Science.gov

Sample records for canine melanoma cell

  1. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    PubMed

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants. PMID:24126842

  2. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines

    PubMed Central

    Seo, Kyoung-won; Coh, Ye-rin; Rebhun, Robert B.; Ahn, Jin-ok; Han, Sei-Myung; Lee, Hee-woo; Youn, Hwa-Young

    2016-01-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 µM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 µM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. PMID:24656746

  3. Effect of Tolfenamic Acid on Canine Cancer Cell Proliferation, Specificity Protein (Sp) Transcription Factors, and Sp-Regulated Proteins in Canine Osteosarcoma, Mammary Carcinoma, and Melanoma Cells

    PubMed Central

    Wilson, H.; Chadalapaka, G.; Jutooru, I.; Sheppard, S.; Pfent, C.; Safe, S.

    2016-01-01

    Background Tolfenamic acid (TA) is an NSAID currently under investigation as an anticancer agent in humans. TA induces proteosome-dependent degradation of transcription factors Sp 1, 3, and 4. These proteins are known to be overexpressed in many human cancers. Hypothesis To evaluate the protein expression of Sps in canine tissue, and efficacy of TA against several canine tumor cell lines. Methods Six canine cell lines (2 osteosarcoma, 2 mammary carcinoma, 2 melanoma) were evaluated. Protein levels of Sp 1–4 and their downstream targets were evaluated using Western Blots. Cell survival and TUNEL assays were performed on cell lines, and Sp1 expression was evaluated on histologic samples from archived canine cases. Animals Six immortalized canine cancer cell lines derived from dogs were used. Archived tissue samples were also used. Results Sps were highly expressed in all 6 cell lines and variably expressed in histologic tissues. TA decreased expression of Sps 1–4 in all cell lines. All of the downstream targets of Sps were inhibited in the cell lines. Variable Sp1 expression was identified in all histologic samples examined. TA significantly inhibited cell survival in all cell lines in a dose dependant fashion. The number of cells undergoing apoptosis was significantly increased (P < .05) in all cell lines after exposure to TA in a dose-dependent fashion. Conclusions, and Clinical Importance Tolfenamic acid is a potential anticancer NSAID and further investigation is needed to determine its usefulness in a clinical setting. PMID:22536857

  4. Clinical systemic lupeol administration for canine oral malignant melanoma

    PubMed Central

    YOKOE, INORU; AZUMA, KAZUO; HATA, KEISHI; MUKAIYAMA, TOSHIYUKI; GOTO, TAKAHIRO; TSUKA, TAKESHI; IMAGAWA, TOMOHIRO; ITOH, NORIHIKO; MURAHATA, YUSUKE; OSAKI, TOMOHIRO; MINAMI, SABURO; OKAMOTO, YOSHIHARU

    2015-01-01

    Canine oral malignant melanoma (COMM) is the most aggressive malignant tumor in dogs. Lupeol is a triterpene extracted from various fruits and vegetables that reportedly inhibits melanoma cell proliferation in vitro and in vivo. In this study, the efficacy of subcutaneous lupeol for spontaneous COMM was evaluated. A total of 11 dogs (3, 5 and 3 dogs diagnosed with clinical stage I, II and III melanoma, respectively) were evaluated. Subcutaneous lupeol (10 mg/kg) was administered postoperatively at various time points to treat these 11 COMM cases. Of the 11 subjects, 7 exhibited no local recurrence 180 days postoperatively and no severe adverse effects were observed in any of the cases. Furthermore, no distant metastasis was observed during the experimental period. Therefore, systemic lupeol may prevent local tumor progression and distant metastasis and may be a novel adjuvant treatment for the treatment of COMM. PMID:25469276

  5. The therapeutic effects of SET/I2PP2A inhibitors on canine melanoma.

    PubMed

    Enjoji, Shuhei; Yabe, Ryotaro; Fujiwara, Nobuyuki; Tsuji, Shunya; Vitek, Michael P; Mizuno, Takuya; Nakagawa, Takayuki; Usui, Tatsuya; Ohama, Takashi; Sato, Koichi

    2015-11-01

    Canine melanoma is one of the most important diseases in small animal medicine. Protein phosphatase 2A (PP2A), a well conserved serine/threonine phosphatase, plays a critical role as a tumor suppressor. SET/I2PP2A is an endogenous inhibitor for PP2A, which directly binds to PP2A and suppresses its phosphatase activity. Elevated SET protein levels have been reported to exacerbate human tumor progression. The role of SET in canine melanoma, however, has not been understood. Here, we investigated the potential therapeutic role for SET inhibitors in canine melanoma. The expression of SET protein was observed in 6 canine melanoma cell lines. We used CMeC-1 cells (primary origin) and CMeC-2 cells (metastatic origin) to generate cell lines stably expressing SET-targeting shRNAs. Knockdown of SET expression in CMeC-2, but not in CMeC-1, leads to decreased cell proliferation, invasion and colony formation. Phosphorylation level of p70 S6 kinase was decreased by SET knockdown in CMeC-2, suggesting the involvement of mTOR (mammalian target of rapamycin)/p70 S6 kinase signaling. The SET inhibitors, OP449 and FTY720, more effectively killed CMeC-2 than CMeC-1. We observed PP2A activation in CMeC-2 treated with OP449 and FTY720. These results demonstrated the potential therapeutic application of SET inhibitors for canine melanoma. PMID:26062569

  6. Neurokinin-1 receptor expression and antagonism by the NK-1R antagonist maropitant in canine melanoma cell lines and primary tumour tissues.

    PubMed

    Borrego, J F; Huelsmeyer, M K; Pinkerton, M E; Muszynski, J L; Miller, S A K; Kurzman, I D; Vail, D M

    2016-06-01

    We interrogated the neurokinin-1 receptor (NK-1R)/substance P (SP) pathway in canine melanoma tumour tissues and cell lines. NK-1R messenger RNA (mRNA) and protein expression were observed in the majority of tumour tissues. Immunohistochemical assessment of archived tissue sections revealed NK-1R immunoreactivity in 11 of 15 tumours, which may have diagnostic, prognostic and therapeutic utility. However, we were unable to identify a preclinical in vitro cell line or in vivo xenograft model that recapitulates NK-1R mRNA and protein expression documented in primary tumours. While maropitant inhibited proliferation and enhanced apoptosis in cell lines, in the absence of documented NK-1R expression, this may represent off-target effects. Furthermore, maropitant failed to suppress tumour growth in a canine mouse xenograft model derived from a cell line expressing mRNA but not protein. While NK-1R represents a novel target, in the absence of preclinical models, in-species clinical trials will be necessary to investigate the therapeutic potential for antagonists such as maropitant. PMID:24751104

  7. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma.

    PubMed

    Fowles, J S; Denton, C L; Gustafson, D L

    2015-09-01

    The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT signalling dysregulation, and response to select molecularly targeted agents. Pathway activation was investigated via microarray and mutational analysis. Growth inhibition and cell cycle effects were assessed for pathway inhibitors AZD6244 (MAPK) and rapamycin (PI3K/AKT) in human and canine melanoma cells. Human and canine melanoma share similar differential gene expression patterns within the MAPK and PI3K/AKT pathways. Constitutive pathway activation and similar sensitivity to AZD6244 and rapamycin was observed in human and canine cells. These results show that human and canine melanoma share activation and sensitivity to inhibition of cancer-related signalling pathways despite differences in activating mutations. PMID:23745794

  8. Culturing Uveal Melanoma Cells.

    PubMed

    Angi, Martina; Versluis, Mieke; Kalirai, Helen

    2015-04-01

    A major challenge in cancer research is the use of appropriate models with which to study a specific biological question. Cell lines have long been used to study cellular processes and the effects of individual molecules because they are easy to use, grow rapidly, produce reproducible results and have a strong track record in research. In uveal melanoma in particular, the absence of animal models that faithfully replicate the behavior of the human disease has propagated the generation and use of numerous cell lines by individual research groups. This in itself, however, can be viewed as a problem due to the lack of standardization when characterizing these entities to determine how closely they reflect the genetic and phenotypic characteristics of this disease. The alternative is to use in vitro primary cultures of cells obtained directly from uveal melanoma patient samples, but this too has its difficulties. Primary cell cultures are difficult to use, hard to obtain and can show considerable heterogeneity. In this article, we review the following: (1) the uveal melanoma cell lines that are currently available, discussing the importance of establishing a bank of those that represent the molecular heterogeneity of uveal melanoma; (2) the methods used to isolate and perform short-term cultures of primary uveal melanoma cells, and (3) the establishment of 3D tissue culture models that bridge the gap between 2D in vitro systems and in vivo models with which to dissect cancer biology and perform therapeutic screens. PMID:27171555

  9. Diagnostic immunohistochemistry of canine round cell tumors.

    PubMed

    Sandusky, G E; Carlton, W W; Wightman, K A

    1987-11-01

    Sixty-five canine skin neoplasms studied using immunocytochemistry, included 22 histiocytomas, 18 amelanotic melanomas, 14 cutaneous lymphosarcomas, six mast cell tumors, and five transmissible venereal tumors. Formalin-fixed, paraffin-embedded sections were stained using the avidin-biotin-peroxidase complex (ABC) immunoperoxidase technique for reactivity with S-100 protein, kappa and lambda immunoglobulin light chains, alpha-1-antitrypsin, alpha-1-antichymotrypsin, leukocyte common antigen (LCA), neuron-specific enolase, keratin, cytokeratin, muramidase, and vimentin. Detection of S-100, kappa and lambda light chains, neuron-specific enolase, and vimentin were most useful for screening these neoplasms. None of the markers examined was consistent in staining histiocytomas. While reactivity of S-100 (ten cases) and neuron-specific enolase (ten cases) was detected in some amelanotic melanomas, lambda light chain immunoglobulin (eight cases) was relatively consistent in cutaneous lymphomas. Mast cell neoplasms reacted with avidin and, therefore, were positive, even on negative control sections. Vimentin reacted strongly on all amelanotic melanomas and transmissible venereal tumors examined. These antibodies are helpful adjuncts in the differential diagnosis of canine skin tumors. PMID:3137715

  10. Canine mast cell tumors.

    PubMed

    Macy, D W

    1985-07-01

    Despite the fact that the mast cell tumor is a common neoplasm of the dog, we still have only a meager understanding of its etiology and biologic behavior. Many of the published recommendations for treatment are based on opinion rather than facts derived from careful studies and should be viewed with some skepticism. Because of the infrequent occurrence of this tumor in man, only a limited amount of help can be expected from human oncologists; therefore, burden of responsibility for progress in predicting behavior and developing treatment effective for canine mast cell tumors must fall on the shoulders of the veterinary profession. PMID:3929444

  11. Local control and distant metastasis after electrochemotherapy of a canine anal melanoma.

    PubMed

    Spugnini, Enrico P; Filipponi, Marino; Romani, Luca; Dotsinsky, Ivan; Mudrov, Nikolay; Baroni, Adone; Ruocco, Eleonora; Laieta, Maria Teresa; Montesarchio, Vincenzo; Cassandro, Roberto; Citro, Gennaro; Baldi, Alfonso

    2007-01-01

    Canine anal melanoma is an aggressive neoplasm that rapidly leads to constipation in dogs, thus mimicking the behavior of their human counterpart. In this paper, the successful local palliation of this neoplasm is described using cisplatin selectively driven within the tumor cells by trains of biphasic pulses. The dog experienced tumor reduction with restoration of normal defecation for three months, then experienced massive dissemination to the sublumbar lymph nodes that led to intestinal obstruction and euthanasia. Electrochemotherapy (ECT) is a safe palliative therapy for such neoplasm and warrants further investigations in dogs as well humans. PMID:18019432

  12. The oncolytic effects of reovirus in canine solid tumor cell lines

    PubMed Central

    IGASE, Masaya; HWANG, Chung Chew; COFFEY, Matt; OKUDA, Masaru; NOGUCHI, Shunsuke; MIZUNO, Takuya

    2015-01-01

    Oncolytic virotherapy is a new strategy for cancer treatment for humans and dogs. Reovirus has been proven to be a potent oncolytic virus in human medicine. Our laboratory has previously reported that canine mast cell tumor and canine lymphoma were susceptible to reovirus. In this study, canine solid tumor cell lines (mammary gland tumor, osteosarcoma and malignant melanoma) were tested to determine their susceptibility towards reovirus. We demonstrated that reovirus induces more than 50% cell death in three canine mammary gland tumors and one canine malignant melanoma cell line. The reovirus-induced cell death occurred via the activation of caspase 3. Ras activation has been shown to be one of the important mechanisms of reovirus-susceptibility in human cancers. However, Ras activation was not related to the reovirus-susceptibility in canine solid tumor cell lines, which was similar to reports in canine mast cell tumor and canine lymphoma. The results of this study highly suggest that canine mammary gland tumor and canine malignant melanoma are also potential candidates for reovirus therapy in veterinary oncology. PMID:25648933

  13. The oncolytic effects of reovirus in canine solid tumor cell lines.

    PubMed

    Igase, Masaya; Hwang, Chung Chew; Coffey, Matt; Okuda, Masaru; Noguchi, Shunsuke; Mizuno, Takuya

    2015-05-01

    Oncolytic virotherapy is a new strategy for cancer treatment for humans and dogs. Reovirus has been proven to be a potent oncolytic virus in human medicine. Our laboratory has previously reported that canine mast cell tumor and canine lymphoma were susceptible to reovirus. In this study, canine solid tumor cell lines (mammary gland tumor, osteosarcoma and malignant melanoma) were tested to determine their susceptibility towards reovirus. We demonstrated that reovirus induces more than 50% cell death in three canine mammary gland tumors and one canine malignant melanoma cell line. The reovirus-induced cell death occurred via the activation of caspase 3. Ras activation has been shown to be one of the important mechanisms of reovirus-susceptibility in human cancers. However, Ras activation was not related to the reovirus-susceptibility in canine solid tumor cell lines, which was similar to reports in canine mast cell tumor and canine lymphoma. The results of this study highly suggest that canine mammary gland tumor and canine malignant melanoma are also potential candidates for reovirus therapy in veterinary oncology. PMID:25648933

  14. Angiotropic metastatic malignant melanoma in a canine mammary gland

    PubMed Central

    Yang, Hai Jie; Lee, Eun-Mi; Kim, Ah-Young; Lee, Eun-Joo; Hong, IL-Hwa; Huh, Sung-Oh

    2011-01-01

    An eleven-year-old spayed female Yorkshire Terrier presented with a sublumbar mass and upon ultrasonographic examination, was revealed to have a mammary gland tumor. Black to reddish colored masses, located in the visceral peritoneum of the sublumbar region was observed on laparotomy with masectomy of the right side. In the laparotomy, we observed reddish masses multifocally located in the serosal membrane of the large intestine. Histopathologic examination of the intestinal and abdominal mass showed highly invasiveness into the muscle and metastasis of melanocytic tumor cells through the blood vessels. The mammary glands showed abnormal hyperplasia of melanocytes, destruction of the normal glands by tumor cells and infiltration of some lymphocytes in the pool of melanocytic cells. We have identified a malignant melanoma containing an angiotumoral complex in which tumor cells occupied a pericytic location along the microvessels with intravasation determined by immunohistochemistry for S100 protein and protein kinase C-α. Histologic findings in this dog lead to a diagnosis of an angiotropic metastatic malignant melanoma. PMID:22232646

  15. Molecular Pathogenesis of Sporadic Melanoma and Melanoma-Initiating Cells

    PubMed Central

    Kong, Yunyi; Kumar, Suresh M.; Xu, Xiaowei

    2014-01-01

    Recent advances in molecular genetics and cancer stem cell biology have shed some light on the molecular basis of melanomagenesis. In this review, we will focus on major genetic alterations in the melanoma, particularly pathways involved in cell proliferation, apoptosis, and tumor suppression. The potential role of melanoma-initiating cells during melanomagenesis and progression will also be discussed. Understanding pathogenesis of melanoma may uncover new diagnostic clues and therapeutic targets for this increasingly prevalent disease. PMID:21128770

  16. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  17. Melanoma Cancer Stem Cells: Markers and Functions

    PubMed Central

    Parmiani, Giorgio

    2016-01-01

    The discovery of cancer stem cells (CSCs) in human solid tumors has allowed a better understanding of the biology and neoplastic transformation of normal melanocytes, and the possible mechanisms by which melanoma cells acquire tumorigenicity. In this review I summarize the literature findings on the potential biomarkers of melanoma CSCs, their presence in the melanoma cell populations, the interaction with the immune system (with both T and NK cells) and the role of melanoma CSCs in the clinics. Given the extraordinary progress in the therapy of melanoma caused by immune checkpoint antibodies blockade, I discuss how these antibodies can work by the activation of melanoma infiltrating T cells specifically recognizing neo-antigens expressed even by melanoma CSCs. This is the mechanism that can induce a regression of the metastatic melanomas. PMID:26978405

  18. Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma.

    PubMed

    Maekawa, Naoya; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Kato, Yukinari; Murata, Shiro; Ohashi, Kazuhiko

    2016-01-01

    Spontaneous cancers are common diseases in dogs. Among these, some malignant cancers such as oral melanoma, osteosarcoma, hemangiosarcoma, and mast cell tumor are often recognized as clinical problems because, despite their high frequencies, current treatments for these cancers may not always achieve satisfying outcomes. The absence of effective systemic therapies against these cancers leads researchers to investigate novel therapeutic modalities, including immunotherapy. Programmed death 1 (PD-1) is a costimulatory receptor with immunosuppressive function. When it binds its ligands, PD-ligand 1 (PD-L1) or PD-L2, PD-1 on T cells negatively regulates activating signals from the T cell receptor, resulting in the inhibition of the effector function of cytotoxic T lymphocytes. Aberrant PD-L1 expression has been reported in many human cancers and is considered an immune escape mechanism for cancers. In clinical trials, anti-PD-1 or anti-PD-L1 antibodies induced tumor regression for several malignancies, including advanced melanoma, non-small cell lung carcinoma, and renal cell carcinoma. In this study, to assess the potential of the PD-1/PD-L1 axis as a novel therapeutic target for canine cancer immunotherapy, immunohistochemical analysis of PD-L1 expression in various malignant cancers of dogs was performed. Here, we show that dog oral melanoma, osteosarcoma, hemangiosarcoma, mast cell tumor, mammary adenocarcinoma, and prostate adenocarcinoma expressed PD-L1, whereas some other types of cancer did not. In addition, PD-1 was highly expressed on tumor-infiltrating lymphocytes obtained from oral melanoma, showing that lymphocytes in this cancer type might have been functionally exhausted. These results strongly encourage the clinical application of PD-1/PD-L1 inhibitors as novel therapeutic agents against these cancers in dogs. PMID:27276060

  19. Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma

    PubMed Central

    Maekawa, Naoya; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Kato, Yukinari; Murata, Shiro; Ohashi, Kazuhiko

    2016-01-01

    Spontaneous cancers are common diseases in dogs. Among these, some malignant cancers such as oral melanoma, osteosarcoma, hemangiosarcoma, and mast cell tumor are often recognized as clinical problems because, despite their high frequencies, current treatments for these cancers may not always achieve satisfying outcomes. The absence of effective systemic therapies against these cancers leads researchers to investigate novel therapeutic modalities, including immunotherapy. Programmed death 1 (PD-1) is a costimulatory receptor with immunosuppressive function. When it binds its ligands, PD-ligand 1 (PD-L1) or PD-L2, PD-1 on T cells negatively regulates activating signals from the T cell receptor, resulting in the inhibition of the effector function of cytotoxic T lymphocytes. Aberrant PD-L1 expression has been reported in many human cancers and is considered an immune escape mechanism for cancers. In clinical trials, anti-PD-1 or anti-PD-L1 antibodies induced tumor regression for several malignancies, including advanced melanoma, non-small cell lung carcinoma, and renal cell carcinoma. In this study, to assess the potential of the PD-1/PD-L1 axis as a novel therapeutic target for canine cancer immunotherapy, immunohistochemical analysis of PD-L1 expression in various malignant cancers of dogs was performed. Here, we show that dog oral melanoma, osteosarcoma, hemangiosarcoma, mast cell tumor, mammary adenocarcinoma, and prostate adenocarcinoma expressed PD-L1, whereas some other types of cancer did not. In addition, PD-1 was highly expressed on tumor-infiltrating lymphocytes obtained from oral melanoma, showing that lymphocytes in this cancer type might have been functionally exhausted. These results strongly encourage the clinical application of PD-1/PD-L1 inhibitors as novel therapeutic agents against these cancers in dogs. PMID:27276060

  20. Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Fiszman, G L; Karara, A L; Glikin, G C

    2008-03-01

    Canine spontaneous melanoma is a highly aggressive tumor resistant to current therapies. We evaluated the safety, efficacy and antitumor effects of direct intratumor injections of lipoplexes encoding herpes simplex thymidine kinase coadministrated with ganciclovir, and irradiated transgenic xenogeneic cells secreting 20-30 mug day(-1) of human granulocyte-macrophage colony-stimulating factor and interleukin-2. Toxicity was minimal or absent in all patients. This combined treatment (CT) induced tumor regression and a pronounced immune cell infiltration. The objective responses (47%: 21/45) averaged 80% of tumor mass loss. Local CT also induced systemic antitumor response evidenced by complete remission of one pulmonary metastasis and by the significantly higher percentage of metastasis-free patients (76: 34/45)) until the study ending compared to untreated (UC: 29%, 5/17), surgery-treated (CX: 48%, 11/23) or suicide gene-treated controls (SG: 56%, 9/16) (Fisher's exact test). CT significantly improved median survival time: 160 (57-509) days compared to UC (69 (10-169)), CX (82 (43-216)) or SG (94 (46-159)). CT also increased (P<0.00001, Kaplan-Meier analysis) metastasis-free survival: >509 (57-509) days with respect to UC: 41 (10-169), CX: 133 (43-216) and SG: >159 (41-159). Therefore, CT controlled tumor growth by delaying or preventing distant metastasis, thereby significantly extending survival and recovering the quality of life. PMID:18219342

  1. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2008-02-01

    We evaluated the safety, efficacy and anti-tumor effects of a surgery adjuvant treatment on canine patients with malignant melanoma. This approach combined suicide gene therapy with a subcutaneous vaccine composed by formolized tumor cells and irradiated xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. The post-surgical margin of the cavity was infiltrated with lipid-complexed thymidine kinase suicide gene coadministrated with ganciclovir. Toxicity was minimal or absent in all patients. With respect to surgery-treated controls (SC), this combined treatment (CT) significantly increased the fraction of patients local disease-free from 6 to 58% and distant metastases-free from 43 to 78% (Fisher's Exact test). In addition, CT significantly improved both SC overall 78 (23-540) and metastasis-free survival 112 (0-467) days to more than 1312 days (respective ranges: 43-1312 and 0-1312) (Kaplan-Meier analysis). In those patients subjected to partial surgery or presenting local recurrence, the efficacy of CT was verified by a 49% of objective responses that averaged 85% of tumor mass loss, while 22% displayed tumor progression as 94% of SC did. Therefore, surgery adjuvant CT controlled tumor growth, delaying or preventing post-surgical recurrence and distant metastasis, significantly extending survival and recovering the quality of life. PMID:18033308

  2. Isolation of tumorigenic circulating melanoma cells

    PubMed Central

    Ma, Jie; Lin, Jennifer Y.; Alloo, Allireza; Wilson, Brian J.; Schatton, Tobias; Zhan, Qian; Murphy, George F.; Waaga-Gasser, Ana-Maria; Gasser, Martin; Hodi, F. Stephen; Frank, Natasha Y.; Frank, Markus H.

    2010-01-01

    Circulating tumor cells (CTC) have been identified in several human malignancies, including malignant melanoma. However, whether melanoma CTC are tumorigenic and cause metastatic progression is currently unknown. Here we isolate for the first time viable tumorigenic melanoma CTC and demonstrate that this cell population is capable of metastasis formation in human-to-mouse xenotransplantation experiments. The presence of CTC among peripheral blood mononuclear cells (PBMC) of murine recipients of subcutaneous (s.c.) human melanoma xenografts could be detected based on mRNA expression for human GAPDH and/or ATP-binding cassette subfamily B member 5 (ABCB5), a marker of malignant melanoma-initiating cells previously shown to be associated with metastatic disease progression in human patients. ABCB5 expression could also be detected in PBMC preparations from human stage IV melanoma patients but not healthy controls. The detection of melanoma CTC in human-to-mouse s.c. tumor xenotransplantation models correlated significantly with pulmonary metastasis formation. Moreover, prospectively isolated CTC from murine recipients of s.c. melanoma xenografts were capable of primary tumor initiation and caused metastasis formation upon xenotransplantation to secondary murine NOD-scid IL2Rγnull recipients. Our results provide initial evidence that melanoma CTC are tumorigenic and demonstrate that CTC are capable of causing metastatic tumor progression. These findings suggest a need for CTC eradication to inhibit metastatic progression and provide a rationale for assessment of therapeutic responses of this tumorigenic cell population to promising emerging melanoma treatment modalities. PMID:20977885

  3. Thigmotropism of malignant melanoma cells.

    PubMed

    Quatresooz, Pascale; Piérard-Franchimont, Claudine; Noël, Fanchon; Piérard, Gérald E

    2012-01-01

    During malignant melanoma (MM) progression including incipient metastasis, neoplastic cells follow some specific migration paths inside the skin. In particular, they progress along the dermoepidermal basement membrane, the hair follicles, the sweat gland apparatus, nerves, and the near perivascular space. These features evoke the thigmotropism phenomenon defined as a contact-sensing growth of cells. This process is likely connected to modulation in cell tensegrity (control of the cell shape). These specifically located paucicellular aggregates of MM cells do not appear to be involved in the tumorigenic growth phase, but rather they participate in the so-called "accretive" growth model. These MM cell collections are often part of the primary neoplasm, but they may, however, correspond to MM micrometastases and predict further local overt metastasis spread. PMID:22203839

  4. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  5. Detection of novel polymorphisms in the ckit gene of canine patients with lymphoma, melanoma, haemangiosarcoma, and osteosarcoma.

    PubMed

    Gramer, Irina; Kessler, Martin; Geyer, Joachim

    2016-06-01

    Tyrosine kinase inhibitors (TKIs) that specifically target cKIT represent a therapeutic approach for non-resectable canine mast cell tumours (MCTs) grade II/III. The therapeutic benefit of TKIs has been investigated in other tumours based on clinical response rates and identification of gain-of-function mutations. In the present study, cKIT expression in 14 dogs with osteosarcoma, melanoma, haemangiosarcoma, lymphoma, and fibrosarcoma was analysed. Tissue samples were used for cKIT sequencing to (I) detect the cKIT transcript and to (II) identify gain-of-function mutations. The cKIT transcript was detected in ten patients. Four novel amino acid substitutions and five silent polymorphisms were identified. Furthermore, an insertion mutation (GNSK) was discovered in the tissue, but not in the blood sample of one dog. CKIT expression was identified in a variety of canine tumours and, therefore, TKIs might have a broader therapeutic indication apart from treatment of MCTs. Further investigations will be necessary to localize the cKIT protein in the respective tumours and to evaluate the functional consequence of the cKIT variants identified in the present study. PMID:26971271

  6. Melanoma cell galectin-1 ligands functionally correlate with malignant potential*

    PubMed Central

    Yazawa, Erika M.; Geddes-Sweeney, Jenna E.; Cedeno-Laurent, Filiberto; Walley, Kempland C.; Barthel, Steven R.; Opperman, Matthew J.; Liang, Jennifer; Lin, Jennifer Y.; Schatton, Tobias; Laga, Alvaro C.; Mihm, Martin C.; Qureshi, Abrar A.; Widlund, Hans R.; Murphy, George F.; Dimitroff, Charles J.

    2015-01-01

    Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening anti-tumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely-dysplastic nevi as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAMKD) or ST6GalNAc2-overexpressing (ST6O/E) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAMKD or ST6O/E melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1 – melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy. PMID:25756799

  7. Myoepithelial cells in canine mammary tumours.

    PubMed

    Sánchez-Céspedes, Raquel; Millán, Yolanda; Guil-Luna, Silvia; Reymundo, Carlos; Espinosa de Los Monteros, Antonio; Martín de Las Mulas, Juana

    2016-01-01

    Mammary tumours are the most common neoplasms of female dogs. Compared to mammary tumours of humans and cats, myoepithelial (ME) cell involvement is common in canine mammary tumours (CMT) of any subtype. Since ME cell involvement in CMT influences both histogenetic tumour classification and prognosis, correct identification of ME cells is important. This review describes immunohistochemical methods for identification of canine mammary ME cells used in vivo. In addition, phenotypic and genotypic methods to isolate ME cells for in vitro studies to analyse tumour-suppressor protein production and gene expression are discussed. The contribution of ME cells to both histogenetic classifications and the prognosis of CMT is compared with other species and the potential use of ME cells as a method to identify carcinoma in situ is discussed. PMID:26639832

  8. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  9. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  10. Antigen expression in normal and neoplastic canine tissues defined by a monoclonal antibody generated against canine mesothelioma cells.

    PubMed

    Liu, K X; Bird, A E; Lenz, S D; McDonough, S P; Wolfe, L G

    1994-11-01

    Monoclonal antibody (MAb) 3B5 generated against canine mesothelioma cells was applied to canine tumors and normal tissues via immunohistochemical and immunoblotting techniques to evaluate antigen binding. By use of an avidin-biotin immunoperoxidase complex (ABC) method, immunoreactivity was noted in reactive mesothelial cells and in normal tissues was observed primarily in mesothelial cell linings, endothelial cells, and smooth muscle of blood vessels and soft tissues; the reactivity was nearly equivalent in frozen or formalin-fixed, paraffin-embedded tissue sections. Use of the ABC method on formalin-fixed, paraffin-embedded tumors yielded moderate to strong cytoplasmic immunostaining of neoplastic cells in 10/11 (91%) mesotheliomas, 18/23 (78%) hemangiosarcomas, 4/10 (40%) intestinal and lung carcinomas, and < or = 20% of hemangiomas, leiomyosarcomas, leiomyomas, mammary carcinomas, and squamous cell carcinomas. No immunostaining of tumor cells was observed in fibrosarcomas, hemangiopericytomas, perianal gland carcinomas, and melanomas. Immunoblotting was performed on samples that demonstrated strong immunoreactivity with MAb 3B5 by the ABC method: mesothelioma, hemangiosarcoma, urinary bladder (smooth muscle), and lung (alveolar capillaries). These analyses showed that MAb 3B5 bound a major antigen of 78 kilodaltons (kd) and minor antigens at 56 and 54 kd in normal and neoplastic tissues. The preliminary immunohistochemical results suggest that MAb 3B5 may possess utility in diagnosis of mesotheliomas and hemangiosarcomas, discrimination of cell types in proliferative serosal lesions, and demonstration of vascularity or angiogenesis in neoplastic and inflammatory lesions. PMID:7863582

  11. Melanoma

    MedlinePlus

    ... have melanoma that has spread. Help the patient’s immune system fight the cancer Ipilimumab (Yervoy®), which was FDA ... How ipilimumab works : This drug helps the patient’s immune system to recognize, target, and attack cancer cells. Healthy ...

  12. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas.

    PubMed

    Shukuwa, Tetsuo; Katayama, Ichiro; Koji, Takehiko

    2002-04-01

    In a rodent system, melanoma cells expressing Fas ligand (FasL) could kill Fas-positive lymphocytes, suggesting that FasL expression was an essential factor for melanoma cell survival in vivo. These findings led us to investigate apoptosis, and to histochemically analyze involvement of Fas and FasL in the induction of apoptosis, in human malignant melanoma tissues. The percentages of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labeling (TUNEL)-positive melanoma cells and of proliferating cell nuclear antigen (PCNA)-positive melanoma cells in melanoma tissues (n = 22) were greater than those in melanocytes in uninvolved skin (n = 6) and nevus cells in nevi tissues (n = 9). The infiltrating lymphocytes around melanomas were also TUNEL positive. Immunohistochemistry revealed expression of Fas and FasL in melanoma cells and lymphocytes, whereas no Fas or FasL expression was detected in normal skin melanocytes and nevus cells. There was significant correlation between Fas-positive indices and TUNEL indices in melanoma tissues. Moreover, TUNEL-, Fas-, and FasL-positive indices of melanoma cells from patients with Stage 3 melanomas were significantly lower than those with Stage 2 melanomas. The PCNA index of Stage 1 melanoma was significantly lower than that of the other stages, although the difference of PCNA index was insignificant among Stages 2 to 4. Among Stages 1 to 4, there was no difference in the PCNA, TUNEL-, and Fas-positive indices of lymphocytes, although the FasL-positive index of lymphocytes from Stage 3 melanomas was significantly lower than in that from Stage 2. These data reveal that melanoma cells and infiltrating lymphocytes have the potential to induce their own apoptosis regulated by Fas and FasL in an autocrine and/or paracrine fashion and that the decline of Fas-mediated apoptosis of melanoma cells, rather than the apoptosis of infiltrating lymphocytes, may affect the prognosis of melanoma patients, possibly through the

  13. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  14. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; Kashyap, Abhishek S.; McElwain, D. L. Sean; Simpson, Matthew J.

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  15. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; Kashyap, Abhishek S; McElwain, D L Sean; Simpson, Matthew J

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  16. Ex Vivo Derived Primary Melanoma Cells: Implications for Immunotherapeutic Vaccines

    PubMed Central

    Suriano, Robert; Rajoria, Shilpi; L.George, Andrea; Geliebter, Jan; Wallack, Marc; Tiwari, Raj K.

    2013-01-01

    Transformation of the pigment producing melanocytes into melanoma is a complex multi-step process involving the enhanced expression of various antigens considered as immunotherapeutic targets. Significant progress in melanoma research has been made over the years and has resulted in the identification of various antigens over expressed in melanoma as well as advances in immunotherapeutic treatments, which focus on modulating the immune systems response to melanoma. Despite these advances, incidences of melanoma are still on the rise thus warranting additional research in identifying new therapeutic treatments. Our focus is on developing a multivalent immunotherapeutic vaccine that targets various melanoma associated antigens. The approach focuses on the use of five primary patient derived melanoma cells (MEL-2, MEL-V, 3MM, KFM, and GLM-2, which have been characterized in this study. These cells express differential amounts of various melanoma associated antigens such as MART-1, gp100 (Pmel17), MAGE-A1 and tyrosinase as well a cell surface antigens essential for melanoma cell metastasis, such as CD146 and CD71. In addition these cells display differential in vitro migratory and invasive properties as well as have the ability to form solid tumors when implanted into BALB/c nude mice. The retention of the innate phenotype of these primary patient derived cells together with the expression of a multitude repertoire of melanoma associated antigens offers a novel opportunity to target melanoma so as to avoid immune evasion. PMID:23833682

  17. The effects of oncolytic reovirus in canine lymphoma cell lines.

    PubMed

    Hwang, C C; Umeki, S; Igase, M; Coffey, M; Noguchi, S; Okuda, M; Mizuno, T

    2016-08-01

    Reovirus is a potent oncolytic virus in many human neoplasms that has reached phase II and III clinical trials. Our laboratory has previously reported the oncolytic effects of reovirus in canine mast cell tumour (MCT). In order to further explore the potential of reovirus in veterinary oncology, we tested the susceptibility of reovirus in 10 canine lymphoma cell lines. Reovirus-induced cell death, virus replication and infectivity were confirmed in four cell lines with variable levels of susceptibility. The level of Ras activation varied among the cell lines with no correlation with reovirus susceptibility. Reovirus-susceptible cell lines underwent apoptosis as proven by propidium iodide (PI) staining, Annexin V-FITC/PI assay, cleavage of PARP and inhibition of cell death by caspase inhibitor. A single intratumoral injection of reovirus suppressed the growth of canine lymphoma subcutaneous tumour in NOD/SCID mice. Unlike canine MCT, canine lymphoma is less susceptible to reovirus. PMID:25319493

  18. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  19. A diagnostic algorithm to distinguish desmoplastic from spindle cell melanoma.

    PubMed

    Weissinger, Stephanie E; Keil, Philipp; Silvers, David N; Klaus, Beate M; Möller, Peter; Horst, Basil A; Lennerz, Jochen K

    2014-04-01

    Spindle cell melanoma and desmoplastic melanoma differ clinically in prognosis and therapeutic implications; however, because of partially overlapping histopathological features, diagnostic distinction of spindle cell from desmoplastic melanoma is not always straightforward. A direct comparison of diagnostic and therapeutic biomarkers has not been performed. Meta-review of the literature discloses key clinicopathological differences between spindle cell and desmoplastic melanoma, including immunophenotypes. Using 50 biomarkers available in routine diagnostics, we examined 38 archival cases (n=16 spindle, 18 desmoplastic, 4 mixed spindle/desmoplastic melanoma). S100 remains as the most reliable routine marker to reach the diagnosis of melanoma in spindle cell and desmoplastic melanoma. We identified nine distinctly labeling markers with spindle cell melanoma showing positivity for laminin, p75, HMB45, c-kit, and MelanA, and desmoplastic melanoma preferentially labeling with collagen IV, trichrome, CD68, and MDM2. On the basis of comparisons of test performance measures, MelanA and trichrome were used to devise a 94% sensitive diagnostic algorithm for the distinction of desmoplastic from spindle cell melanoma. Gene amplification and expression status was assessed for a set of potentially drugable targets (HER2, EGFR, MET, MDM2, TP53, ALK, MYC, FLI-1, and KIT). Fluorescent in situ hybridizations did not reveal a significant number of gene aberrations/rearrangements; however, protein overexpression for at least one of these markers was identified in 35 of 38 cases (92%). In addition, we found BRAF mutations in 31% of spindle cell and 5% of desmoplastic melanoma, with an overall mutation frequency of 16% (n=6/38). We present the first comprehensive screening study of diagnostic and therapeutic biomarkers in spindle cell and desmoplastic melanoma. The devised algorithm allows diagnostic distinction of desmoplastic from spindle cell melanoma when routine histology is not

  20. Neutron irradiation of human melanoma cells.

    PubMed

    Brown, K; Mountford, M H; Allen, B J; Mishima, Y; Ichihashi, M; Parsons, P

    1989-01-01

    The biological characteristics and in vitro radiosensitivity of melanoma cells to thermal neutrons were investigated as a guide to the effectiveness of boron neutron capture therapy. Plateau phase cultures of three human malignant melanoma-established cell lines were examined for cell density at confluence, doubling time, cell cycle parameters, chromosome constitution, and melanin content. Cell survival dose-response curves, for cells preincubated in the presence or absence of p-boronophenylalanine. HCl (10B1-BPA), were measured over the dose range 0.6-8.0 Gy (N + gamma). The neutron fluence rate was 2.6 x 10(9) n/cm2/s and the total dose rate 3.7 Gy/h (31% gamma). Considerable differences were observed in the morphology and cellular properties of the cell lines. Two cell lines (96E and 96L) were amelanotic, and one was melanotic (418). An enhanced killing for neutron irradiation was found only for the melanotic cells after 20 h preincubation with 10 micrograms/ml 10B1-BPA. In view of the doubling times of the cell lines of about 23 h (96E and 96L) or of 36 h (418), it seems likely that an increased boron uptake, and hence increased radiosensitivity, might result if the preincubation period with 10B1-BPA is extended to several hours longer than the respective cell cycle times. PMID:2798324

  1. Canine Pluripotent Stem Cells: Are They Ready for Clinical Applications?

    PubMed

    Betts, Dean H; Tobias, Ian C

    2015-01-01

    The derivation of canine embryonic stem cells and generation of canine-induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms, and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner. PMID:26664969

  2. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma.

    PubMed

    Guo, Hongwei; Cheng, Yabin; Martinka, Magdalena; McElwee, Kevin

    2015-09-22

    Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan-Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics. PMID:26329521

  3. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma

    PubMed Central

    Guo, Hongwei; Cheng, Yabin; Martinka, Magdalena; McElwee, Kevin

    2015-01-01

    Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan–Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics. PMID:26329521

  4. CD271 is an imperfect marker for melanoma initiating cells

    PubMed Central

    Cheli, Yann; Bonnazi, Vanessa F.; Jacquel, Arnaud; Allegra, Maryline; Donatis, Gian Marco De; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert

    2014-01-01

    Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential. PMID:25105565

  5. Melanoma

    MedlinePlus

    ... to other parts of the body very quickly. Melanoma treatment can cause side effects, including pain, nausea, and ... Livingstone; 2013:chap 69. National Cancer Institute: PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Last modified March ...

  6. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma: 9 years of follow-up.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2012-12-01

    We present here the updated results after 9 years of the beginning of a trial on canine patients with malignant melanoma. This surgery adjuvant approach combined local suicide gene therapy with a subcutaneous vaccine composed by tumor cells extracts and xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. Toxicity was absent or minimal in all patients (0≤VCOG-CTCAE grade≤1). With respect to surgery-treated controls (ST), the complete surgery (CS) arm of this combined treatment (CT) significantly increased the fraction of local disease-free patients from 13 to 81% and distant metastases free from 32 to 84%. Even though less effective than the CS arm, the partial surgery (PS) arm of this CT was significantly better controlling the disease than only surgery (14% while PS-ST: 0%, P<0.01 and CS-ST: 5%, P<0.05). In addition, CT produced a significant sevenfold (CS) and threefold (PS) increase in overall survival. The CS-CT arm significantly improved both CS-ST metastasis-free- and melanoma overall survival from 99 days (respective ranges: 11-563 and 10-568) to >2848 days (81-2848 and 35-2848). Thus, more of 50% of our CT patients died of melanoma unrelated causes, transforming a lethal disease into a chronic one. Finally, surgery adjuvant CT delayed or prevented post-surgical recurrence and distant metastasis, significantly improved disease-free and overall survival maintaining the quality of life. Long-term safety and efficacy of this treatment are supported by the high number of CT patients (283) and extensive follow-up (>9 years). The successful clinical outcome encourages the further translation of similar approaches to human gene therapy trials. PMID:23059870

  7. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  8. High frequencies of circulating melanoma-reactive CD8+ T cells in patients with advanced melanoma.

    PubMed

    Letsch, A; Keilholz, U; Schadendorf, D; Nagorsen, D; Schmittel, A; Thiel, E; Scheibenbogen, C

    2000-09-01

    To determine whether circulating tumor-reactive T cells are present in melanoma patients, unstimulated T cells from peripheral blood were tested for recognition of HLA-A2- or HLA-A1-matched melanoma cell lines using the ELISPOT assay. Eleven out of 19 patients with metastatic melanoma had a T-cell response with up to 0.81%, 0.78%, 0. 53%, 0.12%, 0.10%, 0.09%, 0.07%, 0.06%, 0.06%, 0.04%, and 0.04% of peripheral blood mononuclear cells (PBMC) secreting IFNgamma upon exposure to various HLA-A2- or HLA-A1-matched melanoma cell lines. These T-cell responses were mediated by CD8+ T cells and could specifically be blocked by an anti-HLA-A2 antibody in HLA-A2-positive patients. Separation experiments performed in one melanoma patient showed tumor-reactive T cells in both the CD8+ effector T cell (CD45RA+/IFNgamma+) as well as the CD8+ memory T-cell compartment (CD45RO+/IFNgamma+). In 3 out of 5 patients, in whom autologous cell lines were available, similar frequencies of T cells in response to HLA-A1- or HLA-A2-matched allogeneic and autologous tumor cells were observed, while 2 patients had a T-cell response restricted to either the autologous or the allogeneic cell lines. These results give evidence for the presence of tumor-reactive CD8+ T cells in more than half of melanoma patients tested. Although some of these patients have clinical evidence for an immunological-mediated tumor control, several patients have growing tumors suggesting presence of escape mechanisms. PMID:10925359

  9. Stem Cells and Targeted Approaches to Melanoma Cure

    PubMed Central

    Murphy, George F.; Wilson, Brian J.; Girouard, Sasha D.; Frank, Natasha Y.; Frank, Markus H.

    2013-01-01

    Melanoma stem cells, also known as malignant melanoma-initiating cells, are identifiable through expression of specific biomarkers such as ABCB5 (ATP-binding cassette, sub-family B (MDR/TAP), member 5), NGFR (nerve growth factor receptor, CD271) and ALDH (aldehyde dehydrogenase), and drive melanoma initiation and progression based on prolonged self-renewal capacity, vasculogenic differentiation and immune evasion. As we will review here, specific roles of these aggressive subpopulations have been documented in tumorigenic growth, metastatic dissemination, therapeutic resistance, and malignant recurrence. Moreover, recent findings have provided pre-clinical proof-of-concept for the potential therapeutic utility of the melanoma stem cell concept. Therefore, melanoma stem cell-directed therapeutic approaches represent promising novel strategies to improve therapy of this arguably most virulent human cancer. PMID:24145241

  10. Genomic instability and telomere fusion of canine osteosarcoma cells.

    PubMed

    Maeda, Junko; Yurkon, Charles R; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C; Roybal, Erica J; Rota, Garrett W; Saffer, Ethan R; Rose, Barbara J; Hanneman, William H; Thamm, Douglas H; Kato, Takamitsu A

    2012-01-01

    Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246

  11. PLX4032 Mediated Melanoma Associated Antigen Potentiation in Patient Derived Primary Melanoma Cells

    PubMed Central

    George, Andrea L.; Suriano, Robert; Rajoria, Shilpi; Osso, Maria C.; Tuli, Neha; Hanly, Elyse; Geliebter, Jan; Arnold, Angelo N.; Wallack, Marc; Tiwari, Raj K.

    2015-01-01

    Over expression of various immunogenic melanoma associated antigens (MAAs) has been exploited in the development of immunotherapeutic melanoma vaccines. Expression of MAAs such as MART-1 and gp100 is modulated by the MAPK signaling pathway, which is often deregulated in melanoma. The protein BRAF, a member of the MAPK pathway, is mutated in over 60% of melanomas providing an opportunity for the identification and approval by the FDA of a small molecule MAPK signaling inhibitor PLX4032 that functions to inactivate mutant BRAFV600E. To this end, we characterized five patient derived primary melanoma cell lines with respect to treatment with PLX4032. Cells were treated with 5μM PLX4032 and harvested. Western blotting analysis, RT-PCR and in vitro transwell migration and invasion assays were utilized to determine treatment effects. PLX4032 treatment modulated phosphorylation of signaling proteins belonging to the MAPK pathway including BRAF, MEK, and ERK and abrogated cell phenotypic characteristics such as migration and invasion. Most significantly, PLX4032 led to an up regulation of many MAA proteins in three of the four BRAF mutated cell lines, as determined at the protein and RNA level. Interestingly, MAGE-A1 protein and mRNA levels were reduced upon PLX4032 treatment in two of the primary lines. Taken together, our findings suggest that the BRAFV600E inhibitor PLX4032 has therapeutic potential over and above its known target and in combination with specific melanoma targeting vaccine strategies may have further clinical utility. PMID:26640592

  12. Primary Spindle Cell Malignant Melanoma of Esophagus: An Unusual Finding

    PubMed Central

    Rawandale, Nirmalkumar A.

    2016-01-01

    Malignant melanoma of esophagus is usually a metastatic tumour rather than a primary tumour. Primary malignant melanoma accounts for less than 0.2% of all esophageal neoplasm. We report a case of primary spindle cell malignant melanoma of esophagus in a 69-year-old male who presented with history of dysphagia since 1 month. Radiological examinations revealed polypoidal growth at lateral aspect of esophagus. Biopsy was reported as grade III squamous cell carcinoma. Video assisted thoracoscopic esophagectomy was performed. Histopathological examination along with immunohistochemistry gave confirmed diagnosis of primary spindle cell malignant melanoma of esophagus. Though a rare entity, due to its aggressive nature and poor prognosis primary malignant melanoma should be one of the differential diagnoses in a patient with polypoidal esophageal mass lesion. Despite radical surgical treatment prognosis is extremely poor. PMID:27042502

  13. Triggering Receptor Expressed on Myeloid Cells in Cutaneous Melanoma.

    PubMed

    Nguyen, Austin Huy; Koenck, Carleigh; Quirk, Shannon K; Lim, Victoria M; Mitkov, Mario V; Trowbridge, Ryan M; Hunter, William J; Agrawal, Devendra K

    2015-10-01

    The tumor microenvironment plays an important role in the progression of melanoma, the prototypical immunologic cutaneous malignancy. The triggering receptor expressed on myeloid cells (TREM) family of innate immune receptors modulates inflammatory and innate immune signaling. It has been investigated in various neoplastic diseases, but not in melanoma. This study examines the expression of TREM-1 (a proinflammatory amplifier) and TREM-2 (an anti-inflammatory modulator and phagocytic promoter) in human cutaneous melanoma and surrounding tissue. Indirect immunofluorescence staining was performed on skin biopsies from 10 melanoma patients and staining intensity was semiquantitatively scored. Expression of TREM-1 and TREM-2 was higher in keratinocytes than melanoma tissue (TREM-1: p < 0.01; TREM-2: p < 0.01). Whereas TREM-2 was the dominant isoform expressed in normal keratinocytes, TREM-1 expression predominated in melanoma tissue (TREM-1 to TREM-2 ratio: keratinocytes = 0.78; melanoma = 2.08; p < 0.01). The increased TREM ratio in melanoma tissue could give rise to a proinflammatory and protumor state of the microenvironment. This evidence may be suggestive of a TREM-1/TREM-2 paradigm in which relative levels dictate inflammatory and immune states, rather than absolute expression of one or the other. Further investigation regarding this paradigm is warranted and could carry prognostic or therapeutic value in treatment for melanoma. PMID:26184544

  14. Isolation of melanoma cell subpopulations using negative selection

    PubMed Central

    Slipicevic, Ana; Somasundaram, Rajasekharan; Sproesser, Katrin; Herlyn, Meenhard

    2014-01-01

    Melanomas are phenotypically and functiwonally heterogeneous tumors comprising of distinct subpopulations that drive disease progression and are responsible for resistance to therapy. Identification and characterization of such subpopulations are highly important to develop novel targeted therapies. However, this can be a challenging task as there is a lack of clearly defined markers to distinguish the melanoma subpopulations from a general tumor cell population. Also, there is a lack of optimal isolation methods and functional assays that can fully recapitulate their phenotype. Here we describe a method for isolating tumor cells from fresh human tumor tissue specimens using an antibody coupled magnetic bead sorting technique that is well established in our laboratory. Thus, melanoma cells are enriched by negative cell sorting and elimination of non-tumor cell population such as erythrocytes, leukocytes, and endothelial cells. Enriched unmodified tumor cells can be further used for phenotypic and functional characterization of melanoma subpopulations. PMID:24258995

  15. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  16. Enrichment of circulating melanoma cells (CMCs) using negative selection from patients with metastatic melanoma

    PubMed Central

    Joshi, Powrnima; Jacobs, Barbara; Derakhshan, Adeeb; Moore, Lee R.; Elson, Paul; Triozzi, Pierre L.; Borden, Ernest; Zborowski, Maciej

    2014-01-01

    Circulating tumor cells have emerged as prognostic biomarkers in the treatment of metastatic cancers of epithelial origins viz., breast, colorectal and prostate. These tumors express Epithelial Cell Adhesion Molecule (EpCAM) on their cell surface which is used as an antigen for immunoaffinity capture. However, EpCAM capture technologies are of limited utility for non-epithelial cancers such as melanoma. We report a method to enrich Circulating Melanoma Cells (CMCs) that does not presuppose malignant cell characteristics. CMCs were enriched by centrifugation of blood samples from healthy (N = 10) and patient (N = 11) donors, followed by RBC lysis and immunomagnetic depletion of CD45-positive leukocytes in a specialized magnetic separator. CMCs were identified by immunocytochemistry using Melan-A or S100B as melanoma markers and enumerated using automated microscopy image analyses. Separation was optimized for maximum sensitivity and recovery of CMCs. Our results indicate large number of CMCs in Stage IV melanoma patients. Analysis of survival suggested a trend toward decreased survival with increased number of CMCs. Moreover, melanoma-associated miRs were found to be higher in CMC-enriched fractions in two patients when compared with the unseparated samples, validating this method as applicable for molecular analyses. Negative selection is a promising approach for isolation of CMCs and other EpCAM -negative CTCs, and is amenable to molecular analysis of CMCs. Further studies are required to validate its efficacy at capturing specific circulating cells for genomic analysis, and xenograft studies. PMID:24811334

  17. Control of melanoma cell invasion by type IV collagen.

    PubMed

    Pasco, Sylvie; Brassart, Bertrand; Ramont, Laurent; Maquart, François-Xavier; Monboisse, Jean-Claude

    2005-01-01

    Malignant melanoma is the leading cause of death from diseases of the skin. This review summarizes the data from the literature and our laboratory addressing the effects of type IV collagen on melanoma progression. Many different sequences from type IV collagen promote melanoma cell adhesion, migration and invasion. The triple helical conformation of the collagenous domain plays a critical role in some of these interactions. However, recent studies from our group demonstrated that a sequence from the alpha3(IV) NC1 domain inhibits melanoma cell proliferation, migration and invasion by decreasing MMP production and activation. Peptide sequences from the alpha1(IV), alpha2(IV) and alpha3(IV) chains named arresten, canstatin and tumstatin, respectively were shown to inhibit angiogenesis. Further investigations regarding the inhibitory effects of the alpha(IV) NC1 domains will have a paramount relevance for the design of efficient strategies to limit melanoma development. PMID:15936594

  18. In vitro melanoma cell growth after preenucleation radiation therapy

    SciTech Connect

    Kenneally, C.Z.; Farber, M.G.; Smith, M.E.; Devineni, R.

    1988-02-01

    The in vitro efficacy of 20 Gy (2000 rad) of external beam irradiation delivered to patients with choroidal melanomas prior to enucleation was investigated in 11 patients whose tumors were grown in cell culture. Phase-contrast microscopy was used to compare growth patterns between irradiated and nonirradiated tumors. Cell types were determined by histologic stains, and electron microscopy identified intracytoplasmic melanin. Irradiated melanomas did not grow and did not attach to culture flasks, thus demonstrating that preenucleation irradiation alters the in vitro growth of melanoma cells.

  19. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry

    PubMed Central

    VARTANIAN, AMALIA; KARSHIEVA, SAIDA; DOMBROVSKY, VLADISLAV; BELYAVSKY, ALEXANDER

    2016-01-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma. PMID:27313776

  20. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  1. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice.

    PubMed

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  2. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    PubMed Central

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K.; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  3. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    PubMed

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. PMID:25680810

  4. Detection of circulating melanoma cells in the blood of melanoma patients: a preliminary study.

    PubMed

    Roland, Christina L; Ross, Merrick I; Hall, Carolyn S; Laubacher, Barbara; Upshaw, Joshua; Anderson, Amber E; Lucci, Anthony

    2015-08-01

    Significant prognostic heterogeneity exists within the substages of melanoma; therefore, novel prognostic biomarkers are needed to provide information on the risk of recurrence. Limited available data suggest prognostic significance for circulating melanoma cells (CMCs); there is a need for a sensitive, reproducible, and standardized identification technique. Using a semiautomated technology, we sought to determine whether CMCs could be identified reliably in stage I-IV melanoma patients and whether the presence of CMC correlated with known prognostic factors. CMCs were detected in the peripheral blood (7.5 ml) of patients with stage I-IV melanoma (n=89) using the CellSearch system. CD146 cells were immunomagnetically enriched; nucleated HMW-MAA/CD45/CD34 cells were considered CMCs. One or more CMCs was detected in 45% of all patients, varying with stage of disease (stages I/II, III, and IV: 35, 44, and 86%, respectively; P=0.03, for stage I/II vs. stage IV); 55% had one CMC, 32% had two CMCs, and 13% had three or more CMCs identified. The presence of CMCs in the blood was associated with histologic subtype, particularly in patients with stage I/II disease (superficial spreading 18% vs. acral lentiginous 75%). Using a semiautomated technique, CMCs can be identified in a significant number of melanoma patients. These data support further study with longer follow-up and longitudinal/serial time points to better determine the identification rates and prognostic significance of CMCs in stage I-IV melanoma patients. PMID:26011119

  5. A novel apoptosis-inducing mechanism of 5-aza-2'-deoxycitidine in melanoma cells: Demethylation of TNF-α and activation of FOXO1.

    PubMed

    Noguchi, Shunsuke; Mori, Takashi; Igase, Masaya; Mizuno, Takuya

    2015-12-28

    Melanoma is a poor-prognosis cancer in both humans and dogs, and so the anti-tumor effects of 5-aza-2'-deoxycitidine (5-aza) on solid tumors such as melanoma have gained much attention. However, its anti-tumor mechanism remains entirely unclear. This present study revealed a part of the anti-tumor effects of 5-aza, focusing on apoptosis induction, on human and canine melanoma cells. Treatment with 5-aza markedly induced obvious apoptosis in melanoma cells. 5-Aza-induced apoptosis was possibly due to induced expression of cytotoxic cytokines such as TNF-α. We revealed hypermethylation of the promoter region of TNF-α as a consequence of treatment with 5-aza. Concurrently, we evaluated the effect of 5-aza on the Akt/FOXO1 signaling cascade, which plays a pivotal role in the transcription of cytokine genes. As a result, 5-aza inactivated Akt and inversely activated FOXO1, which contributed to the up-regulation of TNF-α. Furthermore, up-regulation of TNF-α by 5-aza administration was found in in vivo experiments. These current data suggest a novel apoptosis-inducing mechanism of 5-aza and indicate that 5-aza could be a promising therapeutic agent for the treatment of human and canine melanomas. PMID:26335173

  6. Stem cell properties in cell cultures from different stage of melanoma progression.

    PubMed

    Magnoni, Cristina; Giudice, Stefania; Pellacani, Giovanni; Bertazzoni, Giorgia; Longo, Caterina; Veratti, Eugenia; Morini, Daria; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; De Pol, Anto; Seidenari, Stefania; Tomasi, Aldo; Pollio, Annamaria; Ponti, Giovanni

    2014-03-01

    Cutaneous melanoma is an extremely heterogenous human cancer. The most aggressive melanoma may contain deregulated cells with undifferentiated/stem cell-like phenotype. A critical mechanism by which melanoma cells enhance their invasive capacity is the dissolution of the intercellular adhesion and the acquisition of mesenchymal features as a part of an epithelial-to-mesenchymal transition. The aim of this study was to clarify the role of a stem cell-like population in human melanomas by means of melanocytic cell culture analysis obtained from distinct histotypes of primary and metastatic malignant melanoma. Patients with advanced melanoma >2 cm in diameter and/or >300 mm surface were enrolled. The melanoma cells were isolated from skin biopsies of lentigo maligna melanoma, superficial spreading melanoma, nodular melanoma, and metastatic melanoma. The colony forming unit assay and alkaline phosphatase stain were evaluated. Cells were subsequently cultured and maintained in different media to evaluate their ability to differentiate into osteogenic and adipogenic lineages. Immunohistochemistry and flow cytometry analysis were performed to evaluate antigenic markers CD90, CD73, CD105, CD146, CD20, CD166, and Nestin. This study confirms that melanoma can include heterogenous cell populations with the ability both to self-renew and to a give rise to differentiated progeny. Melanoma cells displayed intratumoral heterogeneity and dynamic antigen phenotypes. Histologically, transitions from normal skin to melanoma were associated with a gradual increase in the expression of CD146, CD20, CD133, Nestin, and CD73. These molecular profiles could be further analyzed and, in the future, used for the development of novel biomolecular targeted-therapy approaches. PMID:23702651

  7. An electrochemical immunosensing method for detecting melanoma cells

    PubMed Central

    Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram

    2015-01-01

    An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6]3−), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50–7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples. PMID:25636023

  8. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  9. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    SciTech Connect

    Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM

  10. Characterization of canine dental pulp cells and their neuroregenerative potential.

    PubMed

    Naito, Eiji; Kudo, Daichi; Sekine, Shin-ichiro; Watanabe, Kazuhiro; Kobatake, Yui; Tamaoki, Naritaka; Inden, Masatoshi; Iida, Kazuki; Ito, Yusuke; Hozumi, Isao; Shibata, Toshiyuki; Maeda, Sadatoshi; Kamishina, Hiroaki

    2015-11-01

    Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials. It was also reported that superparamagnetic iron oxide (SPIO) particles were useful for labeling of MSCs and tracking with magnetic resonance imaging (MRI). Our data suggested that cDPCs hold higher proliferation capacity than bone marrow stromal cells, the other type of mesenchymal stem cells which have been the target of intensive research. Canine DPCs constitutively expressed neural markers, suggesting a close relationship to the nervous system in their developmental origin. Canine DPCs promoted neuritogenesis of PC12 cells, most likely through secretion of neurotrophic factors. Furthermore, SPIO nanoparticles could be effectively transported to cDPCs without significant cytotoxicity and unfavorable effects on neuritogenesis. SPIO-labeled cDPCs embedded in agarose spinal cord phantoms were successfully visualized with a magnetic resonance imaging arousing a hope for noninvasive cell tracking in transplantation studies. PMID:26170225

  11. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  12. Isolation and characterization of canine natural killer cells.

    PubMed

    Michael, Helen T; Ito, Daisuke; McCullar, Valarie; Zhang, Bin; Miller, Jeffrey S; Modiano, Jaime F

    2013-09-15

    NK cells are non-T, non-B lymphocytes that kill target cells without previous activation. The immunophenotype and function of these cells in humans and mice are well defined, but canine NK cells remain incompletely characterized. Our objectives were to isolate and culture canine peripheral blood NK cells, and to define their immunophenotype and killing capability. PBMC were obtained from healthy dogs and T cells were depleted by immunomagnetic separation. The residual cells were cultured in media supplemented with IL-2, IL-15 or both, or with mouse embryonic liver (EL) feeder cells. Non-T, non-B lymphocytes survived and expanded in these cultures. IL-2 was necessary and sufficient for survival; the addition of IL-15 was necessary for expansion, but IL-15 alone did not support survival. Culture with EL cells and IL-2 also fostered survival and expansion. The non-T, non-B lymphocytes uniformly expressed CD45, MHC I, and showed significant cytotoxic activity against CTAC targets. Expression of MHC II, CD11/18 was restricted to subsets of these cells. The data show that cells meeting the criteria for NK cells in other species, i.e., non-T, non-B lymphocytes with cytotoxic activity, can be expanded from canine PBMC by T-cell depletion and culture with cytokines or feeder cells. PMID:23876304

  13. Cell Cycle Gene Networks Are Associated with Melanoma Prognosis

    PubMed Central

    Watkins, Wendy; Araki, Hiromitsu; Tamada, Yoshinori; Muthukaruppan, Anita; Ranjard, Louis; Derkac, Eliane; Imoto, Seiya; Miyano, Satoru; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Background Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. Methodology/Principal Findings Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. Conclusions/Significance This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma

  14. BPTF transduces MITF-driven prosurvival signals in melanoma cells

    PubMed Central

    Dar, Altaf A.; Majid, Shahana; Bezrookove, Vladimir; Phan, Binh; Ursu, Sarah; Nosrati, Mehdi; De Semir, David; Sagebiel, Richard W.; Miller, James R.; Debs, Robert; Cleaver, James E.; Kashani-Sabet, Mohammed

    2016-01-01

    Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression. PMID:27185926

  15. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  16. Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

    PubMed Central

    Majchrzak, Kinga; Lo Re, Daniele; Gajewska, Małgorzata; Bulkowska, Małgorzata; Homa, Agata; Pawłowski, Karol; Motyl, Tomasz; Murphy, Paul V.; Król, Magdalena

    2013-01-01

    Background Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. Results Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. Conclusion Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in

  17. Honokiol inhibits melanoma stem cells by targeting notch signaling.

    PubMed

    Kaushik, Gaurav; Venugopal, Anand; Ramamoorthy, Prabhu; Standing, David; Subramaniam, Dharmalingam; Umar, Shahid; Jensen, Roy A; Anant, Shrikant; Mammen, Joshua M V

    2015-12-01

    Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling. PMID:25491779

  18. Ubiquitin ligase UBE3C promotes melanoma progression by increasing epithelial-mesenchymal transition in melanoma cells

    PubMed Central

    Tang, Li; Yi, Xue-Mei; Chen, Jia; Chen, Fu-Juan; Lou, Wei; Gao, Yun-Lu; Zhou, Jing; Su, Li-Na; Xu, Xin; Lu, Jia-Qing; Ma, Jun; Yu, Ning; Ding, Yang-Feng

    2016-01-01

    Melanoma is the most aggressive type of skin cancer, exhibiting extensive local invasion and early distant metastasis. Aberrant expression of ubiquitin-protein ligase E3C (UBE3C) plays a key role in tumor development and progression. In the present study, we analyzed UBE3C expression in samples of cancerous and normal skin tissue. Levels of UBE3C expression were much higher in primary and metastatic melanoma tissues than in normal skin, cutaneous squamous cell carcinoma or basal cell carcinoma. Melanoma cells overexpressing UBE3C frequently exhibited a mesenchymal phenotype, including reduced expression of the epithelial marker E-cadherin and expression of the mesenchymal marker vimentin. Knockdown of UBE3C expression in melanoma cells significantly suppressed melanoma growth and progression. Furthermore, silencing UBE3C led to increased E-cadherin expression and decreased vimentin and Snail1 expression. Thus UBE3C promotes melanoma progression, possibly by inducing epithelial-mesenchymal transition in melanoma cells. Inhibiting UBE3C activity may suppress melanoma invasion and metastasis and may represent a targeted therapeutic approach. PMID:26894856

  19. Suicide gene therapy on spontaneous canine melanoma: correlations between in vivo tumors and their derived multicell spheroids in vitro.

    PubMed

    Gil-Cardeza, M L; Villaverde, M S; Fiszman, G L; Altamirano, N A; Cwirenbaum, R A; Glikin, G C; Finocchiaro, L M E

    2010-01-01

    To validate the use of multicellular spheroids to predict the efficacy of herpes simplex thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene therapy in the respective in vivo tumors, we established and characterized 15 melanoma-derived cell lines from surgically excised melanoma tumors. Three HSVtk-lipofected cell lines were not sensitive to GCV in any culture configuration, other five displayed similar sensitivity as monolayers or spheroids, and only one resulted more sensitive when grown as spheroids. Other six cell lines manifested a relative multicellular resistance (MCR) phenotype growing as spheroids, compared with the same cells growing as monolayers. The reverse correlation between the MCR and the monolayers survival to HSVtk/GCV suggests that one of the main causes of MCR would be the rapid cell repopulation after suicide gene treatment. The high correlation of MCR with the spheroids radial growth and with the mitotic index of the respective originary tumors supported this re-growth involvement. A remarkable finding was the high correlation in HSVtk/GCV sensitivity between in vivo tumor and the corresponding derived cell lines growing as spheroids (R(2) = 0.85). This strongly encourages the implementation of spheroids as highly realistic experimental model for optimizing and predicting the in vivo response of the respective tumors to therapeutic strategies. PMID:19741734

  20. Gastrin exerts pleiotropic effects on human melanoma cell biology.

    PubMed

    Mathieu, Véronique; Mijatovic, Tatjana; van Damme, Marc; Kiss, Robert

    2005-10-01

    The effects of gastrin (G17) on the growth and migration factors of four human melanoma cell lines (HT-144, C32, G-361, and SKMEL-28) were investigated. The expression patterns of cholecystokinin (CCK)(A), CCK(B), and CCK(C) gastrin receptors were investigated in these cells and in seven clinical samples by means of reverse transcription polymerase chain reaction. Melanoma cells appear to express mRNA for CCK(C) receptors, but not for CCK(A) or CCK(B) receptors. Although gastrin does not significantly modify the growth characteristics of the cell lines under study, it significantly modifies their cell migration characteristics. These modifications occur at adhesion level by modifying the expression levels of alpha(v) and beta3 integrins, at motility level by modifying the organization of the actin cytoskeleton, and at invasion level by modifying the expression levels of matrix metalloproteinase 14. We recently demonstrated the presence of CCK(B) receptors in mouse endothelial cells involved in glioblastoma neoangiogenesis. Chronic in vivo administration of a selective CCK(B) receptor antagonist to mice bearing xenografts of human C32 melanoma cells significantly decreased levels of neoangiogenesis, resulting in considerable delays in the growth of these C32 xenografts. In conclusion, our study identifies the pleiotropic effects of gastrin on melanoma cell biology. PMID:16242076

  1. SPARC Controls Melanoma Cell Plasticity through Rac1

    PubMed Central

    Salvatierra, Edgardo; Alvarez, Mariano J.; Leishman, Claudia C.; Rivas Baquero, Elvia; Lutzky, Viviana P.; Chuluyan, H. Eduardo; Podhajcer, Osvaldo L.

    2015-01-01

    Cell transition to a more aggressive mesenchymal-like phenotype is a hallmark of cancer progression that involves different steps and requires tightly regulated cell plasticity. SPARC (Secreted Protein Acidic and Rich in Cysteine) is a matricellular protein that promotes this transition in various malignant cell types, including melanoma cells. We found that suppression of SPARC expression in human melanoma cells compromised cell migration, adhesion, cytoskeleton structure, and cell size. These changes involved the Akt/mTOR pathway. Re-expression of SPARC or protein addition restored all the cell features. Suppression of SPARC expression was associated with increased Rac1-GTP levels and its membrane localization. Expression of the dominant negative mutant of Rac1 counteracted almost all the changes observed in SPARC-deficient cells. Overall, these data suggest that most of the SPARC-mediated effects occurred mainly through the blockade of Rac1 activity. PMID:26248315

  2. [Melanoma].

    PubMed

    Uhara, Hisashi

    2016-04-01

    Since 2011, several effective drugs for patients with metastatic melanoma, including BRAF inhibitors, MEK inhibitors, and immune checkpoint inhibitors, have been approved. The combination of BRAF and MEK inhibitors achieve response rates of 70% and a median progression-free survival of >11 months in patients. The combination of ipilimumab and nivolumab has shown response rates of up to 60-70% and a median progression-free survival of 11-14 months, despite increased toxicities. Moreover, many clinical trials for new combination therapies are still ongoing. PMID:27220785

  3. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy

    PubMed Central

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma. PMID:26779186

  4. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  5. A Texture Based Pattern Recognition Approach to Distinguish Melanoma from Non-Melanoma Cells in Histopathological Tissue Microarray Sections

    PubMed Central

    Rexhepaj, Elton; Agnarsdóttir, Margrét; Bergman, Julia; Edqvist, Per-Henrik; Bergqvist, Michael; Uhlén, Mathias; Gallagher, William M.; Lundberg, Emma; Ponten, Fredrik

    2013-01-01

    Aims Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Methods and Results Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Conclusion Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma. PMID:23690928

  6. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  7. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    SciTech Connect

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  8. Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth.

    PubMed

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P; Lee, Nayoung; Juneja, Vikram R; Zhan, Qian; Lian, Christine G; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C; Flaherty, Keith T; Frank, Markus H; Murphy, George F; Sharpe, Arlene H; Kupper, Thomas S; Schatton, Tobias

    2015-09-10

    Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  9. Effects of glycyrrhizin on UVB-irradiated melanoma cells.

    PubMed

    Rossi, Tiziana; Benassi, Luisa; Magnoni, Cristina; Ruberto, Antonio Ippazio; Coppi, Andrea; Baggio, Giosué

    2005-01-01

    It is known that liquorice root is rich in compounds which exert several pharmacological actions. In the present study, we evaluated the effect of glycyrrhizin (the main constituent of liquorice root) and of its metabolite aglycone, 18beta-glycyrrhetinic acid, on UVB-irradiated human melanoma cells: SKMEL-2 from metastatic tissue and SKMEL-28 from primary malignant melanoma. Tests performed (Trypan blue exclusion test, MTT and Western blot) showed that glycyrrhizin is not toxic for both types of cells. In SKMEL-28 cells, Bcl-2 expression was low after UVB irradiation, but it was increased when treated with glycyrrhizin. On the contrary, in the SKMEL-2 cell culture, Bcl-2 expression was not modified by the substances under study. The results show that glycyrrhizin treatment might offer protection from the damage induced in humans by UVB radiation, while it seems to be ineffective on metastatic cells. Further studies must be performed to understand the mechanism of the protective effect. PMID:15796192

  10. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  11. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    PubMed

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. PMID:26287450

  12. Enhanced detection of circulating melanoma cells using gold nanoparticles as photoacoustic contrasting agents

    NASA Astrophysics Data System (ADS)

    McCormack, Devin R.; Bhattacharyya, Kiran; Kannan, Raghuraman; Katti, Kattesh; Viator, John A.

    2010-02-01

    Nanotechnology and the various properties of gold nanoparticles (AuNPs) are quickly changing the field of cancer detection and treatment. Photoacoustic detection methods show an increase in sensitivity using gold nanoparticle antibody conjugation, which selectively targets melanoma cancer cells. Instead of targeting melanoma tumors, we tag single cells, analogous to circulating metastatic melanoma cells. Using an in vitro, stationary cell system and planar samples, we demonstrate an average of 24% improved optical detectability of melanoma cells tagged with AuNPs over unprocessed melanoma cells. Tagged cells showed a raised plateau of absorbance from 470nm to 550nm. Untagged cells showed a general decline in absorption as wavelength increased. The results of our study have the potential to not only better develop photoacoustic detection of melanoma, but also extend the viability and use of photoacoustics into detection of otherwise unpigmented cancers.

  13. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines

    PubMed Central

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-01-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM-35, and SK-HEL-1. We named the purified product as M-HSP70-PCs, and determined its immunological activities. Autologous HSP70-PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M-HSP70-PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70-PCs. Moreover, DCs pulsed with M-HSP70-PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70-PCs. Next, we used these PC-pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  14. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines.

    PubMed

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-09-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM‑35, and SK‑HEL‑1. We named the purified product as M‑HSP70‑PCs, and determined its immunological activities. Autologous HSP70‑PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M‑HSP70‑PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70‑PCs. Moreover, DCs pulsed with M‑HSP70‑PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70‑PCs. Next, we used these PC‑pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  15. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  16. Melanoma (image)

    MedlinePlus

    ... tumor that involves the skin cells that produce pigment (melanin). The risk of melanoma increases with age, but frequently effects young, otherwise healthy people. Melanoma is an aggressive type of cancer that can spread very rapidly.

  17. Minor histocompatibility antigens on canine hemopoietic progenitor cells.

    PubMed

    Weber, Martin; Lange, Claudia; Günther, Wolfgang; Franz, Monika; Kremmer, Elisabeth; Kolb, Hans-Jochem

    2003-06-15

    Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs. PMID:12794111

  18. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  19. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    SciTech Connect

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  20. Different activities of unscheduled DNA synthesis in human melanoma and bone marrow cells

    SciTech Connect

    Lewensohn, R.; Ringborg, U.; Hansson, J.

    1982-01-01

    Unscheduled DNA synthesis (UDS) indicated by melphalan was studied in freshly collected tumor cells from human melanoma metastases. Comparative studies were done on human bone marrow blast cells. Significant levels of UDS comparable with those in myeloblasts were found in only two of eight melanoma cell populations. This difference between melanoma and blast cells was not related to different cellular uptake of melphalan. When UDS was induced by ultraviolet irradiation, significant levels of UDS were found in all melanoma and blast cell populations studied. Also, in a human melanoma cell line, high levels of UDS were found after exposure to ultraviolet irradiation, while treatment with melphalan did not result in detectable levels of UDS. Possible explanations for the divergent results of UDS in melphalan-exposed melanoma cells are discussed.

  1. β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance

    PubMed Central

    Sinnberg, Tobias; Menzel, Moritz; Ewerth, Daniel; Sauer, Birgit; Schwarz, Michael; Schaller, Martin; Garbe, Claus; Schittek, Birgit

    2011-01-01

    Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy. PMID:21858114

  2. Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation.

    PubMed

    Hu, Xueqing; Jiang, Fangzhen; Bao, Qi; Qian, Huan; Fang, Quan; Shao, Zheren

    2016-01-01

    It is vital to develop new therapeutic agents for the treatment of melanoma. In the current study, we studied the potential effect of Compound 13 (C13), a novel α1-selective AMP-activated protein kinase (AMPK) activator, in melanoma cells. We showed that C13 exerted mainly cytostatic, but not cytotoxic activities in melanoma cells. C13 potently inhibited proliferation in melanoma cell lines (A375, OCM-1 and B16), but not in B10BR melanocytes. Meanwhile, the AMPK activator inhibited melanoma cell cycle progression by inducing G1-S arrest. Significantly, we failed to detect significant melanoma cell death or apoptosis after the C13 treatment. For the mechanism study, we showed that C13 activated AMPK and inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in melanoma cells through interaction with the α1 subunit. Short hairpin RNA (shRNA)-mediated knockdown of AMPKα1 not only blocked C13-mediated AMPK activation but also abolished its antiproliferative activity against melanoma cells. Together, these results show that C13 inhibits melanoma cell proliferation through activating AMPK signaling. Our data suggest that C13 along with other small molecular AMPK activators may be beneficial for patients with melanoma. PMID:26271666

  3. Melanoma Cells Homing to the Brain: An In Vitro Model

    PubMed Central

    Rizzo, A.; Vasco, C.; Girgenti, V.; Fugnanesi, V.; Calatozzolo, C.; Canazza, A.; Salmaggi, A.; Rivoltini, L.; Morbin, M.; Ciusani, E.

    2015-01-01

    We developed an in vitro contact through-feet blood brain barrier (BBB) model built using type IV collagen, rat astrocytes, and human umbilical vein endothelial cells (HUVECs) cocultured through Transwell porous polycarbonate membrane. The contact between astrocytes and HUVECs was demonstrated by electron microscopy: astrocytes endfeet pass through the 8.0 μm pores inducing HUVECs to assume a cerebral phenotype. Using this model we evaluated transmigration of melanoma cells from two different patients (M1 and M2) selected among seven melanoma primary cultures. M2 cells showed a statistically significant higher capability to pass across the in vitro BBB model, compared to M1. Expression of adhesion molecules was evaluated by flow cytometry: a statistically significant increased expression of MCAM, αvβ3, and CD49b was detected in M1. PCR array data showed that M2 had a higher expression of several matrix metalloproteinase proteins (MMPs) compared to M1. Specifically, data suggest that MMP2 and MMP9 could be directly involved in BBB permeability and that brain invasion by melanoma cells could be related to the overexpression of many MMPs. Future studies will be necessary to deepen the mechanisms of central nervous system invasion. PMID:25692137

  4. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  5. Expression of neddylation-related proteins in melanoma cell lines and the effect of neddylation on melanoma proliferation

    PubMed Central

    CHENG, FANG; HE, RUNZHI; ZHANG, LEI; LI, HUI; ZHANG, WEI; JI, XIAOLIN; KONG, FANTING; SUN, JIANFANG; CHEN, SHUBO

    2014-01-01

    Neddylation promotes the process of ubiquitination, which plays a critical role in the degradation of numerous proteins, including cell cycle and apoptosis regulators. In our previous study, an increase in neddylation was identified in melanoma cell lines. In the present study, the upregulation of neddylation was detected in melanoma tissues which confirmed the results of our previous study on melanoma cell lines. To explore the mechanism by which the process of neddylation was increased, the enzymes that regulate the process were investigated. These neddylation-related regulatory enzymes are potential targets for melanoma therapy. Downregulation of UBA3, a subunit of the E1 enzyme, by RNA interference caused cell cycle arrest at G0/G1 in the M14 cell line. In addition, cyclin D expression declined, whereas p27, p21 and bax expression increased. These findings suggest that interfering with the neddylation pathway may decrease the proliferation of melanoma through the modulation of cell cycle regulators and apoptosis promoters. PMID:24765193

  6. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells

    PubMed Central

    Zuleger, Cindy L.; Macklin, Michael D.; Bostwick, Bret L.; Pei, Qinglin; Newton, Michael A.; Albertini, Mark R.

    2011-01-01

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  7. Epigenetic Impacts of Ascorbate on Human Metastatic Melanoma Cells

    PubMed Central

    Venturelli, Sascha; Sinnberg, Tobias W.; Berger, Alexander; Noor, Seema; Levesque, Mitchell Paul; Böcker, Alexander; Niessner, Heike; Lauer, Ulrich M.; Bitzer, Michael; Garbe, Claus; Busch, Christian

    2014-01-01

    In recent years, increasing evidence has emerged demonstrating that high-dose ascorbate bears cytotoxic effects on cancer cells in vitro and in vivo, making ascorbate a pro-oxidative drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. This anticancer effect of ascorbate is hypoxia-inducible factor-1α- and O2-dependent. However, whether the intracellular mechanisms governing this effect are modulated by epigenetic phenomena remains unknown. We treated human melanoma cells with physiological (200 μM) or pharmacological (8 mM) ascorbate for 1 h to record the impact on DNA methyltransferase (DNMT)-activity, histone deacetylases (HDACs), and microRNA (miRNA) expression after 12 h. The results were analyzed with the MIRUMIR online tool that estimates the power of miRNA to serve as potential biomarkers to predict survival of cancer patients. FACS cell-cycle analyses showed that 8 mM ascorbate shifted BLM melanoma cells toward the sub-G1 fraction starting at 12 h after an initial primary G2/M arrest, indicative for secondary apoptosis induction. In pharmacological doses, ascorbate inhibited the DNMT activity in nuclear extracts of MeWo and BLM melanoma cells, but did not inhibit human HDAC enzymes of classes I, II, and IV. The expression of 151 miRNAs was altered 12 h after ascorbate treatment of BLM cells in physiological or pharmacological doses. Pharmacological doses up-regulated 32 miRNAs (≥4-fold) mainly involved in tumor suppression and drug resistance in our preliminary miRNA screening array. The most prominently up-regulated miRNAs correlated with a significantly increased overall survival of breast cancer or nasopharyngeal carcinoma patients of the MIRUMIR database with high expression of the respective miRNA. Our results suggest a possible epigenetic signature of pharmacological doses of ascorbate in human melanoma cells and support further pre-clinical and possibly even clinical evaluation of

  8. FRIZZLED7 Is Required for Tumor Inititation and Metastatic Growth of Melanoma Cells

    PubMed Central

    Tiwary, Shweta; Xu, Lei

    2016-01-01

    Metastases are thought to arise from cancer stem cells and their tumor initiating abilities are required for the establishment of metastases. Nevertheless, in metastatic melanoma, the nature of cancer stem cells is under debate and their contribution to metastasis formation remains unknown. Using an experimental metastasis model, we discovered that high levels of the WNT receptor, FZD7, correlated with enhanced metastatic potentials of melanoma cell lines. Knocking down of FZD7 in a panel of four melanoma cell lines led to a significant reduction in lung metastases in animal models, arguing that FZD7 plays a causal role during metastasis formation. Notably, limiting dilution analyses revealed that FZD7 is essential for the tumor initiation of melanoma cells and FZD7 knockdown impeded the early expansion of metastatic melanoma cells shortly after seeding, in accordance with the view that tumor initiating ability of cancer cells is required for metastasis formation. FZD7 activated JNK in melanoma cell lines in vitro and the expression of a dominant negative JNK suppressed metastasis formation in vivo, suggesting that FZD7 may promote metastatic growth of melanoma cells via activation of JNK. Taken together, our findings uncovered a signaling pathway that regulates the tumor initiation of melanoma cells and contributes to metastasis formation in melanoma. PMID:26808375

  9. Interferon-γ Reduces Melanosomal Antigen Expression and Recognition of Melanoma Cells by Cytotoxic T Cells

    PubMed Central

    Le Poole, I. Caroline; Riker, Adam I.; Quevedo, M. Eugenia; Stennett, Lawrence S.; Wang, Ena; Marincola, Francesco M.; Kast, W. Martin; Robinson, June K.; Nickoloff, Brian J.

    2002-01-01

    In malignant melanoma, tumor-infiltrating lymphocytes are frequently reactive with melanosomal antigens. Achieving complete remissions by peptide therapy is frequently hampered by metastases evading immune recognition. The tumor microenvironment seems to favor reduced expression of target antigens by melanoma cells. Among candidate factors, interferon-γ (IFN-γ) (102 to 103 U/ml) suppressed expression of antigens MART-1, TRP-1, and gp100 by M14 melanoma cells as shown by immunohistology and fluorescence-activated cell sorting analysis, reducing MART-1 expression by >65%. Northern blot analysis revealed that reduced expression was regulated at the transcriptional level, demonstrating a 79% reduction in MART-1 transcript abundance after 32 hours of IFN-γ treatment. To evaluate consequences of IFN-γ exposure for immune recognition, MART-1-responsive T cells were reacted with pretreated HLA-matched melanoma cells. Cytotoxicity was reduced up to 78% by IFN-γ pretreatment, and was restored by addition of MART-1 peptide AAGIGILTV for 2 hours. Examination of melanoma lesions by quantitative reverse transcriptase-polymerase chain reaction revealed up to 188-fold more abundant IFN-γ transcripts when compared to control skin. Laser capture microdissection and immunohistology localized most IFN-γ-producing T cells to the tumor stroma. Reduced MART-1 expression was frequently observed in adjacent tumor cells. Consequently, IFN-γ may enhance inflammatory responses yet hamper effective recognition of melanoma cells. PMID:11839572

  10. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype

    PubMed Central

    Bonet, Caroline; Bonazzi, Vanessa F; Allegra, Marylin; Giuliano, Sandy; Bille, Karine; Bahadoran, Philippe; Giacchero, Damien; Lacour, Jean Philippe; Boyle, Glen M; Hayward, Nicholas F

    2013-01-01

    Here, we showed that the secretome of senescent melanoma cells drives basal melanoma cells towards a mesenchymal phenotype, with characteristic of stems illustrated by increased level of the prototype genes FN1, SNAIL, OCT4 and NANOG. This molecular reprogramming leads to an increase in the low-MITF and slow-growing cell population endowed with melanoma-initiating cell features. The secretome of senescent melanoma cells induces a panel of 52 genes, involved in cell movement and cell/cell interaction, among which AXL and ALDH1A3 have been implicated in melanoma development. We found that the secretome of senescent melanoma cells activates the STAT3 pathway and STAT3 inhibition prevents secretome effects, including the acquisition of tumorigenic properties. Collectively, the findings provide insights into how the secretome of melanoma cells entering senescence upon chemotherapy treatments increases the tumorigenicity of naïve melanoma cells by inducing, through STAT3 activation, a melanoma-initiating cell phenotype that could favor chemotherapy resistance and relapse. PMID:24344100

  11. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  12. Detection of circulating melanoma cells in human blood using photoacoustic flowmetry.

    PubMed

    Weight, Ryan M; Dale, Paul S; Viator, John A

    2009-01-01

    Detection of circulating tumor cells (CTC's) in human blood and lymph systems has the potential to aid clinical decision making in the treatment of cancer. The presence of CTC's may signify the onset of metastasis, indicate relapse, or may be used to monitor disease progression. A photoacoustic flowmetry system was designed and tested for detecting circulating melanoma cells (CMC's) by exploiting the broadband absorption spectrum of melanin within CMC's. The device was tested on cultured melanoma cells in saline suspension and in a Stage IV melanoma patient. The device showed a detection threshold of a single melanotic melanoma cell from culture. Transient photoacoustic events were detected in a sample derived from a Stage IV melanoma patient that corresponded to particles passing through the laser beam path, indicating the presence of single melanoma cells in the human circulatory system. PMID:19965119

  13. Chromomycin A2 induces autophagy in melanoma cells.

    PubMed

    Guimarães, Larissa Alves; Jimenez, Paula Christine; Sousa, Thiciana da Silva; Freitas, Hozana Patrícia S; Rocha, Danilo Damasceno; Wilke, Diego Veras; Martín, Jesús; Reyes, Fernando; Deusdênia Loiola Pessoa, Otília; Costa-Lotufo, Letícia Veras

    2014-12-01

    The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins. PMID:25486109

  14. Four cases of cell cannibalism in highly malignant feline and canine tumors.

    PubMed

    Ferreira, Fernando Costa; Soares, Maria João; Carvalho, Sandra; Borralho, Liliana; Vicente, Gonçalo; Branco, Sandra; Correia, Jorge; Peleteiro, Maria Conceição

    2015-01-01

    Four cases of tumors in which cell internalization was frequently visualized are reported: one feline mammary carcinoma, one feline cutaneous squamous cell carcinoma, one canine pulmonary squamous cell carcinoma and one canine pleural mesothelioma. Cell internalization was observed by cytology in two of these cases (the feline mammary tumour and the pleural effusion in the canine mesothelioma) and by histopathology in all but the canine mesothelioma. Immunohistochemical staining for pancytokeratin was positive for both internalized and host cells, while E-cadherin expression was frequently absent, although internalized cells occasionally stained positive. This cell-to-cell interaction seems to be associated with tumors displaying a strong epithelial-mesenchymal transitional phenotype, in which cancer cells become engulfed by other cancer cells. Such event could be regarded as an important hallmark of very high malignancy. PMID:26525147

  15. Canine cutaneous epitheliotropic lymphoma (mycosis fungoides) is a proliferative disorder of CD8+ T cells.

    PubMed Central

    Moore, P. F.; Olivry, T.; Naydan, D.

    1994-01-01

    Canine epitheliotropic lymphoma (mycosis fungoides [MF]) is a spontaneous neoplasm of skin and mucous membranes that occurs in old dogs (mean age 11 years) and has no breed predilection. The lesions evolve from a patch-plaque stage with prominent epitheliotropism into a tumor stage in which distant metastasis is observed. Unlike human MF, epitheliotropism of the lymphoid infiltrate is still prominent in tumor stage lesions. Tropism of the lymphoid infiltrate for adnexal structures, especially hair follicles and apocrine sweat glands, was marked in all clinical stages of canine MF. Twenty-three cases of MF were subjected to extensive immunophenotypic analysis in which reagents specific for canine leukocyte antigens and fresh frozen tissue sections of the canine lesions were used. Canine MF proved to be a T cell lymphoma in which the epitheliotropic lymphocytes consistently expressed CD3 (22 cases) and CD8 (19 cases); CD3+CD4-CD8- lymphocytes predominated in the remaining 4 cases. In this regard, canine MF clearly differed from human MF in which a CD4 immunophenotype predominates in the T cell infiltrate. Lack of expression of CD45RA by epitheliotropic T cells and intense expression of a beta 1 integrin (VLA-4-like) suggested that T cells in canine MF belonged to the memory subpopulation, as has been suggested for T cells in human MF. Pan-T cell antigen loss or discordant expression also proved useful as phenotypic indicators of neoplasia in canine MF. Loss of CD5 was observed in epitheliotropic T cells in 63% of cases. Discordance of neoplastic T cell Thy-1 expression was frequently observed between epithelial and dermal or submucosal compartments. We conclude that canine MF still represents a useful spontaneous animal disease model of human cutaneous T cell lymphoma, despite the immunophenotypic differences, which may reflect operational differences between human and canine skin-associated lymphoid tissue. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure

  16. Natural history of intrahepatic canine islet cell autografts.

    PubMed Central

    Alejandro, R; Cutfield, R G; Shienvold, F L; Polonsky, K S; Noel, J; Olson, L; Dillberger, J; Miller, J; Mintz, D H

    1986-01-01

    We have serially followed the function of intrahepatic canine islet autografts in 15 beagle dogs for up to 24 mo. Of these, only 20% sustained normal levels of fasting blood glucose for greater than 15 mo posttransplant. Failure of autograft function was accompanied by a preferential loss of well-granulated beta cells in the engrafted islets. The chronic stimulation of an initially marginal intrahepatic beta-cell mass ultimately resulted in metabolic deterioration and loss of beta cells below the minimal threshold required to maintain normal fasting blood glucose levels. It is possible that transplantation of a larger mass of islets would result in indefinite graft function in dogs. However, it remains to be demonstrated in larger mammals, including humans, whether an islet cell mass that is initially adequate in a heterotropic site such as the liver can remain functionally competent over a prolonged period. Images PMID:3095376

  17. Honokiol affects melanoma cell growth by targeting the AMPK signaling pathway

    PubMed Central

    Kaushik, Gaurav; Kwatra, Deep; Subramaniam, Dharmalingam; Jensen, Roy A.; Anant, Shrikant; Mammen, Joshua M.V.

    2015-01-01

    Background Malignant melanoma is an aggressive form of skin cancer with limited effective therapeutic options. Melanoma research concentrates on maximizing the effect on cancer cells with minimal toxicity to normal cells. AMP-activated protein kinase (AMPK) is an important regulator of cellular energy homeostasis and has been shown to control tumor progression regulating the cell cycle, protein synthesis and cell growth and/or survival. Honokiol (HNK) is a biphenolic compound derived from Magnolia officianalis, a plant that has been used in traditional Chinese and Japanese medicine for the treatment of various pathological conditions. Recent studies have shown that HNK has antitumor activity with relatively low toxicity. In this study we demonstrated that the growth inhibitory effects of HNK on melanoma and melanoma cancer stem cells (CSCs) was mediated through the activation of AMPK and hence AMPK signaling in melanoma cells. Methods We determined the effects of HNK treatment on various melanoma cell lines. HNK induced cell growth inhibitory effects were determined using hexosaminidase assay. Protein expression studies were done by immunoblotting. Primary spheroid assay was used to assess stemness by growing single suspension cells in ultra-low attachment plates. Results HNK is highly effective in inhibiting melanoma cells by attenuating AKT/mammalian target of rapamycin and AMPK signaling. HNK showed significant inhibition of the spheroid forming capacity of melanoma cells and, hence, stemness. HNK significantly decreased the number and size of melanospheres in a dose dependent manner. Western blot analyses showed enhanced phosphorylation of AMPK in melanoma cells. Furthermore, HNK decreased the cellular ATP pool in a dose-dependent manner with maximum effects observed at 48 h. Conclusion The results suggest that HNK can target melanoma cells and mark them for cell death through AMPK signaling. Further studies are warranted for developing HNK as an effective

  18. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    PubMed

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression. Stem Cells 2016;34:832-846. PMID

  19. Embryonic Chicken Transplantation is a Promising Model for Studying the Invasive Behavior of Melanoma Cells

    PubMed Central

    Jayachandran, Aparna; McKeown, Sonja J.; Woods, Briannyn L.; Prithviraj, Prashanth; Cebon, Jonathan

    2015-01-01

    Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology that enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labeled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 h to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5) or trunk level (embryonic day 2.5). Chick embryos are reincubated and analyzed after 48 h for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence, the embryonic chicken transplantation model has the potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and dissemination in melanoma

  20. Bone marrow contains melanoma-reactive CD8+ effector T cells and, compared with peripheral blood, enriched numbers of melanoma-reactive CD8+ memory T cells.

    PubMed

    Letsch, Anne; Keilholz, Ulrich; Assfalg, Geraldine; Mailänder, Volker; Thiel, Eckhard; Scheibenbogen, Carmen

    2003-09-01

    Circulating melanoma-specific T cells can be frequently detected in patients with melanoma. Effective T-cell immunity and tumor surveillance, however, requires the presence of specific T cells in tissues populated by tumor cells. The bone marrow (BM) is a compartment frequently harboring micrometastatic tumor cells. Here, we compared directly ex vivo in peripheral blood (PB) and BM frequencies and differentiation phenotypes of T cells reactive with the melanoma-associated antigen tyrosinase and with autologous melanoma cells. Using intracellular cytokine and tetramer staining, we detected tyrosinase- and melanoma-reactive CD3+CD8+ T cells in the BM in similar or enhanced frequencies as in PB. Additional characterization of the differentiation subset using CD45RA and CCR7 revealed the presence of specific effector and memory T cells in the BM in all five patients analyzed. Remarkably, the frequency of tyrosinase- and melanoma-specific memory T cells was significantly increased in BM compared with PB. Thus, the BM may be an important compartment for tumor surveillance harboring a tumor-specific memory T-cell pool in addition to effector T cells. PMID:14500398

  1. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    PubMed Central

    2010-01-01

    Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment. PMID:20529342

  2. Quantitative RT-PCR assessment of melanoma cells in peripheral blood during immunotherapy for metastatic melanoma.

    PubMed

    Schmidt, H; Sørensen, B S; von der Maase, H; Bang, C; Agger, R; Hokland, M; Nexo, E

    2002-12-01

    Circulating malignant cells in peripheral blood are thought to be precursors and surrogate markers of distant metastases and hence markers of a poor clinical outcome. In this study, we used the detection of MART-1 and tyrosinase (TYR) mRNA with a quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay to identify circulating melanoma cells. Blood samples were obtained from 35 patients with metastatic melanoma before, during and after treatment with interleukin-2, interferon-alpha and cisplatin. In addition, MART-1 and TYR protein was identified by immunohistochemistry in consecutive biopsies from 15 of the patients. Analysis of three daily blood samples for 3 days demonstrated that four out of 11 patients examined were negative for both markers on all occasions, and two patients were positive for both markers on all occasions but one. The remaining five patients showed sporadic low positive results for one or the other of the two markers. By comparing the immunohistochemistry results from consecutive biopsies with the RT-PCR results, we demonstrated that patients with MART-1 and TYR protein in their tumour cells had circulating MART-1 and TYR mRNA in 77% and 54% of the cases, respectively. During treatment, the majority of patients who were positive for MART-1 and TYR mRNA converted to being negative. However, these conversions did not significantly correlate with objective response. The presence of TYR mRNA in one of the first two samples showed a trend towards being an independent prognostic factor for poor survival. PMID:12459648

  3. Vascular channels formed by subpopulations of PECAM1+ melanoma cells

    PubMed Central

    Dunleavey, James M.; Xiao, Lin; Thompson, Joshua; Kim, Mi Mi; Shields, Janiel M.; Shelton, Sarah E.; Irvin, David M.; Brings, Victoria E.; Ollila, David; Brekken, Rolf A.; Dayton, Paul A.; Melero-Martin, Juan M.; Dudley, Andrew C.

    2014-01-01

    Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1+ tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1+ melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1+ tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1− tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF. PMID:25335460

  4. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies. PMID:26315688

  5. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  6. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes

    PubMed Central

    Shields, Emily J.; Lam, Carol J.; Cox, Aaron R.; Rankin, Matthew M.; Van Winkle, Thomas J.; Hess, Rebecka S.; Kushner, Jake A.

    2015-01-01

    The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes. PMID:26057531

  7. Genetics of melanoma progression: the rise and fall of cell senescence.

    PubMed

    Bennett, Dorothy C

    2016-03-01

    There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely. PMID:26386262

  8. A novel therapy for melanoma developed in mice: transformation of melanoma into dendritic cells with Listeria monocytogenes.

    PubMed

    Bronchalo-Vicente, Lucia; Rodriguez-Del Rio, Estela; Freire, Javier; Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Gomez-Roman, Jose Javier; Fernández-Llaca, Hector; Yañez-Diaz, Sonsoles; Alvarez-Dominguez, Carmen

    2015-01-01

    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal. PMID:25760947

  9. A Novel Therapy for Melanoma Developed in Mice: Transformation of Melanoma into Dendritic Cells with Listeria monocytogenes

    PubMed Central

    Bronchalo-Vicente, Lucia; Rodriguez-Del Rio, Estela; Freire, Javier; Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Gomez-Roman, Jose Javier; Fernández-Llaca, Hector; Yañez-Diaz, Sonsoles; Alvarez-Dominguez, Carmen

    2015-01-01

    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal. PMID:25760947

  10. Patient derived cell culture and isolation of CD133⁺ putative cancer stem cells from melanoma.

    PubMed

    Welte, Yvonne; Davies, Cathrin; Schäfer, Reinhold; Regenbrecht, Christian R A

    2013-01-01

    Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133(+) CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133(+) CSCs and CD133(-) bulk, which can be cultivated and functionally analyzed thereafter. PMID:23525090

  11. Detection and isolation of circulating melanoma cells using photoacoustic flowmetry.

    PubMed

    O'Brien, Christine M; Rood, Kyle; Sengupta, Shramik; Gupta, Sagar K; DeSouza, Thiago; Cook, Aaron; Viator, John A

    2011-01-01

    Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs. PMID:22143421

  12. Canine oral mucosal mast cell tumours.

    PubMed

    Elliott, J W; Cripps, P; Blackwood, L; Berlato, D; Murphy, S; Grant, I A

    2016-03-01

    Mast cell tumours (MCTs) are the most common cutaneous tumours of dogs, however rarely they can arise from the oral mucosa. This subset of MCT is reported to demonstrate a more aggressive clinical course than those tumours on the haired skin and the authors hypothesised that dogs with oral, mucosal MCT would have a high incidence of local lymph node metastasis at presentation and that this would be a negative prognostic factor. An additional hypothesis was that mitotic index (MI) would be prognostic. This retrospective study examines 33 dogs with MCTs arising from the oral mucosa. The results suggest that oral mucosal MCTs in the dog have a high incidence of lymph node metastasis at diagnosis (55%) which results in a poor prognosis. MI and nodal metastasis is highly prognostic. Loco-regional progression is common in these patients and dogs with adequate local control of their tumour had an improved outcome. Despite a more aggressive clinical course, treatment can result in protracted survivals, even when metastasis is present. PMID:24215587

  13. Atypical signaling of metabotropic glutamate receptor 1 in human melanoma cells.

    PubMed

    Gelb, Tara; Pshenichkin, Sergey; Hathaway, Hannah A; Grajkowska, Ewa; Dalley, Carrie Bowman; Wolfe, Barry B; Wroblewski, Jarda T

    2015-11-01

    The metabotropic glutamate 1 (mGlu1) receptor has emerged as a novel target for the treatment of metastatic melanoma and various other cancers. Our laboratory has demonstrated that a selective, non-competitive mGlu1 receptor antagonist slows human melanoma growth in vitro and in vivo. In this study, we sought to determine if the activation of a canonical G protein-dependent signal transduction cascade, which is often used as an output of mGlu1 receptor activity in neuronal cells, correlated with mGlu1 receptor-mediated melanoma cell viability. Glutamate, the endogenous ligand of mGlu1 receptors, significantly increased melanoma cell viability, but did not stimulate phosphoinositide (PI) hydrolysis in several human melanoma cell lines. In contrast, melanoma cell viability was not increased by quisqualate, a highly potent mGlu1 receptor agonist, or DHPG, a selective group I mGlu receptor agonist. Similarly to glutamate, quisqualate also failed to stimulate PI hydrolysis in mGlu1 receptor-expressing melanoma cells. These results suggest that the canonical G protein-dependent signal transduction cascade is not coupled to mGlu1 receptors in all human melanoma cells. On the other hand, dynamin inhibition selectively decreased viability of mGlu1 receptor-expressing melanoma cells, suggesting that a mechanism requiring internalization may control melanoma cell viability. Taken together, these data demonstrate that the approaches commonly used to study mGlu1 receptor function and signaling in other systems may be inappropriate for studying mGlu1 receptor-mediated melanoma cell viability. PMID:26291396

  14. Characteristics of malignant melanoma cells in the treatment with fast neutrons

    SciTech Connect

    Tsunemoto, H.; Morita, S.; Mori, S. )

    1989-07-01

    The radioresistance of malignant melanoma cells has been explained by the wide shoulder of the dose-cell-survival curve of the cells exposed to photon beams. Fast neutrons, 30 MeV d-Be, were used to treat patients who had malignant melanoma in order to confirm the biological effects of high linear energy transfer (LET) radiation for tumor control. Seventy-two patients suffering from malignant melanoma participated in the clinical trials with fast neutrons between November 1975 and December 1986. Of 72 patients, 45 had melanoma of the skin, 20 had melanoma of the head and neck, and seven had choroidal melanoma. Five-year survival rate of the patients who had previously untreated melanoma of the skin was 61% and for patients who received postoperative irradiation, it was 35.7% whereas no patients who had recurrent tumor survived over 4 years. Of 22 patients who had melanoma of the skin, stage I, local control in four cases was achieved by irradiation alone, whereas local control was achieved in 17 of 18 patients who required salvage surgery after fast-neutron therapy. The results of pathological studies performed with specimens obtained from salvage surgery have shown that melanoma cells growing in intradermal tissue are radioresistant, compared with cells growing in intraepidermal tissue. This might suggest that melanoma cells acquire radioresistance when the connective tissue is involved. Five-year survival rate of the patients who had locally advanced melanoma of the head and neck, previously untreated, was 15.4%. Radiation therapy with accelerated protons was suitable for patients suffering from choroidal melanoma.

  15. Investigation of the cytotoxic effect of flavopiridol in canine lymphoma cell lines.

    PubMed

    Ema, Y; Igase, M; Takeda, Y; Yanase, T; Umeki, S; Hiraoka, H; Okuda, M; Mizuno, T

    2016-08-01

    The cyclin-dependent kinase (CDK) inhibitor, flavopiridol, was tested as a potential new cancer therapeutic agent to treat canine lymphoma by examining its effect on cell growth of canine lymphoma cell lines in vitro. Flavopiridol induced profound cell death in all eight lymphoma cell lines at 400 nM, and in all cases cell death was due to apoptosis. Apoptosis was inhibited by caspase inhibitor, despite the variable sensitivities between cell lines. Analysis of the mechanism of flavopiridol-induced apoptosis showed that Rb phosphorylation was inhibited, possibly due to CDK4 or CDK6 inhibition. There was also decreased expression of Rb protein and anti-apoptotic proteins, Mcl-1 and XIAP, possibly through transcriptional regulation by inhibition of CDK7 or CDK9 activation. Canine lymphoma cell line-xenotransplanted mice were then treated with flavopiridol and profound tumour shrinkage was observed. This study describes a new therapeutic approach using flavopiridol for canine lymphoma treatment. PMID:25623777

  16. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations

    PubMed Central

    Talar, Beata; Gajos-Michniewicz, Anna; Talar, Marcin; Chouaib, Salem; Czyz, Malgorzata

    2016-01-01

    Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway. PMID:27351373

  17. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    SciTech Connect

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O.; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  18. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    SciTech Connect

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  19. ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma.

    PubMed

    Liao, Yi-Hua; Hsu, Su-Ming; Huang, Pei-Hsin

    2007-12-15

    Tumor cells often aberrantly reexpress molecules that mediate proper embryonic development for advantageous growth or survival. Here, we report that ankyrin repeat-rich membrane spanning (ARMS), a transmembrane protein abundant in the developing and adult neural tissues, is overexpressed in melanoma, a tumor ontogenetically originating from neural crest. Immunohistochemical study of 79 melanocytic lesions showed significantly increased expression of ARMS in primary malignant melanomas (92.9%) and metastatic melanoma (60.0%) in comparison with benign nevocellular nevi (26.7%). To investigate the role of ARMS in melanoma formation, murine B16F0 melanoma cells with stable knockdown of ARMS were established by RNA interference. Down-regulation of ARMS resulted in significant inhibition of anchorage-independent growth in soft agar and restrictive growth of melanoma in severe combined immunodeficient mice. Importantly, depletion of ARMS facilitated UVB-induced apoptosis in melanoma cells through inactivation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK. Addition of MEK inhibitor PD98059 further sensitized ARMS-depleted melanoma cells to UVB-induced apoptosis, whereas constitutively active MEK rescued ARMS-depleted cells from apoptosis. We further showed that BRAF, a downstream signaling molecule of ARMS in ERK pathway, is not mutated as a constitutively active form in acral lentiginous melanoma; in contrast, BRAF(T1799A) mutation, which leads to constitutive activation of ERK signaling, was detected in 57.1% of superficial spreading melanoma. Our study suggests that overexpression of ARMS per se serves as one mechanism to promote melanoma formation by preventing stress-induced apoptotic death mediated by the MEK/ERK signaling pathway, especially in acral lentiginous melanoma, most of which does not harbor BRAF mutation. PMID:18089783

  20. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  1. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    PubMed

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-01-01

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events. PMID:26850723

  2. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  3. Methylation-mediated loss of SFRP2 enhances melanoma cell invasion via Wnt signaling.

    PubMed

    Luo, Xiaoji; Wei, Bin; Chen, Aijun; Zhao, Hengguang; Huang, Kun; Chen, Jin

    2016-01-01

    Wnt signaling plays an essential role in the initiation and progression of melanoma tumors. The Secreted Frizzled Related Proteins (SFRPs) are a family of proteins that suppress Wnt signaling. The methylation of SFRPs reduces their activity, and hence augments Wnt signaling. However, whether the methylation of SFRP2, a member of SFRPs, may be involved in the pathogenesis of melanoma is not known. Here we investigated the expression levels of SFRP2 in melanoma specimens. We found that SFRP2 mRNA wassignificantly decreased and methylation of SFRP2 gene was significantly increased in malignant melanoma tumors ascompared to the paired adjacent non-tumor tissue. Moreover, SFRP2 expression was significantly decreased in the malignant melanoma celllines, HTB63, A2058 and A375, but not in the non-transformed melanocyte cell line, Hermes 3A. The demethylation of SFRP2 gene by 5'-aza-deoxycytidine (5-aza-dCyd) in melanoma cell lines restored SFRP2 expression, at both mRNA and protein levels, and suppressed cell invasion. Furthermore, the demethylation of SFRP2 geneappeared to inhibit nuclear retention of a key Wnt signaling factor, β-catenin, in melanoma cell lines. Together, these data suggest that SFRP2may function as a melanoma invasion suppressor byinterfering with Wnt signaling, and the methylation of SFRP2 gene may promote pathogenesis of melanoma. PMID:27186276

  4. Methylation-mediated loss of SFRP2 enhances melanoma cell invasion via Wnt signaling

    PubMed Central

    Luo, Xiaoji; Wei, Bin; Chen, Aijun; Zhao, Hengguang; Huang, Kun; Chen, Jin

    2016-01-01

    Wnt signaling plays an essential role in the initiation and progression of melanoma tumors. The Secreted Frizzled Related Proteins (SFRPs) are a family of proteins that suppress Wnt signaling. The methylation of SFRPs reduces their activity, and hence augments Wnt signaling. However, whether the methylation of SFRP2, a member of SFRPs, may be involved in the pathogenesis of melanoma is not known. Here we investigated the expression levels of SFRP2 in melanoma specimens. We found that SFRP2 mRNA wassignificantly decreased and methylation of SFRP2 gene was significantly increased in malignant melanoma tumors ascompared to the paired adjacent non-tumor tissue. Moreover, SFRP2 expression was significantly decreased in the malignant melanoma celllines, HTB63, A2058 and A375, but not in the non-transformed melanocyte cell line, Hermes 3A. The demethylation of SFRP2 gene by 5’-aza-deoxycytidine (5-aza-dCyd) in melanoma cell lines restored SFRP2 expression, at both mRNA and protein levels, and suppressed cell invasion. Furthermore, the demethylation of SFRP2 geneappeared to inhibit nuclear retention of a key Wnt signaling factor, β-catenin, in melanoma cell lines. Together, these data suggest that SFRP2may function as a melanoma invasion suppressor byinterfering with Wnt signaling, and the methylation of SFRP2 gene may promote pathogenesis of melanoma. PMID:27186276

  5. Generation of recombinant canine interleukin-15 and evaluation of its effects on the proliferation and function of canine NK cells.

    PubMed

    Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Sang-Ki

    2015-05-15

    Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is also a promising cytokine for treating cancer. Despite the growing importance of the clinical use of IL-15 for immunotherapy, no attempts have been made to generate a recombinant canine IL-15 (rcIL-15) and to examine its effects on the antitumor activities of immune effector cells in dogs. Here, we generated an rcIL-15 protein consisting of Asn-49-Ser-162 with a C-terminal His tag and examined its functions ex vivo in terms of the proliferation and antitumor effects on canine non-B, non-T, large granular natural killer (NK) cells. Non-B, non-T, large granular NK cells rapidly expanded in response to stimulation with rcIL-15 in the presence of IL-2, and a majority of the cells that selectively expanded over 21 days exhibited a CD3(-)CD5(-)CD4(-)CD8(+/-)CD21(-) phenotype. Purified rcIL-15 significantly enhanced the expansion rate of canine NK cells derived from peripheral blood mononuclear cells compared to human IL-15, or culture in the absence of IL-15 for 21 days (p<0.05). Purified rcIL-15 was superior at enhancing the effector function of NK cells compared to human IL-15. The cytotoxic activity against canine thyroid adenocarcinoma (CTAC) cells, interferon-γ production, and the mRNA expression levels of perforin and granzyme B of expanded NK cells cultured with rcIL-15 were significantly elevated compared to those cultured with human IL-15 or without IL-15 (p<0.05). Intravenous administration of rcIL-15 significantly increased the numbers of lymphocytes in the peripheral blood of dogs on days 6, 8, and 11 after injection compared to numbers before administration (p<0.05). The results of this study suggest that the rcIL-15 protein, consisting of Asn-49-Ser-162, enhanced the proliferation and antitumor effects of canine NK cells and promoted the generation of lymphocytes in dogs. PMID:25890849

  6. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  7. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells.

    PubMed

    Beaumont, Kimberley A; Hill, David S; Daignault, Sheena M; Lui, Goldie Y L; Sharp, Danae M; Gabrielli, Brian; Weninger, Wolfgang; Haass, Nikolas K

    2016-07-01

    The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies. PMID:26970356

  8. Toxicity of oxidized phosphatidylcholines in cultured human melanoma cells.

    PubMed

    Ramprecht, Claudia; Jaritz, Hannah; Streith, Ingo; Zenzmaier, Elfriede; Köfeler, Harald; Hofmann-Wellenhof, Rainer; Schaider, Helmut; Hermetter, Albin

    2015-07-01

    The oxidized phospholipids (oxPL) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are generated from 1-palmitoyl-2-arachidonoyl-phosphatidylcholine under conditions of oxidative stress. These oxPL are components of oxidized low density lipoprotein. They are cytotoxic in cells of the arterial wall thus playing an important role in the development and progression of atherosclerosis. The toxic lipid effects include inflammation and under sustained exposure apoptosis. The aim of this study was to find out whether such toxic effects, especially apoptosis, are also elicited by oxPL in melanocytic cells in order to assess their potential for therapeutic intervention. FACS analysis after staining with fluorescent markers was performed to identify the mode of lipid-induced cell death. Activation of sphingomyelinase which generates apoptotic ceramide was measured using an established fluorescence assay. Ceramide profiles were determined by mass spectrometry. We found that 50μM POVPC induce cell death in human melanoma cells isolated from different stages of tumor progression but affect primary human melanocytes to a much lesser extent. In contrast, 50μM PGPC was only apoptotic in two out of four cell lines used in this study. The toxicity of both compounds was associated with efficient lipid uptake into the tumor cells and activation of acid sphingomyelinase. In several but not all melanoma cell lines used in this study, activation of the sphingomyelin degrading enzyme correlated with an increase in the concentration of the apoptotic mediator ceramide. The individual patterns of the newly formed ceramide species were also cell line-specific. PGPC and POVPC may be considered potential drug candidates for topical skin cancer treatment. They are toxic in malignant cells. The respective oxidized phospholipids are naturally formed in the body and resistance to these compounds is not likely to occur

  9. IL-2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma

    PubMed Central

    Carson, Craig C.; Moschos, Stergios J.; Edmiston, Sharon N.; Darr, David B.; Nikolaishvili-Feinberg, Nana; Groben, Pamela A.; Zhou, Xin; Kuan, Pei Fen; Pandey, Shaily; Chan, Keefe T.; Jordan, Jamie L.; Hao, Honglin; Frank, Jill S.; Hopkinson, Dennis A.; Gibbs, David C.; Alldredge, Virginia D.; Parrish, Eloise; Hanna, Sara C.; Berkowitz, Paula; Rubenstein, David S.; Miller, C. Ryan; Bear, James E.; Ollila, David W.; Sharpless, Norman E.; Conway, Kathleen; Thomas, Nancy E.

    2015-01-01

    Purpose Interleukin-2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared to nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. Experimental Design An ITK specific monoclonal antibody was used to probe sections from de-identified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by immunohistochemistry. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. Results ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacological inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0/G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Pten null/Braf V600E) melanomas. Conclusions We conclude that ITK, formerly considered an immune cell-specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small molecule ITK inhibitor in the Tyr-Cre/Ptennull/BrafV600E mouse melanoma model supports this possibility. PMID:25934889

  10. Comparative immunohistochemical study of stellate cells in normal canine and equine adenohypophyses and in pituitary tumours.

    PubMed

    Méndez, A; Martín de las Mulas, J; Bautista, M J; Chacón, F; Millán, Y; Fondevila, D; Pumarola, M

    1998-01-01

    The presence and distribution of S100 protein (alpha and beta subunits), cytokeratin polypeptides, glial fibrillary acidic protein, neurofilaments, vimentin, neuron specific enolase, synaptophysin, HLA class II DR antigen, and pituitary hormones (prolactin, adrenocorticotropic hormone and human chorionic gonadotrophin) in stellate cells were studied immunohistochemically in four normal canine pituitary glands, five canine pituitary adenomas, two canine pituitary carcinomas and two equine pituitary adenomas (with surrounding normal glandular tissue). Stellate cells of the pars distalis and pars intermedia of canine and equine adenohypophyses showed a strong reaction with antibodies against S100 protein subunits alpha and beta. They also reacted with antibody against high and low molecular weight cytokeratins, but not with those against other intermediate filament proteins, neuroendocrine markers, the HLA-class II DR antigen or the pituitary hormones. Other populations of cells expressing both subunits of the S100 protein were polygonal cells of the pars distalis of the adenohypophysis (horse) and marginal epithelial cells of the pars intermedia of the adenohypophysis (dog and horse). Some pituitary tumours had S100-immunoreactive cells with a distribution of alpha and beta subunits that differed between the two species. Some canine tumours (one adenoma and one carcinoma) expressed only the alpha subunit, but both of the equine adenomas expressed alpha and beta protein subunits. Some of the S100-immunoreactive tumour cells reacted with RCK-102 (cytokeratins 5+8) antibody in the dog but not in the horse. The results suggested that canine and equine stellate cells of the adenohypophysis are more closely related to epithelial than to glial cells, as is the case in cattle, sheep and goats but not human beings or mice. No subpopulation of cells of bone marrow origin could be identified among canine stellate cells, as they lack MHC class II antigen. The results also

  11. Neoantigen landscape dynamics during human melanoma-T cell interactions.

    PubMed

    Verdegaal, Els M E; de Miranda, Noel F C C; Visser, Marten; Harryvan, Tom; van Buuren, Marit M; Andersen, Rikke S; Hadrup, Sine R; van der Minne, Caroline E; Schotte, Remko; Spits, Hergen; Haanen, John B A G; Kapiteijn, Ellen H W; Schumacher, Ton N; van der Burg, Sjoerd H

    2016-08-01

    Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy. Therefore, strategies to selectively enhance T-cell reactivity against genetically defined neoantigens are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens. However, whether the T-cell-recognized neoantigen repertoire in human cancers is constant over time is unclear. Here we analyse the stability of neoantigen-specific T-cell responses and the antigens they recognize in two patients with stage IV melanoma treated by adoptive T-cell transfer. The T-cell-recognized neoantigens can be selectively lost from the tumour cell population, either by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer cells and T cells, which suggest that T cells mediate neoantigen immunoediting, and indicate that the therapeutic induction of broad neoantigen-specific T-cell responses should be used to avoid tumour resistance. PMID:27350335

  12. Antiviral antibodies stimulate production of reactive oxygen species in cultured canine brain cells infected with canine distemper virus.

    PubMed Central

    Bürge, T; Griot, C; Vandevelde, M; Peterhans, E

    1989-01-01

    Canine distemper is characterized mainly by respiratory, enteric, and nervous symptoms. Infection of the central nervous system results in demyelination, to which inflammation has been shown to contribute significantly. It has been proposed that macrophages play a major role as effector cells in this process. We report that cultured dog brain cells contain a population of macrophages capable of producing reactive oxygen species as measured by luminol-dependent chemiluminescence. In cultures infected with canine distemper virus, a burst of reactive oxygen is triggered by antiviral antibody. This response depends on the presence of viral antigens on the surfaces of infected cells and is mediated by the interaction of antigen-bound antibody with Fc receptors on the macrophages. Since there is no evidence in vitro or in vivo that oligodendrocytes, the cells forming myelin, are infected, our observation supports the hypothesis that "innocent bystander killing" is important in demyelination caused by canine distemper virus. Reactive oxygen species released from macrophages may contribute to destruction of myelin. Images PMID:2724413

  13. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs. PMID:27506084

  14. Cell context-dependent activities of parthenolide in primary and metastatic melanoma cells

    PubMed Central

    Czyz, M; Lesiak-Mieczkowska, K; Koprowska, K; Szulawska-Mroczek, A; Wozniak, M

    2010-01-01

    Background and purpose: Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Here, we report the effects of parthenolide on either untreated, cisplatin- or TNFα-treated melanoma cell lines A375, 1205Lu and WM793, exhibiting different levels of constitutive NF-κB activity. Experimental approach: Electrophoretic mobility shift assay was used to assess changes in NF-κB activity, and real-time PCR to evaluate expression of NF-κB-regulated genes. Cell cycle arrest and apoptosis were assessed by flow cytometry. Cell death was also visualized by fluorescence microscopy. Migration was determined by scratch assay and invasiveness by Matrigel assay. Key results: Parthenolide suppressed both constitutive and induced NF-κB activity in melanoma cells. This was accompanied by down-regulation of cancer-related genes, with NF-κB-binding sites in their promoters, including: Bcl-XL, survivin, cyclin D1, interleukin 8 and matrix metalloproteinase 9. When the various effects of 6 µM parthenolide were compared, apoptosis associated with loss of mitochondrial membrane potential was most efficiently induced in 1205Lu cells, cell cycle arrest in G0/G1 phase was observed in WM793 cells, and high metastatic potential was markedly reduced in A375 cells. These findings not only reflected differences between melanoma cell lines in basal expression of NF-κB-regulated genes, but also suggested other parthenolide targets involved in cell cycle progression, migration, invasiveness and survival. Conclusions: Inhibition of constitutive and therapeutically induced NF-κB pathway by parthenolide might be useful in the treatment of melanoma, although the diversity of changes induced in melanoma cells with different genetic backgrounds indicate context-dependent poly-pharmacological properties of this compound. PMID:20590608

  15. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    PubMed Central

    Rasheed, Suraiya; Mao, Zisu; Chan, Jane MC; Chan, Linda S

    2005-01-01

    Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = < 0.001). Based on their physiologic properties, >95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed

  16. Antitubulinic effect of New Fluorazone Derivatives on Melanoma Cells.

    PubMed

    Sticozzi, Claudia; Aiello, Francesca; Andreasi, Rita Bassi; Muresan, Ximena Maria; Belmonte, Giuseppe; Cervellati, Franco; Maellaro, Emilia; Maioli, Emanuela; Valacchi, Giuseppe

    2016-01-01

    Microtubules are composed by α- and β-tubulin polypeptides. α-tubulin undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyrtubulin). Recent studies have shown that α-tubulin tyrosine residues can be nitrated and the incorporation of NO2Tyr into the C-terminus of Glu-tubulin forms a complex that blocks the tyrosination/detyrosination cycle, an event that can compromise protein/enzyme functions, such as cell division. Since many studies demonstrated that Glu-tubulin levels increase in cancer, the aim of the present study was to investigate the effect of new drugs, fluorazone derivatives (K1-K2-K9-K10-K11), on the proliferation of melanoma cells. Our results demonstrated that these drugs, except for K2, were able to inhibit cellular proliferation without exhibiting cytotoxicity. The anti-proliferative effect was accompanied by the decrease of Glu-tubulin levels and the increase of its nitration. This effect seems to be a consequence of NO2 induction and NO2Tyr ligation to Glu-tubulin. Collectively, these results, showing that the fluorazone derivatives, by promoting NO2Tyr incorporation into α-tubulin, are able to arrest the cycle of detyrosination/tyrosination and to inhibit cell proliferation, offer new perspectives for the possible usage of these drugs, alone or in combination, as non-toxic, anti-proliferative agents in melanoma. PMID:26349815

  17. Microtubule-Associated Protein 2, a Marker of Neuronal Differentiation, Induces Mitotic Defects, Inhibits Growth of Melanoma Cells, and Predicts Metastatic Potential of Cutaneous Melanoma

    PubMed Central

    Soltani, Mohammad H.; Pichardo, Rita; Song, Ziqui; Sangha, Namrata; Camacho, Fabian; Satyamoorthy, Kapaettu; Sangueza, Omar P.; Setaluri, Vijayasaradhi

    2005-01-01

    Dynamic instability of microtubules is critical for mitotic spindle assembly and disassembly during cell division, especially in rapidly dividing tumor cells. Microtubule-associated proteins (MAPs) are a family of proteins that influence this property. We showed previously that MAP2, a neuron-specific protein that stabilizes microtubules in the dendrites of postmitotic neurons, is induced in primary cutaneous melanoma but is absent in metastatic melanomas. We proposed that induction of a microtubule-stabilizing protein in primary melanoma could disrupt the dynamic instability of microtubules, inhibit cell division and prevent or delay tumor progression. Here we show, by Kaplan-Meier survival and multivariate Cox regression analysis, that patients diagnosed with MAP2+ primary melanomas have significantly better metastatic disease-free survival than those with MAP2− disease. Investigation of the mechanisms that underlie the effect of MAP2 on melanoma progression showed that MAP2 expression in metastatic melanoma cell lines leads to microtubule stabilization, cell cycle arrest in G2-M phase and growth inhibition. Disruption of microtubule dynamics by MAP2 resulted in multipolar mitotic spindles, defects in cytokinesis and accumulation of cells with large nuclei, similar to those seen in vivo in MAP2+ primary melanomas cells. These data suggest that ectopic activation of a neuronal differentiation gene in melanoma during early tumor progression inhibits cell division and correlates with inhibition or delay of metastasis. PMID:15920168

  18. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness.

    PubMed

    Jobe, Njainday Pulo; Rösel, Daniel; Dvořánková, Barbora; Kodet, Ondřej; Lacina, Lukáš; Mateu, Rosana; Smetana, Karel; Brábek, Jan

    2016-08-01

    Tumour microenvironment plays a critical role in cell invasion and metastasis. To investigate the role of cancer-associated fibroblasts (CAFs) in melanoma cell invasiveness, we used 3D spheroid invasion assay. The effect of conditioned media from normal fibroblasts and CAFs cultivated alone or co-cultivated with melanoma cells on BLM or A2058 melanoma spheroid invasion was analysed. We found that conditioned media from CAFs and CAFs co-cultured with melanoma cells, especially, promote invasion and migration, without significant effect on melanoma cell proliferation. We further analysed the expression of pro-invasive cytokines IL-8 and IL-6 in media and found that melanoma cells are dominant producers of IL-8 and fibroblasts are dominant producers of IL-6 in 2D monocultures, while co-cultivation of CAFs with melanoma cells induces production/secretion of IL-6 and IL-8 into the media. The analyses of IL-6 levels in 3D cultures and human melanoma samples, however, revealed that at least in some cases IL-6 is also produced directly by melanoma cells. Analysis of the role of IL-6 and IL-8 in CAF-induced melanoma invasion, using neutralising antibodies, revealed that simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. In summary, these experiments indicate the important role of CAFs and IL-8 and IL-6 cytokines in melanoma cell invasiveness. PMID:27102177

  19. KRAS Mutations in Canine and Feline Pancreatic Acinar Cell Carcinoma.

    PubMed

    Crozier, C; Wood, G A; Foster, R A; Stasi, S; Liu, J H W; Bartlett, J M S; Coomber, B L; Sabine, V S

    2016-07-01

    Companion animals may serve as valuable models for studying human cancers. Although KRAS is the most commonly mutated gene in human ductal pancreatic cancers (57%), with mutations frequently occurring at codons 12, 13 and 61, human pancreatic acinar cell carcinomas (ACCs) lack activating KRAS mutations. In the present study, 32 pancreatic ACC samples obtained from 14 dogs and 18 cats, including seven metastases, were analyzed for six common activating KRAS mutations located in codons 12 (n = 5) and 13 (n = 1) using Sequenom MassARRAY. No KRAS mutations were found, suggesting that, similar to human pancreatic ACC, KRAS mutations do not play a critical role in feline or canine pancreatic ACC. Due to the similarity of the clinical disease in dogs and cats to that of man, this study confirms that companion animals offer potential as a suitable model for investigating this rare subtype of pancreatic carcinoma. PMID:27290644

  20. HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest.

    PubMed

    Jiang, Wei; Mikochik, Peter J; Ra, Jin H; Lei, Hanqin; Flaherty, Keith T; Winkler, Jeffrey D; Spitz, Francis R

    2007-02-01

    HIV protease inhibitors (HIV PI) are a class of antiretroviral drugs that are designed to target the viral protease. Unexpectedly, this class of drugs is also reported to have antitumor activity. In this study, we have evaluated the in vitro activity of nelfinavir, a HIV PI, against human melanoma cells. Nelfinavir inhibits the growth of melanoma cell lines at low micromolar concentrations that are clinically attainable. Nelfinavir promotes apoptosis and arrests cell cycle at G(1) phase. Cell cycle arrest is attributed to inhibition of cyclin-dependent kinase 2 (CDK2) and concomitant dephosphorylation of retinoblastoma tumor suppressor. We further show that nelfinavir inhibits CDK2 through proteasome-dependent degradation of Cdc25A phosphatase. Our results suggest that nelfinavir is a promising candidate chemotherapeutic agent for advanced melanoma, for which novel and effective therapies are urgently needed. PMID:17283158

  1. Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity Against Melanoma Cell Lines

    PubMed Central

    Webster, Marie R.; Kamat, Chandrashekhar; Connis, Nick; Zhao, Ming; Weeraratna, Ashani T.; Rudek, Michelle A.; Hann, Christine L.; Freel Meyers, Caren L.

    2014-01-01

    Bisphosphonates are used clinically to treat disorders of calcium metabolism and malignant bone disease and are known to inhibit cancer cell growth, adhesion, and invasion. However, clinical use of these agents for the treatment of extraskeletal disease is limited due to low cell permeability. We recently described a bisphosphonamidate prodrug strategy for efficient intracellular release of bisphosphonates, including clodronate (CLO), in NSCLC cells. To evaluate anticancer activity of this prodrug class across many cancer cell types, the bisphosphonamidate clodronate prodrug (CLO prodrug) was screened against the NCI-60 cell line panel, and was found to exhibit selectivity toward melanoma cell lines. Here, we confirm efficient cellular uptake and intracellular activation of this prodrug class in melanoma cells. We further demonstrate inhibition of melanoma cell proliferation, induction of apoptosis, and an anti-tumor effect of CLO prodrug in a xenograft model. These data suggest a novel therapeutic application for the CLO prodrug and potential to selectively target melanoma cells. PMID:24310621

  2. GLI inhibitor GANT61 kills melanoma cells and acts in synergy with obatoclax.

    PubMed

    Vlčková, Kateřina; Réda, Jiri; Ondrušová, Lubica; Krayem, Mohammad; Ghanem, Ghanem; Vachtenheim, Jiri

    2016-09-01

    MEK kinase inhibitors (trametinib and selumetinib) or kinase inhibitors directed against mutated BRAF(V600E) (vemurafenib and dabrafenib) have initial encouraging effects in the treatment of melanoma but acquired resistance appears almost invariably after some months. Studies revealed mutually exclusive NRAS and BRAF activating mutations driving the MAPK/ERK pathway among human melanomas. Although combination therapy exerts significantly better antitumor cell efficacy, complete remission is rarely achieved. To employ an alternative approach, we have targeted the Hedgehog/GLI pathway, which is deregulated in melanomas, through the GLI1/2 inhibitor GANT61, alone or accompanied with the treatment by the BCL2 family inhibitor obatoclax in 9 melanoma cell lines. Thus, we targeted melanoma cells irrespective of their NRAS or BRAF mutational status. After GANT61 treatment, the cell viability was drastically diminished via apoptosis, as substantial nuclear DNA fragmentation was detected. In all tested melanoma cell lines, the combined treatment was more efficient than the application of each drug alone at the end of the cell growth with inhibitors. GANT61 was efficient also alone in most cell lines without the addition of obatoclax, which had only a limited effect when used as a single drug. In most cell lines, tumor cells were eradicated after 5-9 days of combined treatment in colony outgrowth assay. To conclude, GANT61 treatment might become a hopeful and effective anti-melanoma targeted therapy, especially when combined with the BCL2 family inhibitor obatoclax. PMID:27572939

  3. Sox4 Mediated Dicer Expression is Critical for Suppression of Melanoma Cell Invasion

    PubMed Central

    Jafarnejad, Seyed Mehdi; Ardekani, Gholamreza Safaee; Ghaffari, Mazyar; Martinka, Magdalena; Li, Gang

    2016-01-01

    We previously reported reduced expression of Sox4 in metastatic melanoma and its role in suppression of cell migration and invasion through inhibition of NF-κB p50. Sox4 can also bind to the promoter sequence of Dicer, a miRNA biogenesis factor. Interestingly, altered expression of Dicer was also observed in cancers. However, the potential mechanisms which regulate Dicer expression and its potential significance in melanoma progression are unknown. Here we studied the regulation of Dicer expression by Sox4 and its role in suppression of melanoma invasion. Our data showed that Sox4 positively regulates Dicer expression by binding to its promoter sequences and enhancing its activity. We found that knockdown of Dicer enhances the matrigel invasion of melanoma cells by at least 2-fold. In addition, we revealed that overexpression of exogenous Dicer reverts the enhanced melanoma cell invasion upon Sox4 knockdown. Furthermore, we examined the expression of Dicer protein in a large set of melanocytic lesions (n=504) at different stages by tissue microarray and found that Dicer expression is inversely correlated with melanoma progression (P < 0.0001). Consistently, reduced Dicer expression was correlated with a poorer overall and disease-specific 5-year survival of patients (P = 0.015 and 0.0029, respectively). In addition, we found a significant correlation between expression of Sox4 and Dicer proteins in melanoma biopsies (P = 0.009), further indicating the regulation of Dicer expression by Sox4. Finally, we revealed that knockdown of Sox4 induces a major change in the expression pattern of miRNAs in melanoma cells, mainly due to reduced expression of Dicer. Our results pinpoint the regulation of Dicer expression by Sox4 in melanoma and the critical role of Dicer in suppression of melanoma invasion. Our findings on Sox4 regulated miRNA biogenesis pathway may aid toward the development of novel targeted therapeutic approaches for melanoma. PMID:22689055

  4. Plasmonic enhanced fs-laser optoporation of human melanoma cells

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Humbert, L.; St.-Louis Lalonde, B.; Lebrun, J.-J.; Meunier, M.

    2011-03-01

    In this paper, we present the results of in vitro gene transfer by plasmonic enhanced optoporation of human melanoma cells. The fs-laser based optoporation is a gentle and efficient method for transfection. An optimum perforation rate with efficient dye or DNA uptake and high viability of the cells (~90%) was found for different types of nanostructures, spherical and rod shaped. The technique offers a very high selectivity and the low damage induced to the cell leads to a high transfection efficiency. The cell selectivity of this technique on the one hand is realized by using bioconjugated nanostructures, that couple selectively to a special cell type, and on the other hand, the spatial selectivity is due to the fact that only irradiated cells are perforated. In many biological applications a virus free and efficient transfection method is needed, especially in terms of its use in vivo. In cancer cells, the aggressiveness of the cells is shown in the migration and invasion velocity. The laser based and nanostructure enhanced transfection of cells offers the possibility to directly compare the treated and untreated cells. The treatment for migration and invasion assays can be performed by laser-scraping and laser transfection, resulting in a fully non-contact and therefore sterile method where the shape and the size of the scrape is well defined and reproducible. The laser based scrape test therefore offers less uncertainty due to scrape variations, high transfection efficiency, as well as direct comparison of treated and control cells in the same dish.

  5. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. PMID:25858017

  6. Identification of canine glial cells by nonradioactive in situ hybridization.

    PubMed

    Graber, H U; Zurbriggen, A; Vandevelde, M

    1993-01-01

    Studies on the development of the canine central nervous system and on demyelinating diseases demand unequivocal identification of the glial cells. For that reason, nonradioactive in situ hybridization (ISH) was performed in primary dog brain cell cultures (DBCC) and in brain sections of neonatal dogs. Specific RNA probes were used to detect messenger RNA (mRNA) coding for proteolipid protein (PLP), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP). PLP and MBP are markers for oligodendrocytes, GFAP for astrocytes. Oligodendrocytes positive for PLP and MBP mRNA were found in both DBCC and brain sections of neonatal dogs. Astrocytes expressing GFAP specific mRNA were detected in DBCC and in brain sections. These cells were evenly distributed in the white matter with additional accumulation in the membrana limitans gliae superficialis, around the ventricles and blood vessels. ISH clearly improves the study of oligodendrocytes in brain sections as, in contrast to the immunohistochemical methods, this technique allows to identify individual cells. PMID:8135072

  7. Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations

    PubMed Central

    Fujii, Hiroko; Josse, Julie; Tanioka, Miki; Miyachi, Yoshiki; Husson, François

    2016-01-01

    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Tregs). FOXP3+ T cells are reported to be increased in tumor-bearing patients or animals and are considered to suppress antitumor immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumor immunity, but the arbitrariness and complexity of manual gating have complicated the issue. In this article, we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analyzing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally identified FOXP3+ subpopulation included not only classical FOXP3high Tregs, but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analyzed an independent data set, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Tregs. PMID:26864030

  8. Targeting NEU Protein in Melanoma Cells with Non-Thermal Atmospheric Pressure Plasma and Gold Nanoparticles.

    PubMed

    Choi, Byul Bora; Kim, Myung Soo; Kim, Uk Kyu; Hong, Jin Woo; Lee, Hae June; Kim, Gyoo Cheon

    2015-05-01

    Non-thermal atmospheric pressure plasma effectively kills cancer cells, but it cannot selectively kill cancer cells. The authors targeted NEU (human epidermal growth factor receptor 2) protein, which is frequently over-expressed in the cell membrane of melanoma cells, using anti-NEU antibody-labeled gold nanoparticles. The labeled nanoparticles preferentially targeted melanoma cells rather than normal keratinocytes. After the addition of labeled gold nanoparticles to melanoma and normal keratinocyte cells, both cells were exposed to non-thermal atmospheric pressure plasma. The death rate of melanoma cells was significantly higher than that of normal keratinocyte cells; many vacuoles, indicative of cell death, were observed in melanoma cells treated with anti-NEU antibody labeled gold nanoparticles and plasma. This selective cancer cell death was attributed to the selective destruction of NEU protein and a downstream effector of NEU. Our study findings show that treatment with a combination of non-thermal atmospheric pressure plasma and anti-NEU antibody-labeled gold nanoparticles effectively and selectively kills melanoma cells. PMID:26349401

  9. Differences in ionic currents between canine myocardial and Purkinje cells

    PubMed Central

    Vassalle, Mario; Bocchi, Leonardo

    2013-01-01

    An electrophysiological analysis of canine single ventricular myocardial (VM) and Purkinje (P) cells was carried out by means of whole cell voltage clamp method. The following results in VM versus P cells were obtained. INa3 was present, had a threshold negative to the fast activating–inactivating INa1, its slow inactivation was cut off by INa1, and contributed to Na+ influx at INa1 threshold. INa1 was smaller and had a less negative threshold. There was no comparable slowly inactivating INa2, accounting for the shorter action potential. Slope conductance at resting potential was about double and decreased to a minimum value at the larger and less negative IK1 peak. The negative slope region of I-V relation was smaller during fast ramps and larger during slow ramps than in P cells, occurred in the voltage range of IK1 block by Mg2+, was not affected by a lower Vh and TTX and was eliminated by Ba2+, in contrast to P cells. ICa was larger, peaked at positive potentials and was eliminated by Ni2+. Ito was much smaller, began at more positive values, was abolished by less negative Vh and by 4-aminopyridine, included a sustained current that 4-aminopyridine decreased but did not eliminate. Steeper ramps increased IK1 peak as well as the fall in outward current during repolarization, consistent with a time-dependent block and unblock of IK1 by polyamines. During repolarization, the positive slope region was consistently present and was similar in amplitude to IK1 peak, whereas it was small or altogether missing in P cells. The total outward current at positive potentials comprised a larger IK1 component whereas it included a larger Ito and sustained current in P cells. These and other results provide a better understanding of the mechanisms underlying the action potential of VM and P cells under normal and some abnormal (arrhythmias) conditions. PMID:24062942

  10. Fiber-laser-based photoacoustic microscopy and melanoma cell detection

    PubMed Central

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V.

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed. PMID:21280901

  11. Fiber-laser-based photoacoustic microscopy and melanoma cell detection.

    PubMed

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed. PMID:21280901

  12. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells.

    PubMed

    Lugini, Luana; Matarrese, Paola; Tinari, Antonella; Lozupone, Francesco; Federici, Cristina; Iessi, Elisabetta; Gentile, Massimo; Luciani, Francesca; Parmiani, Giorgio; Rivoltini, Licia; Malorni, Walter; Fais, Stefano

    2006-04-01

    The phenomenon of cell cannibalism, which generally refers to the engulfment of cells within other cells, was described in malignant tumors, but its biological significance is still largely unknown. In the present study, we investigated the occurrence, the in vivo relevance, and the underlying mechanisms of cannibalism in human melanoma. As first evidence, we observed that tumor cannibalism was clearly detectable in vivo in metastatic lesions of melanoma and often involved T cells, which could be found in a degraded state within tumor cells. Then, in vitro experiments confirmed that cannibalism of T cells was a property of metastatic melanoma cells but not of primary melanoma cells. In particular, morphologic analyses, including time-lapse cinematography and electron microscopy, revealed a sequence of events, in which metastatic melanoma cells were able to engulf and digest live autologous melanoma-specific CD8(+) T cells. Importantly, this cannibalistic activity significantly increased metastatic melanoma cell survival, particularly under starvation condition, supporting the evidence that tumor cells may use the eating of live lymphocytes as a way to "feed" in condition of low nutrient supply. The mechanism underlying cannibalism involved a complex framework, including lysosomal protease cathepsin B activity, caveolae formation, and ezrin cytoskeleton integrity and function. In conclusion, our study shows that human metastatic melanoma cells may eat live T cells, which are instead programmed to kill them, suggesting a novel mechanism of tumor immune escape. Moreover, our data suggest that cannibalism may represent a sort of "feeding" activity aimed at sustaining survival and progression of malignant tumor cells in an unfavorable microenvironment. PMID:16585188

  13. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells

    PubMed Central

    Martin-Orozco, Natalia; Li, Yufeng; Wang, Yijun; Liu, Shijuan; Hwu, Patrick; Liu, Yong-Jun; Dong, Chen; Radvanyi, Laszlo

    2010-01-01

    CD4+CD25+Foxp3+ T-regulatory cells (Tregs) accumulate in tumors, however little is known about how the tumor environment influences this process. Here we show that human melanomas express ICOS-ligand (ICOS-L/B7H) that can provide costimulation through ICOS for the expansion of activated Tregs maintaining high Foxp3 and CD25 expression as well as suppressive function. Thus, ICOS-L expression by melanoma tumor cells may directly drive Treg activation and expansion in the tumor microenvironment as another mechanism of immune evasion. PMID:21098714

  14. [Role of cancer stem cells in the progression and heterogeneity of melanoma].

    PubMed

    Széky, Balázs; Silló, Pálma; Fábián, Melinda; Mayer, Balázs; Kárpáti, Sarolta; Németh, Krisztián

    2016-08-01

    Over the past decade a rare cell population called cancer stem cells has been identified in both solid tumors and hematologic cancers. These cells are reminiscent of somatic and embryonic stem cells and play a critical role in the initiation and progression of malignancies. As all stem cells, they are able to undergo asymmetric cell division and hence renew themselves and create various other progenies with heterogenous phenotypes. A growing body of literature suggested that stem cell subpopulations contribute significantly to the growth and metastatic properties of melanoma. This review gives a comprehensive overview of the current literature on melanoma stem cells, with a special emphasis on the signaling pathways responsible for the homeostatic growth of melanocytes and the uncontrolled proliferation of melanoma cells. The importance of the local microenvironment are demonstrated through summarizing the role of various cell types, soluble factors and cell adhesion molecules in the progression of melanoma and the creation of treatment resistant cancer cell clones. Last but not least, the models of melanoma progression will be introduced and a variety of cellular markers will be presented that may be used to identify and therapeutically target melanoma. Orv. Hetil., 2016, 157(34), 1339-1348. PMID:27546799

  15. New thermal neutron capture therapy for malignant melanoma: melanogenesis-seeking 10B molecule-melanoma cell interaction from in vitro to first clinical trial

    SciTech Connect

    Mishima, Y.; Ichihashi, M.; Hatta, S.; Honda, C.; Yamamura, K.; Nakagawa, T. )

    1989-07-01

    Human melanoma regression by single thermal neutron capture therapy (NCT) using melanoma-seeking 10B compounds has been achieved. Since 1972, the aim of my team has been to synthesize tumor-seeking 10B-compounds possessing selective affinity for specific metabolic activity of the target cancer cells. Once the melanoma takes up these 10B compounds, thermal neutrons, which cause insignificant cell damage, are easily absorbed by nonradioactive 10B, inducing the 10B(n, alpha)7Li reaction and releasing the high LET particles to 14 mu melanoma cell diameter, destroying the tumor without damaging surrounding tissue. Radiobiological and preclinical studies culminated in the first successful human NCT treatment, with no recurrence of the treated melanoma since July, 1987.23 references.

  16. Targeting human melanoma neoantigens by T cell receptor gene therapy.

    PubMed

    Leisegang, Matthias; Kammertoens, Thomas; Uckert, Wolfgang; Blankenstein, Thomas

    2016-03-01

    In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy. PMID:26808500

  17. Norcantharidin induces melanoma cell apoptosis through activation of TR3 dependent pathway

    PubMed Central

    Liu, Shujing; Yu, Hong; Kumar, Suresh M.; Martin, James S.; Bing, Zhanyong; Sheng, Weiqi; Bosenberg, Marcus

    2011-01-01

    Norcantharidin (NCTD) has been reported to induce tumor cell apoptosis. However, the underlying mechanism behinds its antitumor effect remains elusive. We have previously shown that TR3 expression is significantly decreased in metastatic melanomas and involved in melanoma cell apoptosis. In this study, we showed that NCTD inhibited melanoma cell proliferation and induced apoptosis in a dose related manner. NCTD induced translocation of TR3 from nucleus to mitochondria where it co-localized with Bcl-2 in melanoma cells. NCTD also increased cytochome c release from mitochondria to the cytoplasm. These changes were accompanied by increased expression of Bax and cleaved caspase-3 along with decreased expression of Bcl2 and NF-κB2. The effects of NCTD were inhibited by knockdown of TR3 expression using TR3 specific shRNA in melanoma cells. Furthermore, NCTD significantly decreased tumor volume and improved survival of Tyr::CreER; BRAFCa/+; Ptenlox/lox transgenic mice. Our data indicates that NCTD inhibits melanoma growth by inducing tumor cell apoptosis via activation of a TR3 dependent pathway. These results suggest that NCTD is a potential therapeutic agent for melanoma. PMID:22123174

  18. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    PubMed Central

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions. PMID:26815318

  19. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    PubMed

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  20. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  1. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions.

    PubMed

    Skinner, Cassandra C; McMichael, Elizabeth L; Jaime-Ramirez, Alena C; Abrams, Zachary B; Lee, Robert J; Carson, William E

    2016-08-01

    The folate receptor (FR) is overexpressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is overexpressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis using KB (human oral epithelial) and F01 (human melanoma) as a positive and a negative control, respectively. FR-positive and FR-negative cell lines were treated with F-IgG or control immunoglobulin G in the presence or absence of cytokines to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells increased following treatment with F-IgG compared with control immunoglobulin G at all effector : target (E : T) ratios (P<0.01). This trend further increased by NK cell stimulation with the activating cytokine interleukin-12. NK cell production of cytokines such as interferon-gamma, macrophage inflammatory protein 1α, and regulated on activation normal T-cell expressed and secreted (RANTES) was also significantly increased in response to costimulation with interleukin-12 stimulation and F-IgG-coated Mel 39 target cells compared with controls (P<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells, which can be further increased by the addition of cytokines. PMID:27035691

  2. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  3. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    PubMed Central

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  4. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres

    PubMed Central

    Czyz, Malgorzata; Koprowska, Kamila; Sztiller-Sikorska, Malgorzata

    2013-01-01

    Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent. PMID:23192276

  5. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  6. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  7. Biochemical mechanism of Acetaminophen (APAP) induced toxicity in melanoma cell lines

    PubMed Central

    Vad, Nikhil M.; Yount, Garret; Moore, Dan; Weidanz, Jon; Moridani, Majid Y.

    2008-01-01

    In this work, we investigated the biochemical mechanism of acetaminophen (APAP) induced toxicity in SK-MEL-28 melanoma cells using tyrosinase enzyme as a molecular cancer therapeutic target. Our results showed that APAP was metabolized 87% by tyrosinase at 2h incubation. AA and NADH, quinone reducing agents, were significantly depleted during APAP oxidation by tyrosinase. The IC50 (48h) of APAP towards SK-MEL-28, MeWo, SK-MEL-5, B16-F0 and B16-F10 melanoma cells was 100μM whereas it showed no significant toxicity towards BJ, Saos-2, SW-620, and PC-3 non-melanoma cells, demonstrating selective toxicity towards melanoma cells. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, enhanced APAP toxicity towards SK-MEL-28 cells. AA and GSH were effective in preventing APAP induced melanoma cell toxicity. Trifluoperazine and cyclosporin A, inhibitors of permeability transition pore in mitochondria, significantly prevented APAP melanoma cell toxicity. APAP caused time and dose-dependent decline in intracellular GSH content in SK-MEL-28, which preceded cell toxicity. APAP led to ROS formation in SK-MEL-28 cells which was exacerbated by dicoumarol and 1-bromoheptane whereas cyslosporin A and trifluoperazine prevented it. Our investigation suggests that APAP is a tyrosinase substrate, and that intracellular GSH depletion, ROS formation and induced mitochondrial toxicity contributed towards APAP's selective toxicity in SK-MEL-28 cells. PMID:18759348

  8. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles

    PubMed Central

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient’s plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells. PMID:27507971

  9. The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness

    PubMed Central

    Mazar, Joseph; DeYoung, Katherine; Khaitan, Divya; Meister, Edward; Almodovar, Alvin; Goydos, James; Ray, Animesh; Perera, Ranjan J.

    2010-01-01

    The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma, we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs. Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences at the KCNMA1 3′-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor activities of MITF and/or TRPM1 may at least partially be due to miR-211's negative post transcriptional effects on the KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma, our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence

  10. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    PubMed

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary. PMID:27183438

  11. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies.

    PubMed

    Cerchiara, Teresa; Straface, Serafina Vittoria; Brunelli, Elvira; Tripepi, Sandro; Gallucci, Maria Caterina; Chidichimo, Giuseppe

    2015-04-01

    Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma. PMID:25973472

  12. Crosstalk between Protease-activated Receptor 1 and Platelet-activating Factor Receptor Regulates Melanoma Cell Adhesion Molecule (MCAM/MUC18) Expression and Melanoma Metastasis*

    PubMed Central

    Melnikova, Vladislava O.; Balasubramanian, Krishnakumar; Villares, Gabriel J.; Dobroff, Andrey S.; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E.; Schroit, Alan; Prieto, Victor G.; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-01-01

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  13. Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis.

    PubMed

    Melnikova, Vladislava O; Balasubramanian, Krishnakumar; Villares, Gabriel J; Dobroff, Andrey S; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E; Schroit, Alan; Prieto, Victor G; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-10-16

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  14. A Novel Approach for the Detection and Genetic Analysis of Live Melanoma Circulating Tumor Cells

    PubMed Central

    Xu, Melody J.; Cooke, Mariana; Steinmetz, David; Karakousis, Giorgos; Saxena, Deeksha; Bartlett, Edmund; Xu, Xiaowei; Hahn, Stephen M.; Dorsey, Jay F.; Kao, Gary D.

    2015-01-01

    Background Circulating tumor cell (CTC) detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs. Methods The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status. Results The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4%) and specificity of 99.9% (95%CI 99.8-99.9%). In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors. Conclusions To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy. PMID:25807549

  15. Ebola virus mediated infectivity is restricted in canine and feline cells.

    PubMed

    Han, Ziying; Bart, Stephen M; Ruthel, Gordon; Vande Burgt, Nathan H; Haines, Kathleen M; Volk, Susan W; Vite, Charles H; Freedman, Bruce D; Bates, Paul; Harty, Ronald N

    2016-01-15

    Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin. PMID:26711035

  16. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    PubMed Central

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  17. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  18. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    SciTech Connect

    Yu, Kyung Sook; Jo, Ji Yoon; Kim, Su Jin; Lee, Yangsoon; Bae, Jong Hwan; Chung, Young-Hwa; Koh, Sang Seok

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

  19. Natural Compounds' Activity against Cancer Stem-Like or Fast-Cycling Melanoma Cells

    PubMed Central

    Majchrzak, Kinga; Hartman, Mariusz; Czyz, Malgorzata

    2014-01-01

    Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem

  20. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment

    PubMed Central

    Kulesa, Paul M.; Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Margaryan, Naira V.; Seftor, Elisabeth A.; Seftor, Richard E. B.; Hendrix, Mary J. C.

    2006-01-01

    Human metastatic melanoma cells express a dedifferentiated, plastic phenotype, which may serve as a selective advantage, because melanoma cells invade various microenvironments. Over the last three decades, there has been an increased focus on the role of the tumor microenvironment in cancer progression, with the goal of reversing the metastatic phenotype. Here, using an embryonic chick model, we explore the possibility of reverting the metastatic melanoma phenotype to its cell type of origin, the neural-crest-derived melanocyte. GFP-labeled adult human metastatic melanoma cells were transplanted in ovo adjacent to host chick premigratory neural crest cells and analyzed 48 and 96 h after egg reincubation. Interestingly, the transplanted melanoma cells do not form tumors. Instead, we find that transplanted melanoma cells invade surrounding chick tissues in a programmed manner, distributing along host neural-crest-cell migratory pathways. The invading melanoma cells display neural-crest-cell-like morphologies and populate host peripheral structures, including the branchial arches, dorsal root and sympathetic ganglia. Analysis of a melanocyte-specific phenotype marker (MART-1) and a neuronal marker (Tuj1) revealed a subpopulation of melanoma cells that invade the chick periphery and express MART-1 and Tuj1. Our results demonstrate the ability of adult human metastatic melanoma cells to respond to chick embryonic environmental cues, a subset of which may undergo a reprogramming of their metastatic phenotype. This model has the potential to provide insights into the regulation of tumor cell plasticity by an embryonic milieu, which may hold significant therapeutic promise. PMID:16505384

  1. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    PubMed

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos. PMID:25549216

  2. In vitro development of canine somatic cell nuclear transfer embryos in different culture media

    PubMed Central

    No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos. PMID:25549216

  3. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma

    PubMed Central

    Ma, Xiaohong; Piao, Shengfu; Wang, Dan; Mcafee, Quentin; Nathanson, Katherine L.; Lum, Julian J.; Li, Lin Z.; Amaravadi, Ravi K.

    2011-01-01

    Purpose Autophagy consists of lysosome-dependent degradation of cytoplasmic contents sequestered by autophagic vesicles (AV). The role of autophagy in determining tumor aggressiveness and response to therapy in melanoma was investigated in this study. Experimental Design Autophagy was measured in tumor biopsies obtained from metastatic melanoma patients enrolled on a phase II trial of temozolomide and sorafenib and correlated to clinical outcome. These results were compared to autophagy measurements in aggressive and indolent melanoma cells grown in two and three dimensional culture and as xenograft tumors. The effects of autophagy inhibition with either hydroxychloroquine or inducible shRNA against the autophagy gene ATG5 were assessed in three dimensional spheroids. Results Patients whose tumors had a high autophagic index were less likely to respond to treatment and had a shorter survival compared to those with a low autophagic index. Differences in autophagy were less evident in aggressive and indolent melanoma cells grown in monolayer culture. In contrast, autophagy was increased in aggressive compared to indolent melanoma xenograft tumors. This difference was recapitulated when aggressive and indolent melanoma cells were grown as spheroids. Autophagy inhibition with either hydroxychloroquine or inducible shRNA against ATG5 resulted in cell death in aggressive melanoma spheroids, and significantly augmented temozolomide-induced cell death. Conclusions Autophagy is a potential prognostic factor and therapeutic target in melanoma. Three dimensional culture mimics the tumor microenvironment better than monolayer culture and is an appropriate model for studying therapeutic combinations involving autophagy modulators autophagy inhibition should be tested clinically in patients with melanoma. PMID:21325076

  4. Glycogen Synthase Kinase-3 promotes cell survival, growth and PAX3 levels in human melanoma cells

    PubMed Central

    Kubic, Jennifer D.; Mascarenhas, Joseph B.; Iizuka, Takumi; Wolfgeher, Don; Lang, Deborah

    2012-01-01

    Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this report we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis and altered cellular morphology. These alterations coincided with loss of PAX3, a transcription factor implicated in proliferation, survival and migration of developing melanoblasts. We further found that PAX3 directly interacted with and was phosphorylated in vitro on a number of residues by GSK-3β. In melanoma cells, direct inhibition of PAX3 lead to cellular changes that paralleled the response to GSK-3 inhibition. Maintenance of PAX3 expression protected melanoma cells from the anti-tumor effects of SB216763. These data support a model wherein GSK-3 regulates proliferation and morphology of melanoma through phosphorylation and increased levels of PAX3. PMID:22679108

  5. High Mobility Group Box 1-Protein expression in canine haematopoietic cells and influence on canine peripheral blood mononuclear cell proliferative activity.

    PubMed

    Altmann, S; Lange, S; Pommerencke, J; Murua Escobar, H; Bullerdiek, J; Nolte, I; Freund, M; Junghanss, C

    2008-12-15

    High Mobility Group Box 1-Protein (HMGB1) is a nuclear chromosomal protein occurring ubiquitary in mammalian tissues. HMGB1 demonstrates cytokine function and induces inflammation when actively released by haematopoietic cells or passively released during cell necrosis. This study aimed at the determination of HMGB1 expression in different cell types and at the evaluation of the role of HMGB1 in PBMC proliferation. Therefore we investigated the HMGB1 mRNA expression level in different canine haematopoietic cell types and the influence of exogenous rhHMGB1 on canine PBMC proliferation. Differentiated haematopoietic blood cells showed lower relative HMGB1 expression levels compared to CD34+ haematopoietic stem cells. Relative HMGB1 expression seemed also to decrease during differentiation of CD34+ stem cells into dendritic cells. Furthermore, peripheral blood CD14+ monocytes and granulocytes showed a lower relative HMGB1 expression in comparison to CD3+ T-lymphocytes. When exogenous rhHMGB1 at low concentrations was added to single PBMC cultures an increase of proliferation was obvious. However, in higher concentrations HMGB1 lost its stimulative effect. In conclusion, HMGB1 is broadly expressed in canine haematopoietic cells with highest levels in haematopoietic stem cells. HMGB1 induced directly PBMC proliferation. PMID:18762340

  6. Canine Spontaneous Head and Neck Squamous Cell Carcinomas Represent Their Human Counterparts at the Molecular Level

    PubMed Central

    Liu, Deli; Xiong, Huan; Ellis, Angela E.; Northrup, Nicole C.; Dobbin, Kevin K.; Shin, Dong M.; Zhao, Shaying

    2015-01-01

    Spontaneous canine head and neck squamous cell carcinoma (HNSCC) represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling), and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial–mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research. PMID:26030765

  7. Filamin-A and Rheological Properties of Cultured Melanoma Cells

    PubMed Central

    Coughlin, Mark F.; Puig-de-Morales, Marina; Bursac, Predrag; Mellema, Matthew; Millet, Emil; Fredberg, Jeffrey J.

    2006-01-01

    Here we report the rheological properties of cultured hsFLNa (filamin-A)-expressing (FIL+) and hsFLNa-deficient (FIL−) melanoma cells. Using magnetic twisting cytometry over a wide range of probing frequencies, and targeting either cortical or deeper cytoskeletal structures, we found that differences in stiffness of FIL+ versus FIL− cells were remarkably small. When probed through deep cytoskeletal structures, FIL+ cells were, at most, 30% stiffer than FIL− cells, whereas when probed through more peripheral cytoskeletal structures FIL− cells were not different except at very high frequencies. The loss tangent, expressed as an effective cytoskeletal temperature, was systematically greater in FIL− than FIL+ cells, but these differences were small and showed that the FIL+ cells were only slightly closer to a solidlike state. To quantify cytoskeletal remodeling, we measured spontaneous motions of beads bound to cortical cytoskeletal structures and found no difference in FIL+ versus FIL− cells. Although mechanical differences between FIL+ and FIL− cells were evident both in cortical and deeper structures, these differences were far smaller than expected based on measurements of the rheology of purified actin-filamin solutions. These findings do not rule out an important contribution of filamin to the mechanical properties of the cortical cytoskeleton, but suggest that effects of filamin in the cortex are not exerted on the length scale of the probe used here. These findings would appear to rule out any important contribution of filamin to the bulk mechanical properties of the cytoplasm, however. Although filamin is present in the cytoplasm, it may be inactive, its mechanical effects may be small compared with other crosslinkers, or mechanical properties of the matrix may be dominated by an overriding role of cytoskeletal prestress. PMID:16387775

  8. Cycle reset in a melanoma cell line caused by cooling.

    PubMed

    Dewey, D L

    1987-11-01

    When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8 degrees C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8 degrees C and independent of the time when the cold pulse was administered. When the cells were cooled to 25 degrees C the delay was longer than the time for which the cells had been kept at 25 degrees C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25 degrees C but at 8 degrees C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37 degrees C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities. PMID:3502929

  9. The photodynamic therapy effect of aluminum and zinc tetrasulfophthalocyanines on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Maduray, K.; Karsten, A.; Odhav, B.; Nyokong, T.

    2010-11-01

    Photodynamic therapy (PDT) represents a novel treatment that uses a photosensitizer (PS), light source (laser) of an appropriate wavelength and oxygen to induce cell death in cancer cells. The aim of this study was to investigate the photodynamic effects of aluminum tetrasulfophthalocyanines (AlTSPc) and zinc (ZnTSPc) tetrasulfophthalocyanines activated with a 672nm wavelength laser on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Each cell line was photosensitized with either AlTSPc or ZnTSPc for 2 h before using a diode laser with a wavelength of 672nm to deliver a light dose of 4.5 J/cm2 to the cells. The cell viability of melanoma cells were decreased to approximately 50% with concentrations of 40 μg/ml for AlTSPc and 50 μg/ml for ZnTSPc. These PS concentrations caused a slight decrease in the cell viability of fibroblast and keratinocyte cells. Both photosensitizers in the presence of high concentrations (60 μg/ml-100 μg/ml) showed cytotoxicity effects on melanoma cells in its inactive state. This was not observed in fibroblast and keratinocyte cells. Cell death in PDT treated melanoma cells was induced by apoptosis. Therefore, AlTSPc and ZnTSPc exhibit the potential to be used as a PS in PDT for the treatment of melanoma cancer.

  10. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  11. Expression of O6-methylguanine-DNA methyltransferase causes lomustine resistance in canine lymphoma cells

    PubMed Central

    Kambayashi, Satoshi; Minami, Kouji; Ogawa, Yuka; Hamaji, Takehiro; Hwang, Chung Chew; Igase, Masaya; Hiraoka, Hiroko; Miyama, Takako Shimokawa; Noguchi, Shunsuke; Baba, Kenji; Mizuno, Takuya; Okuda, Masaru

    2015-01-01

    The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) causes resistance to nitrosoureas in various human cancers. In this study, we analyzed the correlation between canine lymphomas and MGMT in vitro. Two of five canine lymphoma cell lines required higher concentrations of lomustine to inhibit cell growth by 50%, but their sensitivity to the drug increased when they were cultured with an MGMT inhibitor. Fluorometric oligonucleotide assay and real-time polymerase chain reaction of these cell lines revealed MGMT activity and high MGMT mRNA expression, respectively. We analyzed the methylation status of the CpG islands of the canine MGMT gene by the bisulfite-sequencing method. Unlike human cells, the canine lymphoma cell lines did not show significant correlation between methylation status and MGMT suppression levels. Our results suggest that in canine lymphoma MGMT activity may influence sensitivity to nitrosoureas; thus, inhibition of MGMT activity would benefit nitrosourea-resistant patients. Additional studies are necessary to elucidate the mechanism of regulation of MGMT expression. PMID:26130852

  12. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation

    PubMed Central

    Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.

    2015-01-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  13. Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation.

    PubMed

    Vo, Brenda N; Drovandi, Christopher C; Pettitt, Anthony N; Pettet, Graeme J

    2015-12-01

    In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2-12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226-268 µm2h-1, 311-351 µm2h-1 and 0.23-0.39, 0.32-0.61 for the experimental periods of 0-24 h and 24-48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072

  14. Plasma cells in primary melanoma. Prognostic significance and possible role of IgA.

    PubMed

    Bosisio, Francesca M; Wilmott, James S; Volders, Nathalie; Mercier, Marjorie; Wouters, Jasper; Stas, Marguerite; Blokx, Willeke Am; Massi, Daniela; Thompson, John F; Scolyer, Richard A; van Baren, Nicolas; van den Oord, Joost J

    2016-04-01

    Melanoma is not only one of the most immunogenic cancers but also one of the most effective cancers at subverting host immunity. The role of T lymphocytes in tumor immunity has been extensively studied in melanoma, whereas less is known about the importance of B lymphocytes. The effects of plasma cells (PCs), in particular, are still obscure. The aim of this study was to characterize pathological features and clinical outcome of primary cutaneous melanomas associated with PCs. Moreover, we investigated the origins of the melanoma-associated PCs. Finally, we studied the outcome of patients with primary melanomas with PCs. We reviewed 710 melanomas to correlate the presence of PCs with histological prognostic markers. Immunohistochemistry for CD138 and heavy and light chains was performed in primary melanomas (PM) and in loco-regional lymph nodes (LN), both metastatic and not metastatic. In three PM and nine LN with frozen material, VDJ-rearrangement was analyzed by Gene Scan Analysis. Survival analysis was performed on a group of 85 primary melanomas >2 mm in thickness. Forty-one cases (3.7%) showed clusters/sheets of PCs. PC-rich melanomas occurred at an older age and were thicker, more often ulcerated and more mitotically active (P<0.05). PCs were polyclonal and often expressed IgA in addition to IgG. In LN, clusters/sheets of IgA+ PCs were found both in the sinuses and subcapsular areas. Analysis of VDJ-rearrangements showed the IgA to be oligoclonal. Melanomas with clusters/sheets of PCs had a significantly worse survival compared with melanomas without PCs while, interestingly, melanomas with sparse PCs were associated with a better clinical outcome (P=0.002). In conclusion, melanomas with sheets/clusters of PCs are associated with worse prognosis. IgG and IgA are the isotypes predominantly produced by these PCs. IgA oligoclonality suggests an antigen-driven response that facilitates melanoma progression by a hitherto unknown mechanism. PMID:26867783

  15. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. PMID:27079618

  16. Fine mapping of canine parvovirus B cell epitopes.

    PubMed

    López de Turiso, J A; Cortés, E; Ranz, A; García, J; Sanz, A; Vela, C; Casal, J I

    1991-10-01

    In this report we describe the topological mapping of neutralizing domains of canine parvovirus (CPV). We obtained 11 CPV-specific monoclonal antibodies (MAbs), six of which are neutralizing. The reactivities were as determined by ELISA and Western blot (immunoblot) analysis. VP2, the most abundant protein of the CPV capsid, seemed to contain all the neutralization sites. Also, an almost full-length genomic clone of CPV was constructed in the bacterial plasmid pUC18 to enable expression of CPV proteins. All the neutralizing MAbs recognized recombinant VP2 when it was expressed as a free protein in Escherichia coli but not when expressed as a fusion protein with glutathione-S-transferase. When two large fragments containing about 85% and 67% of the C terminus of VP2 were expressed, no neutralization sites were detected. When fusion proteins containing the N terminus were expressed, two linear determinants were mapped, one between residues 1 to 10 of VP2, and the other between amino acids 11 and 23. The peptide 11 GQPAVRNERATGS 23, recognized by MAb 3C9, was synthesized chemically and checked for immunogenicity, not being able to induce neutralizing activity. Although the antibody response in rabbits to all the fusion proteins was uniformly high, the anti-CPV response was very variable. Protein from pCPVEx11, which contains a T cell epitope (peptide PKIFINLAKKKKAG) present in the VP1-specific region as well as the B cell epitopes, seemed to be the most effective in inducing virus neutralization. PMID:1919526

  17. Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    PubMed Central

    Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.

    2009-01-01

    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816

  18. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome.

    PubMed

    Garg, Kanika; Maurer, Margarita; Griss, Johannes; Brüggen, Marie-Charlotte; Wolf, Ingrid H; Wagner, Christine; Willi, Niels; Mertz, Kirsten D; Wagner, Stephan N

    2016-08-01

    B cells often infiltrate the microenvironment of human tumors. B cells can both positively and negatively regulate antitumor immune responses. In several human cancers, higher numbers of CD20(+) TAB are associated with a favorable prognosis, whereas in human primary melanomas, this association is contentious. In this study, we determined the association of TAB numbers in cutaneous primary melanoma tissue samples and patients' overall survival. The CD20 immunohistochemistry on archival nonmetastasized and metastasized cutaneous primary melanoma tissues from 2 independent patient cohorts was performed. One cohort was used in class comparison for metastasis, the most important prognostic factor for overall survival, and the other cohort for a subsequent survival analysis. Survival association was further validated with RNA data from a third independent cohort. Whole tissue sections were read automatically via quantitative digital imaging and analysis. Survival data were analyzed by Cox proportional hazard modeling. We discovered that cutaneous primary melanomas without metastasis contain significantly more TAB than primary melanomas that had metastasized. At time of first diagnosis, a higher number of TAB is associated with a significantly better overall survival in patients with cutaneous primary melanomas of >1 mm Breslow depth. Also, higher CD20/CD19 tumor mRNA levels are correlated with a significantly better overall survival. Thus, our data support TAB numbers as a prognostic biomarker in cutaneous primary melanoma patients with a tumor of >1 mm Breslow depth. For a survey in larger studies, whole tissue section analysis seems to be key to accurate assessment of TAB numbers. PMID:27107457

  19. In vivo transfection of melanoma cells by lithotripter shock waves.

    PubMed

    Bao, S; Thrall, B D; Gies, R A; Miller, D L

    1998-01-15

    The potential for gene transfection during shock wave tumor therapy was evaluated by searching for shock wave-induced DNA transfer in mouse tumor cells. B16 mouse melanoma cells were cultured by standard methods and implanted s.c. in female C57BL/6 mice 10-14 days before treatment. A luciferase reporter vector was used as the DNA plasmid for intratumoral injection at 0.2 mg/ml tumor. Air at 10% of tumor volume was injected after the DNA in some tumors to enhance acoustic cavitation activity. The shock wave generation system was similar to a Dornier HM-3 lithotripter with pressure amplitudes of 24.4 MPa peak positive and 5.2 MPa peak negative. Luciferase production in isolated tumor cells was measured with a luminometer 1 day after treatment to assess gene transfer and expression. Exposure to 800 shock waves, followed by immediate isolation and culture of tumor cells for 1 day, yielded 1.1 (0.43 SE) pg/10(6) cells for plasmid injection only and 7.5 (2.5 SE) pg/10(6) cells for plasmid plus air injection. Significantly increased luciferase production, relative to shams, occurred for 200-, 400-, 800-, and 1200-shock wave treatments with plasmid and air injection. Exposure with the isolation of tumor cells delayed for a day to allow gene expression within the growing tumors gave increased luciferase production for 100- and 400-shock wave exposures without and with air injection. Gene transfer therefore can be induced during lithotripter shock wave treatment in vivo, particularly with enhanced acoustic cavitation, which supports the concept that gene and shock wave therapy might be advantageously merged. PMID:9443395

  20. p16 Immunostaining of Canine Squamous Cell Carcinomas Is Not Associated with Papillomaviral DNA

    PubMed Central

    Sabattini, Silvia; Savini, Federica; Gallina, Laura; Scagliarini, Alessandra; Bassi, Patrizia

    2016-01-01

    While papillomavirus (PVs) are an established cause of human cancer, few reports have supported a relationship between PV and canine squamous cell carcinomas (SCCs). Human oncogenic PVs lead to an increased expression of the p16 tumor suppressor protein, and the latter can be demonstrated immunohistochemically to support a likely causal relationship between tumor and PV infection. In the present study, archive samples of canine SCC from different anatomical locations were tested by polymerase chain reaction for the presence of PV DNA and by p16 immunohistochemistry. The aims were to investigate the relationship between p16 expression and presence of PV DNA, in order to assess the utility of p16 overexpression as a biomarker of PV infection in canine SCC. A total of 52 SCCs were included. Nine cases (17.3%) showed moderate p16 immunoreactivity, with no association with tumor degree of differentiation, histotype or mitotic activity. The canPVf/FAP64 primers amplified Canis familiaris PV-1 DNA from 3 out of 52 tumors (5.8%), one cutaneous, one oral and one tonsillar SCC. There was no association between PV presence and p16 immunostaining. These results do not support a significant role of PVs in the development of canine SCCs. Additionally, PV infection was apparently not the cause of the p16 immunostaining observed in a subset of canine SCCs. A better awareness of p16 level of expression and cellular function in canine cancer may help to define its diagnostic and prognostic role. PMID:27441555

  1. Oncogenic BRAFV600E inhibits BIM expression to promote melanoma cell survival

    PubMed Central

    Cartlidge, Robert A.; Thomas, G. R.; Cagnol, Sebastien; Jong, Kimberly A.; Molton, Sarah A.; Finch, Andrew J.; McMahon, Martin

    2016-01-01

    Summary Somatic activating mutations of BRAF are the earliest and most common genetic abnormality detected in the genesis of human melanoma. However, the mechanism(s) by which activated BRAF promotes melanoma cell cycle progression and/or survival remain unclear. Here we demonstrate that expression of BIM, a pro-apoptotic member of the BCL-2 family, is inhibited by BRAF → MEK → ERK signaling in mouse and human melanocytes and in human melanoma cells. Trophic factor deprivation of melanocytes leads to elevated BIM expression. However, re-addition of trophic factors or activation of a conditional form of BRAFV600E leads to rapid inhibition of BIM expression. In both cases, inhibition of BIM expression was dependent on the activity of MEK1/2 and the proteasome. Consistent with these observations, pharmacological inhibition of BRAFV600E or MEK1/2 in human melanoma cells (using PLX4720 and CI-1040 respectively) led to a striking elevation of BIM expression. Re-activation of BRAF → MEK → ERK signaling led to phosphorylation of BIM-EL on serine 69 and its subsequent degradation. Interestingly, endogenous expression of BIM in melanoma cells was insufficient to induce apoptosis unless combined with serum deprivation. Under these circumstances, inhibition of BIM expression by RNA interference provided partial protection from apoptosis. These data suggest that regulation of BIM expression by BRAF → MEK → ERK signaling is one mechanism by which oncogenic BRAFV600E can influence the aberrant physiology of melanoma cells. PMID:18715233

  2. Activation of Wnt/β-Catenin Signaling Increases Apoptosis in Melanoma Cells Treated with Trail

    PubMed Central

    Zimmerman, Zachary F.; Kulikauskas, Rima M.; Bomsztyk, Karol; Moon, Randall T.; Chien, Andy J.

    2013-01-01

    While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation. PMID:23869245

  3. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells

    PubMed Central

    Drummond, Catherine J.; McCarthy, Anna R.; Higgins, Maureen; Campbell, Johanna; Brodin, Bertha; Arnér, Elias S.J.; Laín, Sonia

    2015-01-01

    Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways. Thus, we screened for compounds that can activate p53 in melanoma cells. Here we describe effects of the small molecule MJ25 (2-{[2-(1,3-benzothiazol-2-ylsulfonyl)ethyl]thio}-1,3-benzoxazole), which increased the level of p53-dependent transactivation both as a single agent and in combination with nutlin-3. Furthermore, MJ25 showed potent cytotoxicity towards melanoma cell lines, whilst having weaker effects against human normal cells. MJ25 was also identified in an independent screen as an inhibitor of thioredoxin reductase 1 (TrxR1), an important selenoenzyme in the control of oxidative stress and redox regulation. The well-characterized TrxR inhibitor auranofin, which is FDA-approved and currently in clinical trials against leukemia and a number of solid cancers, displayed effects comparable with MJ25 on cells and led to eradication of cultured melanoma cells at low micromolar concentrations. In conclusion, auranofin, MJ25 or other inhibitors of TrxR1 should be evaluated as candidate compounds or leads for targeted therapy of malignant melanoma. PMID:26029997

  4. Radiation survival of murine and human melanoma cells utilizing two assay systems: monolayer and soft agar.

    PubMed Central

    Yohem, K. H.; Slymen, D. J.; Bregman, M. D.; Meyskens, F. L.

    1988-01-01

    The radiation response of murine and human melanoma cells assayed in bilayer soft agar and monolayer was examined. Cells from the murine melanoma Cloudman S91 CCL 53.1 cell line and three human melanoma cell strains (C8146C, C8161, and R83-4) developed in our laboratory were irradiated by single dose X-rays and plated either in agar or on plastic. D0 values were the same within 95% confidence intervals for cells from the human melanoma cell strains C8146C, C8161, and R83-4 but were dissimilar for the murine cell line CCL 53.1 Dq values were different for all cells studied. The shape of the survival curve for all four melanomas was not identical for cells assayed in soft agar versus cells grown on plastic. This would indicate that apparent radiosensitivity was influenced by the method of assay although there were no apparent consistent differences between the curves generated by monolayer or bilayer soft agar assays. PMID:3348949

  5. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    PubMed Central

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  6. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation

    PubMed Central

    Chillemi, Antonella; Quarona, Valeria; Zaccarello, Gianluca; Carrega, Paolo; Ferlazzo, Guido; Mingari, Maria Cristina; Moretta, Lorenzo

    2015-01-01

    Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD+. Melanoma cells inhibited T cell proliferation through an ADO-dependent mechanism, since such inhibition was reverted using CD38/CD73 specific inhibitors. Melanoma cells abolished the function of effector memory, central memory and reduced naïve CD4+ T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4+ T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8+ T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role. PMID:26329660

  7. Enhancement of melphalan activity by buthionine sulfoximine and electroporation in melanoma cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; De Mattei, Monica; De Terlizzi, Francesca; Rossi, Carlo R; Campana, Luca G

    2015-03-01

    Melphalan represents the reference drug for locoregional chemotherapy of melanoma; nevertheless, treatment failure may occur because of resistance to chemotherapy. Refractory melanoma cells show either an increased capability of drug inactivation, which is known to be associated with elevated intracellular levels of glutathione (GSH), or a decreased melphalan uptake. The aim of this study was to explore a biochemical and a biophysical strategy, and their combination, to overcome melphalan resistance in melanoma cells. The biochemical strategy was based on the treatment of melanoma cells with DL-buthionine (S,R)-sulfoximine (BSO) to deplete the GSH levels, thus reducing melphalan inactivation. In the biophysical strategy, cell membrane electroporation was used to increase melphalan uptake. The SK-MEL 28-resistant human melanoma cell line was pretreated with 50 μmol/l BSO for 24 h and then treated with increasing melphalan doses, with or without electroporation. Spectrophotometric quantification of cell viability was used to determine melphalan cytotoxicity. Intracellular total GSH was measured using a kinetic enzymatic assay. BSO induced 3.50-fold GSH depletion in untreated cells and a similar reduction was also maintained in melphalan-treated cells. BSO pretreatment produced a 2.46-fold increase in melphalan cytotoxicity. Electroporation increased melphalan cytotoxicity 1.42-fold. The combination of both BSO pretreatment with melphalan plus electroporation led to a 4.40-fold increase in melphalan cytotoxicity compared with melphalan alone. Pretreatment with BSO and cell membrane permeabilization by electroporation enhanced the cytotoxic activity of melphalan in melanoma cells. Their rational combination deserves further investigation and may improve the efficacy of locoregional chemotherapy of melanoma. PMID:25514113

  8. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  9. Invasion of melanoma cells by Mycoplasma hyorhinis: enhancement by protease treatment.

    PubMed

    Kornspan, Jonathan D; Tarshis, Mark; Rottem, Shlomo

    2010-02-01

    Mycoplasma hyorhinis (strain MCLD) was recently isolated from a melanoma cell culture. Growth of MCLD was considerably improved by 24 serial passages in a modified Hayflick's mycoplasma medium. Transmission electron microscopy showed that MCLD exhibits a polymorphic appearance, with ovoid or elongated cells frequently harboring an electron-dense core at one of the poles. Adherence of M. hyorhinis to melanoma cells followed saturation kinetics. Furthermore, although M. hyorhinis has been considered to remain attached to the surface of the host cells, we show for the first time, qualitatively by confocal laser scanning microscopy and quantitatively by a gentamicin resistance assay, that MCLD is able to invade melanoma cells. The ingested mycoplasmas were randomly distributed in the cytoplasm, tending to concentrate near the plasma membrane. Both adherence to and invasion of melanoma cells by M. hyorhinis strain MCLD were dramatically enhanced by mild proteolytic digestion with proteinase K (2.5 microg/mg cell protein for 2.5 min at 37 degrees C) that affected the surface-exposed proteins of this organism, mainly the major 47-kDa lipoprotein. We suggest that the intracellular location of M. hyorhinis strain MCLD is a privileged niche, which may explain the survival of M. hyorhinis in tissue cultures. The enhanced binding to and invasion of melanoma cells by protease treatment may be due to either the activation or the enhanced exposure of an adhesin(s) on the mycoplasmal cell surface. PMID:19917715

  10. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

    PubMed Central

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-01-01

    SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523

  11. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  12. Oncolytic reovirus synergizes with chemotherapeutic agents to promote cell death in canine mammary gland tumor.

    PubMed

    Igase, Masaya; Hwang, Chung Chew; Kambayashi, Satoshi; Kubo, Masato; Coffey, Matt; Miyama, Takako Shimokawa; Baba, Kenji; Okuda, Masaru; Noguchi, Shunsuke; Mizuno, Takuya

    2016-01-01

    The oncolytic effects of reovirus in various cancers have been proven in many clinical trials in human medicine. Oncolytic virotherapy using reovirus for canine cancers is being developed in our laboratory. The objective of this study was to examine the synergistic anti-cancer effects of a combination of reovirus and low doses of various chemotherapeutic agents on mammary gland tumors (MGTs) in dogs. The first part of this study demonstrated the efficacy of reovirus in canine MGTs in vitro and in vivo. Reovirus alone exerted significant cell death by means of caspase-dependent apoptosis in canine MGT cell lines. A single injection of reovirus impeded growth of canine MGT tumors in xenografted mice, but was insufficient to induce complete tumor regression. The second part of this study highlighted the anti-tumor effects of reovirus in combination with low doses of paclitaxel, carboplatin, gemcitabine, or toceranib. Enhanced synergistic activity was observed in the MGT cell line treated concomitantly with reovirus and in all the chemotherapeutic agents except toceranib. In addition, combining reovirus with paclitaxel or gemcitabine at half dosage of half maximal inhibitory concentration (IC50) enhanced cytotoxicity by activating caspase 3. Our data suggest that the combination of reovirus and low dose chemotherapeutic agents provides an attractive option in canine cancer therapy. PMID:26733729

  13. Guanosine potentiates the antiproliferative effect of cytosine-beta-D-arabinofuranoside in melanoma cell lines.

    PubMed

    Sidi, Y; Panet, C; Cyjon, A; Fenig, E; Beery, E; Nordenberg, J

    1993-01-01

    Guanosine is shown to potentiate markedly the antiproliferative effect of cytosine-beta-D-arabinoside (ara-C) on B16 F10 mouse and SKMEL-28 human melanoma cell lines. Several metabolic consequences of the synergistic interaction between ara-C and guanosine on cell growth were determined in B16 F10 mouse melanoma cells. Treatment of the cells with guanosine for 24 hr resulted in an increase in the percentage of cells in the S phase of the cell cycle, a threefold increase in intracellular GTP concentration, and an increase in the incorporation of ara-C into acid-insoluble material and phosphorylated metabolites. These findings suggest that guanosine potentiates the growth-inhibitory effect of ara-C in B16 F10 melanoma cells by increasing the intracellular concentration of its active metabolites. PMID:8402221

  14. Enhanced drug delivery to melanoma cells using PMPC-PDPA polymersomes.

    PubMed

    Pegoraro, Carla; Cecchin, Denis; Gracia, Lorena Simon; Warren, Nicholas; Madsen, Jeppe; Armes, Steven P; Lewis, Andrew; Macneil, Sheila; Battaglia, Giuseppe

    2013-07-01

    We present the efficient and stable encapsulation of doxorubicin within pH sensitive polymeric vesicles (polymersomes) for intracellular and nuclear delivery to melanoma cells. We demonstrate that PMPC25-PDPA70 polymersomes can encapsulate doxorubicin for long periods of time without significant drug release. We demonstrate that empty polymersomes are non-toxic and that they are quickly and more efficiently internalised by melanoma cells compared to healthy cells. Encapsulated doxorubicin has a strong cytotoxic effect on both healthy and cancerous cells, but when encapsulated it had a preferential effect on melanoma cells indicating that this formulation can be used to achieve an enhanced drug delivery to cancerous cells rather than to the healthy surrounding cells. PMID:23402813

  15. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials.

    PubMed

    Singh, R K; Gutman, M; Radinsky, R

    1995-01-01

    The purpose of this study was to determine the mRNA expression level of multiple cytokine and growth factor genes in human malignant melanoma. Melanoma cells were isolated from several surgical specimens, adapted to growth in culture, characterized for their ability to produce experimental metastases in nude mice, and assessed for cytokine and growth factor steady-state gene expression. Highly metastatic in vivo- and in vitro-derived variants isolated from a single melanoma, A375, were also analyzed. Northern blot analyses revealed that all melanomas analyzed constitutively expressed steady-state mRNA transcripts for the growth and angiogenic factors, basic fibroblast growth factor (bFGF), and transforming growth factor alpha (TGF-alpha), which correlated with metastatic propensity. Only one highly metastatic melanoma, TXM-1, originally isolated from a lymph node metastasis, expressed mRNA transcripts specific for monocyte chemotactic and activating factor (MCAF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Similarly, of the nine melanomas examined, only TXM-1 expressed interleukin (IL)-1 alpha, IL-1 beta, and IL-6, important immunomodulatory cytokines. These data demonstrate the differential and heterogeneous expression of cytokine and growth factor genes in human malignant melanoma. PMID:7648437

  16. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  17. Characterization of hormone-sensitive Madin-Darby canine kidney cells

    SciTech Connect

    Lin, M.C.; Beckner, S.K.; Darfler, F.J.

    1985-01-01

    The paper describes the optimal conditions for maintaining hormone responsiveness, measurement of intracellular AMP, and the characteristics of several types of hormone sensitivity in Madin-Darby canine kidney cells. Cyclic AMP is measured by radioimmunoassay with (/sup 175/I) as tracer. The responsiveness of the kidney cells to glucagon, vasopressin, isoproterenol, and prostaglandin in presented.

  18. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells

    PubMed Central

    Pisano, Marina; Pagnan, Gabriella; Loi, Monica; Mura, Maria Elena; Tilocca, Maria Giovanna; Palmieri, Giuseppe; Fabbri, Davide; Dettori, Maria Antonietta; Delogu, Giovanna; Ponzoni, Mirco; Rozzo, Carla

    2007-01-01

    Background Malignant melanoma is one of the most aggressive skin cancer and chemotherapeutic agents currently in use are still unsatisfactory. Prevention and early diagnosis are the only effective tools against this tumour whose incidence and mortality rates are highly increased during the last decades in fair skin populations. Therefore the search for novel therapeutic approaches is warranted. Aim of this work was to identify and test new compounds with antiproliferative and cytotoxic activity on melanoma cells. We tested eugenol together with six natural and synthetic eugenol-related compounds for their capability to inhibit cell growth on primary melanoma cell lines established from patients' tissue samples. Results Eugenol and isoeugenol monomers and their respective O-methylated forms did not show to inhibit melanoma cells proliferation. Conversely, the dimeric forms (biphenyls) showed some antiproliferative activity which was mild for dehydrodieugenol, higher for its O,O'-methylated form (O,O'-dimethyl-dehydrodieugenol), and markedly pronounced for the racemic mixture of the brominated biphenyl (6,6'-dibromo-dehydrodieugenol) (S7), being its enantiomeric form (S) the most effective compared to the other compounds. Such activity resulted to be selective against tumour cells, without affecting cultured normal human skin fibroblasts. Dose and time dependence curves have been obtained for the enantiomeric form S7-(S). Then IC50 and minimal effective doses and times have been established for the melanoma cell lines tested. TUNEL and phosphatidylserine exposure assays demonstrated the occurrence of apoptotic events associated with the antiproliferative activity of S7-(S). Cytotoxic activity and apoptosis induced by treating melanoma cells with eugenol-related biphenyls was partially dependent by caspase activation. Conclusion Our findings demonstrate that the eugenol related biphenyl (S)-6,6'-dibromo-dehydrodieugenol elicits specific antiproliferative activity on

  19. Balloon cell melanoma: a case report with polarized and non-polarized dermatoscopy and dermatopathology.

    PubMed

    Maher, James; Cameron, Alan; Wallace, Sharon; Acosta-Rojas, Rafael; Weedon, David; Rosendahl, Cliff

    2014-01-01

    Balloon cell melanoma is a rare melanoma subtype, with only one previous case with dermatoscopy published. It is often non-pigmented, leading to diagnostic difficulty, and there is a tendency for lesions to be thick at diagnosis. We report a case of balloon cell melanoma on the forearm of a 61-year-old man with both polarized and non-polarized dermatoscopy and dermatopathology. It presented as a firm pale nodule with focal eccentric pigmentation. The clinical images evoke a differential diagnosis of dermatofibroma, dermal nevus, Spitz nevus and basal cell carcinoma as well as melanoma. This melanoma was partially pigmented due to a small, pigmented superficial spreading component on the edge of the non-pigmented balloon cell nodule, prompting further evaluation. In retrospect there was the clue to malignancy of polarizing-specific white lines (chrysalis structures) and polymorphous vessels, including a pattern of dot vessels. The reticular lines exclude basal cell carcinoma, polarizing-specific white lines are inconsistent with the diagnosis of dermal nevus and their eccentric location is inconsistent with both Spitz nevus and dermatofibroma. Excision biopsy was performed, revealing a superficial spreading melanoma with two distinct invasive components, one of atypical non-mature epithelioid cells and the other an amelanotic nodular component, comprising more than 50% of the lesion, characterized by markedly distended epithelioid melanocytes showing pseudo-xanthomatous cytoplasmic balloon cell morphology. A diagnosis of balloon cell melanoma, Breslow thickness 1.9 mm, mitotic rate 3 per square millimeter was rendered. Wide local excision was performed, as was sentinel lymph node biopsy, which was negative. PMID:24520518

  20. Biosynthesis of the canine zona pellucida requires the integrated participation of both oocytes and granulosa cells.

    PubMed

    Blackmore, Daniel G; Baillie, Lucan R; Holt, Janet E; Dierkx, Lynda; Aitken, R John; McLaughlin, Eileen A

    2004-08-01

    In the dog, attempts to localize the expression of zona pellucida (ZP) proteins during folliculogenesis have failed to demonstrate conclusively whether any or all of the zona proteins are synthesized in the oocyte or the granulosa cells. Probing of paraformaldehyde-fixed prepubertal canine ovarian tissue sections with a panel of fluorescently conjugated lectins localized the expression of glycoproteins during folliculogenesis. We confirm that six lectins (PSA, s-WGA, ECL, GSL-II, LEL, and STL) consistently labeled the ZP and adjacent granulosa cells of the developing follicle and that canine ZP expresses beta-gal(1,4)glcNAc, beta-gal(1,3)galNac, alpha-mannose, and terminal sialic acid residues in a developmentally specific manner. Riboprobes for canine ZPA and ZPC genes were produced and used for in situ hybridization studies of mRNA expression in canine folliculogenesis. In addition, we isolated a partial cDNA transcript from total ovarian RNA for the canine ZPB gene having a high degree of sequence identity with the felid and porcine ZPB homologues. Subsequently, the ZPA gene transcripts were localized to the cytoplasm of oocytes in primordial, primary, and early secondary follicles. We then localized expression of ZPB and ZPC gene transcripts to the granulosa cells of growing follicles, but not in squamous granulosa cells of primordial follicles or oocytes. These observations indicate that in the juvenile canine ovary, the oocyte is responsible for synthesis of the ZPA protein and directing synthesis of the ZPB and ZPC proteins by the granulosa cells and that ZP gene transcription occurs in a sequential manner during folliculogenesis. PMID:15115719

  1. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

    PubMed Central

    Anastas, Jamie N.; Kulikauskas, Rima M.; Tamir, Tigist; Rizos, Helen; Long, Georgina V.; von Euw, Erika M.; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A.; Lucero, Olivia M.; Chien, Andy J.; Moon, Randall T.

    2014-01-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance. PMID:24865425

  2. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse

    PubMed Central

    Khazen, Roxana; Müller, Sabina; Gaudenzio, Nicolas; Espinosa, Eric; Puissegur, Marie-Pierre; Valitutti, Salvatore

    2016-01-01

    Human melanoma cells express various tumour antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients. PMID:26940455

  3. Cytotoxic action of Brazilian propolis in vitro on canine osteosarcoma cells.

    PubMed

    Cinegaglia, N C; Bersano, P R O; Búfalo, M C; Sforcin, J M

    2013-09-01

    Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23074147

  4. Tumor Cell Adhesion As a Risk Factor for Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma

    PubMed Central

    Meves, Alexander; Nikolova, Ekaterina; Heim, Joel B.; Squirewell, Edwin J.; Cappel, Mark A.; Pittelkow, Mark R.; Otley, Clark C.; Behrendt, Nille; Saunte, Ditte M.; Lock-Andersen, Jorgen; Schenck, Louis A.; Weaver, Amy L.; Suman, Vera J.

    2015-01-01

    Purpose Less than 20% of patients with melanoma who undergo sentinel lymph node (SLN) biopsy based on American Society of Clinical Oncology/Society of Surgical Oncology recommendations are SLN positive. We present a multi-institutional study to discover new molecular risk factors associated with SLN positivity in thin and intermediate-thickness melanoma. Patients and Methods Gene clusters with functional roles in melanoma metastasis were discovered by next-generation sequencing and validated by quantitative polymerase chain reaction using a discovery set of 73 benign nevi, 76 primary cutaneous melanoma, and 11 in-transit melanoma metastases. We then used polymerase chain reaction to quantify gene expression in a model development cohort of 360 consecutive thin and intermediate-thickness melanomas and a validation cohort of 146 melanomas. Outcome of interest was SLN biopsy metastasis within 90 days of melanoma diagnosis. Logic and logistic regression analyses were used to develop a model for the likelihood of SLN metastasis from molecular, clinical, and histologic variables. Results ITGB3, LAMB1, PLAT, and TP53 expression were associated with SLN metastasis. The predictive ability of a model that included these molecular variables in combination with clinicopathologic variables (patient age, Breslow depth, and tumor ulceration) was significantly greater than a model that only considered clinicopathologic variables and also performed well in the validation cohort (area under the curve, 0.93; 95% CI, 0.87 to 0.97; false-positive and false-negative rates of 22% and 0%, respectively, using a 10% cutoff for predicted SLN metastasis risk). Conclusion The addition of cell adhesion–linked gene expression variables to clinicopathologic variables improves the identification of patients with SLN metastases within 90 days of melanoma diagnosis. PMID:26150443

  5. Anti-tumour activity of oncolytic Western Reserve vaccinia viruses in canine tumour cell lines, xenografts, and fresh tumour biopsies.

    PubMed

    Autio, K; Knuuttila, A; Kipar, A; Ahonen, M; Parviainen, S; Diaconu, I; Kanerva, A; Hakonen, T; Vähä-Koskela, M; Hemminki, A

    2014-10-10

    Cancer is one of the most common reasons for death in dogs. One promising approach is oncolytic virotherapy. We assessed the oncolytic effect of genetically modified vaccinia viruses in canine cancer cells, in freshly excised tumour biopsies, and in mice harbouring canine tumour xenografts. Tumour transduction efficacy was assessed using virus expressing luciferase or fluorescent marker genes and oncolysis was quantified by a colorimetric cell viability assay. Oncolytic efficacy in vivo was evaluated in a nude mouse xenograft model. Vaccinia virus was shown to infect most tested canine cancer cell lines and primary surgical tumour tissues. Virus infection significantly reduced tumour growth in the xenograft model. Oncolytic vaccinia virus has antitumour effects against canine cancer cells and experimental tumours and is able to replicate in freshly excised patient tumour tissue. Our results suggest that oncolytic vaccinia virus may offer an effective treatment option for otherwise incurable canine tumours. PMID:25302859

  6. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells

    PubMed Central

    Koch, Andreas; Lang, Sven Arke; Wild, Peter Johannes; Gantner, Susanne; Mahli, Abdo; Spanier, Gerrit; Berneburg, Mark; Müller, Martina; Bosserhoff, Anja Katrin; Hellerbrand, Claus

    2015-01-01

    The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor. PMID:26293674

  7. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability.

    PubMed

    Junco, Jacob J; Mancha-Ramirez, Anna; Malik, Gunjan; Wei, Sung-Jen; Kim, Dae Joon; Liang, Huiyun; Slaga, Thomas J

    2015-04-01

    Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma. PMID:25647735

  8. The Disintegrin-like and Cysteine-rich domains of ADAM-9 Mediate Interactions between Melanoma Cells and Fibroblasts*

    PubMed Central

    Zigrino, Paola; Nischt, Roswitha; Mauch, Cornelia

    2011-01-01

    A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn2+-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells. PMID:21135106

  9. Elastin fragments induce IL-1beta upregulation via NF-kappaB pathway in melanoma cells.

    PubMed

    Debret, Romain; Le Naour, Richard R; Sallenave, Jean-Michel; Deshorgue, Aurelie; Hornebeck, William G; Guenounou, Moncef; Bernard, Philippe; Antonicelli, Frank D

    2006-08-01

    In a previous work, we reported the influence of elastin fragments (EFs) on matrix metalloproteinases-2 and -14 expression and activation in melanoma cells in vitro. We hypothesized that EFs might also modulate expression of other mediators involved during melanoma progression. Therefore we investigated the contribution of EFs on IL-1beta expression, a cytokine playing a key role in melanoma cells activation. Our results evidenced that high tumorigenic melanoma cells (M3Da cells) treated with EFs led to IL-1beta mRNA and protein upregulation. The effects of EFs on M3Da cells were found to be mediated by receptor (spliced galactosidase) occupancy, as being suppressed by lactose and reproduced by cell stimulation with the VGVAPG peptide. Binding of EFs to their receptor induced a rapid activation of extracellular signal-regulated kinase 1/2; and p38 mitogen-activated protein kinase pathways. However, these pathways were not associated with IL-1beta mRNA upregulation by EFs. Concomitantly, we demonstrated that EFs stimulation induced NF-kappaB nuclear translocation and DNA binding on IL-1beta promoter region whereas inhibition of NF-kappaB with the specific chemical inhibitor SN-50 or by overexpression of IkappaB, the endogenous inhibitor of NF-kappaB pathway, totally abolished EFs-mediated IL-1beta mRNA overexpression. These results demonstrate that EFs induce NF-kappaB activation, leading to IL-1beta upregulation in invasive melanoma cells. PMID:16675961

  10. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    SciTech Connect

    Bertrand, Yanick . E-mail: oncomol@nobel.si.uqam.ca

    2007-02-09

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [{sup 125}I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion.

  11. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines

    PubMed Central

    Maeda, Junko; Froning, Coral E.; Brents, Colleen A.; Rose, Barbara J.; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19–0.93). In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB) repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further investigations

  12. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines.

    PubMed

    Maeda, Junko; Froning, Coral E; Brents, Colleen A; Rose, Barbara J; Thamm, Douglas H; Kato, Takamitsu A

    2016-01-01

    Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19-0.93). In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB) repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further investigations

  13. CIZ/NMP4 is expressed in B16 melanoma and forms a positive feedback loop with RANKL to promote migration of the melanoma cells.

    PubMed

    Sakuma, Tomomi; Nakamoto, Tetsuya; Hemmi, Hiroaki; Kitazawa, Sohei; Kitazawa, Riko; Notomi, Takuya; Hayata, Tadayoshi; Ezura, Yoichi; Amagasa, Teruo; Noda, Masaki

    2012-07-01

    Tumor metastasis to bone is a serious pathological situation that causes severe pain, and deterioration in locomoter function. However, the mechanisms underlying tumor metastasis is still incompletely understood. CIZ/NMP4 is a nucleocytoplasmic shuttling protein and its roles in tumor cells have not been known. We, therefore, hypothesized the role of CIZ/NMP4 in B16 melanoma cells that metastasize to bone. CIZ/NMP4 is expressed in B16 cells. The CIZ/NMP4 expression levels are correlated to the metastatic activity in divergent types of melanoma cells. Overexpression of CIZ/NMP4 increased B16 cell migration in Trans-well assay. Conversely, siRNA-based knockdown of CIZ/NMP4 suppressed migratory activity of these cells. As RANKL promotes metastasis of tumor cells in bone, we tested its effect on CIZ in melanoma cells. RANKL treatment enhanced CIZ/NMP4 expression. This increase of CIZ by RANKL promoted migration. Conversely, we identified CIZ/NMP4 binding site in the promoter of RANKL. Furthermore, luciferase assay indicated that CIZ/NMP4 overexpression enhanced RANKL promoter activities, revealing a positive feedback loop of CIZ/NMP4 and RANKL in melanoma. These observations indicate that CIZ/NMP4 is critical regulator of metastasis of melanoma cells. PMID:22307584

  14. Functional Classification of Cellular Proteome Profiles Support the Identification of Drug Resistance Signatures in Melanoma Cells

    PubMed Central

    2013-01-01

    Drug resistance is a major obstacle in melanoma treatment. Recognition of specific resistance patterns, the understanding of the patho-physiology of drug resistance, and identification of remaining options for individual melanoma treatment would greatly improve therapeutic success. We performed mass spectrometry-based proteome profiling of A375 melanoma cells and HeLa cells characterized as sensitive to cisplatin in comparison to cisplatin resistant M24met and TMFI melanoma cells. Cells were fractionated into cytoplasm, nuclei and secretome and the proteome profiles classified according to Gene Ontology. The cisplatin resistant cells displayed increased expression of lysosomal as well as Ca2+ ion binding and cell adherence proteins. These findings were confirmed using Lysotracker Red staining and cell adhesion assays with a panel of extracellular matrix proteins. To discriminate specific survival proteins, we selected constitutively expressed proteins of resistant M24met cells which were found expressed upon challenging the sensitive A375 cells. Using the CPL/MUW proteome database, the selected lysosomal, cell adherence and survival proteins apparently specifying resistant cells were narrowed down to 47 proteins representing a potential resistance signature. These were tested against our proteomics database comprising more than 200 different cell types/cell states for its predictive power. We provide evidence that this signature enables the automated assignment of resistance features as readout from proteome profiles of any human cell type. Proteome profiling and bioinformatic processing may thus support the understanding of drug resistance mechanism, eventually guiding patient tailored therapy. PMID:23713901

  15. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi

    PubMed Central

    Margaryan, Naira V.; Gilgur, Alina; Seftor, Elisabeth A.; Purnell, Chad; Arva, Nicoleta C.; Gosain, Arun K.; Hendrix, Mary J. C.; Strizzi, Luigi

    2016-01-01

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma

  16. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi.

    PubMed

    Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi

    2016-01-01

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma

  17. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin.

    PubMed

    Beninati, Simone; Oliverio, Serafina; Cordella, Martina; Rossi, Stefania; Senatore, Cinzia; Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia; Tabolacci, Claudio

    2014-08-01

    In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma. PMID:25019992

  18. miR-17 regulates melanoma cell motility by inhibiting the translation of ETV1.

    PubMed

    Cohen, Ronit; Greenberg, Eyal; Nemlich, Yael; Schachter, Jacob; Markel, Gal

    2015-08-01

    Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility. Over expression of the mature or pri-microRNA form of miR-17 in WM-266-4 and 624mel melanoma lines enhances cell motility, evident in both wound healing and transwell migration assays. TargetScan algorithm predicts the PEA3-subfamily member ETV1 as a direct target of miR-17. Indeed, a 3-4-fold decrease of ETV1 protein levels are observed following miR-17 transfection into the various melanoma lines, with no significant change in ETV1 mRNA expression. Dual luciferase experiments demonstrate direct binding of miR-17 to the 3'-untranslated region of ETV1, confirmed by abolishing point mutations in the putative binding site. These combined results suggest regulation of ETV1 by miR-17 by a direct translational repression. Further, in both melanoma cell lines ETV1 knockdown by selective siRNA successfully pheno-copies the facilitated cell migration, while overexpression of ETV1 inhibits cell motility and migration. Altered ETV1 expression does not affect melanoma net-proliferation. In conclusion, we show a new role for miR-17 in melanoma, facilitating cell motility, by targeting the translation of ETV1 protein, which may support the development of metastasis. PMID:26158900

  19. Radioresistance of cancer stem-like cell derived from canine tumours.

    PubMed

    Tanabe, A; Deguchi, T; Sato, T; Nemoto, Y; Maruo, T; Madarame, H; Shida, T; Naya, Y; Ogihara, K; Sahara, H

    2016-09-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are a small subpopulation of cancer cells that are responsible for the initiation, recurrence and metastasis of cancer. We previously demonstrated that, using the Hoechst 33342 dye-based side population technique, CSCs/CICs in canine lung adenocarcinoma cell line exist. In this study, as CSCs/CICs are known to form spheres in anchorage-independent environment in vitro, we evaluated the stemness of spheroid cells derived from canine lung adenocarcinoma and osteosarcoma cells by expression of stemness markers, and investigated radioresistance. Spheroid cells showed greater expression of stemness markers Oct-4 and CD133 gene than those of adherent-cultured cells. In nude mouse xenograft models, spheroid cells showed higher tumourigenic ability than adherent-cultured cells. In addition, spheroid cells showed significantly resistant against radioactivity as compared with adherent-cultured cells. These results suggest that spheroid cells could possess stemness and provide a CSCs/CICs research tool to investigate CSCs/CICs of canine tumour cells. PMID:25070729

  20. Preconditioned endothelial progenitor cells reduce formation of melanoma metastases through SPARC-driven cell-cell interactions and endocytosis.

    PubMed

    Defresne, Florence; Bouzin, Caroline; Grandjean, Marie; Dieu, Marc; Raes, Martine; Hatzopoulos, Antonis K; Kupatt, Christian; Feron, Olivier

    2011-07-15

    Tumor progression is associated with the release of signaling substances from the primary tumor into the bloodstream. Tumor-derived cytokines are known to promote the mobilization and the recruitment of cells from the bone marrow, including endothelial progenitor cells (EPC). Here, we examined whether such paracrine influence could also influence the capacity of EPC to interfere with circulating metastatic cells. We therefore consecutively injected EPC prestimulated by tumor-conditioned medium (EPC-CM) and luciferase-expressing B16 melanoma cells to mice. A net decrease in metastases spreading (vs. nonstimulated EPC) led us to carry out a 2-dimensional difference gel electrophoresis (2D-DIGE) proteomic study to identify possible mediators of EPC-driven protection. Among 33 proteins exhibiting significant changes in expression, secreted protein, acidic and rich in cysteine (SPARC) presented the highest induction after EPC exposure to CM. We then showed that contrary to control EPC, SPARC-silenced EPC were not able to reduce the extent of metastases when injected with B16 melanoma cells. Using adhesion tests and the hanging drop assay, we further documented that cell-cell interactions between EPC-CM and melanoma cells were promoted in a SPARC-dependent manner. This interaction led to the engulfment of melanoma cells by EPC-CM, a process prevented by SPARC silencing and mimicked by recombinant SPARC. Finally, we showed that contrary to melanoma cells, the prometastatic human breast cancer cell line MDA-MB231-D3H2 reduced SPARC expression in human EPC and stimulated metastases spreading. Our findings unravel the influence of tumor cells on EPC phenotypes through a SPARC-driven accentuation of macrophagic capacity associated with limitations to metastatic spread. PMID:21616936

  1. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    PubMed

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress. PMID:26018731

  2. Inhibitor of DNA Binding 4 (ID4) Is Highly Expressed in Human Melanoma Tissues and May Function to Restrict Normal Differentiation of Melanoma Cells

    PubMed Central

    Peretz, Yuval; Wu, Hong; Patel, Shayan; Bellacosa, Alfonso; Katz, Richard A.

    2015-01-01

    Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a

  3. PAX3 and ETS1 synergistically activate MET expression in melanoma cells

    PubMed Central

    Kubic, Jennifer D.; Little, Elizabeth C.; Lui, Jason W.; Iizuka, Takumi; Lang, Deborah

    2014-01-01

    Melanoma is a highly aggressive disease that is difficult to treat due to rapid tumor growth, apoptotic resistance, and high metastatic potential. The MET tyrosine kinase receptor promotes many of these cellular processes, and while MET is often overexpressed in melanoma, the mechanism driving this overexpression is unknown. Since the MET gene is rarely mutated or amplified in melanoma, MET overexpression may be driven by to increased activation through promoter elements. In this report, we find that transcription factors PAX3 and ETS1 directly interact to synergistically activate MET expression. Inhibition of PAX3 and ETS1 expression in melanoma cells leads to a significant reduction of MET receptor levels. The 300 bp 5′ proximal MET promoter contains a PAX3 response element and two ETS1 consensus motifs. While ETS1 can moderately activate both of these sites without cofactors, robust MET promoter activation of the first site is PAX-dependent and requires the presence of PAX3, while the second site is PAX-independent. The induction of MET by ETS1 via this second site is enhanced by HGF-dependent ETS1 activation, thereby MET indirectly promotes its own expression. We further find that expression of a dominant negative ETS1 reduces the ability of melanoma cells to grow both in culture and in vivo. Thus, we discover a pathway where ETS1 advances melanoma through the expression of MET via PAX-dependent and independent mechanisms. PMID:25531327

  4. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes. PMID:25954764

  5. Melanoma Development and Progression Are Associated with Rad6 Upregulation and β-Catenin Relocation to the Cell Membrane

    PubMed Central

    Mehregan, Darius R.; Abrams, Judith; Haynes, Brittany; Shekhar, Malathy P. V.

    2014-01-01

    We have previously demonstrated that Rad6 and β-catenin enhance each other's expression through a positive feedback loop to promote breast cancer development/progression. While β-catenin has been implicated in melanoma pathogenesis, Rad6 function has not been investigated. Here, we examined the relationship between Rad6 and β-catenin in melanoma development and progression. Eighty-eight cutaneous tumors, 30 nevi, 29 primary melanoma, and 29 metastatic melanomas, were immunostained with anti-β-catenin and anti-Rad6 antibodies. Strong expression of Rad6 was observed in only 27% of nevi as compared to 100% of primary and 96% of metastatic melanomas. β-Catenin was strongly expressed in 97% of primary and 93% of metastatic melanomas, and unlike Rad6, in 93% of nevi. None of the tumors expressed nuclear β-catenin. β-Catenin was exclusively localized on the cell membrane of 55% of primary, 62% of metastatic melanomas, and only 10% of nevi. Cytoplasmic β-catenin was detected in 90% of nevi, 17% of primary, and 8% of metastatic melanoma, whereas 28% of primary and 30% of metastatic melanomas exhibited β-catenin at both locations. These data suggest that melanoma development and progression are associated with Rad6 upregulation and membranous redistribution of β-catenin and that β-catenin and Rad6 play independent roles in melanoma development. PMID:24891954

  6. Synthesis and biological evaluation of Fotemustine analogues on human melanoma cell lines.

    PubMed

    Winum, Jean Yves; Bouissière, Jean Luc; Passagne, Isabelle; Evrard, Alexandre; Montero, Véronique; Cuq, Pierre; Montero, Jean Louis

    2003-03-01

    Two new analogues of Fotemustine have been synthesized and tested on two melanoma cell lines. Compounds 4 and 8 proved to be more potent than the reference compound on A375 cell line which express the MGMT enzyme involved in the chemoresistance of tumoral cells. PMID:12667699

  7. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells. PMID:27605895

  8. Serological survey of normal humans for natural antibody to cell surface antigens of melanoma.

    PubMed Central

    Houghton, A N; Taormina, M C; Ikeda, H; Watanabe, T; Oettgen, H F; Old, L J

    1980-01-01

    Sera of 106 normal adult men were tested for antibodies reacting with cell surface antigens of three established lines of cultured malignant melanoma. Positive reactions with a protein A assay for IgG antibodies were extremely rare (1-2%). The frequency of positive reactions with assays for IgM antibodies was higher: 5-15% in immune adherence assays and 55-82% in anti-C3 mixed hemadsorption assays. After low-titered sera and sera reacting with fetal calf serum components, conventional alloantigens, and widely distributed class 3 antigens were excluded, sera from seven individuals (one with IgG antibody and six with IgM antibodies) were selected for detailed analysis. The serum containing the IgG antibody came from a healthy 65-year-old Caucasian man; titers of antibody in his serum ranged from < 1/10 to 1/40,000 in tests with different melanoma cell lines. This IgG antibody identifies a differentiation antigen of melanocytes, provisionally designated Mel 1, that distinguishes two classes of melanomas: 22 melanoma cell lines typed Mel 1+ and 17 types Mel 1-. Mel 1 is expressed by fetal fibroblasts but not adult fibroblasts and can be found on a proportion of cultured epithelial cancer cell lines (5 out of 23) but not on glioma or B-cell lines. The melanoma antigens detected by the naturally occurring IgM antibodies are serologically unrelated to Mel 1 but, like Mel 1, appear to be differentiation antigens that distinguish subsets of melanoma. These IgM antibodies detect antigens that are identical or closely related to the AH antigen, a melanoma surface antigen that was initially defined by autologous antibody in a patient with melanoma. In view of the immunogenicity of both Mel 1 and the AH antigens in humans and their occurrence on more than 50% of melanomas, it remains to be seen whether antibody to these antigens can be elicited by specific vaccination of seronegative melanoma patients and whether this will have an influence on the clinical course of the disease

  9. Canine Systemic Lupus Erythematosus. TRANSMISSION OF SEROLOGIC ABNORMALITIES BY CELL-FREE FILTRATES

    PubMed Central

    Lewis, Robert M.; Andre-Schwartz, Janine; Harbis, Gerald S.; Hirsch, Martin S.; Black, Paul H.; Schwartz, Robert S.

    1973-01-01

    The presence of viruses was sought in a colony of dogs bred from parents with systemic lupus crythematosus (SLE). Cell-free filtrates prepared from the spleens of these animals were injected into newborn dogs, mice, and rats. The canine recipients developed antinuclear antibody (ANA) and positive lupus erythematosus (LE) cell tests: ANA and, in some cases, antinative DNA antibodies were produced by the murine recipients: no abnormalities were detected in the rats. Serial passage of spleen cells or cell-free filtrates of spleen tissue in syngeneic mice reduced the time required for appearance of ANA from 9 to 4 mo. Some murine recipients of the canine filtrate developed malignant lymphomas. Murine leukemia viruses were identified in these tumors by electron microscopic, virologic, and serologic technics. These neoplasms, but not other tumors known to contain murine leukemia viruses, were associated with the production of ANA. Puppies inoculated with the canine filtrate-induced mouse lymphoma developed ANA and positive LE cell tests within 4 mo. The results were interpreted to indicate the presence in canine SLE of a virus capable of: (a) inducing the serologic abnormalities of SLE in normal dogs and mice: (b) activating latent murine leukemia viruses: and (c) spreading by both horizonal and vertical routes. Images PMID:4124208

  10. miR-33a is downregulated in melanoma cells and modulates cell proliferation by targeting PCTAIRE1

    PubMed Central

    TIAN, FANGZHEN; WEI, HONGTU; TIAN, HUA; QIU, YING; XU, JIAN

    2016-01-01

    MicroRNA-33a (miR-33a) was previously identified as a lipid regulator that controls the cellular balance between cholesterol and fatty acid metabolism. However, its role in tumor progression is largely unknown. The present study identified that miR-33a acts as a tumor suppressor in melanoma cells. The present study revealed that miR-33a was downregulated in melanoma cells compared with melanocytes. Overexpression of miR-33a suppressed the colony formation of human melanoma SK-MEL-1 and WM-115 cells. Furthermore, a bromodeoxyuridine incorporation assay and anaphase analysis revealed that miR-33a inhibits melanoma cell proliferation. miR-33a overexpression inhibited p27 phosphorylation and upregulated p27 expression. Additionally, the present study demonstrated that PCTAIRE1 was a direct target of miR-33a; miR-33a overexpression suppressed the luciferase activity of a reporter construct containing a 3′-untranslated region of PCTAIRE1 and downregulated PCTAIRE1 in melanoma cells. An overexpression of PCTAIRE1 reversed the miR-33a-induced p27 accumulation and tumor suppressive effects. In summary, the present findings offer novel mechanistic insights into miR-33a and its downstream target in melanoma cells. PMID:27073545

  11. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    PubMed

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-01

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer. PMID:26645485

  12. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis.

    PubMed

    Rambow, Florian; Job, Bastien; Petit, Valérie; Gesbert, Franck; Delmas, Véronique; Seberg, Hannah; Meurice, Guillaume; Van Otterloo, Eric; Dessen, Philippe; Robert, Caroline; Gautheret, Daniel; Cornell, Robert A; Sarasin, Alain; Larue, Lionel

    2015-10-27

    Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines. PMID:26489459

  13. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth

    PubMed Central

    Roesch, Alexander; Fukunaga-Kalabis, Mizuho; Schmidt, Elizabeth C.; Zabierowski, Susan E.; Brafford, Patricia A.; Vultur, Adina; Basu, Devraj; Gimotty, Phyllis; Vogt, Thomas; Herlyn, Meenhard

    2010-01-01

    Summary Melanomas are highly heterogeneous tumors, but the biological significance of their different subpopulations is not clear. Using the H3K4 demethylase JARID1B (KDM5B/PLU-1/RBP2-H1) as a biomarker, we have characterized a small subpopulation of slow-cycling melanoma cells that cycle with doubling times of >4 weeks within the rapidly proliferating main population. Isolated JARID1B-positive melanoma cells give rise to a highly proliferative progeny. Knock-down of JARID1B leads to an initial acceleration of tumor growth followed by exhaustion which suggests that the JARID1B-positive subpopulation is essential for continuous tumor growth. Expression of JARID1B is dynamically regulated and does not follow a hierarchical cancer stem cell model because JARID1B-negative cells can become positive and even single melanoma cells irrespective of selection are tumorigenic. These results suggest a new understanding of melanoma heterogeneity with tumor maintenance as a dynamic process mediated by a temporarily distinct subpopulation. PMID:20478252

  14. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma

    PubMed Central

    2013-01-01

    Background Uveal melanoma is a highly aggressive cancer with a strong propensity for metastasis, yet little is known about the biological mechanisms underlying this metastatic potential. We recently showed that most metastasizing uveal melanomas, which exhibit a class 2 gene expression profile, contain inactivating mutations in the tumor suppressor BAP1. The aim of this study was to investigate the role of BAP1 in uveal melanoma progression. Methods Uveal melanoma cells were studied following RNAi-mediated depletion of BAP1 using proliferation, BrdU incorporation, flow cytometry, migration, invasion, differentiation and clonogenic assays, as well as in vivo tumorigenicity experiments in NOD-SCID-Gamma mice. Results Depletion of BAP1 in uveal melanoma cells resulted in a loss of differentiation and gain of stem-like properties, including expression of stem cell markers, increased capacity for self-replication, and enhanced ability to grow in stem cell conditions. BAP1 depletion did not result in increased proliferation, migration, invasion or tumorigenicity. Conclusions BAP1 appears to function in the uveal melanocyte lineage primarily as a regulator of differentiation, with cells deficient for BAP1 exhibiting stem-like qualities. It will be important to elucidate how this effect of BAP1 loss promotes metastasis and how to reverse this effect therapeutically. PMID:23915344

  15. Monoclonal Antibodies Inhibit the Adhesion of Mouse B 16 Melanoma Cells in vitro and Block Lung Metastasis in vivo

    NASA Astrophysics Data System (ADS)

    Vollmers, H. Peter; Birchmeier, Walter

    1983-06-01

    Seven monoclonal antibodies against mouse B 16 melanoma cells (produced in syngeneic C57BL/6 mice) were selected that blocked the adhesion of melanoma cells to tissue culture dishes. These antibodies were found to be directed against antigens on the surface of mouse B 16 melanoma cells but not on normal mouse cells such as 3T3 fibroblasts. Similarly, the antigens could not be detected in normal mouse tissues (e.g., lung, kidney, liver) but were found in lungs colonized by B 16 melanoma cells. Significantly, three of these antibodies virtually abolished lung colonization of highly invasive B 16 sublines injected into the animals' bloodstream. They exerted their effect both when preabsorbed by the melanoma cell in vitro and when delivered to the animals prior to the tumor cells. It is suggested that monoclonal antibodies might be a promising tool for preventing metastasis.

  16. Cell-type dependent response of melanoma cells to aloe emodin.

    PubMed

    Radovic, J; Maksimovic-Ivanic, D; Timotijevic, G; Popadic, S; Ramic, Z; Trajkovic, V; Miljkovic, D; Stosic-Grujicic, S; Mijatovic, S

    2012-09-01

    Intrinsic characteristics of melanoma cells such as expression of inducible nitric oxide synthase (iNOS), redox status, and activity of signaling pathways involved in proliferation, differentiation and cell death define the response of the cells to the diverse treatments. In this context we compared the effectiveness of herbal antaquinone aloe emodin (AE) against mouse B16 melanoma and human A375, different in initial activity of ERK1/2, constitutive iNOS expression and basal level of reactive oxygen species (ROS). Both cell lines are sensitive to AE treatment. However, while the agent induces differentiation of B16 cells toward melanocytes, in A375 cells promoted massive apoptosis. Differentiation of B16 cells, characterized by enhanced melanin production and tyrosinase activity, was mediated by H(2)O(2) production synchronized with rapid p53 accumulation and enhanced expression of cyclins D1 and D3. Caspase mediated apoptosis triggered in A375 cells was accompanied with Bcl-2 but not iNOS down-regulation. In addition, opposite regulation of Akt-ERK1/2 axis in AE treated B16 and A375 cells correlated with different outcome of the treatment. However, AE in a dose-dependent manner rescued both B16 and A375 cells from doxorubicin- or paclitaxel-induced killing. These data indicate that caution is warranted when AE is administrated to the patients with conventional chemotherapy. PMID:22683487

  17. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand. PMID:26408691

  18. Inhibition of P-glycoprotein by psychotherapeutic drugs in a canine cell model.

    PubMed

    Schrickx, J A; Fink-Gremmels, J

    2014-10-01

    Drug-drug interactions related to long-term therapies are of increasing concern. Psychotherapeutic drugs, licensed for the use in dogs for the management of separation anxiety and other behavioural disorders, are examples of drugs used in long-term therapies. In an in vitro system with canine P-glycoprotein (P-gp) expressing cell lines, three psychotherapeutic drugs with a different mode of action were tested for their ability to inhibit the canine multidrug transporter P-gp. At 10 μm, the selective serotonin reuptake inhibitor fluoxetine and the tricyclic antidepressant clomipramine inhibited P-gp for 41% and 59%, respectively. In contrast, selegeline did not inhibit the function of the canine P-gp. PMID:24602126

  19. Epigenetic Silencing of SPINT2 promotes Cancer Cell Motility via HGF-MET Pathway Activation in Melanoma

    PubMed Central

    Hwang, Soonyean; Kim, Hye-Eun; Min, Michelle; Raghunathan, Rekha; Panova, Izabela P.; Munshi, Ruchi; Ryu, Byungwoo

    2015-01-01

    Aberrant HGF-MET signaling activation via interactions with surrounding stromal cells in tumor microenvironment plays significant roles in malignant tumor progression. However, extracellular proteolytic regulation of HGF activation which is influenced by the tumor microenvironment and its consequential effects on melanoma malignancy remain uncharacterized. In this study we identified SPINT2: a proteolytic inhibitor of hepatocyte growth factor activator (HGFA), which plays a significant role in the suppression of the HGF-MET pathway and malignant melanoma progression. SPINT2 expression is significantly lower in metastatic melanoma tissues compared to those in early stage primary melanomas which also corresponded with DNA methylation levels isolated from tissue samples. Treatment with the DNA hypomethylating agent decitabine in cultured melanoma cells induced transcriptional reactivation of SPINT2, suggesting that this gene is epigenetically silenced in malignant melanomas. Furthermore, we show that ectopically expressed SPINT2 in melanoma cells inhibits HGF induced MET-AKT signaling pathway and decreases malignant phenotype potential such as cell motility, and invasive growth of melanoma cells. These results suggest that SPINT2 is associated with tumor suppressive functions in melanoma by inhibiting an extracellular signal regulator of HGF which is typically activated by tumor-stromal interactions. These findings indicate that epigenetic impairment of the tightly regulated cytokine-receptor communications in tumor microenvironment may contribute to malignant tumor progression. PMID:25910030

  20. Preparation and functional evaluation of RGD-modified streptavidin targeting to integrin-expressing melanoma cells.

    PubMed

    Syrkina, Marina S; Shirokov, Dmitry A; Rubtsov, Mikhail A; Kadyrova, Elena L; Veiko, Vladimir P; Manuvera, Valentin A

    2013-02-01

    The vertical growth stage is the most dangerous stage of melanoma and is often associated with a poor prognosis. The increased invasiveness and metastasis that is typical for vertically growing melanoma are mediated by the molecules of cell adhesion (particularly, integrins). Integrin αvβ3, which is abundantly expressed on melanoma cells with high metastatic potentials and is characterized by low expression levels in normal melanocytes, is potentially an attractive target for melanoma diagnostics and therapy. Integrin αvβ3 is known to recognize the arginine-glycine-aspartic (RGD) sequence, which has been found in a wide variety of its natural ligands. Here expression vectors bearing the genes of fusion proteins have been constructed for producing these proteins in Escherichia coli. Such fusion proteins consist of a peptidic 'address,' targeting the integrins on melanoma cells, linked to an 'adaptor' for the attachment of a diagnostic or toxic agent. The peptidic 'address' contains the RGD motif, which is stabilized by a disulfide bond to achieve the optimal receptor binding conformation. The 'adaptor' is a tetrameric protein, namely, streptavidin, that is able to achieve high-affinity binding of d-biotin (K(d) = 10(-15) M) and confer avidity to the address peptide. This binding ability facilitates the generation of anti-melanoma diagnostic and therapeutic agents using the appropriate biotin derivatives. These recombinant proteins were purified from the periplasm of E.coli using columns with 2-iminobiotin agarose and demonstrated an ability to adhere to the surface of murine and human melanoma cells. PMID:23161915

  1. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  2. Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate Induces Canine Mammary Cancer Cell Aggressiveness

    PubMed Central

    de Oliveira, Joana T.; Santos, Ana L.; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J.; Vasconcelos, M. Helena; Oliveira, Maria José; Reis, Celso A.; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  3. Anti-influenza neuraminidase inhibitor oseltamivir phosphate induces canine mammary cancer cell aggressiveness.

    PubMed

    de Oliveira, Joana T; Santos, Ana L; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J; Vasconcelos, M Helena; Oliveira, Maria José; Reis, Celso A; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  4. Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion

    PubMed Central

    Berthier-Vergnes, O; Kharbili, M El; de la Fouchardière, A; Pointecouteau, T; Verrando, P; Wierinckx, A; Lachuer, J; Le Naour, F; Lamartine, J

    2011-01-01

    Background: Metastatic melanoma requires early detection, being treatment resistant. However, the earliest events of melanoma metastasis, and especially of dermal invasion, remain ill defined. Results and methods: Gene expression profiles of two clonal subpopulations, selected from the same human melanoma cell line, but differing in ability to cross the dermal–epidermal junction in skin reconstructs, were compared by oligonucleotide microarray. Of 26 496 cDNA probes, 461 were differentially expressed (>2-fold; P< 0.001), only 71 genes being upregulated in invasive cells. Among them, TSPAN8, a tetraspanin not yet described in melanoma, was upregulated at mRNA and protein levels in melanoma cells from the invasive clone, as assessed by RT–PCR, flow cytometry and western blot analysis. Interestingly, TSPAN8 was the only tetraspanin in which overexpression correlated with invasive phenotype. Flow cytometry of well-defined melanoma cell lines confirmed that TSPAN8 was exclusively expressed by invasive, but not non-invasive melanoma cells or normal melanocytes. Immunohistochemistry revealed that TSPAN8 was expressed by melanoma cells in primary melanomas and metastases, but not epidermal cells in healthy skin. The functional role of TSPAN8 was demonstrated by silencing endogenous TSPAN8 with siRNA, reducing invasive outgrowth from tumour spheroids within matrigel without affecting cell proliferation or survival. Conclusion: TSPAN8 expression may enable melanoma cells to cross the cutaneous basement membrane, leading to dermal invasion and progression to metastasis. TSPAN8 could be a promising target in early detection and treatment of melanoma. PMID:21081927

  5. Primary Malignant Melanoma of Renal Pelvis with Extensive Clear Cell Change

    PubMed Central

    Liapis, George; Sarlanis, Helen; Poulaki, Elpida; Stravodimos, Konstandinos; Lazaris, Andreas C

    2016-01-01

    Our presentation illustrates a rare case of primary renal pelvis malignant melanoma in a 35-year-old man. The diagnosis of malignant melanoma was based on immunophenotype and the detection of intracellular melanin pigment. The renal origin was proven by the presence of scattered melanocytes within the urothelium of the pelvis. The tumor exhibited extensive clear cell change that closely mimics clear cell renal cell carcinoma. The patient’s clinical history did not disclose any signs of previous melanocytic skin or mucosa lesions. Differential diagnosis includes tumors capable of synthesizing melanin or expressing melanocytic markers. PMID:27226943

  6. Identification of a Cell Surface Protein, p97, in Human Melanomas and Certain Other Neoplasms

    NASA Astrophysics Data System (ADS)

    Woodbury, Richard G.; Brown, Joseph P.; Yeh, Ming-Yang; Hellstrom, Ingegerd; Hellstrom, Karl Erik

    1980-04-01

    BALB/c mice were immunized with a human melanoma cell line, SK-MEL 28, and their spleen cells were fused with mouse NS-1 myeloma cells. Hybrid cells were tested in an indirect 125I-labeled protein A assay for production of antibodies that bound to surface antigens of SK-MEL 28 melanoma cells but not to autologous skin fibroblasts. One hybridoma, designated 4.1, had the required specificity. It was cloned and grown in mice as an ascites tumor. The monoclonal IgG1 antibody produced by the hybridoma was purified from the ascites fluid and labeled with 125I. The labeled antibody bound, at significant levels, to approximately 90% of the melanomas tested and to approximately 55% of other tumor cells, but not to three B-lymphoblastoid cell lines or to cultivated fibroblasts from 15 donors. Immunoprecipitation and sodium dodecyl sulfate gel electrophoresis were used to detect the target antigen in 125I-labeled cell membranes of both cultivated cells and tumor biopsy samples. A protein with a molecular weight of 97,000 was identified. This protein, designated p97, was present in both cultured cells and biopsy material from melanomas and certain other tumors, but it was not detected in eight different samples of normal adult epithelial or mesenchymal tissues obtained from five donors.

  7. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Slominski, Radomir

    2009-03-15

    High mortality rate for metastatic melanoma is related to its resistant to the current methods of therapy. Melanogenesis is a metabolic pathway characteristic for normal and malignant melanocytes that can affect the behavior of melanoma cells or its surrounding environment. Human melanoma cells in which production of melanin pigment is dependent on tyrosine levels in medium were used for experiments. Peripheral blood mononuclear cells were derived from the buffy coats purchased from Lifeblood Biological Services. Cell pigmentation was evaluated macroscopically, and tyrosinase activity was measured spectrophotometrically. Cell proliferation and viability were measured using lactate dehydrogenase release MTT, [(3)H]-thymidine incorporation and DNA content analyses, and gene expression was measured by real time RT-PCR. Pigmented melanoma cells were significantly less sensitive to cyclophosphamide and to killing action of IL-2-activated peripheral blood lymphocytes. The inhibition of melanogenesis by either blocking tyrosinase catalytic site or chelating copper ions sensitized melanoma cells towards cytotoxic action of cyclophosphamide, and amplified immunotoxic activities of IL-2 activated lymphocytes. Exogenous L-DOPA inhibited lymphocyte proliferation producing the cell cycle arrest in G1/0 and dramatically inhibited the production of IL-1beta, TNF-alpha, IL-6 and IL-10. Thus, the active melanogenesis could not only impair the cytotoxic action of cyclophosphamid but also has potent immunosuppressive properties. This resistance to a chemotherapeutic agent or immunotoxic activity of lymphocytes could be reverted by the action of tyrosinase inhibitors. Thus, the inhibition of melanogenesis might represent a valid therapeutic target for the management of advanced melanotic melanomas. PMID:19085934

  8. CD271 Expression on Patient Melanoma Cells Is Unstable and Unlinked to Tumorigenicity.

    PubMed

    Boyle, Samantha E; Fedele, Clare G; Corbin, Vincent; Wybacz, Elisha; Szeto, Pacman; Lewin, Jeremy; Young, Richard J; Wong, Annie; Fuller, Robert; Spillane, John; Speakman, David; Donahoe, Simon; Pohl, Miklos; Gyorki, David; Henderson, Michael A; Johnstone, Ricky W; Papenfuss, Anthony T; Shackleton, Mark

    2016-07-01

    The stability of markers that identify cancer cells that propagate disease is important to the outcomes of targeted therapy strategies. In human melanoma, conflicting data exist as to whether hierarchical expression of CD271/p75/NGFR (nerve growth factor receptor) marks cells with enriched tumorigenicity, which would compel their specific targeting in therapy. To test whether these discrepancies relate to differences among groups in assay approaches, we undertook side-by-side testing of published methods of patient-derived melanoma xenografting (PDX), including comparisons of tissue digestion procedures or coinjected Matrigel formulations. We found that CD271(-) and CD271(+) melanoma cells from each of seven patients were similarly tumorigenic, regardless of assay variations. Surprisingly variable CD271 expression patterns were observed in the analyses of sibling PDX tumors (n = 68) grown in the same experiments from either CD271(-) or CD271(+) cells obtained from patients. This indicates unstable intratumoral lineage relationships between CD271(-) and CD271(+) melanoma cells that are inconsistent with classical, epigenetically based theories of disease progression, such as the cancer stem cell and plasticity models. SNP genotyping of pairs of sibling PDX tumors grown from phenotypically identical CD271(-) or CD271(+) cells showed large pairwise differences in copy number (28%-48%). Differences were also apparent in the copy number profiles of CD271(-) and CD271(+) cells purified directly from each of the four melanomas (1.4%-23%). Thus, CD271 expression in patient melanomas is unstable, not consistently linked to increased tumorigenicity and associated with genetic heterogeneity, undermining its use as a marker in clinical studies. Cancer Res; 76(13); 3965-77. ©2016 AACR. PMID:27325642

  9. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  10. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells.

    PubMed

    Hammouda, Manel B; Montenegro, María F; Sánchez-Del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  11. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease. PMID:25674907

  12. Sensitization of human melanoma cells by tamoxifen to apoptosis induction by pancratistatin, a nongenotoxic natural compound.

    PubMed

    Chatterjee, Sudipa June; McNulty, James; Pandey, Siyaram

    2011-02-01

    The objective of this study was to determine the efficacy of the natural compound pancratistatin (PST), isolated from the Hymenocallis littoralis, in human melanoma cells. Melanoma is an aggressive form of skin cancer that is commonly fatal if not diagnosed in its early stage of development. Melanoma is resistant to many treatments, thus drastically limiting chemotherapy options for this cancer. We have shown that exposure to PST induces apoptosis in human melanoma within 72 h using Hoechst staining. Interestingly tamoxifen (TAM), an estrogen receptor antagonist, sensitizes these cells to apoptosis induction by PST as observed with Hoechst and annexin-V staining. This cotreatment did not affect the viability of normal noncancerous human fibroblasts. Both of these compounds have been shown to target the mitochondria synergistically, as indicated by higher levels of reactive oxygen species generation from isolated mitochondria. PST alone and in combination with TAM shows depolarization of the mitochondrial membrane potential as shown by JC-1 staining. Melanoma drug resistance was not observed after posttreatment recuperation, as cells displayed apoptotic morphology up to 96 h after drug-free media replacement. Our results indicate that TAM alone does not induce apoptosis in this cell line, but sensitizes the mitochondria, thereby enhancing the effect of PST exposure. In conclusion, combination of two nongenotoxic compounds offers a novel treatment regime for this notoriously resilient form of skin cancer. PMID:20300039

  13. Characterization of the canine mda-7 gene, transcripts and expression patterns

    PubMed Central

    Sandey, Maninder; Bird, R. Curtis; Das, Swadesh K.; Sarkar, Devanand; Curiel, David T.; Fisher, Paul B.; Smith, Bruce F.

    2014-01-01

    Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5′-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog. PMID:24865935

  14. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines

    PubMed Central

    ASADA, Hajime; TOMIYASU, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2015-01-01

    Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS. PMID:25715778

  15. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility

    PubMed Central

    Shaverdashvili, Khvaramze; Zhang, Keman; Osman, Iman; Honda, Kord; Jobava, Rauli; Bedogni, Barbara

    2015-01-01

    Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility. PMID:26392417

  16. Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling.

    PubMed

    Oh, Phil-Sun; Na, Kyung Suk; Hwang, Hyosook; Jeong, Hwan-Seok; Lim, SeokTae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2015-01-01

    The present study was undertaken to examine whether blue LED irradiation induces cellular apoptosis in B16-F10 cells and whether it blocks the early growth of melanoma cells in mice. Irradiation with blue LED was observed to reduce cell viability and to induce apoptotic cell death, as accompanied by exposure of phosphatidylserine on the plasma outside membrane and an accumulation of a sub-G1 population. Furthermore, the mitochondrial membrane potential increased, and mitochondria-related apoptotic proteins (cytochrome c, caspase 3, and PARP) were observed. In addition, the level of intracellular superoxide anion (O2(-)) gradually increased. Interestingly the phosphorylation of p53 increased at earlier times under blue LED irradiation, but reduced after exposure for a longer time. Additionally, the thickness of the mice footpad injected with B16-F10 cells decreased significantly until the 9th day of blue LED irradiation, indicating the inhibition of the early growth rate of the melanoma cells. Our data demonstrate that blue LED irradiation induces apoptotic cell death by activating the mitochondria-mediated pathway and reduces the early growth rate of melanoma cells. Further studies are needed to elucidate the precise mechanism of blue LED in melanoma cells. PMID:25550119

  17. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  18. In vivo and Ex vivo MR Imaging of Slowly Cycling Melanoma Cells

    PubMed Central

    Magnitsky, S.; Roesch, A.; Herlyn, M.; Glickson, J.D.

    2011-01-01

    Slowly cycling cells are believed to play a critical role in tumor progression and metastatic dissemination. The goal of this study was to develop a method for in vivo detection of slowly cycling cells. To distinguish these cells from more rapidly proliferating cells that constitute the vast majority of cells in tumors, we utilized the well-known effect of label dilution due to division of cells with normal cycle and retention of contrast agent in slowly dividing cells. To detect slowly cycling cells melanoma cells were labeled with iron oxide particles. After labeling, we observed dilution of contrast agent in parallel with cell proliferation in the vast majority of normally cycling cells. A small and distinct sub-population of iron-retaining cells was detected by flow cytometry after 20 days of in vitro proliferation. These iron-retaining cells exhibited high expression of a biological marker of slowly cycling cells, JARID1B. After implantation of labeled cells as xenografts into immunocompromised mice, iron-retaining cells were detected in vivo and ex vivo by MRI that was confirmed by Prussian Blue staining. MR imaging detects not only iron retaining melanoma cells but also iron positive macrophages. Proposed method opens up opportunities to image subpopulation of melanoma cells, which is critical for continuous tumor growth. PMID:21523820

  19. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  20. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  1. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  2. Celecoxib exerts antitumor effects in canine mammary tumor cells via COX‑2‑independent mechanisms.

    PubMed

    Tamura, Dai; Saito, Teruyoshi; Murata, Kanae; Kawashima, Masafumi; Asano, Ryuji

    2015-03-01

    Celecoxib plays antitumor roles via multiple mechanisms in a variety of human cancers. The aim of this study was to clarify the mechanism of action of celecoxib in canine mammary tumors. We examined the antitumor effects of celecoxib in AZACB canine mammary tumor cells expressing low levels of cyclooxygenase‑2 (COX‑2) to minimize the effect of COX‑2 on its activity. Our data revealed that celecoxib inhibited cell proliferation mainly via COX‑2‑independent mechanisms. Specifically, celecoxib decreased the proportion of cells in S phase and increased G2/M arrest, which was associated with increased expression of the cyclin‑dependent kinase inhibitors (CDKIs) p21 and p27. In addition, treatment with celecoxib downregulated COX‑2 expression, and induced apoptosis via both the intrinsic and extrinsic pathways. These findings suggest that celecoxib might be a useful agent for the treatment of canine mammary tumors, regardless of COX‑2 expression. In the future, it might be possible to use a combination of celecoxib and other antitumor agents to treat canine mammary tumors. PMID:25571853

  3. Store-Operated Ca2+ Entry (SOCE) Regulates Melanoma Proliferation and Cell Migration

    PubMed Central

    Umemura, Masanari; Baljinnyam, Erdene; Feske, Stefan; De Lorenzo, Mariana S.; Xie, Lai-Hua; Feng, Xianfeng; Oda, Kayoko; Makino, Ayako; Fujita, Takayuki; Yokoyama, Utako; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S.; Ishikawa, Yoshihiro; Iwatsubo, Kousaku

    2014-01-01

    Store-operated Ca2+ entry (SOCE) is a major mechanism of Ca2+ import from extracellular to intracellular space, involving detection of Ca2+ store depletion in endoplasmic reticulum (ER) by stromal interaction molecule (STIM) proteins, which then translocate to plasma membrane and activate Orai Ca2+ channels there. We found that STIM1 and Orai1 isoforms were abundantly expressed in human melanoma tissues and multiple melanoma/melanocyte cell lines. We confirmed that these cell lines exhibited SOCE, which was inhibited by knockdown of STIM1 or Orai1, or by a pharmacological SOCE inhibitor. Inhibition of SOCE suppressed melanoma cell proliferation and migration/metastasis. Induction of SOCE was associated with activation of extracellular-signal-regulated kinase (ERK), and was inhibited by inhibitors of calmodulin kinase II (CaMKII) or Raf-1, suggesting that SOCE-mediated cellular functions are controlled via the CaMKII/Raf-1/ERK signaling pathway. Our findings indicate that SOCE contributes to melanoma progression, and therefore may be a new potential target for treatment of melanoma, irrespective of whether or not Braf mutation is present. PMID:24586666

  4. Solanum nigrum Linn. water extract inhibits metastasis in mouse melanoma cells in vitro and in vivo.

    PubMed

    Wang, Hsueh-Chun; Wu, Dun-Hao; Chang, Yun-Ching; Li, Yi-Ju; Wang, Chau-Jong

    2010-11-24

    Metastatic melanoma is an aggressive skin cancer notoriously resistant to current cancer therapies. Thus, new treatment strategies are urgently needed. Solanum nigrum Linn., commonly used in Oriental medicine, has showed antineoplastic activity in human cancer cell lines. The aim of this study was to evaluate the inhibitive effect of S. nigrum Linn. water extract (SNWE) on melanoma metastasis and dissect the underlying mechanisms of SNWE actions. B16-F1 cells were analyzed for migrating and invasive abilities with SNWE treatment, and several putative targets involved in metastatic melanoma were examined. In parallel, primary mouse xenograft and lung metastasis of melanoma models were established to examine the therapeutic potential of SNWE. The results indicated SNWE significantly inhibited B16-F1 cell migration and invasion. Meanwhile, decreased Akt activity and PKCα, Ras, and NF-κB protein expressions were detected in dose-dependent manners. In line with this notion, >50% reduced tumor weight and lung metastatic nodules were observed in 1% SNWE fed mice. This was associated with reduced serum MMP-9 as well as Akt activity and PKCα, Ras, and NF-κB protein expressions. Thus, this work indicates SNWE has potential application for treating metastatic melanoma. PMID:21028816

  5. Adhesion and stress relaxation forces between melanoma and cerebral endothelial cells.

    PubMed

    Végh, Attila G; Fazakas, Csilla; Nagy, Krisztina; Wilhelm, Imola; Molnár, Judit; Krizbai, István A; Szegletes, Zsolt; Váró, György

    2012-02-01

    Mechanical parameters play a crucial role in proper cellular functions. This article examines the process of the appearance and breaking of adhesion forces during contact between the confluent cerebral endothelial cell layer and a melanoma cell attached to a tipless cantilever. This adhesion is the initial phase of melanoma transmigration through the endothelial cell layer. Taking the force measurement, if the contact was prolonged for several seconds, a decrease in the load force was observed, which corresponds to stress relaxation of the cells. The dependence of adhesion force and stress relaxation on dwell time showed a saturation-like behavior. These stress relaxation curves could be fitted with the sum of two exponentials, suggesting that two independent processes take place simultaneously. The breakup of the adhesion during the retraction of the cantilever with the attached melanoma cell is not continuous but shows jumps. Between living endothelial and melanoma cells, a minimum jump size of about 20 pN could be determined. The minimum jump is independent of the dwell time and load force. It seems to be the elementary binding force between these two cell types. In case of fixed endothelial cells, the adhesion force was strongly decreased and the jumps disappeared, whereas the stress relaxation did not show considerable change upon fixation. PMID:22038122

  6. Treatment of vemurafenib-resistant SKMEL-28 melanoma cells with paclitaxel.

    PubMed

    Thang, Nguyen Dinh; Nghia, Phan Tuan; Kumasaka, Mayuko Y; Yajima, Ichiro; Kato, Masashi

    2015-01-01

    Vemurafenib has recently been used as drug for treatment of melanomas with BRAFV600E mutation. Unfortunately, treatment with only vemurafenib has not been sufficiently effective, with recurrence after a short period. In this study, three vemurafenib-resistant BRAFV600E melanoma cell lines, A375PR, A375MR and SKMEL-28R, were established from the original A375P, A375M and SKMEL-28 cell lines. Examination of the molecular mechanisms showed that the phosphorylation levels of MEK and ERK, which play key roles in the RAS/RAF/MEK/ERK signaling pathway, were reduced in these three cell lines, with increased phosphorylation levels of pAKTs limited to SKMEL-28R cells. Treatment of SKMEL-28R cells with 100 nM paclitaxel resulted in increased apoptosis and decreased cellular proliferation, invasion and colony formation via reduction of expression levels of EGFR and pAKTs. Moreover, vemurafenib-induced pAKTs in SKMEL-28R were decreased by treatment with an AKT inhibitor, MK-2206. Taken together, our results revealed that resistance mechanisms of BRAFV600E-mutation melanoma cells to vemurafenib depended on the cell type. Our results suggested that paclitaxel should be considered as a drug in combination with vemurafenib to treat melanoma cells. PMID:25684511

  7. Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach.

    PubMed

    Zamani-Ahmadmahmudi, Mohamad

    2016-08-01

    Canine breast cancer was considered as an ideal model of comparative oncology for the human breast cancer, as there is significant overlap between biological and clinical characteristics of the human and canine breast cancer. We attempt to clarify expression profile of the embryonic stem cell (ES) gene signatures in canine breast cancer. Using microarray datasets (GSE22516 and GSE20718), expression of the three major ES gene signatures (modules or gene-sets), including Myc, ESC-like, and PRC modules, was primarily analyzed through Gene-Set Enrichment Analysis (GSEA) method in tumor and healthy datasets. For confirmation of the primary results, an additional 13 ES gene-sets which were categorized into four groups including ES expressed (ES exp1 and ES exp2), NOS targets (Nanog targets, Oct4 targets, Sox2 targets, NOS targets, and NOS TFs), Polycomb targets (Suz12 targets, Eed targets, H3K27 bound, and PRC2 targets), and Myc targets (Myc targets1, and Myc targets2) were tested in the tumor and healthy datasets. Our results revealed that there is a valuable overlap between canine and human breast cancer ES gene-sets expression profile, where Myc and ESC-like modules were up-regulated and PRC module was down-regulated in metastatic canine mammary gland tumors. Further analysis of the secondary gene-sets indicated overexpression of the ES expressed, NOS targets (Nanog targets, Oct4 targets, Sox2 targets, and NOS targets), and Myc targets and underexpression of the Polycomb targets in metastatic canine breast cancer. PMID:27307036

  8. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    PubMed Central

    Kurgyis, Zsuzsanna; Kemény, Lajos V.; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  9. Malignant melanoma (image)

    MedlinePlus

    ... tumor that involves the skin cells that produce pigment (melanin). The risk of melanoma increases with age, but frequently affects young, otherwise healthy people. Melanoma is the number one cause of cancer death in women aged 25 to 30.

  10. Genetic Engineering of T cells to Target HERV-K, an Ancient Retrovirus on Melanoma

    PubMed Central

    Krishnamurthy, Janani; Rabinovich, Brian A.; Mi, Tiejuan; Switzer, Kirsten C.; Olivares, Simon; Maiti, Sourindra N.; Plummer, Joshua B.; Singh, Harjeet; Kumaresan, Pappanaicken R.; Huls, Helen M.; Wang-Johanning, Feng; Cooper, Laurence J.N.

    2015-01-01

    Purpose The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor- associated antigen expressed on melanoma, but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T cell surface, such that they target tumors in advanced stages of melanoma. Experimental Design Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immuno-histochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR+ T cells were expanded ex vivo on activating and propagating cells (AaPC), and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR+ T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. Results We detected HERV-K env protein on melanoma, but not in normal tissues. After electroporation of T cells and selection on HERV-K+ AaPC, over 95% of genetically-modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env+ tumor targets in an antigen specific manner. Even though there is apparent shedding of this TAA from tumor cells which can be recognized by HERV-K env-specific CAR+ T cells, we observed a significant anti-tumor effect. Conclusion Adoptive cellular immunotherapy with HERV-K env-specific CAR+ T cells represents a clinically-appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. PMID:25829402

  11. Proliferative responses to canine thyroglobulin of peripheral blood mononuclear cells from hypothyroid dogs.

    PubMed

    Tani, Hiroyuki; Nabetani, Tomoyo; Sasai, Kazumi; Baba, Eiichiroh

    2005-04-01

    The immune responses of hypothyroid dogs to canine thyroglobulin (cTg) were evaluated for the proliferative ability of peripheral blood mononuclear cells (PBMC). PBMC from three hypothyroid dogs with high titers of thyroglobulin autoantibody (TgAA) and 3 clinically normal dogs were cultured with 5, 10, or 20 microg/ml of cTg for 72 hr. The proliferative responses of the cells were determined by the level of incorporated BrdU. The numbers of cells expressing Thy-1, CD4, CD8 and IgG in the PBMC were counted by the immunofluorescence method. Proliferative responses to cTg were observed in the cells from hypothyroid dogs. The number of cells expressing IgG and CD8 in the hypothyroid dogs tended to be high compared with the clinically normal dogs. The CD4+ cells in cultures from hypothyroid dogs increased depending upon the amount of cTg. There was a significant (P<0.05) positive correlation between the number of CD4+ cells and the concentration of cTg in the cultures from hypothyroid dogs. These findings suggest a possible relationship between canine hypothyroidism and cellular immunity. Loss of self tolerance to thyroid antigens in CD4+ T cells may play an important role in the development of canine hypothyroidism. PMID:15876785

  12. Hormone Conjugated with Antibody to CD3 Mediates Cytotoxic T Cell Lysis of Human Melanoma Cells

    NASA Astrophysics Data System (ADS)

    Liu, Margaret Ann; Nussbaum, Samuel R.; Eisen, Herman N.

    1988-01-01

    Cytotoxic T lymphocytes can be activated by antibodies to their antigen-specific receptor complex (TCR-CD3) to destroy target cells, regardless of the specificity of the cytotoxic T cells. A novel hormone-antibody conjugate, consisting of an analog of melanocyte-stimulating hormone chemically coupled to a monoclonal antibody to CD3, the invariant component of the T cell receptor complex, was used to target human melanoma cells for destruction by human cytotoxic T lymphocytes that bear no specificity for the tumor cells. As targeting components of such anti-CD3 conjugates, hormones or growth factors are expected to prove more effective than antibodies to tumor-associated antigens in focusing the destructive activity of cytotoxic T cells on tumor target cells.

  13. Bioactive proanthocyanidins inhibit growth and induce apoptosis in human melanoma cells by decreasing the accumulation of β-catenin

    PubMed Central

    VAID, MUDIT; SINGH, TRIPTI; PRASAD, RAM; KATIYAR, SANTOSH K.

    2016-01-01

    Melanoma is a highly aggressive form of skin cancer with poor survival rate. Aberrant activation of Wnt/β-catenin has been observed in nearly one-third of human melanoma cases thereby indicating that targeting Wnt/β-catenin signaling could be a promising strategy against melanoma development. In the present study, we determined chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on the growth of melanoma cells and validated their protective effects in vivo using a xenograft mouse model, and assessed if β-catenin is the target of GSP chemotherapeutic effect. Our in vitro data show that treatment of A375 and Hs294t human melanoma cells with GSPs inhibit the growth of melanoma cells, which was associated with the reduction in the levels of β-catenin. Administration of dietary GSPs (0.2 and 0.5%, w/w) in supplementation with AIN76A control diet significantly inhibited the growth of melanoma tumor xenografts in nude mice. Furthermore, dietary GSPs inhibited the xenograft growth of Mel928 (β-catenin-activated), while did not inhibit the xenograft growth of Mel1011 (β-catenin-inactivated) cells. These observations were further verified by siRNA knockdown of β-catenin and forced overexpression of β-catenin in melanoma cells using a cell culture model. PMID:26676402

  14. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study.

    PubMed

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-06-01

    Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-green fluorescence protein fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by fluorescence-activated cell sorter. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. PMID:19175523

  15. Theranostic Properties of a Survivin-Directed Molecular Beacon in Human Melanoma Cells

    PubMed Central

    Carpi, Sara; Fogli, Stefano; Giannetti, Ambra; Adinolfi, Barbara; Tombelli, Sara; Da Pozzo, Eleonora; Vanni, Alessia; Martinotti, Enrica; Martini, Claudia; Breschi, Maria Cristina; Pellegrino, Mario

    2014-01-01

    Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment. PMID:25501971

  16. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells

    PubMed Central

    Beck, Daniela; Niessner, Heike; Smalley, Keiran S.M.; Flaherty, Keith; Paraiso, Kim H.T.; Busch, Christian; Sinnberg, Tobias; Vasseur, Sophie; Iovanna, Juan Lucio; Drießen, Stefan; Stork, Björn; Wesselborg, Sebastian; Schaller, Martin; Biedermann, Tilo; Bauer, Jürgen; Lasithiotakis, Konstantinos; Weide, Benjamin; Eberle, Jürgen; Schittek, Birgit; Schadendorf, Dirk; Garbe, Claus; Kulms, Dagmar; Meier, Friedegund

    2013-01-01

    The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase (MAPK) signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of anti-apoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein GRP78, increased the abundance of the spliced isoform of the transcription factor X-box protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein ATF4 significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance. PMID:23362240

  17. Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells.

    PubMed

    Minichsdorfer, Christoph; Wasinger, Christine; Sieczkowski, Evelyn; Atil, Bihter; Hohenegger, Martin

    2015-08-01

    The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses. PMID:26020489

  18. Transplantation and Magnetic Resonance Imaging of Canine Neural Progenitor Cell Grafts in the Postnatal Dog Brain

    PubMed Central

    Walton, Raquel M.; Magnitsky, Sergey G.; Seiler, Gabriela S.; Poptani, Harish; Wolfe, John H.

    2009-01-01

    Cellular transplantation in the form of bone marrow has been one of the primary treatments of many lysosomal storage diseases (LSDs). Although bone marrow transplantation can help central nervous system manifestations in some cases, it has little impact in many LSD patients. Canine models of neurogenetic LSDs provide the opportunity for modeling central nervous system transplantation strategies in brains that more closely approximate the size and architectural complexity of the brains of children. Canine olfactory bulb-derived neural progenitor cells (NPCs) isolated from dog brains were expanded ex vivo and implanted into the caudate nucleus/thalamus or cortex of allogeneic dogs. Canine olfactory bulb-derived NPCs labeled with micron-sized superparamagnetic iron oxide particles were detected by magnetic resonance imaging both in vivo and postmortem. Grafts expressed markers of NPCs (i.e. nestin and glial fibrillary acidic protein), but not the neuronal markers Map2ab or β-tubulin III. The NPCs were from dogs with the LSD mucopolysaccharidosis VII, which is caused by a deficiency of β-glucuronidase. When mucopolysaccharidosis VII canine olfactory bulb-NPCs that were genetically corrected with a lentivirus vector ex vivo were transplanted into mucopolysaccharidosis VII recipient brains, they were detected histologically by β-glucuronidase expression in areas identified by antemortem magnetic resonance imaging tracking. These results demonstrate the potential for ex vivo stem cell-based gene therapy and noninvasive tracking of therapeutic grafts in vivo. PMID:18800012

  19. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    PubMed Central

    2010-01-01

    Background It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. Methods A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma) and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER), progesterone receptor (PgR), high molecular weight cytokeratin (34βE-12), E-cadherin, Ki-67, HER-2 and P53) was perfomed. Results Columnar cell lesions were identified in 67 (53.1%) of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2%) were without and 26 (38.8%) with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%). Sixty (89.5%) of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors). The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Conclusions Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions. PMID:20178635

  20. The antiprogestins mifepristone and onapristone reduce cell proliferation in the canine mammary carcinoma cell line CMT-U27.

    PubMed

    Guil-Luna, Silvia; Hellmén, Eva; Sánchez-Céspedes, Raquel; Millán, Yolanda; Martín de las Mulas, Juana

    2014-07-01

    Canine mammary tumours (CMTs) represent nearly half of all tumours in female dogs and some 50% have malignant behaviour. Simple epithelial carcinomas have shorter disease free periods after surgery and a higher reduction of the proliferation index reduction after antiprogestin aglepristone treatment in vivo related to the expression of progesterone receptors (PR). These findings make simple carcinomas good candidates for endocrine therapy. To further explore this possibility, the effects of the antiprogestins mifepristone (RU486) and onapristone (ZK299) on cell viability and PR expression of the canine mammary carcinoma cell line isolated from a simple epithelial carcinoma CMT-U27 were studied. Twenty five percent of CMT-U27 control cells expressed PR. RU486 (p<0.05) and ZK299 (p<0.05) reduced the number of viable cells (WST-8 test) at 24h but only the latter treatment reduced significantly PR expression in viable tumour cells at 24h of incubation. The results suggest that both RU486 and ZK299 induce a decrease in the number of viable CMT-U27 tumour cells with different effects on PR expression. The canine mammary carcinoma cell line CMT-U27 is sensitive to the effects of antiprogestins and may serve to further explore the role of these drugs in canine mammary carcinomas. PMID:24500783

  1. Comparison of melanoma antigens in whole tumor vaccine to those from IIB-MEL-J cells.

    PubMed

    McGee, J M; Patten, M R; Malnar, K F; Price, J A; Mayes, J S; Watson, G H

    1999-06-01

    Immunotherapy for melanoma shows promise. Our previous whole tumor (WT) vaccine was noted to have positive clinical effects. We have now developed a new, safer melanoma vaccine that is derived from IIB-MEL-J tissue culture (TC) cells. In this study, we compare by Western blot analyses the antigens in the WT vaccine to antigens in the TC vaccine. Sera from 12 WT vaccine recipients, 8 melanoma patients who received no immunotherapy, and 8 controls served as a source of antibodies to investigate potential antigens in the vaccines. Three major antigenic peptides with approximate molecular weighs of 46, 40, and 36 kDA were present in both vaccines, while two other antigenic peptides with approximate molecular weighs of 68 and 48 kDA were present only in the TC vaccine. The reaction was similar between the patients who received the WT vaccine and those who did not receive the vaccine. Some of the individuals who did not have melanoma showed some reaction, but not to the extent of the melanoma patients. The intensity of immunostaining was greater for the TC vaccine when compared to the WT vaccine, indicating that these proteins are in a higher concentration in the TC vaccine. This new vaccine from IIB-MEL-J tissue culture cells provides a higher yield and a much more consistent source of potentially clinically relevant antigens without risk of infection or contamination by other irrelevant materials. PMID:10850304

  2. Blockade of FLT4 suppresses metastasis of melanoma cells by impaired lymphatic vessels.

    PubMed

    Lee, Ji Yoon; Hong, Seok-Ho; Shin, Minsang; Heo, Hye-Ryeon; Jang, In Ho

    2016-09-16

    The metastatic spread of tumor cells via lymphatic vessels affects the relapse of tumor patients. New lymphatic vessel formation, including lymphangiogenesis, is promoted in the tumor environment. The lymphangiogenic factor VEGF-C can mediate lymphatic vessel formation and induce tumor metastasis by binding with FLT4. In melanoma, metastasis via lymphatics such as lymph nodes is one of the main predictors of poor outcome. Thus, we investigated whether blockade of FLT4 can reduce metastasis via the suppression of lymphatic capillaries. Proliferative lymphatic capillaries in melanoma were estimated by immunohistochemistry using FLT4 antibody after the injection of the FLT4 antagonist MAZ51. The numbers of tumor modules in metastasised lungs were calculated by gross examination and lymphatic related factors were examined by qRT-PCR. MAZ51 injection resulted in the suppression of tumor size and module number and the inhibition of proliferative lymphatic vessels in the intratumoral region in the lung and proliferating melanoma cells in the lung compared to those of untreated groups. Additionally, high FLT4 and TNF-alpha were detected in melanoma-induced tissue, while lymphatic markers such as VEGF-C, FLT4 and Prox-1 were significantly decreased in MAZ51 treated groups, implying that anti-lymphangiogenesis by MAZ51 may provide a potential strategy to prevent tumor metastasis in melanoma and high number of lymphatic capillaries could be used diagnosis for severe metastasis. PMID:27507214

  3. Cutaneous amelanotic signet-ring cell malignant melanoma with interspersed myofibroblastic differentiation in a young cat.

    PubMed

    Hirz, Manuela; Herden, Christiane

    2016-07-01

    The diagnosis of malignant melanoma can be difficult because these tumors can be amelanotic and may contain diverse variants and divergent differentiations, of which the signet-ring cell subtype is very rare and has only been described in humans, dogs, cats, and a hamster. We describe herein histopathologic and immunohistochemical approaches taken to diagnose a case of signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. A tumor within the abdominal skin of a 2-year-old cat was composed of signet-ring cells and irregularly interwoven streams of spindle cells. Both neoplastic cell types were periodic-acid-Schiff, Fontana, and Sudan black B negative. Signet-ring cells strongly expressed vimentin and S100 protein. Spindle cells strongly expressed vimentin and smooth muscle actin; some cells expressed S100, moderately neuron-specific enolase, and others variably actin and desmin. A few round cells expressed melan A, and a few plump spindle cells expressed melan A and PNL2, confirming the diagnosis of amelanotic signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. Differential diagnoses were excluded, including signet-ring cell forms of adenocarcinomas, lymphomas, liposarcomas, leiomyosarcomas, squamous cell carcinomas, basal cell carcinomas, and adnexal tumors. PMID:27154314

  4. Aloin enhances cisplatin antineoplastic activity in B16-F10 melanoma cells by transglutaminase-induced differentiation.

    PubMed

    Tabolacci, Claudio; Rossi, Stefania; Lentini, Alessandro; Provenzano, Bruno; Turcano, Lorenzo; Facchiano, Francesco; Beninati, Simone

    2013-01-01

    Aloin, a natural anthracycline from aloe plant, is a hydroxyanthraquinone derivative shown to have antitumor properties. This study demonstrated that aloin exerted inhibition of cell proliferation, adhesion and invasion abilities of B16-F10 melanoma cells under non-cytotoxic concentrations. Furthermore, aloin induced melanoma cell differentiation through the enhancement of melanogenesis and transglutaminase activity. To improve the growth-inhibiting effect of anticancer agents, we found that the combined treatment of cells with aloin and low doses of cisplatin increases the antiproliferative activity of aloin. The results suggest that aloin possesses antineoplastic and antimetastatic properties, exerted likely through the induction of melanoma cell differentiation. PMID:22139409

  5. MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines

    PubMed Central

    Vultur, Adina; Villanueva, Jessie; Krepler, Clemens; Rajan, Geena; Chen, Quan; Xiao, Min; Li, Ling; Gimotty, Phyllis A.; Wilson, Melissa; Hayden, James; Keeney, Frederick; Nathanson, Katherine L.; Herlyn, Meenhard

    2013-01-01

    Elevated activity of the MAPK signaling cascade is found in the majority of human melanomas and is known to regulate proliferation, survival, and invasion. Current targeted therapies focus on decreasing the activity of this pathway; however, we do not fully understand how these therapies impact tumor biology, especially given that melanoma is a heterogeneous disease. Using a three-dimensional (3D), collagen-embedded spheroid melanoma model, we observed that MEK and BRAF inhibitors can increase the invasive potential of approximately 20% of human melanoma cell lines. The invasive cell lines displayed increased receptor tyrosine kinase (RTK) activity and activation of the Src/FAK/STAT3 signaling axis, also associated with increased cell-to-cell adhesion and cadherin engagement following MEK inhibition. Targeting various RTKs, Src, FAK, and STAT3 with small molecule inhibitors in combination with a MEK inhibitor prevented the invasive phenotype, but only STAT3 inhibition caused cell death in the 3D context. We further show that STAT3 signaling is induced in BRAF-inhibitor resistant cells. Our findings suggest that MEK and BRAF inhibitors can induce STAT3 signaling, causing potential adverse effects such as increased invasion. We also provide the rationale for the combined targeting of the MAPK pathway along with inhibitors of RTKs, SRC, or STAT3 to counteract STAT3-mediated resistance phenotypes. PMID:23624919

  6. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line.

    PubMed

    Dana, N; Javanmard, Sh Haghjooy; Rafiee, L

    2015-01-01

    In the present study possible effects of black pomegranate peel extract (PPE) on the B16F10 melanoma cells proliferation and Human Umbilical Vein Endothelial Cells (HUVECs) angiogenesis were investigated. PPE was added into the cell lines (B16F10 and HUVECs) media with different concentrations (10-450 μg/ml). After 48 h, the cell survival was measured by 3-(Dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Angiogenesis was investigated by matrigel assay (PPE (200, 300, 400 μg/ml)); HUVECs, vascular endothelial growth factor (VEGF) mRNA expression was detected by quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) assay. VEGF concentration in culture medium of HUVECs was determined by enzyme-linked immunosorbent assay (ELISA). PPE had positive anti proliferative effect on melanoma cells in a dose-dependent manner, but not on HUVECs. The matrigel assay results indicated that PPE significantly inhibited length, size and junction of the tube like structures (P<0.05). VEGF mRNA expression and concentration levels in culture medium of PPE treated HUVECs reduced significantly in a concentration-dependent manner (P<0.05). Simultaneous inhibition of melanoma cell proliferation and angiogenesis proposed that, PPE can be a good candidate against melanoma development. Based on the results, PPE could effectively suppress angiogenesis potentially through a VEGF dependent mechanism. Further studies are needed to confirm these results. PMID:26487888

  7. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line

    PubMed Central

    Dana, N.; Javanmard, Sh. Haghjooy; Rafiee, L.

    2015-01-01

    In the present study possible effects of black pomegranate peel extract (PPE) on the B16F10 melanoma cells proliferation and Human Umbilical Vein Endothelial Cells (HUVECs) angiogenesis were investigated. PPE was added into the cell lines (B16F10 and HUVECs) media with different concentrations (10–450 μg/ml). After 48 h, the cell survival was measured by 3-(Dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Angiogenesis was investigated by matrigel assay (PPE (200, 300, 400 μg/ml)); HUVECs, vascular endothelial growth factor (VEGF) mRNA expression was detected by quantitative reverse transcriptase–polymerase chain reaction (QRT-PCR) assay. VEGF concentration in culture medium of HUVECs was determined by enzyme-linked immunosorbent assay (ELISA). PPE had positive anti proliferative effect on melanoma cells in a dose-dependent manner, but not on HUVECs. The matrigel assay results indicated that PPE significantly inhibited length, size and junction of the tube like structures (P<0.05). VEGF mRNA expression and concentration levels in culture medium of PPE treated HUVECs reduced significantly in a concentration-dependent manner (P<0.05). Simultaneous inhibition of melanoma cell proliferation and angiogenesis proposed that, PPE can be a good candidate against melanoma development. Based on the results, PPE could effectively suppress angiogenesis potentially through a VEGF dependent mechanism. Further studies are needed to confirm these results. PMID:26487888

  8. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  9. Novel Pyrrolidine Diketopiperazines Selectively Inhibit Melanoma Cells via Induction of Late-Onset Apoptosis

    PubMed Central

    2015-01-01

    A common liability of cancer drugs is toxicity to noncancerous cells. Thus, molecules are needed that are potent toward cancer cells while sparing healthy cells. The cost of traditional cell-based HTS is dictated by the library size, which is typically in the hundreds of thousands of individual compounds. Mixture-based combinatorial libraries offer a cost-effective alternative to single-compound libraries while eliminating the need for molecular target validation. Presently, lung cancer and melanoma cells were screened in parallel with healthy cells using a mixture-based library. A novel class of compounds was discovered that selectively inhibited melanoma cell growth via apoptosis with submicromolar potency while sparing healthy cells. Additionally, the cost of screening and biological follow-up experiments was significantly lower than in typical HTS. Our findings suggest that mixture-based phenotypic HTS can significantly reduce cost and hit-to-lead time while yielding novel compounds with promising pharmacology. PMID:24471466

  10. Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment

    PubMed Central

    Gray, Elin S; Reid, Anna L; Bowyer, Samantha; Calapre, Leslie; Siew, Kelvin; Pearce, Robert; Cowell, Lester; Frank, Markus H; Millward, Michael; Ziman, Mel

    2015-01-01

    Metastatic melanoma is a highly heterogeneous tumor; thus, methods to analyze tumor-derived cells circulating in blood should address this diversity. Taking this into account, we analyzed, using multiparametric flow cytometry, the co-expression of the melanoma markers melanoma cell adhesion molecule and melanoma-associated chondroitin sulphate proteoglycan and the tumor-initiating markers ATP-binding cassette sub-family B member 5 (ABCB5), CD271, and receptor activator of NF-κβ (RANK) in individual circulating tumor cells (CTCs) from 40 late-stage (III–IV) and 16 early-stage (I–II) melanoma patients. CTCs were heterogeneous within and between patients, with limited co-expression between the five markers analyzed. Analysis of patient matched blood and metastatic tumors revealed that ABCB5 and RANK subpopulations are more common among CTCs than in the solid tumors, suggesting a preferential selection for these cells in circulation. Pairwise comparison of CTC subpopulations longitudinally before and 6–13 weeks after treatment initiation showed that the percentage of RANK+ CTCs significantly increased in the patients undergoing targeted therapy (N=16, P<0.01). Moreover, the presence of ⩾5 RANK+ CTCs in the blood of patients undergoing targeted therapies was prognostic of shorter progression-free survival (hazards ratio 8.73, 95% confidence interval 1.82–41.75, P<0.01). Taken together, our results provide evidence of the heterogeneity among CTC subpopulations in melanoma and the differential response of these subpopulations to targeted therapy. PMID:25830652

  11. BRAFV600E immunopositive Melanomas Show Low Frequency of Heterogeneity and Association With Epithelioid Tumor Cells

    PubMed Central

    Verlinden, Ivana; van den Hurk, Karin; Clarijs, Ruud; Willig, Arjan P.; Stallinga, Cecile M.H.A.; Roemen, Guido M.J.M.; van den Oord, Joost J.; zur Hausen, Axel; Speel, Ernst-Jan M.; Winnepenninckx, Véronique J.L.

    2014-01-01

    Abstract Treatment of BRAFV600E-mutant melanoma by small molecule inhibitors that target BRAF or MEK kinases is increasingly used in clinical practice and significantly improve patient outcome. However, patients eventually become resistant and therapeutic improvement is required. Molecular diversity within individual tumors (intratumor heterogeneity) and between tumors within a single patient (intrapatient heterogeneity) poses a significant challenge to precision medicine. Using immunohistochemistry, we determined the extent of BRAFV600E intratumor and intrapatient heterogeneity and the influence of morphological heterogeneity in a large series of 171 melanomas of 81 patients. The BRAFV600E mutation rate found in our melanoma series is 44%, with none of 22 (0%) melanoma in situ, 23 of 56 (41%) primary tumors, 28 of 59 (48%) regional metastases, and 24 of 34 (71%) distant metastases harboring the mutation. In general, a diffuse homogeneous immunostaining was seen, even in tumors consisting of more than one cell type, that is, epithelioid, spindle, and/or small cell types. Nevertheless, BRAFV600E-mutant melanomas more often had a purely epithelioid cell population (P = 0.063), that is more evident among distant metastases (P = 0.014). Only two of 75 (3%) mutated specimens (one primary and one metastasis) displayed heterogeneous BRAFV600E expression. The primary tumor was also morphologically heterogeneous and exclusively displayed BRAFV600E in the epithelioid component, confirming an association between BRAFV600E and epithelioid cells. Twenty-eight of 30 patients (93%) had concordant BRAF mutation status between their tumors. Taken together, BRAFV600E intratumor and intrapatient heterogeneity in melanoma is diminutive, nevertheless, the identified exceptions will have important implications for the clinical management of this disease. PMID:25526463

  12. RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells.

    PubMed

    Berger, Anja; Quast, Sandra-Annika; Plötz, Michael; Kuhn, Nicholas-Frederik; Trefzer, Uwe; Eberle, Jürgen

    2014-02-01

    Mutated BRAF represents a critical oncogene in melanoma, and selective inhibitors have been approved for melanoma therapy. However, the molecular consequences of RAF inhibition in melanoma cells remained largely elusive. Here, we investigated the effects of the pan-RAF inhibitor L-779,450, which inhibited cell proliferation both in BRAF-mutated and wild-type melanoma cell lines. It furthermore enhanced apoptosis in combination with the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and overcame TRAIL resistance in melanoma cells. Enhanced apoptosis coincided with activation of mitochondrial pathways, seen by loss of mitochondrial membrane potential and release of cytochrome c, Smac (second mitochondria-derived activator of caspases), and apoptosis-inducing factor (AIF). Subsequently, caspase-9 and -3 were activated. Apoptosis induction by L-779,450/TRAIL was prevented by Bcl-2 overexpression and was dependent on Bax. Thus, activation of Bax by L-779,450 alone was demonstrated by Bax conformational changes, whereas Bak was not activated. Furthermore, the BH3-only protein Bim was upregulated in response to L-779,450. The significant roles of Smac, Bax, and Bim in this setting were proven by small interfering RNA (siRNA)-mediated knockdown experiments. L-779,450 also resulted in morphological changes indicating autophagy confirmed by the autophagy marker light chain 3-II (LC3-II). The pro-apoptotic effects of L-779,450 may explain the antitumor effects of RAF inhibition and may be considered when evaluating RAF inhibitors for melanoma therapy. PMID:23955071

  13. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  14. Immunotherapy against Metastatic Melanoma with Human iPS Cell-Derived Myeloid Cell Lines Producing Type I Interferons.

    PubMed

    Miyashita, Azusa; Fukushima, Satoshi; Nakahara, Satoshi; Kubo, Yosuke; Tokuzumi, Aki; Yamashita, Junji; Aoi, Jun; Haruta, Miwa; Senju, Satoru; Nishimura, Yasuharu; Jinnin, Masatoshi; Ihn, Hironobu

    2016-03-01

    In recent years, immunotherapy for advanced melanoma has been gaining increased attention. The efficacy of anti-cytotoxic T-lymphocyte antigen 4 antibodies, anti-programmed cell death 1 antibodies, and the BRAF(V600E) kinase inhibitor has been proven in metastatic melanoma. At the same time, adoptive cell transfer has significant effects against metastatic melanoma; however, it is difficult to apply on a broad scale because of the problems related to cell preparation. To overcome these problems, we developed immune cell therapy using induced pluripotent stem (iPS) cells. The benefit of our method is that a large number of cells can be readily obtained. We focused on macrophages for immune cell therapy because macrophage infiltration is frequently observed in solid cancers. In this study, the efficacy of human iPS cell-derived myeloid cell lines (iPS-ML) genetically modified to express type I IFNs against human melanoma cells was examined. The morphology, phagocytic ability, and surface markers of iPS-ML were similar to those of macrophages. The iPS-ML that express type I IFNs (iPS-ML-IFN) showed significant effects in inhibiting the growth of disseminated human melanoma cells in SCID mice. The infiltration of iPS-ML into the tumor nests was confirmed immunohistologically. The iPS-ML-IFNs increased the expression of CD169, a marker of M1 macrophages that can activate antitumor immunity. The iPS-ML-IFNs could infiltrate into tumor tissue and exert anticancer effects in the local tumor tissue. In conclusion, this method will provide a new therapeutic modality for metastatic melanoma. Cancer Immunol Res; 4(3); 248-58. ©2015 AACR. PMID:26714554

  15. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells.

    PubMed

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S; Chang, Alfred E; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  16. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  17. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells.

    PubMed

    Maduray, K; Odhav, B; Nyokong, T

    2012-03-01

    Photodynamic therapy is a medical treatment that uses an inactive dye/drug and lasers as a light source to activate the dye/drug to produce a toxic form of oxygen that destroys the cancer cells. This study aimed at investigating the cytotoxic effects of different concentrations of aluminum tetrasulfophthalocyanines in its inactive and active state (laser induced) on melanoma skin cancer cells, healthy normal skin fibroblast and keratinocyte cells. Experimentally, 3 × 10⁴ cells/ml were seeded in 24-well plates before treatment with different concentrations of aluminum tetrasulfophthalocyanines. After 2h, cells were irradiated with a light dose of 4.5 J/cm². Post-irradiated cells were incubated for 24h before cell viability was measured using the CellTiter-Blue Viability Assay. Results showed that aluminum tetrasulfophthalocyanines at high concentrations were cytotoxic to melanoma cells in the absence of laser activation. In the presence of laser activation of aluminum tetrasulfophthalocyanines at a concentration of 40 μg/ml decreased cell viability of melanoma cells to 45%, fibroblasts to 78% and keratinocytes to 73%. At this photosensitizing concentration of aluminum tetrasulfophthalocyanines the efficacy of the treatment light dose 4.5 J/cm² and the cell death mechanism induced by photoactivated aluminum tetrasulfophthalocyanines was evaluated. A light dose of 4.5 J/cm² was more efficient in killing a higher number of melanoma cells and a lower number of fibroblast and keratinocyte cells than the other light doses of 2.5 J/cm², 7.5 J/cm² and 10.5 J/cm². Apoptosis features such as blebbing, nucleus condensation, nucleus fragmentation and the formation of apoptotic bodies were seen in the photodynamic therapy treated melanoma skin cancer cells. This in vitro photodynamic therapy study concludes that using aluminum tetrasulfophthalocyanines at a photosensitizing concentration of 40 μg/ml in combination with a laser dose of 4.5 J/cm² was potentially lethal

  18. Characterization and Comparison of Canine Multipotent Stromal Cells Derived from Liver and Bone Marrow

    PubMed Central

    Malagola, Ermanno; Teunissen, Michelle; van der Laan, Luc J.W.; Verstegen, Monique M.A.; Schotanus, Baukje A.; van Steenbeek, Frank G.; Penning, Louis C.; van Wolferen, Monique E.; Tryfonidou, Marianna A.

    2016-01-01

    Liver-derived multipotent stromal cells (L-MSCs) may prove preferable for treatment strategies of liver diseases, in comparison to the widely studied bone marrow-derived MSCs (BM-MSCs). Canines are a large animal model, in which the pathologies of liver diseases are similar to man. This study further promotes the implementation of canine models in MSC-based treatments of liver diseases. L-MSCs were characterized and compared to BM-MSCs from the same individual. Both cell types demonstrated a spindle-shaped fibroblast-like morphology, possessed the same growth potential, and demonstrated similar immunomodulation gene expression of CD274, PTGS-1, and PTGS-2. Marked differences in cell surface markers, CD105 and CD146, distinguished these two cell populations, and L-MSCs retained a liver-specific imprinting, observed by expression of CK18 and CK19. Finally, both populations differentiated toward the osteogenic and adipogenic lineage; however, L-MSCs failed to differentiate into the chondrogenic lineage. In conclusion, characterization of canine L-MSCs and BM-MSCs demonstrated that the two cell type populations are highly comparable. Although it is still unclear which cell source is preferred for clinical application in liver treatment strategies, this study provides a foundation for future controlled studies with MSC therapy in various liver diseases in dogs before their application in man. PMID:26462417

  19. A Comparative Study of Adhesion of Melanoma and Breast Cancer Cells to Blood and Lymphatic Endothelium

    PubMed Central

    Safuan, Sabreena; Storr, Sarah J.; Patel, Poulam M.

    2012-01-01

    Abstract Background Lymphovascular invasion (LVI) is an important step in the metastatic cascade; tumor cell migration and adhesion to blood and lymphatic vessels is followed by invasion through the vessel wall and subsequent systemic spread. Although primary breast cancers and melanomas have rich blood vascular networks, LVI is predominately lymphatic in nature. Whilst the adhesion of tumor cells to blood endothelium has been extensively investigated, there is a paucity of information on tumor cell adhesion to lymphatic endothelium. Methods and Results Breast cancer (MDA-MB-231 and MCF7) and melanoma (MeWo and SKMEL-30) cell adhesion to lymphatic (hTERT-LEC and HMVEC dLy Neo) and blood (HUVEC and hMEC-1) endothelial cells were assessed using static adhesion assays. The effect of inflammatory conditions, tumor necrosis factor-α (TNF-α) stimulation of endothelial and tumor cells, on the adhesive process was also examined. In addition, the effects of TNF-α stimulation on tumor cell migration was investigated using haplotaxis (scratch wound) assays. Breast cancer and melanoma cells exhibited higher levels of adhesion to blood compared to lymphatic endothelial cells (p<0.001). TNF-α stimulation of endothelial cells, or of tumor cells alone, did not significantly alter tumor–endothelial cell adhesion or patterns. When both tumor and endothelial cells were stimulated with TNF-α, a significant increase in adhesion was observed (p<0.01), which was notably higher in the lymphatic cell models (p<0.001). TNF-α-stimulation of all tumor cell lines significantly increased their migration rate (p<0.01). Conclusions Results suggest that metastasis resultant from lymphatic vessel-tumor cell adhesion may be modulated by cytokine stimulation, which could represent an important therapeutic target in breast cancer and melanoma. PMID:23215743

  20. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  1. Simvastatin exhibits antiproliferative effects on spheres derived from canine mammary carcinoma cells.

    PubMed

    Torres, Cristian G; Olivares, Araceli; Stoore, Caroll

    2015-05-01

    Mammary cancer is the most frequent type of tumor in the female canine. Treatments are mainly limited to surgery and chemotherapy; however, these tumors may develop clinical recurrence, metastasis and chemoresistance. The existence of a subpopulation of cancer cells with stemness features called cancer stem-like cells, may explain in part these characteristics of tumor progression. The statins, potent blockers of cholesterol synthesis, have also shown antitumor effects on cancer mammary cells, changes mediated by a decrease in the isoprenylation of specific proteins. Few studies have shown that simvastatin, a lipophilic statin, sensitizes cancer stem-like cells eliminating drug resistance. The aim of the present study was to evaluate the effects of simvastatin on spheres derived from CF41.Mg canine mammary tumor cells, which were characterized by phenotypic and functional analyses. Spheres exhibited characteristics of stemness, primarily expressing a CD44⁺/CD24⁻/low phenotype, displaying auto-renewal and relative chemoresistance. Exposure to simvastatin induced a decrease in the sphere-forming capacity and cell viability, accompanied by a concentration- and time-dependent increase in caspase-3/7 activity. In addition, modulation of β-catenin and p53 expression was observed. Simvastatin triggered a synergistic effect with doxorubicin, sensitizing the spheres to the cytotoxic effect exerted by the drug. Invasiveness of spheres was decreased in response to simvastatin and this effect was counteracted by the presence of geranylgeranyl pyrophosphate. Our results suggest that simvastatin targets canine mammary cancer stem-like cells, supporting its therapeutical application as a novel agent to treat canine mammary cancer. PMID:25778435

  2. PTEN regulates sensitivity of melanoma cells to RO4929097, the γ-secretase inhibitor.

    PubMed

    Nair, Jayasree S; Sheikh, Tahir; Ho, Alan L; Schwartz, Gary K

    2013-04-01

    De-regulated expression of components of the Notch signaling pathway is observed in malignant melanoma. This pathway is activated by catalytic cleavage of the Notch receptor by γ-secretase. Phase-I trials with RO4929097, a potent gamma secretase inhibitor (GSI), and other agents of this class have demonstrated clinical activity in patients with melanoma. An understanding of the mechanisms for de novo sensitivity and resistance to this class of drugs would be critical for future drug development. We treated a panel of Phosphatase and Tensin Homolog (PTEN)-null, -mutant and -wild-type human melanoma cell lines with RO4929097 and evaluated the efficacy alone and in combination with chemotherapy. Although cleaved Notch-1 formation was observed in all the cell lines, RO4929097-induced senescence or apoptosis was achieved only in PTEN-wild-type cell lines in which gamma-secretase inhibition with an induction of PTEN expression and decreased AKT/PKB (protein kinase B) phosphorylation in addition to transcriptional suppression at the Hairy and enhancer of split-1 (HES1) gene promoter. Overexpression of wild-type PTEN in PTEN-null and -mutant cell lines, and studies with isogenic breast cell lines that differ only in PTEN status, confirmed the importance of PTEN expression for conferring tumor cell susceptibility to RO4929097. Furthermore, in PTEN-expressing rapidly accelerated fibrosarcoma 1 (B-RAF)-mutant melanoma cells, RO4929097 enhanced the effect of temozolomide both in vitro and in vivo. These results indicate that tumor cell susceptibility to a GSI, whether alone or in combination with chemotherapy, are reliant upon reducing AKT phosphorylation and hence GSI in combination with chemotherapy may be useful as a new therapeutic approach in treating PTEN-wild-type melanoma. PMID:23564767

  3. Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells.

    PubMed

    Engesæter, Birgit O; Sathermugathevan, Menaka; Hellenes, Tina; Engebråten, Olav; Holm, Ruth; Flørenes, Vivi Ann; Mælandsmo, Gunhild M

    2011-07-01

    Melanoma is a highly aggressive malignant tumor with an exceptional ability to develop resistance and no curative therapy is available for patients with distant metastatic disease. The inhibitor of apoptosis protein (IAP) family has been related to therapy resistance in cancer. We examined the importance of the IAPs in the resistance to the commonly used chemotherapeutic agent dacarbazine (DTIC) and the apoptosis inducer TRAIL (TNF-related apoptosis inducing ligand) in malignant melanoma. The data presented show that the expression of IAPs is universal, concomitant and generally high in melanoma cell lines and in patient samples. Depleting IAP expression by siRNA tended to reduce cell viability, with XIAP reduction being the most efficient in all four cell lines examined (FEMX-1, LOX, SKMEL-28 and WM115). The combined treatment of XIAP siRNA and DTIC showed a weak improvement in two of four cell lines, while all four cell lines showed enhanced sensitivity towards TRAIL (AdhCMV-TRAIL) after XIAP depletion. In addition, cIAP-1, cIAP-2 and survivin down-regulation sensitized to TRAIL treatment in several of the cell lines. Cells exposed to TRAIL and XIAP siRNA showed increased DNA-fragmentation and cleavage of Bid, procaspase-8, -9, -7 and -3 and PARP, and change in the balance between pro- and anti-apoptotic proteins, indicating an enhanced level of apoptosis. Furthermore, the combined treatment reduced the ability of melanoma cells to engraft and form tumors in mice, actualizing the combination for future therapy of malignant melanoma. PMID:21508672

  4. Modulation of tumor growth by inhibitory Fcγ receptor expressed by human melanoma cells

    PubMed Central

    Cassard, Lydie; Cohen-Solal, Joël F.G.; Galinha, Annie; Sastre-Garau, Xavier; Mathiot, Claire; Galon, Jérôme; Dorval, Thierry; Bernheim, Alain; Fridman, Wolf H.; Sautès-Fridman, Catherine

    2002-01-01

    The efficacy of anti-tumor IgG reflects the balance between opposing signals mediated by activating and inhibitory Fcγ receptors (FcγRs) expressed by effector cells. Here, we show that human malignant melanoma cells express the inhibitory low-affinity Fcγ receptor FcγRIIB1 in 40% of tested metastases. When melanoma cells were grafted in nude mice, a profound inhibition of FcγRIIB1 tumor growth that required the intracytoplasmic region of the receptor was observed. IgG immune complexes (ICs) may be required for this inhibition, since sera from nude mice bearing tumors contained IgG that decreased the proliferation of FcγRIIB1-positive cells in vitro, and tumor development of FcγRIIB1-positive melanoma lines was not inhibited in antibody-defective severe combined immunodeficiency (SCID) mice. Passive immunization of SCID mice with anti–ganglioside GD2 antibody resulted in significant inhibition of growth of FcγRIIB1-positive tumors in an intracytoplasmic-dependent manner. Altogether, these data suggest that human melanoma cells express biologically active inhibitory FcγRIIB1, which regulates their development upon direct interaction with anti-tumor antibodies. Therefore, FcγR expression on human tumors may be one component of the efficacy of antibody-mediated therapies, and FcγR-positive tumors could be the most sensitive candidates for such treatments. PMID:12438452

  5. Effects of CT-Xp gene knock down in melanoma cell lines.

    PubMed

    Caballero, Otavia L; Cohen, Tzeela; Gurung, Sita; Chua, Ramon; Lee, Peishan; Chen, Yao-Tseng; Jat, Parmjit; Simpson, Andrew J G

    2013-04-01

    Cancer/testis (CT) genes are encoded by genes that are normally expressed only in the human germ line but which are activated in various malignancies. CT proteins are frequently immunogenic in cancer patients and their expression is highly restricted to tumors. They are thus important targets for anticancer immunotherapy. In several different tumor types, the expression of CT-X genes is associated with advanced disease and poor outcome, indicating that their expression might contribute to tumorigenesis. CT-X genes encoding members of the MAGE protein family on Xq28 have been shown to potentially influence the tumorigenic phenotype. We used small interfering RNA (siRNA) to investigate whether CT-X mapping to the short arm of the X-chromosome might also have tumorigenic properties and therefore be potentially targeted by functional inhibitors in a therapeutic setting. siRNAs specific to GAGE, SSX and XAGE1 were used in cell proliferation, migration and cell survival assays using cell lines derived from melanoma, a tumor type known to present high frequencies of expression of CT antigens. We found that of these, those specific to GAGE and XAGE1 most significantly impeded melanoma cell migration and invasion and those specific to SSX4 and XAGE1 decreased the clonogenic survival of melanoma cells. Our results suggest that GAGE, XAGE1 and SSX4 might each have a role in tumor progression and are possible therapeutic targets for the treatment of melanoma and other malignancies. PMID:23625514

  6. Dual role of sphingosine kinase-1 in promoting the differentiation of dermal fibroblasts and the dissemination of melanoma cells.

    PubMed

    Albinet, V; Bats, M-L; Huwiler, A; Rochaix, P; Chevreau, C; Ségui, B; Levade, T; Andrieu-Abadie, N

    2014-06-26

    Despite progress in the understanding of the biology and genetics of melanoma, no effective treatment against this cancer is available. The adjacent microenvironment has an important role in melanoma progression. Defining the molecular signals that control the bidirectional dialog between malignant cells and the surrounding stroma is crucial for efficient targeted therapy. Our study aimed at defining the role of sphingosine-1-phosphate (S1P) in melanoma-stroma interactions. Transcriptomic analysis of human melanoma cell lines showed increased expression of sphingosine kinase-1 (SPHK1), the enzyme that produces S1P, as compared with normal melanocytes. Such an increase was also observed by immunohistochemistry in melanoma specimens as compared with nevi, and occurred downstream of ERK activation because of BRAF or NRAS mutations. Importantly, migration of melanoma cells was not affected by changes in SPHK1 activity in tumor cells, but was stimulated by comparable modifications of S1P-metabolizing enzymes in cocultured dermal fibroblasts. Reciprocally, incubation of fibroblasts with the conditioned medium from SPHK1-expressing melanoma cells resulted in their differentiation to myofibroblasts, increased production of matrix metalloproteinases and enhanced SPHK1 expression and activity. In vivo tumorigenesis experiments showed that the lack of S1P in the microenvironment prevented the development of orthotopically injected melanoma cells. Finally, local tumor growth and dissemination were enhanced more efficiently by coinjection of wild-type skin fibroblasts than by fibroblasts from Sphk1(-/-) mice. This report is the first to document that SPHK1/S1P modulates the communication between melanoma cells and dermal fibroblasts. Altogether, our findings highlight SPHK1 as a potential therapeutic target in melanoma progression. PMID:23893239

  7. Immunohistochemical Expression of the Pluripotency Factor OCT4 in Canine Mast Cell Tumours.

    PubMed

    Vargas, T H M; Pulz, L H; Barra, C N; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Fukumasu, H; Nishiya, A T; Strefezzi, R F

    2015-11-01

    Cancer stem cells (CSCs) are related to malignancy and resistance to chemotherapy in several tumours. OCT4 is a 'pluripotency factor' that is expressed by these cells. The aim of the present study was to investigate OCT4 expression in canine cutaneous mast cell tumours (MCTs) by means of immunohistochemistry. Twenty-eight cases were evaluated and showed variable immunolabelling patterns. The dogs were treated by surgery alone and followed up for a minimum of 180 days. No significant difference was found between histopathological grades and similar results were obtained for mortality due to the disease and post-surgical survival. These preliminary results suggest that OCT4 expression is not a precise prognostic indicator for canine MCT. PMID:26460092

  8. NCR1 is an activating receptor expressed on a subset of canine NK cells.

    PubMed

    Grøndahl-Rosado, Christine; Boysen, Preben; Johansen, Grethe M; Brun-Hansen, Hege; Storset, Anne K

    2016-09-01

    Defining NK cells has been challenging in many veterinary species. Although several groups have described putative NK cell populations, there is still no consensus on a definition of NK cells in the dog. In the present study, canine NK cells are characterized as CD3(-)GranzymeB(+) cells, further divided into a NCR1(+) and a NCR1(-) subset. All dogs examined displayed both subsets in blood, although of quite variable magnitude. Following vaccination an increase was observed in the CD3(-) NCR1(-) cell population in blood, but not in the CD3(-) NCR1(+) population. Non-B non-T cell cultures stimulated with IL-2 and IL-15 were dominated by CD3(-)GranzymeB(+) cells after approximately 2 weeks and a large proportion of the CD3(-)GranzymeB(+) cells expressed NCR1. IL-12 stimulation lead to a further upregulation resulting in an almost uniform expression of NCR1. The cultured cells expressed MHC class II, showed a variable expression of CD8 and were negative for CD4 and CD21. The cultures were able to kill known NK cell targets, and NCR1 was shown to be a major activating receptor. A large proportion of the NCR1(+) cells, but none of the NCR1(-) cells, produced IFNγ in response to IL-12 stimulation. These results show that NCR1 defines two subsets of canine NK cells, likely to represent different activation stages, and that NCR1 acts as an activating receptor on canine NK cells. PMID:27436439

  9. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death.

    PubMed

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J; Lang, Dirk; Davids, Lester M

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  10. St John's Wort (Hypericum perforatum L.) Photomedicine: Hypericin-Photodynamic Therapy Induces Metastatic Melanoma Cell Death

    PubMed Central

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J.; Lang, Dirk; Davids, Lester M.

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  11. Genistein enhances the cisplatin-induced inhibition of cell growth and apoptosis in human malignant melanoma cells.

    PubMed

    Tamura, Shingo; Bito, Toshinori; Ichihashi, Masamitsu; Ueda, Masato

    2003-10-01

    Genistein, a naturally occurring isoflavone found chiefly in soybeans, has been reported to be a potent antitumor agent. Genistein is presumed to exert multiple effects related to the inhibition of cancer growth. Metastatic melanoma is a chemotherapy-refractory neoplasm. The present study was designed to explore the possible activity of genistein to inhibit the aberrant proliferation and to induce apoptosis of human malignant melanoma cells in cooperation with cisplatin treatment. Five human melanoma cell lines were utilized for these experiments. Genistein at physiologic concentrations (20 microM) did not induce apoptosis by itself but did enhance cisplatin-induced apoptosis in all five human melanoma cell lines tested. The enhanced susceptibility among the cell lines was diverse. Changes in the expression of two anti-apoptotic proteins, bcl-2 and bcl-xL, and one pro-apoptotic protein, apoptotic protease activating factor-1 (Apaf-1), were examined. Genistein alone or cisplatin alone generally did not alter bcl-2 expression or bcl-xL expression, but slightly increased Apaf-1 in some cell lines. The combined treatment with genistein and cisplatin significantly reduced bcl-2 and bcl-xL protein and increased Apaf-1 protein expression. These data suggest that genistein therapy may enhance the chemosensitivity of melanoma patients. PMID:12950722

  12. Melanoma Cells Break Down LPA to Establish Local Gradients That Drive Chemotactic Dispersal

    PubMed Central

    Muinonen-Martin, Andrew J.; Susanto, Olivia; Zhang, Qifeng; Smethurst, Elizabeth; Faller, William J.; Veltman, Douwe M.; Kalna, Gabriela; Lindsay, Colin; Bennett, Dorothy C.; Sansom, Owen J.; Herd, Robert; Jones, Robert; Machesky, Laura M.; Wakelam, Michael J. O.; Knecht, David A.; Insall, Robert H.

    2014-01-01

    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient. PMID:25313567

  13. ULTRASONOGRAPHIC FEATURES OF CANINE GASTROINTESTINAL STROMAL TUMORS COMPARED TO OTHER GASTROINTESTINAL SPINDLE CELL TUMORS.

    PubMed

    Hobbs, Joshua; Sutherland-Smith, James; Penninck, Dominique; Jennings, Samuel; Barber, Lisa; Barton, Bruce

    2015-01-01

    Canine gastrointestinal stromal tumors (GISTs) are a recent subtype of gastrointestinal spindle cell tumor recognized with the increasing use of immunohistochemistry. To our knowledge, no imaging features have been described in immunostochemically confirmed canine GISTs. The objective of this retrospective, cross-sectional study was to describe ultrasonographic features of canine GISTs compared with other spindle cell tumors. Thirty-seven dogs with an ultrasonographically visible gastrointestinal mass and a histopathologic diagnosis of spindle cell neoplasia were examined. Immunohistochemistry staining was performed for retrieved tissue samples to further differentiate the tumor type and each sample was interpreted by a single veterinary pathologist. Ultrasonographic features recorded examined included mass echogenicity, homogeneity, presence of cavitation, layer of origin, bowel wall symmetry, and loss of wall layering, location, size, vascularity, and evidence of perforation or ulceration. Tumor types included 19 GISTs, eight leiomyosarcomas, six leiomyomas, and four nonspecified sarcomas. Gastrointestinal stromal tumors were significantly more likely to be associated (P < 0.03) with abdominal effusion than other tumor types. There was overlap between the anatomical locations of all tumors types with the exception of the cecum where all eight tumors identified were GISTs. Besides location, there were no unique ultrasound features of GISTs that would allow distinction from other gastrointestinal spindle cell tumors. Similar to previous studies, GISTs appeared to be the most common spindle cell tumor associated with the cecum in our sample of dogs. The high frequency of abdominal effusion with GIST's was of unknown etiology could possibly have been due to septic peritonitis. PMID:25846814

  14. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    PubMed Central

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23690851

  15. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro.

    PubMed

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23690851

  16. Canine CD4+CD8+ double positive T cells in peripheral blood have features of activated T cells.

    PubMed

    Bismarck, Doris; Schütze, Nicole; Moore, Peter; Büttner, Mathias; Alber, Gottfried; Buttlar, Heiner v

    2012-10-15

    In dogs a CD4(+)CD8(+) double positive T cell subpopulation exists that has not been phenotypically defined yet. We demonstrate that canine CD4(+)CD8(+) T cells are mature CD1a(-) and TCRαβ(+) T cells. To analyse the activation potential of CD4(+)CD8(+) T cells, PBMC from dogs vaccinated against canine distemper virus (CDV) were re-stimulated with CDV. Upon antigen-specific stimulation, the CD4(+)CD8(+) T cell fraction increases and consists nearly exclusively of proliferated cells. Similarly, other features of activated effector/memory T cells such as up-regulation of CD25 and MHC-II as well as down-regulation of CD62L (L-selectin) were observed in CD4(+)CD8(+) T cells after stimulation. Canine CD4(+)CD8(+) T cells are less abundant, but more heterogeneous than porcine ones, comprising a small proportion expressing the β chain of CD8 in addition to the CD8α chain, like human CD4(+)CD8(+) T cells. In summary, this analysis provides the basis for functional characterisation of the in vivo relevance of CD4(+)CD8(+) T cells in T-cell mediated immunity. PMID:22789871

  17. Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells

    PubMed Central

    Sapkota, Bishu; Hill, Charles E.; Pollack, Brian P.

    2013-01-01

    To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600Eactivity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients. PMID:23483066

  18. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation

    PubMed Central

    Gerlini, Gianni; Di Gennaro, Paola; Borgognoni, Lorenzo

    2012-01-01

    Combining electrochemotherapy with dendritic cell-based immunotherapy is a promising strategy against human metastatic melanoma that deserves to be clinically assessed. While electrochemotherapy induces a rapid regression of metastases, immunotherapy generates systemic anticancer immunity, contributes to eradicate the tumor and maintains an immunological memory to control relapse. PMID:23264927

  19. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid. PMID:17409501

  20. Effect of Three Centaurea Species Collected from Central Anatolia Region of Turkey on Human Melanoma Cells.

    PubMed

    Russo, Alessandra; Cardile, Venera; Graziano, Adriana C E; Rigano, Daniela; Aktumsek, Abdurrahman; Zengin, Gokhan; Senatore, Felice

    2016-03-01

    Centaurea is the largest genus within the Asteraceae family. Many members of this genus are used in traditional folk medicine, such as Centaurea pulchella used to treat skin problems such as to resolve the abscess. Although biological activities of many Centaurea species have been investigated in different countries and Turkey, cytotoxic effect of C. patula, C. pulchella and C. tchihatcheffii has not been studied yet. Melanoma is one of the most invasive and deadly forms of skin cancer. Therefore, in an ongoing effort to identify new natural anticancer products for the treatment and/or prevention of melanoma cancer, the present study was undertaken to investigate the effect of these Centaurea species, collected from Central Anatolia region of Turkey on cell growth and death in human melanoma cell line, A375.The results revealed that all extracts were able to inhibit, after 48 h of treatment, the growth of cancer cells, that could be related to an overall action of the phenolic compounds present. In fact, C. pulchella, with the highest level of phenolics, showed a major activity followed by C. patula and C. tchihatcheffii. Our data also demonstrate that these natural products induce apoptotic cell death. In conclusion, the study of plant extracts for their cytotoxic and apoptotic properties has shown that medicinal herbs from Centaurea species might have also importance in the prevention and treatment of melanoma. PMID:27169173

  1. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    PubMed

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. PMID:26880244

  2. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients

    PubMed Central

    Chauvin, Joe-Marc; Pagliano, Ornella; Fourcade, Julien; Sun, Zhaojun; Wang, Hong; Sander, Cindy; Kirkwood, John M.; Chen, Tseng-hui Timothy; Maurer, Mark; Korman, Alan J.; Zarour, Hassane M.

    2015-01-01

    T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen–specific (TA-specific) CD8+ T cells and CD8+ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8+ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8+ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1+TIM-3+ TA-specific CD8+ T cells. PD-1+TIGIT+, PD-1–TIGIT+, and PD-1+TIGIT– CD8+ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand–expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8+ T cells and CD8+ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8+ T cells and CD8+ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8+ T cell responses in patients with advanced melanoma. PMID:25866972

  3. Molecular changes induced by the curcumin analogue D6 in human melanoma cells

    PubMed Central

    2013-01-01

    Background In a previous report, we described the in vitro and in vivo antiproliferative and proapoptotic activity of a hydroxylated biphenyl (D6), a structural analogue of curcumin, on malignant melanoma and neuroblastoma tumours. In this paper, we investigated the molecular changes induced by such a compound, underlying cell growth arrest and apoptosis in melanoma cells. Results To shed light on the mechanisms of action of D6, we firstly demonstrated its quick cellular uptake and subsequent block of cell cycle in G2/M phase transition. A gene expression profile analysis of D6-treated melanoma cells and fibroblasts was then carried out on high density microarrays, to assess gene expression changes induced by this compound. The expression profile study evidenced both an induction of stress response pathways and a modulation of cell growth regulation mechanisms. In particular, our data suggest that the antiproliferative and proapoptotic activities of D6 in melanoma could be partially driven by up-regulation of the p53 signalling pathways as well as by down-regulation of the PI3K/Akt and NF-kB pathways. Modulation of gene expression due to D6 treatment was verified by western blot analysis for single proteins of interest, confirming the results from the gene expression profile analysis. Conclusions Our findings contribute to the understanding of the mechanisms of action of D6, through a comprehensive description of the molecular changes induced by this compound at the gene expression level, in agreement with the previously reported anti-tumour effects on melanoma cells. PMID:23642048

  4. VEGF Secretion is Inhibited by Interferon-Alpha in Several Melanoma Cell Lines

    PubMed Central

    Raig, Ene T.; Jones, Natalie B.; Varker, Kimberly A.; Benniger, Kristen; Go, Michael R.; Biber, Jennifer L.; Lesinski, Gregory B.

    2008-01-01

    Interferon-alpha (IFN-α) is employed in the treatment of malignant melanoma; however, it mediates regression of disease in only 10–15% of patients. Currently, its mechanism of action is uncharacterized. Low-dose IFN-α exerts anti-angiogenic effects when used in the treatment of life-threatening hemangiomas of infancy, suggesting anti-angiogenesis as a mechanism of action. IFN-α may exert its anti-tumor effect in the setting of advanced malignancy by inhibiting the secretion of vascular endothelial growth factor (VEGF), a pro-angiogenic substance. We hypothesized that IFN-α would decrease the release of VEGF by melanoma tumors. We studied the effect of IFN-α on VEGF production in nine human melanoma cell lines. We also examined VEGF levels in 49 patients with advanced malignancies who received low-dose IFN-α and interleukin-12 (IL-12) on an NCI-sponsored phase I trial. Human melanoma cell lines produced varying amounts of VEGF in vitro (60–1500 pg/mL at 48 h). Certain melanoma cell lines such as 18105 MEL secreted low levels of VEGF (152 pg/mL) after 48 h of culture, whereas other lines secreted very high levels (FO-1 3,802 pg/mL). Treatment of melanoma cells with IFN-α (2000 U/mL) decreased VEGF secretion by 40–60% in VEGF-high cell lines; however, this effect was not demonstrated in VEGF-low cell lines. In cancer patients, pretreatment VEGF plasma levels varied from 471 to 4200 pg/mL. A decrease in VEGF plasma levels after treatment directly correlated with the number of treatment cycles administered (Pearson correlation, p = 0.04). In summary, IFN-α inhibits VEGF secretion by melanoma cell lines in vitro and may have similar actions in malignancies that respond to IFN-α treatment. PMID:18771339

  5. In vivo anti-melanoma efficacy of allo-restricted CTLs specific for melanoma expanded by artificial antigen-presenting cells.

    PubMed

    Lu, Xiao-ling; Jiang, Xiao-bing; Liu, Ru-en; Zhang, Sheng-min; Liang, Z-h

    2009-04-01

    Cytotoxic CD8(+) T cells are key effectors in the immunotherapy of malignant and viral diseases. However, autologous T cell responses to tumor antigens presented by self-MHC are usually weak and ineffective. Allo-restricted T cells represent a potent source of tumor-specific T cells for adoptive immunotherapy. This study reports in vivo anti-melanoma efficacy of the pTRP2-specific allo-restricted CTLs expanded from the BALB/c splenocytes by multiple stimulations with aAPCs made by coating H-2K(b)-Ig/pTRP2 dimeric complexes, anti-CD28 antibody, 4-1BBL molecules and CD83 molecules to cell-sized latex beads. The induced allo-restricted CTLs exhibited specific lysis against RMA-S cells pulsed with the peptide pTRP2 and H-2K(b+) melanoma cells expressing TRP2, while a murine Lewis lung carcinoma cell line 3LL could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-H-2K(b) monoclonal antibody Y3. Adoptive transfer of the allo-restricted CTLs specific for malignant melanoma expanded by the aAPCs can mediate effective anti-melanoma response in vivo. These results suggested that the specific allo-restricted CTLs expanded by aAPCs coated with an MHC-Ig/peptide complex, anti-CD28 antibody, 4-1BBL and CD83 could be a potential option of specific immunotherapy for patients with malignant melanoma. PMID:18682943

  6. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  7. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine.

    PubMed

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-01-01

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments. PMID:20957163

  8. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    PubMed Central

    Nykky, Jonna; Tuusa, Jenni E; Kirjavainen, Sanna; Vuento, Matti; Gilbert, Leona

    2010-01-01

    Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments. PMID:20957163

  9. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  10. Effect of adipose-derived stem cell-conditioned medium on the proliferation and migration of B16 melanoma cells

    PubMed Central

    LEE, JU-HEE; PARK, CHUL HONG; CHUN, KWANG-HOON; HONG, SOON-SUN

    2015-01-01

    Adipose-derived stem cells (ASCs) are a population of cells derived from adipose tissue. ASCs exhibit multilineage development potential and are able to secrete various factors, which influence adjacent cells. Previous studies have reported the effectiveness of ASC-conditioned medium (ASC-CM) in wound healing, anti-melanogenesis, wrinkle improvement and hair growth. In the present study, the anticancer function of ASC-CM was investigated in vitro and in vivo. An MTT assay revealed that ASC-CM significantly decreased the proliferation of B16 melanoma cells in a time- and dose-dependent manner (P<0.01). Cell cycle analysis indicated that ASC-CM significantly increased the number of cells in G1 phase while reducing the number of cells in the S and G2/M phases (P<0.01). Furthermore, a wound migration model demonstrated that ASC-CM treatment significantly decreased the migration ability of B16 melanoma cells (P<0.01). In addition, C57BL/6 mice were administered with a single intratumoral injection of ASC-CM, daily or every other day, and a significant reduction in the volume of the tumor mass was observed compared with that of the control group (P<0.01). Thus, the findings of the present study indicated that ASC-CM has an anti-tumorigenic effect on B16 melanoma cells in vitro and in vivo, and may potentially be used to support the treatment of melanoma in the future. PMID:26622561

  11. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer.

    PubMed

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian; Gannagé, Monique

    2016-01-01

    NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma. PMID:26608910

  12. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer

    PubMed Central

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian

    2016-01-01

    NY-ESO-1–specific CD4+ T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4+ T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4+ T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4+ T cells and should be explored during immunotherapy of melanoma. PMID:26608910

  13. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  14. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  15. Clinically proven markers of metastasis predict metastatic spread of human melanoma cells engrafted in scid mice

    PubMed Central

    Thies, A; Mauer, S; Fodstad, O; Schumacher, U

    2007-01-01

    Metastasis formation is a complex process and as such can only be modelled in vivo. As markers indicating metastatic spread in syngenic mouse models differ significantly from those in man, this study aimed to develop a human melanoma xenograft mouse model that reflects the clinical situation. Six human melanoma cell lines (LOX, MV3, FEMX-1, G361, MeWo and UISO-Mel6) were xenografted into severe combined immunodeficient mice and tumour growth, metastatic behaviour and number of lung metastases were assessed. Tumours and metastases were analysed for HPA binding and expression of CEACAM-1 and L1, all markers indicative of metastasis in clinical studies. Development of primary tumour nodules ranged from 3 weeks (MV3) to 3 months (MeWo). Whereas G361 and FEMX-1 rarely formed lung metastases, MeWo, MV3 and LOX were moderately and UISO-Mel6 was highly metastatic. Similar to clinical studies, HPA, CEACAM1 and L1 indicated metastatic spread in the xenograft melanoma model, but were not all simultaneously expressed in all cell lines. Considering the strongest expression of one marker combined with an absent or low expression of the other two markers, we conclude that LOX is the cell line of choice for analyses of the functional role of HPA-binding glycoconjugates, UISO-Mel6 is ideally suited to study CEACAM1 function in melanoma spread and L1 function can best be modelled using MeWo. PMID:17262079

  16. The absence of functional glucosylceramide synthase does not sensitize melanoma cells for anticancer drugs.

    PubMed

    Veldman, Robert Jan; Mita, Alain; Cuvillier, Olivier; Garcia, Virginie; Klappe, Karin; Medin, Jeffrey A; Campbell, John D; Carpentier, Stéphane; Kok, Jan Willem; Levade, Thierry

    2003-06-01

    Conversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected with a vector encoding GCS (GM95/GCS). Enzymatic and metabolic analysis demonstrated that GM95/GCS cells expressed a fully functional enzyme, resulting in normal ceramide glycosylation. However, cytotoxicity assays, as well as caspase activation and cytochrome c release studies, did not reveal any difference between the two cell lines with respect to their sensitivity toward doxorubicin, vinblastine, paclitaxel, cytosine arabinoside, or short-chain ceramide analogs. Administration of doxorubicin resulted in ceramide accumulation in both cell lines, with similar kinetics and amplitude. Although glucosylceramide formation was detected in doxorubicin-treated GM95/GCS cells, metabolism of drug-induced ceramide did not appear to be instrumental in cell survival. Furthermore, N-(n-butyl)deoxynojirimycin, a potent and non-toxic GCS inhibitor, had no chemosensitizing effect on wild-type melanoma cells. Altogether, both genetic and pharmacological alterations of the cellular ceramide glycosylation capacity failed to sensitize melanoma cells to anticancer drugs, therefore moderating the importance of ceramide glucosylation in drug-resistance mechanisms. PMID:12692077

  17. Suppression of microphthalmia-associated transcription factor, but not NF-kappa B sensitizes melanoma specific cell death.

    PubMed

    Mokhamatam, Raveendra B; Sahoo, Binay K; Manna, Sunil K

    2016-08-01

    Mutation in B-Raf leads to gain of function in melanoma and causes aggressive behavior for proliferation. Most of the therapeutics are ineffective in this scenario. However, regulation of this aggressive behavior by targeting the key molecules would be viable strategy to develop novel and effective therapeutics. In this report we provide evidences that the resveratrol is potent to regulate melanoma cell growth than other inducers of apoptosis. Resveratrol inhibits pronounced cell proliferation in melanoma than other tumor cell types. Cell cycle analysis using flow cytometry shows that the treatment with resveratrol results in S phase arrest. Resveratrol inhibits microphthalmia-associated transcription factor (MITF) and its dependent genes without interfering the MITF DNA binding in vitro. Resveratrol-mediated cell death is protected in MITF overexpressed cells and it is aggravated in MITF knocked down cells. These suggest the resveratrol-mediated decrease in MITF is the possible cause of melanoma cell death. Though resveratrol-mediated downregulation of NF-κB is responsible for cell apoptosis, but the downregulation of MITF is the main reason for melanoma-specific cell death. Thus, resveratrol can be effective chemotherapeutic agent against rapid proliferative melanoma cells. PMID:27325430

  18. Chemokine Expression in Melanoma Metastases Associated with CD8+ T-Cell Recruitment

    PubMed Central

    Harlin, Helena; Meng, Yuru; Peterson, Amy C.; Zha, Yuanyuan; Tretiakova, Maria; Slingluff, Craig; McKee, Mark; Gajewski, Thomas F.

    2013-01-01

    Despite the frequent detection of circulating tumor antigen–specific T cells, either spontaneously or following active immunization or adoptive transfer, immune-mediated cancer regression occurs only in the minority of patients. One theoretical rate-limiting step is whether effector T cells successfully migrate into metastatic tumor sites. Affymetrix gene expression profiling done on a series of metastatic melanoma biopsies revealed a major segregation of samples based on the presence or absence of T-cell-associated transcripts. The presence of lymphocytes correlated with the expression of defined chemokine genes. A subset of six chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) was confirmed by protein array and/or quantitative reverse transcription-PCR to be preferentially expressed in tumors that contained T cells. Corresponding chemokine receptors were found to be up-regulated on human CD8+ effector T cells, and transwell migration assays confirmed the ability of each of these chemokines to promote migration of CD8+ effector cells in vitro. Screening by chemokine protein array identified a subset of melanoma cell lines that produced a similar broad array of chemokines. These melanoma cells more effectively recruited human CD8+ effector T cells when implanted as xenografts in nonobese diabetic/severe combined immunodeficient mice in vivo. Chemokine blockade with specific antibodies inhibited migration of CD8+ T cells. Our results suggest that lack of critical chemokines in a subset of melanoma metastases may limit the migration of activated T cells, which in turn could limit the effectiveness of antitumor immunity. PMID:19293190

  19. MCL-1, BCL-XL and MITF Are Diversely Employed in Adaptive Response of Melanoma Cells to Changes in Microenvironment

    PubMed Central

    Hartman, Mariusz L.; Talar, Beata; Gajos-Michniewicz, Anna; Czyz, Malgorzata

    2015-01-01

    Melanoma cells can switch their phenotypes in response to microenvironmental insults. Heterogeneous melanoma populations characterized by long-term growth and a high self-renewal capacity can be obtained in vitro in EGF(+)bFGF(+) medium whilst invasive potential of melanoma cells is increased in serum-containing cultures. In the present study, we have shown that originally these patient-derived melanoma populations exhibit variable expression of pro-survival genes from the BCL-2 family and inhibitors of apoptosis (IAPs), and differ in the baseline MCL-1 transcript stability as well. While being transferred to serum-containing medium, melanoma cells are well protected from death. Immediate adaptive response of melanoma cells selectively involves a temporary MCL-1 increase, both at mRNA and protein levels, and BCL-XL can complement MCL-1, especially in MITFlow populations. Thus, the extent of MCL-1 and BCL-XL contributions seems to be cell context-dependent. An increase in MCL-1 level results from a transiently enhanced stability of its transcript, but not from altered protein turnover. Inhibition of MCL-1 preceding transfer to serum-containing medium caused the induction of cell death in a subset of melanoma cells, which confirms the involvement of MCL-1 in melanoma cell survival during the rapid alteration of growth conditions. Additionally, immediate response to serum involves the transient increase in MITF expression and inhibition of ERK-1/2 activity. Uncovering the mechanisms of adaptive response to rapid changes in microenvironment may extend our knowledge on melanoma biology, especially at the stage of dissemination. PMID:26035829

  20. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    PubMed

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma. PMID:22927942

  1. Fluoroquinolone-Mediated Inhibition of Cell Growth, S-G2/M Cell Cycle Arrest, and Apoptosis in Canine Osteosarcoma Cell Lines

    PubMed Central

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O.; Chen, Xinbin; Rebhun, Robert B.

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21WAF1 expression resulting in decreased proliferation and increased S-G2/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma. PMID:22927942

  2. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation.

    PubMed

    Morandi, Fabio; Morandi, Barbara; Horenstein, Alberto L; Chillemi, Antonella; Quarona, Valeria; Zaccarello, Gianluca; Carrega, Paolo; Ferlazzo, Guido; Mingari, Maria Cristina; Moretta, Lorenzo; Pistoia, Vito; Malavasi, Fabio

    2015-09-22

    Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD(+ )T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4(+) T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8(+) T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role. PMID:26329660

  3. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma. PMID:26943799

  4. Controversial results of therapy with mesenchymal stem cells in the acute phase of canine distemper disease.

    PubMed

    Pinheiro, A O; Cardoso, M T; Vidane, A S; Casals, J B; Passarelli, D; Alencar, A L F; Sousa, R L M; Fantinato-Neto, P; Oliveira, V C; Lara, V M; Ambrósio, C E

    2016-01-01

    Distemper disease is an infectious disease reported in several species of domestic and wild carnivores. The high mortality rate of animals infected with canine distemper virus (CDV) treated with currently available therapies has driven the study of new efficacious treatments. Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic option for many degenerative, hereditary, and inflammatory diseases. Therefore, the aim of this study was to characterize stem cells derived from the canine fetal olfactory epithelium and to assess the systemic response of animals infected with CDV to symptomatic therapy and treatment with MSCs. Eight domestic mongrel dogs (N = 8) were divided into two groups: support group (SG) (N = 5) and support group + cell therapy (SGCT) (N = 3), which were monitored over 15 days. Blood samples were collected on days 0, 6, 9, 12, and 15 to assess blood count and serum biochemistry (urea, creatinine, alanine transferase, alkaline phosphatase, gamma-glutamyl transferase, total protein, albumin, and globulin), and urine samples were obtained on days 0 and 15 for urinary evaluation (urine I). The results showed a high mortality rate (SG = 4 and SGCT = 2), providing inadequate data on the clinical course of CDV infection. MSC therapy resulted in no significant improvement when administered during the acute phase of canine distemper disease, and a prevalence of animals with high mortality rate was found in both groups due to the severity of symptoms. PMID:27323085

  5. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production

    PubMed Central

    Carinhas, Nuno; Pais, Daniel A. M.; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S.; Carrondo, Manuel J. T.; Alves, Paula M.; Teixeira, Ana P.

    2016-01-01

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-13C]glucose and [U-13C]glutamine, we apply for the first time 13C-Metabolic flux analysis (13C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and 13C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. 13C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production. PMID:27004747

  6. The canine hepatic progenitor cell niche: molecular characterisation in health and disease.

    PubMed

    Kruitwagen, H S; Spee, B; Viebahn, C S; Venema, H B; Penning, L C; Grinwis, G C M; Favier, R P; van den Ingh, T S G A M; Rothuizen, J; Schotanus, B A

    2014-09-01

    Hepatic progenitor cells (HPCs) are an adult stem cell compartment in the liver that contributes to liver regeneration when replication of mature hepatocytes is insufficient. In this study, laser microdissection was used to isolate HPC niches from the livers of healthy dogs and dogs with lobular dissecting hepatitis (LDH), in which HPCs are massively activated. Gene expression of HPC, hepatocyte and biliary markers was determined by quantitative reverse transcriptase PCR. Expression and localisation of selected markers were further studied at the protein level by immunohistochemistry and immunofluorescent double staining in samples of normal liver and liver from dogs with LDH, acute and chronic hepatitis, and extrahepatic cholestasis. Activated HPC niches had higher gene expression of the hepatic progenitor markers OPN, FN14, CD29, CD44, CD133, LIF, LIFR and BMI1 compared to HPCs from normal liver. There was lower expression of albumin, but activated HPC niches were positive for the biliary markers SOX9, HNF1β and keratin 19 by immunohistochemistry and immunofluorescence. Laminin, activated stellate cells and macrophages are abundant extracellular matrix and cellular components of the canine HPC niche. This study demonstrates that the molecular and cellular characteristics of canine HPCs are similar to rodent and human HPCs, and that canine HPCs are distinctively activated in different types of liver disease. PMID:24923752

  7. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  8. Effects of Cryopreservation on the Cell Viability, Proliferative Capacity and Neuronal Differentiation Potential of Canine Bone Marrow Stromal Cells

    PubMed Central

    EDAMURA, Kazuya; NAKANO, Rei; FUJIMOTO, Kyohei; TESHIMA, Kenji; ASANO, Kazushi; TANAKA, Shigeo

    2013-01-01

    ABSTRACT We investigated the cell viability, proliferative capacity and neuronal differentiation potential of canine bone marrow stromal cells (BMSCs) after cryopreservation. BMSCs were cryopreserved using cryoprotectant solutions with 10% DMSO and 10% FBS (DF group) or without DMSO and FBS (DF-free group); fresh BMSCs were used as a control. The cell viability and proliferative capacity of BMSCs were similar in the DF-free and control groups, while those in the DF group were lower. In all groups, BMSCs differentiated into neuron-like cells that stained positive against neuron markers, and the mRNA expression levels of neuron markers increased after neuronal induction. In conclusion, cryopreservation with DF-free cryoprotectant solution did not diminish the cell viability, proliferative capacity or neuronal differentiation potential of canine BMSCs. PMID:24334862

  9. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists.

    PubMed

    Glass-Marmor, L; Beitner, R

    1997-06-11

    Glycolysis, which is the primary energy source in cancer cells, is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We have previously found that different calmodulin antagonists decrease the levels of allosteric activators of glycolysis, and reduce ATP content and cell viability in B16 melanoma cells. Here we report of a novel, additional, mechanism of action of calmodulin antagonists in melanoma cells. We show that these drugs cause a detachment of the glycolytic enzymes, phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), from cytoskeleton of B16 melanoma cells. This effect was dose- and time-dependent, and preceded the decrease in cell viability. The detachment of glycolytic enzymes from cytoskeleton would reduce the provision of local ATP, in the vicinity of the cytoskeleton-membrane and would affect cytoskeleton structure. Since the cytoskeleton is being recognized as an important modulator of cell function, proliferation, differentiation and neoplasia, detachment of the glycolytic enzymes from cytoskeleton induced by calmodulin antagonists, as well as their reported inhibitory action on cell proliferation, make these drugs most promising agents in treatment of cancer. PMID:9218707

  10. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  11. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis.

    PubMed

    Zhang, R D; Price, J E; Schackert, G; Itoh, K; Fidler, I J

    1991-04-15

    We studied the correlation between the formation of brain metastasis and the malignant growth potential of seven human melanoma cell lines, isolated from lymph node metastases (A375-SM, TXM-1, DM-4) or from brain metastases (TXM-13, TXM-18, TXM-34, TXM-40), and the potential of three variants of the mouse K-1735 melanoma. Growth rates in different concentrations of fetal bovine serum and colony-forming efficiency in semisolid agarose were measured, and the tumorigenicity and metastatic ability were determined in nude mice (for the human melanoma cell lines) or in C3H/HeN mice (for the K-1735 variants). The ability to form brain metastasis was tested by injection of cells into the carotid artery. A high colony-forming efficiency in agarose, especially at concentrations of agarose greater than 0.6%, corresponded with high tumor take rates, rapid tumor growth rates, and metastatic colonization of the lungs of the recipient mice. For the human melanomas, the lymph node metastasis-derived cells were more tumorigenic and metastatic than the brain metastasis-derived cells. In the K-1735 mouse melanoma, the tumorigenic and metastatic behavior of the cells after i.v. and s.c. injection corresponded with growth in agarose cultures. However, for growth in the brain after intracarotid injection, the different melanoma cell lines showed similar frequencies of tumor take, regardless of tumorigenicity in other sites of the recipient mice, although mice given injections of brain metastasis-derived cells survived longer than mice given injections of lymph node metastasis (human melanoma) or lung metastasis (K-1735 M-2)-derived cell lines. The results from the human and mouse melanoma cell lines show that the brain metastasis-derived cell lines were not more malignant than the lymph node or lung metastasis-derived cells. These data imply that the production of brain metastasis is not always the final stage of a metastatic cascade. PMID:1826230

  12. Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells

    PubMed Central

    Doi, Kenichiro; Sharma, Arun K.; Wang, Hong-Gang; Amin, Shantu

    2013-01-01

    Background and purpose Metastatic melanoma remains one of the most invasive and highly drug resistant cancers. The over expression of anti-apoptotic protein Mcl-1 has been associated with inferior survival, poor prognosis and chemoresistance of malignant melanoma. A BH3 mimetic, ABT-737, has demonstrated efficacy in several forms of cancers. However, the efficacy of ABT-737 depends on Mcl-1. Because the over expression of Mcl-1 is frequently observed in melanoma, specifically targeting of Mcl-1 may overcome the resistance of ABT-737. In this study, we investigated the effects of Maritoclax, a novel Mcl-1-selective inhibitor, alone and in combination with ABT-737, on the survival of human melanoma cells. Experimental approach For cell viability assessment we performed MTT assay. Apoptosis was determined using western blot and flow cytometric analysis. Key results The treatment of Maritoclax reduced the cell viability of melanoma cells with an IC50 of between 2.2–5.0 µM. Further, treatment of melanoma cells with Maritoclax showed significant decrease in Mcl-1 expression. We found that Maritoclax was able to induce apoptosis in melanoma cells in a caspase-dependent manner. Moreover, Maritoclax induced Mcl-1 degradation via the proteasome system, which was associated with its pro-apoptotic activity. We also found that Maritoclax treatment increased mitochondrial translocation of Bim and Bmf. Importantly, Maritoclax markedly enhanced the efficacy of ABT-737 against melanoma cells in both two- and three-dimensional spheroids. Conclusions and implications Taken together, these results suggest that targeting of Mcl-1 by Maritoclax may represent a new therapeutic strategy for melanoma treatment that warrants further investigation as a single therapy or in combination with other agents such as Bcl-2 inhibitors. PMID:24223823

  13. An unusual case of desmoplastic melanoma containing an osteoclast-like giant cell-rich nodule.

    PubMed

    Houang, Michelle; Castillo, Christine; La Marca, Sophie; Combemale, Patrick; Wang, Qing; Paindavoine, Sandrine; Pissaloux, Daniel; de la Fouchardiere, Arnaud

    2015-04-01

    The authors describe a case of a 5 cm mixed desmoplastic melanoma occurring on the cheek of an 88-year-old white woman. The epidermis showed the features of lentigo maligna. Within the dermis, there was a mixed desmoplastic melanoma with 2 components. The first component consisted of infiltrative malignant spindled cells with prominent stromal fibrosis and had the typical appearance of desmoplastic melanoma. The second component was within the deep half of the tumor and consisted of a densely cellular nodule composed of spindled melanocytes admixed with many osteoclast-like giant cells. There was a peripheral neurotropism and tumor invaded bone. The Breslow thickness was 14 mm. On followup, a sacral metastasis was discovered, which had a similar morphology to the deep cellular nodule. Immunohistochemistry of spindled cells both inside and outside the nodule showed S100 positivity with the absence of other melanocytic markers (HMB-45, Melan-A). Smooth muscle actin and p63 were focally positive. The osteoclast-like giant cells expressed CD68 and MiTF. Array comparative genomic hybridization of the typical desmoplastic melanoma region had a flat profile, whereas the cellular osteoclast-like giant cell–rich region displayed important cytogenetic anomalies, some of which have been previously described in melanomas. The main array comparative genomic hybridization findings were confirmed by fluorescence in situ hybridization using specific probes. The differences in morphology and molecular cytogenetics between the 2 areas suggest that these might represent the progression or emergence of a more aggressive clone within the tumor. Subsequent metastatic spread to the bone may be a result of accumulated cytogenetic abnormalities. PMID:24999544

  14. Chemokine receptor 7 (CCR7)-expression and IFNγ production define vaccine-specific canine T-cell subsets.

    PubMed

    Hartley, Ashley N; Tarleton, Rick L

    2015-04-15

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T-cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T-cell subsets and evaluating T-cell-specific effector function. To define reagents for delineating naïve versus activated T-cells and identify antigen-specific T-cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4(+) and CD8(+) T-cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T-cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4(+) and CD8(+) T-cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24h of sample collection allowed for efficienT-cell recovery and accurate T-cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T-cell subsets and characterizing circulating antigen-specific canine T-cells for potential use in diagnostic and field settings. PMID:25758065

  15. CTLA-4 blockade plus adoptive T cell transfer promotes optimal melanoma immunity in mice

    PubMed Central

    Mahvi, David A.; Meyers, Justin V.; Tatar, Andrew J.; Contreras, Amanda; Suresh, M.; Leverson, Glen E.; Sen, Siddhartha; Cho, Clifford S.

    2014-01-01

    Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T cell populations (e.g., CTLA-4 blockade-mediated checkpoint inhibition) or introduce exogenously-prepared tumor-specific T cell populations (e.g., adoptive cell transfer). Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and non-lymphodepletional adoptive cell transfer could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, adoptive cell transfer, or combination immunotherapy of CTLA-4 blockade with adoptive cell transfer. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, as well as a stronger systemic immune responses reflected by more potent tumor antigen-specific T cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with non-lymphodepletional adoptive cell transfer may promote additive endogenous and exogenous T cell activities that enable greater therapeutic efficacy in the treatment of melanoma. PMID:25658614

  16. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis.

    PubMed

    Kim, Ki Mo; Im, A-Rang; Kim, Seung Hyung; Hyun, Jin Won; Chae, Sungwook

    2016-02-01

    Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2 ), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2 , and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors. PMID:26595378

  17. Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells.

    PubMed

    Manning, C S; Hooper, S; Sahai, E A

    2015-08-13

    The acquisition of cell motility is an early step in melanoma metastasis. Here we use intravital imaging of signalling reporter cell-lines combined with genome-wide transcriptional analysis to define signalling pathways and genes associated with melanoma metastasis. Intravital imaging revealed heterogeneous cell behaviour in vivo: <10% of cells were motile and both singly moving cells and streams of cells were observed. Motile melanoma cells had increased Notch- and SRF-dependent transcription. Subsequent genome-wide analysis identified an overlapping set of genes associated with high Notch and SRF activity. We identified EZH2, a histone methyltransferase in the Polycomb repressive complex 2, as a regulator of these genes. Heterogeneity of EZH2 levels is observed in melanoma models, and co-ordinated upregulation of genes positively regulated by EZH2 is associated with melanoma metastasis. EZH2 was also identified as regulating the amelanotic phenotype of motile cells in vivo by suppressing expression of the P-glycoprotein Oca2. Analysis of patient samples confirmed an inverse relationship between EZH2 levels and pigment. EZH2 targeting with siRNA and chemical inhibition reduced invasion in mouse and human melanoma cell lines. The EZH2-regulated genes KIF2C and KIF22 are required for melanoma cell invasion and important for lung colonization. We propose that heterogeneity in EZH2 levels leads to heterogeneous expression of a cohort of genes associated with motile behaviour including KIF2C and KIF22. EZH2-dependent increased expression of these genes promotes melanoma cell motility and early steps in metastasis. PMID:25381824

  18. Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells

    PubMed Central

    Manning, Cerys S; Hooper, Steven; Sahai, Erik A

    2014-01-01

    The acquisition of cell motility is an early step in melanoma metastasis. Here we use intravital imaging of signalling reporter cell-lines combined with genome-wide transcriptional analysis to define signalling pathways and genes associated with melanoma metastasis. Intravital imaging revealed heterogeneous cell behaviour in vivo: less than 10% of cells were motile and both singly moving cells and streams of cells were observed. Motile melanoma cells had increased Notch- and SRF-dependent transcription. Subsequent genome-wide analysis identified an overlapping set of genes associated with high Notch and SRF activity. We identified EZH2, a histone methyltransferase in the Polycomb Repressor Complex 2, as a regulator of these genes. Heterogeneity of EZH2 levels is observed in melanoma models and co-ordinated up-regulation of genes positively regulated by EZH2 is associated with melanoma metastasis. EZH2 was also identified as regulating the amelanotic phenotype of motile cells in vivo by suppressing expression of the P-glycoprotein Oca2. Analysis of patient samples confirmed an inverse relationship between EZH2 levels and pigment. EZH2 targeting with siRNA and chemical inhibition reduced invasion in mouse and human melanoma cell lines. The EZH2 regulated SRF target genes KIF2C and KIF22 are required for melanoma cell invasion and important for lung colonisation. We propose that heterogeneity in EZH2 levels leads to heterogeneous expression of a cohort of genes associated with motile behaviour including KIF2C and KIF22. EZH2 dependent increased expression of these genes promotes melanoma cell motility and early steps in metastasis. PMID:25381824

  19. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells

    PubMed Central

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E.; Wang, Rong-Fu; Wang, Helen Y.

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4+ T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4+ T cell-mediated immunotherapy in melanoma. PMID:25993655

  20. Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells

    PubMed Central

    Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent

    2013-01-01

    The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278

  1. The Cinnamon-derived Michael Acceptor Cinnamic Aldehyde Impairs Melanoma Cell Proliferation, Invasiveness, and Tumor Growth

    PubMed Central

    Cabello, Christopher M.; Bair, Warner B.; Lamore, Sarah D.; Ley, Stephanie; Bause, Alexandra S.; Azimian, Sara; Wondrak, Georg T.

    2009-01-01

    Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by prooxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high doses of CA (120 mg/kg, p.o., q.d., 10 days) was demonstrated in a human A375 melanoma SCID-mouse xenograft model. Low micromolar concentrations (IC50 < 10 μM) of CA, but not closely related CA-derivatives devoid of Michael acceptor activity, suppressed proliferation of human metastatic melanoma cell lines (A375, G361, LOX) with G1 cell cycle arrest, elevated intracellular ROS, and impaired invasiveness. Expression array analysis revealed that CA induced an oxidative stress response in A375 cells, up-regulating heme oxygenase-1 (HMOX1), sulfiredoxin 1 homolog (SRXN1), thioredoxin reductase 1 (TXNRD1), and other genes including the cell cycle regulator and stress-responsive tumor suppressor gene cyclin-dependent kinase inhibitor 1A (CDKN1A), a key mediator of G1 phase arrest. CA, but not Michael-inactive derivatives, inhibited NFκB transcriptional activity and TNFα-induced IL-8 production in A375 cells. These findings support a previously unrecognized role of CA as a dietary Michael acceptor with potential anticancer activity. PMID:19000754

  2. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients.

    PubMed

    Speiser, Daniel E; Schwarz, Katrin; Baumgaertner, Petra; Manolova, Vania; Devevre, Estelle; Sterry, Wolfram; Walden, Peter; Zippelius, Alfred; Conzett, Katrin Baumann; Senti, Gabriela; Voelter, Verena; Cerottini, Jean-Philippe; Guggisberg, David; Willers, Jörg; Geldhof, Christine; Romero, Pedro; Kündig, Thomas; Knuth, Alexander; Dummer, Reinhard; Trefzer, Uwe; Bachmann, Martin F

    2010-10-01

    Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease. PMID:20842051

  3. Irradiation affects cellular properties and Eph receptor expression in human melanoma cells

    PubMed Central

    Mosch, Birgit; Pietzsch, Doreen; Pietzsch, Jens

    2012-01-01

    X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. PMID:22568947

  4. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma

    PubMed Central

    Calderon-Gonzalez, Ricardo; Bronchalo-Vicente, Lucia; Freire, Javier; Frande-Cabanes, Elisabet; Alaez-Alvarez, Lidia; Gomez-Roman, Javier; Yañez-Diaz, Sonsóles; Alvarez-Dominguez, Carmen

    2016-01-01

    Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies. PMID:26942874

  5. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  6. Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway.

    PubMed

    Sim, Deok Yong; Sohng, Jae Kyung; Jung, Hye Jin

    2016-07-01

    Malignant melanoma is one of the most aggressive skin cancer and highly resistant to most conventional treatment. In the present study, we aimed to investigate the anticancer effects and mechanisms of action of 7,8-dihydroxyflavone (7,8-DHF), a monophenolic flavone, in melanoma cells. At concentrations not exhibiting cytotoxicity, 7,8-DHF potently inhibited growth and clonogenic survival of alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. Furthermore, it significantly blocked migration and invasion of the metastatic melanoma cells. We also observed that 7,8-DHF exhibits anti-melanogenic activity through inhibition of tyrosinase activity in α-MSH-stimulating condition. Notably, the suppressive activities of 7,8-DHF on melanoma progression were associated with the downregulation of microphthalmia-associated transcription factor (MITF) and its main downstream transcription targets, including hypoxia-inducible factor 1α (HIF1α) and c-MET, by a decrease in cyclic adenosine monophosphate (cAMP) level. In addition, combination treatment with 7,8-DHF and resveratrol, a known therapeutic agent against melanoma, had greater anticancer activities and MITF inhibition than treatment with each single agent in α-MSH-treated B16F10 cells. Collectively, these findings may contribute to the potential application of 7,8-DHF in the prevention and treatment of malignant melanoma. PMID:27220989

  7. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour.

    PubMed

    Piskun, Caroline M; Stein, Timothy J

    2016-06-01

    Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. PMID:24256430

  8. Canine and feline mast cell tumors: biologic behavior, diagnosis, and therapy.

    PubMed

    Macy, D W

    1986-02-01

    Our understanding of the etiology, behavior, and most effective form of mast cell tumor treatment is rudimentary. I have tried to indicate specific areas that need further study in order to resolve some of the present controversies. Clinicians should recognize that many of the published recommendations for treatment of mast cell tumors are based on opinion and should be viewed with skepticism. Because of the infrequence of this tumor in man, limited help can be expected from human oncologists, and thus the burden of responsibility for progress in predicting behavior and developing effective treatment for canine mast cell tumors falls on the shoulders of veterinarians. PMID:3148990

  9. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients

    NASA Astrophysics Data System (ADS)

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-02-01

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml-1). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  10. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins.

    PubMed

    Salerno, Elise P; Olson, Walter C; McSkimming, Chantel; Shea, Sofia; Slingluff, Craig L

    2014-02-01

    T-cell infiltration into the metastatic melanoma microenvironment (MME) correlates with improved patient survival. However, diffuse infiltration into tumor occurs in only 8% of melanoma metastases. Little is known about mechanisms governing T-cell infiltration into human melanoma metastases or about how those mechanisms may be altered therapeutically. We hypothesized that T cells in the MME would be enriched for chemokine receptors CCR4, CCR5, CXCR3 and homing receptors relevant to the tissue site. Viably cryopreserved single cell suspensions from nineteen melanoma metastases representing three metastatic sites (tumor-infiltrated lymph node, skin and small bowel) were evaluated by multiparameter flow cytometry and compared to benign lymph nodes and peripheral blood mononuclear cells from patients with Stage IIB-IV melanoma. T cells in the melanoma metastases contained large effector memory populations, high proportions of activated, moderately differentiated cells and few regulatory T cells. Site-specific homing was suggested in bowel, with high expression of CCR9. We neither encounter the anticipated enrichment of integrin α4β7 in bowel, cutaneous leukocyte antigen (CLA) in skin, nor integrin α4β1 or receptor CXCR3 in metastatic sites. Retention integrins αEβ7, α1β1 and α2β1 were significantly elevated in metastases. These data suggest limited tissue site-specific homing to human melanoma metastases, but a significant role for retention integrins in maintaining intratumoral T cells. Our findings also raise the possibility that T-cell homing, infiltration, and retention in melanoma metastases may be increased by increasing expression of ligands for CLA, α4β1 and CXCR3 on intratumoral endothelium. PMID:23873187

  11. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells.

    PubMed

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T; Johlfs, Mary G; Fiscus, Ronald R; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1-positive structures appeared in three sizes (small, ≤40 nm; intermediates ~40-80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1-containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  12. Canine Distemper Virus Epithelial Cell Infection Is Required for Clinical Disease but Not for Immunosuppression

    PubMed Central

    Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto

    2012-01-01

    To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression. PMID:22278252

  13. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model

    PubMed Central

    Yoon, Daeyoung; Kang, Byung-Jae; Kim, Yongsun; Lee, Seung Hoon; Rhew, Daeun; Kim, Wan Hee

    2015-01-01

    Composite biological and synthetic grafts with progenitor cells offer an alternative approach to auto- or allografts for fracture repair. This study was conducted to evaluate osteogenesis of autologous serum-derived albumin (ASA) scaffolds seeded with canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) in a canine segmental bone defect model. ASA scaffold was prepared with canine serum using cross-linking and freeze-drying procedures. Beta-tricalcium phosphate (β-TCP) was mixed at the cross-linking stage. Ad-MSCs were seeded into the scaffold and incubated for one day before implantation. After 16 weeks, the grafts were harvested for histological analysis. The dogs were divided into five groups: control, ASA scaffolds with and without Ad-MSCs, and ASA scaffolds including β-TCP with and without Ad-MSCs. ASA scaffolds with Ad-MSCs had a significantly larger area of increased opacity at the proximal and distal host cortex-implant interfaces in radiographs 16 weeks after implantation compared to the groups with β-TCP (p < 0.05). Histomorphometric analysis showed that ASA scaffolds with Ad-MSCs had significantly greater new bone formation than other groups (p < 0.05). These results suggest that Ad-MSCs seeded into ASA scaffolds enhanced osteogenesis in the bone defect model, but that β-TCP in the ASA scaffold might prevent penetration of the cells required for bone healing. PMID:26119162

  14. Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells

    PubMed Central

    Loria, Rossella; Bon, Giulia; Perotti, Valentina; Gallo, Enzo; Bersani, Ilaria; Baldassari, Paola; Porru, Manuela; Leonetti, Carlo; Di Carlo, Selene; Visca, Paolo; Brizzi, Maria Felice; Anichini, Andrea; Mortarini, Roberta; Falcioni, Rita

    2015-01-01

    We used whole genome microarray analysis to identify potential candidate genes with differential expression in BRAFV600E vs NRASQ61R melanoma cells. We selected, for comparison, a peculiar model based on melanoma clones, isolated from a single tumor characterized by mutually exclusive expression of BRAFV600E and NRASQ61R in different cells. This effort led us to identify two genes, SEMA6A and MICAL1, highly expressed in BRAF-mutant vs NRAS-mutant clones. Real-time PCR, Western blot and immunohistochemistry confirmed preferential expression of Sema6A and Mical1 in BRAFV600E melanoma. Sema6A is a member of the semaphorin family, and it complexes with the plexins to regulate actin cytoskeleton, motility and cell proliferation. Silencing of Sema6A in BRAF-mutant cells caused cytoskeletal remodeling, and loss of stress fibers, that in turn induced cell death. Furthermore, Sema6A depletion caused loss of anchorage-independent growth, inhibition of chemotaxis and invasion. Forced Sema6A overexpression, in NRASQ61R clones, induced anchorage-independent growth, and a significant increase of invasiveness. Mical1, that links Sema/PlexinA signaling, is also a negative regulator of apoptosis. Indeed, Mical-1 depletion in BRAF mutant cells restored MST-1-dependent NDR phosphorylation and promoted a rapid and massive NDR-dependent apoptosis. Overall, our data suggest that Sema6A and Mical1 may represent new potential therapeutic targets in BRAFV600E melanoma. PMID:25576923

  15. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  16. Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Gardner, Heather L.; Izumi, Raquel; Hamdy, Ahmed; Rothbaum, Wayne; Coombes, Kevin R.; Covey, Todd; Kaptein, Allard; Gulrajani, Michael; Van Lith, Bart; Krejsa, Cecile; Coss, Christopher C.; Russell, Duncan S.; Zhang, Xiaoli; Urie, Bridget K.; London, Cheryl A.; Byrd, John C.; Johnson, Amy J.; Kisseberth, William C.

    2016-01-01

    Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL). PMID:27434128

  17. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells<