xinmin; Zhang, Xiang

    2016-08-01

    Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801

  10. Computational assessment of organic photovoltaic candidate compounds

    NASA Astrophysics Data System (ADS)

    Borunda, Mario; Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan

    2015-03-01

    Organic photovoltaic (OPV) cells are emerging as a possible renewable alternative to petroleum based resources and are needed to meet our growing demand for energy. Although not as efficient as silicon based cells, OPV cells have as an advantage that their manufacturing cost is potentially lower. The Harvard Clean Energy Project, using a cheminformatic approach of pattern recognition and machine learning strategies, has ranked a molecular library of more than 2.6 million candidate compounds based on their performance as possible OPV materials. Here, we present a ranking of the top 1000 molecules for use as photovoltaic materials based on their optical absorption properties obtained via time-dependent density functional theory. This computational search has revealed the molecular motifs shared by the set of most promising molecules.

  11. 6-azacytidine--compound with wide spectrum of antiviral activity.

    PubMed

    Alexeeva, I; Dyachenko, N; Nosach, L; Zhovnovataya, V; Rybalko, S; Lozitskaya, R; Fedchuk, A; Lozitsky, V; Gridina, T; Shalamay, A; Palchikovskaja, L; Povnitsa, O

    2001-01-01

    6-azacytidine demonstrates activity against adenoviruses types 1, 2, 5. It inhibit synthesis of viral DNA and proteins. 6-AC shows antiherpetic and antiinfluenza action during experimental infection in mice. 6-AC is prospective for drug development as an antiviral substance with a wide spectrum of activity. PMID:11562975

  12. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities.

    PubMed

    Zhang, Yu-Bo; Wu, Peng; Zhang, Xiao-Li; Xia, Chao; Li, Guo-Qiang; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2015-01-01

    Three new phenolic compounds 1-3 and twenty known ones 4-23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR) and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin. PMID:26556329

  13. Identification of a series of compounds with potent antiviral activity for the treatment of enterovirus infections.

    PubMed

    MacLeod, Angus M; Mitchell, Dale R; Palmer, Nicholas J; Van de Poël, Hervé; Conrath, Katja; Andrews, Martin; Leyssen, Pieter; Neyts, Johan

    2013-07-11

    Rhinovirus (genus enterovirus) infections are responsible for many of the severe exacerbations of asthma and chronic obstructive pulmonary disease. Other members of the genus can cause life-threatening acute neurological infections. There is currently no antiviral drug approved for the treatment of such infections. We have identified a series of potent, broad-spectrum antiviral compounds that inhibit the replication of the human rhinovirus, Coxsackie virus, poliovirus, and enterovirus-71. The mechanism of action of the compounds has been established as inhibition of a lipid kinase, PI4KIIIβ. Inhibition of hepatitis C replication in a replicon assay correlated with enterovirus inhibition. PMID:24900715

  14. Cytotoxicity and antiviral activity of the compounds from Euphorbia kansui.

    PubMed

    Zheng, W F; Cui, Z; Zhu, Q

    1998-12-01

    Eleven compounds including four triterpenes, one sterol, and six diterpenes from E kansui had been assayed for their cytotoxicity and activiral activity. The relations between structures and bioactivities have also been noted. PMID:9933994

  15. Antiviral actions of flavanoid-derived compounds on dengue virus type-2.

    PubMed

    Muhamad, Mudiana; Kee, Lee Yean; Rahman, Noorsaadah Abd; Yusof, Rohana

    2010-01-01

    Dengue viruses, mosquito-borne members of the Flaviviridae family, are the causative agents of dengue fever and its associated complications, dengue haemorrhagic fever and dengue shock syndrome. To date, more than 2.5 billion people in over 100 countries are at risk of infection, and approximately 20 million infections were reported annually. There is currently no treatment or vaccine available for dengue infection. This study employed a whole-cell organism model or in vitro methods to study the inhibitory property of the flavanoid-derived compounds against DENV2 activity. Results showed that at concentration not exceeding the maximum non-toxic dose (MNTD), these compounds completely prevented DENV2 infection in HepG2 cells as indicated by the absence of cytophatic effects. The in vitro antiviral activity assessed in HepG2 cells employing virus inhibition assay showed high inhibitory activity in a dose dependent manner. At concentration below MNTD, compounds exhibited inhibitory activity against DENV2 with a range of potency strengths of 72% to 100%. The plaque forming unit per ml (pfu/ml) was reduced prominently with a maximum reduction of 98% when the infected HepG2 cells were treated with the highest non-toxic dose of compounds. The highly potent activity of the compounds against DENV2 infection strongly suggests their potential as a lead antiviral agent for dengue. PMID:20567498

  16. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.

    PubMed

    Smee, Donald F; Evans, W Joseph; Nicolaou, K C; Tarbet, E Bart; Day, Craig W

    2016-07-01

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87. PMID:27063860

  17. A review of antiviral drugs and other compounds with activity against feline herpesvirus type 1.

    PubMed

    Thomasy, Sara M; Maggs, David J

    2016-07-01

    Feline herpesvirus type 1 (FHV-1) is a common and important cause of ocular surface disease, dermatitis, respiratory disease, and potentially intraocular disease in cats. Many antiviral drugs developed for the treatment of humans infected with herpesviruses have been used to treat cats infected with FHV-1. Translational use of drugs in this manner ideally requires methodical investigation of their in vitro efficacy against FHV-1 followed by pharmacokinetic and safety trials in normal cats. Subsequently, placebo-controlled efficacy studies in experimentally inoculated animals should be performed followed, finally, by carefully designed and monitored clinical trials in client-owned animals. This review is intended to provide a concise overview of the available literature regarding the efficacy of antiviral drugs and other compounds with proven or putative activity against FHV-1, as well as a discussion of their safety in cats. PMID:27091747

  18. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of

  19. Characterization of bovine viral diarrhea virus isolates resistant to a novel antiviral compound obtained from persistently infected calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to characterize isolates resistant to a novel antiviral compound (DB772) isolated from persistently infected (PI) calves treated with the compound. Viral isolates were obtained from four Angus-cross beef calves (A,B,C,D) persistently infected with BVDV type 1 or 2 ...

  20. Antiviral effects of black raspberry (Rubus coreanus) seed extract and its polyphenolic compounds on norovirus surrogates.

    PubMed

    Lee, Ji-Hye; Bae, Sun Young; Oh, Mi; Seok, Jong Hyeon; Kim, Sella; Chung, Yeon Bin; Gowda K, Giri; Mun, Ji Young; Chung, Mi Sook; Kim, Kyung Hyun

    2016-06-01

    Black raspberry seeds, a byproduct of wine and juice production, contain large quantities of polyphenolic compounds. The antiviral effects of black raspberry seed extract (RCS) and its fraction with molecular weight less than 1 kDa (RCS-F1) were examined against food-borne viral surrogates, murine norovirus-1 (MNV-1) and feline calicivirus-F9 (FCV-F9). The maximal antiviral effect was achieved when RCS or RCS-F1 was added simultaneously to cells with MNV-1 or FCV-F9, reaching complete inhibition at 0.1-1 mg/mL. Transmission electron microscopy (TEM) images showed enlarged viral capsids or disruption (from 35 nm to up to 100 nm) by RCS-F1. Our results thus suggest that RCS-F1 can interfere with the attachment of viral surface protein to host cells. Further, two polyphenolic compounds derived from RCS-F1, cyanidin-3-glucoside (C3G) and gallic acid, identified by liquid chromatography-tandem mass spectrometry, showed inhibitory effects against the viruses. C3G was suggested to bind to MNV-1 RNA polymerase and to enlarge viral capsids using differential scanning fluorimetry and TEM, respectively. PMID:26983677

  1. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  2. Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus.

    PubMed

    Umamaheswari, Amineni; Kumar, Manne Muni; Pradhan, Dibyabhaba; Marisetty, Hemanthkumar

    2011-03-01

    Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target. Three dimensional structure of the molecular target was predicted using Modeller9v7. The model was optimized in Maestro9.0 applying OPLS AA force field and was evaluated using PROCHECK, ProSA, ProQ and Profile 3D. The BOG pocket residues Val48, Glu197, Thr200, Ile204, Thr265, Thr268 and Gly278 were located in YFV E protein using SiteMap2.3. More than one million compounds of Ligandinfo Meta database were explored using a computational virtual screening protocol targeting BOG pocket of the E protein. Finally, ten top ranked lead molecules with strong binding affinity to BOG pocket of YFV E protein were identified based on XP Gscore. Drug likeliness and comparative bioactivity analysis for these leads using QikProp3.2 had shown that these molecules would have the potential to act as better drug. Thus, the 10 lead molecules suggested in the present study would be of interest as promising starting point for designing antiviral compound against yellow fever. PMID:21369890

  3. Spermicides, microbicides and antiviral agents: recent advances in the development of novel multi-functional compounds.

    PubMed

    Baptista, Marta; Ramalho-Santos, João

    2009-11-01

    Non-ionic surfactants have been proposed as dual action anti-viral and spermicidal agents to tackle viral infections, namely HIV. Given very promising in vitro results, nonoxynol-9 has been widely used. However, toxic effects were reported, paradoxically increasing the incidence of transmission of HIV/Sexually Transmitted Diseases in vivo. Thus, there has been a growing interest in identifying and evaluating a new generation of accessible and easy-to-use molecules with simultaneous spermicidal and microbicide action. Different biochemical compounds and mechanisms of action are currently being studied. This article reviews the diverse strategies and mechanisms of action of these novel compounds, as well the necessary systematic studies needed to evaluate their possible toxicity. PMID:20205637

  4. Comparison of the antiviral effect of solid-state copper and silver compounds.

    PubMed

    Minoshima, Masafumi; Lu, Yue; Kimura, Takuto; Nakano, Ryuichi; Ishiguro, Hitoshi; Kubota, Yoshinobu; Hashimoto, Kazuhito; Sunada, Kayano

    2016-07-15

    Antiviral activities of insoluble solid-state and soluble ionic copper and silver compounds were evaluated against influenza A virus (A/PR8/H1N1) possessing a viral envelope and bacteriophage Qβ lacking an envelope. The viral solutions were exposed on glass samples uniformly loaded with copper and silver compounds. Exposure to solid-state cuprous oxide (Cu2O) efficiently inactivated both influenza A virus and bacteriophage Qβ, whereas solid-state cupric oxide (CuO) and silver sulfide (Ag2S) showed little antiviral activity. Copper ions from copper chloride (CuCl2) had little effect on the activity of bacteriophage Qβ in spite of the fact that copper ions strongly inactivate influenza A in previous studies. Silver ions from silver nitrate (AgNO3) and silver(I) oxide (Ag2O) in solution showed strong inactivation of influenza A and weak inactivation of bacteriophage Qβ. We also investigated the influence of the compounds on the function of two influenza viral proteins, hemagglutinin and neuraminidase. Silver ions from AgNO3 and Ag2O remarkably decreased enzymatic activity of neuraminidase through the breakage of disulfide (SS) bonds, corresponding to the selective inactivation of influenza A virus. By contrast, exposure to Cu2O markedly reduced the activity of hemagglutinin rather than neuraminidase. These findings suggest that solid-state Cu2O disrupts host cell recognition by denaturing protein structures on viral surfaces, leading to the inactivation of viruses regardless of the presence of a viral envelope. PMID:27015373

  5. Transport mechanisms of a novel antileukemic and antiviral compound 9-norbornyl-6-chloropurine.

    PubMed

    Plačková, Pavla; Hřebabecký, Hubert; Šála, Michal; Nencka, Radim; Elbert, Tomáš; Mertlíková-Kaiserová, Helena

    2015-02-01

    6-Chloropurines substituted at the position 9 with variously modified bicyclic skeletons represent promising antiviral and anticancer agents. This work aimed to investigate the transport mechanisms of 9-[(1R*,2R*,4S*)-bicyclo[2.2.1]hept-2-yl]-6-chloro-9H-purine (9-norbornyl-6-chloropurine, NCP) and their relationship to the metabolism and biological activity of the compound. Transport experiments were conducted in CCRF-CEM cells using radiolabeled compound ([(3)H]NCP). The pattern of the intracellular uptake of [(3)H]NCP in CCRF-CEM cells pointed to a combination of passive and facilitated diffusion as prevailing transport mechanisms. NCP intracellular metabolism was found to enhance its uptake by modifying NCP concentration gradient. The transport kinetics reached steady state under the conditions of MRP and MDR proteins blockade, indicating that NCP is a substrate for these efflux pumps. Their inhibition also increased the cytotoxicity of NCP. Our findings suggest that the novel nucleoside analog NCP has potential to become a new orally available antileukemic agent due to its rapid membrane permeation. PMID:24679051

  6. Antiviral activity of chemical compound isolated from Artemisia morrisonensis against hepatitis B virus in vitro.

    PubMed

    Huang, Tsurng-Juhn; Liu, Shu-Heng; Kuo, Yu-Cheng; Chen, Chia-Wen; Chou, Shen-Chieh

    2014-01-01

    The compound p-hydroxyacetophenone (PHAP) isolated from Artemisia morrisonensis was found to have potential anti-HBV effects in HepG2 2.2.15 cells. We clarified its antiviral mode further and HBV-transfected Huh7 cells were used as the platform. During viral gene expression, treatment with PHAP had no apparent effects on the viral precore/pregenomic RNA. However, the 2.4-kb preS RNA of viral surface gene increased significantly relative to the 2.1-kb S RNA with PHAP. Promoter activity analysis demonstrated that PHAP had a potent effect on augmenting the viral preS promoter activity. The subsequent increase in the large surface protein and induce endoplasmic reticular (ER) stress has been reported previously. Interestingly, PHAP specifically reduced ER stress related GRP78 RNA/protein levels, but not those of GRP94, in treated Huh7 cells while PHAP also led to the significant intracellular accumulation of virus. Moreover, treatment with the ER chaperone inducer thapsigargin relieved the inhibitory effect of PHAP based on the supernatant HBV DNA levels of HBV-expressed cells. In conclusion, this study suggests that the mechanism of HBV inhibition by PHAP might involve the regulation of viral surface gene expression and block virion secretion by interference with the ER stress signaling pathway. PMID:24269476

  7. In Vitro Antiviral Activity and Preliminary Clinical Trials of a New Adamantane Compound

    PubMed Central

    Mathur, Asha; Beare, A. S.; Reed, Sylvia E.

    1973-01-01

    A compound, 1′-methyl spiro (adamantane-2,3′-pyrrolidine) maleate, chemically related to the antiviral drug amantadine, was tested for activity in vitro against a number of human respiratory viruses. By a variety of techniques, it was shown to be active against a wide range of human and animal influenza A viruses. The effect was, however, variable and ranged from high activity against two 1957 Asian strains to no observable activity against a 1971 strain. Like amantadine, the drug did not inhibit the growth of influenza B viruses. It was also inactive against a number of paramyxoviruses. Unlike amantadine, the drug did inhibit rhinoviruses, but to a lesser extent than myxoviruses. The coronavirus 229E was also sensitive to the action of the drug in vitro. Although an earlier trial in volunteers showed that, when given orally from 2 days before until 5 days after virus challenge, the drug was protective against infection with influenza A/Hong Kong/68 virus, a similar trial in volunteers challenged with rhinoviruses 2 and 9 revealed no useful activity against rhinoviruses in man. PMID:4364762

  8. The effect of urine storage on antiviral and antibiotic compounds in the liquid phase of source-separated urine.

    PubMed

    Jaatinen, Sanna T; Palmroth, Marja R T; Rintala, Jukka A; Tuhkanen, Tuula A

    2016-09-01

    The behaviour of pharmaceuticals related to the human immunodeficiency virus treatment was studied in the liquid phase of source-separated urine during six-month storage at 20°C. Six months is the recommended time for hygienization and use of urine as fertilizer. Compounds were spiked in urine as concentrations calculated to appear in urine. Assays were performed with separate compounds and as therapeutic groups of antivirals, antibiotics and anti-tuberculotics. In addition, urine was amended either with faeces or urease inhibitor. The pharmaceutical concentrations were monitored from filtered samples with solid phase extraction and liquid chromatography. The concentration reductions of the studied compounds as such or with amendments ranged from less than 1% to more than 99% after six-month storage. The reductions without amendments were 41.9-99% for anti-tuberculotics; <52% for antivirals (except with 3TC 75.6%) and <50% for antibiotics. In assays with amendments, the reductions were all <50%. Faeces amendment resulted in similar or lower reduction than without it even though bacterial activity should have increased. The urease inhibitor prevented ureolysis and pH rise but did not affect pharmaceutical removal. In conclusion, removal during storage might not be enough to reduce risks associated with the studied pharmaceuticals, in which case other feasible treatment practises or urine utilization means should be considered. PMID:26804243

  9. Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds

    PubMed Central

    García, Cybele C.; Djavani, Mahmoud; Topisirovic, Ivan; Borden, Katherine L. B.; Salvato, María S.; Damonte, Elsa B.

    2008-01-01

    Several disulfide-based and azoic compounds have shown antiviral and virucidal properties against arenaviruses in virus yield-inhibition and inactivation assays, respectively. The most effective virucidal agent, the aromatic disulfide NSC20625, was able to inactivate two strains of the prototype arenavirus species Lymphocytic choriomeningitis virus (LCMV). Inactivated viral particles retained the biological functions of the virion envelope glycoproteins in virus binding and uptake, but were unable to perform viral RNA replication. Furthermore, in inactivated virions, the electrophoretic profile of the Z protein was altered when analysed under non-reducing conditions, whereas the patterns of the proteins NP and GP1 remained unaffected. Treatment of a recombinant LCMV Z protein with the virucidal agents induced unfolding and oligomerization of Z to high-molecular-mass aggregates, probably due to metal-ion ejection and the formation of intermolecular disulfide bonds through the cysteine residues of the Z RING finger. NSC20625 also exhibited antiviral properties in LCMV-infected cells without affecting other cellular RING-motif proteins, such as the promyelocytic leukaemia protein PML. Altogether, the investigations described here illustrate the potential of the Z protein as a promising target for therapy and the prospects of the Z-reactive compounds to prevent arenavirus dissemination. PMID:16603524

  10. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  11. Fungus Cerrena unicolor as an effective source of new antiviral, immunomodulatory, and anticancer compounds.

    PubMed

    Mizerska-Dudka, Magdalena; Jaszek, Magdalena; Błachowicz, Adriana; Rejczak, Tomasz Piotr; Matuszewska, Anna; Osińska-Jaroszuk, Monika; Stefaniuk, Dawid; Janusz, Grzegorz; Sulej, Justyna; Kandefer-Szerszeń, Martyna

    2015-08-01

    In the report, three bioactive fractions from Cerrena unicolor: laccase (LAC), endopolysaccharides (c-EPL), and low molecular weight (ex-LMS) were tested for the first time towards their antiviral, immunostimulatory, cytotoxic and antiproliferative effect. The immunomodulatory activity was studied by means of THP-1-derived macrophages able to synthesize and secrete IL-6 and TNF-α. We used cervical carcinoma cell lines SiHa (ATCC, HTB-35) and CaSki (ATCC, CRL 1550) to determine antitumor activity and human skin fibroblasts (HSF) as a control. SiHa and L929 cell lines were used in the antiviral activity assay to propagate HHV-1 and EMCV, respectively. LAC was the most active against HSV at an early stage of viral replication, whereas the activity of laccase against EMCV was evident after incubation of the virus with LAC before and after the adsorption step. Moreover, the investigations showed that the fungal c-EPL fraction stimulated the production and secretion of TNF-α and IL-6 by THP-1-derived macrophages up to a level of 2000 pg/ml and 400 pg/ml, respectively. It was indicated for the first time that the LAC and ex-LMS fractions exhibited anticancer activity. This resulted from their cytotoxic or antiproliferative action against the investigated tumor cells at concentrations above 250 μg/ml and 10 μg/ml, respectively. PMID:26003302

  12. Use of Organosilicon Compounds towards the Rational Design of Antiparasitic and Antiviral Drugs

    PubMed Central

    Déléris, Gérard

    1995-01-01

    One of the major problems met for the conception of antiviral or antiparasitic drugs is to reach a high level of selectivity towards the pathogenic agent versus the host. We shall describe two synthetic approaches where main group organometallics have been used towards this goal. A series of nucleoside sila-analogues was synthesized as potential therapeutic agents designed to inhibit HIV Reverse Transcriptase. In a second approach novel organosilicon derivatives have been synthesized as mimics of antisense oligonucleotides. Infectious agents, namely viruses or parasites, more or less use cellular machinery. Therefore therapeutic agents must interfere with biochemical mechanisms or possess high affinity towards specific molecular cellular components, to reach selectivity. We thought that main group organometallics could show many advantages for designing biologically active molecules in this field. They allow a high synthetic flexibility for the modulations of physico-chemical properties and they show a mechanistic behaviour which may be close to the one of several heteroelements present in living organisms such as sulfur or phosphorus. We tried to use this approach towards two directions involving the synthesis of organosilicon derivatives i.e: -the synthesis of organosilicon derivatives as inhibitors of HIV Reverse Transcriptase, -the synthesis of organosilicon precursors of modified antisense oligonucleotides. PMID:18472760

  13. Rat and human STINGs profile similarly towards anticancer/antiviral compounds

    PubMed Central

    Zhang, Heng; Han, Min-Jie; Tao, Jianli; Ye, Zhao-Yang; Du, Xiao-Xia; Deng, Ming-Jing; Zhang, Xiao-Yan; Li, Lan-Fen; Jiang, Zheng-Fan; Su, Xiao-Dong

    2015-01-01

    Cyclic dinucleotides (CDNs) and antitumor/antiviral agents (DMXAA and CMA) trigger STING-dependent innate immunity activation. Accumulative evidences have showed that DMXAA and CMA selectively activate mouse, but not human STING signaling. The mechanism underlying this species selectivity remains poorly understood. In this report, we have shown that human and rat STINGs display more similar signaling profiles toward DMXAA and CMA than that of human and mouse STINGs, suggesting that rat is more suitable for preclinical testing of STING-targeted drugs. We have also determined the crystal structures of both apo rat STING and its complex with cyclic GMP-AMP with 2′5′ and 3′5′ phosphodiester linkage (2′3′-cGAMP), a human endogenous CDN. Structure-guided biochemical analysis also revealed the functional importance of the connecting loop (A140-N152) between membrane and cytosolic domains in STING activation. Taken together, these findings reveal that rat STING is more closely related to human STING in terms of substrate preference, serving as a foundation for the development of STING-targeted drugs. PMID:26669264

  14. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload.

    PubMed

    Huang, Su-Hua; Lien, Jin-Cherng; Chen, Chao-Jung; Liu, Yu-Ching; Wang, Ching-Ying; Ping, Chia-Fong; Lin, Yu-Fong; Huang, An-Cheng; Lin, Cheng-Wen

    2016-01-01

    Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca(2+) overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents. PMID:27563890

  15. Normal reproductive capacity of heifers that originated from in vitro fertilized embryos cultured with an antiviral compound.

    PubMed

    Givens, M Daniel; Marley, Mylissa S D; Riddell, Kay P; Galik, Patricia K; Stringfellow, David A

    2009-07-01

    Bovine viral diarrhea virus (BVDV) can associate with in vitro fertilized (IVF) bovine embryos despite washing and trypsin treatment. An antiviral compound, DB606 (2-(4-[2-imidazolinyl]phenyl)-5-(4-methoxyphenyl)furan), inhibits the replication of BVDV in bovine uterine tubal epithelial cells, Madin Darby bovine kidney cells, and fetal fibroblast cells. As well, DB606 in in vitro culture medium does not affect embryonic development. Antiviral-treated-IVF embryos placed into recipients developed into clinically normal calves. The objective of this project was to determine if these resultant heifer calves were capable of reproducing. Seven heifers from each of the treatment groups (natural breeding, IVF embryo, and IVF embryo cultured in DB606) of the previous study were used. At 20-27 months of age, the heifers were exposed to a fertile bull in a single pasture during a 63 d breeding season. Five of the seven heifers originating from natural breeding were pregnant 35 d after removal of the bull and calved. All of the heifers resulting from transfer of untreated IVF embryos were pregnant at 35 d; however, one aborted the fetus at 5-7 months of gestation. All of the heifers derived from transfer of IVF embryos cultured in DB606 were pregnant and calved. Offspring from dams of all treatment groups were clinically normal at birth. Adjusted 205 d weaning weights were not significantly different among the offspring of the treated and untreated dams. These results indicate that culture of bovine-IVF embryos in DB606 does not impair future reproductive capacity of resulting heifers. PMID:18691836

  16. Efficacy of a novel antiviral compound to inhibit replication of multiple pestivirus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pestiviruses are economically important pathogens of livestock. An aromatic cationic compound (DB772) has previously been shown to inhibit bovine viral diarrhea virus (BVDV) type 1 in vitro at concentrations lacking cytotoxic side effects. The aim of this study was to determine the scope of anti...

  17. USE OF QSPRS IN IMPROVING CARBON ADSORPTION MODELING OF EPA CONTAMINANT CANDIDATE COMPOUNDS

    EPA Science Inventory

    Activated carbon adsorption of EPA contaminant candidate list (CCL) compounds is under investigation as a treatment technology for contaminated drinking water. Historically, EPA, in support of drinking water regulations, has used a number of techniques to calculate field-scale c...

  18. Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds.

    PubMed

    Tang, Yan-Dong; Liu, Ji-Ting; Fang, Qiong-Qiong; Wang, Tong-Yun; Sun, Ming-Xia; An, Tong-Qing; Tian, Zhi-Jun; Cai, Xue-Hui

    2016-04-01

    A Pseudorabies virus (PRV) variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. However, identification of single guide RNA (sgRNA) through screening is critical to the CRISPR/Cas9 system, and is traditionally time and labor intensive, and not suitable for rapid and high throughput screening of effective PRV sgRNAs. In this study, we developed a recombinant PRV strain expressing firefly luciferase and enhanced green fluorescent protein (EGFP) as a reporter virus for PRV-specific sgRNA screens and rapid evaluation of antiviral compounds. Luciferase activity was apparent as soon as 4 h after infection and was stably expressed through 10 passages. In a proof of the principle screen, we were able to identify several PRV specific sgRNAs and confirmed that they inhibited PRV replication using traditional methods. Using the reporter virus, we also identified PRV variants lacking US3, US2, and US9 gene function, and showed anti-PRV activity for chloroquine. Our results suggest that the reporter PRV strain will be a useful tool for basic virology studies, and for developing PRV control and prevention measures. PMID:27043610

  19. Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds

    PubMed Central

    Tang, Yan-Dong; Liu, Ji-Ting; Fang, Qiong-Qiong; Wang, Tong-Yun; Sun, Ming-Xia; An, Tong-Qing; Tian, Zhi-Jun; Cai, Xue-Hui

    2016-01-01

    A Pseudorabies virus (PRV) variant has emerged in China since 2011 that is not protected by commercial vaccines, and has not been well studied. The PRV genome is large and difficult to manipulate, but it is feasible to use clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. However, identification of single guide RNA (sgRNA) through screening is critical to the CRISPR/Cas9 system, and is traditionally time and labor intensive, and not suitable for rapid and high throughput screening of effective PRV sgRNAs. In this study, we developed a recombinant PRV strain expressing firefly luciferase and enhanced green fluorescent protein (EGFP) as a reporter virus for PRV-specific sgRNA screens and rapid evaluation of antiviral compounds. Luciferase activity was apparent as soon as 4 h after infection and was stably expressed through 10 passages. In a proof of the principle screen, we were able to identify several PRV specific sgRNAs and confirmed that they inhibited PRV replication using traditional methods. Using the reporter virus, we also identified PRV variants lacking US3, US2, and US9 gene function, and showed anti-PRV activity for chloroquine. Our results suggest that the reporter PRV strain will be a useful tool for basic virology studies, and for developing PRV control and prevention measures. PMID:27043610

  20. Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents

    PubMed Central

    Jiang, Zhi; Wang, Huiqiang; Li, Yanping; Peng, Zonggen; Li, Yuhuan; Li, Zhuorong

    2015-01-01

    A series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57–7.12 μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00 μmol/L. The potency of compound 23 (IC50=0.57 μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90 μmol/L) and IMB-1g (IC50=1.00 μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations. PMID:26579447

  1. Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease.

    PubMed

    Wang, Ching-Ying; Huang, An-Cheng; Hour, Mann-Jen; Huang, Su-Hua; Kung, Szu-Hao; Chen, Chao-Hsien; Chen, I-Chieh; Chang, Yuan-Shiun; Lien, Jin-Cherng; Lin, Cheng-Wen

    2015-06-01

    Enterovirus A71 (EV-A71) in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN)-α/β receptor 1 (IFNAR1) to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s) of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 µM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 µM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease IC50 = 53.1 µM). Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2\\',5\\'-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection. PMID:26090728

  2. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  3. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses.

    PubMed

    Pilau, Marciele Ribas; Alves, Sydney Hartz; Weiblen, Rudi; Arenhart, Sandra; Cueto, Ana Paula; Lovato, Luciane Teresinha

    2011-10-01

    Mexican oregano (Lippia graveolens) is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3-4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide) was conducted to determine the selectivity index (SI) of the essential oil, which was equal to 13.1, 7.4, 10.8, 9.7, and 7.2 for acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1), acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV), bovine herpesvirus type 2 (BoHV-2), and bovine viral diarrhoea virus (BVDV), respectively. The human rotavirus (RV) and BoHV-1 and 5 were not inhibited by the essential oil. Carvacrol alone exhibited high antiviral activity against RV with a SI of 33, but it was less efficient than the oil for the other viruses. Thus, Mexican oregano oil and its main component, carvacrol, are able to inhibit different human and animal viruses in vitro. Specifically, the antiviral effects of Mexican oregano oil on ACVR-HHV-1 and HRSV and of carvacrol on RV justify more detailed studies. PMID:24031796

  4. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses

    PubMed Central

    Pilau, Marciele Ribas; Alves, Sydney Hartz; Weiblen, Rudi; Arenhart, Sandra; Cueto, Ana Paula; Lovato, Luciane Teresinha

    2011-01-01

    Mexican oregano (Lippia graveolens) is a plant found in Mexico and Central America that is traditionally used as a medicinal herb. In the present study, we investigated the antiviral activity of the essential oil of Mexican oregano and its major component, carvacrol, against different human and animal viruses. The MTT test (3–4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide) was conducted to determine the selectivity index (SI) of the essential oil, which was equal to 13.1, 7.4, 10.8, 9.7, and 7.2 for acyclovir-resistant herpes simplex virus type 1 (ACVR-HHV-1), acyclovir-sensitive HHV-1, human respiratory syncytial virus (HRSV), bovine herpesvirus type 2 (BoHV-2), and bovine viral diarrhoea virus (BVDV), respectively. The human rotavirus (RV) and BoHV-1 and 5 were not inhibited by the essential oil. Carvacrol alone exhibited high antiviral activity against RV with a SI of 33, but it was less efficient than the oil for the other viruses. Thus, Mexican oregano oil and its main component, carvacrol, are able to inhibit different human and animal viruses in vitro. Specifically, the antiviral effects of Mexican oregano oil on ACVR-HHV-1 and HRSV and of carvacrol on RV justify more detailed studies. PMID:24031796

  5. The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds

    PubMed Central

    Li, Sanshu; Hwang, Xue Ying; Stav, Shira; Breaker, Ronald R.

    2016-01-01

    The yjdF motif RNA is an orphan riboswitch candidate that almost exclusively associates with the yjdF protein-coding gene in many bacteria. The function of the YjdF protein is unknown, which has made speculation regarding the natural ligand for this putative riboswitch unusually challenging. By using a structure-probing assay for ligand binding, we found that a surprisingly broad diversity of nitrogen-containing aromatic heterocycles, or “azaaromatics,” trigger near-identical changes in the structures adopted by representative yjdF motif RNAs. Regions of the RNA that undergo ligand-induced structural modulation reside primarily in portions of the putative aptamer region that are highly conserved in nucleotide sequence, as is typical for riboswitches. Some azaaromatic molecules are bound by the RNA with nanomolar dissociation constants, and a subset of these ligands activate riboswitch-mediated gene expression in cells. Furthermore, genetic elements most commonly adjacent to the yjdF motif RNA or to the yjdF protein-coding region are homologous to protein regulators implicated in mitigating the toxic effects of diverse phenolic acids or polycyclic compounds. Although the precise type of natural ligand sensed by yjdF motif RNAs remains unknown, our findings suggest that this riboswitch class might serve as part of a genetic response system to toxic or signaling compounds with chemical structures similar to azaaromatics. PMID:26843526

  6. A Refined Guinea Pig Model of Foot-and-Mouth Disease Virus Infection for Assessing the Efficacy of Antiviral Compounds.

    PubMed

    De Vleeschauwer, A R; Lefebvre, D J; Willems, T; Paul, G; Billiet, A; Murao, L E; Neyts, J; Goris, N; De Clercq, K

    2016-04-01

    An antiviral containment strategy for foot-and-mouth disease (FMD) outbreaks could support or replace current contingency plans in case of an outbreak in Europe and could spare many healthy animals from being pre-emptively culled. Recently, substantial progress has been made towards the development of small molecule drugs that inhibit FMD virus (FMDV) replication in vitro. For the initial in vivo evaluation of antiviral lead molecules, a refined FMDV-infection model in guinea pigs (GP) is herewith described. This GP model was validated by demonstrating the antiviral effect of T-1105 (an influenza virus inhibitor with reported activity against FMDV). Sixteen animals were orally administered with T-1105 twice daily (400 mg/kg/day) for five consecutive days and inoculated intraplantarly with 100 GPID50 of the GP-adapted FMDV strain O1 Manisa 1 h after the first administration. The efficacy of T-1105 was compared with that of prophylactic vaccination with a highly potent double-oil emulsion-inactivated O1 Manisa vaccine. Ten animals received a single, full (2 ml) cattle vaccine dose and were inoculated 3 weeks later. Fourteen T-1105-treated and all vaccinated GP were completely protected from generalization of vesicular lesions. At 2 dpi, viral RNA was detected in serum of 9/16 T-1105-treated and of 6/10 vaccinated animals. At 4 dpi, viral RNA was detected in serum, organs and oral swabs of half of the T-1105-treated animals and only in the serum of 1/10 of the vaccinated animals. Mean viral RNA levels in serum and organs of T-1105-treated and vaccinated animals were reduced compared to untreated controls (P < 0.01). T-1105 conferred a substantial clinical and virological protection against infection with O1 Manisa, similar to the protection afforded by vaccination. These results validate the suitability of the enhanced GP model for the purpose of initial evaluation of inhibitors of FMDV replication and illustrate the potential of selective inhibitors of viral

  7. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  8. The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells.

    PubMed

    Sandoz, Kelsi M; Valiant, William G; Eriksen, Steven G; Hruby, Dennis E; Allen, Robert D; Rockey, Daniel D

    2014-07-01

    Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study, we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacterium Coxiella burnetii in Vero and HeLa cells but not in McCoy (murine) cells. The antichlamydial and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization. Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized to host cell lipid droplets but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular growth in a host-cell-dependent manner and interrupts proper development of chlamydial inclusions, possibly through a lipid droplet-dependent process. PMID:24777097

  9. Candidate anti-Aβ fluorene compounds selected from analogs of amyloid imaging agents

    PubMed Central

    Hong, Hyun-Seok; Maezawa, Izumi; Budamagunta, Madhu; Rana, Sandeep; Shi, Aibin; Vassar, Robert; Liu, Ruiwu; Lam, Kit S.; Cheng, R. Holland; Hua, Duy H.; Voss, John C.; Jin, Lee-Way

    2009-01-01

    Alzheimer’s disease (AD) is characterized by depositions of β-amyloid (Aβ) aggregates as amyloid in the brain. To facilitate diagnosis of AD by radioligand imaging, several highly specific small-molecule amyloid ligands have been developed. Because amyloid ligands display excellent pharmacokinetics properties and brain bioavailability, and because we have previously shown that some amyloid ligands bind the highly neurotoxic Aβ oligomers (AβO) with high affinities, they may also be valuable candidates for anti-Aβ therapies. Here we identified two fluorene compounds from libraries of amyloid ligands, initially based on their ability to block cell death secondary to intracellular AβO. We found that the lead fluorenes were able to reduce the amyloid burden including the levels of AβO in cultured neurons and in 5xFAD mice. To explain these in vitro and in vivo effects, we found that the lead fluorenes bind and destabilize AβO as shown by electron paramagnetic resonance spectroscopy studies, and block the harmful AβO-synapse interaction. These fluorenes and future derivatives, therefore, have a potential use in AD therapy and research. PMID:19022536

  10. Volatile compounds from the integument of white leghorn chickens (Gallus gallus domesticus L.): candidate attractants of ornithophilic mosquito species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Candidate kairomones of ornithophilic mosquito species are reported from GC/MS analysis of compounds from the skin, feet, and feathers of White Leghorn chickens. Hexane and ether solvent collections of chicken emanations produce fractions that differ significantly in their ability to attract Culex ...

  11. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    PubMed

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings. PMID:19435637

  12. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections.

    PubMed

    Chung, Yi-Ching; Hsieh, Feng-Chia; Lin, Ying-Ju; Wu, Tzong-Yuan; Lin, Cheng-Wen; Lin, Ching-Ting; Tang, Nou-Ying; Jinn, Tzyy-Rong

    2015-05-15

    The aim of this study was to identify the active ingredients responsible for the anti-EV71 activity produced by Salvia miltiorrhiza extracts. A pGS-EV71 IRES-based bicistronic reporter assay platform was used for rapid analysis of compounds that could specifically inhibit EV71 viral IRES-mediated translation. The analysis identified 2 caffeic acid derivatives, magnesium lithospermate B (MLB) and rosmarinic acid (RA), which suppressed EV71 IRES-mediated translation at concentrations of 30μg/ml. We also found that MLB and RA inhibited EV71 infection when they were added to RD cells during the viral absorption stage. MLB had a low IC50 value of 0.09mM and a high TI value of 10.52. In contrast, RA had an IC50 value of 0.50mM with a TI value of 2.97. MLB and RA (100µg/ml) also reduced EV71 viral particle production and significantly decreased VP1 protein production. We propose that these two derivatives inhibit EV71 viral entry into cells and viral IRES activity, thereby reducing viral particle production and viral RNA expression and blocking viral VP1 protein translation. This study provides useful information for the development of anti-EV71 assays and reagents by demonstrating a convenient EV71 IRES-based bicistronic assay platform to screen for anti-EV71 IRES activity, and also reports 2 compounds, MLB and RA, which are responsible for the anti-EV71 activity of S. miltiorrhiza. PMID:25773498

  13. ADVANCED OXIDATION PROCESSES IN THE TREATMENT OF CONTAMINANT CANDIDATE LIST (CCL) COMPOUNDS

    EPA Science Inventory

    The current (2nd) Contaminant Candidate List was completed in 2005 by the United States EPA as an update to the Safe Drinking Water Act. The list of 42 chemical contaminants spans a wide array of classes, from pesticides to pharmaceuticals to elements, all of which are anticipate...

  14. Technical description of candidate fluorescence compounds and radioisotopes for a nuclear smuggling deterrence tag (IL500E)

    SciTech Connect

    Hartenstein, S.D.; Aryaeinejad, R.

    1996-03-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials; (2) inventory control of long-term stored items containing special nuclear materials; and (3) tracking materials transferred between facilities. The tagging system uses four types of tagging materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. Currently, 18 long-lived radioisotopes, 38 short-live radioisotopes and 10 fluorescent compounds have been selected as candidate materials for the tagging system.

  15. Triazole-Based Compound as a Candidate To Develop Novel Medicines To Treat Toxoplasmosis

    PubMed Central

    Paneth, Agata; Plech, Tomasz; Pawełczyk, Jakub; Węglińska, Lidia; Paneth, Piotr

    2014-01-01

    This article reports anti-Toxoplasma gondii activity of 3-(thiophen-2-yl)-1,2,4-triazole-5-thione. The compound displayed significant and reproducible antiparasitic effects at nontoxic concentrations for the host cells, with an experimentally determined 50% inhibitory concentration (IC50) at least 30 times better than that of the known chemotherapeutic agent sulfadiazine. Purine nucleoside phosphorylase was defined as the probable target for anti-Toxoplasma activity of the tested compound. These results provide the foundation for future work to develop a new class of medicines to better treat toxoplasmosis. PMID:25288090

  16. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers

    SciTech Connect

    Matheis, Katja A.; Com, Emmanuelle; Gautier, Jean-Charles; Guerreiro, Nelson; Brandenburg, Arnd; Gmuender, Hans; Sposny, Alexandra; Hewitt, Philip; Amberg, Alexander; Boernsen, Olaf; Riefke, Bjoern; Hoffmann, Dana; Mally, Angela; Kalkuhl, Arno; Suter, Laura; Dieterle, Frank; Staedtler, Frank

    2011-04-15

    The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinical chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.

  17. A novel candidate compound with urethane structure for anticancer drug development.

    PubMed

    Matsuoka, Atsuko; Isama, Kazuo; Tanimura, Susumu; Kohno, Michiaki; Yamori, Takao

    2007-08-01

    Diethyl-4,4'-methylenebis(N-phenylcarbamate) (MDU) is a urethane compound that we originally synthesized, along with three other compounds, to investigate how polyurethane is hydrolysed. We tested the four compounds for cytotoxicity in two Chinese hamster cell lines (CHL and V79) and a human cancer cell line (HeLa S3). MDU showed the strongest cytotoxicity in all the cell lines with an IC50 of around 0.1 microg/ml. We further investigated MDU for its ability to induce chromosome aberrations (CAs) and micronuclei (MN) in CHL cells. MDU induced around 100% polyploid cells at 0.5 microg/ml after 24- and 48-h treatment in the CA test and a significantly increased frequency of micronuclei, polynuclear cells, and mitotic cells in the MN test, suggesting that it may induce numerical CAs. MDU's ability to cause mitotic arrest in CHL cells was greater than that of taxol and colchicine. Based on a COMPARE analysis using JFCR39, a panel of cancer cell lines, we predicted MDU to be a tubulin inhibitor. We confirmed this possibility in nerve growth factor-stimulated PC12 cells as well as in HT1080 cells, in which MDU exhibited the activity to inhibit tubulin polymerization. MDU is simpler in structure than existing anticancer drugs taxol and vincristine and can be synthesized relatively easily. Here we offer MDU as a potential new type of anticancer drug, stable even at room temperature, and inexpensive. PMID:17691911

  18. Approaches towards rational antiviral chemotherapy.

    PubMed Central

    Oxford, J. S.

    1979-01-01

    Present epidemic influenza is uncontrolled by immuno- or chemoprophylaxis. Mutants of varying antigenic composition arise with relatively high frequency in nature and are able to circumvent herd, or induced, immunity. Also, drug-resistant viruses can be selected in vitro and this resistance can be exchanged to other viruses by gene reassortment. Combined immuno- and chemoprophylaxis may provide a more effective approach to the ultimate control of the disease. Most antiviral compounds have been selected by random screening in the laboratory. Application of more specific enzyme assays such as the virion-associated RNA transcriptase assays may produce other compounds with a defined mode of action - semi-rational chemotherapy. RNA and polypeptide sequence studies are in progress elsewhere to define transcription and translation initiation sites or virus adsorption sites. Such knowledge could lead to a new generation of antiviral compounds. Specific delivery of virus inhibitory compounds is an interesting problem. Liposomes are lipid spheres, and these have been used for the delivery of antiviral compounds. Images Fig. 3a. Fig. 3b. Fig. 4 Fig. 5 PMID:461275

  19. Generation of Broad-Spectrum Antifungal Drug Candidates from the Natural Product Compound Aureobasidin A

    PubMed Central

    2015-01-01

    The natural product aureobasidin A (AbA) is a potent, well-tolerated antifungal agent with robust efficacy in animals. Although native AbA is active against a number of fungi, it has little activity against Aspergillus fumigatus, an important human pathogen, and attempts to improve the activity against this organism by structural modifications have to date involved chemistries too complex for continued development. This report describes novel chemistry for the modification of AbA. The key step involves functionalization of the phenylalanine residues in the compound by iridium-catalyzed borylation. This is followed by displacement of the pinacol boron moiety to form the corresponding bromide or iodide and substitution by Suzuki biaryl coupling. The approach allows for synthesis of a truly wide range of derivatives and has produced compounds with A. fumigatus minimal inhibitory concentrations (MIC) of <0.5 μg/mL. The approach is readily adaptable to large-scale synthesis and industrial production. PMID:26101567

  20. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens.

    PubMed

    Yan, Dan; Weisshaar, Marco; Lamb, Kristen; Chung, Hokyung K; Lin, Michael Z; Plemper, Richard K

    2015-09-15

    Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either pathogen or both, we have attempted co-infection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted the assay to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppressed the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nanoluciferase, the assay performed well on a human respiratory cell line and supports multicycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the National Institutes of Health Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed antimyxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing Renilla luciferase. PMID:26307636

  1. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  2. In vitro evaluation of candidate pretreatment and treatment compounds against sulfur mustard (HD) -induced human mononuclear leukocyte toxicity using a dye exclusion cell viability assay

    SciTech Connect

    Starner, R.A.; Blank, J.A.; Hobson, D.W.; Menton, R.G.; Meier, H.L.

    1993-05-13

    An assay measuring propidium iodide (PI) incorporation into nonviable human peripheral blood mononuclear leukocytes (PBML) was established at the U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), and the technology transferred and implemented at Battelle's Medical Research and Evaluation Facility (MREF) for use as a screen to evaluate candidate compounds for direct cytotoxicity as well as for efficacy in preventing HD-induced cytotoxicity. For assay transition, studies were performed to establish a fixed HD challenge concentration; to develop a positive and negative control dataset; and to establish the reproducibility in obtaining an EC50 (concentration of candidate compound required to provide 50 percent protection against the fixed HD concentration) for niacinamide (NM). Various concentrations of candidate compounds were preincubated for 15 to 30 min with PBML prior to adding the fixed HD challenge. At 24 hr after exposure, PI was added to the cultures and the number of nonviable (PI positive) cells was determined by flow cytometry. Positive (NM pretreated) and negative (HD only) controls were examined concurrently and used to maintain data quality. From this dataset, candidate compounds were evaluated for direct cytotoxic effects and for efficacy in preventing HD-induced cytotoxicity. EC50 values for effective candidate compounds were estimated and reported for ranking compound effectiveness. Results from these studies demonstrate assay function and reproducibility during routine screening operations.

  3. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.

    PubMed

    Meanwell, Nicholas A

    2011-09-19

    The development of small molecule drug candidates from the discovery phase to a marketed product continues to be a challenging enterprise with very low success rates that have fostered the perception of poor productivity by the pharmaceutical industry. Although there have been significant advances in preclinical profiling that have improved compound triaging and altered the underlying reasons for compound attrition, the failure rates have not appreciably changed. As part of an effort to more deeply understand the reasons for candidate failure, there has been considerable interest in analyzing the physicochemical properties of marketed drugs for the purpose of comparing with drugs in discovery and development as a means capturing recent trends in drug design. The scenario that has emerged is one in which contemporary drug discovery is thought to be focused too heavily on advancing candidates with profiles that are most easily satisfied by molecules with increased molecular weight and higher overall lipophilicity. The preponderance of molecules expressing these properties is frequently a function of increased aromatic ring count when compared with that of the drugs launched in the latter half of the 20th century and may reflect a preoccupation with maximizing target affinity rather than taking a more holistic approach to drug design. These attributes not only present challenges for formulation and absorption but also may influence the manifestation of toxicity during development. By providing some definition around the optimal physicochemical properties associated with marketed drugs, guidelines for drug design have been developed that are based largely on calculated parameters and which may readily be applied by medicinal chemists as an aid to understanding candidate quality. The physicochemical properties of a molecule that are consistent with the potential for good oral absorption were initially defined by Lipinski, with additional insights allowing further

  4. The role of the anaesthetised guinea-pig in the preclinical cardiac safety evaluation of drug candidate compounds

    SciTech Connect

    Marks, Louise; Borland, Samantha; Philp, Karen; Ewart, Lorna; Lainée, Pierre; Skinner, Matthew; Kirk, Sarah; Valentin, Jean-Pierre

    2012-09-01

    Despite rigorous preclinical and clinical safety evaluation, adverse cardiac effects remain a leading cause of drug attrition and post-approval drug withdrawal. A number of cardiovascular screens exist within preclinical development. These screens do not, however, provide a thorough cardiac liability profile and, in many cases, are not preventing the progression of high risk compounds. We evaluated the suitability of the anaesthetised guinea-pig for the assessment of drug-induced changes in cardiovascular parameters. Sodium pentobarbitone anaesthetised male guinea-pigs received three 15 minute intravenous infusions of ascending doses of amoxicillin, atenolol, clonidine, dobutamine, dofetilide, flecainide, isoprenaline, levosimendan, milrinone, moxifloxacin, nifedipine, paracetamol, verapamil or vehicle, followed by a 30 minute washout. Dose levels were targeted to cover clinical exposure and above, with plasma samples obtained to evaluate effect/exposure relationships. Arterial blood pressure, heart rate, contractility function (left ventricular dP/dt{sub max} and QA interval) and lead II electrocardiogram were recorded throughout. In general, the expected reference compound induced effects on haemodynamic, contractility and electrocardiographic parameters were detected confirming that all three endpoints can be measured accurately and simultaneously in one small animal. Plasma exposures obtained were within, or close to the expected clinical range of therapeutic plasma levels. Concentration–effect curves were produced which allowed a more complete understanding of the margins for effects at different plasma exposures. This single in vivo screen provides a significant amount of information pertaining to the cardiovascular risk of drug candidates, ultimately strengthening strategies addressing cardiovascular-mediated compound attrition and drug withdrawal. -- Highlights: ► Evaluation of the anaesthetised guinea-pig to determine cardiac liability.

  5. Task 89-07: Evaluation of the in vitro efficacy of candidate pretreatment and treatment (pt) compounds against vesicants and nerve agents. Final report, January 1990-January 1993

    SciTech Connect

    Hobson, D.W.; Blank, J.A.; Starner, R.A.

    1993-10-01

    MREF Task 89-07 encompassed four vesicant assays and four nerve agent assays. The four vesicant assays evaluated the candidate P and T compound solubility limitations, direct cytotoxic effects, efficacy against HD-induced cellular nicotinamide adenine dinucleotide (NAD+) depletion, and efficacy against HD-induced cytotoxicity. Normal human epidermal cells (NHEKs) were used to evaluate candidate PT compound efficacy against HD-induced NAD+ depletion, and peripheral blood mononuclear leukocytes (PBMC) were used in direct cytotoxicity and HD-induced cytotoxicity assays. The four nerve agent assays assessed candidate PT compound direct inhibitory effects on acetylcholinesterase (AChE) activity, candidate PT compound efficacy in reactivating Tabun (GA) - and O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-inhibited A ThE, and candidate PT compound efficacy in slowing the aging rate of Soman (GD) inhibited AChE. All nerve agent and vesicant assays with the exception of the direct cytotoxicity and HD-induced cytotoxicity assays were initially established under MREF Task 88-36. The direct cytotoxicity and HD-induced cytotoxicity assays were transitioned to the MREF from USAMRICD and validated for use in routine screening procedures, including the generation of control database values, under Task 89-07. Solubility data were obtained for 37 compounds submitted for evaluation in the vesicant assays. Thirty-five of these compounds were evaluated for direct cytotoxicity, and their effect against HD-induced cytotoxicity, while 13 compound is were evaluated for efficacy against HD-induced NAD+ depletion. AChE reactivation, ACHE aging, ACHE inhibition, In vitro, Cytotoxicity , Vesicant assays, Nerve ag.

  6. From β-amino-γ-sultone to unusual bicyclic pyridine and pyrazine heterocyclic systems: synthesis and cytostatic and antiviral activities.

    PubMed

    de Castro, Sonia; Familiar, Olga; Andrei, Graciela; Snoeck, Robert; Balzarini, Jan; Camarasa, María-José; Velázquez, Sonsoles

    2011-04-01

    Herein we describe the first successful application of the β-amino-γ-sultone system as an intermediate for the synthesis of hitherto virtually unknown 3H-[1,2]-oxathiole [4,3-b]pyridine and pyrazine 1,1-dioxide bicyclic heterocyclic systems. All novel compounds were evaluated for their antiviral and cytostatic activities. Compounds 3 a, 15 a, and 21 a inhibited HIV-1-induced cytopathicity. Compound 7 showed remarkable cytostatic activity, and can be regarded as a potential antitumor candidate for further exploration. PMID:21370477

  7. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    PubMed Central

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  8. Dual Myxovirus Screen Identifies a Small-Molecule Agonist of the Host Antiviral Response

    PubMed Central

    Yan, Dan; Krumm, Stefanie A.; Sun, Aiming; Steinhauer, David A.; Luo, Ming; Moore, Martin L.

    2013-01-01

    As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class. PMID:23926334

  9. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  10. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  11. Determining Mechanism of Action of Antivirals for Respiratory Illness

    NASA Astrophysics Data System (ADS)

    Rodriguez, Irma; Dobrovolny, Hana

    2015-03-01

    Viral infections in the respiratory tract are common in humans and can cause serious illness and death. Drug treatment is the principal line of protection against many of these illnesses and many compounds are tested as antivirals. Often the efficacy of these antivirals are determined before a mechanism of action is understood. We use mathematical models to represent the evolution of these diseases and establish which experiments can help determine the mechanism of action of antivirals.

  12. Dioscin's antiviral effect in vitro.

    PubMed

    Liu, Chaohong; Wang, Yun; Wu, Chunchen; Pei, Rongjuan; Song, Jianhua; Chen, Shiyun; Chen, Xinwen

    2013-03-01

    Dioscin is chemical compound obtained from an extract from a medical plant, air potato that is a yam species. Its potential antiviral properties were analyzed in this study. In this study, dioscin's antiviral effects were tested against several viruses including adenovirus, vesicular stomatitis virus (VSV) and hepatitis B virus (HBV). By time-of-addition assay, dioscin not only blocked the initial stage of adenovirus infection, but also affected the host cell's response for viral infection. In addition, 293 cells treated with dioscin displayed decreased mRNA levels for adenovirus receptor (CAR). Over expression of CAR in 293 cells pretreated with dioscin restored the infectivity of adenovirus. The inhibitory effect of dioscin against VSV infection was observed only in 293 cells pretreated with dioscin prior to infection. Finally, dioscin's inhibitory effect on secretion of HBeAg and HBsAg in HBV positive cell line HepG2 2.215 was observed by ELISA assay. PMID:23238077

  13. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  14. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  15. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  16. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  17. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  18. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  19. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  20. Antiviral activity of constituents of Tamus communis.

    PubMed

    Aquino, R; Conti, C; De Simone, F; Orsi, N; Pizza, C; Stein, M L

    1991-10-01

    The antiviral activity of the phenanthrene derivatives 1-6, of the spyrostane triglycosides dioscin (7) and gracillin (8), of the furostanol tetraglycosides methylprotodioscin (9), its (25S) epimer methylprotoneodioscin (10), and methylprotogracillin 11, have been tested towards two RNA viruses: vesicular stomatitis virus and human rhinovirus type 1B. All these products were extracted from the rizomes of Tamus communis L; compound 11 was isolated also from Asparagus cochinchinesis, together with pseudoprotodioscin (12), a 20 (22)-unsaturated furostanoside, which was also investigated for antiviral activity. The results were of some interest mainly for the phenanthrene derivatives. PMID:1667189

  1. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  2. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents. PMID:26727903

  3. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  4. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds.

    PubMed

    Machara, Aleš; Lux, Vanda; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, Ondřej; Kotora, Martin; Parkan, Kamil; Pávová, Marcela; Glass, Bärbel; Sehr, Peter; Lewis, Joe; Müller, Barbara; Kräusslich, Hans-Georg; Konvalinka, Jan

    2016-01-28

    Assembly of human immunodeficiency virus (HIV-1) represents an attractive target for antiretroviral therapy which is not exploited by currently available drugs. We established high-throughput screening for assembly inhibitors based on competition of small molecules for the binding of a known dodecapeptide assembly inhibitor to the C-terminal domain of HIV-1 CA (capsid). Screening of >70000 compounds from different libraries identified 2-arylquinazolines as low micromolecular inhibitors of HIV-1 capsid assembly. We prepared focused libraries of modified 2-arylquinazolines and tested their capacity to bind HIV-1 CA to compete with the known peptide inhibitor and to prevent the replication of HIV-1 in tissue culture. Some of the compounds showed potent binding to the C-terminal domain of CA and were found to block viral replication at low micromolar concentrations. PMID:26685880

  5. An antiviral furanoquinone from Paulownia tomentosa Steud.

    PubMed

    Kang, K H; Huh, H; Kim, B K; Lee, C K

    1999-11-01

    A methanol extract of the stem bark of Paulownia tomentosa showed antiviral activity against poliovirus types 1 and 3. Sequential liquid-liquid extraction with n-hexane, chloroform and water, and a silicagel column chromatography resulted in the purification of a compound. The compound was identified as methyl-5-hydroxy-dinaphthol[1,2-2',3']furan-7,12-dione-6-carbox yla te on the basis of spectroscopic data. The component caused a significant reduction of viral cytopathic effect when it was subjected to a standard antiviral assay by using HeLa cells. The EC(50) of the compound against poliovirus type 1 strain Brunhilde, and type 3 strain Leon were 0.3 microg/mL and 0.6 microg/mL, respectively. PMID:10548761

  6. New neplanocin analogues. 1. Synthesis of 6'-modified neplanocin A derivatives as broad-spectrum antiviral agents.

    PubMed

    Shuto, S; Obara, T; Toriya, M; Hosoya, M; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1992-01-24

    Novel neplanocin A analogues modified at the 6'-position, i.e., 6'-deoxy analogues (2, 3, 6, 9, 20), 6'-O-methylneplanocin A (15), and 6'-C-methylneplanocin A's (22a and 22b) have been synthesized and evaluated for their antiviral activity in a wide variety of DNA and RNA virus systems. These compounds showed an activity spectrum that conforms to that of S-adenosylhomocysteine hydrolase inhibitors. They were particularly active against pox- (vaccinia), paramyxo-(parainfluenza, measles, respiratory syncytial), arena- (Junin, Tacaribe), rhabdo- (vesicular stomatitis), reo-, and cytomegalovirus. In order of (increasing) antiviral activity, the compounds ranked as follows: 3 less than 15 approximately 20 less than 6 less than 9 approximately 2 less than 22a. Of the two diastereomeric forms of 22, only 22a was active; 22a surpassed neplanocin A both in antiviral potency and selectivity. Compound 22a appears to be a promising candidate drug for the treatment of pox-, paramyxo-, arena-, rhabdo-, reo-, and cytomegalovirus infections. PMID:1732550

  7. Antiviral Drug Allergy

    PubMed Central

    Milpied-Homsi, Brigitte; Moran, Ellen M.; Phillips, Elizabeth J.

    2014-01-01

    Antiviral drugs used to treat HIV and hepatitis C are common causes of delayed drug hypersensitivities for which many of the more severe reactions have been recently shown to be immunogenetically mediated such as abacavir hypersensitivity where HLA-B*57:01 is now used routinely as a screening test to exclude patients carrying this allele from abacavir prescription. Most antiviral drug allergies consist of mild to moderate delayed rash without other serious features (e.g. fever, mucosal involvement, blistering rash, organ impairment. In these cases treatment can be continued with careful observation and symptomatic management and the discontinuation rate is low. PMID:25017682

  8. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    SciTech Connect

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  9. IDENTIFICATION OF COMPOUNDS IN THREE SPECIES OF FALSE ROSEMARY (CONRADINA SP.) NATIVE TO FLORIDA AS CANDIDATE MOSQUITO REPELLENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Bloodsucking flies and mosquitoes are responsible for the transmission of diseases such as Leishmaniasis, malaria, and West Nile fever. One method of reducing disease risk is through the use of topical or spatial repellents. Natural compounds from plants and animals that exhibit repe...

  10. Synthesis and antiviral activity of 5'-deoxypyrazofurin.

    PubMed

    Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1993-11-12

    In searching for derivatives of pyrazofurin that could display antiviral properties by means that do not require C-5' phosphorylation, 5'-deoxypyrazofurin (3) has been synthesized in six steps from methyl5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (4). Compound 3 was evaluated for antiviral activity against a large number of viruses including herpes-, pox-, myxo-, toga-, arena-, rhabdo-, picorna-,reo-, and retroviruses. Compound 3 proved active against respiratory syncytial virus (in HeLa cells), vaccinia virus (in embryonic skin-muscle fibroblast cells), vesicular stomatitis virus (in HeLa cells), and influenza A virus (in Madin-Darby canine kidney cells) at concentrations (ranging from 4 to 20 micrograms/mL) that were nontoxic to the confluent host cell cultures. PMID:8246242

  11. An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development

    PubMed Central

    Soejarto, D.D.; Gyllenhaal, C.; Kadushin, M.R.; Southavong, B.; Sydara, K.; Bouamanivong, S.; Xaiveu, M.; Zhang, H.-J.; Franzblau, S.G.; Tan, Ghee T.; Pezzuto, J.M.; Riley, M.C.; Elkington, B.G.; Waller, D.P.

    2012-01-01

    Context An ethnobotany-based approach in the selection of raw plant materials to study was implemented. Objective To acquire raw plant materials using ethnobotanical field interviews as starting point to discover new bioactive compounds from medicinal plants of the Lao People’s Democratic Republic. Methods Using semi-structured field interviews with healers in the Lao PDR, plant samples were collected, extracted, and bio-assayed to detect bioactivity against cancer, HIV/AIDS, TB, malaria. Plant species demonstrating activity were recollected and the extracts subjected to a bioassay-guided isolation protocol to isolate and identify the active compounds. Results Field interviews with 118 healers in 15 of 17 provinces of Lao PDR yielded 753 collections (573 species) with 955 plant samples. Of these 955, 50 extracts demonstrated activity in the anticancer, 10 in the anti-HIV, 30 in the anti-TB, and 52 in the antimalarial assay. Recollection of actives followed by bioassay-guided isolation processes yielded a series of new and known in vitro-active anticancer and antimalarial compounds from 5 species. Discussion Laos has a rich biodiversity, harboring an estimated 8000–11,000 species of plants. In a country highly dependent on traditional medicine for its primary health care, this rich plant diversity serves as a major source of their medication. Conclusions Ethnobotanical survey has demonstrated the richness of plant-based traditional medicine of Lao PDR, taxonomically and therapeutically. Biological assays of extracts of half of the 955 samples followed by in-depth studies of a number of actives have yielded a series of new bioactive compounds against the diseases of cancer and malaria. PMID:22136442

  12. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

    PubMed

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-11-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  13. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  14. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides. PMID:15308605

  15. Screening for negative effects of candidate ascidian antifoulant compounds on a target aquaculture species, Perna canaliculus Gmelin.

    PubMed

    Cahill, Patrick Louis; Heasman, Kevin; Hickey, Anthony; Mountfort, Douglas; Jeffs, Andrew; Kuhajek, Jeannie

    2013-01-01

    The natural chemical compounds radicicol, polygodial and ubiquinone-10 (Q10) have previously been identified as inhibitors of metamorphosis in ascidian larvae. Accordingly, they have potential as a specific remedy for the costly problem of fouling ascidians in bivalve aquaculture. In this study, these compounds were screened for their effects on the physiological health of an aquaculture species, the green-lipped mussel, Perna canaliculus Gmelin, at or above the 99% effective dose (IC(99)) in ascidians. Three physiological biomarkers of mussel health were screened: growth (increases in shell height and wet weight), condition (condition index) and mitochondrial respirational function (Complex I-mediated respiration, Complex II-mediated respiration, maximum uncoupled respiration, leak respiration, respiratory control ratios and phosphorylation system control ratios). While polygodial and Q10 had no effect on mussel growth or the condition index, radicicol retarded growth and decreased the condition index. Mitochondrial respirational function was unaffected by radicicol and polygodial. Conversely, Q10 enhanced Complex I-mediated respiration, highlighting the fundamental role of this compound in the electron transport system. The present study suggests that polygodial and Q10 do not negatively affect the physiological health of P. canaliculus at the IC(99) in ascidians, while radicicol is toxic. Moreover, Q10 is of benefit in biomedical settings as a cellular antioxidant and therefore may also benefit P. canaliculus. Accordingly, polygodial and Q10 should be progressed to the next stage of testing where possible negative effects on bivalves will be further explored, followed by development of application techniques and testing in a laboratory and aquaculture setting. PMID:23194394

  16. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  17. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro-ethanolic extract of Moringa oleifera leaves.

    PubMed

    Karthivashan, Govindarajan; Tangestani Fard, Masoumeh; Arulselvan, Palanisamy; Abas, Faridah; Fakurazi, Sharida

    2013-09-01

    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations. PMID:24024688

  18. Novel antiviral activity of bromocriptine against dengue virus replication.

    PubMed

    Kato, Fumihiro; Ishida, Yuki; Oishi, Shinya; Fujii, Nobutaka; Watanabe, Satoru; Vasudevan, Subhash G; Tajima, Shigeru; Takasaki, Tomohiko; Suzuki, Youichi; Ichiyama, Koji; Yamamoto, Naoki; Yoshii, Kentaro; Takashima, Ikuo; Kobayashi, Takeshi; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2016-07-01

    Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease. PMID:27181378

  19. Cyclopalladated Compound 7a Induces Apoptosis- and Autophagy-Like Mechanisms in Paracoccidioides and Is a Candidate for Paracoccidioidomycosis Treatment

    PubMed Central

    Arruda, Denise C.; Matsuo, Alisson L.; Silva, Luiz S.; Real, Fernando; Leitão, Natanael P.; Pires, Jhon H. S.; Caires, Antonio Carlos F.; Garcia, Daniel M.; Cunha, Fernanda F. M.; Longo, Larissa V. G.

    2015-01-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 μg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses. PMID:26349827

  20. Cyclopalladated Compound 7a Induces Apoptosis- and Autophagy-Like Mechanisms in Paracoccidioides and Is a Candidate for Paracoccidioidomycosis Treatment.

    PubMed

    Arruda, Denise C; Matsuo, Alisson L; Silva, Luiz S; Real, Fernando; Leitão, Natanael P; Pires, Jhon H S; Caires, Antonio Carlos F; Garcia, Daniel M; Cunha, Fernanda F M; Puccia, Rosana; Longo, Larissa V G

    2015-12-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 μg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses. PMID:26349827

  1. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  2. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    SciTech Connect

    Shi, CY; Yang, H; Wei, CL; Yu, O; Zhang, ZZ; Sun, J; Wan, XC

    2011-01-01

    Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real

  3. VivaGel™ (SPL7013 Gel): A candidate dendrimer – microbicide for the prevention of HIV and HSV infection

    PubMed Central

    Rupp, Richard; Rosenthal, Susan L; Stanberry, Lawrence R

    2007-01-01

    Microbicides are compounds that applied vaginally or rectally, protect the user from sexually transmitted infections. Although no commercial product is yet available, many candidates are under development. A leading candidate, VivaGel™ (SPL7013 Gel) is the product of nanotechnology. The active ingredient is SPL7013, a dendrimer that was designed specifically with HIV and HSV antiviral activity and human safety in mind. SPL7013 has demonstrated efficacy against human immunodeficiency virus and herpes simplex virus in in vitro and animal models. VivaGel™ appears to be well tolerated in both animals and humans. This review summarizes the studies of VivaGel™ and its active ingredient, SPL7013. PMID:18203424

  4. Antiviral agents for herpes simplex virus.

    PubMed

    Vere Hodge, R Anthony; Field, Hugh J

    2013-01-01

    This review starts with a brief description of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), the clinical diseases they cause, and the continuing clinical need for antiviral chemotherapy. A historical overview describes the progress from the early, rather toxic antivirals to acyclovir (ACV) which led the way for its prodrug, valacyclovir, to penciclovir and its prodrug, famciclovir (FCV). These compounds have been the mainstay of HSV therapy for two decades and have established a remarkable safety record. This review focuses on these compounds, the preclinical studies which reveal potentially important differences, the clinical trials, and the clinical experience through two decades. Some possible areas for further investigation are suggested. The focus shifts to new approaches and novel compounds, in particular, the combination of ACV with hydrocortisone, known as ME609 or zovirax duo, an HSV helicase-primase inhibitor, pritelivir (AIC316), and CMX001, the cidofovir prodrug for treating resistant HSV infection in immunocompromised patients. Letermovir has established that the human cytomegalovirus terminase enzyme is a valid target and that similar compounds could be sought for HSV. We discuss the difficulties facing the progression of new compounds. In our concluding remarks, we summarize the present situation including a discussion on the reclassification of FCV from prescription-only to pharmacist-controlled for herpes labialis in New Zealand in 2010; should this be repeated more widely? We conclude that HSV research is emerging from a quiescent phase. PMID:23885997

  5. Dengue Virus Entry as Target for Antiviral Therapy

    PubMed Central

    Alen, Marijke M. F.; Schols, Dominique

    2012-01-01

    Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed. PMID:22529868

  6. Antiviral agents against equid alphaherpesviruses: Current status and perspectives.

    PubMed

    Vissani, María A; Thiry, Etienne; Dal Pozzo, Fabiana; Barrandeguy, María

    2016-01-01

    Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections. PMID:26654843

  7. [Antiviral properties of basidiomycetes metabolites].

    PubMed

    Avtonomova, A V; Krasnopolskaya, L M

    2014-01-01

    The data on the antiviral action of the Ganoderma lucidum, Lentinus edodes, Grifola frondosa, Agaricus brasiliensis and other basidiomycetes metabolites are summurized. The metabolites of these species of basidiomycetes exhibit a direct antiviral effect on herpes simplex virus types I and II, human immunodeficiency virus (HIV), hepatitis B virus, vesicular stomatitis virus, influenza virus, Epstein-Barr virus, and others. Moreover, metabolites of basidiomycetes increased antiviral immunity. PMID:25975107

  8. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. PMID:26900972

  9. Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication.

    PubMed

    McKinlay, Mark A; Collett, Marc S; Hincks, Jeffrey R; Oberste, M Steven; Pallansch, Mark A; Okayasu, Hiromasa; Sutter, Roland W; Modlin, John F; Dowdle, Walter R

    2014-11-01

    Chronic prolonged excretion of vaccine-derived polioviruses by immunodeficient persons (iVDPV) presents a personal risk of poliomyelitis to the patient as well as a programmatic risk of delayed global eradication. Poliovirus antiviral drugs offer the only mitigation of these risks. Antiviral agents may also have a potential role in the management of accidental exposures and in certain outbreak scenarios. Efforts to discover and develop poliovirus antiviral agents have been ongoing in earnest since the formation in 2007 of the Poliovirus Antivirals Initiative. The most advanced antiviral, pocapavir (V-073), is a capsid inhibitor that has recently demonstrated activity in an oral poliovirus vaccine human challenge model. Additional antiviral candidates with differing mechanisms of action continue to be profiled and evaluated preclinically with the goal of having 2 antivirals available for use in combination to treat iVDPV excreters. PMID:25316866

  10. A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory' effect by exploiting the baseline oxidative status of lymphocytes

    PubMed Central

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; III Petricoin, E; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  11. Recent developments in antiviral agents against enterovirus 71 infection

    PubMed Central

    2014-01-01

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease. PMID:24521134

  12. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells

    PubMed Central

    de Godoi, Ananda Marques; Faccin-Galhardi, Lígia Carla; Lopes, Nayara; de Almeida, Raimundo Rafael; Ricardo, Nágila Maria Pontes Silva; Nozawa, Carlos; Linhares, Rosa Elisa Carvalho

    2014-01-01

    Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection. PMID:25221609

  13. 5α-reductase inhibitors, antiviral and anti-tumor activities of some steroidal cyanopyridinone derivatives.

    PubMed

    Al-Mohizea, Abdullah M; Al-Omar, Mohamed A; Abdalla, Mohamed M; Amr, Abdel-Galil E

    2012-01-01

    We herein report the 5α-reductase inhibitors, antiviral and anti-tumor activities of some synthesized heterocyclic cyanopyridone and cyanothiopyridone derivatives fused with steroidal structure. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). All the compounds, except 3b, were interestingly less toxic than the reference drug (Prednisolone(®)). Seventeen heterocyclic derivatives containing a cyanopyridone or cyanothiopyridone rings fused to a steroidal moiety were synthesized and screened for their 5α-reductase inhibitors, antiviral and anti-tumor activities comparable to that of Anastrozole, Bicalutamide, Efavirenz, Capravirine, Ribavirin, Oseltamivir and Amantadine as the reference drugs. Some of the compounds exhibited better 5α-reductase inhibitors, antiviral and anti-tumor activities than the reference drugs. The detailed 5α-reductase inhibitors, antiviral and anti-tumor activities of the synthesized compounds were reported. PMID:22057085

  14. RNA silencing: an antiviral mechanism.

    PubMed

    Csorba, T; Pantaleo, V; Burgyán, J

    2009-01-01

    RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins which can counteract the host silencing-based antiviral process. After the discovery of virus-encoded silencing suppressors, it was shown that these viral proteins can target one or more key points in the silencing machinery. Here we review recent progress in our understanding of the mechanism and function of antiviral RNA silencing in plants, and on the virus's counterattack by expression of silencing-suppressor proteins. We also discuss emerging evidence that RNA silencing and expression of viral silencing-suppressor proteins are tools forged as a consequence of virus-host coevolution for fine-tuning host-pathogen coexistence. PMID:20109663

  15. Development of antiviral agents toward enterovirus 71 infection.

    PubMed

    Pourianfar, Hamid Reza; Grollo, Lara

    2015-02-01

    Enterovirus 71 (EV71) infection remains a public health problem at a global level, particularly in the Asia-Pacific region. The infection normally manifests as hand-foot-mouth disease; however, it is capable of developing into potentially fatal neurological complications. There is currently no approved vaccine or antiviral substance available for the prevention or treatment of EV71 infection. This paper, thus, reviews efforts to develop or discover synthetic as well as naturally occurring compounds directed against EV71 infection. The recent achievements in cellular receptors of EV71 are also highlighted, and their contribution to the development of antiviral drugs against EV71 is discussed in this article. PMID:24560700

  16. Medical Research and Evaluation Facility (MREF) and studies supporting the Medical Chemical Defense Program on Task 89-01: Screening of candidate pretreatment and therapeutic compounds in in vivo models. Final report Jul 89-Sep 91

    SciTech Connect

    Olson, C.T.; Kiser, R.C.; Dill, G.S.

    1992-02-01

    This task was a continuation of Task 86-29 initiated for Contract D. It provided in vivo screens for evaluating the efficacy of candidate pretreatment and treatment compounds submitted by the Drug Assessment Division of U.S. Army Medical Research of Chemical Defense against soman, tabun, and/or cyanide. A total of 578 compounds were received for testing and their maximum solubility in-vehicles comparable with in vivo testing in mice was determined. Range-finding and median lethal dose determinations following IM and/or oral administrations were conducted for 436 compounds submitted for nerve agent screening and range finding and median lethal dose determinations following IP administration were conducted for up to 142 compounds submitted for cyanide screening. Of 332 compounds evaluated, 154 passed the GD treatment efficacy evaluation, and 90 of 156 compounds submitted passed the GA treatment efficacy evaluation. For pretreatment studies against a GD challenge, 224 of 379 compounds submitted passed the IM efficacy evaluation and 96 of 143 compounds submitted passed the oral efficacy evaluation. Only 12 of 133 compounds evaluated as cyanide pretreatment compounds passed the efficacy evaluations. The mission of Task 89-01 was combined under Task 91-20 for the duration of Contract DAMD17-89-C-9050.

  17. A candidate anti-HIV reservoir compound, auranofin, exerts a selective 'anti-memory' effect by exploiting the baseline oxidative status of lymphocytes.

    PubMed

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; Petricoin, E Iii; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (T(CM)) and transitional memory (T(TM)) CD4(+) T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that T(CM) and T(TM) lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the T(CM)/T(TM) lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  18. Discovering novel direct acting antiviral agents for HBV using in silico screening.

    PubMed

    Murakami, Yoshiki; Hayakawa, Michiyo; Yano, Yoshihiko; Tanahashi, Toshihito; Enomoto, Masaru; Tamori, Akihiro; Kawada, Norifumi; Iwadate, Mitsuo; Umeyama, Hideaki

    2015-01-01

    The treatments for chronic hepatitis B (CHB) are interferon and nucleoside analogues reverse transcriptase (RT) inhibitors. Because both treatments are less than ideal, we conducted to identify novel anti-viral agents for HBV-reverse transcriptase (HBV-RT). We determined the ligand-binding site of the HBV-RT by conducting a homological search of the amino acid sequence and then we also determined not only structural arrangement of the target protein but the target protein-binding site of the ligand using known protein-ligand complexes in registered in the protein data bank (PDB). Finally we simulated binding between the ligand candidates and the HBV-RT and evaluated the degree of binding (in silico screening). PXB cells derived from human-mouse chimeric mouse liver, infected with HBV were administrated with the candidates, and HBVDNA in the culture medium was monitored by realtime qPCR. Among compounds from the AKosSamples database, twelve candidates that can inhibit RT were also identified, two of which seem to have the potential to control HBV replication in vitro. PMID:25446116

  19. Emerging antiviral drugs.

    PubMed

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025. PMID:18764719

  20. Novel antiviral activity of baicalein against dengue virus

    PubMed Central

    2012-01-01

    Background Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits. Methods In the present study, antiviral activity of a bioflavonoid, baicalein, was evaluated against different stages of dengue virus type 2 (DENV-2) replication in Vero cells using focus forming unit reduction assay and quantitative RT-PCR. Results Baicalein inhibited DENV-2 replication in Vero cells with IC50= 6.46 μg/mL and SI= 17.8 when added after adsorption to the cells. The IC50 against DENV-2 was 5.39 μg/mL and SI= 21.3 when cells were treated 5 hours before virus infection and continuously up to 4 days post infection. Baicalein exhibited direct virucidal effect against DENV-2 with IC 50= 1.55 μg/mL and showed anti-adsorption effect with IC50 = 7.14 μg/mL. Conclusions Findings presented here suggest that baicalein exerts potent antiviral activity against DENV. Baicalein possesses direct virucidal activity against DENV besides its effects against dengue virus adsorption and intracellular replication of DENV-2. Baicalein, hence, should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV. PMID:23140177

  1. The role of antifungal and antiviral agents in primary dental care.

    PubMed

    Lewis, Mike

    2014-11-01

    In comparison to the range of antibiotics used in medicine, the spectrum of antifungal and antiviral drugs used in primary dental care is relatively limited. In practical terms, there are only three antifungal agents and two antiviral agents that have a role. This paper will describe the clinical presentation of orofacial candidal and viral infections and the use of antimicrobial drugs in their management. PMID:25668378

  2. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    NASA Astrophysics Data System (ADS)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  3. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    PubMed Central

    Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng

    2015-01-01

    Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407

  4. Antiviral properties from plants of the Mediterranean flora.

    PubMed

    Sanna, G; Farci, P; Busonera, B; Murgia, G; La Colla, P; Giliberti, G

    2015-01-01

    Natural products are a successful source in drug discovery, playing a significant role in maintaining human health. We investigated the in vitro cytotoxicity and antiviral activity of extracts from 18 traditionally used Mediterranean plants. Noteworthy antiviral activity was found in the extract obtained from the branches of Daphne gnidium L. against human immunodeficiency virus type-1 (EC50 = 0.08 μg/mL) and coxsackievirus B5 (EC50 = 0.10 μg/mL). Other relevant activities were found against BVDV, YFV, Sb-1, RSV and HSV-1. Interestingly, extracts from Artemisia arborescens L. and Rubus ulmifolius Schott, as well as those from D. gnidium L., showed activities against two different viruses. This extensive antiviral screening allowed us to identify attractive activities, offering opportunities to develop lead compounds with a great pharmaceutical potential. PMID:25613403

  5. Antifungal and antiviral products of marine organisms.

    PubMed

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  6. Litsea Species as Potential Antiviral Plant Sources.

    PubMed

    Guan, Yifu; Wang, Dongying; Tan, Ghee T; Van Hung, Nguyen; Cuong, Nguyen Manh; Pezzuto, John M; Fong, Harry H S; Soejarto, Djaja Doel; Zhang, Hongjie

    2016-04-01

    Litsea verticillata Hance (Lauraceae), a Chinese medicine used to treat swelling caused by injury or by snake bites, was the first plant identified by our National Institutes of Health (NIH)-funded International Cooperative Biodiversity Group (ICBG) project to exhibit anti-HIV activities. From this plant, we discovered a class of 8 novel litseane compounds, prototypic sesquiterpenes, all of which demonstrated anti-HIV activities. In subsequent studies, 26 additional compounds of different structural types were identified. During our continuing investigation of this plant species, we identified two new litseanes, litseaverticillols L and M, and a new sesquiterpene butenolide, litseasesquibutenolide. Litseaverticillols L and M were found to inhibit HIV-1 replication, with an IC[Formula: see text] value of 49.6[Formula: see text][Formula: see text]M. To further determine the antiviral properties of this plant, several relatively abundant isolates, including a litseane compound, two eudesmane sesquiterpenes and three lignans, were evaluated against an additional 21 viral targets. Lignans 8 and 9 were shown to be active against the Epstein-Barr Virus (EBV), with EC[Formula: see text] values of 22.0[Formula: see text][Formula: see text]M ([Formula: see text]) and 16.2[Formula: see text][Formula: see text]M ([Formula: see text]), respectively. Since many antiviral compounds have been discovered in L. verticillata, we further prepared 38 plant extracts made from the different plant parts of 9 additional Litsea species. These extracts were evaluated for their anti-HIV and cytotoxic activities, and four of the extracts, which ranged across three different species, displayed 97-100% inhibitory effects against HIV replication without showing cytotoxicity to a panel of human cell lines at a concentration of 20[Formula: see text][Formula: see text]g/mL. PMID:27080941

  7. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  8. An epimer of 5'-noraristeromycin and its antiviral properties.

    PubMed

    Siddiqi, S M; Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1994-04-29

    A derivative of 5'-noraristeromycin epimeric at the 5'-nor center ((-)-3) has been prepared enantiospecifically in three steps from (+)-((1R,4S)-4-hydroxy-2-cyclopenten- 1-yl acetate. Compound (-)-3 was evaluated for antiviral activity against a large number of viruses and found to display marked activity against varicella-zoster virus, vaccinia virus, vesicular stomatitis virus, parainfluenza virus, reovirus, and cytomegalovirus. A similar antiviral activity spectrum was shown by the S-adenosylhomocysteine hydrolase inhibitors neplanocin A and carbocyclic 3-deazaadenosine. While equally potent as neplanocin A against most of the viruses tested, compound (-)-3 was significantly less cytotoxic. The results of this study suggest that (-)-3 should be pursued for the treatment of those virus infections [that is, pox (VV), rhabdo (VSV), paramyxo (parainfluenza), and reo] that appear to be exquisitively sensitive to the compound. PMID:8176716

  9. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  10. Small molecules with antiviral activity against the Ebola virus.

    PubMed

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  11. Small molecules with antiviral activity against the Ebola virus

    PubMed Central

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  12. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  13. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  14. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state.

    PubMed

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant's known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  15. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    PubMed Central

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakaimarkedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  16. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  17. Antiviral activities of isometric dideoxynucleosides of D- and L-related stereochemistry.

    PubMed Central

    Nair, V; Jahnke, T S

    1995-01-01

    In summary, many isomeric analogs of ddNs of both D-related and L-related absolute stereochemistries have been synthesized and evaluated in vitro for their antiviral activities. A few of these compounds exhibit potent antiviral activity and, interestingly, belong to both the D and L families. The synthetic methodologies developed will allow accessibility to many more novel modified nucleosides. While some structure-activity relationships are emerging from this work, it is clear that these chiral isomeric nucleosides have opened a new chapter in the field of antiviral nucleosides. PMID:7625783

  18. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus.

    PubMed

    Ratnoglik, Suratno Lulut; Aoki, Chie; Sudarmono, Pratiwi; Komoto, Mari; Deng, Lin; Shoji, Ikuo; Fuchino, Hiroyuki; Kawahara, Nobuo; Hotta, Hak

    2014-03-01

    The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo-Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n-hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti-HCV activities with 50%-inhibitory concentrations (IC(50)) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity-guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti-HCV compound present in the extracts (IC(50) = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti-HCV activity (IC(50) = 0.2 μg/mL). The 50%-cytotoxic concentrations (CC(50)) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti-HCV activities. Time-of-addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post-entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV. PMID:24438164

  19. Antiviral Activity of Resveratrol against Human and Animal Viruses.

    PubMed

    Abba, Yusuf; Hassim, Hasliza; Hamzah, Hazilawati; Noordin, Mohamed Mustapha

    2015-01-01

    Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound. PMID:26693226

  20. Antiviral Activity of Resveratrol against Human and Animal Viruses

    PubMed Central

    Abba, Yusuf; Hassim, Hasliza; Hamzah, Hazilawati; Noordin, Mohamed Mustapha

    2015-01-01

    Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound. PMID:26693226

  1. Antiviral Activity of Carbobenzoxy Di- and Tripeptides on Measles Virus

    PubMed Central

    Miller, F. A.; Dixon, G. J.; Arnett, G.; Dice, J. R.; Rightsel, W. A.; Schabel, F. M.; Mclean, I. W.

    1968-01-01

    A series of simple carbobenzoxy peptides showed high and consistent antiviral chemotherapeutic activity in cell culture. In general, greatest activity was found against the measles-distemper or herpesvirus groups, or both, but various representatives of the series had quantitatively and qualitatively different antiviral activities. Several of the compounds, showing the highest antimeasles activity, were investigated extensively. In human cell culture plaque assays, these compounds were active against measles virus at levels of from 15 to 500 μg/ml. At single doses of about 250 to 500 mg/kg, orally in three animal species, significant serum levels of drugs were detected in virus cell culture assays. The mode of action appeared to be therapeutic, as an effect was seen in cell systems infected for at least 24 hr before treatment. PMID:4971720

  2. A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion

    PubMed Central

    Hollmann, Axel; Tanner, Lukas B.; Akyol Ataman, Zeynep; Yun, Tatyana; Shui, Guanghou; Aguilar, Hector C.; Zhang, Dong; Meriwether, David; Roman-Sosa, Gleyder; Robinson, Lindsey R.; Juelich, Terry L.; Buczkowski, Hubert; Chou, Sunwen; Castanho, Miguel A. R. B.; Wolf, Mike C.; Smith, Jennifer K.; Banyard, Ashley; Kielian, Margaret; Reddy, Srinivasa; Wenk, Markus R.; Selke, Matthias; Santos, Nuno C.; Freiberg, Alexander N.; Jung, Michael E.; Lee, Benhur

    2013-01-01

    LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of 1O2 generation), and (4) 10–100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the

  3. Cytotoxicity and antiviral activity of methanol extract from Polygonum minus

    NASA Astrophysics Data System (ADS)

    Wahab, Noor Zarina Abd; Bunawan, Hamidun; Ibrahim, Nazlina

    2015-09-01

    A study was carried out to test the cytotoxicity and antiviral effects of methanolic extracts from the leaves and stem of Polygonum minus or kesum. Cytotoxicity tests were performed on Vero cells indicates the LC50 value for leaf extract towards the Vero cells was 875 mg/L and the LC50 value for stem extract was 95 mg/L. The LC50 values indidcate the non-cytotoxic effect of the extracts and worth for further testing. Antiviral test were carried out towards herpes simplex virus infected Vero cells using three concentration of extract which were equivalent to 1.0 LC50, 0.1 LC50 and 0.01 LC50. Three different treatments to detect antiviral activity were used. Mild antiviral activity of the stem extract was detected when cells were treated for 24 hours with plant extract before viral infection. This demonstrates the capability of the test compound to protect the cells from viral attachment and of the possible prophylactic effect of the P. minus stem methanol extract.

  4. Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy.

    PubMed

    Talaei Zanjani, Negar; Miranda-Saksena, Monica; Valtchev, Peter; Diefenbach, Russell J; Hueston, Linda; Diefenbach, Eve; Sairi, Fareed; Gomes, Vincent G; Cunningham, Anthony L; Dehghani, Fariba

    2016-02-01

    A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections. PMID:26643336

  5. Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy

    PubMed Central

    Talaei Zanjani, Negar; Miranda-Saksena, Monica; Valtchev, Peter; Hueston, Linda; Diefenbach, Eve; Sairi, Fareed; Gomes, Vincent G.

    2015-01-01

    A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections. PMID:26643336

  6. Current and emerging antivirals for the treatment of cytomegalovirus (CMV) retinitis: an update on recent patents.

    PubMed

    Vadlapudi, Aswani D; Vadlapatla, Ramya K; Mitra, Ashim K

    2012-04-01

    Cytomegalovirus (CMV) retinitis is the most common ocular opportunistic complication and a serious cause of vision loss in immunocompromised patients. Even though, a rise in human immunodeficiency virus (HIV) infected individuals seems to be a major factor responsible for the prevalence of CMV retinitis, the introduction of highly active antiretroviral therapy (HAART) significantly reduced the incidence and severity of CMV retinitis. Thorough evaluation of the patient's immune status and an exact classification of the retinal lesions may provide better understanding of the disease etiology, which would be necessary for optimizing the treatment conditions. Current drugs such as ganciclovir, valganciclovir, cidofovir and foscarnet have been highly active against CMV, but prolonged therapy with these approved drugs is associated with dose-limiting toxicities thus limiting their utility. Moreover development of drug-resistant mutants has been observed particularly in patients with acquired immunodeficiency syndrome (AIDS). Continuous efforts by researchers in the industry and academia have led to the development of newer candidates with enhanced antiviral efficacy and apparently minimal side effects. These novel compounds can suppress viral replication and prevent reactivation in the target population. Though some of the novel therapeutics possess potent viral inhibitory activity, these compounds are still in stages of clinical development and yet to be approved. This review provides an overview of disease etiology, existing anti-CMV drugs, advances in emerging therapeutics in clinical development and related recent patents for the treatment of CMV retinitis. PMID:22044356

  7. Henipavirus pathogenesis and antiviral approaches.

    PubMed

    Mathieu, Cyrille; Horvat, Branka

    2015-03-01

    Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field. PMID:25634624

  8. Competitive coexistence in antiviral immunity.

    PubMed

    Arnaout, R A; Nowak, M A

    2000-06-01

    Adaptive immunity to viruses in vertebrates is mediated by two distinct but complementary branches of the immune system: the cellular response, which eliminates infected cells, and the humoral response, which eliminates infectious virus. This leads to an interesting contest, since the two responses compete, albeit indirectly, for proliferative stimuli. How can a host mount a coordinated antiviral campaign? Here we show that competition may lead to a state of "competitive coexistence" in which, counterintuitively, each branch complements the other, with clinical benefit to the host. The principle is similar to free-market economics, in which firms compete, but the consumer benefits. Experimental evidence suggests this is a useful paradigm in antiviral immunity. PMID:10816366

  9. In vitro antiviral activity of germacrone against porcine parvovirus.

    PubMed

    Chen, Ye; Dong, Yunxia; Jiao, Yiren; Hou, Lianjie; Shi, Yuzhen; Gu, Ting; Zhou, Pei; Shi, Zhongyuan; Xu, Lulu; Wang, Chong

    2015-06-01

    Porcine parvovirus (PPV) infections can lead to significant losses to the swine industry by causing reproductive failure in pigs. Germacrone has been reported to efficiently suppress the replication of influenza virus. In this report, the antiviral activity of germacrone on PPV in swine testis (ST) cells was investigated. Here, we show for the first time that germacrone protects cells from PPV infection and suppresses the synthesis of viral mRNA and protein. Furthermore, we show that germacrone inhibits PPV replication at an early stage in a dose-dependent manner. These findings suggest that germacrone is a potential candidate for anti-PPV therapy. PMID:25813663

  10. Design, synthesis and antiviral activity of novel quinazolinones.

    PubMed

    Wang, Ziwen; Wang, Mingxiao; Yao, Xue; Li, Yue; Tan, Juan; Wang, Lizhong; Qiao, Wentao; Geng, Yunqi; Liu, Yuxiu; Wang, Qingmin

    2012-07-01

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well as mechanistically different. Herein, a series of quinazolinones were designed and synthesized as novel HIV-1 inhibitors. The new synthetic route provides a practical method for the preparation of 5-hydroxy quinazolinones. Primary bioassay results indicated that most of the quinazolinones possess anti-HIV activity, especially for compound 11b with 77.5% inhibition rate at 10 μM emerged as a new active lead. Most of the synthesized compounds were also found to exhibit good anti-TMV activity, of which compo und 9a showed similar in vivo anti-TMV activity to commercial plant virucide Ribavirin. This work provides a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration and optimization of previously reported antiviral agents. PMID:22546200

  11. Antiviral Activity of Natural Products Extracted from Marine Organisms

    PubMed Central

    Uzair, Bushra; Mahmood, Zahra; Tabassum, Sobia

    2011-01-01

    Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and preclinical stages. Marine compounds are paving the way for a new trend in modern medicine. PMID:23678429

  12. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates

    PubMed Central

    Zalenskaya, Irina A.; Joseph, Theresa; Bavarva, Jasmin; Yousefieh, Nazita; Jackson, Suzanne S.; Fashemi, Titilayo; Yamamoto, Hidemi S.; Settlage, Robert; Fichorova, Raina N.; Doncel, Gustavo F.

    2015-01-01

    Background Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy. Methods To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7) treated with well-characterized pro-inflammatory (PIC) and non-inflammatory (NIC) compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA). Results Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes. Conclusions In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial

  13. [Acyclic analogs of ribavirin. Synthesis and antiviral activity].

    PubMed

    Tsilevich, T L; Shchaveleva, I L; Nosach, L N; Zhovnovataia, V L; Smirnov, I P

    1988-05-01

    Activity of several ribavirin analogues, viz.1-(2-hydroxyethoxymethyl)-, 1-(3-hydroxypropoxymethyl)-, 1-(4-hydroxybutoxymethyl)- and 1-(2,3-dihydroxypropyl)-1,2,4-triazole 5- and 3-carboxamides, against human adenovirus type 2 in the Hep-2 cell culture has been studied. The ether oxygen atom imitating the ribose O4' was shown to be essential for the antiviral activity. 1-(2-Hydroxyethoxymethyl)-1,2,4-triazole 3-carboxamide, a structural analogue of ribavirin in which the hydroxyl group is apparently equivalent to the ribose 5'-OH, possesses the highest activity among the compounds studied. Lengthening of the alkyl side chain reduces essentially the antiviral activity. PMID:3422011

  14. Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis

    PubMed Central

    Karayiannis, Peter

    2012-01-01

    The development and evaluation of antiviral agents through carefully designed clinical trials over the last 25 years have heralded a new dawn in the treatment of patients chronically infected with the hepatitis B and C viruses, but not so for the D virus (HBV, HCV, and HDV). The introduction of direct acting antivirals (DDAs) for the treatment of HBV carriers has permitted the long-term use of these compounds for the continuous suppression of viral replication, whilst in the case of HCV in combination with the standard of care [SOC, pegylated interferon (PegIFN), and ribavirin] sustained virological responses (SVRs) have been achieved with increasing frequency. Progress in the case of HDV has been slow and lacking in significant breakthroughs.This paper aims to summarise the current state of play in treatment approaches for chonic viral hepatitis patients and future perspectives. PMID:24278700

  15. Functionalization, cyclization and antiviral activity of A-secotriterpenoids.

    PubMed

    Grishko, Victoria V; Galaiko, Natalia V; Tolmacheva, Irina A; Kucherov, Igor I; Eremin, Vladimir F; Boreko, Eugene I; Savinova, Olga V; Slepukhin, Pavel A

    2014-08-18

    Triterpene derivatives with an α,β-alkenenitrile moiety in the five-membered ring A have been synthesized by nitrile anion cyclizations of 1-cyano-2,3-secotriterpenoids. Oxime-containing precursors, 2,3-secointermediates and five-membered ring A products of cyclizations were screened for in vitro antiviral activity against enveloped viruses - influenza A virus and human immunodeficiency virus type I (HIV-1). Lupane ketoxime and the 2,3-secolupane C-3 aldoxime which possess antiviral activities against both influenza A virus (EC50 12.9-18.2 μM) and HIV-1 (EC50 0.06 μM) were the most promising compounds. PMID:24997292

  16. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  17. Database Extraction of Metabolite Information of Drug Candidates: Analysis of 27 AstraZeneca Compounds with Human Absorption, Distribution, Metabolism, and Excretion Data.

    PubMed

    Iegre, Jessica; Hayes, Martin A; Thompson, Richard A; Weidolf, Lars; Isin, Emre M

    2016-05-01

    As part of the drug discovery and development process, it is important to understand the human metabolism of a candidate drug prior to clinical studies. Preclinical in vitro and in vivo experiments across species are conducted to build knowledge concerning human circulating metabolites in preparation for clinical studies; therefore, the quality of these experiments is critical. Within AstraZeneca, all metabolite identification (Met-ID) information is stored in a global database using ACDLabs software. In this study, the Met-ID information derived from in vitro and in vivo studies for 27 AstraZeneca drug candidates that underwent human absorption, distribution, metabolism, and excretion studies was extracted from the database. The retrospective analysis showed that 81% of human circulating metabolites were previously observed in preclinical in vitro and/or in vivo experiments. A detailed analysis was carried out to understand which human circulating metabolites were not captured in the preclinical experiments. Metabolites observed in human hepatocytes and rat plasma but not seen in circulation in humans (extraneous metabolites) were also investigated. The majority of human specific circulating metabolites derive from multistep biotransformation reactions that may not be observed in in vitro studies within the limited time frame in which cryopreserved hepatocytes are active. Factors leading to the formation of extraneous metabolites in preclinical studies seemed to be related to species differences with respect to transporter activity, secondary metabolism, and enzyme kinetics. This retrospective analysis assesses the predictive value of Met-ID experiments and improves our ability to discriminate between metabolites expected to circulate in humans and irrelevant metabolites seen in preclinical studies. PMID:26868617

  18. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... to prevent seasonal influenza . Antiviral drugs are a second line of defense to treat the flu (including seasonal flu and variant flu viruses ) if you get sick. What are the benefits of antiviral drugs? When used for treatment, antiviral ...

  19. In vitro induction of polyploidy and chromatid exchanges by culture medium extracts of natural rubbers compounded with 2-mercaptobenzothiazole as a positive control candidate for genotoxicity tests.

    PubMed

    Matsuoka, Atsuko; Isama, Kazuo; Tsuchiya, Toshie

    2005-11-01

    We tested extracts of custom-made natural rubber samples for cytotoxicity using V79 cells and for chromosome aberration (CA) induction using CHL cells in compliance with the Japanese guidelines for basic biological tests of medical materials and devices. The samples were formulated with a high level of 2-mercaptobenzothiazole (MBT) (A); a low level of MBT (B); or zinc dibutyldithiocarbamate (ZDBC) (C). In the CA test, MBT induced mainly polyploidy, including endoreduplication, and ZDBC induced structural CAs. In the cytotoxicity test, culture medium extracts of A, B, and C suppressed colony formation to 50% of the control value at 53.1%, 94.3%, and >100%, respectively. Culture medium extracts of sample A induced polyploidy and structural CAs in the absence of an exogenous metabolic activation system (S9 mix), but at lower concentrations in its presence, indicating the existence of other leachable promutagens. The extracts of sample B induced structural CAs at the highest concentration and only with S9 mix. Sample C was negative. The facts suggest that sample A may be a candidate for a positive control for genotoxicity tests. The high frequency of polyploidy induced by sample A was not predicted by MBT, suggesting the usefulness of the test for safety evaluation of medical devices. Numerical CAs induced by MBT and sample A are discussed. PMID:16088893

  20. Broad-Spectrum Antiviral Therapeutics

    PubMed Central

    Rider, Todd H.; Zook, Christina E.; Boettcher, Tara L.; Wick, Scott T.; Pancoast, Jennifer S.; Zusman, Benjamin D.

    2011-01-01

    Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered. PMID:21818340

  1. Clinical relevance of HCV antiviral drug resistance.

    PubMed

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  2. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  3. The structure-activity relationships of the antiviral chemotherapeutic activity of isatin β-thiosemicarbazone

    PubMed Central

    Bauer, D. J.; Sadler, P. W.

    1960-01-01

    As part of an investigation devoted to the development of new antiviral agents a compound of established antiviral activity has been subjected to systematic structural modification. The structure-activity data so obtained have been used in the design of new compounds, some of which are described. The compound chosen was isatin β-thiosemicarbazone, which has high activity against neurovaccinia infection in mice, and a 4-point parallel-line assay of in vivo chemotherapeutic activity has been developed, which has enabled the activity of the derivatives to be determined against isatin β-thiosemicarbazone as a standard. The overall dimensions of the isatin β-thiosemicarbazone molecule appear to be nearly maximal for the retention of high activity, as all substituents in the aromatic ring decrease the activity irrespective of their nature or position. The projection of the -CS.NH2 group in relation to the ring nitrogen was found to be critical, as the α-thiosemicarbazone was inactive. A number of modifications of the side-chain were investigated:all led to reduction or loss of antiviral activity. The antiviral activity showed a positive correlation with chloroform solubility over a considerable range. The most active compound encountered was 1-ethylisatin β-thiosemicarbazone, with an activity of 286 (isatin β-thiosemicarbazone≡100). Isatin β-thiosemicarbazone showed no activity against 15 other viruses, and 20 related compounds showed on activity against ectromelia. PMID:13797622

  4. Antiviral activity of some South American medicinal plants.

    PubMed

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication. PMID:10190189

  5. Immunoenhancing properties and antiviral activity of 7-deazaguanosine in mice.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Gilbert, J; Burger, R A; Jin, A; Sharma, B S; Ramasamy, K; Revankar, G R; Cottam, H B; Jolley, W B

    1991-01-01

    The nucleotide analog 7-deazaguanosine has not previously been reported to possess biological (antiviral or antitumor) properties in cell culture or in vivo. Up to 10(5) U of interferon per ml was detected in mouse sera 1 to 4 h following oral (200-mg/kg of body weight) and intraperitoneal (50-mg/kg) doses of the compound. 7-Deazaguanosine also caused significant activation of natural killer and phagocytic cells but did not augment T- and B-cell blastogenesis. Intraperitoneal treatments of 50, 100, and 200 mg/kg/day administered 24 and 18 h before virus inoculation were highly protective in mice inoculated with lethal doses of Semliki Forest or San Angelo viruses. Less but still significant survivor increases were evident in treated mice infected with banzi or encephalomyocarditis viruses. In most cases, the degree of antiviral activity was similar to that exhibited by the biological response modifier 7-thia-8-oxoguanosine. 7-Thia-8-oxoguanosine was more potent than 7-deazaguanosine against encephalomyocarditis virus in mice, however. Oral efficacy was achieved with 7-deazaguanosine treatments of greater than or equal to 100 mg/kg against all virus infections, whereas 7-thia-8-oxoguanosine is reported to be devoid of oral activity in rodents. Thus, 7-deazaguanosine represents the first reported orally active nucleoside biological response modifier exhibiting broad-spectrum antiviral activity against particular types of RNA viruses. PMID:1707603

  6. In vitro antiviral effect of germacrone on feline calicivirus.

    PubMed

    Wu, Hongxia; Liu, Yongxiang; Zu, Shaopo; Sun, Xue; Liu, Chunguo; Liu, Dafei; Zhang, Xiaozhan; Tian, Jin; Qu, Liandong

    2016-06-01

    Feline calicivirus (FCV) often causes respiratory tract and oral disease in cats and is a highly contagious virus. Widespread vaccination does not prevent the spread of FCV. Furthermore, the low fidelity of the RNA-dependent RNA polymerase of FCV leads to the emergence of new variants, some of which show increased virulence. Currently, few effective anti-FCV drugs are available. Here, we found that germacrone, one of the main constituents of volatile oil from rhizoma curcuma, was able to effectively reduce the growth of FCV strain F9 in vitro. This compound exhibited a strong anti-FCV effect mainly in the early phase of the viral life cycle. The antiviral effect depended on the concentration of the drug. In addition, germacrone treatment had a significant inhibitory effect against two other reference strains, 2280 and Bolin, and resulted in a significant reduction in the replication of strains WZ-1 and HRB-SS, which were recently isolated in China. This is the first report of antiviral effects of germacrone against a calicivirus, and extensive in vivo research is needed to evaluate this drug as an antiviral therapeutic agent for FCV. PMID:26997613

  7. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals

    PubMed Central

    Gollnest, Tristan; de Oliveira, Thiago Dinis; Schols, Dominique; Balzarini, Jan; Meier, Chris

    2015-01-01

    The antiviral activity of nucleoside reverse transcriptase inhibitors is often limited by ineffective phosphorylation. We report on a nucleoside triphosphate (NTP) prodrug approach in which the γ-phosphate of NTPs is bioreversibly modified. A series of TriPPPro-compounds bearing two lipophilic masking units at the γ-phosphate and d4T as a nucleoside analogue are synthesized. Successful delivery of d4TTP is demonstrated in human CD4+ T-lymphocyte cell extracts by an enzyme-triggered mechanism with high selectivity. In antiviral assays, the compounds are potent inhibitors of HIV-1 and HIV-2 in CD4+ T-cell (CEM) cultures. Highly lipophilic acyl residues lead to higher membrane permeability that results in intracellular delivery of phosphorylated metabolites in thymidine kinase-deficient CEM/TK− cells with higher antiviral activity than the parent nucleoside. PMID:26503889

  8. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    PubMed Central

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M.; Weaver, Scott C.; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  9. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    PubMed

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  10. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  11. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    PubMed

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development. PMID:26856827

  12. Virus assembly, allostery, and antivirals

    PubMed Central

    Zlotnick, Adam; Mukhopadhyay, Suchetana

    2010-01-01

    Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. Here we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is, regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus. PMID:21163649

  13. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  14. Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a

    PubMed Central

    Song, JaeHyoung; Yeo, Sang-Gu; Hong, Eun-Hye; Lee, Bo-Ra; Kim, Jin-Won; Kim, JeongHoon; Jeong, HyeonGun; Kwon, YongSoo; Kim, HyunPyo; Lee, SangWon; Park, Jae-Hak; Ko, Hyun-Jeong

    2014-01-01

    Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71. PMID:24596620

  15. Antiviral Activity of Hederasaponin B from Hedera helix against Enterovirus 71 Subgenotypes C3 and C4a.

    PubMed

    Song, Jaehyoung; Yeo, Sang-Gu; Hong, Eun-Hye; Lee, Bo-Ra; Kim, Jin-Won; Kim, Jeonghoon; Jeong, Hyeongun; Kwon, Yongsoo; Kim, Hyunpyo; Lee, Sangwon; Park, Jae-Hak; Ko, Hyun-Jeong

    2014-01-01

    Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71. PMID:24596620

  16. Antiviral effect of ranpirnase against Ebola virus.

    PubMed

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. PMID:27350309

  17. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells

    PubMed Central

    2011-01-01

    Hepatitis C virus (HCV) belonging to the family Flaviviridae has infected 3% of the population worldwide and 6% of the population in Pakistan. The only recommended standard treatment is pegylated INF-α plus ribavirin. Due to less compatibility of the standard treatment, thirteen medicinal plants were collected from different areas of Pakistan on the basis of undocumented antiviral reports against different viral infections. Medicinal plants were air dried, extracted and screened out against HCV by infecting HCV inoculums of 3a genotype in liver cells. RT-PCR results demonstrate that acetonic and methanolic extract of Acacia nilotica (AN) showed more than 50% reduction at non toxic concentration. From the above results, it can be concluded that by selecting different molecular targets, specific structure-activity relationship can be achieved by doing mechanistic analysis. So, additional studies are required for the isolation and recognition of antiviral compound in AN to establish its importance as antiviral drug against HCV. For further research, we will scrutinize the synergistic effect of active antiviral compound in combination with standard PEG INF-α and ribavirin which may be helpful in exploring further gateways for antiviral therapy against HCV. PMID:21569385

  18. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones.

    PubMed

    Cihan-Üstündağ, Gökçe; Gürsoy, Elif; Naesens, Lieve; Ulusoy-Güzeldemirci, Nuray; Çapan, Gültaze

    2016-01-15

    A novel series of indolylthiosemicarbazides (6a-6g) and their cyclization products, 4-thiazolidinones (7a-7g), have been designed, synthesized and evaluated, in vitro, for their antiviral activity against a wide range of DNA and RNA viruses. Compounds 6a, 6b, 6c and 6d exhibited notable antiviral activity against Coxsackie B4 virus, at EC50 values ranging from 0.4 to 2.1 μg/mL. The selectivity index (ratio of cytotoxic to antivirally effective concentration) values of these compounds were between 9 and 56. Besides, 6b, 6c and 6d also inhibited the replication of two other RNA viruses, Sindbis virus and respiratory syncytial virus, although these EC50 values were higher compared to those noted for Coxsackie B4 virus. The SAR analysis indicated that keeping the free thiosemicarbazide moiety is crucial to obtain this antiviral activity, since the cyclization products (7a-7g) did not produce any antiviral effect. PMID:26707844

  19. A new antiviral screening method that simultaneously detects viral replication, cell viability, and cell toxicity.

    PubMed

    Matza-Porges, Sigal; Eisen, Kobi; Ibrahim, Hadeel; Haberman, Adva; Fridlender, Bertold; Joseph, Gili

    2014-11-01

    Viruses cause a variety of illnesses in humans, yet only a few antiviral drugs have been developed; thus, new antiviral drugs are urgently needed. Plants could be a good source of antiviral drugs, they do not have mobility and can only defend themselves by producing compounds against pathogens such as viruses in their own fix environment. These compounds may have the potential to inhibit animal and human viruses as well. In this study, a fast and reliable method for screening plant extracts for specific antiviral activity against Herpes simplex virus type-1 (HSV-1) was developed. This method distinguishes between host cell death due to infectivity and multiplicity of the virus versus toxicity of the plant extract. Extracts from 80 plant and plant organs were screened using this approach. Six plant extracts showed potential to exert specific HSV-1 growth inhibition activity. In two cases, different organs from the same plant showed similar active results. With this method it is possible to screen a large number of extracts in a rapid and accurate way to detect antiviral substances against HSV-I and other viruses. PMID:25152527

  20. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    PubMed Central

    Faral-Tello, Paula; Mirazo, Santiago; Dutra, Carmelo; Pérez, Andrés; Geis-Asteggiante, Lucía; Frabasile, Sandra; Koncke, Elina; Davyt, Danilo; Cavallaro, Lucía; Heinzen, Horacio; Arbiza, Juan

    2012-01-01

    Herpes simplex virus type 1 (HSV-1) infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50) values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI) obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1. PMID:22619617

  1. Marine Snails and Slugs: a Great Place To Look for Antiviral Drugs

    PubMed Central

    Dang, Vinh T.; Benkendorff, Kirsten; Green, Tim

    2015-01-01

    Molluscs, comprising one of the most successful phyla, lack clear evidence of adaptive immunity and yet thrive in the oceans, which are rich in viruses. There are thought to be nearly 120,000 species of Mollusca, most living in marine habitats. Despite the extraordinary abundance of viruses in oceans, molluscs often have very long life spans (10 to 100 years). Thus, their innate immunity must be highly effective at countering viral infections. Antiviral compounds are a crucial component of molluscan defenses against viruses and have diverse mechanisms of action against a wide variety of viruses, including many that are human pathogens. Antiviral compounds found in abalone, oyster, mussels, and other cultured molluscs are available in large supply, providing good opportunities for future research and development. However, most members of the phylum Mollusca have not been examined for the presence of antiviral compounds. The enormous diversity and adaptations of molluscs imply a potential source of novel antiviral compounds for future drug discovery. PMID:26063420

  2. Generation of recombinant rabies viruses encoding NanoLuc luciferase for antiviral activity assays.

    PubMed

    Anindita, Paulina Duhita; Sasaki, Michihito; Nobori, Haruaki; Sato, Akihiko; Carr, Michael; Ito, Naoto; Sugiyama, Makoto; Orba, Yasuko; Sawa, Hirofumi

    2016-04-01

    Rabies is an invariably fatal disease caused by Rabies virus (RABV), a member of the family Rhabdoviridae, genus Lyssavirus. Once central nervous infection occurs and symptoms develop, the case fatality rate approaches 100% despite availability of post-exposure prophylaxis. Therefore, new antiviral therapies for rabies are urgently required. Antivirals which can inhibit virus replication can be identified through screening of small compounds, however, as RABV infection does not generate easily discernible cytopathic effects in vitro, cell viability assays may not be feasible to observe antiviral activity of small compounds against RABV. In this study, recombinant RABVs (rRABVs) encoding NanoLuc luciferase (NanoLuc) were generated to facilitate the screening of small compound libraries. NanoLuc expression was confirmed in single-step growth cures of virus infection and showed that the rRABVs were capable of viral replication without decrease of luciferase activity through ten serial passages. Furthermore, the rRABVs were able to quantify the antiviral activity of the nucleoside analogue ribavirin against RABV in vitro. These findings confirm the potential of the rRABV encoding NanoLuc system to facilitate screening of small compounds to inhibit RABV infection. PMID:26869397

  3. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  4. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    PubMed Central

    2009-01-01

    Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds) directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50), cytotoxicity (CC50) and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies. PMID:19889218

  5. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  6. Pharmacokinetics of antiviral polyoxometalates in rats.

    PubMed Central

    Ni, L; Boudinot, F D; Boudinot, S G; Henson, G W; Bossard, G E; Martellucci, S A; Ash, P W; Fricker, S P; Darkes, M C; Theobald, B R

    1994-01-01

    Polyoxometalates are soluble mineral compounds formed principally of oxide anions and early transition metal cations. The polyoxometalates K12H2[P2W12O48].24H2O (JM 1591), K10[P2W18Zn4(H2O)2O68].20H2O (JM 1596), and [(CH3)3NH]8[Si2W18Nb6O77] (JM 2820) demonstrate potent antiviral activity against human immunodeficiency virus types 1 and 2, herpes simplex virus, and cytomegalovirus in vitro. The preclinical pharmacokinetics of these three compounds were characterized after single-dose intravenous administration of 50 mg/kg to rats. Plasma, urine, and feces were collected for 168 h, and polyoxometalate concentrations were determined by atomic emission. Serum protein binding was measured by equilibrium dialysis. All three compounds were highly bound to serum proteins in a concentration-dependent manner. Total and unbound concentrations of the three compounds in plasma declined in a triexponential manner with terminal half-lives of 246.0 +/- 127.0, 438.4 +/- 129.4, and 32.2 +/- 5.37 h (mean +/- standard deviation) for JM 1591, JM 1596, and JM 2820, respectively. Systemic clearances based on total concentrations in plasma were low, averaging 0.016 +/- 0.002, 0.015 +/- 0.002, and 0.018 +/- 0.003 liter/h/kg for JM 1591, JM 1596, and JM 2820, respectively. The clearances of unbound compounds from plasma averaged 0.966 +/- 0.136, 0.050 +/- 0.005, and 0.901 +/- 0.165 liter/h/kg for JM 1591, JM 1596, and JM 2820, respectively. For JM 1596, the clearance of unbound compound from the kidneys was lower than the glomerular filtration rate (0.086 liter/h/kg), suggesting this polyoxometalate underwent renal tubular reabsorption. However, JM 1591 and JM 2820 appeared to undergo tubular secretion. The fraction of the dose recovered in urine was 11.5, 46.8, and 10.6% for JM 1591, JM 1596, and JM 2820, respectively. Approximately 5% of the dose of each polyoxometalate was recovered in feces. The steady-state volume of distribution based on total concentrations averaged 1.44 liters

  7. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    PubMed Central

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can

  8. Antiviral activity of Solanum paniculatum extract and constituents.

    PubMed

    Valadares, Ydia M; Brandão'a, Geraldo C; Kroon, Erna G; Filho, José D Souza; Oliveira, Alaņņde B; Braga, Fernão C

    2009-01-01

    Solanum species are traditionally employed as antiherpes and anticancer agents in different countries. S. paniculatum has widespread ethnomedical uses in Brazil, including the treatment of viral infections. This paper reports on the isolation of neotigogenin (1) and the new compound delta25(27)-tigogenin-3-O-beta-D-glucopyranoside (2), obtained as a mixture of R and S diastereoisomers at C22 from an ethanol extract of S. paniculatum leaves, along with the determination of their cytotoxicity against Vero cells and antiviral effect against human herpes virus type 1 (HHV-1), murine encephalomyocarditis virus (EMCv), and vaccinia virus strain Western Reserve (VACV-WR). The extract of S. paniculatum inhibited HHV-1 replication [EC50 = (298.0 +/- 11.2) microg/ml] and showed no effect on EMCv and VACV-WR. On its turn, 1 was inactive against the assayed strains but presented high cytotoxicity [CC50 = (2.03 +/- 0.03) microg/ml], whereas 2 exhibited significant antiherpes [EC50 = (170.8 +/- 1.7) microg/ml] and antivaccinia virus effects [EC50 = (177.0 +/- 3.3) microg/ml], with low cytotoxicity (CC50 > 400 microg/ml). The results corroborate Solanum paniculatum as a source of cytotoxic and antiviral compounds. PMID:20158151

  9. BEI Resources: Supporting antiviral research

    PubMed Central

    Baker, Robert; Peacock, Susan

    2008-01-01

    The Biodefense and Emerging Infections Research Resources Repository (BEI Resources) provides unique, quality-assured reagents to the scientific community for use in basic research and product development involving biodefense and emerging infectious diseases. These include microorganisms (up to Biosafety Level-3) on the National Institute of Allergy and Infectious Diseases (NIAID) and Centers for Disease Control and Prevention (CDC) lists of Category A, B and C priority pathogens. In addition to live microorganisms, related products such as polyclonal antisera, monoclonal antibodies, isolated nucleic acid preparations, overlapping peptide arrays, purified proteins, and assay kits are also available. Many of these materials have direct or indirect applications in antiviral research. These reagents are available free of charge to all registered investigators, regardless of funding source or affiliation. Acquisition of new reagents for the repository is one of the critically necessary and challenging tasks for BEI Resources. Therefore, investigators are encouraged to deposit relevant items, so as to provide access to materials, relief from the burden of distribution, protection of intellectual property rights, and secure storage. In addition, BEI Resources has the capability of contracting for the preparation of specific reagents. If there is a resource needed to advance a specific research area, contact an NIAID program officer or use the “suggest a reagent” option on the BEI Resources homepage, www.beiresources.org. PMID:18675849

  10. Helicases as Antiviral Drug Targets

    PubMed Central

    Frick, David N.

    2012-01-01

    Summary Helicases catalytically unwind duplex DNA or RNA using energy derived from the hydrolysis of nucleoside triphosphates and are attractive drug targets because they are required for viral replication. This review discusses methods for helicase identification, classification and analysis, and presents an overview of helicases that are necessary for the replication of human pathogenic viruses. Newly developed methods to analyze helicases, coupled with recently determined atomic structures, have led to a better understanding of their mechanisms of action. The majority of this research has concentrated on enzymes encoded by the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Helicase inhibitors that target the HSV helicase–primase complex comprised of the UL5, UL8 and UL52 proteins have recently been shown to effectively control HSV infection in animal models. In addition, several groups have reported structures of the HCV NS3 helicase at atomic resolutions, and mechanistic studies have uncovered characteristics that distinguish the HCV helicase from related cellular proteins. These new developments should eventually lead to new antiviral medications. PMID:12973446

  11. Antiviral activities of whey proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Wang, Yan; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Xia, Jiang

    2015-09-01

    Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe(3+)-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity. PMID:26198883

  12. Synthesis and Antiviral Activity of Novel Phosphorylated Derivatives of Didanosine Against Newcastle Disease Virus in Chicken.

    PubMed

    Suresh, Karanam Anandan; Kadiam, Venkata Subbaiah C; Basha, Thaslim S K; Chamarti, Naga Raju; Kumar, Suresh M; Wudayagiri, Rajendra; Valluru, Lokanatha

    2016-06-01

    A series of novel phosphorylated derivatives of didanosine were designed and docking studies were performed with a fusion protein of the Newcastle disease virus (NDV), to develop antiviral compounds against NDV. Based on the docking scores and binding affinities, three derivatives were selected. These compounds were synthesized and characterized by IR, (1) H, (13) C, (31) P, and CHN analysis and mass spectra. They were assessed for their in vitro antiviral activity in DF-1 cells; DDI-10 showed better antiviral activity as evidenced by significant reduction in plaque formation and cytopathic effects. DDI-10 was further evaluated in NDV-infected chicken; the survival rates and antioxidant enzyme levels in brain, liver, and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised, and lipid peroxidation and HA titer levels were decreased upon treatment with 1.5 mg/kg body weight of DDI-10 than with 3 mg/kg body weight of DDI. Further histopathological alterations in NDV-infected tissues were restored in chicken treated with DDI-10. Thus, based on the results from in silico, in vitro, and in vivo assays, the novel phosphorylated DDI-10 might be considered as potent antiviral compound for NDV infection in chicken. PMID:27128998

  13. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus

    PubMed Central

    Carvalho, Otávio V.; Saraiva, Giuliana L.; Ferreira, Caroline G.T.; Felix, Daniele M.; Fietto, Juliana L.R.; Bressan, Gustavo C.; Almeida, Márcia R.; Silva Júnior, Abelardo

    2014-01-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection. PMID:25355997

  14. Characterization of an Antiviral Compound Effective Against Several Pestiviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pestivirus genus of the Flaviviridae family consists of four separate species: bovine viral diarrhea virus (BVDV) type 1 and type 2, classical swine fever virus, and border disease virus (BDV). Classification of several other viral isolates as pestiviruses has been proposed due to their genetic ...

  15. Synthesis and Metabolic Studies of Host-Directed Inhibitors for Antiviral Therapy

    PubMed Central

    2013-01-01

    Targeting host cell factors required for virus replication provides an alternative to targeting pathogen components and represents a promising approach to develop broad-spectrum antiviral therapeutics. High-throughput screening (HTS) identified two classes of inhibitors (2 and 3) with broad-spectrum antiviral activity against ortho- and paramyxoviruses including influenza A virus (IAV), measles virus (MeV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Hit-to-lead optimization delivered inhibitor 28a, with EC50 values of 0.88 and 0.81 μM against IAV strain WSN and MeV strain Edmonston, respectively. It was also found that compound 28a delivers good stability in human liver S9 fractions with a half-life of 165 min. These data establish 28a as a promising lead for antiviral therapy through a host-directed mechanism. PMID:23956816

  16. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses

    PubMed Central

    Ma, Lin-Lin; Ge, Miao; Wang, Hui-Qiang; Yin, Jin-Qiu; Jiang, Jian-Dong; Li, Yu-Huan

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs. PMID:26557857

  17. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  18. Advances in antiviral vaccine development.

    PubMed

    Graham, Barney S

    2013-09-01

    Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high-throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  19. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance. PMID:16086663

  20. Antiviral activities of heated dolomite powder.

    PubMed

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO. PMID:19127652

  1. Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread.

    PubMed

    Cheshenko, Natalia; Keller, Marla J; MasCasullo, Veronica; Jarvis, Gary A; Cheng, Hui; John, Minnie; Li, Jin-Hua; Hogarty, Kathleen; Anderson, Robert A; Waller, Donald P; Zaneveld, Lourens J D; Profy, Albert T; Klotman, Mary E; Herold, Betsy C

    2004-06-01

    Topical microbicides designed to prevent acquisition of sexually transmitted infections are urgently needed. Nonoxynol-9, the only commercially available spermicide, damages epithelium and may enhance human immunodeficiency virus transmission. The observation that herpes simplex virus (HSV) and human immunodeficiency virus bind heparan sulfate provided the rationale for the development of sulfated or sulfonated polymers as topical agents. Although several of the polymers have advanced to clinical trials, the spectrum and mechanism of anti-HSV activity and the effects on soluble mediators of inflammation have not been evaluated. The present studies address these gaps. The results indicate that PRO 2000, polystyrene sulfonate, cellulose sulfate, and polymethylenehydroquinone sulfonate inhibit HSV infection 10,000-fold and are active against clinical isolates, including an acyclovir-resistant variant. The compounds formed stable complexes with glycoprotein B and inhibit viral binding, entry, and cell-to-cell spread. The effects may be long lasting due to the high affinity and stability of the sulfated compound-virus complex, as evidenced by surface plasmon resonance studies. The candidate microbicides retained their antiviral activities in the presence of cervical secretions and over a broad pH range. There was little reduction in cell viability following repeated exposure of human endocervical cells to these compounds, although a reduction in secretory leukocyte protease inhibitor levels was observed. These studies support further development and rigorous evaluation of these candidate microbicides. PMID:15155195

  2. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study.

    PubMed

    Roux, Loïc; Priet, Stéphane; Payrot, Nadine; Weck, Clément; Fournier, Maëlenn; Zoulim, Fabien; Balzarini, Jan; Canard, Bruno; Alvarez, Karine

    2013-05-01

    9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12. PMID:23603046

  3. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2010-05-01

    Essential oils are complex natural mixtures, their main constituents, e.g. terpenes and phenylpropanoids, being responsible for their biological properties. Essential oils from eucalyptus, tea tree and thyme and their major monoterpene compounds alpha-terpinene, gamma-terpinene, alpha-pinene, p-cymene, terpinen-4-ol, alpha-terpineol, thymol, citral and 1,8-cineole were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. These essential oils were able to reduce viral infectivity by >96%, the monoterpenes inhibited HSV by about >80%. The mode of antiviral action has been determined, only moderate antiviral effects were revealed by essential oils and monoterpenes when these drugs were added to host cells prior to infection or after entry of HSV into cells. However, both essential oils and monoterpenes exhibited high anti-HSV-1 activity by direct inactivation of free virus particles. All tested drugs interacted in a dose-dependent manner with herpesvirus particles thereby inactivating viral infection. Among the analysed compounds, monoterpene hydrocarbons were slightly superior to monoterpene alcohols in their antiviral activity, alpha-pinene and alpha-terpineol revealed the highest selectivity index. However, mixtures of different monoterpenes present in natural tea tree essential oil revealed a ten-fold higher selectivity index and a lower toxicity than its isolated single monoterpenes. PMID:19653195

  4. Curious discoveries in antiviral drug development: the role of serendipity.

    PubMed

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses. PMID:25726922

  5. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies

    PubMed Central

    Aguilar, Hector C.; Lee, Benhur

    2011-01-01

    In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah virus (henipavirus (HNV)) zoonoses were first identified in 1994 or 1998, causing deaths in animals and humans in Australia or Malaysia, respectively. Other paramyxoviruses, such as menangle virus, tioman virus, human metapneumovirus, and avian paramyxovirus-1, with less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognized as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has increased our attention to this family. Antiviral drugs can be designed to target specific important determinants of the viral/cell life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly, and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with a concentration on viral entry and exit mechanisms. PMID:21345285

  6. Current Landscape of Antiviral Drug Discovery

    PubMed Central

    Blair, Wade; Cox, Christopher

    2016-01-01

    Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV) and influenza (flu). Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections. PMID:26962437

  7. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  8. Anti-AIDS Agents 78 †. Design, Synthesis, Metabolic Stability Assessment, and Antiviral Evaluation of Novel Betulinic Acid Derivatives as Potent Anti-Human Immunodeficiency Virus (HIV) Agents

    PubMed Central

    Qian, Keduo; Yu, Donglei; Chen, Chin-Ho; Huang, Li; Morris-Natschke, Susan L.; Nitz, Theodore J.; Salzwedel, Karl; Reddick, Mary; Allaway, Graham P.; Lee, Kuo-Hsiung

    2009-01-01

    In a continuing study of potent anti-HIV agents, seventeen 28,30-disubstituted betulinic acid (BA, 1) derivatives, as well as seven novel 3,28-disubstituted BA analogs were designed, synthesized, and evaluated for in vitro antiviral activity. Among them, compound 21 showed an improved solubility and equal anti-HIV potency (EC50: 0.09 μM), when compared to HIV entry inhibitors 3b (IC9564) and 4 (A43-D). Using a cyclic secondary amine to form the C-28 amide bond increased the metabolic stability of the derivatives significantly in pooled human liver microsomes. The most potent compounds 47 and 48 displayed potent anti-HIV activity with EC50 values of 0.007 μM and 0.006 μM, respectively. These results are slightly better than that of bevirimat (2), which is currently in Phase IIb clinical trials. Compounds 47 and 48 should serve as attractive promising leads to develop next generation, metabolically stable, 3,28-disubstituted bifunctional HIV-1 inhibitors as clinical trials candidates. PMID:19388685

  9. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    PubMed

    Orlowski, Piotr; Tomaszewska, Emilia; Gniadek, Marianna; Baska, Piotr; Nowakowska, Julita; Sokolowska, Justyna; Nowak, Zuzanna; Donten, Mikolaj; Celichowski, Grzegorz; Grobelny, Jaroslaw; Krzyzowska, Malgorzata

    2014-01-01

    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections. PMID:25117537

  10. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    PubMed Central

    van der Lee, Robin; ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G.; Andeweg, Arno C.; van Kuppeveld, Frank J. M.; Huynen, Martijn A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known RLR pathway components that collectively predict novel members. We demonstrate that RLR pathway genes, among others, tend to evolve rapidly, interact with viral proteins, contain a limited set of protein domains, are regulated by specific transcription factors, and form a tightly connected interaction network. Using a Bayesian approach to integrate these signatures, we propose likely novel RLR regulators. RNAi knockdown experiments revealed a high prediction accuracy, identifying 94 genes among 187 candidates tested (~50%) that affected viral RNA-induced production of IFNβ. The discovered antiviral regulators may participate in a wide range of processes that highlight the complexity of antiviral defense (e.g. MAP3K11, CDK11B, PSMA3, TRIM14, HSPA9B, CDC37, NUP98, G3BP1), and include uncharacterized factors (DDX17, C6orf58, C16orf57, PKN2, SNW1). Our validated RLR pathway list (http://rlr.cmbi.umcn.nl/), obtained using a combination of integrative genomics and experiments, is a new resource for innate antiviral immunity research. PMID:26485378

  11. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  12. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    MedlinePlus

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  13. Assay development and high throughput antiviral drug screening against Bluetongue virus

    PubMed Central

    Li, Qianjun; Maddox, Clinton; Rasmussen, Lynn; Hobrath, Judith V.; White, Lucile E.

    2009-01-01

    Bluetongue virus (BTV) infection is one of the most important diseases of domestic livestock. There are no antivirals available against BTV disease. In this paper, we present the development, optimization and validation of an in vitro cell-based high-throughput screening (HTS) assay using the luminescent-based CellTiter-Glo reagent to identify novel antivirals against BTV. Conditions of the cytopathic effect (CPE)-based assay were optimized at cell density of 5 000 cells/well in medium containing 1% FBS and a multiplicity of infection at 0.01 in 384-well plate, with Z'-values ≥ 0.70, Coefficient of Variations ≥ 5.68 and signal-to-background ratio ≥ 7.10. This assay was further validated using a 9 532 compound library. The fully validated assay was then used to screen the 194 950 compound collection, which identified 693 compounds with > 30% CPE inhibition. The ten-concentration dose response assay identified 185 structures with IC50 ≤ 100 μM, out of which 42 compounds were grouped into six analog series corresponding to six scaffolds enriched within the active set compared to their distribution in the library. The CPE-based assay development demonstrated its robustness and reliability, and its application in the HTS campaign will make significant contribution to the antiviral drug discovery against BTV disease. PMID:19559054

  14. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    PubMed Central

    Padilla, Marina Aiello; Rodrigues, Rodney Alexandre Ferreira; Bastos, Juliana Cristina Santiago; Martini, Matheus Cavalheiro; Barnabé, Ana Caroline de Souza; Kohn, Luciana Konecny; Uetanabaro, Ana Paula Trovatti; Bomfim, Getúlio Freitas; Afonso, Rafael Sanches; Fantinatti-Garboggini, Fabiana; Arns, Clarice Weis

    2015-01-01

    Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV). Two bacterial strains were identified as active, with percentages of inhibition (IP) equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s) responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s) that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection. PMID:26579205

  15. Syntheses of Isoxazoline-Carbocyclic Nucleosides and Their Antiviral Evaluation: A Standard Protocol

    PubMed Central

    Quadrelli, Paolo; Vazquez Martinez, Naiara; Scrocchi, Roberto; Corsaro, Antonino; Pistarà, Venerando

    2014-01-01

    The current synthesis of racemic purine and pyrimidine isoxazoline-carbocyclic nucleosides is reported, detailing the key-steps for standard and reliable preparations. Improved yields were obtained by the proper tuning of the single synthetic steps, opening the way for the preparation of a variety of novel compounds. Some of the obtained compounds were also evaluated against a wide variety of DNA and RNA viruses including HIV. No specific antiviral activity was observed in the cases at hand. Novel compounds were prepared for future biological tests. PMID:25544956

  16. Development of anti-viral agents using molecular modeling and virtual screening techniques.

    PubMed

    Kirchmair, Johannes; Distinto, Simona; Liedl, Klaus Roman; Markt, Patrick; Rollinger, Judith Maria; Schuster, Daniela; Spitzer, Gudrun Maria; Wolber, Gerhard

    2011-02-01

    Computational chemistry has always played a key role in anti-viral drug development. The challenges and the quickly rising public interest when a virus is becoming a threat has significantly influenced computational drug discovery. The most obvious example is anti-AIDS research, where HIV protease and reverse transcriptase have triggered enormous efforts in developing and improving computational methods. Methods applied to anti-viral research include (i) ligand-based approaches that rely on known active compounds to extrapolate biological activity, such as machine learning techniques or classical QSAR, (ii) structure-based methods that rely on an experimentally determined 3D structure of the targets, such as molecular docking or molecular dynamics, and (iii) universal approaches that can be applied in a structure- or ligand-based way, such as 3D QSAR or 3D pharmacophore elucidation. In this review we summarize these molecular modeling approaches as they were applied to fight anti-viral diseases and highlight their importance for anti-viral research. We discuss the role of computational chemistry in the development of small molecules as agents against HIV integrase, HIV-1 protease, HIV-1 reverse transcriptase, the influenza virus M2 channel protein, influenza virus neuraminidase, the SARS coronavirus main proteinase and spike protein, thymidine kinases of herpes viruses, hepatitis c virus proteins and other flaviviruses as well as human rhinovirus coat protein and proteases, and other picornaviridae. We highlight how computational approaches have helped in discovering anti-viral activities of natural products and give an overview on polypharmacology approaches that help to optimize drugs against several viruses or help to optimize the metabolic profile of and anti-viral drug. PMID:21303343

  17. Interferon induced IFIT family genes in host antiviral defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  18. Anti-viral Responses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the study of anti-viral responses in insects has lagged behind studies of responses to other types of pathogens, progress has begun to rapidly accelerate over the past few years. Insects are subject to infection by many different kinds of DNA and RNA viruses. These include viruses that ar...

  19. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  20. Antiviral therapy: current concepts and practices.

    PubMed Central

    Bean, B

    1992-01-01

    Drugs capable of inhibiting viruses in vitro were described in the 1950s, but real progress was not made until the 1970s, when agents capable of inhibiting virus-specific enzymes were first identified. The last decade has seen rapid progress in both our understanding of antiviral therapy and the number of antiviral agents on the market. Amantadine and ribavirin are available for treatment of viral respiratory infections. Vidarabine, acyclovir, ganciclovir, and foscarnet are used for systemic treatment of herpesvirus infections, while ophthalmic preparations of idoxuridine, trifluorothymidine, and vidarabine are available for herpes keratitis. For treatment of human immunodeficiency virus infections, zidovudine and didanosine are used. Immunomodulators, such as interferons and colony-stimulating factors, and immunoglobulins are being used increasingly for viral illnesses. While resistance to antiviral drugs has been seen, especially among AIDS patients, it has not become widespread and is being intensely studied. Increasingly, combinations of agents are being used: to achieve synergistic inhibition of viruses, to delay or prevent resistance, and to decrease dosages of toxic drugs. New approaches, such as liposomes carrying antiviral drugs and computer-aided drug design, are exciting and promising prospects for the future. PMID:1576586

  1. Total Synthesis of the Antiviral Natural Product Houttuynoid B.

    PubMed

    Kerl, Thomas; Berger, Florian; Schmalz, Hans-Günther

    2016-02-24

    The first total synthesis of houttuynoid B, a powerful antiviral flavonoid glycoside from the Chinese plant Houttuynia cordata, is described. In a key step, a Baker-Venkataraman rearrangement employing an already glycosylated substrate was used to efficiently set up the fully functionalized carbon skeleton. The required benzofuran building block was prepared through a domino Sonogashira coupling/5-endo-dig cyclization and converted into a stable 1-hydroxybenzotriazole-derived active ester prior to linking with a galactosylated hydroxyacetophenone unit. The elaborated synthesis requires only nine steps (11 % overall yield) along the longest linear sequence and paves the way for the preparation of structurally related compounds for further biological evaluation. PMID:26748612

  2. Delivery of suramin as an antiviral agent through liposomal systems.

    PubMed

    Mastrangelo, Eloise; Mazzitelli, Stefania; Fabbri, Jacopo; Rohayem, Jacques; Ruokolainen, Janne; Nykänen, Antti; Milani, Mario; Pezzullo, Margherita; Nastruzzi, Claudio; Bolognesi, Martino

    2014-05-01

    Norovirus RNA-dependent RNA polymerase (RdRp) is a promising target enzyme for the development of new antiviral drugs. Starting from the crystal structure of norovirus RdRp, we had previously performed an in silico docking search using a library of low-molecular-weight compounds that enabled us to select molecules with predicted enzyme inhibitory activity. Among these, the polysulfonated naphthylurea suramin proved to inhibit in vitro both murine and human norovirus polymerases, with IC50 values in the low micromolar range. The negatively charged inhibitor, however, displayed poor cell permeability in cell-based experiments. Therefore, we produced different suramin-loaded liposome formulations and evaluated their activities in cell-based assays using murine norovirus cultivated in RAW 264.7 macrophages, as a model for norovirus genus. The results obtained show that suramin, when delivered through liposomes, can effectively inhibit murine norovirus replication. PMID:24616282

  3. Transcriptional analysis of antiviral small molecule therapeutics as agonists of the RLR pathway

    PubMed Central

    Green, R.R.; Wilkins, C.; Pattabhi, S.; Dong, R.; Loo, Y.; Gale, M.

    2016-01-01

    The recognition of pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRR) during viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon Regulator Factor 3 (IRF3). We identified small molecule compounds that activate IRF3 through MAVS, thereby inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus), Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus) and Paramyxoviridae (respiratory syncytial virus, Nipah virus) (1). In this study, we tested a lead compound along with medicinal chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the induction of specific antiviral genes and identified a novel module of host driven immune regulated genes that suppress infection of a range of RNA viruses. Microarray data can be found in Gene Expression Omnibus (GSE74047). PMID:26981429

  4. Transcriptional analysis of antiviral small molecule therapeutics as agonists of the RLR pathway.

    PubMed

    Green, R R; Wilkins, C; Pattabhi, S; Dong, R; Loo, Y; Gale, M

    2016-03-01

    The recognition of pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRR) during viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon Regulator Factor 3 (IRF3). We identified small molecule compounds that activate IRF3 through MAVS, thereby inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus), Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus) and Paramyxoviridae (respiratory syncytial virus, Nipah virus) (1). In this study, we tested a lead compound along with medicinal chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the induction of specific antiviral genes and identified a novel module of host driven immune regulated genes that suppress infection of a range of RNA viruses. Microarray data can be found in Gene Expression Omnibus (GSE74047). PMID:26981429

  5. Synthesis, Antiviral and Cytotoxic Activities of 2-(2-Phenyl carboxylic acid)-3-Phenylquinazolin -4(3H)-one Derivatives

    PubMed Central

    Selvam, P.; Murugesh, N.; Chandramohan, M.; Pannecouque, C.; DE Clercq, E.

    2010-01-01

    A series of novel 2,3-disubstitutedquinazolin-4(3H)-ones have been synthesized by condensation of 2-substituted benzo[1,3]oxazine-4-ones and anthranilic acid. Synthesized compounds were evaluated for in vitro antiviral activity against HIV, HSV and vaccinia viruses. 5-Bromo-2-(6-bromo-4-oxo-2-phenyl-4H-quinazolin-3-yl)-benzoic acid (MBR2) exhibited distinct antiviral activity against Herpes simplex and vaccinia viruses. PMID:21969760

  6. #Nitrosocarbonyls 1: Antiviral Activity of N-(4-Hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the Influenza A Virus H1N1

    PubMed Central

    Al-Saad, Dalya; Memeo, Misal Giuseppe; Quadrelli, Paolo

    2014-01-01

    Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with the in vitro antiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1. PMID:25610906

  7. Replication-Competent Influenza B Reporter Viruses as Tools for Screening Antivirals and Antibodies

    PubMed Central

    Fulton, Benjamin O.; Palese, Peter

    2015-01-01

    Influenza B virus is a human pathogen responsible for significant health and economic burden. Research into this pathogen has been limited by the lack of reporter viruses. Here we describe the development of both a replication-competent fluorescent influenza B reporter virus and bioluminescent influenza B reporter virus. Furthermore, we demonstrate these reporter viruses can be used to quickly monitor viral growth and permit the rapid screening of antiviral compounds and neutralizing antibodies. PMID:26401044

  8. The antiviral effect of jiadifenoic acids C against coxsackievirus B3

    PubMed Central

    Ge, Miao; Wang, Huiqiang; Zhang, Guijie; Yu, Shishan; Li, Yuhuan

    2014-01-01

    Coxsackievirus B type 3 (CVB3) is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM) and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs). The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0–6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development. PMID:26579396

  9. 5-Bromo (or chloro)-6-azido-5,6-dihydro-2' -deoxyuridine and -thymidine derivatives with potent antiviral activity.

    PubMed

    Kumar, Rakesh

    2002-02-11

    Synthesis, antiviral, and cytotoxic activities of 5-bromo (or chloro)-6-azido-5,6-dihydro-2' -deoxyuridine (4,5) and -thymidine (6,7) are reported. Compounds 4 and 5 exhibited a broad spectrum of antiherpes activity against (HSV-1, HSV-2, HCMV, and VZV). PMID:11814776

  10. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents.

    PubMed

    Sekhar, Kuruva Chandra; Janardhan, Avilala; Kumar, Yellapu Nanda; Narasimha, Golla; Raju, Chamarthi Naga; Ghosh, S K

    2014-07-01

    Owing to the promising antiviral activity of amino acid ester-substituted phosphorylated nucleosides in the present study, a series of phosphorylated derivatives of emtricitabine and didanosine substituted with bioactive amino acid esters at P-atom were synthesized. Initially, molecular docking studies were screened to predict their molecular interactions with hemagglutinin-neuraminidase protein of Newcastle disease virus and E2 protein of human papillomavirus. The title compounds were screened for their antiviral ability against Newcastle disease virus (NDV) by their in ovo study in embryonated chicken eggs. Compounds 5g and 9c exposed well mode of interactions with HN protein and also exhibited potential growth of NDV inhibition. The remaining compounds exhibited better growth of NDV inhibition than their parent molecules, i.e., emtricitabine (FTC) and didanosine (ddI). In addition, the in vitro anticancer activity of all the title compounds were screenedagainst HeLa cell lines at 10 and 100 μg/mL concentrations. The compounds 5g and 9c showed an effective anticancer activity than that of the remaining title compounds with IC50 values of 40 and 60 μg/mL, respectively. The present in silico and in ovo antiviral and in vitro anticancer results of the title compounds are suggesting that the amino acid ester-substituted phosphorylated FTC and ddI derivatives, especially 5g and 9c, can be used as NDV inhibitors and anticancer agents for the control and management of viral diseases with cancerous condition. PMID:24789416

  11. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    PubMed Central

    Cho, Won-Kyung; Kim, Hyunil; Choi, Yu Jeong; Yim, Nam-Hui; Yang, Hye Jin; Ma, Jin Yeul

    2012-01-01

    Porcine epidemic diarrhea virus (PEDV) causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs. PMID:23259003

  12. Cloning and expression of small cDNA fragment encoding strong antiviral peptide from Celosia cristata in Escherichia coli.

    PubMed

    Gholizadeh, A; Kohnehrouz, B Baghban; Santha, I M; Lodha, M L; Kapoor, H C

    2005-09-01

    A small cDNA fragment containing a ribosome-inactivating site was isolated from the leaf cDNA population of Celosia cristata by polymerase chain reaction (PCR). PCR was conducted linearly using a degenerate primer designed from the partially conserved peptide of ribosome-inactivating/antiviral proteins. Sequence analysis showed that it is 150 bp in length. The cDNA fragment was then cloned in a bacterial expression vector and expressed in Escherichia coli as a ~57 kD fused protein, and its presence was further confirmed by Western blot analysis. The recombinant protein was purified by affinity chromatography. The purified product showed strong antiviral activity towards tobacco mosaic virus on host plant leaves, Nicotiana glutinosa, indicating the presence of a putative antiviral determinant in the isolated cDNA product. It is speculated that antiviral site is at, or is separate but very close to, the ribosome-inactivating site. We nominate this short cDNA fragment reported here as a good candidate to investigate further the location of the antiviral determinants. The isolated cDNA sequence was submitted to EMBL databases under accession number of AJ535714. PMID:16266271

  13. The antiviral potency of Fagus sylvatica 4OMe-glucuronoxylan sulfates.

    PubMed

    Pujol, C A; Damonte, E B; Turjan, J; Yanbo, K Z; Capek, P

    2016-06-01

    Herpes simplex virus belongs to Herpesviridae family and causes infection of humans from ancient times. 4OMe-glucuronoxylans as the renewable biopolymers can be promising glycomaterials for various applications in pharmacy. Control enzymatic degradation of the native 4OMe-glucuronoxylan (GX1) followed by targeted sulfation procedure afforded a range of 4OMe-glucuronoxylan sulfates differed in the degree of sulfation (10-16%) and molecular mass (21,000-5000g/mol; GXS1>GXS2>GXS3>GXS4). Antiviral activity tests on GXS1-4 against herpes simplex virus (HSV) types 1 and 2 revealed the positive effect of all compounds against strains of herpes virus. Of them, the compounds GXS1 and GXS4 were shown to be the most active for both HSV serotypes. The antiviral activity of GXS1 and GXS4 was similar to those of heparin or dextran sulfate, used as reference compounds. It was found that GXS1 and GXS4 were active as well against Polio and dengue viruses, however, on a smaller scale. The mode of antiviral action of 4OMe-glucuronoxylan sulfates is due to inhibition of the virus binding to the cell receptors. PMID:26902895

  14. A review on recent developments of indole-containing antiviral agents.

    PubMed

    Zhang, Ming-Zhi; Chen, Qiong; Yang, Guang-Fu

    2015-01-01

    Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future. PMID:25462257

  15. Dancing with chemical formulae of antivirals: A panoramic view (Part 2).

    PubMed

    De Clercq, Erik

    2013-11-15

    In this second part of "Dancing with antivirals as chemical formulae" I will focus on a number of chemical compounds that in the last few years have elicited more than common attraction from a commercial viewpoint: (i) favipiravir (T-705), as it is active against influenza, but also several other RNA viruses; (ii) neuraminidase inhibitors such as zanamivir and oseltamivir; (iii) peramivir and laninamivir octanoate, which might be effective against influenza virus following a single (intravenous or inhalation) administration; (iv) sofosbuvir, the (anticipated) cornerstone for the interferon-free therapy of HCV infections; (v) combinations of DAAs (direct antiviral agents) to achieve, in no time, a sustained virus response (SVR) against HCV infection; (vi) HIV protease inhibitors, the latest and most promising being darunavir; (vii) the integrase inhibitors (INIs) (raltegravir, elvitegravir, dolutegravir), representing a new dimension in the anti-HIV armamentarium; (viii), a new class of helicase primase inhibitors (HPIs) that may exceed acyclovir and the other anti-herpes compounds in both potency and safety; (ix) CMX-001, as the latest of Dr. Antonín Holý's legacy for its activity against poxviruses and CMV infections, and (x) noroviruses for which the ideal antiviral compounds are still awaited for. PMID:24070654

  16. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  17. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way. PMID:26329615

  18. Determination and Confirmation of the Antiviral Drug Amantadine and Its Analogues in Chicken Jerky Pet Treats.

    PubMed

    Turnipseed, Sherri B; Storey, Joseph M; Andersen, Wendy C; Filigenzi, Michael S; Heise, Andrea S; Lohne, Jack J; Madson, Mark R; Ceric, Olgica; Reimschuessel, Renate

    2015-08-12

    In this study, we investigated two methods for the detection of antiviral compounds in chicken jerky pet treats. Initially, a screening method developed to detect many different chemical contaminants indicated the presence of amantadine, 1, in some pet treats analyzed. A second antiviral-specific method was then developed for amantadine and its analogues, rimantadine, 2, and memantine, 3. Both methods used an acidic water/acetonitrile extraction. The antiviral-specific method also included a dispersive sorbent cleanup. Analytes were detected and identified by LC-MS (ion trap and Orbitrap) instruments. The antiviral-specific method was validated by analyzing matrix blanks and fortified samples (2.5-50 μg/kg levels). Average recoveries for amantadine (using a deuterated internal standard) in fortified samples ranged from 76 to 123% with relative standard deviations of ≤12%. Amantadine was detected and identified in suspect chicken jerky pet treat samples at levels ranging from <2.5 μg/kg to over 600 μg/kg. Rimantadine and memantine were not detected in any samples. PMID:26165548

  19. Characteristics of Nipah virus and Hendra virus replication in different cell-lines and their suitability for anti-viral screening

    PubMed Central

    Aljofan, Mohamad; Saubern, Simon; Meyer, Adam G.; Marsh, Glenn; Meers, Joanne; Mungall, Bruce A.

    2009-01-01

    We have recently described the development and validation of a High Throughput Screening assay suitable for Henipavirus antiviral identification. While we are confident this assay is robust and effective, we wished to investigate assay performance in a range of alternative cell lines to determine if assay sensitivity and specificity could be improved. We evaluated ten different cell lines for their susceptibility to Hendra and Nipah virus infection and their sensitivity of detection of the effects of the broad spectrum antiviral, ribavirin and nine novel antivirals identified using our initial screening approach. Cell lines were grouped into three categories with respect to viral replication. Virus replicated best in Vero and BSR cells, followed by Hep2, HeLa, BHK-21 and M17 cells. The lowest levels of RNA replication and viral protein expression were observed in BAEC, MMEC, A549 and ECV304 cells. Eight cell lines appeared to be similarly effective at discriminating the antiviral effects of ribavirin (<2.7 fold difference). The two cells lines most sensitive to the effect of ribavirin (ECV304 and BAEC) also displayed the lowest levels of viral replication while Vero cells were the least sensitive suggesting excess viral replication may limit drug efficacy and cell lines which limit viral replication may result in enhanced antiviral efficacy. However, there was no consistent trend observed with the other nine antivirals tested. While improvements in antiviral sensitivity in other cell lines may indicate an important role in future HTS assays, the slightly lower sensitivity to antiviral detection in Vero cells has inherent advantages in reducing the number of partially effective lead molecules identified during initial screens. Comparison of a panel of 54 novel antiviral compounds identified during routine screening of an in-house compound library in Vero, BHK-21 and BSR cells suggests no clear advantage of screening in either cell type. PMID:19428741

  20. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus.

    PubMed

    Saudi, Milind; Zmurko, Joanna; Kaptein, Suzanne; Rozenski, Jef; Gadakh, Bharat; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Van Aerschot, Arthur

    2016-10-01

    High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 μM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 μM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 μM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 μM, with compound 6n being the most potent for this series with an EC50 0.4 μM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity. PMID:27240271

  1. Antiviral therapy: old and current issues.

    PubMed

    Antonelli, Guido; Turriziani, Ombretta

    2012-08-01

    Many antiviral drugs are currently approved and formally licensed for clinical use in the treatment of viral infections caused by human immunodeficiency virus, herpes simplex viruses, varicella-zoster virus, respiratory syncytial virus, cytomegalovirus, hepatitis B virus, hepatitis C virus or influenza virus. Recent decades have seen major advances in our knowledge of the natural history and pathogenesis of viral diseases as well as ongoing developments and improvements in antiviral therapy. However, research is far from complete and indeed previously unknown and unexpected issues are currently arising. This review aims to discuss some of these issues in the belief that they should be carefully addressed to enhance the management of patients with viral infections. PMID:22727532

  2. Polyomavirus T Antigens Activate an Antiviral State

    PubMed Central

    Giacobbi, Nicholas S.; Gupta, Tushar; Coxon, Andrew; Pipas, James M.

    2014-01-01

    Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV. PMID:25589241

  3. Clinical Implications of Antiviral Resistance in Influenza

    PubMed Central

    Li, Timothy C. M.; Chan, Martin C. W.; Lee, Nelson

    2015-01-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed. PMID:26389935

  4. [Spectroscopic studies on the formation of metal complexes and on the protein binding of antiviral thiosemicarbazone derivatives (author's transl)].

    PubMed

    Heinisch, L; Kramarczyk, K; Tonew, M; Hesse, G

    1981-04-01

    The complexation of some thiosemicarbazones and isothiosemicarbazones of isatin and quinolin-2-aldehydes with Cu2+, Zn2+ and Mn2+ ions was spectrometrically investigated. Semiquantitative data, obtained from extinction values, about the relative complexing tendencies within some groups of homologous substances were brought in relation to their antiviral effects and binding to bovine serum albumin. The complexing tendencies were greatest in compounds with methyl substituents and decreased for higher alkyl substituents. whereas the binding to protein increased in the same order. The well-known maxima of the antiviral observed with medium alkyl groups may be explained by a superposition of these effects. PMID:7255526

  5. Inhibition of immune functions by antiviral drugs.

    PubMed Central

    Heagy, W; Crumpacker, C; Lopez, P A; Finberg, R W

    1991-01-01

    Immune functions were evaluated in vitro for PBMC isolated from healthy donors and cultured with the antiviral agents, 3'-azido-3'-deoxythymidine (AZT), ribavirin, ganciclovir, 2'3'-dideoxyinosine (ddI), or acyclovir. To identify methods for assessing the effects of antiviral drugs on immune cells, the PBMC response to mitogens, Con A, or phytohemagglutinin was evaluated from measurements of [3H]thymidine and [14C]-leucine incorporation, cell growth, cellular RNA, DNA, and protein levels, and the PBMC proliferative cycle (i.e., progression from G0----G1----S----G2 + M). At clinically relevant concentrations, AZT, ribavirin, or ganciclovir diminished PBMC responsiveness to mitogen. The numbers of proliferating cells in G1, S, and G2 + M phases of the cell cycle, DNA content, and [3H]thymidine uptake were decreased in cultures treated with AZT, ribavirin, or ganciclovir. AZT or ribavirin but not ganciclovir reduced RNA and protein in the cultures and inhibited cell growth. Whereas AZT, ribavirin, or ganciclovir were antiproliferative, ddI or acyclovir had little, if any, effect on PBMC mitogenesis. The inhibitory effects of antivirals on immune cells may contribute to the immune deterioration observed in patients following prolonged use of the drugs. PMID:1904068

  6. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity.

    PubMed

    Holý, Antonín; Votruba, Ivan; Masojídková, Milena; Andrei, Graciela; Snoeck, Robert; Naesens, Lieve; De Clercq, Erik; Balzarini, Jan

    2002-04-25

    6-Hydroxypyrimidines substituted at positions 2 and 4 by hydrogen, methyl, amino, cyclopropylamino, dimethylamino, methylsulfanyl, or hydroxyl group afford by the reaction with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH, Cs(2)CO(3), or DBU a mixture of N(1)- and O(6)-[2-(diisopropylphosphorylmethoxy)ethyl] isomers which were converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Analogously, 2,4-diamino-6-hydroxypyrimidine gave on reaction with [(R)- and (S)-2-(diisopropylphosphorylmethoxy)propyl] tosylate, followed by deprotection, the enantiomeric 6-[2-(phosphonomethoxy)propoxy]pyrimidines. 2,4-Diamino-6-sulfanylpyrimidine gave, on treatment with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH and subsequent deprotection, 2,4-diamino-6-[[2-(phosphonomethoxy)ethyl]sulfanyl]pyrimidine. 2-Amino-4-hydroxy-6-[2-(phosphonomethoxy)ethyl]pyrimidine was obtained from the appropriate 2-amino-4-chloropyrimidine derivative by alkaline hydrolysis and ester cleavage. Direct alkylation of 2-amino-4,6-dihydroxypyrimidine afforded a mixture of 2-amino-4,6-bis[2-(phosphonomethoxy)ethyl]- and 2-amino-1,4-bis[2-(phosphonomethoxy)ethyl]pyrimidine. None of the N(1)-[2-(phosphonomethoxy)ethyl] isomers exhibited any antiviral activity against DNA viruses or RNA viruses tested in vitro. On the contrary, the O(6)-isomers, namely the compounds derived from 2,4-diamino-, 2-amino-4-hydroxy-, or 2-amino-4-[2-(phosphonomethoxy)ethoxy]-6-hydroxypyrimidine, inhibited the replication of herpes viruses [herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV)] and retroviruses [Moloney sarcoma virus (MSV) and human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2)], their activity being most pronounced against the latter. The antiviral activity was lower if the oxygen at the position 6 was replaced by a sulfur atom, as in 2,4-diamino-6

  7. Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of N(2)-acyl isonicotinic acid hydrazide derivatives.

    PubMed

    Judge, Vikramjeet; Narasimhan, Balasubramanian; Ahuja, Munish; Sriram, Dharmarajan; Yogeeswari, Perumal; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan

    2013-02-01

    A series of N(2)-acyl isonicotinic acid hydrazides (1-17) was synthesized and tested for its in vitro antimycobacterial activity against Mycobacterium tuberculosis and the results indicated that the compound, isonicotinic acid N'- tetradecanoyl-hydrazide (12) was more active than the reference compound isoniazid. The results of antimicrobial activity of the synthesized compounds against S. aureus, B. subtilis, E. coli, C. albicans and A. niger indicated that compounds with dichloro, hydroxyl, tri-iodo and N(2)-tetradecanoyl substituent were the most active ones. The antiviral activity studies depicted that none of the tested compounds were active against DNA or RNA viruses. The multi-target QSAR model was found to be effective in describing the antimicrobial activity of N(2)-acyl isonicotinic acid hydrazides. PMID:22762163

  8. Cinnamoyl- and hydroxycinnamoyl amides of glaucine and their antioxidative and antiviral activities.

    PubMed

    Spasova, Maya; Philipov, Stefan; Nikolaeva-Glomb, L; Galabov, A S; Milkova, Ts

    2008-08-01

    The aporphine alkaloid glaucine has been converted into 3-aminomethylglaucine and its free amino group has been linked to cinnamic, ferulic, sinapic, o-, and p-coumaric acids. The antioxidative potential of the synthesized amides was studied against DPPH(*) test. All of the tested compounds demonstrated higher radical scavenging activity than glaucine and 3-aminomethylglaucine, and lower antioxidative effect than the free hydroxycinnamic acids. The newly synthesized compounds were tested in vitro for antiviral activity against viruses belonging to different taxonomic groups. PMID:18590964

  9. A case for developing antiviral drugs against polio.

    PubMed

    Collett, Marc S; Neyts, Johan; Modlin, John F

    2008-09-01

    Polio eradication is within sight. In bringing the world close to this ultimate goal, the Global Polio Eradication Initiative (GPEI) has relied exclusively on the live, attenuated oral poliovirus vaccine (OPV). However, as eradication nears, continued OPV use becomes less tenable due to the incidence of vaccine associated paralytic poliomyelitis (VAPP) in vaccine recipients and disease caused by circulating vaccine-derived polioviruses (cVDPVs) in contacts. Once wild poliovirus transmission has been interrupted globally, OPV use will stop. This will leave the inactivated poliovirus vaccine (IPV) as the only weapon to defend a polio-free world. Outbreaks caused by cVDPVs are expected post-OPV cessation, and accidental or deliberate releases of virus could also occur. There are serious doubts regarding the ability of IPV alone to control outbreaks. Here, we argue that antiviral drugs against poliovirus be added to the arsenal. Anti-poliovirus drugs could be used to treat the infected and protect the exposed, acting rapidly on their own to contain an outbreak and used as a complement to IPV. While there are no polio antiviral drugs today, the technological feasibility of developing such drugs and their probability of clinical success have been established by over three decades of drug development targeting the related rhinoviruses and non-polio enteroviruses (NPEVs). Because of this history, there are known compounds with anti-poliovirus activity in vitro that represent excellent starting points for polio drug development. Stakeholders must come to understand the potential public health benefits of polio drugs, the feasibility of their development, and the relatively modest costs involved. Given the timelines for eradication and those for drug development, the time for action is now. PMID:18513807

  10. In vitro antiviral efficacy of the ganciclovir complexed with beta-cyclodextrin on human cytomegalovirus clinical strains.

    PubMed

    Nicolazzi, Céline; Venard, Véronique; Le Faou, Alain; Finance, Chantal

    2002-05-01

    The toxicity of the compounds currently used in the treatment of human cytomegalovirus (HCMV) infections in immunocompromised hosts may force the treatment to be discontinued. The aim of this study was to improve the antiviral activity of ganciclovir (GCV), one the most widely used drug, by complexing it with beta-cyclodextrin. Cyclodextrins (cds) have the property to form inclusion complexes with a great number of molecules and to enhance bioavailability and biological properties of these molecules. In this study, we investigated the in vitro antiviral activity of complexed GCV against several strains of HCMV: AD169, a reference strain, RCL-1, a laboratory mutant resistant to GCV, and four clinical isolates. The complexed GCV was more effective than free GCV against all HCMV strains tested. Cds as carriers for antiviral drugs would represent a useful adjunct to classical treatment procedures. They may make it possible to administer lower doses, thus reducing the toxic side effects of the drugs. PMID:12062397