Science.gov

Sample records for candu fuel channel

  1. Design and Development of a Robotic Crawler for CANDU Fuel Channel Inspection

    NASA Astrophysics Data System (ADS)

    Shukla, Shivam

    For the design of a new robotic crawler drive unit for CANDU fuel channel inspection, a complete design and screening process was done in order to fulfil the objective of this research. A brief explanation of CANDU reactors is provided along with a discussion of the inspection systems that are currently in use. A study of some existing inspection systems is presented which was used for the development of the new robotic crawler design. A number of concepts were generated which underwent a screening process with the help of two design tools. With the help of these tools, a concept was chosen as the final design and details of it are presented. To demonstrate a proof-of-concept, the physical prototype of the robotic crawler was manufactured and assembled. A speed controller was implemented in the final design of the robotic crawler. A set of test procedures were performed on the final design and the results are discussed. Some improvements that can be done on the final design of the robotic crawler are also discussed in the final section of this thesis.

  2. Thermochemical modelling of advanced CANDU reactor fuel

    NASA Astrophysics Data System (ADS)

    Corcoran, Emily Catherine

    2009-04-01

    With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction

  3. Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor

    SciTech Connect

    Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V.; Sills, H.

    2004-07-01

    The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

  4. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  5. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  6. First principles Candu fuel model and validation experimentation

    SciTech Connect

    Corcoran, E.C.; Kaye, M.H.; Lewis, B.J.; Thompson, W.T.; Akbari, F.; Higgs, J.D.; Verrall, R.A.; He, Z.; Mouris, J.F.

    2007-07-01

    Many modeling projects on nuclear fuel rest on a quantitative understanding of the co-existing phases at various stages of burnup. Since the various fission products have considerably different abilities to chemically associate with oxygen, and the O/M ratio is slowly changing as well, the chemical potential (generally expressed as an equivalent oxygen partial pressure) is a function of burnup. Concurrently, well-recognized small fractions of new phases such as inert gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant UO{sub 2} fuel phase may be non-stoichiometric and most of minor phases have a variable composition dependent on temperature and possible contact with the coolant in the event of a sheathing defect. A Thermodynamic Fuel Model to predict the phases in partially burned Candu nuclear fuel containing many major fission products has been under development. This model is capable of handling non-stoichiometry in the UO{sub 2} fluorite phase, dilute solution behaviour of significant solute oxides, noble metal inclusions, a second metal solid solution U(Pd-Rh-Ru)3, zirconate and uranate solutions as well as other minor solid phases, and volatile gaseous species. The treatment is a melding of several thermodynamic modeling projects dealing with isolated aspects of this important multi-component system. To simplify the computations, the number of elements has been limited to twenty major representative fission products known to appear in spent fuel. The proportion of elements must first be generated using SCALES-5. Oxygen is inferred from the concentration of the other elements. Provision to study the disposition of very minor fission products is included within the general treatment but these are introduced only on an as needed basis for a particular purpose. The building blocks of the model are the standard Gibbs energies of formation of the many possible compounds expressed as a function of temperature. To these data

  7. Calculation of the Local Neutronic Parameters for CANDU Fuel Bundles Using Transport Methods

    SciTech Connect

    Balaceanu, Victoria; Rizoiu, Andrei; Hristea, Viorel

    2006-07-01

    For a realistic neutronic evaluation of the CANDU reactor core it is important to accurately perform the local neutronic parameters (i.e. multigroup macroscopic cross sections for the core materials) calculation. This means using codes that allow a good geometric representation of the CANDU fuel bundle and then solving the transport equation. The paper reported here intends to study in detail the local behavior for two types of CANDU fuel, NU{sub 3}7 (Natural Uranium, 37 elements) and SEU{sub 4}3 (Slightly Enriched Uranium, 43 elements, with 1.1 wt% enrichment). The considered fuel types represent fresh and used bundles. The two types of CANDU super-cells are reference NU{sub 3}7, perturbed NU{sub 3}7, reference SEU{sub 4}3 and perturbed SEU{sub 4}3. The perturbed super-cells contain a Mechanical Control Absorber (a very strong reactivity device). For reaching the proposed objective a methodology is used based on WIMS and PIJXYZ codes. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the fine local neutronic parameters in the CANDU super-cells (k-eff values, local MCA reactivity worth, flux distributions and reaction rates), the PIJXYZ code is used. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for CANDU cell geometry. It is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON code. This comparison shows a good agreement between these results. (authors)

  8. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  9. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  10. Automated refueling simulations of a CANDU for the exploitation of thorium fuels

    NASA Astrophysics Data System (ADS)

    Holmes, Bradford

    CANDU nuclear reactors are in a unique circumstance where they are able to utilize and exploit a number of different fuel options to provide power as a utility. Thorium, a fertile isotope found naturally, is one option that should be explored. Thorium is more abundant than uranium, which is the typical fuel in the reactor and the availability of thorium makes nuclear energy desirable to more countries. This document contains the culmination of a project that explores, tests, and analyzes the feasibility of using thorium in a CANDU reactor. The project first develops a set of twodimensional lattice and three dimensional control rod simulations using the DRAGON Version 4 nuclear physics codes. This step is repeated for many concentrations of thorium. The data generated in these steps is then used to determine a functional enrichment of thorium. This is done via a procedural elimination and optimization of certain key parameters including but not limited to average exit burnup and reactivity evolution. For the purposes of this project, an enrichment of 1 % thorium was found viable. Full core calculations were done using the DONJON 4 code. CANFUEL, a program which simulates the refueling operations of a CANDU reactor for this fuel type was developed and ran for a simulation period of one hundred days. The program and the fuel selection met all selected requirements for the entirety of the simulation period. CANFUEL requires optimization for fuel selection before it can be used extensively. The fuel selection was further scrutinized when a reactivity insertion event was simulated. The adjuster rod 11 withdrawal from the core was analyzed and compared to classical CANDU results in order to ensure no significant deviations or unwanted evolutions were encountered. For this case, the simulation results were deemed acceptable with no significant deviations from the classical CANDU case.

  11. Optimization of the Mode of the Uranium-233 Accumulation for Application in Thorium Self-Sufficient Fuel Cycle of Candu Power Reactor

    SciTech Connect

    Bergelson, Boris; Gerasimov, Alexander; Tikhomirov, Georgy

    2006-07-01

    Results of calculation studies of the first stage of self-sufficient thorium cycle for CANDU reactor are presented in the paper. The first stage is preliminary accumulation of {sup 233}U in the CANDU reactor itself. Parameters of active core and scheme of fuel reloading were accepted the same as those for CANDU reactor. It was assumed for calculations, that enriched {sup 235}U or plutonium was used as additional fissile material to provide neutrons for {sup 233}U production. Parameters of 10 different variants of the elementary cell of active core were calculated for the lattice pitch, geometry of fuel channels, and fuel assembly of the CANDU reactor. The results presented in the paper allow to determine the time of accumulation of the required amount of {sup 233}U and corresponding number of targets going into processing for {sup 233}U extraction. Optimum ratio of the accumulation time to number of processed targets can be determined using the cost of electric power produced by the reactor and cost of targets along with their processing. (authors)

  12. Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report

    SciTech Connect

    1995-06-30

    An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

  13. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    SciTech Connect

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  14. FAST: A Fuel And Sheath Modeling Tool for CANDU Reactor Fuel

    NASA Astrophysics Data System (ADS)

    Prudil, Andrew Albert

    before for any Canadian fuel performance code). This thesis documents the theory employed by the model, its implementation, and the results of a proof of concept validation. The validation compared model predictions against both experimental data and results obtained from the ELESTRES and ELOCA fuel performance codes. Overall, the results show excellent model performance except in cases of a strong axial dependence. An analysis of the sensitivity of the model to the uncertainty in input parameters and the material properties is also presented. Finally, this thesis includes a discussion of the limitations, applications, and potential for future development of code. Key words: nuclear fuel, CANDU fuel, fuel modeling, multiphysics modeling, Comsol

  15. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect

    Jeong, C. J.; Park, C. J.; Choi, H.

    2006-07-01

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  16. Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels

    SciTech Connect

    St-Aubin, E.; Marleau, G.

    2012-07-01

    We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annular geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)

  17. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  18. Mirrored serpentine flow channels for fuel cell

    DOEpatents

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  19. Recommendations for damping and treatment of modeling uncertainty in seismic analysis of CANDU nuclear power plant

    SciTech Connect

    Usmani, S.A.; Baughman, P.D.

    1996-12-01

    The seismic analysis of the CANDU nuclear power plant is governed by Canadian Standard series N289. However, the dynamic analysis of some equipment and system such as the CANDU reactor and fueling machine must treat unique components not directly covered by the broad recommendations of these standards. This paper looks at the damping values and treatment of modeling uncertainty recommended by CSA N289.3, the current state of knowledge and expert opinion as reflected in several current standards, testing results, and the unique aspects of the CANDU system. Damping values are recommended for the component parts of the CANDU reactor and fueling machine system: reactor building, calandria vault, calandria, fuel channel, pressure tube, fueling machine and support structure. Recommendations for treatment of modeling and other uncertainties are also presented.

  20. Evaluation of transuranium isotopes inventory for Candu/ACR standard and SEU spent fuel and the possibility to transmute them

    SciTech Connect

    Ghizdeanu, Elena Nineta; Pavelescu, Alexandru; Balaceanu, Victoria

    2007-07-01

    Available in abstract form only. Full text of publication follows: The main disadvantage of nuclear energy is the quantity of long lived radioactive waste produced in a NPP. Transmutation could be one of the solutions to reduce it. Waste transmutation will require a suitable deployment of techniques for spent fuel reprocessing. At present, reprocessing is done by aqueous methods that are very efficient for Pu separation (up to 99.9%). For transmutation applications, new partitioning processes must be developed for minor actinides separation from the high level waste. Although these processes are still very much at the research stage, industrial scale-up will result in the deployment of new, more specific separation techniques for transmutation applications. Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radio-toxicity. Scientists are looking for ways to drastically reduce both the mass and the radio-toxicity of the nuclear waste to be stored in a deep geological repository, and to reduce the time needed to reach the radioactivity level of the raw material originally used to produce energy. The first stage in the transmutation process is the isotopes inventory formed in the spent fuel. In this paper is made an intercomparison evaluation using WIMS 5B.12 and ORIGEN computer codes. Using these two codes, there is evaluated the isotopes released by a fuel standard from a Candu reactor. Moreover, there is simulated an inventory released by a Candu-SEU reactor and an ACR reactor. (authors)

  1. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Simulation of the PBF-Candu test with coupled thermal-hydraulic and fuel thermo-mechanical responses

    SciTech Connect

    Baschuk, J. J.

    2012-07-01

    During a large loss-of-coolant accident (LLOCA), the fuel sheath temperature is influenced by thermal-hydraulic and thermo-mechanical phenomena. The thermal-hydraulic phenomena include the heat transfer from the sheath to the coolant and surroundings. Thermo-mechanical phenomena, such as creep and thermal expansion, influence the size of the fuel-to-sheath gap, and thus the heat transfer from the fuel to the sheath. Therefore, coupling the thermal-hydraulic and thermo-mechanical analysis of an LLOCA would result in more accurate predictions of sheath temperature. This is illustrated by comparing the sheath temperature predictions from coupled and decoupled simulations of the PBF-Candu Test with experimental measurements. The codes CATHENA and ELOCA were used for the thermal-hydraulic and thermo-mechanical analysis, respectively. The predicted sheath temperatures from both the coupled and decoupled simulations were higher than the measured values. However, after the initial power pulse, when the fuel-to-sheath gap was calculated as being opened, the sheath temperatures predicted by the coupled simulation were closer to the experimental measurements. Thus, under conditions of an open fuel-to-sheath gap, a coupled thermal-hydraulic and thermo-mechanical analysis can improve predictions of sheath temperatures. (authors)

  3. Materials performance in CANDU reactors: The first 30 years and the prognosis for life extension and new designs

    NASA Astrophysics Data System (ADS)

    Tapping, R. L.

    2008-12-01

    A number of CANDU reactors have now been in-service for more than 30 years, and several are planning life extensions. This paper summarizes the major corrosion degradation operating experience of various out-of-core (i.e., excluding fuel channels and fuel) materials in-service in currently operating CANDU reactors. Also discussed are the decisions that need to be made for life extension of replaceable and non-replaceable components such as feeders and steam generators, and materials choices for new designs, such as the advanced CANDU reactor (ACR) and enhanced CANDU-6. The basis for these choices, including a brief summary of the R&D necessary to support such decisions is provided. Finally we briefly discuss the materials and R&D needs beyond the immediate future, including new concepts to improve plant operability and component reliability.

  4. Estimation of clearance potential index and hazard factors of Candu fuel bundle and its validation based on the measurements of radioisotopes inventories from Pickering reactor fuel

    SciTech Connect

    Pavelescu, Alexandru Octavian; Tinti, Renato; Voukelatou, Konstantina; Cepraga, Dan Gabriel

    2007-07-01

    This paper is related to the clearance potential levels, ingestion and inhalation hazard factors of the spent nuclear fuel and radioactive wastes. This study required a complex activity that consisted of more steps such as: the acquisition, setting up, validation and application of procedures, codes and libraries. The paper reflects the validation stage of this study. Its objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from the Pickering Candu reactor with the inventories predicted using a recent version of the SCALE 5/ORIGEN-ARP code coupled with the time dependent cross sections library for the Candu 28 reactor (produced by the sequence SCALE4.4a/SAS2H and SCALE4.4a/ORIGEN-S). In this way, the procedures, the codes and the libraries for the characterization of radioactive material in terns of radioactive inventories, clearance, and biological hazard factors could be qualified and validated, in support of the safety management of the radioactive wastes. (authors)

  5. Modelling of iodine-induced stress corrosion cracking in CANDU fuel

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Thompson, W. T.; Kleczek, M. R.; Shaheen, K.; Juhas, M.; Iglesias, F. C.

    2011-01-01

    Iodine-induced stress corrosion cracking (I-SCC) is a recognized factor for fuel-element failure in the operation of nuclear reactors requiring the implementation of mitigation measures. I-SCC is believed to depend on certain factors such as iodine concentration, oxide layer type and thickness on the fuel sheath, irradiation history, metallurgical parameters related to sheath like texture and microstructure, and the mechanical properties of zirconium alloys. This work details the development of a thermodynamics and mechanistic treatment accounting for the iodine chemistry and kinetics in the fuel-to-sheath gap and its influence on I-SCC phenomena. The governing transport equations for the model are solved with a finite-element technique using the COMSOL Multiphysics® commercial software platform. Based on this analysis, this study also proposes potential remedies for I-SCC.

  6. Controlled beta-quench treatment of fuel channels

    SciTech Connect

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk; Perkins, Richard A.

    2007-07-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. Beta-quenching of fuel channels has been applied by the nuclear industry to improve the dimensional stability of this component. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure in order to improve the dimensional behavior of fuel channels by randomizing the crystallographic texture, while maintaining the excellent corrosion behavior of the fuel channels by providing intermetallic phase particles of optimum average size. The first fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels will follow in 2007 to broaden in-pile experience and to receive irradiation feedback from two other nuclear power plants. (authors)

  7. Actinide Burning in CANDU Reactors

    SciTech Connect

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  8. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity. PMID:17788102

  9. Dimensional Behavior of Fuel Channels - Recent Experience and Consequences

    SciTech Connect

    Blavius, Dirk; Muench, Claus-Juergen; Garner, Norman L.

    2007-07-01

    Fuel channels in boiling-water reactors (BWR) undergo distortions like bow, bulge, and twist due to their operating conditions. These distortions may adversely impact planned operating strategy, and therefore need to be adequately addressed during various stages of fuel channel design and manufacturing, core design and operation monitoring. Fuel channel distortion may lead to interference between the fuel channel and adjacent control blade. If severe, such interference can impair both positioning of control blades during normal operations and rapid control blade insertion during a reactor scram. During the last five years, unexpectedly high fuel channel distortions leading to problems in control blade operations have been observed in some C- and S-lattice BWR plants in the U.S. operating on 18 - 24 month cycles. As a result, U.S. operators have implemented costly surveillance programs to detect the onset of high distortions and have declared control blades inoperable when unacceptable control blade operation occurs. This unusual fuel channel distortion has not been observed with AREVA NP fuel supplied in Europe in this scale. Nevertheless fuel channel distortion-related problems were recently observed in reactors outside the U.S. with early control blade operation. The mechanisms causing this unexpected fuel-channel distortion and the influencing factors are not completely understood worldwide for the time being. Therefore, a prediction of channels which will exhibit high bow is very challenging. A status is given from the AREVA NP perspective on: - The existing fuel channel distortion database, - The understanding of the phenomenon, - Measures to gather further information and improve existing tools, materials, and designs, and - Customer actions to reduce potential high channel bow and associated control blade issues. (authors)

  10. Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila

    SciTech Connect

    Preeti, T.; Rulko, R.

    2012-07-01

    In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculations for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)

  11. Measurements of grain-boundary inventories of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc in used CANDU fuel

    SciTech Connect

    Stroes-Gascoyne, S.; Tait, J.C.; Porth, R.J.; McConnell, J.L.; Barnsdale, T.R.; Watson, S.

    1993-12-31

    Two methods were used to measure grain-boundary inventories of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc in used CANDU fuel, to corroborate source term estimates based on a fission gas release code. Used fuels were partially oxidized at 200{degrees}C in air to overall compositions of UO{sub 2+x} (0.15{<=} {times} {<=}0.25) to expose UO{sub 2} grain boundaries, followed by leaching in aqueous solution. Only a fraction (2 to 18%) of the calculated gap + grain-boundary inventories for {sup 137}Cs was released. This suggests that the calculations overestimate Cs release or that oxidation does not expose all grain boundaries, or that Cs release from grain boundaries is slow. Release of {sup 90}Sr (0.01 to 0.7%) agreed reasonably well with the source term estimates (0.001 to 0.3%). Release of {sup 99}Tc (0.3 to 1.5%) suggests that the source term estimate for the upper involved leaching of crushed and side-fractionated used fuel in either a static or dynamic system. A direct one-to-one correlation between calculated and measured gap + grain-boundary inventories for {sup 137}Cs was found for low- and medium-power fuels.

  12. Fuel cell collector plates with improved mass transfer channels

    SciTech Connect

    Gurau, Vladimir; Barbir, Frano; Neutzler, Jay K.

    2003-04-22

    A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.

  13. Analysis of IFR driver fuel hot channel factors

    SciTech Connect

    Ku, J.Y.; Chang, L.K.; Mohr, D.

    1994-03-01

    Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype, Experimental Breeder Reactor II. The uncertainty factors were applied to the channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A ``semistatistical horizontal method`` was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived.

  14. Neutronics-thermalhydraulics coupling in a CANDU SCWR

    NASA Astrophysics Data System (ADS)

    Adouki, Pierre

    In order to implement new nuclear technologies as a solution to the growing demand for energy, 10 countries agreed on a framework for international cooperation in 2002, to form the Generation IV International Forum (GIF). The goal of the GIF is to design the next generation of nuclear reactors that would be cost effective and would enhance safety. This forum has proposed several types of Generation IV reactors including the Supercritical Water-Cooled Reactor (SCWR). The SCWR comes in two main configurations: pressure vessel SCWR and pressure tube SCWR (PT-SCWR). In this study, the CANDU SCWR (a PT-SCWR) is considered. This reactor is oriented vertically and contains 336 channels with a length of 5 m. The target coolant inlet and outlet temperatures are 350 Celsius and 625 Celsius, respectively. The coolant flows downwards, and the reactor power is 2540 MWth. Various fuel designs have been considered in order not to exceed the linear element rating. However, the dependency between the core power and thermalhydraulics parameters results in the necessity to use a neutronics/thermalhydaulics coupling scheme to determine the core power and the thermalhydraulics parameters. The core power obtained has a power peaking factor of 1.4. The bundle power distribution for all channels has a peak at the third bundle from the inlet, but the value of this peak increases with the channel power. The heat-transfer coefficient and the specific-heat capacity have a peak at the same location in a channel, and this location shifts toward the inlet as the channel power increases. The exit coolant temperature increases with the channel power, while the exit coolant density and pressure decrease with the channel power. Also, higher channel powers lead to higher fuel and cladding temperatures. Moreover, as the coupling method is applied, the effective multiplication factor and the values of thermalhydaulics parameters oscillate as they converge.

  15. Analyse du transfert de chaleur et de la perte de pression pour des ecoulements supercritiques dans le reacteur CANDU-SCWR

    NASA Astrophysics Data System (ADS)

    Zoghlami, Sarra

    The supercritical water reactor is one of the six concepts of generation IV nuclear reactors that has been selected by the International Generation IV Forum (GIF). Canada has chosen to conduct advanced research on this type of reactor. For the design and safety analysis of the reactor concept, the development of numerical simulation codes is needed. The ARTHUR code is a thermal-hydraulic computer code developed by Fassi-Fehri (2008), at the Ecole Polytechnique de Montreal, to analyse the CANDU-6 reactor. The purpose of this project is to modify this numerical code so that it can be used to treat the CANDU-SCWR. To calculate the coolant thermal-hydraulics properties in the fuel channel of a CANDU-SCWR, it was assumed that the water flows under supercritical conditions is a one-phase flow. Thus within this code, we developed the conservation equations for one-phase flow. Hydraulic resistance and heat transfer at supercritical pressure are two important aspects to be considered in the modeling of a fuel channel in a nuclear reactor. To choose the accurate correlation to predict the pressure friction factor, we compared numerical calculations, using different correlations found in literature, to experimental data. We concluded that the Garimella (2008) correlation is the most consistent, to be incorporated in the ARTHUR &barbelow;SCWR code. We proved that the choice of the friction factor correlation affects slightly the distribution of thermal-hydraulic properties in the fuel channel. Under supercritical conditions, water thermal-physical properties are characterized by significant variations in the pseudo-critical region. This behavior influences the forced convection heat transfer phenomena. To choose the adequate correlation to calculate the forced convection heat transfer coefficient, we compared numerical results to experimental data, and we found that the standard deviation given by Mokry et al. (2010) correlation is the lowest. In order to model the fuel

  16. Plutonium Consumption Program, CANDU Reactor Project final report

    SciTech Connect

    Not Available

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  17. A CANDU-Based Fast Irradiation Reactor

    SciTech Connect

    Shatilla, Youssef

    2006-07-01

    A new steady-state fast neutron reactor is needed to satisfy the testing needs of Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. This paper presents a new concept for a CANDU-based fast irradiation reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank (Calandria) filled with Lead-Bismuth-Eutectic (LBE). This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely re-configure the core to meet different users' requirements. Full core neutronic analysis of several fuel/coolant/geometry combinations showed a small hexagonal, LBE-cooled, U-Pu-10Zr fuel, with a core power of 100 MW{sub th} produced a fast flux (>0.1 MeV) of 1.5 x 10{sup 15} n/cm{sup 2} sec averaged over the whole length of six irradiation channels with a total testing volume of more than 77 liters. In-core breeding allowed the Pu-239 enrichment to be 15.3% which should result in core continuous operation for 180 effective full power days. Other coolants investigated included high pressure water steam and helium. An innovative shutdown/control system which consisted of the six outermost fuel channels was proven to be effective in shutting the core down when flooded with boric acid as a neutron absorber. The new shutdown/control system has the advantage of causing the minimum perturbation of the axial flux shape when the control channels are partially flooded with boric acid. This is because the acid is injected homogeneously along the control channel in contrast to regular control rods that are injected partially causing an axial perturbation in the core flux which in turn reduces safety analysis margins. The new shutdown/control system is not required to penetrate the core in a direction vertical to the fuel channels which allowed the freedom of changing core pitch as deemed necessary. A preliminary thermal hydraulic analysis

  18. Nuclear Archeology for CANDU Power Reactors

    SciTech Connect

    Broadhead, Bryan L

    2011-01-01

    The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

  19. CANDU in-reactor quantitative visual-based inspection techniques

    NASA Astrophysics Data System (ADS)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  20. Hydraulic reinforcement of channel at lower tie-plate in BWR fuel bundle

    SciTech Connect

    Johansson, E.B.

    1989-12-26

    This patent describes an apparatus in a fuel bundle for confining fuel rods for the generation of steam in a steam water mixture passing interior of the fuel bundle. The fuel bundle includes: a lower tie-plate for supporting the fuel rods and permitting flow from the lower exterior portion of the fuel bundle into the interior portion of the fuel bundle; a plurality of fuel rods. The fuel rods supported on the lower tie-plate extending upwardly to and towards the upper portion of the fuel bundle for the generation of steam in a passing steam and water mixture interior of the fuel bundle; an upper tie-plate for maintaining the fuel rods in side-by-side relation and permitting a threaded connection between a plurality of the fuel rods with the threaded connection being at the upper and lower tie-plate. The upper tie-plate permitting escape of a steam water mixture from the top of the fuel bundle; a fuel bundle channel; and a labyrinth seal configured in the lower tie-plate.

  1. Experimental study of burnout in channels with twisted fuel rods

    NASA Astrophysics Data System (ADS)

    Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.

    2007-05-01

    The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.

  2. Prediction of number of breached rods following a LBLOCA of Candu plants using a BEPU approach

    SciTech Connect

    Bang, Y. S.; Kim, K.; Seul, K. W.; Woo, S. W.; Han, B. S.

    2012-07-01

    Radioactive doses following design basis accidents (DBA) have been important safety criteria of Candu nuclear power plant and they have been predicted in terms of the number of breached fuel rods. To support the licensing review on this concern, an analysis of LBLOCA has been conducted by using the BEPU method of KINS, KINS-REM. Number of Breached Rods (NBR) following a LBLOCA was predicted at 95 percentile probabilistic upper level in 95 percentile confidence level. Peak Cladding Temperatures (PCT) of the 84 bundles in the core pass 4 were calculated from the 124 MARS code runs in which the uncertainties of 10 major parameters including fuel thermal conductivity and break flow model were implemented. The fuel rod breaching criteria, PCT>1477 K, was used to determine the NBR 95/95. From the calculation, the predicted NBR 95/95 was 1591 rods and the calculated maximum NBR was lower than 2000 rods. Through the further improvements in feedback of the channel power behavior to thermalhydraulic calculation and in channel group modeling, NBR in more reliable level can be expected. (authors)

  3. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  4. Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates

    SciTech Connect

    Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.

    1986-01-01

    A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.

  5. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  6. Validation of WIMS-IST for CANDU R-type lattices

    SciTech Connect

    Bromley, B. P.; Davis, R.

    2006-07-01

    Prior validation studies of 28-element natural uranium (28-NU) CANDU R-type fuel bundles using the WIMS-IST lattice physics code had demonstrated a bias in the calculation of the coolant void reactivity (CVR) of approximately +0.5 to +0.6 mk (1 mk =100 pcm = 0.001 {Delta}k/k). However, these validation studies were performed using experimental data for 28-element bundles with pressure tubes that were smaller than standard CANDU-type pressure tubes, giving a smaller coolant volume, and a modified neutron energy spectrum. Validation studies performed with 37-element and 43-element fuel bundles with a CANDU-type lattice pitch and pressure tube had shown a CVR bias of {approx} 1.7 to 1.9 mk. It was believed that the CVR bias for a 28-element bundle would be closer to this range of values if a standard CANDU pressure tube diameter were used The objective of this study was to confirm this hypothesis, that using a larger CANDU-standard pressure tube would give a larger CVR bias for a 28-NU fuel bundle, as computed by WIMS-IST in comparison to experimental measurements of critical buckling. Thus, new critical-height and flux-map measurements were performed in substitution experiments in the ZED-2 research reactor to determine the pure critical lattice buckling for 28-element fuel with standard-size CANDU pressure tubes. The derived buckling from these experiments were used in WIMS-IST transport calculations to determine the effective multiplication factors for cooled and voided lattices and hence the bias in the CVR. Calculation results demonstrated that the CVR bias for the 28-NU was {approx} 1.7 mk {+-} 0.42 mk, which is consistent with the results for 37-element and 43-element CANDU-type lattices. (authors)

  7. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect

    Vasil’ev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  8. Experimental study on tribrachial flames in narrow channels with small fuel concentration gradients

    SciTech Connect

    Cho, Sang Moon; Lee, Min Jung; Kim, Nam Il

    2010-11-15

    Edge flames have become a subject of interest as basic structures for lifted-flame stabilization and turbulent flame propagation. Recently, with the development of small diffusion flame devices as energy sources for various small mechanical systems, edge flames within narrow spaces have also been investigated. In this study, the structures and propagation characteristics of a tribrachial flame (or an edge flame) in a confined narrow channel, with very small fuel concentration gradients, were experimentally investigated. Tribrachial flames could be successfully stabilized in the narrow channels. The flame shapes and propagation velocities were compared by changing the four experimental parameters of the mean velocity, fuel concentration gradient, channel gap, and fuel dilution ratio. It was experimentally observed that the luminosity of the diffusion branch diminished when the channel gap decreased. It was also found that there is a critical condition in the channel gap for maximum propagation velocity. A flow redirection effect and a heat loss effect are thought to have played a key role in the variation of the PVTF in a narrow channel, and their competition with each other caused a peak value of the PVTF at the critical channel gap. (author)

  9. Test plan for the Parallex CANDU-MOX irradiation

    SciTech Connect

    Copeland, G.L.

    1997-06-01

    One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

  10. Boiling Water Reactor Fuel Cycle Optimization for Prevention of Channel-Blade Interference

    SciTech Connect

    Kropaczek, David J.; Karve, Atul A.; Oyarzun, Christian C.; Asgari, Mehdi

    2006-07-01

    A formal optimization method for eliminating the potential of Boiling Water Reactor channel-blade interference is presented within the context of fuel cycle design. The method is based on the use of threshold constraints on blade force as penalty terms within an objective function that are employed as part of a search algorithm. Results demonstrate the effectiveness of the constraint formulation in eliminating channel-blade interference as part of the design of the core loading and operational strategy. (authors)

  11. Systems analysis of the CANDU 3 Reactor

    SciTech Connect

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H.

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  12. Separate in situ measurements of ECA under land and channel in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Higier, Andrew; Liu, Hongtan

    2012-10-01

    Separate in situ measurements of electrochemical areas (ECA) under land and channel areas in proton exchange membrane (PEM) fuel cells are realized using cyclic voltammetry. Experiments are carried out using special membrane electrode assemblies (MEA) in single-channel serpentine flow fields with different widths of channels and lands. The experimental results show that ECAs are significantly higher in the areas under the land than that under the channel. ECA-normalized polarization curves show that ECA is the most significant factor causing higher current density under the land than under the channel in the high cell potential region, and the true concentration polarization under the land in the low potential region is actually much greater than what can be seen in conventional polarization curves. Further experimental results show that, within the compression pressure range examined, ECA increases with compression pressure significantly.

  13. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the

  14. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  15. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  16. Korean experience in CANDU-PHWR operation

    SciTech Connect

    Park, S.K.

    1988-01-01

    Among KEPCO's 9 nuclear power units, Korea Nuclear Unit No. 3, the Wolsung Nuclear Power Plant is the only CANDU-PHWR Unit, while the rest of 8 others are PWR units. The unit was designed by Atomic Energy of Canada, Ltd. of Canada, who also performed overall project management for the plant construction under the provisions and arrangement of the relevant contracts. The gross electrical output of the plant is 678.7 MWe and thermal output of the reactor is 2061 MWth. While these figures lead to lower plant efficiency than LWR counterparts, unit energy cost for fuel is more favorable than LWRs because natural uranium is utilized for the fuel bundles, some of which are already being fabricated domestically. Annual capacity factors for 1983 and 1984 could have been improved, if two major planned outages for the modification works on steam generator internals and one major forced outage from the heavy water spill incident could be eliminated. The heavy water spill incident in November, 1984 brought plant staffs many lessons to learn and many things to contemplate. Unique design concepts and features such as on-power refuelling, poison prevent mode, versatile plant control system built around digital computers and power step back/set back logics may be credited for these relatively good plant performances. Human related factors such as staff's technical capabilities and strong will toward good performance were other elements which could not be overlooked.

  17. A novel technique to remove deuterium from CANDU pressure tubes

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhang, C.-S.; Griffiths, K.; Norton, P. R.

    2001-10-01

    Deuterium ingress into the pressure tubes of a Canada deuterium uranium (CANDU) nuclear reactor can cause the pressure tubes to crack prematurely. A novel technique, based on the rapid diffusion of deuterium in zirconium alloys, and subsequent preferential segregation of deuterium at the surface, has been developed to remove dissolved deuterium. This technique involves a simple continuous plasma treatment of the surface of a pressure tube, and can remove as much as 70% of the dissolved deuterium from the entire wall thickness of a pressure tube in realistic time scales. The proposed technique has considerable economic incentive: it may extend the life of pressure tubes without channel replacement.

  18. LBB in Candu plants

    SciTech Connect

    Kozluk, M.J.; Vijay, D.K.

    1997-04-01

    Postulated catastrophic rupture of high-energy piping systems is the fundamental criterion used for the safety design basis of both light and heavy water nuclear generating stations. Historically, the criterion has been applied by assuming a nonmechanistic instantaneous double-ended guillotine rupture of the largest diameter pipes inside of containment. Nonmechanistic, meaning that the assumption of an instantaneous guillotine rupture has not been based on stresses in the pipe, failure mechanisms, toughness of the piping material, nor the dynamics of the ruptured pipe ends as they separate. This postulated instantaneous double-ended guillotine rupture of a pipe was a convenient simplifying assumption that resulted in a conservative accident scenario. This conservative accident scenario has now become entrenched as the design basis accident for: containment design, shutdown system design, emergency fuel cooling systems design, and to establish environmental qualification temperature and pressure conditions. The requirement to address dynamic effects associated with the postulated pipe rupture subsequently evolved. The dynamic effects include: potential missiles, pipe whipping, blowdown jets, and thermal-hydraulic transients. Recent advances in fracture mechanics research have demonstrated that certain pipes under specific conditions cannot crack in ways that result in an instantaneous guillotine rupture. Canadian utilities are now using mechanistic fracture mechanics and leak-before-break assessments on a case-by-case basis, in limited applications, to support licensing cases which seek exemption from the need to consider the various dynamic effects associated with postulated instantaneous catastrophic rupture of high-energy piping systems inside and outside of containment.

  19. Experimental investigation on circumferential and axial temperature gradient over fuel channel under LOCA

    NASA Astrophysics Data System (ADS)

    Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.

    2014-06-01

    In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.

  20. Neutronic calculations for CANDU thorium systems using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Saldideh, M.; Shayesteh, M.; Eshghi, M.

    2014-08-01

    In this paper, we have investigated the prospects of exploiting the rich world thorium reserves using Canada Deuterium Uranium (CANDU) reactors. The analysis is performed using the Monte Carlo MCNP code in order to understand how much time the reactor is in criticality conduction. Four different fuel compositions have been selected for analysis. We have obtained the infinite multiplication factor, k∞, under full power operation of the reactor over 8 years. The neutronic flux distribution in the full core reactor has already been investigated.

  1. Modeling of molten-fuel-moderator interactions

    NASA Astrophysics Data System (ADS)

    Diab, Aya K.

    CANDU reactors are pressurized heavy-water moderated and cooled reactor designs. During commissioning of nuclear power plants a range of possible accidents must be considered to assure the plants' robust design. Consider a complete channel blockage in the CANDU reactor. Such an extreme flow blockage event would result in fuel overheating, pressure tube failure, partial melting of fuel rods and possible molten fuel-moderator interactions (MFMI). The MFMI phenomenon would occur immediately after tube rupture, and would involve a mixture of steam, hydrogen and molten fuel being ejected into the surrounding moderator water in the form of a high-pressure vapor bubble mixture. This bubble mixture would accelerate the surrounding denser water, causing interfacial mixing due to hydrodynamic instabilities at the interface. As a result of these interfacial instabilities, water is entrained into the growing two-phase bubble mixture with the attendant mass and heat transfer; e.g., water vaporization, fuel oxidation. A comprehensive model is developed to investigate these complex phenomena resulting from a postulated complete flow blockage and complete pressure tube failure. This dynamic model serves as a baseline to characterize the pressure response due to a pressure tube rupture and the associated MFMI phenomena. Theoretical modeling of these interrelated complex phenomena is not known a priori and therefore a semi-empirical approach is adopted. Consequently, experimental work is being proposed as part of the thesis work to verify key hypotheses regarding these interfacial fluid instabilities, such as the entrainment fraction into the rapidly expanding bubble.

  2. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    SciTech Connect

    Charak, I.; Kier, P.H.

    1995-04-01

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule ({section}50.62); (2) station blackout ({section}50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term ({section}50.34(f) and {section}100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements ({section}50.55a, etc); (6) ECCS acceptance criteria ({section}50.46)(b); (7) combustible gas control ({section}50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle ({section}51.51); and (11) (standards {section}50.55a).

  3. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in

  4. An on-line regional overpower surveillance system for Candu reactors

    SciTech Connect

    Wallace, D. J.; Caxaj, V.; Seidu, A. S.; Hartmann, W.; Sur, B.; McDonald, A.

    2006-07-01

    The current methodology for establishing Regional Overpower Protection (ROP) trip set-points for Canada Deuterium Uranium (Candu{sup R} reactors requires an extensive and detailed assessment of the plant based on a distribution of channel and bundle powers (flux shapes) calculated from a range of device configurations (e.g., zone controller levels, adjuster bank movements, mechanical control absorber movements, shut-off rod insertions) and a set of thermalhydraulic plant data (channel flows, reactor inlet-header temperatures, channel differential pressure). An on-line approach would provide an interface to assist operators in routine monitoring, diagnostic and maintenance activities by providing Critical Channel Powers (CCP) and ROP set points from instantaneous flux shapes derived from real-time detector readings and associated thermalhydraulic conditions. This paper describes an Advanced On-Line Regional Overpower Surveillance (AOL-ROS) system currently under development at Atomic Energy of Canada Limited (AECL) for Candu reactors. Development has been based on an assessment using instantaneous operating data for the period February to April 2004 from a Candu 6 reactor located at Point Lepreau, New Brunswick (Canada). (authors)

  5. Phase separation predicted to induce water-rich channels in fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Herbst, Daniel; Witten, Thomas; Tsai, Tsung-Han; Coughlin, Bryan; Maes, Ashley; Herring, Andrew

    2015-03-01

    Fuel cells are a promising alternative energy technology that convert chemical fuel directly into electric power. One important fundamental property is exactly how and where water is absorbed in the polyelectrolyte membrane. Previous theoretical studies have used idealized parameters. In this talk, I show how we made a rigorous connection to experiment to make parameter-free predictions of the water-swelling behavior, using self-consistent field theory. The model block co-polymers we studied form alternating hydrophilic/hydrophobic lamellar domains that absorb water in humid air. I will show how simple measurements of the hydrophilic portion in solution lead to predictions of non-uniform water distribution in the membrane, and compare the results to x-ray scattering. The results suggest locally near-uniform water distributions. In special cases, however, each hydrophilic lamella phase-separates, forming an additional water-rich lamella down the center, a beneficial arrangement for ion conductivity. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance. MURI #W911NF-10-1-0520.

  6. Numerical study of the effect of the channel and electrode geometry on the performance of microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Ebrahimi Khabbazi, A.; Richards, A. J.; Hoorfar, M.

    Using COMSOL Multiphysics 3.5, 3D numerical models of different microfluidic fuel cells have been developed in this paper to determine the effect of different modifications which have been implemented in the microfluidic fuel cell since its advent. These modifications include the channel geometry aspect ratio and electrode configuration, the third flow between the anolyte and catholyte in the channel (i.e., multi-stream laminar flow), and multiple periodically placed inlets. To be consistent with the convention, the output power of the device is normalized by the electrode surface area; however, the power density calculations are also performed through normalization by the device volume. It is shown that the latter method is more realistic and providing more information from the design point of view since the ultimate goal in designing the microfluidic fuel cell is to fabricate a compact, yet powerful device. Finally, a novel design of the microfluidic fuel cell with a tapered channel is suggested and compared to the non-tapered geometry through the polarization curves. The steps which have been taken in COMSOL to obtain these polarization curves are clearly and thoroughly explained. The Butler-Volmer equation was implemented to incorporate for the electrochemical reactions at the electrodes. The "Conductive Media DC" module, in COMSOL, is used to model the electric fields within the fuel cell. The concentration distributions of the reactant species are obtained using the "Incompressible Navier-Stokes" and "Convection and Diffusion" modules. Solving these equations together predicts the current density for given cell voltage values. The results demonstrate the cell voltage losses due to activation, ohmic and concentration overpotentials. It is shown that for a fixed value of the cell voltage (say 0.45 V), the fuel cell with multiple periodically placed inlets has the highest fuel utilization (i.e., 62.3%); while the "Simple square" geometry depicts 13.8% fuel

  7. SEU43 fuel bundle shielding analysis during spent fuel transport

    SciTech Connect

    Margeanu, C. A.; Ilie, P.; Olteanu, G.

    2006-07-01

    The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

  8. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    SciTech Connect

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

  9. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    NASA Astrophysics Data System (ADS)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  10. Modeling electrodeposition of charged nanoparticles onto fuel cell coolant flow channel walls

    NASA Astrophysics Data System (ADS)

    Cheng, J.-T.

    2008-10-01

    To cool down the stack system in polymer electrolyte fuel cells (PEFCs), a coolant is needed that must be electrically nonconductive. In the specialized coolant that is modeled by us, charged nanoparticles are added into the flow to neutralize the ion contamination that otherwise gradually degrades the coolant until shunt currents become significant. A computational fluid dynamics (CFD) physicochemical model of the multiphase coolant flow with charged nanoparticles has been formulated and coded using COMSOL Multiphysics and MEMS. Electrochemistry, fluid mechanics, steric stabilization, and heat transfer are coupled in this model. For nanoparticles in the fluid, electrokinetic force, electrical double layer (EDL) force, hydrodynamic force, and buoyancy force have been taken into account for the prediction of the electrodeposition rate onto channel walls. The overall goal of the model is to provide a fundamental first principles-based design tool for a specialized coolant to enable operations in a fuel cell stack for 2-3 years without the need for frequent replacement or filtering of the coolant.

  11. Evolution of pores in the fuel cladding of the electrogenerating channel

    SciTech Connect

    Vasil’ev, I. V. Ivanov, A. S.

    2014-12-15

    The results of reactor tests of carbonitride fuel in a monocrystalline cladding from a molybdenum-based alloy that were carried out earlier on an experimental setup Ya-82 for 8 to 300 h at a temperature of ∼1500°C can be used in order to prove the operational reliability of fuel elements in the design of a megawatt nuclear power plant for a spacecraft. A raster image of the surface of a sample of cladding shows that the interfaces between the layers are decorated by pores. This result is explained in this work by the theory of coalescence. The mechanisms responsible for the evolution of pores taking place at the parameters of a Ya-82 setup are considered. The effect of decoration by pores of the interfaces between the layers of a sample of cladding of the electrogenerating channel by carrying out reactor tests is explained. The dependence of the average radius of pores on the duration of the experiment is obtained. An evaluation of the average sizes of pores arising under the conditions of the experiment gives a value of ∼2 μm, which is in agreement with the experimental data. A computational study of swelling of the cladding material in the process of irradiation is performed. Predictive estimates of the behavior of the porous system and swelling of the cladding material for a megawatt class nuclear power plant are made.

  12. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Once-through CANDU reactor models for the ORIGEN2 computer code

    SciTech Connect

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % /sup 235/U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given.

  14. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cho, Sung Chan

    Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow

  15. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.

    PubMed

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  16. Interaction of a fuel cladding with uranium carbonitride in electrogenerating channel

    NASA Astrophysics Data System (ADS)

    Vasil'ev, I. V.; Ivanov, A. S.; Kaynov, V. B.; Churin, V. A.

    2013-12-01

    Samples of the fuel cladding of electrogenerating channel no. 30, which was included in the setup Ya-82 during nuclear power tests, are studied. The structure of the samples and the distribution of U, Mo, Nb, Cs, C, and N over the cladding thickness are investigated. The X-ray spectrometry microanalysis of the samples is performed at the MAR-3 modernized microanalyzer. A layered structure of the cladding is revealed using the method of scanning electron microscopy. Clusters of pores and other defects are observed at the boundaries of the layers. It is found that the uranium concentration profiles in different passages (at different points of the sample) are distinguished qualitatively. Three types of profiles are observed: firstly, profiles with no visible concentration of uranium above the background level; secondly, monotonically decaying profiles corresponding to the diffusion-induced penetration of uranium; and, thirdly, nonmonotonic concentration profiles. The depth of penetration of uranium into the cladding is ˜105 nm. The peaks of uranium concentration are near the boundaries of the observed layers. It is found that cesium penetrates the tungsten coating and molybdenum cladding. Domains with the increased carbon content are revealed. A stepwise growth in the nitrogen concentration is observed in the region occupied by the tungsten coating.

  17. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells

    PubMed Central

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  18. Improvement the equation of polarization curve of a proton exchange membrane fuel cell at different channel geometry

    NASA Astrophysics Data System (ADS)

    Khazaee, I.

    2015-12-01

    The polarization curve of a proton exchange membrane fuel cell is an important parameter which is expressed by the change of voltage and current of it that indicates the performance of the cell. The voltage of the cell is a function of temperature that is expressed by the Nernst equation and the equation of voltage losses such as activation loss, ohmic loss and concentration loss. In this study a new correlation for polarization curve is obtained that it in addition to temperature, a new parameter is involved in it that shows the effect of the geometry of cross-section area of channels. For this purpose three PEM fuel cells with different channels geometry of rectangular, elliptical and triangular have constructed. The active area of each cell is 25 cm2 that its weight is 1300 g. The material of the gas diffusion layer is carbon clothes, the membrane is nafion 117 and the catalyst layer is a plane with 0.004 g/cm2 platinum. Also a test bench designed and constructed for testing the cell and a series of experiments are carried out to investigate the influence of the geometry of the cell on performance of the cell. The results show that when the geometry of channel is rectangular the performance of the cell is better than the triangular and elliptical channel.

  19. CANDU MOX initiative: Report on a stakeholders` debate

    SciTech Connect

    Gizewski, P.

    1997-12-31

    The safe, secure disposition of excess plutonium from dismantled Russian and US nuclear warheads is a significant international priority. One option being considered involves the fabrication outside of Canada of mixed oxide (MOX) fuel bundles for CANDU reactors. These bundles would contain up to 3% plutonium in oxide form, mixed with uranium oxide. This option is the subject of growing controversy, both in terms of its substance as well as the process by which the MOX option proposal has thus far unfolded. This report summarizes a meeting held to debate the MOX initiative and its implications. Participants include representatives from Atomic Energy of Canada, Ontario Hydro, federal and provincial governments, non-governmental organizations, and interested citizens. The report highlights the main features of the initiative, the nature of the arguments advanced in favor and against it, and the manner in which the debate was conducted. Issues discussed include international security implications, alternatives to the MOX scheme, MOX fuel transportation and security, health-related concerns, the regulatory process, community perspectives, and the policy process.

  20. Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2013-12-01

    Oxygen transport resistance at the air flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated air flow channel using a commercially available package, COMSOL Multiphysics®. A droplet is represented as a solid obstruction placed on the GDL-channel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean air velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean air velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number.

  1. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  2. A high-fidelity Monte Carlo evaluation of CANDU-6 safety parameters

    SciTech Connect

    Kim, Y.; Hartanto, D.

    2012-07-01

    Important safety parameters such as the fuel temperature coefficient (FTC) and the power coefficient of reactivity (PCR) of the CANDU-6 (CANada Deuterium Uranium) reactor have been evaluated by using a modified MCNPX code. For accurate analysis of the parameters, the DBRC (Doppler Broadening Rejection Correction) scheme was implemented in MCNPX in order to account for the thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. In this work, a standard fuel lattice has been modeled and the fuel is depleted by using the MCNPX and the FTC value is evaluated for several burnup points including the mid-burnup representing a near-equilibrium core. The Doppler effect has been evaluated by using several cross section libraries such as ENDF/B-VI, ENDF/B-VII, JEFF, JENDLE. The PCR value is also evaluated at mid-burnup conditions to characterize safety features of equilibrium CANDU-6 reactor. To improve the reliability of the Monte Carlo calculations, huge number of neutron histories are considered in this work and the standard deviation of the k-inf values is only 0.5{approx}1 pcm. It has been found that the FTC is significantly enhanced by accounting for the Doppler broadening of scattering resonance and the PCR are clearly improved. (authors)

  3. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Bessler, Wolfgang G.

    2015-02-01

    A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A Butler-Volmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of electrochemical oxygen reduction. Validated by using published V-I experiments, the model is then used to analyze the effects of operating conditions on current output and water management, especially net water transport coefficient along the channel. For a power PEMFC, the long-channel configuration is helpful for internal humidification and anode water removal, operating in counterflow mode with proper gas flow rate and humidity. In time domain, a typical transient process with closed anode is also investigated.

  4. Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas channel using an embedded Eulerian-Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Jarauta, Alex; Ryzhakov, Pavel; Secanell, Marc; Waghmare, Prashant R.; Pons-Prats, Jordi

    2016-08-01

    An embedded Eulerian-Lagrangian formulation for the simulation of droplet dynamics within a polymer electrolyte fuel cell (PEFC) channel is presented. Air is modeled using an Eulerian formulation, whereas water is described with a Lagrangian framework. Using this framework, the gas-liquid interface can be accurately identified. The surface tension force is computed using the curvature defined by the boundary of the Lagrangian mesh. The method naturally accounts for material property changes across the interface and accurately represents the pressure discontinuity. A sessile drop in a horizontal surface, a sessile drop in an inclined plane and droplets in a PEFC channel are solved for as numerical examples and compared to experimental data. Numerical results are in excellent agreement with experimental data. Numerical results are also compared to results obtained with the semi-analytical model previously developed by the authors in order to discuss the limitations of the semi-analytical approach.

  5. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  6. Experimental investigation of water droplet-air flow interaction in a non-reacting PEM fuel cell channel

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Montello, Aaron D.; Guezennec, Yann G.; Pianese, Cesare

    It has been well documented that water production in PEM fuel cells occurs in discrete locations, resulting in the formation and growth of discrete droplets on the gas diffusion layer (GDL) surface within the gas flow channels (GFCs). This research uses a simulated fuel cell GFC with three transparent walls in conjunction with a high speed fluorescence photometry system to capture videos of dynamically deforming droplets. Such videos clearly show that the droplets undergo oscillatory deformation patterns. Although many authors have previously investigated the air flow induced droplet detachment, none of them have studied these oscillatory modes. The novelty of this work is to process and analyze the recorded videos to gather information on the droplets induced oscillation. Plots are formulated to indicate the dominant horizontal and vertical deformation frequency components over the range of sizes of droplets from formation to detachment. The system is also used to characterize droplet detachment size at a variety of channel air velocities. A simplified model to explain the droplet oscillation mechanism is provided as well.

  7. Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Han, Hun Sik; Kim, Yun Ho; Kim, Seo Young; Hyun, Jae Min

    2012-09-01

    An experimental and theoretical study on the cathode flow pulsation in a polymer electrolyte membrane (PEM) fuel cell is performed. A 10-cell PEM fuel cell stack with open-air cathode channels is employed to investigate the effects of the cathode flow pulsation on the overall performance. The polarization and corresponding power curves obtained show that both the limiting current density and the maximum power density are substantially enhanced when the pulsating component is added to the cathode mainstream flow. The flow pulsation at Re = 77 provides the maximum increment of 40% and 35.5% in the limiting current density and in the maximum power density, respectively. The enhancement of the overall performance is more pronounced at low Reynolds numbers. Also, the theoretical mass transport analysis in the pulsating cathode flow channel is carried out to verify the present experimental results. The momentum and species conservation equations are analytically solved, and the effective time-averaged dispersion coefficient is defined to account for the enhanced mass transport by the flow pulsation. Comprehensive analytical solutions show that the effect of the relevant parameters is in well accordance with the experimental results.

  8. Leak detection capability in CANDU reactors

    SciTech Connect

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  9. The effect of number and configuration of sediment microbial fuel cells on their performance in an open channel architecture

    NASA Astrophysics Data System (ADS)

    Abazarian, Elham; Gheshlaghi, Reza; Mahdavi, Mahmood A.

    2016-09-01

    The aim of this study is to investigate the effect of the number of sediment microbial fuel cells (SMFCs) with different configurations on the electricity generation in open channels. For this purpose, two open channels, one with three and another with four SMFCs, were operated over a long period of time and their performances were analyzed. Individual SMFCs followed an almost similar trend for electricity generation during the operation time. In addition, it was found that three-SMFC stacking in series mode produced a relatively higher maximum power density (18 mW m-2) than four-SMFC stacking (16 mW m-2). However, in parallel mode, four-SMFC stacking had a higher maximum power density of 90 mW m-2 compared to three-SMFC stacking with maximum power density of 78 mW m-2. These findings indicate that different numbers of cells significantly affect electricity generation depending on the type of SMFC configuration in the channel. The results would be helpful for application of SMFCs in large-scale.

  10. Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, H. K.; Huang, S. H.; Chen, B. R.; Cheng, L. W.

    Previous studies have shown that the amplitude of the vibration of a piezoelectric (PZT) device produces an oscillating flow that changes the chamber volume along with a curvature variation of the diaphragm. In this study, an actuating micro-diaphragm with piezoelectric effects is utilized as an air-flow channel in proton exchange membrane fuel cell (PEMFC) systems, called PZT-PEMFC. This newly designed gas pump, with a piezoelectric actuation structure, can feed air into the system of an air-breathing PEMFC. When the actuator moves outward to increase the cathode channel volume, the air is sucked into the chamber; moving inward decreases the channel's volume and thereby compresses air into the catalyst layer and enhancing the chemical reaction. The air-standard PZT-PEMFC cycle is proposed to describe an air-breathing PZT-PEMFC. A novel design for PZT-PEMFCs has been proposed and a three-dimensional, transitional model has been successfully built to account for its major phenomena and performance. Moreover, at high frequencies, PZT actuation leads to a more stable current output, more drained water, higher sucked air, higher hydrogen consumption, and also overcomes concentration losses.

  11. Water emergence from the land region and water-sidewall interactions in Proton Exchange Membrane Fuel Cell gas channels with microgrooves

    NASA Astrophysics Data System (ADS)

    Shah, Mihir M.; Kandlikar, Satish G.

    2015-11-01

    Liquid water produced in a Proton Exchange Membrane Fuel Cell (PEMFC) can adversely affect the fuel cell performance in two ways: (a) reduction in surface area available for reactant transport at the channel-gas diffusion layer (GDL) interface, and (b) increase in two-phase pressure drop in channels leading to flow maldistribution and increased pumping power. Further, the channels blocked by water reduce reactant availability at reaction sites. Most of the earlier water transport studies were focused on water droplet formation on the gas diffusion layer (GDL) in the channel and its removal from the gas flow without considering the sidewall interactions. In an actual fuel cell, water under the land emerges in the channel and fills the corner, drawing in additional water from the GDL surface. The present work explores water droplet-sidewall interactions and the transport of water from the corner region. Transverse micro-grooves are introduced on the sidewalls and their effect on water removal from the corner region, flow patterns, area coverage ratio and pressure drop are investigated. The micro-grooves are also seen to introduce a wetting regime that facilitates removal of water at the channel exit without causing blockage at the manifold region.

  12. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow visualization

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak; Kandlikar, Satish G.

    2014-02-01

    Water management is crucial to the performance of PEM fuel cells. Water is generated as part of the electrochemical reaction, and is removed through the reactant channels. This results in two-phase flow in the reactant channels. Increased understanding of the behavior of the liquid water in the channels allows us to devise better strategies for managing the water content inside the fuel cell. Most previous work has been focused on qualitative information regarding flow pattern maps. The current work presents new algorithms developed in MATLAB® to quantify the liquid water and to identify the flow patterns in the cathode side reactant channels. Parallel channels with dimensions matching those of commercial stacks have been used in this study. The liquid water present in the reactant channels is quantified for different temperature, inlet RH and current density conditions, and the results are presented in terms of area coverage ratio. The dominant flow patterns for the different conditions have been mapped, and trends interpreted on the basis of air flow velocities and saturation conditions within the channels.

  13. NRC review of the CANDU-3 reactor design

    SciTech Connect

    Kennedy, J.L. )

    1993-01-01

    This paper presents an overview of the US Nuclear Regulatory Commission's (NRC's) effort to complete an early review of the Canada deuterium uranium (CANDU)-3 reactor design prior to formal submittal of an application for standard design certification. The NRC is conducting a review of the CANDU-3 design in support of a request by AECL Technologics, the US sponsor of the design. The purpose of this review is to encourage early interactions by applicants, vendors, and government agencies with the NRC. The CANDU-3 design is being developed by Atomic Energy of Canada, Limited (AECL), whose CANDU operations are based in Mississauga, Ontario. AECL Technologies, a US subsidiary of AECL, Incorporated, informed the NRC of its intent to seek design certification of the CANDU-3 design under the provisions of 10CFR52 in a letter to the NRC dated May 25, 1989. This paper describes the commission's basis for this type of early review, its purposes and objectives, key elements of the review, the intended product, and the schedule.

  14. Dry gas operation of proton exchange membrane fuel cells with parallel channels: Non-porous versus porous plates

    NASA Astrophysics Data System (ADS)

    Litster, Shawn; Santiago, Juan G.

    We present a study of proton exchange membrane (PEM) fuel cells with parallel channel flow fields for the cathode, dry inlet gases, and ambient pressure at the outlets. The study compares the performance of two designs: a standard, non-porous graphite cathode plate design and a porous hydrophilic carbon plate version. The experimental study of the non-porous plate is a control case and highlights the significant challenges of operation with dry gases and non-porous, parallel channel cathodes. These challenges include significant transients in power density and severe performance loss due to flooding and electrolyte dry-out. Our experimental study shows that the porous plate yields significant improvements in performance and robustness of operation. We hypothesize that the porous plate distributes water throughout the cell area by capillary action; including pumping water upstream to normally dry inlet regions. The porous plate reduces membrane resistance and air pressure drop. Further, IR-free polarization curves confirm operation free of flooding. With an air stoichiometric ratio of 1.3, we obtain a maximum power density of 0.40 W cm -2, which is 3.5 times greater than that achieved with the non-porous plate at the same operating condition.

  15. Modelling the activity of 129I in the primary coolant of a CANDU reactor

    NASA Astrophysics Data System (ADS)

    Lewis, Brent J.; Husain, Aamir

    2003-01-01

    A mathematical treatment has been developed to describe the activity levels of 129I as a function of time in the primary heat transport system during constant power operation and for a reactor shutdown situation. The model accounts for a release of fission-product iodine from defective fuel rods and tramp uranium contamination on in-core surfaces. The physical transport constants of the model are derived from a coolant activity analysis of the short-lived radioiodine species. An estimate of 3×10 -9 has been determined for the coolant activity ratio of 129I/ 131I in a CANDU Nuclear Generating Station (NGS), which is in reasonable agreement with that observed in the primary coolant and for plant test resin columns from pressurized and boiling water reactor plants. The model has been further applied to a CANDU NGS, by fitting it to the observed short-lived iodine and long-lived cesium data, to yield a coolant activity ratio of ˜2×10 -8 for 129I/ 137Cs. This ratio can be used to estimate the levels of 129I in reactor waste based on a measurement of the activity of 137Cs.

  16. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  17. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  18. Current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Shrivastava, Udit N.; Tajiri, Kazuya; Chase, Michael

    2015-12-01

    A highly instrumented segmented cell is designed to measure current density and ohmic resistance distribution in the land-channel direction of a proton exchange membrane fuel cell at resolution of 350 μm. A customized catalyst coated membrane with an active area of 9 mm2 is prepared, and a printed-circuit board technique is introduced to ease fabrication of segmented anode and to adapt design to any flow arrangement. Design of segmented cell is validated by electrochemical pumping of hydrogen from anode to cathode. Current density and ohmic resistance distribution are measured in two wet conditions (at 40 °C and 60 °C) and a dry condition at 60 °C. In all cases a strong correlation between current generation and ohmic resistance distribution is observed. Outcomes from these experiments revealed that the water distribution has a strong effect on the local current generation and ohmic resistance. In wet condition ohmic resistance is uniform but current generation found to be non-uniform because of the non-uniform liquid water distribution. In dry condition, on the other hand, non-uniform water generation resulted in both uneven current generation and ohmic resistance.

  19. Comparison between numerical simulation and visualization experiment on water behavior in single straight flow channel polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Masuda, Hiromitsu; Ito, Kohei; Oshima, Toshihiro; Sasaki, Kazunari

    A relationship between a flooding and a cell voltage drop for polymer electrolyte fuel cell was investigated experimentally and numerically. A visualization cell, which has single straight gas flow channel (GFC) and observation window, was fabricated to visualize the flooding in GFC. We ran the cell with changing operation condition, and measured the time evolution of cell voltage and took the images of cathode GFC. Considering the operation condition, we executed a developed numerical simulation, which is based on multiphase mixture model with a formulation on water transport through the surface of polymer electrolyte membrane and the interface of gas diffusion layer/GFC. As a result in experiment, we found that the cell voltage decreased with time and this decrease was accelerated by larger current and smaller air flow rate. Our simulation succeeded to demonstrate this trend of cell voltage. In experiment, we also found that the water flushing in GFC caused an immediate voltage change, resulting in voltage recovery or electricity generation stop. Although our simulation could not replicate this immediate voltage change, the supersaturated area obtained by our simulation well corresponded to fogging area appeared on the window surface in the GFC.

  20. Residence time of water film and slug flow features in fuel cell gas channels and their effect on instantaneous area coverage ratio

    NASA Astrophysics Data System (ADS)

    Lorenzini-Gutierrez, Daniel; Kandlikar, Satish G.; Hernandez-Guerrero, Abel; Elizalde-Blancas, Francisco

    2015-04-01

    Water in the gas channels of a Proton Exchange Membrane Fuel Cell is modeled as slugs and film, and removal mechanisms for these flow patterns are numerically investigated. The removal of excess liquid water is simulated using computational fluid dynamics (CFD) through the volume of fluid (VOF) model. The computational domain consists of a gas flow channel appropriate for commercial stacks for automotive applications. The effects of superficial air velocity, channel surface wettability, and channel cross-section geometry are investigated through quantitative comparison of two-phase pressure drop, area coverage ratio (ACR) over the gas diffusion layer (GDL) and liquid removal time. Top wall film flow was identified as a desirable feature since it did not cover the GDL and facilitated transport of oxygen to the reaction sites while removing the water. A range of hydrophilic channel walls in combination with a hydrophobic GDL is proposed to promote this behavior while reducing the fluctuations in two-phase pressure drop for different contact angles. Additional enhancements to liquid water removal were associated with the channel cross-section geometry. An alternative trapezoidal shape is suggested for improved top wall film flow while improving the manufacturability of the bipolar plates for mass production.

  1. The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison

    NASA Astrophysics Data System (ADS)

    Albrecht, Kevin J.; Braun, Robert J.

    2016-02-01

    Dynamic modeling and analysis of solid oxide fuel cell systems can provide insight towards meeting transient response application requirements and enabling an expansion of the operating envelope of these high temperature systems. SOFC modeling for system studies are accomplished with channel-level interface charge transfer models, which implement dynamic conservation equations coupled with additional submodels to capture the porous media mass transport and electrochemistry of the cell. Many of these models may contain simplifications in order to decouple the mass transport, fuel reforming, and electrochemical processes enabling the use of a 1-D model. The reforming reactions distort concentration profiles of the species within the anode, where hydrogen concentration at the triple-phase boundary may be higher or lower than that of the channel altering the local Nernst potential and exchange current density. In part one of this paper series, the modeling equations for the 1-D and 'quasi' 2-D models are presented, and verified against button cell electrochemical and channel-level reforming data. Steady-state channel-level modeling results indicate a 'quasi' 2-D SOFC model predicts a more uniform temperature distribution where differences in the peak cell temperature and maximum temperature gradient are experienced. The differences are most prominent for counter-flow cell with high levels of internal reforming. The transient modeling comparison is discussed in part two of this paper series.

  2. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Shiro; Shudo, Toshio

    2014-12-01

    Electrode flooding at the cathode impedes the increase in power density of polymer electrolyte fuel cells (PEFCs), limiting their use at high current densities. Liquid water can accumulate in the pores of the gas-diffusion layer (GDL), deteriorating performances significantly. This paper reports a novel fuel-cell structure for the reduction of electrode flooding utilizing corrugated mesh as gas-flow channels and gas diffusers placed directly onto the microporous layer (MPL) without a conventional GDL in between. The polarization curve of the corrugated-mesh fuel cell shows a lower flooding tendency at a high current density; however, the high-frequency resistance (HFR) of this fuel cell increases significantly as a result of fewer contact points between the corrugated mesh and MPL. In addition, MPL conductivity and rigidity are investigated in efforts to reduce the flow-channel pattern resistance. The rigidity of the MPL has a small effect on the reduction in HFR, which may be caused by an improved pressure distribution on the catalyst layer.

  3. The Results From the First High-Pressure Melt Ejection Test Completed in the Molten Fuel Moderator Interaction Facility at Chalk River Laboratories

    SciTech Connect

    Nitheanandan, T.; Kyle, G.; O'Connor, R.; Sanderson, DB.

    2006-07-01

    A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected from a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)

  4. Effect of ageing of gas diffusion layers on the water distribution in flow field channels of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kätzel, Juliane; Markötter, Henning; Arlt, Tobias; Klages, Merle; Haußmann, Jan; Messerschmidt, Matthias; Kardjilov, Nikolay; Scholta, Joachim; Banhart, John; Manke, Ingo

    2016-01-01

    We present a quantitative analysis of the influence of artificial ageing of gas diffusion layers (GDL) on the water distribution and transport in polymer electrolyte membrane fuel cells (PEMFCs) during cell operation. Water droplet size distributions are measured by means of in-operando neutron radiography. We find a strong correlation between droplet size distribution and GDL ageing time: With increasing GDL ageing, water droplet sizes in the flow field channels strongly decrease, indicating an ineffective water transport that leads to a reduced cell performance. This effect can be assigned to water accumulations on the GDL surface that block the gas supply towards the catalyst layer.

  5. Experimental investigation of two-phase flow pressure drop transients in polymer electrolyte membrane fuel cell reactant channels and their impact on the cell performance

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak; Kandlikar, Satish G.

    2014-12-01

    Fuel cells experience transients, which constitute a significant part of the drive cycle. Fuel cell response during these transients depends on the rates of reaction kinetics as well as mass transport delays. In the current work, an in situ setup is used to investigate the effect of changing load and temperature conditions on the two-phase flow in the fuel cell. Pressure drop and voltage response from the cell are used to characterize the two-phase flow and performance of the cell. The effect of changing load is simulated by changing the current by 20 A cm-2 (0.4 A cm-2) over a time period of 300 s, while the effect of changing cell temperature is studied by increasing/decreasing the cell temperature by 40 °C over 900 s. The results show that several minutes are required after a transient event for the two-phase flow to return to a new steady state condition. Transient effects are more prominent at the lower temperature of 40 °C, at which condition there is more liquid water present in the channels. Overshoot behavior, commonly seen in current and voltage response from fuel cells, has been observed for two-phase pressure drop during transient load changes.

  6. Transient analysis of gas transport in anode channel of a polymer electrolyte membrane fuel cell with dead-ended anode under pressure swing operation

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yasushi; Oshima, Nobuyuki; Tabuchi, Yuichiro; Ikezoe, Keigo

    2014-12-01

    Further cost reduction is a critical issue for commercialization of fuel-cell electric vehicles (FCEVs) based on polymer electrolyte fuel cells (PEFCs). The cost of the fuel-cell system is driven by the multiple parts required to maximize stack performance and maintain durability and robustness. The fuel-cell system of the FCEV must be simplified while maintaining functionality. The dead-ended anode is considered as a means of simplification in this study. Generally, if hydrogen is supplied under constant pressure during dead-ended operation, stable power generation is impossible because of accumulation of liquid water produced by power generation and of nitrogen via leakage from the cathode through the membrane. Herein, pressure oscillation is applied to address this issue. Empirical and CFD data are employed to elucidate the mechanism of stable power generation using the pressure swing supply. Simultaneous and time-continuous measurements of the current distribution and gas concentration distribution are also conducted. The results demonstrate that the nitrogen concentration in the anode channel under pressure constant operation differs from that under pressure swing supply conditions. The transient two-dimensional CFD results indicate that oscillatory flow is generated by pressure swing supply, which periodically sweeps out nitrogen from the active area, resulting in stable power generation.

  7. SAFEGUARDS EXPERIENCE ON THE DUPIC FUEL CYCLE PROCESS

    SciTech Connect

    J. HONG; H. KIM; ET AL

    2001-02-01

    Safeguards have been applied to the R and D process for directly fabricating CANDU fuel with PWR spent fuel material. Safeguards issues to be resolved were identified in the areas such as international cooperation on handling foreign origin nuclear material, technology development of operator's measurement system of the bulk handling process of spent fuel material, and a built-in C/S system for independent verification of material flow. The fuel cycle concept (Direct Use of PWR spent fuel in CANDU, DUPIC) was developed in consideration of reutilization of over-flowing spent fuel resources at PWR sites and a reduction of generated high level wastes. All those safeguards issues have been finally resolved, and the first batch of PWR spent fuel material was successfully introduced in the DUPIC lab facility and has been in use for routine process development.

  8. Oxygen transport resistance at gas diffusion layer - Air channel interface with film flow of water in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2016-01-01

    Water present as films on the gas diffusion layer-air channel interface in a proton exchange membrane fuel cell (PEMFC) alters the oxygen transport resistance, which is expressed through Sherwood number (Sh). The effect of multiple films along the flow length on Sh is investigated through 3D and stationary simulations. The effects of air Péclet number, non-dimensional film width, length, and spacing are studied. Using the simulation results, non-dimensional correlations are developed for local Sh within a mean absolute percentage error of 9%. These correlations can be used for simulating PEMFC performance over temperature and relative humidity ranges of 20-80 °C and 0-100%, respectively. Sh on the film side can be up to 31% lower than that for a dry channel, while a film may reduce the interfacial width by up to 39%. The corresponding increase in transport resistance results in lowering the voltage by 5 and 8 mV respectively at a current density of 1.5 A cm-2. However, their combined effect leads to a voltage loss of 20 mV due to this additional mass transport resistance. It is therefore important to incorporate the additional resistance introduced by the films while modeling fuel cell performance.

  9. Experimental investigation on a polymer electrolyte membrane fuel cell (PEMFC) parallel flow field design with external two-valve regulation on cathode channels

    NASA Astrophysics Data System (ADS)

    Tong, Shijie; Bachman, John C.; Santamaria, Anthony; Park, Jae Wan

    2013-11-01

    Parallel/interdigitated/serpentine flow field PEM fuel cells have similar performance under low overvoltage operation. At higher overvoltage, interdigitated/serpentine flow field performance may exceed parallel flow field designs due to better water removal and more uniform reactant distribution by convective reactant flow in the GDL under land area, i.e. cross flow. However, serpentine flow field design suffers from high pumping losses and the risk of local flooding at channel U-bends. Additionally, interdigitated flow field designs may have higher local flooding risk in the inlet channels and relatively large pumping requirement at low current densities. In this study, a novel parallel flow field design with external two-valve regulation on the cathode was presented. Two valves introduced continuous pressure differences to two separate manifolds in the cathode that induce cross flow across the land areas. Moreover, both valves remained partially open to maintain a good water removal from flow channels. Comparative test results showed the proposed design surpasses performance of both parallel and interdigitated flow field design at operation current density of 0.7 A cm-2 or higher. The performance enhancement is 10.9% at peak power density point (0.387 W cm-2 @ 0.99 A cm-2) compared to parallel flow field taking into account pumping losses.

  10. Evaluation of the Sub-Channel Code COBRA-TF for Prediction of BWR Fuel Assembly Void Fraction Distribution

    SciTech Connect

    Aydogan, Fatih; Hochreiter, Lawrence E.; Ivanov, Kostadin; Rhee, Gene; Sartori, Enrico

    2006-07-01

    Good quality experimental data is needed to refine the thermal hydraulic models for the prediction of rod bundle void distribution and critical heat flux (CHF) or dry-out. The Nuclear Power Engineering Corporation (NUPEC) has provided a valuable database to evaluate the thermal hydraulic codes [1]. Part of this database was selected for the NUPEC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark sponsored by US NRC, METI-Japan, NEA/OECD and Nuclear Engineering Program of the Pennsylvania State University (PSU). Twenty-five organizations from ten countries have confirmed their intention to participate and will provide code predictions to be compared to the measured data for a series of defined exercises within the framework of the BFBT benchmark. This benchmark data includes both the fine-mesh high quality sub-channel void fraction and critical power data. Using a full BWR rod bundle test facility, the void distribution was measured at mesh sizes smaller than the sub-channel by using a state-of-the-art computer tomography (CT) technology [1]. Experiments were performed for different pressures, flow rates, exit qualities, inlet sub-cooling, power distributions, spacer types and assembly designs. There are microscopic and sub-channel averaged void fraction data from the CT scanner at the bundle exit as well as X-ray densitometer void distribution data at different elevation levels in the rod bundle. Each sub-channel's loss coefficient was calculated with using the Rehme method [2,3], and a COBRA-TF sub-channel model was developed for the NUPEC facility. The BWR assembly that was modeled with COBRA-TF includes two water rods at the center. The predicted sub-channel void fraction values from COBRA-TF are compared with the bundle exit void fraction values measured using the CT-scanner void fraction from the BFBT benchmark data. Different plots are used to examine the code prediction of the void distribution at a sub-channel level for the different sub-channels within

  11. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2016-04-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  12. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines

    NASA Astrophysics Data System (ADS)

    Benderskiy, B. Ya.; Chernova, A. A.

    2015-03-01

    The topological features of the structure of combustion products flow in the flow paths with different shapes of channel cross sections at power installations are considered. The results of mathematical modeling of internal gas dynamics of the flow paths of power installations are compared with experimental data.

  13. A Neural Network Model for the Tomographic Analysis of Irradiated Nuclear Fuel Rods

    SciTech Connect

    Craciunescu, Teddy

    2004-04-15

    A tomographic method based on a multilayer feed-forward artificial neural network is proposed for the reconstruction of gamma-radioactive fission product distribution in irradiated nuclear fuel rods. The quality of the method is investigated as compared to a conventional technique on experimental results concerning a Canada deuterium uranium reactor (CANDU)-type fuel rod irradiated in a TRIGA reactor.

  14. A CANDU figure-of-eight flow stability model

    SciTech Connect

    Gulshani, P.; Spinks, N.J.

    1984-11-01

    A stability model of flow oscillations observed in two-phase flow tests in a CANDU-like experimental rig is developed. The model is derived by linearizing and solving one-dimensional, homogeneous two-phase flow conservation equations. The flow oscillations are explained in terms of the response of the pressure in the two-phase region to a change in the single-phase flow. A simple instability criterion valid for high-pressure thermosyphoning is given. The observed and predicted periods and damping ratios are generally found to be in good agreement. Combined with a simple, analytic, steady-state model to give approximate loop operating conditions, the stability model is used to generate stability maps for thermosyphoning conditions.

  15. Ballooning of CANDU pressure tubes: Hydride blisters and iodine

    SciTech Connect

    Forrest, C.F.

    1997-12-31

    Reports on a project that continues a test program to determine the effects of in-service degradation and abnormal environmental conditions on the ballooning behavior of pressure tubes in CANDU nuclear reactors. Investigators tested nine zirconium-niobium pressure tube specimens to study the effects of hydride blisters and uniformly distributed hydrogen, and the composition of the internal pressurizing gas, including argon, steam, a steam-iodine mixture, and hydrogen. Specimen internal pressure and temperature ramp rate ranged from one megapascal and one degree K per second to 9.6 megapascals and 35 K per second. Three reference tests were carried out with as-received material. Temperatures on the outside and inside surfaces of the specimens, and circumferential and longitudinal strains, were recorded during the transients. Post-test longitudinal, circumferential, and wall thickness strains were also measured.

  16. Next Generation CANDU: Conceptual Design for a Short Construction Schedule

    SciTech Connect

    Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville

    2002-07-01

    Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

  17. A prototype expert system for the monitoring of defected nuclear fuel elements in Canada deuterium uranium reactors

    SciTech Connect

    Lewis, B.J.; Green, R.J. ); Che, C.W.T. )

    1992-06-01

    This paper reports on a prototype expert system for fuel failure monitoring in Canada deuterium uranium (CANDU) power reactors. Based on a coolant activity analysis, the system is able to provide information in an operating reactor on the number of fuel failures, the average defect size, and the amount of tramp uranium deposited on the in-core surfaces of the primary heat transport system. The fission product release model used in the system is based on results from an in-reactor experimental program at Chalk River Nuclear Laboratories. The expert system is validated against fuel failure data from a number of CANDU power reactors.

  18. The analysis of failed nuclear fuel rods by gamma computed tomography

    NASA Astrophysics Data System (ADS)

    Dobrin, Relu; Craciunescu, Teddy; Tuturici, Ioan Liviu

    1997-07-01

    The failure of the cladding of an irradiated nuclear fuel rod can lead to the loss of some γ-radioactive fission products. Consequently the distribution of these fission products is altered in the cross-section of the fuel rod. The modification of the distribution, obtained by gamma computed tomography, is used to determine the integrity of the fuel cladding. The paper reports an experimental result, obtained for a CANDU-type fuel rod, irradiated in a TRIGA 14 MWth reactor.

  19. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    NASA Astrophysics Data System (ADS)

    Ionescu, S.; Uţă, O.; Pârvan, M.; Ohâi, D.

    2009-03-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.

  20. Ajustement du rechargement et des mecanismes de reactivite des reacteurs CANDU pour les cycles de combustible avances

    NASA Astrophysics Data System (ADS)

    St-Aubin, Emmanuel

    This research project main objectives are to set up and apply a methodology that can determine the potential of advanced thorium-based fuel cycles in CANDU reactors and that is able to adjust reactivity devices, in such a way as to maintain their reference efficiency for these new fuels. In order to select these fuel cycles, a large alternative fuel envelope is submitted to several discriminating criteria. A coarse parametric core modeling, that takes into account standard reactivity devices, is first used to highlight candidates presenting the best economical performances and to eliminate non viable options. Then, for the best candidates, the neutronic modeling is optimized before considering reactivity devices adjustment. For every reactivity device managed by the reactor regulating system, innovative generic optimization methods are used to achieve specific objectives for every fuel cycle, all of them being based on the reference natural uranium cycle behavior. Specific optimization objectives are assessed by simulating advanced fuel cycle for specific operating conditions, including : normal on-power refueling period, spurious reactor trip and fueling machine unavailibility. Unlike the generalized perturbative approach proposed in the OPTEX code, we have successfully implemented a multi-step method able to maximize both the energy extracted from the fuel using an equilibrium refueling optimization, and the reactivity devices adequacy. We also propose new reactivity device supercell models that provides accurate reactor databases for a fraction of the computing cost usually needed using a full model with a similar spatial discretization. Our approach is verified by comparing our simulation results with results published in the literature for the reference fuel cycle. The methodology developed identified advanced fuel cycles, containing up to 60%v. thorium, thereby increasing resources utilization by more than 50% and multiplying the fuel average exit burn-up by

  1. The design of the DUPIC spent fuel bundle counter

    SciTech Connect

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs.

  2. Performance enhancement of polymer electrolyte fuel cells by combining liquid removal mechanisms of a gas diffusion layer with wettability distribution and a gas channel with microgrooves

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Koresawa, Ryo

    2016-08-01

    Although polymer electrolyte fuel cells (PEFCs) are commercially available, there are still many problems that need to be addressed to improve their performance and increase their usage. At a high current density, generated water accumulates in the gas diffusion layer and in the gas channels of the cathode. This excess water obstructs oxygen transport, and as a result, cell performance is greatly reduced. To improve the cell performance, the effective removal of the generated water and the promotion of oxygen diffusion in the gas diffusion layer (GDL) are necessary. In this study, two functions proposed in previous reports were combined and applied to a PEFC: a hybrid GDL to form an oxygen diffusion path using a wettability distribution and a gas separator with microgrooves to enhance liquid removal. For a PEFC with a hybrid GDL and a gas separator with microgrooves, the concentration overvoltage of the PEFC was reduced, and the current density limit and maximum power density were increased compared with a conventional PEFC. Moreover, the stability of the cell voltage was markedly improved.

  3. A probabilistic method for leak-before-break analysis of CANDU reactor pressure tubes

    SciTech Connect

    Puls, M.P.; Wilkins, B.J.S.; Rigby, G.L.

    1997-04-01

    A probabilistic code for the prediction of the cumulative probability of pressure tube ruptures in CANDU type reactors is described. Ruptures are assumed to result from the axial growth by delayed hydride cracking. The BLOOM code models the major phenomena that affect crack length and critical crack length during the reactor sequence of events following the first indications of leakage. BLOOM can be used to develop unit-specific estimates of the actual probability of pressure rupture in operating CANDU reactors and supplement the existing leak before break analysis.

  4. CANDU-PHW reactor in relation to a Second Nuclear Era

    SciTech Connect

    Siddall, E.

    1984-05-01

    The reasons for the emergence and successful development of the CANDU-PHWR system are outlined. A plant of typical present-day design is described, with tabulated parameters and dimensions for two sizes. Technical, economic, and commercial differences from other reactor types are considered, including investment patterns and consumption of the basic uranium resource. Safety aspects are compared with those of other reactor types and a condensed risk assessment is given. The separate question of licensability is discussed, with the conclusion that this is unpredictable because of the nature of the licensing process. It is concluded that CANDU-PHWR is a viable system for a Second Nuclear Era.

  5. Application of the SASSI soil structure interaction method to CANDU 6 NPP seismic analysis

    SciTech Connect

    Ricciuti, R.A.; Elgohary, M.; Usmani, S.A.

    1996-12-01

    The standard CANDU 6 NPP has been conservatively qualified for a Design Basis Earthquake (DBE) peak horizontal ground acceleration of 0.2 g. Currently there are potential opportunities for siting the CANDU 6 at higher seismicity sites. In order to be able to extend the use of a standardized design for sites with higher seismicity than the standard plant, various design options, including the use of the SASSI Soil Structure Interaction (SSI) analysis method, are being evaluated. This paper presents the results of a study to assess the potential benefits from utilization of the SASSI computer program and the use of more realistic damping ratios for the structures.

  6. A statistical approach to nuclear fuel design and performance

    NASA Astrophysics Data System (ADS)

    Cunning, Travis Andrew

    As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance

  7. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  8. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    SciTech Connect

    Greene, S.R.; Spellman, D.J.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  9. Candu 6 severe core damage accident consequence analysis for steam generator tube rupture scenario using MAAP4-CANDU V4.0.5A: preliminary results

    SciTech Connect

    Petoukhov, S.M.; Awadh, B.; Mathew, P.M.

    2006-07-01

    This paper describes the preliminary results of the consequence analysis for a generic AECL CANDU 6 station, when it undergoes a postulated, low probability Steam Generator multiple Tube Rupture (SGTR) severe accident with assumed unavailability of several critical plant safety systems. The Modular Accident Analysis Program for CANDU (MAAP4-CANDU) code was used for this analysis. The SGTR accident is assumed to begin with the guillotine rupture of 10 steam generator tubes in one steam generator in Primary Heat Transport System (PHTS) loop 1. For the reference case, the following systems were assumed unavailable: moderator and shield cooling, emergency core cooling, crash cool-down, and main and auxiliary feed water. Two additional cases were analyzed, one with the crash cool-down system available, and another with the crash cool-down and the auxiliary feed water systems available. The three scenarios considered in this study show that most of the initial fission product inventory would be retained within the containment by various fission product retention mechanisms. For the case where the crash cool-down system was credited but the auxiliary feed water systems were not credited, the total mass of volatile fission products released to the environment including stable and radioactive isotopes was about four times more than in the reference case, because fission products could be released directly from the PHTS to the environment through the Main Steam Safety Valves (MSSVs), bypassing the containment. For the case where the crash cool-down and auxiliary feed water systems were credited, the volatile fission product release to the environment was insignificant, because the fission product release was substantially mitigated by scrubbing in the water pool in the secondary side of the steam generator (SG). (authors)

  10. RFI channels

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  11. CFX Analysis of the CANDU Moderator Thermal-Hydraulics in the Stern Lab. Test Facility

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Tae

    2014-06-01

    A numerical calculation with the commercial CFD code CFX is conducted for a test facility simulating the CANDU moderator thermal-hydraulics. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the CANDU moderator circulating vessel, which is called a Calandria, housing a matrix of horizontal rod bundles simulating the Calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the Calandria. In the present study the full geometric details of the Calandria are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

  12. Tritium activities in Canada supporting CANDU{sup R} nuclear power reactors

    SciTech Connect

    Miller, J. M.

    2008-07-15

    An overview of the various Canadian tritium research and operational activities supporting the development, refurbishment and operation of CANDU{sup R} nuclear power reactors is presented. These activities encompass tritium health and safety, tritium in the environment, tritium interaction with materials, and tritium processing, and relate to both supporting R and D advances as well as operational best practices. The collective results of these activities contribute to our goals of improving worker and public safety, and operational efficiency. (authors)

  13. Implementation of an on-line monitoring system for transmitters in a CANDU nuclear power plant

    NASA Astrophysics Data System (ADS)

    Labbe, A.; Abdul-Nour, G.; Vaillancourt, R.; Komljenovic, D.

    2012-05-01

    Many transmitters (pressure, level and flow) are used in a nuclear power plant. It is necessary to calibrate them periodically to ensure that their measurements are accurate. These calibration tasks are time consuming and often contribute to worker radiation exposure. Human errors can also sometimes degrade their performance since the calibration involves intrusive techniques. More importantly, experience has shown that the majority of current calibration efforts are not necessary. These facts motivated the nuclear industry to develop new technologies for identifying drifting instruments. These technologies, well known as on-line monitoring (OLM) techniques, are non-intrusive and allow focusing the maintenance efforts on the instruments that really need a calibration. Although few OLM systems have been implemented in some PWR and BWR plants, these technologies are not commonly used and have not been permanently implemented in a CANDU plant. This paper presents the results of a research project that has been performed in a CANDU plant in order to validate the implementation of an OLM system. An application project, based on the ICMP algorithm developed by EPRI, has been carried out in order to evaluate the performance of an OLM system. The results demonstrated that the OLM system was able to detect the drift of an instrument in the majority of the studied cases. A feasibility study has also been completed and has demonstrated that the implementation of an OLM system at a CANDU nuclear power plant could be advantageous under certain conditions.

  14. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    SciTech Connect

    Harvel, G.D.; Chang, J.S.; Krishnan, V.S.

    1997-05-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results.

  15. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  16. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  17. Apparatus and method for mixing fuel in a gas turbine nozzle

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight

    2014-08-12

    A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.

  18. Fuel cell system configurations

    DOEpatents

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  19. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  20. Fuel flexible fuel injector

    SciTech Connect

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  1. The Advanced Candu reactor annunciation system - Compliance with IEC standard and US NRC guidelines

    SciTech Connect

    Leger, R.; Malcolm, S.; Davey, E.

    2006-07-01

    Annunciation is a key plant information system that alerts Operations staff to important changes in plant processes and systems. Operational experience at nuclear stations worldwide has shown that many annunciation implementations do not provide the support needed by Operations staff in all plant situations. To address utility needs for annunciation improvement in Candu plants, AECL in partnership with Canadian Candu utilities, undertook an annunciation improvement program in the early nineties. The outcome of the research and engineering development program was the development and simulator validation of alarm processing, display, and information presentation techniques that provide practical and effective solutions to key operational deficiencies with earlier annunciation implementations. The improved annunciation capabilities consist of a series of detection, information processing and presentation functions called the Candu Annunciation Message List System (CAMLS). The CAMLS concepts embody alarm processing, presentation and interaction techniques, and strategies and methods for annunciation system configuration to ensure improved annunciation support for all plant situations, especially in upset situations where the alarm generation rate is high. The Advanced Candu Reactor (ACR) project will employ the CAMLS annunciation concepts as the basis for primary annunciation implementations. The primary annunciation systems will be implemented from CAMLS applications hosted on AECL Advanced Control Centre Information System (ACCIS) computing technology. The ACR project has also chosen to implement main control room annunciation aspects in conformance with the following international standard and regulatory review guide for control room annunciation practice: International Electrotechnical Commission (IEC) 62241 - Main Control Room, Alarm Function and Presentation (International standard) US NRC NUREG-0700 - Human-System Interface Design Review Guidelines, Section 4

  2. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  3. Swelling-resistant nuclear fuel

    DOEpatents

    Arsenlis, Athanasios; Satcher, Jr., Joe; Kucheyev, Sergei O.

    2011-12-27

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  4. Fuel cell design and assembly

    NASA Technical Reports Server (NTRS)

    Myerhoff, Alfred (Inventor)

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  5. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  6. A CFD Model for High Pressure Liquid Poison Injection for CANDU-6 Shutdown System No. 2

    SciTech Connect

    Bo Wook Rhee; Chang Jun Jeong; Hye Jeong Yun; Dong Soon Jang

    2002-07-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzing the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the pressure tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, a CFD code, to simulate the formation of the poison jet curtain inside the moderator tank. For validation, an attempt was made to validate this model against a poison injection experiment performed at BARC. As conclusion this set of models is judged to be appropriate. (authors)

  7. The application of Plant Reliability Data Information System (PRINS) to CANDU reactor

    SciTech Connect

    Hwang, S. W.; Lim, Y. H.; Park, H. C.

    2012-07-01

    As risk-informed applications (RIAs) are actively implanted in the nuclear industry, an issue associated with technical adequacy of Probabilistic Safety Assessment (PSA) arises in its modeling and data sourcing. In Korea, PSA for all Korean NPPs has been completed and KHNP(Korea Hydro and Nuclear Power Plant Company) developed the database called the Plant Reliability Data Information System (PRinS). It has several characteristics that distinguish it from other database system such as NPRDs (INPO,1994), PRIS (IAEA), and SRDF (EdF). This database has the function of systematic data management such as automatic data-gathering, periodic data deposition and updating, statistical analysis including Bayesian method, and trend analysis of failure rate or unavailability. In recent PSA for CANDU reactor, the component failure data of EPRI ALWR URD and Component Reliability Database were preferentially used as generic data set. The error factor for most component failure data was estimated by using the information NUREG/CR-4550 and NUREG/CR-4639. Also, annual trend analysis was performed for the functional losses of components using the statistical analysis and chart module of PRinS. Furthermore, the database has been updated regularly and maintained as a living program to reflect the current status. This paper presents the failure data analysis using PRinS which provides Bayesian analysis on main components in the CANDU reactor. (authors)

  8. Dispersion type zirconium matrix fuels fabricated by capillary impregnation method

    NASA Astrophysics Data System (ADS)

    Savchenko, A.; Konovalov, I.; Vatulin, A.; Morozov, A.; Orlov, V.; Uferov, O.; Ershov, S.; Laushkin, A.; Kulakov, G.; Maranchak, S.; Petrova, Z.

    2007-05-01

    Several novel dispersion fuel compositions with a high uranium content fuel (U9Mo, U5Zr5Nb, U3Si) and a zirconium alloy matrix with low melting point (1063-1133 K) have been developed at A.A. Bochvar Institute using a capillary impregnation fabrication method. The capillary impregnation method introduces fuel granules and granules of a zirconium alloy into a fuel element followed by a short-term anneal at a temperature above the melting temperature of alloy. The alloy melts down and under capillary forces moves into the joints between the fuel element components to form metallurgical bonds. The volume ratios between the components are: 55-65% fuel, 10-20% matrix, and 15-30% pores. Fuel elements produced by capillary impregnation method have a high uranium content (9-10 g cm-3) and a high thermal conductivity (18-22 W m-1 K-1), which, when used as PWR or BWR fuels allow the fuel temperature to be lowered to 723-773 K. They also feature porosity to accommodate swelling. The metallurgical fuel-cladding bond makes the fuel elements serviceable in power transients. The primary advantages for PWR, BWR and CANDU use of these fuels elements, would be the high uranium content, low fuel temperature and serviceability under transient conditions. Consideration is given to their applicability in Floating Nuclear Power Plants (FNPP) as well as for the feasibility of burning civil and weapon grade plutonium.

  9. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  10. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  11. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  12. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  13. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  14. In situ gamma spectrometry of piping in a CANDU heat transport system -- Application during decontamination

    SciTech Connect

    Husain, A.; Breckenridge, C.E.; Storey, D.

    1995-02-01

    An in situ pipe gamma spectrometry technique was applied to determine the activity within piping during various stages of CANDU reactor decontaminations. Measurements were performed in general radiation fields up to {approximately}500 mR/h and required both the detector and the pipe being scanned to be appropriately shielded from other neighboring piping. Measured counts were interpreted using a pipe source efficiency calibration with due regard to its distance dependence. Cobalt-60 was the dominant radionuclide on the piping before the decontamination. Deposition of {sup 124}Sb occurred on out-core piping surfaces during the decontamination. The spectrometry measurements were supplemented with contact radiation field measurements, which were performed using survey detectors housed within specially designed pipe shields. Radiation fields estimated from measured radionuclide activities were compared with the measured radiation fields. On average, the ratio of measured to estimated fields was {approximately}72%. Reasons for this discrepancy are discussed.

  15. TRP channels.

    PubMed

    Benemei, Silvia; Patacchini, Riccardo; Trevisani, Marcello; Geppetti, Pierangelo

    2015-06-01

    Evidence is accumulating on the role of transient receptor potential (TRP) channels, namely TRPV1, TRPA1, TRPV4 and TRPM8, expressed by C- and Aδ-fibres primary sensory neurons, in cough mechanism. Selective stimuli for these channels have been proven to provoke and, more rarely, to inhibit cough. More importantly, cough threshold to TRP agonists is increased by proinflammatory conditions, known to favour cough. Off-target effects of various drugs, such as tiotropium or desflurane, seem to produce their protective or detrimental actions on airway irritation and cough via TRPV1 and TRPA1, respectively. Thus, TRPs appear to encode the process that initiates or potentiates cough, activated by exogenous irritants and endogenous proinflammatory mediators. More research on TRP channels may result in innovative cough medicines. PMID:25725213

  16. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  17. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  18. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  19. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  20. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  1. Channel Networks

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo

    This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.

  2. CFD modeling of debris melting phenomena during late phase Candu 6 severe accident

    SciTech Connect

    Nicolici, S.; Dupleac, D.; Prisecaru, I.

    2012-07-01

    The objective of this paper was to study the phase change of the debris formed on the Candu 6 calandria bottom in a postulated accident sequence. The molten pool and crust formation were studied employing the Ansys-Fluent code. The 3D model using Large Eddy Simulation (LES) predicts the conjugate, radiative and convective heat transfer inside and from the corium pool. LES simulations require a very fine grid to capture the crust formation and the free convection flow. This aspect (fine mesh requirement) correlated with the long transient has imposed the use of a slice from the 3D calandria geometry in order not to exceed the computing resources. The preliminary results include heat transfer coefficients, temperature profiles and heat fluxes through calandria wall. From the safety point of view it is very important to maintain a heat flux through the wall below the CHF assuring the integrity of the calandria vessel. This can be achieved by proper cooling of the tank water which contains the vessel. Also, transient duration can be estimated being important in developing guidelines for severe accidents management. The debris physical structure and material properties have large uncertainties in the temperature range of interest. Thus, further sensitivity studies should be carried out in order to better understand the influence of these parameters on this complex phenomenon. (authors)

  3. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  4. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  5. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  6. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  7. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  8. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  9. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  10. Efficiency and accuracy of the perturbation response coefficient generation method for whole core comet calculations in BWR and CANDU configurations

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2013-07-01

    The coarse mesh transport method (COMET) is a highly accurate and efficient computational tool which predicts whole-core neutronics behaviors for heterogeneous reactor cores via a pre-computed eigenvalue-dependent response coefficient (function) library. Recently, a high order perturbation method was developed to significantly improve the efficiency of the library generation method. In that work, the method's accuracy and efficiency was tested in a small PWR benchmark problem. This paper extends the application of the perturbation method to include problems typical of the other water reactor cores such as BWR and CANDU bundles. It is found that the response coefficients predicted by the perturbation method for typical BWR bundles agree very well with those directly computed by the Monte Carlo method. The average and maximum relative errors in the surface-to-surface response coefficients are 0.02%-0.05% and 0.06%-0.25%, respectively. For CANDU bundles, the corresponding quantities are 0.01%-0.05% and 0.04% -0.15%. It is concluded that the perturbation method is highly accurate and efficient with a wide range of applicability. (authors)

  11. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A.

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  12. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  13. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  14. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  15. Ultrasonic cleaning of fuel assemblies

    SciTech Connect

    Kondoh, Keisuke; Fujita, Chitoshi; Sakai, Hitoshi

    1994-12-31

    During fuel transportation, contamination of the transfer cask can lead to radiation dosage. That is radioactive crud becomes detached from the fuel surface and is deposited inside the cask. To avoid this at the Tsuruga Power Station Unit 1, crud was removed from fuel assemblies in advance of fuel transportation work. An ultrasonic cleaning process was adopted for this purpose; ultrasonic methods excel over other methods for this type of cleaning. Our process is also able to clean fuel assemblies without removing the channel box. Since this is the first time that the ultrasonic method was applied to fuel assemblies at the light water reactor in Japan on a large scale, the efficiency and the impact on plant instrumentation of the method were examined by performing preliminary test. Based on these tests, an optimum cleaning procedure was established.

  16. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  17. Applying alpha-channeling to mirror machines

    SciTech Connect

    Zhmoginov, A. I.; Fisch, N. J.

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  18. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  19. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  20. Apparatus for mixing fuel in a gas turbine

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-04-21

    A combustor nozzle includes an inlet surface and an outlet surface downstream from the inlet surface, wherein the outlet surface has an indented central portion. A plurality of fuel channels are arranged radially outward of the indented central portion, wherein the plurality of fuel channels extend through the outlet surface.

  1. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  2. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  3. Stagnation pressure activated fuel release mechanism for hypersonic projectiles

    DOEpatents

    Cartland, Harry E.; Hunter, John W.

    2003-01-01

    A propulsion-assisted projectile has a body, a cowl forming a combustion section and a nozzle section. The body has a fuel reservoir within a central portion of the body, and a fuel activation system located along the central axis of the body and having a portion of the fuel activation system within the fuel reservoir. The fuel activation system has a fuel release piston with a forward sealing member where the fuel release piston is adapted to be moved when the forward sealing member is impacted with an air flow, and an air-flow channel adapted to conduct ambient air during flight to the fuel release piston.

  4. Status of Canada`s nuclear fuel waste management program: On the threshold of the environmental review of the disposal concept

    SciTech Connect

    Allan, C.J.; Stephens, M.E.

    1994-12-31

    Over the last 15 years under the Canadian Nuclear Fuel Waste Management Program, AECL Research has developed and assessed a concept to dispose of nuclear fuel waste from Canada`s CANDU reactors in a vault excavated in plutonic rock of the Canadian Shield. A robust concept has been developed, with options for the choice of materials and designs for the different components. AECL will submit an Environmental Impact Statement describing the concept in early 1994 for review under the Canadian Environmental Assessment and Review Process. If the review is completed by 1996, as currently expected, and if the concept is approved, disposal would not likely begin before about 2025.

  5. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, Charles C.; Mrazek, Franklin C.

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  6. Solid oxide fuel cell with monolithic core

    DOEpatents

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  7. Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems

    SciTech Connect

    Bailey, W.J.; Berting, F.M.

    1990-12-01

    Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

  8. Monte Carlo estimation of the dose and heating of cobalt adjuster rods irradiated in the CANDU 6 reactor core.

    PubMed

    Gugiu, Daniela; Dumitrache, Ion

    2005-01-01

    The present work is a part of a more complex project related to the replacement of the original stainless steel adjuster rods with cobalt assemblies in the CANDU 6 reactor core. The 60Co produced by 59Co irradiation could be used extensively in medicine and industry. The paper will mainly describe some of the reactor physics and safety requirements that must be carried into practice for the Co adjuster rods. The computations related to the neutronic equivalence of the stainless steel adjusters with the Co adjuster assemblies, as well as the estimations of the activity and heating of the irradiated cobalt rods, are performed using the Monte Carlo codes MCNP5 and MONTEBURNS 2.1. The activity values are used to evaluate the dose at the surface of the device designed to transport the cobalt adjusters. PMID:16604599

  9. The Earliest Ion Channels

    NASA Astrophysics Data System (ADS)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  10. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  11. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  12. A mechanistic code for intact and defective nuclear fuel element performance

    NASA Astrophysics Data System (ADS)

    Shaheen, Khaled

    During reactor operation, nuclear fuel elements experience an environment featuring high radiation, temperature, and pressure. Predicting in-reactor performance of nuclear fuel elements constitutes a complex multi-physics problem, one that requires numerical codes to be solved. Fuel element performance codes have been developed for different reactor and fuel designs. Most of these codes simulate fuel elements using one-or quasi-two-dimensional geometries, and some codes are only applicable to steady state but not transient behaviour and vice versa. Moreover, while many conceptual and empirical separate-effects models exist for defective fuel behaviour, wherein the sheath is breached allowing coolant ingress and fission gas escape, there have been few attempts to predict defective fuel behaviour in the context of a mechanistic fuel performance code. Therefore, a mechanistic fuel performance code, called FORCE (Fuel Operational peRformance Computations in an Element) is proposed for the time-dependent behaviour of intact and defective CANDU nuclear fuel elements. The code, which is implemented in the COMSOL Multiphysics commercial software package, simulates the fuel, sheath, and fuel-to-sheath gap in a radial-axial geometry. For intact fuel performance, the code couples models for heat transport, fission gas production and diffusion, and structural deformation of the fuel and sheath. The code is extended to defective fuel performance by integrating an adapted version of a previously developed fuel oxidation model, and a model for the release of radioactive fission product gases from the fuel to the coolant. The FORCE code has been verified against the ELESTRES-IST and ELESIM industrial code for its predictions of intact fuel performance. For defective fuel behaviour, the code has been validated against coulometric titration data for oxygen-to-metal ratio in defective fuel elements from commercial reactors, while also being compared to a conceptual oxidation model

  13. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  14. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  15. Fuel Modelling at Extended Burnup: IAEA Coordinated Research Project FUMEX-II

    SciTech Connect

    Killeen, J.C.; Turnbull, J.A.; Sartori, E.

    2007-07-01

    The International Atomic Energy Agency sponsored a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-II). Eighteen fuel modelling groups participated with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise was carried out in coordination with the OECD/NEA. The participants used a mixture of data derived from actual irradiation histories of high burnup experimental fuel and commercial irradiations where post-irradiation examination measurements are available, combined with idealised power histories intended to represent possible future extended dwell commercial irradiations and test code capabilities at high burnup. All participants have been asked to model nine priority cases out of some 27 cases made available to them for the exercise from the IAEA/OECD International Fuel Performance Experimental Database. Calculations carried out by the participants, particularly for the idealised cases, have shown how varying modelling assumptions affect the high burnup predictions, and have led to an understanding of the requirements of future high burnup experimental data to help discriminate between modelling assumptions. This understanding is important in trying to model transient and fault behaviour at high burnup. It is important to recognise that the code predictions presented here should not be taken to indicate that some codes do not perform well. The codes have been designed for different applications and have differing assumptions and validation ranges; for example codes intended to predict Candu fuel operation with thin wall collapsible cladding do not need the clad creep and gap conductivity modelling found in PWR codes. Therefore, when a case is based on Candu technology or PWR technology, it is to be expected that the codes may not agree. However, it is the very differences in such behaviour that is useful in helping to understand the effects of such

  16. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  17. Synthetic fuels

    SciTech Connect

    Sammons, V.O.

    1980-01-01

    This guide is designed for those who wish to learn more about the science and technology of synthetic fuels by reviewing materials in the collections of the Library of Congress. This is not a comprehensive bibliography, it is designed to put the reader on target. Subject headings used by the Library of Congress under which books on synthetic fuels can be located are: oil-shale industry; oil-shales; shale oils; synthetic fuels; synthetic fuels industry; coal gasification; coal liquefaction; fossil fuels; hydrogen as fuel; oil sands; petroleum, synthesis gas; biomass energy; pyrolysis; and thermal oil recovery. Basic texts, handbooks, government publications, journals, etc. were included. (DP)

  18. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  19. Calcium channel blocker overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  20. Computer Simulation Studies of Gramicidin Channel

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2009-04-01

    Ion channels are large membrane proteins, and their function is to facilitate the passage of ions across biological membranes. Recently, Dr. John Cuppoletti's group at UC showed that the gramicidin channel could function at high temperatures (360 -- 390K) with significant currents. This finding may have large implications for fuel cell technology. In this project, we will examine the experimental system by computer simulation. We will investigate how the temperature affects the current and differences in magnitude of the currents between two forms of Gramicidin, A and D. This research will help to elucidate the underlying molecular mechanism in this promising new technology.

  1. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  2. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  3. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Roake, W.E.; Evans, E.A.; Brite, D.W.

    1960-06-21

    A method of preparing a fuel element for a nuclear reactor is given in which an internally and externally cooled fuel element consisting of two coaxial tubes having a plurality of integral radial ribs extending between the tubes and containing a powdered fuel material is isostatically pressed to form external coolant channels and compact the powder simultaneously.

  4. Channel catfish pond fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most successful aquaculture enterprise in the U.S. is channel catfish Ictalurus punctatus production. In the U.S., 257 million kg of channel catfish were sold in 2007 at a value of $455 million. Large-scale commercial channel catfish culture began in the late 1950s and expanded rapidly from 1978...

  5. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOEpatents

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  6. Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams

    SciTech Connect

    Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L.

    2007-07-01

    The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

  7. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  8. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  9. Alternate fuels

    SciTech Connect

    Ryan, T.W.; Worthen, R.P.

    1981-02-01

    The escalating oil prices and shortages of petroleum based fuels for transportation have made research work on various fuel alternatives, especially for transportation engines, a priority of both the private and public sectors. This book contains 18 papers on this subject. The range of options from the development of completely non-petroleum-based fuels and engines to the use of various non-petroleum gasoline and diesel fuel extenders and improvers are discussed.

  10. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  11. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  12. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  13. Microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, Erik

    Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the microfluidic fuel cells developed here are targeted to eventual integration with biocatalysts, the contributions of this thesis have more general applicability. The cell architectures are developed and evaluated based on conventional non-biological electrocatalysts. The fuel cells employ co-laminar flow of fuel and oxidant streams that do not require a membrane for physical separation, and comprise carbon or gold electrodes compatible with most enzyme immobilization schemes developed to date. The demonstrated microfluidic fuel cell architectures include the following: a single cell with planar gold electrodes and a grooved channel architecture that accommodates gaseous product evolution while preventing crossover effects; a single cell with planar carbon electrodes based on graphite rods; a three-dimensional hexagonal array cell based on multiple graphite rod electrodes with unique scale-up opportunities; a single cell with porous carbon electrodes that provides enhanced power output mainly attributed to the increased active area; a single cell with flow-through porous carbon electrodes that provides improved performance and overall energy conversion efficiency; and a single cell with flow-through porous gold electrodes with similar capabilities and reduced ohmic resistance. As compared to previous results, the microfluidic fuel cells developed in this work show improved fuel cell performance (both in terms of power density and efficiency). In addition, this dissertation includes the development of an integrated electrochemical velocimetry approach for microfluidic devices, and a computational modeling study of strategic enzyme patterning for microfluidic biofuel cells with consecutive reactions.

  14. Bacterial Ion Channels.

    PubMed

    Compton, Emma L R; Mindell, Joseph A

    2010-09-01

    Bacterial ion channels were known, but only in special cases, such as outer membrane porins in Escherichia coli and bacterial toxins that form pores in their target (bacterial or mammalian) membranes. The exhaustive coverage provided by a decade of bacterial genome sequencing has revealed that ion channels are actually widespread in bacteria, with homologs of a broad range of mammalian channel proteins coded throughout the bacterial and archaeal kingdoms. This review discusses four groups of bacterial channels: porins, mechano-sensitive (MS) channels, channel-forming toxins, and bacterial homologs of mammalian channels. The outer membrane (OM) of gram-negative bacteria blocks access of essential nutrients; to survive, the cell needs to provide a mechanism for nutrients to penetrate the OM. Porin channels provide this access by forming large, nonspecific aqueous pores in the OM that allow ions and vital nutrients to cross it and enter the periplasm. MS channels act as emergency release valves, allowing solutes to rapidly exit the cytoplasm and to dissipate the large osmotic disparity between the internal and external environments. MS channels are remarkable in that they do this by responding to forces exerted by the membrane itself. Some bacteria produce toxic proteins that form pores in trans, attacking and killing other organisms by virtue of their pore formation. The review focuses on those bacterial toxins that kill other bacteria, specifically the class of proteins called colicins. Colicins reveal the dangers of channel formation in the plasma membrane, since they kill their targets with exactly that approach. PMID:26443789

  15. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  16. C. elegans TRP channels

    PubMed Central

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    TRP (transient receptor potential) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  17. Oxidation and dissolution of nuclear fuel (UO 2) by the products of the alpha radiolysis of water

    NASA Astrophysics Data System (ADS)

    Sunder, S.; Shoesmith, D. W.; Miller, N. H.

    1997-03-01

    Oxidation of UO 2 nuclear fuel by the products of the alpha radiolysis of water has been measured as a function of strength of the alpha flux and solution pH (0.1 mol L -1 NaClO 4, 3.5≤pH≤11) using electrochemical techniques. Corrosion potentials were measured using a thin-layer corrosion cell in which an alpha source was brought within 30 μm of a UO 2 electrode. Oxidative dissolution (corrosion) rates were then calculated as a function of alpha dose rate from the steady-state values of the corrosion potential using an electrochemical model. The corrosion rate was found to increase with an increase in alpha dose rate and with a decrease in pH for values <4. A procedure to predict the corrosion rate of used nuclear fuel in groundwater as a function of fuel cooling time is then described. As a consequence of the cell geometry used in corrosion potential measurements these predicted rates are appropriately applied to dissolution in cracks and fissures. The corrosion of fuel, supported solely by the alpha radiolysis of water, is predicted to be unimportant for CANDU reactor fuel with a burnup of 685 GJ/kg U for periods ≥600 a. However, for fuel with higher burnups, e.g., a typical PWR fuel (burnup 3888 GJ/kg U (45 MW d/kg U)), corrosion supported by the alpha radiolysis of water could be significant for time periods of ~2000 a. For periods greater than this (~600 a (CANDU); ~2000 a (PWR)) the oxidative dissolution can be appropriately considered as a chemical as opposed to corrosion reaction.

  18. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  19. Temperature dependence of gramicidin channel conductance

    NASA Astrophysics Data System (ADS)

    Song, Hyundeok; Beck, Thomas

    2010-03-01

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati has shown that the gramicidin channel can function at high temperatures with significant currents. This finding may have implications for fuel cell technologies. In order to explore the effect of temperature on channel conductance, we examined the gramicidin system at 300K, 330K, and 360K by computer simulation. Two forms of gramicidin, the head-to-head helical dimer and the intertwined double helix, were examined. Both the decrease of the free energy barrier and the increase of the diffusion of potassium ions inside the gramicidin channel at high temperatures imply an increase of current. We found that higher temperatures also affect the lifetime of hydrogen bonds, the distribution of the bending angle, the distribution of the distance between dimers, and the size of the pore radius for the helical dimer structure. These finding may be related to the gating of the gramicidin channel.

  20. Annular fuel and air co-flow premixer

    SciTech Connect

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  1. Fuel behavior during a LOCA: LOFT experiments

    SciTech Connect

    Russell, M.L.

    1980-11-01

    The LOFT experiments have provided the following fuel behavior information which appears to be valuable for improving the safety of PWR operation and resolving PWR licensing issues: (1) A generic unassisted core cooling event occurs during large-break LOCAs that dominates the cooling of the core before ECC reflood commences and potentially eliminates the possibility of flow channel blockage from prepressurized fuel rod swelling. (2) The large-break LOCA decompression forces do not disturb the normal control rod gravity drop and may not structually damage the fuel assemblies. (3) Large-break LOCA core cooling may also be enhanced by spacer grid and core counter flow delay of liquid escape from the core boundaries and liquid fallback from the upper plenum into the core region. (4) Lower fuel rod prepressurization may be possible in PWR fuel rods which would reduce flow channel blockage complications during LOCA's. (5) Uniform fuel rod cladding temperature indications during the large break LOCA's do not confirm expectations for the fuel rod cladding temperature variations that would inhibit development of flow channel blockages by ballooning of prepressurized fuel rods.

  2. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  3. Interaction of droplet and sidewalls with modified surfaces in a PEMFC gas flow channel

    NASA Astrophysics Data System (ADS)

    Shah, Mihir M.

    A Proton Exchange Membrane Fuel Cell (PEMFC) is a clean and highly efficient way of power generation used primarily for transportation applications. Hydrogen and air are supplied to the fuel cell through gas channels, which also remove liquid water generated in the fuel cell. The clogged channels prevent reactant transport to the electrochemically active sites which comprise one of the channel walls and thus, degrading the performance of the cell. Proper management of the product water is a current topic of research interest in commercialization of fuel cell vehicles. Liquid water, produced as by-product of the fuel cell reaction, can clog the gas channels easily since surface tension of water is significant at this length scale. In a PEMFC channel cross-section, water is assumed to be produced in the channel at the center along the flow axis. This assumption is primarily valid and extensively used for experimental purposes. However in a real PEMFC, the water entry is not constrained at the channel center. Hence, more investigations are made using water entry at channel corner (land region) which resulted in contradicting prior results for the water feature behavior for all relevant PEMFC operating conditions, leading to adverse two-phase flow behavior- including slug blockage and fluctuations at channel end. Very limited research is available to study the effect of gas channel surface modifications on the two-phase flow behavior and local PEMFC performance. In this study, the droplet--sidewall dynamic interactions and two--phase local pressure drop across the water droplet present in a PEMFC channel with trapezoidal geometries with surface modifications are studied. These surface modifications include micro-grooves that possess a hybrid wetting regime that will initiate and guide the water feature at channel ends to eject with general ease. Slugs are reduced to films after ejection and thus channel blockage is avoided overcoming the problems caused by water influx

  4. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  5. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  6. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  7. Metrology for Fuel Cell Manufacturing

    SciTech Connect

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  8. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  9. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  10. Cooling assembly for fuel cells

    DOEpatents

    Kaufman, Arthur; Werth, John

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  11. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  12. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  13. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  14. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  15. CHARACTERIZATION OF HYDROGEN CONTENT IN ZIRCALOY-4 NUCLEAR FUEL CLADDING

    SciTech Connect

    Pfeif, E. A.; Mishra, B.; Olson, D. L.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.

    2010-02-22

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  16. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  17. RFI channels, 2

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.

    1981-01-01

    The cutoff parameters for a class of channel models exhibiting burst noise behavior were calculated and the performance of interleaved coding strategies was evaluated. It is concluded that, provided the channel memory is large enough and is properly exploited, interleaved coding is nearly optimal.

  18. Venus - Sinuous Channel

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This full resolution radar mosaic from Magellan at 49 degrees south latitude, 273 degrees east longitude of an area with dimensions of 130 by 190 kilometers (81 by 118 miles), shows a 200 kilometer (124 mile) segment of a sinuous channel on Venus. The channel is approximately 2 kilometers (1.2 miles) wide. These channel-like features are common on the plains of Venus. In some places they appear to have been formed by lava which may have melted or thermally eroded a path over the plains' surface. Most are 1 to 3 kilometers (0.6 to 2 miles) wide. They resemble terrestrial rivers in some respects, with meanders, cutoff oxbows, and abandoned channel segments. However, Venus channels are not as tightly sinuous as terrestrial rivers. Most are partly buried by younger lava plains, making their sources difficult to identify. A few have vast radar-dark plains units associated with them, suggesting large flow volumes. These channels appear to be older than other channel types on Venus, as they are crossed by fractures and wrinkle ridges, and are often buried by other volcanic materials. In addition, they appear to run both upslope and downslope, suggesting that the plains were warped by regional tectonism after channel formation. Resolution of the Magellan data is about 120 meters (400 feet).

  19. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  20. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  1. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  2. Generalized channeled polarimetry.

    PubMed

    Alenin, Andrey S; Tyo, J Scott

    2014-05-01

    Channeled polarimeters measure polarization by modulating the measured intensity in order to create polarization-dependent channels that can be demodulated to reveal the desired polarization information. A number of channeled systems have been described in the past, but their proposed designs often unintentionally sacrifice optimality for ease of algebraic reconstruction. To obtain more optimal systems, a generalized treatment of channeled polarimeters is required. This paper describes methods that enable handling of multi-domain modulations and reconstruction of polarization information using linear algebra. We make practical choices regarding use of either Fourier or direct channels to make these methods more immediately useful. Employing the introduced concepts to optimize existing systems often results in superficial system changes, like changing the order, orientation, thickness, or spacing of polarization elements. For the two examples we consider, we were able to reduce noise in the reconstruction to 34.1% and 57.9% of the original design values. PMID:24979633

  3. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  4. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  5. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect

    Chebeskov, A.; Kalashnikov, A.; Bevard, B.; Moses, D.; Pavlovichev, A.

    1997-09-01

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  6. Comparison between new thermohydraulic one-channel models and experiments

    NASA Astrophysics Data System (ADS)

    Blender, H.; Elzmann, J.

    1981-11-01

    Five different thermohydraulic one-channel models, COCHA, FRANCESCA, MARMITA, STASWR and THS, were tested bu experimentally checking two-phase flows along a boiling water reactor fuel element. As regards the evolution of the vapor content along the cooling channel, the agreement between all the programs and the measurements is satisfactory for small to middle entrance undercooling in the domain of undercooled boiling. For high undercooling, only the COCHA program gives satisfactory results. For the middle part of the cooling channel, all programs are satisfactory, while in the upper part, especially for increasing outlet vapor contents, the calculated values are generally too low for all programs, and especially for FRANCESCA.

  7. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    NASA Technical Reports Server (NTRS)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  8. Multiply manifolded molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  9. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  10. Fuels and materials for LMFBR core components

    SciTech Connect

    Cox, C M; Jackson, R J; Straalsund, J L

    1984-04-01

    This paper reviews development of fuels and materials for Liquid Metal Fast Breeder Reactor. Included are the status of fuels and materials technology for LMFBR core components. The fuel assembly for the Fast Flux Test Facility, or FFTF, in operation near Richland, Washington, is described. The outer part of the 12-ft long assembly is called a flow channel or duct. Inside are 217 fuel pins, each containing mixed uranium-plutonium oxide fuel pellets. The comparable schematic for control rod or absorber assembly is also shown. The FFTF absorber assembly contains 61 control rods containing boron carbide pellets. Because FFTF is a test reactor, it does not contain blanket assemblies; however, the Clinch River Breeder Reactor blanket assemblies look very similar to the FFTF fuel assembly, except that they each contain 61 UO/sub 2/ rods. Sizes of various LMFBR fuel assemblies are compared. The Clinch River Breeder Reactor fuel assembly is nearly identical to that of FFTF, except for an increased length to accommodate UO/sub 2/ axial blankets within the fuel pins. The DP-1 design is for a large breeder reactor and uses larger ducts and more fuel pins per assembly. By comparison, the fuel assemblies for EBR-II are much smaller, as is the EBR-II core.

  11. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  12. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  13. Channel coding for satellite mobile channels

    NASA Astrophysics Data System (ADS)

    Wong, K. H. H.; Hanzo, L.; Steele, R.

    1989-09-01

    The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite mobile radio channel is addressed for speech and data transmissions. Different convolutional codes (CC) using Viterbi decoding with soft decision are examined with interblock interleaving. Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis decoding combined with block interleaving are also investigated. A concatenated arrangement employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions via minimum shift keying over Gaussian and Rayleigh fading channels. For an interblock interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36), over the Galois field GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of 42dB for a BER of 10 to the -6th, and an uncorrectable error detection probability of 1 - 10 to the -9th.

  14. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  15. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  16. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  17. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  18. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  19. Chondrocyte channel transcriptomics

    PubMed Central

    Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard

    2013-01-01

    To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703

  20. TRP channels in disease.

    PubMed

    Jordt, S E; Ehrlich, B E

    2007-01-01

    The transient receptor potential (TRP) channels are a large family of proteins with six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. Mutations in TRPs are linked to pathophysiology and specific diseases. An understanding of the role of TRPs in normal physiology is just beginning; the progression from mutations in TRPs to pathophysiology and disease will follow. In this review, we focus on two distinct aspects of TRP channel physiology, the role of TRP channels in intracellular Ca2+ homeostasis, and their role in the transduction of painful stimuli in sensory neurons. PMID:18193640

  1. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  2. Channel in Kasei

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 November 2004 The Kasei Valles are a suite of very large, ancient outflow channels. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the youngest channel system in the Kasei Valles. Torrents of mud, rocks, and water carved this channel as flow was constricted through a narrow portion of the valley. Layers exposed by the erosion that created the channel can be seen in its walls. This 1.4 meters (5 feet) per pixel image is located near 21.1oN, 72.6oW. The picture covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  3. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  4. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  5. Fuel composition

    SciTech Connect

    Johnson, T.H.

    1990-06-26

    This patent describes a motor fuel composition. It comprises: a mixture of hydrocarbons in the gasoline boiling range containing a deposit preventing or reducing effective amount of poly(olefin)-N-substituted- carbamate.

  6. Fracture channel waves

    SciTech Connect

    Nihei, K.T.; Yi, W.; Myer, L.R.; Cook, N.G.; Schoenberg, M.

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A{sub 0} mode) and demonstrates the ease with which a fracture channel wave can be generated and detected. {copyright} 1999 American Geophysical Union

  7. Mechanosensitive channels in microbes.

    PubMed

    Kung, Ching; Martinac, Boris; Sukharev, Sergei

    2010-01-01

    All cells, including microbes, detect and respond to mechanical forces, of which osmotic pressure is most ancient and universal. Channel proteins have evolved such that they can be directly stretched open when the membrane is under turgor pressure. Osmotic downshock, as in rain, opens bacterial mechanosensitive (MS) channels to jettison osmolytes, relieving pressure and preventing cell lysis. The ion flux through individual channel proteins can be observed directly with a patch clamp. MS channels of large and small conductance (MscL and MscS, respectively) have been cloned, crystallized, and subjected to biophysical and genetic analyses in depth. They are now models to scrutinize how membrane forces direct protein conformational changes. Eukaryotic microbes have homologs from animal sensory channels of the TRP superfamily. The MS channel in yeast is also directly sensitive to membrane stretch. This review examines the key concept that proteins embedded in the lipid bilayer can respond to the changes in the mechanical environment the lipid bilayer provides. PMID:20825352

  8. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  9. Combustion device for liquid fuels

    SciTech Connect

    Kawasaki, Y.; Ohmukai, Y.; Tomisawa, T.

    1980-10-21

    A device is described which includes a porous burner head capable of containing a liquid fuel in a liquid state and in which air is supplied to the surface of the burner head to vaporize and burn the fuel contained therein. The burner head is made of a heat resistant porous material having extending therethrough minute channels which are predominantly up to 100 mu M in diameter and give the burner head a porosity of at least 25%. The burner head is capable of raising the liquid fuel at a rate of at least 0.001 g/cm/sub 2/ min to a height of up to 70 mm. The use of the burner head assures clean combustion and high combustion efficiency.

  10. Morphodynamics of Floodplain Chute Channels

    NASA Astrophysics Data System (ADS)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  11. Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada

    SciTech Connect

    Rangel, R.C.

    1999-02-01

    The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States` defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes.

  12. Proliferation Resistance Evaluation of ACR-1000 Fuel with Minor Actinides

    SciTech Connect

    Gray S. Chang

    2008-09-01

    The Global Nuclear Energy Partnership (GNEP) program is to significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics

  13. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  14. Unconventional fuel: Tire derived fuel

    SciTech Connect

    Hope, M.W.

    1995-09-01

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  15. High performance channel injection sealant invention abstract

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  16. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  17. TRP Channels and Analgesia

    PubMed Central

    Premkumar, Louis S.; Abooj, Mruvil

    2013-01-01

    Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control etc. PMID:22910182

  18. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  19. MLKL forms cation channels

    PubMed Central

    Xia, Bingqing; Fang, Sui; Chen, Xueqin; Hu, Hong; Chen, Peiyuan; Wang, Huayi; Gao, Zhaobing

    2016-01-01

    The mixed lineage kinase domain-like (MLKL) protein is a key factor in tumor necrosis factor-induced necroptosis. Recent studies on necroptosis execution revealed a commitment role of MLKL in membrane disruption. However, our knowledge of how MLKL functions on membrane remains very limited. Here we demonstrate that MLKL forms cation channels that are permeable preferentially to Mg2+ rather than Ca2+ in the presence of Na+ and K+. Moreover, the N-terminal domain containing six helices (H1-H6) is sufficient to form channels. Using the substituted cysteine accessibility method, we further determine that helix H1, H2, H3, H5 and H6 are transmembrane segments, while H4 is located in the cytoplasm. Finally, MLKL-induced membrane depolarization and cell death exhibit a positive correlation to its channel activity. The Mg2+-preferred permeability and five transmembrane segment topology distinguish MLKL from previously identified Mg2+-permeable channels and thus establish MLKL as a novel class of cation channels. PMID:27033670

  20. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    SciTech Connect

    DelCul, Guillermo Daniel; Trowbridge, Lee D; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B; Collins, Emory D

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  1. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  2. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  3. Trp channels and itch.

    PubMed

    Sun, Shuohao; Dong, Xinzhong

    2016-05-01

    Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments. PMID:26385480

  4. Dequantization Via Quantum Channels

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  5. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  6. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  7. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  8. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-09-23

    This patent describes a distillate fuel for indirect injection compression ignition engines containing at least the combination of (i) organic nitrate ignition accelerator, and (ii) an additive selected from the group consisting of alkenyl substituted succinimide, alkenyl substituted succinamide and mixtures thereof. The alkenyl substituent contains about 12-36 carbon atoms, the additive being made by the process comprising (a) isomerizing the double bond of an ..cap alpha..-olefin containing about 12-36 carbon atoms to obtain a mixture of internal olefins, (b) reacting the mixture of internal olefins with maleic acid, anhydride or ester to obtain an intermediate alkenyl substituted succinic acid, anhydride or ester, and (c) reacting the intermediate with ammonia to form a succinimide, succinamide or mixture thereof. The combination is present in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.

  9. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  10. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  11. The neutron channeling phenomenon.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials. PMID:9463884

  12. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  13. Channel on Ascraeus Mons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a deep channel formed on the northern flank of the large volcano, Ascraeus Mons. Layers of volcanic rock are exposed in the channel walls, and the dark dots on the valley floor are boulders derived from erosion of these materials. The picture occurs near 14.5oN, 102.8oW, and is illuminated from the lower left. The picture covers an area about 3 km (1.9 mi) across.

  14. Alluvial channel hydraulics

    NASA Astrophysics Data System (ADS)

    Ackers, Peter

    1988-07-01

    The development and utilisation of water resources for irrigation, hydropower and public supply can be severely affected by sediment. Where there is a mature and well vegetated landscape, sediment problems may be relatively minor; but where slopes are steep and vegetation sparse, the yield of sediment from the catchment gives high concentrations in the rivers. In utilising these resources, for whatever purpose, an understanding of the hydraulics of alluvial channels is vital. The regime of any conveyance channel in alluvium depends on the interrelationships of sediment transport, channel resistance and bank stability. The regime concept was originally based on empirical relations obtained from observations from canal systems in the Indian subcontinent, and for many years was surrounded by a certain degree of mystique and much scepticism from academics. In more recent years the unabashed empiricism of the original method has been replaced by process-based methods, which have also served as broad confirmation of the classic regime formulae, including their extension to natural channels and meandering channels. The empirical approach to the hydraulics of alluvial channels has thus been updated by physically based formulae for sediment transport and resistance, though there remains some uncertainty about the third function to complete the definition of slope and geometry. Latest thoughts in this respect are that the channel seeks a natural optimum state. Physical modelling using scaled down representations of rivers and estuaries has been used for almost a century, but it requires the correct simulation of the relevant processes. The coming of a better understanding of the physics of sediment transport and the complexity of alluvial channel roughness leads to the conclusion that only in very restricted circumstances can scale models simulate closely the full-size condition. However, the quantification of these processes has been instrumental in the development of

  15. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  16. Finite element analysis of advanced neutron source fuel plates

    SciTech Connect

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles.

  17. Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding — A review

    NASA Astrophysics Data System (ADS)

    Cox, B.

    1990-08-01

    This review summarizes the history of the appearance and cure of pellet-cladding interaction (PCI) failures during the operation of Zircaloy clad UO 2 fuel in a number of reactors. The work carried out to permit unrestricted operation of reactors without causing PCI failures has led to the universal adoption of the CANLUB-graphite coated cladding in CANDU reactors, and to the wide adoption of Zr-liner cladding in BWRs. There has only been a low incidence of PCI failures in PWR cladding, and the problem has not loomed large enough to require the adoption of either of the above protective methods in these reactors, although experimental liner cladding has been tested. The extensive work on the mechanism of PCI failures (leading to the conclusion that an SCC process induced by fission product iodine is the most probable cause) is summarised.

  18. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  19. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  20. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  1. Future Fuel.

    ERIC Educational Resources Information Center

    Stover, Del

    1991-01-01

    Tough new environmental laws, coupled with fluctuating oil prices, are likely to prompt hundreds of school systems to examine alternative fuels. Literature reviews and interviews with 45 government, education, and industry officials provided data for a comparative analysis of gasoline, diesel, natural gas, methanol, and propane. (MLF)

  2. Alcohol fuels

    SciTech Connect

    Not Available

    1981-07-01

    The API publication 4312 reports a detailed study carried out by Battelle on the energy balances for five alcohol-fuel-producing technologies. The results indicate that processes for producing ethanol from corn are net consumers of energy while ethanol from sugar cane and methanol from wood are net energy producers.

  3. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  4. Visual Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher training module classifies visual channel problems into the following four main areas: visual perception, revisualization (memory), visual-motor (eye-hand coordination), and ocular-motor tasks. Specific deficits are listed under these main headings, behaviors are given to help identify the problem, and ways to improve the condition…

  5. Channel Islands rare plants

    USGS Publications Warehouse

    McEachern, K.

    1999-01-01

    Database contains information on 65 rare plant taxa on six islands from archive searches and field surveys, including population location, size and extent 1920-1999, population and habitat conditions, census data, phenological information, associated species. USGS-BRD, Channel Islands Field Station, Ventura, CA.

  6. Learning in Tactile Channels

    ERIC Educational Resources Information Center

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  7. Channels of Propaganda.

    ERIC Educational Resources Information Center

    Sproule, J. Michael

    Defining propaganda as "efforts by special interests to win over the public covertly by infiltrating messages into various channels of public expression ordinarily viewed as politically neutral," this book argues that propaganda has become pervasive in American life. Pointing out that the 1990s society is inundated with propaganda from numerous…

  8. SK channels and calmodulin

    PubMed Central

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca2+ levels. Mirroring the importance and the breadth of Ca2+ signaling, free Ca2+ levels are tightly controlled, and a myriad of Ca2+ binding proteins transduce Ca2+ signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca2+ binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca2+ ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca2+-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  9. SK channels and calmodulin.

    PubMed

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  10. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  11. Keeping the Channels Clear.

    ERIC Educational Resources Information Center

    Weisberg, Jacob

    1996-01-01

    Institutional communication channels need to be clear so that administrators have the information necessary to make informed decisions whenever and wherever required. The secret is to treat the arrival of information--the good, the bad, and the neutral--in essentially the same way, and always thank the person who brings the news, regardless of its…

  12. Developments in relativistic channeling

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. 61 refs., 1 fig.

  13. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  14. Numerical Simulations of Droplet Dynamics in PEM Fuel Cell Microchannels

    NASA Astrophysics Data System (ADS)

    Cauble, Eric; Owkes, Mark

    2015-11-01

    Proton exchange membrane (PEM) fuel cells are of beneficial interest due to their capability of producing clean energy with zero emissions. An important design challenge hindering the performance of fuel cells is controlling water removal to maintain a hydrated membrane while avoiding excess water that may lead to channel blockage. Fuel cell water management requires a detailed knowledge of multiphase flow dynamics within microchannels. Direct observation of gas-liquid flows is difficult due to the small scale and viewing obstructions of the channels within the fuel cell. Instead, this work uses a CFD approach to compute the formation and dynamics of droplets in fuel cell channels. The method leverages a conservative volume-of-fluid (VOF) formulation coupled with a novel methodology to track dynamic contact angles. We present details of the numerical approach and simulation results relevant to water management in PEM fuel cells. In particular, it is shown that variation of the contact hysteresis angle influences the wetting properties of the droplet and significantly impacts water transport throughout the a fuel cell channel.

  15. Fuel issues for fuel cell vehicles

    SciTech Connect

    Borroni-Bird, C.E.

    1995-12-31

    In the near-term, infrastructure and energy density concerns dictate that the most appropriate fuel for a light-duty fuel cell vehicle is probably not hydrogen; there are also several concerns with using methanol, the generally accepted most convenient fuel. In order to accelerate fuel cell commercialization it may be necessary to use petroleum-based fuels and on-board fuel processors. In the near-term, this approach may reduce fuel cell system efficiency to a level comparable with advanced diesel engines but in the long-term fuel cells powered by hydrogen should be the most efficient and cleanest of all automotive powertrains.

  16. Fuel cells: A handbook

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; McLarnon, F. R.; Cairns, E. J.

    1988-05-01

    The purpose of this handbook is to present information describing fuel cells that is helpful to scientists, engineers, and technical managers who are not experienced in this technology, as well as to provide an update on the current technical status of the various types of fuel cells. Following the introduction, contents of this handbook are: fuel cell performance variables; phosphoric acid fuel cell; molten carbonate fuel cell; solid oxide fuel cell; alternative fuel cell technologies; fuel cell systems; and concluding remarks.

  17. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  18. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  19. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  20. Channeling of aluminum in silicon

    SciTech Connect

    Wilson, R.G.; Hopkins, C.G.

    1985-05-15

    A systematic study of channeling of aluminum in the silicon crystal is reported. Depth distributions measured by secondary ion mass spectrometry are reported for 40-, 75-, and 150-keV aluminum channeled in the <100> and <110> directions of silicon. The profile dependence on alignment angle is shown for 150-keV aluminum in the <110> of silicon. Aluminum has low electronic stopping in silicon and corresponding deep channeled profiles are observed for aligned implants and deep channeling tails are observed on random implants. The maximum channeling range for 150-keV Al in <100> silicon is about 2.8 ..mu..m and is about 6.4 ..mu..m in <110> silicon. Some ions will reach the maximum channeling range even for 2/sup 0/ misalignment. Many of the deep channeling tails and ''supertails'' reported in earlier literature can be explained by the normal channeling of aluminum in silicon.

  1. Learning Channels and Verbal Behavior

    ERIC Educational Resources Information Center

    Lin, Fan-Yu; Kubina, Richard M., Jr.

    2004-01-01

    This article reviews the basics of learning channels and how specification of stimuli can help enhance verbal behavior. This article will define learning channels and the role of the ability matrix in training verbal behavior.

  2. Fuel composition

    SciTech Connect

    Johnson, T.H.

    1990-08-07

    This patent describes a concentrate suitable for use in liquid fuels in the gasoline boiling range. It comprises: from about 25 to about 500 ppm by weight of at least one poly(olefin)-N-substituted-carbamate; from about 0 to about 20 ppm by weight of a dehazer; and balance of diluent, boiling in the range from about 50{degrees}C. to about 232{degrees}C.

  3. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  4. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  5. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  6. Athermal channeled spectropolarimeter

    SciTech Connect

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  7. Aquaglyceroporins: generalized metalloid channels

    PubMed Central

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  8. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  9. Potassium Channels in Epilepsy.

    PubMed

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  10. Ion channeling revisited.

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  11. Micro-channel plate detector

    DOEpatents

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  12. Fuel densifier converts biomass into fuel cubes

    SciTech Connect

    Not Available

    1982-02-01

    A new cost-effective means to produce clean-burning and low cost commercial and industrial fuel is being introduced by Columbia Fuel Densification Corp., Phoenix. The Columbia Commercial Hydraulic Fuel Densifier converts raw biomass materials such as wood chips, paper, peat moss and rice hulls into densified fuel cubes. The densifier is mobile and its operation is briefly outlined.

  13. Stationary Liquid Fuel Fast Reactor

    SciTech Connect

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  14. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  15. Metabolism Regulates the Spontaneous Firing of Substantia Nigra Pars Reticulata Neurons via KATP and Nonselective Cation Channels

    PubMed Central

    Lutas, Andrew; Birnbaumer, Lutz

    2014-01-01

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. PMID:25471572

  16. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  17. In-situ investigation water distribution in polymer electrolyte fuel cell using neutron radiography

    SciTech Connect

    Mishler, Jeffrey H; Mukundan, Rangachary; Borup, Rodney L; Wang, Eunkyoung Y; Jacobson, David L

    2010-01-01

    This paper investigates the water content within operating polymer electrolyte membrane (PEM) fuel cells using neutron radiography. We consider fuel cells with various PTFE loadings in their gas diffusion layers (GDL) and microporous layers (MPL), and examine the impacts of MPL/GDL properties on the liquid water behavior and fuel cell performance. Fuel cells are tested at both dry and fully hydrated conditions with different serpentine flow fields. Water contents in the projected areas of channel and land regions are probed. The fuel cell may be subject to more flooding at low current-density operation. Both MPL and GDL wetting properties have substantial impacts on the water content in fuel cell. Cell performance also varies on different scenarios of the MPL/GDL wetting properties. A quad-serpentine channel flow field exhibits higher water content without remarkable change in performance at low current densities. Liquid water profile along the channel is presented and on-set clearly indicated.

  18. Intracellular ion channels and cancer.

    PubMed

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment. PMID:24027528

  19. Computational optimization of synthetic water channels.

    SciTech Connect

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  20. Voltage-Gated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  1. Biophysics of CNG Ion Channels

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.; Qu, Wei; Moorhouse, Andrew J.

    Cyclic nucleotide-gated (CNG) ion channels are cation-selective, opened by intracellular cyclic nucleotides like cAMP and cGMP, and present in many different neurons and non-neuronal cells. This chapter will concentrate primarily on the biophysical aspects of retinal and olfactory CNG channels, with special reference to ion permeation and selectivity and their underlying molecular basis, and will include a brief overview of the physiological function of CNG channels in both olfaction and phototransduction. We will review the subunit composition and molecular structure of the CNG channel and its similarity to the closely related potassium channels, and will also briefly outline the currently accepted molecular basis underlying activation of the channel and the location of the channel `gate'. We will then outline some general methodologies for investigating ion permeation and selectivity, before reviewing the ion permeation and selectivity properties of native and recombinant CNG channels. We will discuss divalent ion permeation through the channel and the mechanism of channel block by divalent ions. The chapter will conclude by discussing the results of recent experiments to investigate the molecular determinants of cation-anion selectivity in the channel.

  2. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  3. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  4. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  5. Single-Channel Properties of IKs Potassium Channels

    PubMed Central

    Yang, Youshan; Sigworth, Fred J.

    1998-01-01

    Expressed in Xenopus oocytes, KvLQT1 channel subunits yield a small, rapidly activating, voltage- dependent potassium conductance. When coexpressed with the minK gene product, a slowly activating and much larger potassium current results. Using fluctuation analysis and single-channel recordings, we have studied the currents formed by human KvLQT1 subunits alone and in conjunction with human or rat minK subunits. With low external K+, the single-channel conductances of these three channel types are estimated to be 0.7, 4.5, and 6.5 pS, respectively, based on noise analysis at 20 kHz bandwidth of currents at +50 mV. Power spectra computed over the range 0.1 Hz–20 kHz show a weak frequency dependence, consistent with current interruptions occurring on a broad range of time scales. The broad spectrum causes the apparent single-channel current value to depend on the bandwidth of the recording, and is mirrored in very “flickery” single-channel events of the channels from coexpressed KvLQT1 and human minK subunits. The increase in macroscopic current due to the presence of the minK subunit is accounted for by the increased apparent single-channel conductance it confers on the expressed channels. The rat minK subunit also confers the property that the outward single-channel current is increased by external potassium ions. PMID:9834139

  6. Channels and Erosion

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 20 June 2003

    The dissected and eroded channel observed in this THEMIS image taken of plains materials southwest of the volcano Elysium Mons shows typical erosional islands and depositional features. The interesting thing about this channel is that it appears to start out of nowhere. The MOLA context image shows that the channel originates from a fissure within the ground, whose origin is likely volcanic, but may also be related to volatile processes.

    Image information: VIS instrument. Latitude 19.5, Longitude 126.8 East (233.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Ion channels and migraine

    PubMed Central

    Yan, Jin; Dussor, Gregory

    2014-01-01

    Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels. PMID:24697223

  8. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  10. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  11. Improving virtual channel discrimination in a multi-channel context.

    PubMed

    Srinivasan, Arthi G; Shannon, Robert V; Landsberger, David M

    2012-04-01

    Improving spectral resolution in cochlear implants is key to improving performance in difficult listening conditions (e.g. speech in noise, music, etc.). Current focusing might reduce channel interaction, thereby increasing spectral resolution. Previous studies have shown that combining current steering and current focusing reduces spread of excitation and improves virtual channel discrimination in a single-channel context. It is unclear whether the single-channel benefits from current focusing extend to a multi-channel context, in which the physical and perceptual interference of multiple stimulated channels might overwhelm the benefits of improved spectral resolution. In this study, signal discrimination was measured with and without current focusing, in the presence of competing stimuli on nearby electrodes. Results showed that signal discrimination was consistently better with current focusing than without, regardless of the amplitude of the competing stimuli. Therefore, combining current steering and current focusing may provide more effective spectral cues than are currently available. PMID:22616092

  12. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  14. Phosphate stimulates CFTR Cl- channels.

    PubMed Central

    Carson, M R; Travis, S M; Winter, M C; Sheppard, D N; Welsh, M J

    1994-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels appear to be regulated by hydrolysis of ATP and are inhibited by a product of hydrolysis, ADP. We assessed the effect of the other product of hydrolysis, inorganic phosphate (P(i)), on CFTR Cl- channel activity using the excised inside-out configuration of the patch-clamp technique. Millimolar concentrations of P(i) caused a dose-dependent stimulation of CFTR Cl- channel activity. Single-channel analysis demonstrated that the increase in macroscopic current was due to an increase in single-channel open-state probability (po) and not single-channel conductance. Kinetic modeling of the effect of P(i) using a linear three-state model indicated that the effect on po was predominantly the result of an increase in the rate at which the channel passed from the long closed state to the bursting state. P(i) also potentiated activity of channels studied in the presence of 10 mM ATP and stimulated Cl- currents in CFTR mutants lacking much of the R domain. Binding studies with a photoactivatable ATP analog indicated that Pi decreased the amount of bound nucleotide. These results suggest that P(i) increased CFTR Cl- channel activity by stimulating a rate-limiting step in channel opening that may occur by an interaction of P(i) at one or both nucleotide-binding domains. Images FIGURE 8 PMID:7532021

  15. Carbon fuel cells with carbon corrosion suppression

    DOEpatents

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  16. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel

  17. Channel Bow in Boiling Water Reactors - Hot Cell Examination Results and Correlation to Measured Bow

    SciTech Connect

    Mahmood, S.T.; Lin, Y.P.; Dubecky, M.A.; Mader, E.V.

    2007-07-01

    An increase in frequency of fuel channel-control blade interference has been observed in Boiling Water Reactors (BWR) in recent years. Many of the channels leading to interference were found to bow towards the control blade in a manner that was inconsistent with the expected bow due to other effects. The pattern of bow appeared to indicate a new channel bow mechanism that differed from the predominant bow mechanism caused by differential growth due to fast-fluence gradients. In order to investigate this new type of channel bow, coupons from several channels with varying degrees of bow were returned to the GE Vallecitos Nuclear Center (VNC) for Post-Irradiation Examination (PIE). This paper describes the characteristics of channel corrosion and hydrogen pickup observed, and relates the observations to the channel exposure level, control history, and measured channel bow. The channels selected for PIE had exposures in the range of 36-48 GWd/MTU and covered a wide range of measured bow. The coupons were obtained at 4 elevations from opposing channel sides adjacent and away from the control blade. The PIE performed on these coupons included visual examination, metallography, and hydrogen concentration measurements. A new mechanism of control-blade shadow corrosion-induced channel bow was found to correlate with differences in the extent of corrosion and corresponding differences in the hydrogen concentration between opposite sides of the channels. The increased corrosion on the control blade sides was found to be dependent on the level of control early in the life of the channel. The contributions of other potential factors leading to increased channel bow and channel-control blade interference are also discussed in this paper. (authors)

  18. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  19. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  20. Fuel cell cooler-humidifier plate

    DOEpatents

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  1. Carburetor fuel discharge assembly

    SciTech Connect

    Yost, R.M.

    1993-06-29

    An improved carburetor for use on an internal combustion engine is described, the carburetor having an airflow passage and fuel discharge means for admitting fuel into the airflow passage for mixing the fuel with air flowing in the airflow passage to form a fuel/air mixture to be supplied to the combustion chamber(s) of the engine, the fuel discharge means including a fuel discharge assembly which comprises a hollow discharge tube and fuel supplying means connected to the discharge tube for admitting fuel into the interior of the discharge tube, wherein the discharge tube has a longitudinal internal bore in fluid communication with the fuel supplying means, wherein the internal bore extends between an inlet that is closest to the fuel supplying means and an outlet that is furthest from the fuel supplying means with the outlet of the bore being located within the airflow passage of the carburetor to supply fuel into this passage after the fuel passes from the fuel supplying means through the internal bore of the discharge tube, wherein the improvement relates to the fuel discharge assembly and comprises: a hollow fuel flow guide tube telescopically received inside the internal bore of the discharge tube, wherein the fuel flow guide tube extends from approximately the location of the inlet of the bore up at least a portion of the length of the bore towards the outlet of the bore to conduct fuel from the fuel supplying means into the bore of the discharge tube.

  2. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  3. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  4. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  5. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  6. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  7. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  8. Spillover Paleoflood Channels on Mars

    NASA Astrophysics Data System (ADS)

    Komatsu, G.; Baker, V.; Ori, Gian; Baliva, Antonio

    1996-09-01

    We investigated spillover paleoflood channels connecting large basins in the northern plains of Mars. These channels are one of several types of direct evidence for the existance of large volumes of water on the surface during certain episodes of Martian history. Among the channels, the most spectacular are a group of braided channels (20N, 175) connecting the Elysium and Amazonis basins. This entire system is about 500 km long and up to 130 km wide. Based on the photoclinometric measurements of the channel geometry, we estimated that the scale of flooding could have been comparable to that of the catastrophic Lake Missoula floods on Earth. Recently discovered terrestrial paleoflood spillways connecting basins in central Asia are analogous to these Martian spillover channels in both their scale and their likely formation mechanisms.

  9. The Channel Tunnel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Channel Tunnel is a 50.5 km-long rail tunnel beneath the English Channel at the Straits of Dover. It connects Dover, Kent in England with Calais, northern France. The undersea section of the tunnel is unsurpassed in length in the world. A proposal for a Channel tunnel was first put forward by a French engineer in 1802. In 1881, a first attempt was made at boring a tunnel from the English side; the work was halted after 800 m. Again in 1922, English workers started boring a tunnel, and advanced 120 m before it too was halted for political reasons. The most recent attempt was begun in 1987, and the tunnel was officially opened in 1994. At completion it was estimated that the project cost around $18 billion. It has been operating at a significant loss since its opening, despite trips by over 7 million passengers per year on the Eurostar train, and over 3 million vehicles per year.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring

  10. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  12. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  13. TRPC channels as STIM1-regulated store-operated channels.

    PubMed

    Worley, Paul F; Zeng, Weizhong; Huang, Guo N; Yuan, Joseph P; Kim, Joo Young; Lee, Min Goo; Muallem, Shmuel

    2007-08-01

    Receptor-activated Ca(2+) influx is mediated largely by store-operated channels (SOCs). TRPC channels mediate a significant portion of the receptor-activated Ca(2+) influx. However, whether any of the TRPC channels function as a SOC remains controversial. Our understanding of the regulation of TRPC channels and their function as SOCs is being reshaped with the discovery of the role of STIM1 in the regulation of Ca(2+) influx channels. The findings that STIM1 is an ER resident Ca(2+) binding protein that regulates SOCs allow an expanded and molecular definition of SOCs. SOCs can be considered as channels that are regulated by STIM1 and require the clustering of STIM1 in response to depletion of the ER Ca(2+) stores and its translocation towards the plasma membrane. TRPC1 and other TRPC channels fulfill these criteria. STIM1 binds to TRPC1, TRPC2, TRPC4 and TRPC5 but not to TRPC3, TRPC6 and TRPC7, and STIM1 regulates TRPC1 channel activity. Structure-function analysis reveals that the C-terminus of STIM1 contains the binding and gating function of STIM1. The ERM domain of STIM1 binds to TRPC channels and a lysine-rich region participates in the gating of SOCs and TRPC1. Knock-down of STIM1 by siRNA and prevention of its translocation to the plasma membrane inhibit the activity of native SOCs and TRPC1. These findings support the conclusion that TRPC1 is a SOC. Similar studies with other TRPC channels demonstrate their regulation by STIM1 and indicate that all TRPC channels, except TRPC7, function as SOCs. PMID:17517433

  14. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  15. Analysis of hydraulic instability of ANS involute fuel plates

    SciTech Connect

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates.

  16. Ultrasound modulates ion channel currents.

    PubMed

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3-4.9 W/cm(2)) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  17. Geometric pumping in autophoretic channels.

    PubMed

    Michelin, Sébastien; Montenegro-Johnson, Thomas D; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-08-01

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory. PMID:26000567

  18. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel. PMID:27164907

  19. Flag flapping in a channel

    NASA Astrophysics Data System (ADS)

    Alben, Silas; Shoele, Kourosh; Mittal, Rajat; Jha, Sourabh; Glezer, Ari

    2015-11-01

    We study the flapping of a flag in an inviscid channel flow. We focus especially on how quantities vary with channel spacing. As the channel walls move inwards towards the flag, heavier flags become more unstable, while light flags' stability is less affected. We use a vortex sheet model to compute large-amplitude flapping, and find that the flag undergoes a series of jumps to higher flapping modes as the channel walls are moved towards the flag. Meanwhile, the drag on the flag and the energy lost to the wake first rise as the walls become closer, then drop sharply as the flag moves to a higher flapping mode.

  20. Biophysics of BK Channel Gating.

    PubMed

    Pantazis, A; Olcese, R

    2016-01-01

    BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties. PMID:27238260

  1. Ultrasound modulates ion channel currents

    PubMed Central

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  2. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  3. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  4. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    DOEpatents

    Reichner, Philip; Doshi, Vinod B.

    1992-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), a portion of which is in contact with the outside of a mixer chamber (52), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at the entrance to the mixer chamber, and a mixer nozzle (50) is located at the entrance to the mixer chamber, where the mixer chamber (52) connects with the reforming chamber (54), and where the mixer-diffuser chamber (52) and mixer nozzle (50) are exterior to and spaced apart from the combustion chamber (24), and the generator chamber (22), and the mixer nozzle (50) can operate below 400.degree. C.

  5. Electrochemical cell apparatus having an exterior fuel mixer nozzle

    DOEpatents

    Reichner, P.; Doshi, V.B.

    1992-12-08

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, a portion of which is in contact with the outside of a mixer chamber, passes from the generator chamber to combine with the fresh feed fuel inlet at the entrance to the mixer chamber, and a mixer nozzle is located at the entrance to the mixer chamber, where the mixer chamber connects with the reforming chamber, and where the mixer-diffuser chamber and mixer nozzle are exterior to and spaced apart from the combustion chamber, and the generator chamber, and the mixer nozzle can operate below 400 C. 2 figs.

  6. Status report on the spent fuel test-Climax, Nevada Test Site: A test of dry storage of spent fuel in a deep granite location

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1982-12-31

    The Spent Fuel Test-Climax (SFT-C) is located at a depth of 420 m in the Climax granite at the Nevada Test Site. The test array contains 11 canistered PWR fuel assemblies, plus associated electrical simulators and electrical heaters. There are nearly 900 channels of thermal, radiation, stress, displacement, and test control instrumentation.

  7. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  8. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  9. Negative particle planar and axial channeling and channeling collimation

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    While information exists on high energy negative particle channeling there has been little study of the challenges of negative particle bending and channeling collimation. Partly this is because negative dechanneling lengths are relatively much shorter. Electrons are not particularly useful for investigating negative particle channeling effects because their material interactions are dominated by channeling radiation. Another important factor is that the current central challenge in channeling collimation is the proton-proton Large Hadron Collider (LHC) where both beams are positive. On the other hand in the future the collimation question might reemerge for electon-positron or muon colliders. Dechanneling lengths increase at higher energies so that part of the negative particle experimental challenge diminishes. In the article different approaches to determining negative dechanneling lengths are reviewed. The more complicated case for axial channeling is also discussed. Muon channeling as a tool to investigate dechanneling is also discussed. While it is now possible to study muon channeling it will probably not illuminate the study of negative dechanneling.

  10. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  11. Simulating complex ion channel kinetics with IonChannelLab

    PubMed Central

    Covarrubias, Manuel; Sánchez-Rodríguez, Jorge E; Perez-Cornejo, Patricia; Arreola, Jorge

    2010-01-01

    In-silico simulation based on Markov chains is a powerful way to describe and predict the activity of many transport proteins including ion channels. However, modeling and simulation using realistic models of voltage- or ligand-gated ion channels exposed to a wide range of experimental conditions require building complex kinetic schemes and solving complicated differential equations. To circumvent these problems, we developed IonChannelLab a software tool that includes a user-friendly Graphical User Interface and a simulation library. This program supports channels with Ohmic or Goldman-Hodgkin-Katz behavior and can simulate the time-course of ionic and gating currents, single channel behavior and steady-state conditions. The program allows the simulation of experiments where voltage, ligand and ionic concentration are varied independently or simultaneously. PMID:20935453

  12. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  13. Fuel control system

    SciTech Connect

    Staniak, W.A.; Samuelson, R.E.; Moncelle, M.E.

    1986-10-14

    A fuel control system is described comprising: a fuel rack movable in opposite fuel-increasing and fuel-decreasing directions; a rack control member movable in opposite fuel-increasing and fuel-decreasing directions; servo system means for moving the fuel rack in response to movement of the rack control member an electrically energizable member movable in opposite fuel-increasing and fuel-decreasing directions, the electrically energizable member being urged to move in its fuel-decreasing direction when energized; first coupling means for connecting the electrically energizable member to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the electrically energizable member in its fuel-decreasing direction; a mechanical governor control having a member movable in opposite fuel-increasing and fuel-decreasing directions; second coupling means for connecting the mechanical governor to the rack control member to move the rack control member in its fuel-decreasing direction in response to movement of the mechanical governor member in its fuel-decreasing direction; bias means for biasing the rack control member to move in its fuel-increasing direction.

  14. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  15. Statistical Hot Channel Analysis for the NBSR

    SciTech Connect

    Cuadra A.; Baek J.

    2014-05-27

    A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

  16. A channel simulator design study

    NASA Technical Reports Server (NTRS)

    Devito, D. M.; Goutmann, M. M.; Harper, R. C.

    1971-01-01

    A propagation path simulator was designed for the channel between a Tracking and Data Relay Satellite in geostationary orbit and a user spacecraft orbiting the earth at an altitude between 200 and 4000 kilometers. The simulator is required to duplicate the time varying parameters of the propagation channel.

  17. Synchronization strategies for RFI channels

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Vantilborg, H.; Tung, S.

    1977-01-01

    An RFI channel to be a multiple-access channel is defined in which no sender can know when any other starts, and the problem of determining the relative phases of the senders at the receiver is studied. A new result is proved about binary DEBruijn sequences.

  18. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  19. Transport in rectangular quadrupole channels

    SciTech Connect

    Meier, E.

    1983-08-01

    Multiple electrostatic quadrupole arrays can be produced in many different geometries. However, the fabrication process can be considerably simplified if the poles are rectangular. This is especially true for millimeter sized channels. This paper presents the results of a series of measurements comparing the space charge limits in cylindrical and rectangular quadrupole channels.

  20. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  1. Channel Floor Yardangs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 19 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    The yardangs in this image are forming in channel floor deposits. The channel itself is funneling the wind to cause the erosion.

    Image information: VIS instrument. Latitude 4.5, Longitude 229.7 East (133.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are

  2. Stabilization and dynamics of edge flames in narrow channels

    NASA Astrophysics Data System (ADS)

    Bieri, Joanna A.

    The dynamics of edge flames in narrow channels is studied, first within the context of a reactive diffusive (or constant density) model and then in a variable density model which allows for the consideration of thermal expansion effects. Fuel and oxidizer, separated upstream by a thin plate of finite length, flow into a channel with a prescribed upstream velocity. At the end of the plate, the fuel and oxidizer mix and, when ignited, an edge flame is sustained at some distance from the tip of the plate. Typically, the flame, which is stabilized by heat conduction back to the cold plate, has a tribrachial structure. It consists of a leading edge, made up of lean and rich premixed segments, and an attached diffusion flame trailing behind. The flame can also have a hook-like shape, when one of the premixed branches is missing. This often happens for conditions away from stoichiometry and when the mass diffusivities of the fuel and oxidizer are unequal. Earlier work has determined the behavior of an edge flame in a mixing layer that develops downstream of a splitter plate with no boundaries in the lateral direction. This is relevant to the stabilization and liftoff of jet diffusion flames. The confined case has other possible applications, such as flames in mini-combustor systems, that have been recently tested experimentally. The objective in this work is to determine the effect that confinement has on the edge standoff distance, on the flame shape and on the flame stability. In particular, we examine the influence of channel width, wall temperature, and the effects of differential diffusion. We determine conditions under which the edge flame is stabilized near the tip of the splitter plate, is held near the tip but oscillates back and forth, or is blown-off. We consider a wide range of channel widths and boundary conditions at the walls.

  3. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  4. Requirements for signaling channel authentication

    SciTech Connect

    Tarman, T.D.

    1995-12-11

    This contribution addresses requirements for ATM signaling channel authentication. Signaling channel authentication is an ATM security service that binds an ATM signaling message to its source. By creating this binding, the message recipient, and even a third party, can confidently verify that the message originated from its claimed source. This provides a useful mechanism to mitigate a number of threats. For example, a denial of service attack which attempts to tear-down an active connection by surreptitiously injecting RELEASE or DROP PARTY messages could be easily thwarted when authenticity assurances are in place for the signaling channel. Signaling channel authentication could also be used to provide the required auditing information for accurate billing which is impervious to repudiation. Finally, depending on the signaling channel authentication mechanism, end-to-end integrity of the message (or at least part of it) can be provided. None of these capabilities exist in the current specifications.

  5. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  6. Fuel cell cooler assembly and edge seal means therefor

    DOEpatents

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  7. Bulk Fuel Man.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by bulk fuel workers. Addressed in the four individual units of the course are the following topics: bulk fuel equipment, bulk fuel systems, procedures for handling fuels, and…

  8. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  9. Microemulsion fuel system

    SciTech Connect

    Hazbun, E.A.; Schon, S.G.; Grey, R.A.

    1988-05-17

    A microemulsion fuel composition is described comprising: (a) a jet fuel, fuel oil or diesel hydrocarbon fuel; (b) about 3.0 to about 40% by weight water and/or methanol; and (c) a surface active amount of a combination of surface active agents consisting of: (1) tertiary butyl alcohol; and (2) at least one amphoteric; anionic, cationic or nonionic surfactant.

  10. Voltage-gated Proton Channels

    PubMed Central

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  11. Methods of channeling simulation

    SciTech Connect

    Barrett, J.H.

    1989-06-01

    Many computer simulation programs have been used to interpret experiments almost since the first channeling measurements were made. Certain aspects of these programs are important in how accurately they simulate ions in crystals; among these are the manner in which the structure of the crystal is incorporated, how any quantity of interest is computed, what ion-atom potential is used, how deflections are computed from the potential, incorporation of thermal vibrations of the lattice atoms, correlations of thermal vibrations, and form of stopping power. Other aspects of the programs are included to improve the speed; among these are table lookup, importance sampling, and the multiparameter method. It is desirable for programs to facilitate incorporation of special features of interest in special situations; examples are relaxations and enhanced vibrations of surface atoms, easy substitution of an alternate potential for comparison, change of row directions from layer to layer in strained-layer lattices, and different vibration amplitudes for substitutional solute or impurity atoms. Ways of implementing all of these aspects and features and the consequences of them will be discussed. 30 refs., 3 figs.

  12. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-02-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  13. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  14. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  15. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  16. M channel enhancers and physiological M channel block.

    PubMed

    Linley, John E; Pettinger, Louisa; Huang, Dongyang; Gamper, Nikita

    2012-02-15

    M-type (Kv7, KCNQ) K(+) channels control the resting membrane potential of many neurons, including peripheral nociceptive sensory neurons. Several M channel enhancers were suggested as prospective analgesics, and targeting M channels specifically in peripheral nociceptors is a plausible strategy for peripheral analgesia. However, receptor-induced inhibition of M channels in nociceptors is often observed in inflammation and may contribute to inflammatory pain. Such inhibition is predominantly mediated by phospholipase C. We investigated four M channel enhancers (retigabine, flupirtine, zinc pyrithione and H(2)O(2)) for their ability to overcome M channel inhibition via two phospholipase C-mediated mechanisms, namely depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) and a rise in intracellular Ca(2+) (an action mediated by calmodulin). Data from overexpressed Kv7.2/Kv7.3 heteromers and native M currents in dorsal root ganglion neurons suggest the following conclusions. (i) All enhancers had a dual effect on M channel activity, a negative shift in voltage dependence and an increase of the maximal current at saturating voltages. The enhancers differed in their efficacy to produce these effects. (ii) Both PIP(2) depletion and Ca(2+)/calmodulin strongly reduced the M current amplitude; however, at voltages near the threshold for M channel activation (-60 mV) all enhancers were able to restore M channel activity to a control level or above, while at saturating voltages the effects were more variable. (iii) Receptor-mediated inhibition of M current in nociceptive dorsal root ganglion neurons did not reduce the efficacy of retigabine or flupirtine to hyperpolarize the resting membrane potential. In conclusion, we show that all four M channel enhancers tested could overcome both PIP(2) and Ca(2+)-calmodulin-induced inhibition of Kv7.2/7.3 at voltages close to the threshold for action potential firing (-60 mV) but generally had reduced efficacy at a

  17. Single-Channel Recording of Ligand-Gated Ion Channels.

    PubMed

    Plested, Andrew J R

    2016-01-01

    Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons. PMID:27480725

  18. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  19. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    PubMed Central

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2009-01-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes. PMID:16554808

  20. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  1. Fuel cells: principles, types, fuels, and applications.

    PubMed

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. PMID:23696319

  2. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    NASA Astrophysics Data System (ADS)

    Krishna, Taraknath Woddi Venkat

    breeder core concept involving the CANDU core design. The end-of-life fuel characteristics evolved from the designed fuel composition is proliferation resistant and economical in integrating this technology into the Indian nuclear fuel cycle. Furthermore, it is shown that the separation of the military and civilian components of the Indian fuel cycle can be facilitated through the implementation of such a system.

  3. A Review of Thorium Utilization as an option for Advanced Fuel Cycle--Potential Option for Brazil in the Future

    SciTech Connect

    Maiorino, J.R.; Carluccio, T.

    2004-10-03

    Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO{sub 2}, as will be reviewed in this paper, and therefore R&D programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle.

  4. CHANNEL RESPONSES AND MANAGEMENT STRATEGIES IN DISTURBED CHANNELS: A NUMERICAL SIMULATION APPROACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Yalobusha River watershed underwent extensive channelization and channel repositioning during the 1960s. The newly channelized system experienced channel degradation, rejuvenating tributaries and increasing bank heights above stable conditions, causing bank failures and the addition of vegetatio...

  5. Microbial Senses and Ion Channels

    NASA Astrophysics Data System (ADS)

    Kung, Ching; Zhou, Xin-Liang; Su, Zhen-Wei; Haynes, W. John; Loukin, Sephan H.; Saimi, Yoshiro

    The complexity of animals and plants is due largely to cellular arrangement. The structures and activities of macromolecules had, however, evolved in early microbes long before the appearance of this complexity. Among such molecules are those that sense light, heat, force, water, and ligands. Though historically and didactically associated with the nervous system, ion channels also have deep evolutionary roots. For example, force sensing with channels, which likely began as water sensing through membrane stretch generated by osmotic pressure, must be ancient and is universal in extant species. Extant microbial species, such as the model bacterium Escherichia coli and yeast Saccharomyces cerevisiae, are equipped with stretch-activated channels. The ion channel proteins MscL and MscS show clearly that these bacterial channels receive stretch forces from the lipid bilayer. TRPY1, the mechanosensitive channel in yeast, is being developed towards a similar basic understanding of channels of the TRP (transientreceptor- potential) superfamily. TRPY1 resides in the vacuolar membrane and releases Ca2+ from the vacuole to the cytoplasm upon hyperosmotic shock. Unlike in most TRP preparations from animals, the mechanosensitivity of TRPY1 can be examined directly under patch clamp in either whole-vacuole mode or excised patch mode. The combination of direct biophysical examination in vitro with powerful microbial genetics in vivo should complement the study of mechanosensations of complex animals and plants.

  6. Ion Channels in Brain Metastasis.

    PubMed

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  7. Information geometry of Gaussian channels

    SciTech Connect

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  8. ATP release through pannexon channels

    PubMed Central

    Dahl, Gerhard

    2015-01-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  9. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  10. Calcium channel blockers and dementia

    PubMed Central

    Nimmrich, V; Eckert, A

    2013-01-01

    Degenerative dementia is mainly caused by Alzheimer's disease and/or cerebrovascular abnormalities. Disturbance of the intracellular calcium homeostasis is central to the pathophysiology of neurodegeneration. In Alzheimer's disease, enhanced calcium load may be brought about by extracellular accumulation of amyloid-β. Recent studies suggest that soluble forms facilitate influx through calcium-conducting ion channels in the plasma membrane, leading to excitotoxic neurodegeneration. Calcium channel blockade attenuates amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models. Vascular dementia, on the other hand, is caused by cerebral hypoperfusion and may benefit from calcium channel blockade due to relaxation of the cerebral vasculature. Several calcium channel blockers have been tested in clinical trials of dementia and the outcome is heterogeneous. Nimodipine as well as nilvadipine prevent cognitive decline in some trials, whereas other calcium channel blockers failed. In trials with a positive outcome, BP reduction did not seem to play a role in preventing dementia, indicating a direct protecting effect on neurons. An optimization of calcium channel blockers for the treatment of dementia may involve an increase of selectivity for presynaptic calcium channels and an improvement of the affinity to the inactivated state. Novel low molecular weight compounds suitable for proof-of-concept studies are now available. PMID:23638877

  11. Spent fuel handling and packaging program. Quarterly report, January-March 1980

    SciTech Connect

    Durrill, D C

    1980-04-01

    The following was completed: calorimeter equipment modification, installation, calibration and checkout, climax canister thermocouple channel/Climax shield plug alignment checks, Climax canister/shield plug/dummy fuel lifting force measurement, 1 KW PWR Fuel Temperature Test, and lag Storage Pit radiation background measurement study.

  12. Spent fuel test project, Climax granitic stock, Nevada Test Site

    SciTech Connect

    Ramspott, L.D.

    1980-10-24

    The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

  13. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  14. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  15. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one 462... impose restrictions including specifying the transmitter power, antenna height, or area or hours...

  16. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one 462... impose restrictions including specifying the transmitter power, antenna height, or area or hours...

  17. 47 CFR 95.7 - Channel sharing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one 462... impose restrictions including specifying the transmitter power, antenna height, or area or hours...

  18. 33 CFR 117.966 - Galveston Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.966 Galveston Channel. Link to an... across Galveston Channel, mile 4.5 of the Galveston Channel, (GIWW mile 356.1) at Galveston, Texas,...

  19. Simulation of reflooding on two parallel heated channel by TRACE

    NASA Astrophysics Data System (ADS)

    Zakir, Md. Ghulam

    2016-07-01

    In case of Loss-Of-Coolant accident (LOCA) in a Boiling Water Reactor (BWR), heat generated in the nuclear fuel is not adequately removed because of the decrease of the coolant mass flow rate in the reactor core. This fact leads to an increase of the fuel temperature that can cause damage to the core and leakage of the radioactive fission products. In order to reflood the core and to discontinue the increase of temperature, an Emergency Core Cooling System (ECCS) delivers water under this kind of conditions. This study is an investigation of how the power distribution between two channels can affect the process of reflooding when the emergency water is injected from the top of the channels. The peak cladding temperature (PCT) on LOCA transient for different axial level is determined as well. A thermal-hydraulic system code TRACE has been used. A TRACE model of the two heated channels has been developed, and three hypothetical cases with different power distributions have been studied. Later, a comparison between a simulated and experimental data has been shown as well.

  20. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  1. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  2. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  3. HTGR Fuel performance basis

    SciTech Connect

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  4. Fuel economy of hybrid fuel cell vehicles.

    SciTech Connect

    Ahluwalia, R.; Wang, X.; Rousseau, A.; Nuclear Engineering Division

    2004-01-01

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  5. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  6. Electrochemical studies of corrosion of SIMFUEL: Simulated used UO{sub 2} fuel

    SciTech Connect

    Sunder, S.; Shoesmith, D.W.; Miller, N.H.

    1993-12-31

    The corrosion of SIMFUEL, simulated high-burnup CANDU (CANadian Deuterium Uranium) fuel, was investigated in 0.1 mol{center_dot}dm{sup -3} NaClO{sub 4} solution (pH {approximately} 9.5) as a function of dissolved oxygen concentration using electrochemical techniques and X-ray photoelectron spectroscopy (XPS). Electrodes were constructed of SIMFUEL pellets with compositions close to those of a natural UO{sub 2} fuel that has undergone burnup of 3 at% and 6 at%. The XPS analysis of freshly polished SIMFUEL pellets showed that the extent of uranium oxidation in SIMFUEL was equivalent to that in stoichiometric UO{sub 2}. The SIMFUEL electrodes showed higher conductivity and electrochemical reactivity than the pure UO{sub 2} electrodes. A comparison of the open circuit corrosion potentials of the SIMFUEL electrodes with that of a pure UO{sub 2} electrode in oxygenated solutions showed a much faster increase in the potential for the SIMFUEL electrodes at short times. This suggests that the initial stages of UO{sub 2} oxidation, i.e., UO{sub 2} {yields} UO{sub 2+x} {yields} UO{sub 2.33}, are facilitated by fission product impurities in the UO{sub 2} matrix. However, the {open_quotes}steady-state{close_quotes} oxidation of uranium in SIMFUEL by the dissolved O{sub 2} was similar to that observed in pure UO{sub 2} under similar conditions.

  7. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  8. Acidalia Planitia Channel Margin

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows craters and a channel margin, in the region of southern Acidalia Planitia where Tiu and Ares Valles empty into the planitia. This image was collected during the Northern Spring season.

    Image information: VIS instrument. Latitude 23.8, Longitude 327.5 East (32.5 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion

  9. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  10. Glutamate-gated Chloride Channels*

    PubMed Central

    Wolstenholme, Adrian J.

    2012-01-01

    Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily. PMID:23038250

  11. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  12. Evaporative cooling in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Rajagopal, Aditya; Scherer, Axel

    2006-08-01

    Evaporative cooling is an effective and energy efficient way to rapidly remove heat from a system. Specifically, evaporative cooling in microfluidic channels can provide a cost-effective solution for the cooling of electronic devices and chemical reactors. Here we present microfluidic devices fabricated by using soft-lithography techniques to form simple fluidic junctions between channels carrying refrigerant and channels carrying N2 gas. The effects of channel geometry and delivery pressure on the performance of refrigeration through vaporization of acetone, isopropyl alcohol, and ethyl ether were characterized. By varying gas inlet pressures, refrigerants, and angles of the microfluidic junctions, optimal cooling conditions were found. Refrigeration rates in excess of 40°C/s were measured, and long lasting subzero cooling in the junction could be observed.

  13. Thermosyphon boiling in vertical channels

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Schweitzer, H.

    The thermal characteristics of ebullient cooling systems for VHSIC and VLSI microelectronic component thermal control are studied by experimentally and analytically investigating boiling heat transfer from a pair of flat, closely spaced, isoflux plates immersed in saturated water. A theoretical model for liquid flow rate through the channel is developed and used as a basis for correlating the rate of heat transfer from the channel walls. Experimental results for wall temperature as a function of axial location, heat flux, and plate spacing are presented. The finding that the wall superheat at constant imposed heat flux decreases as the channel is narrowed is explained with the aid of a boiling thermosiphon analysis which yields the mass flux through the channel.

  14. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  15. Five-Channel Polychromator Head

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Dobson, Chris; Lee, Mike; Robertson, Tony

    1995-01-01

    Five-channel polychromator head samples Raman-scattering spectrum simultaneously at five wavelengths. Each channel consists of 1-mm fiber-optic cable that is individually translatable along dispersion axis of spectrometer to provide both flexibility and fine-tuning capability. Laser raman thermometer not thermometer in usual sense of word, but noncontact spectrometer that measures temperature indirectly in terms of relative intensities of selected Raman-scattering spectral lines.

  16. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  17. FUEL ELEMENT SUPPORT

    DOEpatents

    Wyman, W.L.

    1961-06-27

    The described cylindrical fuel element has longitudinally spaced sets of short longitudinal ribs circumferentially spaced from one another. The ribs support the fuel element in a coolant tube so that there is an annular space for coolant flow between the fuel element and the interior of the coolant tube. If the fuel element grows as a result of reactor operation, the circumferential distribution of the ribs maintains the uniformity of the annular space between the coolant tube and the fuel element, and the collapsibility of the ribs prevents the fuel element from becoming jammed in the coolant tube.

  18. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  19. A three channel telemetry system

    NASA Technical Reports Server (NTRS)

    Lesho, Jeffery C.; Eaton, Harry A. C.

    1993-01-01

    A three channel telemetry system intended for biomedical applications is described. The transmitter is implemented in a single chip using a 2 micron BiCMOS processes. The operation of the system and the test results from the latest chip are discussed. One channel is always dedicated to temperature measurement while the other two channels are generic. The generic channels carry information from transducers that are interfaced to the system through on-chip general purpose operational amplifiers. The generic channels have different bandwidths: one from dc to 250 Hz and the other from dc to 1300 Hz. Each generic channel modulates a current controlled oscillator to produce a frequency modulated signal. The two frequency modulated signals are summed and used to amplitude modulate the temperature signal which acts as a carrier. A near-field inductive link telemeters the combined signals over a short distance. The chip operates on a supply voltage anywhere from 2.5 to 3.6 Volts and draws less than 1 mA when transmitting a signal. The chip can be incorporated into ingestible, implantable and other configurations. The device can free the patient from tethered data collection systems and reduces the possibility of infection from subcutaneous leads. Data telemetry can increase patient comfort leading to a greater acceptance of monitoring.

  20. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  1. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  2. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  3. Fuel cells and fuel cell catalysts

    DOEpatents

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  4. Mechanical Analysis of High Power Internally Cooled Annular Fuel

    SciTech Connect

    Zhao Jiyun; No, Hee Cheon; Kazimi, Mujid S.

    2004-05-15

    Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The structural behavior issues arising from the higher flow rate required to cool the fuel are assessed here, including buckling, vibrations, and potential wear problems. Five flow-induced vibration mechanisms are addressed: buckling instability, vortex-induced vibration, acoustic resonance, fluid-elastic instability, and turbulence-induced vibration. The structural behavior of the 17 x 17 traditional solid fuel array is compared with that of two types of annular fuels, a 15 x 15 array, and a 13 x 13 array.It is seen that the annular fuels are superior to the reference fuel in avoiding vibration-induced damage, even at a 50% increase in flow velocity above today's reactors. The higher resistance to vibration is mainly due to their relatively larger cross section area making them more rigid. The 13 x 13 annular fuel shows better structural performance than the 15 x 15 one due to its higher rigidity. Analysis of acoustic resonance of the inner channel cladding with pump blade passing frequencies showed that the acoustic frequencies are within 120% of the pulsation frequency. The annular fuel exhibits reduced impact, sliding, and fretting wear than the solid fuel, even at 150% flow rate of today's reactors.

  5. Catalytic bipolar interconnection plate for use in a fuel cell

    DOEpatents

    Lessing, P.A.

    1996-03-05

    A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.

  6. Catalytic bipolar interconnection plate for use in a fuel cell

    DOEpatents

    Lessing, Paul A.

    1996-01-01

    A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.

  7. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  8. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  9. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  10. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  11. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  12. Feasibility Studies of Alpha-Channeling in Mirror Machines

    SciTech Connect

    A. I. Zhmoginov and N. J. Fisch

    2010-03-19

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α- channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  13. Stability analysis of a square rod bundle sub-channel in supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Hai-jun, Wang; Ting, You; Lei, Zhang; Hong-fang, Gu; Yu-shan, Luo; Ji-lian, Bian

    2013-07-01

    Extensive investigations on the flow and heat transfer behavior in SCWR fuel assembly have been undertaken worldwide. However, stability analysis of supercritical water in the sub-channels of tight lattices is still lacking. In this paper, the flow stability of a fuel bundle channel with square pitches has been analyzed using commercial CFD code-ANSYS Fluent. Typical dynamic instability of Density Wave Oscillation (DWO) has occurred in heated channel containing fluids at supercritical pressure. A further discussion about the impacts of various operational parameters (e.g. power input, system pressure, mass velocity, inlet temperature, etc) shows that the system becomes more stable as system pressure and/or mass flow rate increases. An increase in inlet temperature also has a stabilizing effect on the system.

  14. Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories

    SciTech Connect

    Nitheanandan, T.; Sanderson, D.B.; Kyle, G.; Farmer, M.

    2004-07-01

    Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10 Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)

  15. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  16. Fuel cells feasibility

    NASA Technical Reports Server (NTRS)

    Schonfeld, D.; Charng, T.

    1981-01-01

    The technical and economic status of fuel cells is assessed with emphasis on their potential benefits to the Deep Space Network. The fuel cell, what it is, how it operates, and what its outputs are, is reviewed. Major technical problems of the fuel cell and its components are highlighted. Due to these problems and economic considerations it is concluded that fuel cells will not become commercially viable until the early 1990s.

  17. Transportation fuels from wood

    SciTech Connect

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  18. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  19. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  20. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  1. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  2. Fakir fuel pump

    NASA Technical Reports Server (NTRS)

    1922-01-01

    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  3. Yttria-stabilized zirconia solid oxide electrolyte fuel cells, monolithic solid oxide fuel cells

    SciTech Connect

    Not Available

    1989-01-01

    The MSOFC features of thin ceramic components, small cell size, and 1000{degree}C operating temperature combine to provide very high power densities of about 8 kW/kg or 4 kW/L for the MSOFC (fuel cell only, coflow version). This very high power density coupled with expected efficiencies of over 50 percent offers the possibility of successful competition with existing electrical generation systems. The ability of the MSOFC to reform hydrocarbon fuels within the fuel channels allows existing fuels and fuel distribution methods to be used with minor modifications for most applications. The power density of the MSOFC is high enough to meet the demands of many diverse applications such as aerospace, transportation, portable power systems, and micro-cogeneration systems, as well as more conventional utilities systems. The primary development challenge is to fabricate the MSOFC structure by co-sintering all four fuel cell materials into the corrugated honeycomb'' structure (stack). The objectives of the cost study are: To assess the manufacturing cost for the MSOFC assuming a nominal production rate of 200 MW/year for coal-based system applications. To define an integrated coal gasification MSOFC system with a potential for reducing plant heat rate and capital costs below 7,100 BTU/kWh and $1,300/kW, respectively.

  4. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  5. Fuel cell generator

    DOEpatents

    Isenberg, Arnold O.

    1983-01-01

    High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

  6. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  7. ALTERNATIVE FUELS RESEARCH STRATEGY

    EPA Science Inventory

    The purpose of this document was to lay a foundation for developing the scientific information needed to compare the benefits and risks of various motor vehicle fuels, especially alternative and reformulated fuels in relation to conventional gasoline and diesel fuels. Among the f...

  8. Nuclear fuels status

    NASA Technical Reports Server (NTRS)

    Kania, Michael

    1991-01-01

    A discussion on coated particle fuel performance from a modular High Temperature Gas Reactor (HTGR) is presented along with experimental results. The following topics are covered: (1) the coated particle fuel concept; (2) the functional requirements; (3) performance limiting mechanisms; (4) fuel performance; and (5) methods/techniques for characterizing performance.

  9. Fuel transfer apparatus

    SciTech Connect

    Sasaki, M.; Ohno, J.; Ozaki, K.; Yamamoto, K.; Matsuki, T

    1989-05-30

    This patent describes a fuel supply system including a fuel tank, a feed conduit through which fuel is pumped from the fuel tank, and a normally open return conduit through which excess fuel is returned to the fuel tank, comprising: the fuel tank having first and second sumps separated from each other; an ejector pump having a pressure chamber opening through a throat into the first sump, the pressure chamber being connected through a communication conduit to the second sump, and a fuel nozzle having an inlet port connected to receive a gravitational free fall of fuel through the return conduit and a discharge end opening into the pressure chamber for discharging a jet of fuel into the pressure chamber to create a negative pressure in the pressure chamber so as to suck fuel through the communication conduit from the second sump; and means responsive to a back pressure produced in the fuel nozzle for releasing the back pressure to the first sump when the back pressure exceeds a predetermined value.

  10. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  11. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  12. Generic theory for channel sinuosity.

    PubMed

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support. PMID:23610390

  13. Quantum channel capacities: Multiparty communication

    NASA Astrophysics Data System (ADS)

    Demianowicz, Maciej; Horodecki, Paweł

    2006-10-01

    We analyze different aspects of multiparty communication over quantum memoryless channels and generalize some of the key results known from bipartite channels to the multiparty scenario. In particular, we introduce multiparty versions of subspace and entanglement transmission fidelities. We also provide alternative, local, versions of fidelities and show their equivalence to the global ones in context of capacity regions defined. An equivalence of two different capacity notions with respect to two types of fidelities is proven. In analogy to the bipartite case it is shown, via sufficiency of isometric encoding theorem, that additional classical forward side channel does not increase capacity region of any quantum channel with k senders and m receivers which represents a compact unit of general quantum networks theory. The result proves that recently provided capacity region of a multiple access channel [M. Horodecki , Nature 436, 673 (2005); J. Yard , e-print quant-ph/0501045], is optimal also in a scenario of an additional support of forward classical communication.

  14. Generic theory for channel sinuosity

    PubMed Central

    Lazarus, Eli D.; Constantine, José Antonio

    2013-01-01

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as “inherited” from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support. PMID:23610390

  15. Gramicidin Channels Are Internally Gated

    PubMed Central

    Jones, Tyson L.; Fu, Riqiang; Nielson, Frederick; Cross, Timothy A.; Busath, David D.

    2010-01-01

    Abstract Gramicidin channels are archetypal molecular subjects for solid-state NMR studies and investigations of single-channel or cation conductance. Until now, the transitions between on and off conductance states have been thought, based on multichannel studies, to represent monomer ↔ dimer reactions. Here we use a single-molecule deposition method (vesicle fusion to a planar bilayer) to show that gramicidin dimer channels do not normally dissociate when conductance terminates. Furthermore, the observation of two 13C peaks in solid-state NMR indicates very stable dichotomous conformations for both the first and second peptide bonds in the monomers, and a two-dimensional chemical exchange spectrum with a 12-s mixing time demonstrates that the Val1 carbonyl conformations exchange slowly, with lifetimes of several seconds. It is proposed that gramicidin channels are gated by small conformational changes in the channel near the permeation pathway. These studies demonstrate how regulation of conformations governing closed ↔ open transitions may be achieved and studied at the molecular level. PMID:20409467

  16. TRP channels in the skin

    PubMed Central

    Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás

    2014-01-01

    Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as ‘polymodal cellular sensors’ on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24372189

  17. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  18. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  19. Single channel kinetics of a glutamate receptor.

    PubMed Central

    Kerry, C J; Kits, K S; Ramsey, R L; Sansom, M S; Usherwood, P N

    1987-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:2436676

  20. Single Channel Kinetics of a Glutamate Receptor

    PubMed Central

    Kerry, Cathryn J.; Kits, Karel S.; Ramsey, Robert L.; Sansom, Mark S. P.; Usherwood, Peter N. R.

    1986-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:19431683