Sample records for canine melanoma cell

  1. Canine choroidal melanoma with metastases.

    PubMed

    Hyman, Jennifer A; Koch, Seth A; Wilcock, Brian P

    2002-06-01

    A 3-year-old-female, spayed Golden Retriever was examined for a unilateral retinal detachment with exophthalmos. Ultrasonographically, a mass was detected with intra- and extraocular extension. The orbit was exenterated and the dog recovered uneventfully. Histopathologic diagnosis was a primary choroidal melanoma with orbital extension, however, the behavioral and cytologic features were benign. Routine examinations postsurgically were nonremarkable. Twenty-one months after surgery the dog was euthanized for respiratory collapse with radiographic signs of metastasis. Necropsy revealed black lesions in the lung and liver. Histopathologic diagnosis was metastatic melanoma with morphology and behavior identical to the primary choroidal melanoma. This is the first definitive case of a canine choroidal melanoma with metastasis.

  2. Naturally Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human Mucosal and Other Triple Wild-Type Melanomas

    PubMed Central

    Hernandez, Belen; Wei, Bih-Rong; Michael, Helen T.; Merlino, Glenn; Simpson, R. Mark

    2018-01-01

    Melanoma remains mostly an untreatable fatal disease despite advances in decoding cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit from additional predictive models germane for human disease mechanisms, tumor heterogeneity, and therapeutic responses. Toward this aim, this review documents comparative aspects of human and naturally occurring canine melanomas. Clinical presentation, pathology, therapies, and genetic alterations are highlighted in the context of current basic and translational research in comparative oncology. Somewhat distinct from sun exposure-related human cutaneous melanomas, there is growing evidence that a variety of gene copy number alterations and protein structure/function mutations play roles in canine melanomas, in circumstances more analogous to human mucosal melanomas and to some extent other melanomas with murine sarcoma viral oncogene homolog B (BRAF), Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog (NRAS), and neurofibromin 1 tumor suppressor NF1 triple wild-type genotype. Gaps in canine genome annotation, as well as an insufficient number and depth of sequences covered, remain considerable barriers to progress and should be collectively addressed. Preclinical approaches can be designed to include canine clinical trials addressing immune modulation as well as combined-targeted inhibition of Rat Sarcoma Superfamily/Mitogen-activated protein kinase (RAS/MAPK) and/or Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) signal transduction, pathways frequently activated in both human and canine melanomas. Future investment should be aimed towards improving understanding of canine melanoma as a predictive preclinical surrogate for human melanoma and for mutually benefiting these uniquely co-dependent species. PMID:29385676

  3. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    PubMed

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  4. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  5. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.

    PubMed

    Murua Escobar, Hugo; Günther, Kathrin; Richter, Andreas; Soller, Jan T; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2004-01-01

    Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated.

  6. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  7. Canine melanoma diagnosis: RACK1 as a potential biological marker.

    PubMed

    Campagne, C; Julé, S; Alleaume, C; Bernex, F; Ezagal, J; Château-Joubert, S; Estrada, M; Aubin-Houzelstein, G; Panthier, J-J; Egidy, G

    2013-11-01

    Melanoma diagnosis in dogs can be challenging due to the variety of histological appearances of canine melanocytic neoplasms. Markers of malignancy are needed. Receptor for activated C-kinase 1 (RACK1) was found to characterize melanomas in other mammals. We investigated the value of RACK1 detection in the classification of 19 cutaneous and 5 mucosal melanocytic neoplasms in dogs. These tumors were categorized as melanocytomas or benign and melanomas or malignant after evaluation of their morphology, mitotic index, and Ki-67 growth fraction. Using immunofluorescence, we confirmed microphthalmia-associated transcription factor (MITF) as a marker of normal and transformed melanocytic cells in dog tissues. All control (n = 10) and tumoral (n = 24) samples stained positively for MITF (34/34, 100%). Whereas RACK1 was not detected in healthy skin melanocytes, melanocytic lesions were all positive for RACK1 signal (24/24, 100%). RACK1 cytoplasmic staining appeared with 2 distinct distribution patterns: strong, diffuse, and homogeneous or granular and heterogeneous. All melanoma samples (13/13, 100%) stained homogeneously for RACK1. All melanocytomas (11/11, 100%) stained heterogeneously for RACK1. Immunohistochemistry was less consistent than immunofluorescence for all labelings in melanocytic lesions, which were often very pigmented. Thus, the fluorescent RACK1-MITF labeling pattern helped to distinguish melanomas from melanocytomas. Furthermore, RACK1 labeling correlated with 2 of 11 morphological features linked to malignancy: cell and nuclear size. These results suggest that RACK1 may be used as a marker in dog melanomas.

  8. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma.

    PubMed

    Wei, Bih-Rong; Michael, Helen T; Halsey, Charles H C; Peer, Cody J; Adhikari, Amit; Dwyer, Jennifer E; Hoover, Shelley B; El Meskini, Rajaa; Kozlov, Serguei; Weaver Ohler, Zoe; Figg, William D; Merlino, Glenn; Simpson, R Mark

    2016-11-01

    Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N-RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP-BEZ235. The two-drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl-2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p-ERK, p-AKT, p-S6, and 4E-BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  9. Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma

    PubMed Central

    Maekawa, Naoya; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Ikebuchi, Ryoyo; Izumi, Yusuke; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Kato, Yukinari; Murata, Shiro; Ohashi, Kazuhiko

    2016-01-01

    Spontaneous cancers are common diseases in dogs. Among these, some malignant cancers such as oral melanoma, osteosarcoma, hemangiosarcoma, and mast cell tumor are often recognized as clinical problems because, despite their high frequencies, current treatments for these cancers may not always achieve satisfying outcomes. The absence of effective systemic therapies against these cancers leads researchers to investigate novel therapeutic modalities, including immunotherapy. Programmed death 1 (PD-1) is a costimulatory receptor with immunosuppressive function. When it binds its ligands, PD-ligand 1 (PD-L1) or PD-L2, PD-1 on T cells negatively regulates activating signals from the T cell receptor, resulting in the inhibition of the effector function of cytotoxic T lymphocytes. Aberrant PD-L1 expression has been reported in many human cancers and is considered an immune escape mechanism for cancers. In clinical trials, anti-PD-1 or anti-PD-L1 antibodies induced tumor regression for several malignancies, including advanced melanoma, non-small cell lung carcinoma, and renal cell carcinoma. In this study, to assess the potential of the PD-1/PD-L1 axis as a novel therapeutic target for canine cancer immunotherapy, immunohistochemical analysis of PD-L1 expression in various malignant cancers of dogs was performed. Here, we show that dog oral melanoma, osteosarcoma, hemangiosarcoma, mast cell tumor, mammary adenocarcinoma, and prostate adenocarcinoma expressed PD-L1, whereas some other types of cancer did not. In addition, PD-1 was highly expressed on tumor-infiltrating lymphocytes obtained from oral melanoma, showing that lymphocytes in this cancer type might have been functionally exhausted. These results strongly encourage the clinical application of PD-1/PD-L1 inhibitors as novel therapeutic agents against these cancers in dogs. PMID:27276060

  10. Effects of low-dose cyclophosphamide with piroxicam on tumour neovascularization in a canine oral malignant melanoma-xenografted mouse model.

    PubMed

    Choisunirachon, N; Jaroensong, T; Yoshida, K; Saeki, K; Mochizuki, M; Nishimura, R; Sasaki, N; Nakagawa, T

    2015-12-01

    Low-dose cyclophosphamide (CyLD) has shown promise in the treatment of several cancers; however, the effect of CyLD on canine oral malignant melanoma has never been explored. In this study, we investigated the effects of CyLD with or without piroxicam (Px) on tumour neovascularization and vascular normalization in a canine oral malignant melanoma-xenografted mice model. After treatment with CyLD, Px or a combination of both (CyPx), the growth of the tumour in the treatment groups was significantly suppressed compared to the control group at 30 days of treatment. Proliferation index was also significantly reduced by all treatments, only CyPx significantly lowered microvessel density and vascular endothelial growth factor (VEGF) levels. Additionally, CyLD significantly reduced the proportion of normal vessels and caused an imbalance between VEGF and thrombospondin-1. These results suggested that CyPx has potent anti-angiogenic effects in terms of both the number and quality of blood vessels in xenografted canine oral malignant melanoma. © 2013 John Wiley & Sons Ltd.

  11. Expression of PD-L1 on Canine Tumor Cells and Enhancement of IFN-γ Production from Tumor-Infiltrating Cells by PD-L1 Blockade

    PubMed Central

    Maekawa, Naoya; Konnai, Satoru; Ikebuchi, Ryoyo; Okagawa, Tomohiro; Adachi, Mami; Takagi, Satoshi; Kagawa, Yumiko; Nakajima, Chie; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2014-01-01

    Programmed death 1 (PD-1), an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1), its ligand, together induce the “exhausted” status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1–expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed. PMID:24915569

  12. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma.

    PubMed

    Finocchiaro, Liliana M E; Fondello, Chiara; Gil-Cardeza, María L; Rossi, Úrsula A; Villaverde, Marcela S; Riveros, María D; Glikin, Gerardo C

    2015-06-01

    We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma.

  13. Detection of novel polymorphisms in the ckit gene of canine patients with lymphoma, melanoma, haemangiosarcoma, and osteosarcoma.

    PubMed

    Gramer, Irina; Kessler, Martin; Geyer, Joachim

    2016-06-01

    Tyrosine kinase inhibitors (TKIs) that specifically target cKIT represent a therapeutic approach for non-resectable canine mast cell tumours (MCTs) grade II/III. The therapeutic benefit of TKIs has been investigated in other tumours based on clinical response rates and identification of gain-of-function mutations. In the present study, cKIT expression in 14 dogs with osteosarcoma, melanoma, haemangiosarcoma, lymphoma, and fibrosarcoma was analysed. Tissue samples were used for cKIT sequencing to (I) detect the cKIT transcript and to (II) identify gain-of-function mutations. The cKIT transcript was detected in ten patients. Four novel amino acid substitutions and five silent polymorphisms were identified. Furthermore, an insertion mutation (GNSK) was discovered in the tissue, but not in the blood sample of one dog. CKIT expression was identified in a variety of canine tumours and, therefore, TKIs might have a broader therapeutic indication apart from treatment of MCTs. Further investigations will be necessary to localize the cKIT protein in the respective tumours and to evaluate the functional consequence of the cKIT variants identified in the present study.

  14. Comparative Aspects of Canine Melanoma

    PubMed Central

    Nishiya, Adriana Tomoko; Massoco, Cristina Oliveira; Felizzola, Claudia Ronca; Perlmann, Eduardo; Batschinski, Karen; Tedardi, Marcello Vannucci; Garcia, Jéssica Soares; Mendonça, Priscila Pedra; Teixeira, Tarso Felipe; Zaidan Dagli, Maria Lucia

    2016-01-01

    Melanomas are malignant neoplasms originating from melanocytes. They occur in most animal species, but the dog is considered the best animal model for the disease. Melanomas in dogs are most frequently found in the buccal cavity, but the skin, eyes, and digits are other common locations for these neoplasms. The aim of this review is to report etiological, epidemiological, pathological, and molecular aspects of melanomas in dogs. Furthermore, the particular biological behaviors of these tumors in the different body locations are shown. Insights into the therapeutic approaches are described. Surgery, chemotherapy, radiotherapy, immunotherapy, and the outcomes after these treatments are presented. New therapeutic perspectives are also depicted. All efforts are geared toward better characterization and control of malignant melanomas in dogs, for the benefit of these companion animals, and also in an attempt to benefit the treatment of human melanomas. PMID:29056717

  15. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  16. Melanocytoma-like melanoma may be the missing link between benign and malignant uveal melanocytic lesions in humans and dogs: a comparative study.

    PubMed

    Zoroquiain, Pablo; Mayo-Goldberg, Erin; Alghamdi, Sarah; Alhumaid, Sulaiman; Perlmann, Eduardo; Barros, Paulo; Mayo, Nancy; Burnier, Miguel N

    2016-12-01

    The cutoff presented in the current classification of canine melanocytic lesions by Wilcock and Pfeiffer is based on the clinical outcome rather than morphological concepts. Classification of tumors based on morphology or molecular signatures is the key to identifying new therapies or prognostic factors. Therefore, the aim of this study was to analyze morphological findings in canine melanocytic lesions based on classic malignant morphologic principles of neoplasia and to compare these features with human uveal melanoma (HUM) samples. In total, 64 canine and 111 human morphologically malignant melanocytic lesions were classified into two groups (melanocytoma-like or classic melanoma) based on the presence or absence of M cells, respectively. Histopathological characteristics were compared between the two groups using the χ-test, t-test, and multivariate discriminant analysis. Among the 64 canine tumors, 28 (43.7%) were classic and 36 (56.3%) were melanocytoma-like melanomas. Smaller tumor size, a higher degree of pigmentation, and lower mitotic activity distinguished melanocytoma-like from classic tumors with an accuracy of 100% for melanocytoma-like lesions. From the human series, only one case showed melanocytoma-like features and had a low risk for metastasis characteristics. Canine uveal melanoma showed a morphological spectrum with features similar to the HUM counterpart (classic melanoma) and overlapped features between uveal melanoma and melanocytoma (melanocytoma-like melanoma). Recognition that the subgroup of melanocytoma-like melanoma may represent the missing link between benign and malignant lesions could help explain the progression of uveal melanoma in dogs; these findings can potentially be translated to HUM.

  17. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  18. Tumor Cell Plasticity in Uveal Melanoma

    PubMed Central

    Folberg, Robert; Arbieva, Zarema; Moses, Jonas; Hayee, Amin; Sandal, Tone; Kadkol, ShriHari; Lin, Amy Y.; Valyi-Nagy, Klara; Setty, Suman; Leach, Lu; Chévez-Barrios, Patricia; Larsen, Peter; Majumdar, Dibyen; Pe’er, Jacob; Maniotis, Andrew J.

    2006-01-01

    The histological detection of laminin-rich vasculogenic mimicry patterns in human primary uveal melanomas is associated with death from metastases. We therefore hypothesized that highly invasive uveal melanoma cells forming vasculogenic mimicry patterns after exposure to a laminin-rich three-dimensional microenvironment would differentially express genes associated with invasive and metastatic behavior. However, we discovered that genes associated with differentiation (GDF15 and ATF3) and suppression of proliferation (CDKNa1/p21) were up-regulated in highly invasive uveal melanoma cells forming vasculogenic mimicry patterns, and genes associated with promotion of invasive and metastatic behavior such as CD44, CCNE2 (cyclin E2), THBS1 (thrombospondin 1), and CSPG2 (chondroitin sulfate proteoglycan; versican) were down-regulated. After forming vasculogenic mimicry patterns, uveal melanoma cells invaded only short distances, failed to replicate, and changed morphologically from the invasive epithelioid to the indolent spindle A phenotype. In human tissue samples, uveal melanoma cells within vasculogenic mimicry patterns assumed the spindle A morphology, and the expression of Ki67 was significantly reduced in adjacent melanoma cells. Thus, the generation of vasculogenic mimicry patterns is accompanied by dampening of the invasive and metastatic uveal melanoma genotype and phenotype and underscores the plasticity of these cells in response to cues from the microenvironment. PMID:17003493

  19. Nestin is expressed in HMB-45 negative melanoma cells in dermal parts of nodular melanoma.

    PubMed

    Kanoh, Maho; Amoh, Yasuyuki; Tanabe, Kenichi; Maejima, Hideki; Takasu, Hiroshi; Katsuoka, Kensei

    2010-06-01

    Nestin, a marker of neural stem cells, is expressed in the stem cells of the mouse hair follicle. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratocytes, smooth muscle cells and melanocytes in vitro. These pluripotent nestin-expressing stem cells are keratin 15 (K15)-negative, suggesting that they are in a relatively undifferentiated state. Recent studies suggest that the epithelial stem cells are important in tumorigenesis, and nestin expression is thought to be important in tumorigenesis. In the present study, we examined the expression of the hair follicle and neural stem cell marker nestin, as well as S-100 and HMB-45, in melanoma. Nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in all five cases of amelanotic nodular melanomas. Moreover, nestin immunoreactivity was observed in the dermal parts in seven of 10 cases of melanotic nodular melanomas. Especially, nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in the dermal parts of all 10 cases of HMB-45-negative amelanotic and melanotic nodular melanomas. On the other hand, nestin expression was negative in 10 of 12 cases of superficial spreading melanoma. These results suggest that nestin is an important marker of HMB-45-negative melanoma cells in the dermal parts of patients with nodular melanoma.

  20. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells.

    PubMed

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2015-04-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity.

  1. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  2. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  3. Adoptive Cell Therapy for Metastatic Melanoma.

    PubMed

    Merhavi-Shoham, Efrat; Itzhaki, Orit; Markel, Gal; Schachter, Jacob; Besser, Michal J

    Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TILs) is a powerful form of immunotherapy by inducing durable complete responses that significantly extend the survival of melanoma patients. Mutation-derived neoantigens were recently identified as key factors for tumor recognition and rejection by TILs. The isolation of T-cell receptor (TCR) genes directed against neoantigens and their retransduction into peripheral T cells may provide a new form of ACT.Genetic modifications of T cells with chimeric antigen receptors (CARs) have demonstrated remarkable clinical results in hematologic malignancies, but are so far less effective in solid tumors. Only very limited reports exist in melanoma. Progress in CAR T-cell engineering, including neutralization of inhibitory signals or additional safety switches, may open opportunities also in melanoma.We review clinical results and latest developments of adoptive therapies with TILs, T-cell receptor, and CAR-modified T cells and discuss future directions for the treatment of melanoma.

  4. Oncolytic Reovirus in Canine Mast Cell Tumor

    PubMed Central

    Hwang, Chung Chew; Umeki, Saori; Kubo, Masahito; Hayashi, Toshiharu; Shimoda, Hiroshi; Mochizuki, Masami; Maeda, Ken; Baba, Kenji; Hiraoka, Hiroko; Coffey, Matt; Okuda, Masaru; Mizuno, Takuya

    2013-01-01

    The usage of reovirus has reached phase II and III clinical trials in human cancers. However, this is the first study to report the oncolytic effects of reovirus in veterinary oncology, focusing on canine mast cell tumor (MCT), the most common cutaneous tumor in dogs. As human and canine cancers share many similarities, we hypothesized that the oncolytic effects of reovirus can be exploited in canine cancers. The objective of this study was to determine the oncolytic effects of reovirus in canine MCT in vitro, in vivo and ex vivo. We demonstrated that MCT cell lines were highly susceptible to reovirus as indicated by marked cell death, high production of progeny virus and virus replication. Reovirus induced apoptosis in the canine MCT cell lines with no correlation to their Ras activation status. In vivo studies were conducted using unilateral and bilateral subcutaneous MCT xenograft models with a single intratumoral reovirus treatment and apparent reduction of tumor mass was exhibited. Furthermore, cell death was induced by reovirus in primary canine MCT samples in vitro. However, canine and murine bone marrow-derived mast cells (BMCMC) were also susceptible to reovirus. The combination of these results supports the potential value of reovirus as a therapy in canine MCT but warrants further investigation on the determinants of reovirus susceptibility. PMID:24073198

  5. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma: 9 years of follow-up.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2012-12-01

    We present here the updated results after 9 years of the beginning of a trial on canine patients with malignant melanoma. This surgery adjuvant approach combined local suicide gene therapy with a subcutaneous vaccine composed by tumor cells extracts and xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. Toxicity was absent or minimal in all patients (0≤VCOG-CTCAE grade≤1). With respect to surgery-treated controls (ST), the complete surgery (CS) arm of this combined treatment (CT) significantly increased the fraction of local disease-free patients from 13 to 81% and distant metastases free from 32 to 84%. Even though less effective than the CS arm, the partial surgery (PS) arm of this CT was significantly better controlling the disease than only surgery (14% while PS-ST: 0%, P<0.01 and CS-ST: 5%, P<0.05). In addition, CT produced a significant sevenfold (CS) and threefold (PS) increase in overall survival. The CS-CT arm significantly improved both CS-ST metastasis-free- and melanoma overall survival from 99 days (respective ranges: 11-563 and 10-568) to >2848 days (81-2848 and 35-2848). Thus, more of 50% of our CT patients died of melanoma unrelated causes, transforming a lethal disease into a chronic one. Finally, surgery adjuvant CT delayed or prevented post-surgical recurrence and distant metastasis, significantly improved disease-free and overall survival maintaining the quality of life. Long-term safety and efficacy of this treatment are supported by the high number of CT patients (283) and extensive follow-up (>9 years). The successful clinical outcome encourages the further translation of similar approaches to human gene therapy trials.

  6. Modulation of T Cell Activation by Malignant Melanoma Initiating Cells

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Natasha Y.; Zhan, Qian; Hoerning, André; Robles, Susanne C.; Zhou, Jun; Hodi, F. Stephen; Spagnoli, Giulio C.; Murphy, George F.; Frank, Markus H.

    2010-01-01

    Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. This raises the possibility that only a restricted minority of tumorigenic malignant cells might possess the phenotypic and functional characteristics to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis, by demonstrating that tumorigenic ABCB5+ malignant melanoma-initiating cells (MMICs) possess the capacity to preferentially inhibit interleukin (IL)-2-dependent T cell activation and to support, in a B7.2-dependent manner, regulatory T (Treg) cell induction. Compared to melanoma bulk populations, ABCB5+ MMICs expressed lower levels of the major histocompatibility complex (MHC) class I, showed aberrant positivity for MHC class II, and exhibited lower expression levels of the melanoma-associated antigens (MAAs) MART-1, ML-IAP, NY-ESO-1, and MAGE-A. In addition, tumorigenic ABCB5+ subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1 in both established melanoma xenografts and clinical tumor specimens in vivo. In immune activation assays, ABCB5+ melanoma cells inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5− populations. Moreover, coculture with ABCB5+ MMICs increased, in a B7.2 signalling-dependent manner, CD4+CD25+FoxP3+ Treg cell abundance and IL-10 production by mitogen-activated PBMCs. Consistent with these findings, ABCB5+ melanoma subsets also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T cell-modulatory functions of ABCB5+ melanoma subpopulations and suggest specific roles for MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance. PMID:20068175

  7. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    PubMed

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  8. Effects of Malignant Melanoma Initiating Cells on T-Cell Activation

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Markus H.

    2016-01-01

    Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883

  9. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    PubMed

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth

    PubMed Central

    Kleffel, Sonja; Posch, Christian; Barthel, Steven R.; Mueller, Hansgeorg; Schlapbach, Christoph; Guenova, Emmanuella; Elco, Christopher P.; Lee, Nayoung; Juneja, Vikram R.; Zhan, Qian; Lian, Christine G.; Thomi, Rahel; Hoetzenecker, Wolfram; Cozzio, Antonio; Dummer, Reinhard; Mihm, Martin C.; Flaherty, Keith T.; Frank, Markus H.; Murphy, George F.; Sharpe, Arlene H.; Kupper, Thomas S.; Schatton, Tobias

    2015-01-01

    SUMMARY Therapeutic antibodies targeting programmed cell death-1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNA interference, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy. PMID:26359984

  12. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2008-02-01

    We evaluated the safety, efficacy and anti-tumor effects of a surgery adjuvant treatment on canine patients with malignant melanoma. This approach combined suicide gene therapy with a subcutaneous vaccine composed by formolized tumor cells and irradiated xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. The post-surgical margin of the cavity was infiltrated with lipid-complexed thymidine kinase suicide gene coadministrated with ganciclovir. Toxicity was minimal or absent in all patients. With respect to surgery-treated controls (SC), this combined treatment (CT) significantly increased the fraction of patients local disease-free from 6 to 58% and distant metastases-free from 43 to 78% (Fisher's Exact test). In addition, CT significantly improved both SC overall 78 (23-540) and metastasis-free survival 112 (0-467) days to more than 1312 days (respective ranges: 43-1312 and 0-1312) (Kaplan-Meier analysis). In those patients subjected to partial surgery or presenting local recurrence, the efficacy of CT was verified by a 49% of objective responses that averaged 85% of tumor mass loss, while 22% displayed tumor progression as 94% of SC did. Therefore, surgery adjuvant CT controlled tumor growth, delaying or preventing post-surgical recurrence and distant metastasis, significantly extending survival and recovering the quality of life.

  13. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J., E-mail: bnickol@lumc.edu

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cellmore » killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.« less

  14. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  15. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  16. Characterization of the canine mda-7 gene, transcripts and expression patterns

    PubMed Central

    Sandey, Maninder; Bird, R. Curtis; Das, Swadesh K.; Sarkar, Devanand; Curiel, David T.; Fisher, Paul B.; Smith, Bruce F.

    2014-01-01

    Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5′-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog. PMID:24865935

  17. The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines

    PubMed Central

    Valiahdi, Seied Mojtaba; Heffeter, Petra; Jakupec, Michael A.; Marculescu, Rodrig; Berger, Walter; Rappersberger, Klemens; Keppler, Bernhard K.

    2012-01-01

    The antineoplastic properties of gallium are well documented. Owing to their robust accumulation of gallium, melanoma cells should be amenable to gallium-based anticancer drugs. With the aim of improving the disappointingly low activity of inorganic gallium salts, we have developed the orally bioavailable gallium complex KP46 [tris(8-quinolinolato)gallium(III)] that was already successfully studied in a phase I clinical trial. To assess its therapeutic potential in malignant melanoma, its antiproliferative effects were investigated in series of human cell lines and primary explanted melanoma samples by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay and the Human Tumor Cloning Assay, respectively. When compared with other cell lines, the majority of melanoma cells rank among the KP46-sensitive cell lines (50% inhibitory concentration values: 0.8–3.7 μmol/l). Clinically achievable concentrations of KP46 proved to be highly effective in melanoma cells from primary explants of cutaneous and lymph node metastases. Colony growth was inhibited in 10 of 10 specimens by 5 lmol/l KP46 (corresponding to the steady-state plasma concentration measured earlier in a study patient) and in four of 10 specimens by 0.5 μmol/l KP46. In-vitro potency of KP46 is higher than that of dacarbazine or fotemustine and comparable with that of cisplatin. The effects induced by KP46 in melanoma cell lines involve cell cycle perturbations (S-phase arrest) and apoptosis (activation of caspase-9, PARP [poly(ADP-ribose) polymerase] cleavage, formation of apoptotic bodies). No effects on DNA secondary structure could be observed in an electrophoretic mobility shift assay using double-stranded plasmid DNA. Thus, further studies on the therapeutic applicability of KP46 in malignant melanoma are warranted. PMID:19584767

  18. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medic, Sandra; Rizos, Helen; Ziman, Mel, E-mail: m.ziman@ecu.edu.au

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if itsmore » function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.« less

  19. Multimarker Quantitative Real-Time PCR Detection of Circulating Melanoma Cells in Peripheral Blood: Relation to Disease Stage in Melanoma Patients

    PubMed Central

    Koyanagi, Kazuo; Kuo, Christine; Nakagawa, Taku; Mori, Takuji; Ueno, Hideaki; Lorico, Arnulfo R.; Wang, He-Jing; Hseuh, Eddie; O’Day, Steven J.; Hoon, Dave S.B.

    2010-01-01

    Background Detection of melanoma cells in circulation may be important in assessing tumor progression. The objective of this study was to develop a specific, reliable, multimarker quantitative real-time reverse transcription-PCR (qRT) assay for detecting melanoma cells in patients’ blood. Methods We developed qRT assays for the mRNA of four melanoma-associated markers: MART-1, GalNAc-T, PAX-3, and MAGE-A3. In optimization studies, we tested 17 melanoma cell lines and 49 peripheral blood leukocyte (PBL) samples from volunteers. We performed RNA and melanoma cell dilution studies to assess the detection limits and imprecision of the assays. We measured the mRNAs in blood specimens from 94 melanoma patients [American Joint Committee on Cancer (AJCC) stage I, n = 20; II, n = 20; III, n = 32; IV, n = 22]. Results All markers were frequently detected in melanoma cell lines, whereas none of the markers was detected in PBLs from volunteers. The qRT assay could detect 1 melanoma cell in 107 PBLs in the melanoma cell-dilution studies. Markers were detected in 15%, 30%, 75%, and 86% of melanoma patients with AJCC stage I, II, III, and IV disease, respectively. The number of positive markers and AJCC stage were significantly correlated (Spearman correlation coefficient = 0.58; P <0.0001). Conclusions Multimarker qRT can detect circulating melanoma cells in blood. Measurement of the studied molecular markers in blood may be useful in detection of metastasis and monitoring treatment response of melanoma patients. PMID:15817820

  20. An electrochemical immunosensing method for detecting melanoma cells.

    PubMed

    Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram

    2015-06-15

    An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells

    PubMed Central

    Maeda, Junko; Yurkon, Charles R.; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C.; Roybal, Erica J.; Rota, Garrett W.; Saffer, Ethan R.; Rose, Barbara J.; Hanneman, William H.; Thamm, Douglas H.; Kato, Takamitsu A.

    2012-01-01

    Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246

  2. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells.

    PubMed

    Testa, Ugo; Castelli, Germana; Pelosi, Elvira

    2017-11-20

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.

  3. In vitro decidualisation of canine uterine stromal cells.

    PubMed

    Kautz, Ewa; de Carvalho Papa, Paula; Reichler, Iris M; Gram, Aykut; Boos, Alois; Kowalewski, Mariusz P

    2015-08-05

    The uterine response to the presence of embryos is poorly understood in the domestic dog (Canis familiaris). The intimate embryo-maternal cross-talk, which begins following the hatching of blastocysts and embryo attachment leads to strong structural and functional remodelling of the uterus. A part of this process is decidualisation, comprising morphological and biochemical changes that result in formation of maternal stroma-derived decidual cells. These are an integral part of the canine placenta materna, which together with the maternal vascular endothelium are the only cells of the canine endotheliochorial placenta able to resist trophoblast invasion. These cells are also the only ones within the canine placenta expressing the progesterone receptor (PGR). Understanding the decidualisation process thus appears essential for understanding canine reproductive physiology. Here, we investigated the capability of canine uterine stromal cells to decidualise in vitro, thereby serving as a canine model of decidualisation. A dbcAMP-mediated approach was chosen during a time course of 24 - 72 h. Tissue material from six (n = 6) healthy, dioestric bitches was used (approximately 2 weeks after ovulation). Cells were characterized by differential staining, nearly 100 % of which were vimentin-positive. Scanning and transmission electron microscope analyses were applied, and morphological changes were recorded with a live cell imaging microscope. Expression of several decidualisation markers was investigated. The in vitro cultured stromal cells acquired characteristics of decidual cells when incubated with 0.5 mM dbcAMP for 72 h. Their shape changed from elongated to rounded, while ultrastructural analysis revealed higher numbers of mitochondria and secretory follicles, and an increased proliferation rate. Elevated expression levels of IGF1, IGF2, PRLR and ERα were observed in decidualised cells; PRL and ERβ remained mostly below the detection limit, while PGR

  4. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    NASA Astrophysics Data System (ADS)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  5. Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines

    PubMed Central

    Yajima, Ichiro; Kumasaka, Mayuko Y; Naito, Yuji; Yoshikawa, Toshikazu; Takahashi, Hiro; Funasaka, Yoko; Suzuki, Tamio; Kato, Masashi

    2012-01-01

    Heterotrimeric G protein is composed of a Gα-subunit and a Gβγ-dimer. Previous studies have revealed that Gβγ-dimers including the Gγ2 subunit (Gng2/GNG2) are associated with cell proliferation, differentiation, invasion and angiogenesis. At present, however, there is no information on the expression level of Gng2/GNG2 alone in any kind of tumor. In this study, we performed DNA microarray analysis in a benign melanocytic tumor and a malignant melanoma from RET-transgenic mice (RET-mice). Gng2 transcript expression levels in a malignant melanoma were less than 1/10 of the level in a benign tumor. The difference in Gng2 transcript expression levels between benign tumors and malignant melanomas was greatest among all of the G protein γ subunits examined in this study. Moreover, protein expression levels of Gng2 were decreased in malignant melanomas compared with those in benign melanocytic tumors in RET-mice. Analysis of human malignant melanomas also showed reduced GNG2 protein expression levels in five human malignant melanoma cell lines compared with the expression levels in normal human epithelial melanocytes (NHEM). Thus, we demonstrated for the first time that Gng2/GNG2 expression levels are reduced in malignant melanoma, suggesting that GNG2 could be a novel biomarker for malignant melanoma. PMID:22679562

  6. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  7. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  8. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  9. Modeling tandem AAG8-MEK inhibition in melanoma cells

    PubMed Central

    Sun, Bing; Kawahara, Masahiro; Nagamune, Teruyuki

    2014-01-01

    Drug resistance presents a challenge to the treatment of cancer patients, especially for melanomas, most of which are caused by the hyperactivation of MAPK signaling pathway. Innate or acquired drug-resistant relapse calls for the investigation of the resistant mechanisms and new anti-cancer drugs to provide implications for the ultimate goal of curative therapy. Aging-associated gene 8 (AAG8, encoded by the SIGMAR1 gene) is a chaperone protein profoundly elaborated in neurology. However, roles of AAG8 in carcinogenesis remain unclear. Herein, we discover AAG8 antagonists as new MEK inhibitors in melanoma cells and propose a novel drug combination strategy for melanoma therapy by presenting the experimental evidences. We report that specific antagonism of AAG8, efficiently suppresses melanoma cell growth and migration through, at least in part, the inactivation of the RAS-CRAF-MEK signaling pathway. We further demonstrate that melanoma cells that are resistant to AAG8 antagonist harbor refractory CRAF-MEK activity. MEK acts as a central mediator for anti-cancer effects and also for the resistance mechanism, leading to our proposal of tandem AAG8-MEK inhibition in melanoma cells. Combination of AAG8 antagonist and very low concentration of a MEK inhibitor synergistically restricts the growth of drug-resistant cells. These data collectively pinpoint AAG8 as a potential target and delineate a promising drug combination strategy for melanoma therapy. PMID:24634165

  10. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells

    PubMed Central

    Castelli, Germana; Pelosi, Elvira

    2017-01-01

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells. PMID:29156643

  11. MITF suppression improves the sensitivity of melanoma cells to a BRAF inhibitor.

    PubMed

    Aida, Satoshi; Sonobe, Yukiko; Tanimura, Hiromi; Oikawa, Nobuhiro; Yuhki, Munehiro; Sakamoto, Hiroshi; Mizuno, Takakazu

    2017-11-28

    Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  13. Modeling tandem AAG8-MEK inhibition in melanoma cells.

    PubMed

    Sun, Bing; Kawahara, Masahiro; Nagamune, Teruyuki

    2014-06-01

    Drug resistance presents a challenge to the treatment of cancer patients, especially for melanomas, most of which are caused by the hyperactivation of MAPK signaling pathway. Innate or acquired drug-resistant relapse calls for the investigation of the resistant mechanisms and new anti-cancer drugs to provide implications for the ultimate goal of curative therapy. Aging-associated gene 8 (AAG8, encoded by the SIGMAR1 gene) is a chaperone protein profoundly elaborated in neurology. However, roles of AAG8 in carcinogenesis remain unclear. Herein, we discover AAG8 antagonists as new MEK inhibitors in melanoma cells and propose a novel drug combination strategy for melanoma therapy by presenting the experimental evidences. We report that specific antagonism of AAG8, efficiently suppresses melanoma cell growth and migration through, at least in part, the inactivation of the RAS-CRAF-MEK signaling pathway. We further demonstrate that melanoma cells that are resistant to AAG8 antagonist harbor refractory CRAF-MEK activity. MEK acts as a central mediator for anti-cancer effects and also for the resistance mechanism, leading to our proposal of tandem AAG8-MEK inhibition in melanoma cells. Combination of AAG8 antagonist and very low concentration of a MEK inhibitor synergistically restricts the growth of drug-resistant cells. These data collectively pinpoint AAG8 as a potential target and delineate a promising drug combination strategy for melanoma therapy. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis.

    PubMed

    Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M

    2017-06-01

    Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, ie, melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so-called 'dynamic stemness'. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two-dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker downregulation (eg, CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent manner. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option.

  15. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes

    PubMed Central

    Shields, Emily J.; Lam, Carol J.; Cox, Aaron R.; Rankin, Matthew M.; Van Winkle, Thomas J.; Hess, Rebecka S.; Kushner, Jake A.

    2015-01-01

    The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes. PMID:26057531

  16. Use of Oncept melanoma vaccine in 69 canine oral malignant melanomas in the UK.

    PubMed

    Verganti, S; Berlato, D; Blackwood, L; Amores-Fuster, I; Polton, G A; Elders, R; Doyle, R; Taylor, A; Murphy, S

    2017-01-01

    Oral malignant melanomas carry a poor-to-guarded prognosis because of their local invasiveness and high metastatic propensity. The Oncept melanoma vaccine is licensed to treat dogs with stage II or III locally-controlled oral malignant melanoma and this retrospective study aimed to assess survival of affected dogs treated with the vaccine in the UK. Medical records of dogs with histopathologically-confirmed oral malignant melanoma that received the vaccine as part of their treatment were evaluated. Survival analyses for potential prognostic factors were performed. Sixty-nine dogs were included; 56 dogs, staged I to III, and with previous locoregional therapy, had a median survival time of 455 days (95% CI: 324 to 586 days). Based on Kaplan-Meier survival analysis with associated log-rank testing, no significant prognostic factors were identified for this population. Of the 13 patients with macroscopic disease treated with vaccine alone or in combination therapy, eight showed clinical response. Three patients with stage IV oral malignant melanoma survived 171, 178 and 288 days from diagnosis. Patients treated with the melanoma vaccine in our study had survival times similar to their counterparts receiving the vaccine in the USA. There were observed responses in patients with macroscopic disease and so the vaccine could be considered as palliative treatment in dogs with stage IV disease. © 2017 British Small Animal Veterinary Association.

  17. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  18. Mast cells promote melanoma colonization of lungs.

    PubMed

    Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar

    2016-10-18

    Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.

  19. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  20. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  1. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  2. The effect of Taurolidine on adherent and floating subpopulations of melanoma cells.

    PubMed

    Shrayer, D P; Lukoff, H; King, T; Calabresi, P

    2003-04-01

    The annual incidence of malignant melanoma is estimated at 10-12 per 100000 inhabitants in countries of Central Europe and the US, with more recent estimates showing a dramatic upward trend. Taurolidine (Carter/Wallace, Cranberry, NJ) is a novel, potentially effective, antitumor chemotherapeutic agent. We hypothesized that Taurolidine could inhibit the growth, induce apoptosis, affect the cell cycle and change morphology of melanoma cells. We expected this process to be different in adherent and floating subpopulations that may be reflective of solid tumors and their metastases. Analysis of MNT-1 human and B16F10 murine melanoma cells showed that at 72 h the IC(50) of Taurolidine was 25.4+/-3.3 microM for MNT-1 human melanoma cells and 30.9+/-3.6 microM for B16F10 murine melanoma cells. Taurolidine induced DNA fragmentation of melanoma cells in a dose-dependent manner. Taurolidine (75 and 100 microM) induced 52-97% Annexin-V binding (apoptosis), respectively. Evaluation of cell cycle after 72 h exposure to Taurolidine (0-100 microM) revealed that the percentage of melanoma cells in S phase increased from 27 to 40% in the adherent subpopulation and from 33 to 49% in the floating subpopulation. Phase contrast microscopy revealed a marked swelling of melanoma cells and decreasing cell numbers in adherent subpopulation starting at 24 h with 25 microM Taurolidine. Shrinkage of cells dominated at 75-100 microM Taurolidine. Using Cytospin assay in the floating population, we observed swelling of melanoma cells induced by 25-100 micro Taurolidine and appearance of giant (multinuclear) forms resulting from exposure to 75-100 micro Taurolidine. Some floating cells with normal morphology were observed with low concentrations of Taurolidine (0-25 microM). These data show that effects of Taurolidine may be different in adherent and floating subpopulations of melanoma cells. More importantly, floating subpopulations that may contain some viable melanoma cells, may be reflective

  3. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.

    PubMed

    Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine

    2014-01-01

    Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma.

    PubMed

    Liao, Yi-Hua; Hsu, Su-Ming; Huang, Pei-Hsin

    2007-12-15

    Tumor cells often aberrantly reexpress molecules that mediate proper embryonic development for advantageous growth or survival. Here, we report that ankyrin repeat-rich membrane spanning (ARMS), a transmembrane protein abundant in the developing and adult neural tissues, is overexpressed in melanoma, a tumor ontogenetically originating from neural crest. Immunohistochemical study of 79 melanocytic lesions showed significantly increased expression of ARMS in primary malignant melanomas (92.9%) and metastatic melanoma (60.0%) in comparison with benign nevocellular nevi (26.7%). To investigate the role of ARMS in melanoma formation, murine B16F0 melanoma cells with stable knockdown of ARMS were established by RNA interference. Down-regulation of ARMS resulted in significant inhibition of anchorage-independent growth in soft agar and restrictive growth of melanoma in severe combined immunodeficient mice. Importantly, depletion of ARMS facilitated UVB-induced apoptosis in melanoma cells through inactivation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK. Addition of MEK inhibitor PD98059 further sensitized ARMS-depleted melanoma cells to UVB-induced apoptosis, whereas constitutively active MEK rescued ARMS-depleted cells from apoptosis. We further showed that BRAF, a downstream signaling molecule of ARMS in ERK pathway, is not mutated as a constitutively active form in acral lentiginous melanoma; in contrast, BRAF(T1799A) mutation, which leads to constitutive activation of ERK signaling, was detected in 57.1% of superficial spreading melanoma. Our study suggests that overexpression of ARMS per se serves as one mechanism to promote melanoma formation by preventing stress-induced apoptotic death mediated by the MEK/ERK signaling pathway, especially in acral lentiginous melanoma, most of which does not harbor BRAF mutation.

  5. Assaying Wnt5A-mediated Invasion in Melanoma Cells

    PubMed Central

    O'Connell, Michael P.; French, Amanda D.; Leotlela, Poloko D.; Weeraratna, Ashani T.

    2009-01-01

    Wnt5A has been implicated in melanoma metastasis, and the progression of other cancers including pancreatic, gastric, prostate and lung cancers. Assays to test motility and invasion include both in vivo assays, and in vitro assays. The former assays include the use of tail vein or footpad injections of metastatic cells, and are often laborious and expensive. In vitro invasion assays provide quick readouts that can help to establish conditions that either activate or inhibit melanoma cell motility, and to assess whether the conditions in question are worth translating into an in vivo model. Here we describe two standard methods for assaying motility and invasion in vitro including wound healing assays and Matrigel invasion assays (Boyden chamber assays). In addition, we and several other laboratories have previously shown that melanoma cells require MMP-2 for their invasion, and have recently shown that Wnt5A treatment can increase the levels of this enzyme in melanoma cells, as demonstrated by gelatin zymography. The use of these techniques can help to assess the migratory capacity of melanoma cells in response to Wnt treatment. PMID:19099260

  6. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines.

    PubMed

    Melnikova, Vladislava O; Bolshakov, Svetlana V; Walker, Christopher; Ananthaswamy, Honnavara N

    2004-03-25

    We have conducted an analysis of genetic alterations in spontaneous murine melanoma cell line B16F0 and its two metastatic clones, B16F1 and B16F10 and the carcinogen-induced murine melanoma cell lines CM519, CM3205, and K1735. We found that unlike human melanomas, the murine melanoma cell lines did not have activating mutations in the Braf oncogene at exon 11 or 15. However, there were distinct patterns of alterations in the ras, Ink4a/Arf, and p53 genes in the two melanoma groups. In the spontaneous B16 melanoma cell lines, expression of p16Ink4a and p19Arf tumor suppressor proteins was lost as a consequence of a large deletion spanning Ink4a/Arf exons 1alpha, 1beta, and 2. In contrast, the carcinogen-induced melanoma cell lines expressed p16Ink4a but had inactivating mutations in either p19Arf (K1735) or p53 (CM519 and CM3205). Inactivation of p19Arf or p53 in carcinogen-induced melanomas was accompanied by constitutive activation of mitogen-activated protein kinases (MAPKs) and/or mutation-associated activation of N-ras. These results indicate that genetic alterations in p16Ink4a/p19Arf, p53 and ras-MAPK pathways can cooperate in the development of murine melanoma.

  7. BRAF and MEK inhibitor therapy eliminates nestin expressing melanoma cells in human tumors.

    PubMed

    Doxie, Deon B; Greenplate, Allison R; Gandelman, Jocelyn S; Diggins, Kirsten E; Roe, Caroline E; Dahlman, Kimberly B; Sosman, Jeffrey A; Kelley, Mark C; Irish, Jonathan M

    2018-05-19

    Little is known about the in vivo impacts of targeted therapy on melanoma cell abundance and protein expression. Here, 21 antibodies were added to an established melanoma mass cytometry panel to measure 32 cellular features, distinguish malignant cells, and characterize dabrafenib and trametinib responses in BRAF V 600mut melanoma. Tumor cells were biopsied before neoadjuvant therapy and compared to cells surgically resected from the same site after 4 weeks of therapy. Approximately 50,000 cells per tumor were characterized by mass cytometry and computational tools t-SNE/viSNE, FlowSOM, and MEM. The resulting single cell view of melanoma treatment response revealed initially heterogeneous melanoma tumors were consistently cleared of Nestin expressing melanoma cells. Melanoma cells subsets that persisted to week 4 were heterogeneous but expressed SOX2 or SOX10 proteins and specifically lacked surface expression of MHC I proteins by MEM analysis. Traditional histology imaging of tissue microarrays from the same tumors confirmed mass cytometry results, including persistence of NES- SOX10+ S100β+ melanoma cells. This quantitative single cell view of melanoma treatment response revealed protein features of malignant cells that are not eliminated by targeted therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  9. Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol.

    PubMed

    Marzagalli, Monica; Moretti, Roberta Manuela; Messi, Elio; Marelli, Marina Montagnani; Fontana, Fabrizio; Anastasia, Alessia; Bani, Maria Rosa; Beretta, Giangiacomo; Limonta, Patrizia

    2018-01-12

    The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.

  10. A Novel Therapy for Melanoma Developed in Mice: Transformation of Melanoma into Dendritic Cells with Listeria monocytogenes

    PubMed Central

    Bronchalo-Vicente, Lucia; Rodriguez-Del Rio, Estela; Freire, Javier; Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Gomez-Roman, Jose Javier; Fernández-Llaca, Hector; Yañez-Diaz, Sonsoles; Alvarez-Dominguez, Carmen

    2015-01-01

    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal. PMID:25760947

  11. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  12. Notch3 Signaling-Mediated Melanoma-Endothelial Crosstalk Regulates Melanoma Stem-Like Cell Homeostasis and Niche Morphogenesis

    PubMed Central

    Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I.; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M.

    2016-01-01

    Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, i.e., melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so–called “dynamic stemness”. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker down-regulation (e.g., CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent fashion. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option. PMID:28165469

  13. BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells.

    PubMed

    Vara-Perez, Monica; Maes, Hannelore; Van Dingenen, Sarah; Agostinis, Patrizia

    2018-06-01

    Aerobic glycolysis (Warburg effect) is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.

  14. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  15. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less

  16. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    PubMed Central

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication. PMID:24725364

  17. Tight Junction–Associated Signaling Pathways Modulate Cell Proliferation in Uveal Melanoma

    PubMed Central

    Jayagopal, Ashwath; Yang, Jin-Long; Haselton, Frederick R.; Chang, Min S.

    2011-01-01

    Purpose. To investigate the role of tight junction (TJ)–associated signaling pathways in the proliferation of uveal melanoma. Methods. Human uveal melanoma cell lines overexpressing the TJ molecule blood vessel epicardial substance (Bves) were generated. The effects of Bves overexpression on TJ protein expression, cell proliferation, and cell cycle distribution were quantified. In addition, localization and transcription activity of the TJ-associated protein ZO-1–associated nucleic acid binding protein (ZONAB) were evaluated using immunofluorescence and bioluminescence reporter assays to study the involvement of Bves signaling in cell proliferation-associated pathways. Results. Bves overexpression in uveal melanoma cell lines resulted in increased expression of the TJ proteins occludin and ZO-1, reduced cell proliferation, and increased sequestration of ZONAB at TJs and reduced ZONAB transcriptional activity. Conclusions. TJ proteins are present in uveal melanoma, and TJ-associated signaling pathways modulate cell signaling pathways relevant to proliferation in uveal melanoma. PMID:20861479

  18. Fibroblasts Protect Melanoma Cells from the Cytotoxic Effects of Doxorubicin

    PubMed Central

    Tiago, Manoela; de Oliveira, Edson Mendes; Brohem, Carla Abdo; Pennacchi, Paula Comune; Paes, Rafael Duarte; Haga, Raquel Brandão; Campa, Ana; de Moraes Barros, Silvia Berlanga; Smalley, Keiran S.

    2014-01-01

    Melanoma is the most aggressive form of skin cancer and until recently, it was extremely resistant to radio-, immuno-, and chemotherapy. Despite the latest success of BRAF V600E-targeted therapies, responses are typically short lived and relapse is all but certain. Furthermore, a percentage (40%) of melanoma cells is BRAF wild type. Emerging evidence suggests a role for normal host cells in the occurrence of drug resistance. In the current study, we compared a variety of cell culture models with an organotypic incomplete skin culture model (the “dermal equivalent”) to investigate the role of the tissue microenvironment in the response of melanoma cells to the chemotherapeutic agent doxorubicin (Dox). In the dermal equivalent model, consisting of fibroblasts embedded in type I collagen matrix, melanoma cells showed a decreased cytotoxic response when compared with less complex culture conditions, such as seeding on plastic cell culture plate (as monolayers cultures) or on collagen gel. We further investigated the role of the microenvironment in p53 induction and caspase 3 and 9 cleavage. Melanoma cell lines cultured on dermal equivalent showed decreased expression of p53 after Dox treatment, and this outcome was accompanied by induction of interleukin IL-6, IL-8, and matrix metalloproteinases 2 and 9. Here, we show that the growth of melanoma cells in the dermal equivalent model inflects drug responses by recapitulating important pro-survival features of the tumor microenvironment. These studies indicate that the presence of stroma enhances the drug resistance of melanoma in vitro, more closely mirroring the in vivo phenotype. Our data, thus, demonstrate the utility of organotypic cell culture models in providing essential context-dependent information critical for the development of new therapeutic strategies for melanoma. We believe that the organotypic model represents an improved screening platform to investigate novel anti-cancer agents, as it provides

  19. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far.more » In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.« less

  20. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines

    PubMed Central

    KISHIMOTO, Takuya Evan; YASHIMA, Shoko; NAKAHIRA, Rei; ONOZAWA, Eri; AZAKAMI, Daigo; UJIKE, Makoto; OCHIAI, Kazuhiko; ISHIWATA, Toshiyuki; TAKAHASHI, Kimimasa; MICHISHITA, Masaki

    2017-01-01

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis. PMID:28529244

  1. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

    PubMed Central

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-01-01

    SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523

  2. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line.

    PubMed

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133(+), CD133(-) and spheroid cells. Significant differences of the two experimental groups were compared using student's t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133(+) cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Although CD133(+) derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells.

  3. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  4. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Identification of progenitor cancer stem cell in lentigo maligna melanoma.

    PubMed

    Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M

    2008-07-01

    The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.

  6. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  7. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells.

    PubMed

    Lewies, Angélique; Wentzel, Johannes Frederik; Miller, Hayley Christy; Du Plessis, Lissinda Hester

    2018-01-01

    Reprogramming of cellular metabolism is now considered one of the hallmarks of cancer. Most malignant cells present with altered energy metabolism which is associated with elevated reactive oxygen species (ROS) generation. This is also evident for melanoma, the leading cause of skin cancer related deaths. Altered mechanisms affecting mitochondrial bioenergetics pose attractive targets for novel anticancer therapies. Antimicrobial peptides have been shown to exhibit selective anticancer activities. In this study, the anti-melanoma potential of the antimicrobial peptide, nisin Z, was evaluated in vitro. Nisin Z was shown to induce selective toxicity in melanoma cells compared to non-malignant keratinocytes. Furthermore, nisin Z was shown to negatively affect the energy metabolism (glycolysis and mitochondrial respiration) of melanoma cells, increase reactive oxygen species generation and cause apoptosis. Results also indicate that nisin Z can decrease the invasion and proliferation of melanoma cells demonstrating its potential use against metastasis associated with melanoma. As nisin Z seems to place a considerable extra burden on the energy metabolism of melanoma cells, combination therapies with known anti-melanoma agents may be effective treatment options. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Cancer stem cell as therapeutic target for melanoma treatment.

    PubMed

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed

    2016-12-01

    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  9. Loss of cell invasiveness through PKC-mediated syndecan-1 downregulation in melanoma cells under anchorage independency.

    PubMed

    Wang, ChiaChen; Tseng, TingTing; Jhang, Yaoyun; Tseng, JenChih; Hsieh, ChiaoHui; Wu, Wen-guey; Lee, ShaoChen

    2014-11-01

    Anchorage-independent survival is one of the key features for malignant tumor cells. Whether specific gene alterations contributed by anchorage independency would further affect metastatic phenotypes of melanoma cells was unclear. We adapted suspension culture of melanoma cells to establish anchorage independency. The suspended melanoma cells lost their invasive abilities in vitro. Specific loss of laminin-binding ability in suspended melanoma cells was observed, which was correlated with downregulation of syndecan-1 as revealed by microarray and validated by qPCR and Western blot. Modulation of syndecan-1 expression level affected laminin binding, transwell migration and matrix metalloproteinase-2 secretion in melanoma cells. SDC1 expression and transwell migration were correlated with activity or level of protein kinase Cδ as evidence by specific inhibitors and shRNA transfection. In this study, we compared metastatic phenotypes and gene expressions of adherent and suspended melanoma cells. The anchorage independency led to protein kinase Cδ-mediated syndecan-1 downregulation, which contributed to loss of laminin-binding ability, reduced metalloproteinase-2 secretion and loss of invasiveness. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    PubMed

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  11. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    PubMed Central

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  12. In vitro antineoplastic effects of auranofin in canine lymphoma cells.

    PubMed

    Zhang, Hong; Rose, Barbara J; Pyuen, Alex A; Thamm, Douglas H

    2018-05-03

    The orally available gold complex auranofin (AF) has been used in humans, primarily as an antirheumatic/immunomodulatory agent. It has been safely administered to healthy dogs to establish pharmacokinetic parameters for oral administration, and has also been used as a treatment in some dogs with immune-mediated conditions. Multiple in vitro studies have recently suggested that AF may possess antineoplastic properties. Spontaneous canine lymphoma may be a very useful translational model for the study of human lymphoma, prompting the evaluation of AF in canine lymphoma cells. We investigated the antineoplastic activity of AF in 4 canine lymphoid tumor derived cell lines through measurements of proliferation, apoptosis, thioredoxin reductase (TrxR) activity and generation of reactive oxygen species (ROS), and detected the effects of AF when combined with conventional cytotoxic drugs using the Chou and Talalay method. We also evaluated the antiproliferative effects of AF in primary canine lymphoma cells using a bioreductive fluorometric assay. At concentrations that appear clinically achievable in humans, AF demonstrated potent antiproliferative and proapoptotic effects in canine lymphoid tumor cell lines. TrxR inhibition and increased ROS production was observed following AF treatment. Moreover, a synergistic antiproliferative effect was observed when AF was combined with lomustine or doxorubicin. Auranofin appears to inhibit the growth and initiate apoptosis in canine lymphoma cells in vitro at clinically achievable concentrations. Therefore, this agent has the potential to have near-term benefit for the treatment of canine lymphoma, as well as a translational model for human lymphoma. Decreased TrxR activity and increasing ROS production may be useful biomarkers of drug exposure.

  13. ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Kneass, Zachary T.; Salesse, Christian; Harbour, J. William

    2011-01-01

    SUMMARY Metastasis of tumor cells to distant organs is the leading cause of death in melanoma. Yet, the mechanisms of metastasis remain poorly understood. One key question is whether all cells in a primary tumor are equally likely to metastasize or whether subpopulations of cells preferentially give rise to metastases. Here, we identified a subpopulation of uveal melanoma cells expressing the multidrug resistance transporter ABCB1 that are highly metastatic compared to ABCB1− bulk tumor cells. ABCB1+ cells also exhibited enhanced clonogenicity, anchorage independent growth, tumorigenicity and mitochondrial activity compared to ABCB1− cells. A375 cutaneous melanoma cells contained a similar subpopulation of highly metastatic ABCB1+ cells. These findings suggest that some uveal melanoma cells have greater potential for metastasis than others, and that a better understanding of such cells may be necessary for more successful therapies for metastatic melanoma. PMID:21575142

  14. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors.

    PubMed

    Richard, Geoffrey; Dalle, Stéphane; Monet, Marie-Ambre; Ligier, Maud; Boespflug, Amélie; Pommier, Roxane M; de la Fouchardière, Arnaud; Perier-Muzet, Marie; Depaepe, Lauriane; Barnault, Romain; Tondeur, Garance; Ansieau, Stéphane; Thomas, Emilie; Bertolotto, Corine; Ballotti, Robert; Mourah, Samia; Battistella, Maxime; Lebbé, Céleste; Thomas, Luc; Puisieux, Alain; Caramel, Julie

    2016-10-01

    Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas. Here, we show that high levels of ZEB1 expression are associated with inherent resistance to MAPKi in BRAF V 600 -mutated cell lines and tumors. ZEB1 levels are also elevated in melanoma cells with acquired resistance and in biopsies from patients relapsing while under treatment. ZEB1 overexpression is sufficient to drive the emergence of resistance to MAPKi by promoting a reversible transition toward a MITF low /p75 high stem-like and tumorigenic phenotype. ZEB1 inhibition promotes cell differentiation, prevents tumorigenic growth in vivo, sensitizes naive melanoma cells to MAPKi, and induces cell death in resistant cells. Overall, our results demonstrate that ZEB1 is a major driver of melanoma cell plasticity, driving drug adaptation and phenotypic resistance to MAPKi. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Isolation and characterisation of cancer stem cells from canine osteosarcoma.

    PubMed

    Wilson, H; Huelsmeyer, M; Chun, R; Young, K M; Friedrichs, K; Argyle, D J

    2008-01-01

    There is increasing evidence that cancer is a stem cell disease. This study sought to isolate and characterise cancer stem cells from canine osteosarcoma. One human and three canine cell lines were cultured in non-adherent culture conditions using serum-starved, semi-solid media. Primitive sarcosphere colonies from all cell lines were identified under these conditions and were characterised using molecular and cytochemical techniques for embryonic stem cell markers. Expression of the embryonic stem cell-associated genes Nanog, Oct4 and STAT3 indicated a primitive phenotype. Sarcospheres could be reproduced consistently when passaged multiple times and produced adherent cell cultures when returned to normal growth conditions. Similarities between human and canine osteosarcoma cell lines add credence to the potential of the dog as a model for human disease.

  16. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  17. HDAC6 interacts with PTPN1 to enhance melanoma cells progression.

    PubMed

    Liu, Jiaqi; Luan, Wenjie; Zhang, Yong; Gu, Jianying; Shi, Yuedong; Yang, Yanwen; Feng, Zihao; Qi, Fazhi

    2018-01-22

    Histone deacetylase 6 (HDAC6) plays an important role in oncogenic transformation and cancer metastasis. Our previous study has demonstrated that HDAC6 was highly expressed in melanoma cells, and contributed to the proliferation and metastasis of melanoma cells. However, the underlying mechanism of HDAC6 in melanoma metastasis and progression remains largely unclear. In this study, we reported that HDAC6 directly interacted with Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) by performing co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS). HDAC6 increased the protein level of PTPN1 independent of histone modifying activity. In addition, PTPN1 promoted proliferation, colony formation and migration while decreased apoptosis of melanoma cells through activating extracellular signal-regulated kinase 1/2 (ERK1/2). Furthermore, we found that matrix metallopeptidase 9 (MMP9) was increased by HDAC6/PTPN1/ERK1/2 axis, which might serve as a mechanism for melanoma invasion and metastasis. In conclusion, HDAC6 might enhance aggressive melanoma cells progression via interacting with PTPN1, which was independent of its histone modifying activity. Copyright © 2017. Published by Elsevier Inc.

  18. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    PubMed

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Canine Lat1: molecular structure, distribution and its expression in cancer samples.

    PubMed

    Ochiai, Hideharu; Morishita, Taiki; Onda, Ken; Sugiyama, Hiroki; Maruo, Takuya

    2012-07-01

    A full-length cDNA sequence of canine L-type amino acid transporter 1 (Lat1) was determined from a canine brain. The sequence was 1828 bp long and was predicted to encode 485 amino acid polypeptides. The deduced amino acid sequence of canine Lat1 showed 93.2% and 91.1% similarities to those of humans and rats, respectively. Northern blot analysis detected Lat1 expression in the cerebellum at 4 kb, and Western blot analysis showed a single band at 40 kDa. RT-PCR analysis revealed a distinct expression of Lat1 in the pancreas and testis in addition to the cerebrum and cerebellum. Notably, Lat1 expression was observed in the tissues of thyroid cancer, melanoma and hemangiopericytoma. Although the cancer samples examined were not enough, Lat1 may serve as a useful biomarker of cancer cells in veterinary clinic.

  20. Uptake in melanoma cells of N-(2-diethylaminoethyl)-2-iodobenzamide (BZA2), an imaging agent for melanoma staging: relation to pigmentation.

    PubMed

    Mansard, Sandrine; Papon, Janine; Moreau, Marie-France; Miot-Noirault, Elisabeth; Labarre, Pierre; Bayle, Martine; Veyre, Annie; Madelmont, Jean-Claude; Moins, Nicole

    2005-07-01

    N-(2-diethylaminoethyl)-2-iodobenzamide (BZA(2)) has been singled out as the most efficacious melanoma scintigraphy imaging agent. Our work was designed to assess the mechanisms of the specific affinity of the radioiodinated iodobenzamide for melanoma tissue. We studied the cellular uptake and retention of [(125)I]-BZA(2) on various cell lines. In vitro, cellular [(125)I]-BZA(2) uptake was related to the pigmentation status of the cells: higher in pigmented melanoma cell lines (M4 Beu, IPC 227, B 16) than in a nonpigmented one (M3 Dau) and nonmelanoma cell lines (MCF 7 and L 929). Two mechanisms were assessed: binding of the tracer to melanin or to sigma receptors of melanoma cells. First, the uptake of [(125)I]-BZA(2) after melanogenesis stimulation by alpha-melanocyte-stimulating hormone and l-tyrosine increased in the B 16 melanoma cell line both in vitro and in vivo according to melanin concentration. Moreover, the binding of [(125)I]-BZA(2) to synthetic melanin was dependent on melanin concentration and could be saturated. Second, no competition was evidenced on M4 Beu cells between [(125)I]-BZA(2) and haloperidol, a sigma ligand, at concentrations < or =10(-6) M. We show that the specificity and sensibility of BZA(2) as a melanoma scintigraphic imaging agent are mostly due to interactions with melanic pigments.

  1. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  2. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transportermore » recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or

  3. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    PubMed

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  4. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering.

    PubMed

    James, Aaron W; Zhang, Xinli; Crisan, Mihaela; Hardy, Winters R; Liang, Pei; Meyers, Carolyn A; Lobo, Sonja; Lagishetty, Venu; Childers, Martin K; Asatrian, Greg; Ding, Catherine; Yen, Yu-Hsin; Zou, Erin; Ting, Kang; Peault, Bruno; Soo, Chia

    2017-01-01

    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.

  5. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin

    PubMed Central

    Tian, Jing; Paquette-Straub, Carrie; Sage, E. Helene; Funk, Sarah E.; Patel, Vivek; Galileo, Deni; McLane, Mary Ann

    2007-01-01

    Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities. PMID:17316731

  6. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    PubMed

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great

  7. Cytologic Features of Malignant Melanoma with Osteoclast-Like Giant Cells.

    PubMed

    Jiménez-Heffernan, José A; Adrados, Magdalena; Muñoz-Hernández, Patricia; Fernández-Rico, Paloma; Ballesteros-García, Ana I; Fraga, Javier

    2018-01-01

    Malignant melanoma showing numerous osteoclast-like giant cells (OGCs) is an uncommon morphologic phenomenon, rarely mentioned in the cytologic literature. The few reported cases seem to have an aggressive clinical behavior. Although most findings support monocyte/macrophage differentiation, the exact nature of OGCs is not clear. A 57-year-old woman presented with an inguinal lymphadenopathy. Sixteen years before, cutaneous malignant melanoma of the lower limb had been excised. Needle aspiration revealed abundant neoplastic single cells as well as numerous multinucleated OGCs. Occasional neoplastic giant cells were also present. Nuclei of OGCs were monomorphic with oval morphology and were smaller than those of melanoma cells. The immunophenotype of OGCs (S100-, HMB45-, Melan-A-, SOX10-, Ki67-, CD163-, BRAF-, CD68+, MiTF+, p16+) was the expected for reactive OGCs of monocyte/macrophage origin. The tumor has shown an aggressive behavior with further metastases to the axillary lymph nodes and oral cavity. Numerous OGCs are a rare and relevant finding in malignant melanoma. Their presence should not induce confusion with other tumors rich in osteoclastic cells. Since a relevant number of OGCs in melanoma may mean a more aggressive behavior, and patients may benefit from specific treatments, their presence should be mentioned in the pathologic report. © 2018 S. Karger AG, Basel.

  8. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  9. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells

    PubMed Central

    Sutton, Selina K.; Koach, Jessica; Tan, Owen; Liu, Bing; Carter, Daniel R.; Wilmott, James S.; Yosufi, Benafsha; Haydu, Lauren E.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Liu, Tao; McArthur, Grant; Zhang, Xu Dong; Scolyer, Richard A.; Cheung, Belamy B.; Marshall, Glenn M.

    2014-01-01

    High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability. TRIM16 knockdown strongly increased cell migration in normal human epidermal melanocytes, while TRIM16 overexpression reduced cell migration and proliferation of melanoma cells in an interferon beta 1 (IFNβ1)-dependent manner. Chromatin immunoprecipitation assays revealed TRIM16 directly bound the IFNβ1 gene promoter. Low level TRIM16 expression in 91 melanoma patient samples, strongly correlated with lymph node metastasis, and, predicted poor patient prognosis in a separate cohort of 170 melanoma patients with lymph node metastasis. The BRAF inhibitor, vemurafenib, increased TRIM16 protein levels in melanoma cells in vitro, and induced growth arrest in BRAF-mutant melanoma cells in a TRIM16-dependent manner. High levels of TRIM16 in melanoma tissues from patients treated with Vemurafenib correlated with clinical response. Our data, for the first time, demonstrates TRIM16 is a marker of cell migration and metastasis, and a novel treatment target in melanoma. PMID:25333256

  10. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    PubMed

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  11. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  12. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression.

    PubMed

    Zhang, Kejin; Guo, Ling

    2018-01-30

    MicroRNAs (miRNAs) have emerged as critical regulators for cancer development and progression of human melanoma. However, the potential molecular mechanism of miR-767 in human melanoma has not been intensively investigated. In this present study, we confirmed that miR-767 was frequently up-regulated in human melanoma tissues and cell lines. Ectopic expression of miR-767 promoted cell proliferation in human melanoma cell lines A375 and WM35, whereas miR-767-in reversed the function. Bioinformatics analysis revealed that cylindromatosis (CYLD) was hypothesized to be a possible target gene of miR-767, and this was confirmed by luciferase activity assay. Knockdown of CYLD counteracted the proliferation arrest by miR-767-in in melanoma cells A375 and WM35. In conclusion, our study indicated that miR-767 acted as a role of tumor promoter by targeting CYLD in human melanoma, and might serve as a prognostic or therapeutic target for human melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    PubMed

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  14. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    PubMed

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  15. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Rofstad, Einar K

    2016-06-01

    A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. An Inducible Endothelial Cell Surface Glycoprotein Mediates Melanoma Adhesion

    NASA Astrophysics Data System (ADS)

    Rice, G. Edgar; Bevilacqua, Michael P.

    1989-12-01

    Hematogenous metastasis requires the arrest and extravasation of blood-borne tumor cells, possibly involving direct adhesive interactions with vascular endothelium. Cytokine activation of cultured human endothelium increases adhesion of melanoma and carcinoma cell lines. An inducible 110-kD endothelial cell surface glycoprotein, designated INCAM-110, appears to mediate adhesion of melanoma cells. In addition, an inducible endothelial receptor for neutrophils, ELAM-1, supports the adhesion of a human colon carcinoma cell line. Thus, activation of vascular endothelium in vivo that results in increased expression of INCAM-110 and ELAM-1 may promote tumor cell adhesion and affect the incidence and distribution of metastases.

  17. Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells.

    PubMed

    Menezes, Ana Catarina; Carvalheiro, Manuela; Ferreira de Oliveira, José Miguel P; Ascenso, Andreia; Oliveira, Helena

    2018-03-01

    1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production.

    PubMed

    Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C

    2007-05-01

    Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be

  19. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  20. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines

    PubMed Central

    Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.

    2018-01-01

    Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555

  1. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    PubMed

    Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M

    2018-01-01

    Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  2. Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation.

    PubMed

    Hoopes, P Jack; Wagner, Robert J; Duval, Kayla; Kang, Kevin; Gladstone, David J; Moodie, Karen L; Crary-Burney, Margaret; Ariaspulido, Hugo; Veliz, Frank A; Steinmetz, Nicole F; Fiering, Steven N

    2018-04-12

    The presence and benefit of a radiation therapy-associated immune reaction is of great interest as the overall interest in cancer immunotherapy expands. The pathological assessment of irradiated tumors rarely demonstrates consistent immune or inflammatory response. More recent information, primarily associated with the "abscopal effect", suggests a subtle radiation-based systemic immune response may be more common and have more therapeutic potential than previously believed. However, to be of consistent value, the immune stimulatory potential of radiation therapy (RT) will clearly need to be supported by combination with other immunotherapy efforts. In this study, using a spontaneous canine oral melanoma model, we have assessed the efficacy and tumor immunopathology of two nanotechnology-based immune adjuvants combined with RT. The immune adjuvants were administered intratumorally, in an approach termed "in situ vaccination", that puts immunostimulatory reagents into a recognized tumor and utilizes the endogenous antigens in the tumor as the antigens in the antigen/adjuvant combination that constitutes a vaccine. The radiation treatment consisted of a local 6 × 6 Gy tumor regimen given over a 12 day period. The immune adjuvants were a plant-based virus-like nanoparticle (VLP) and a 110 nm diameter magnetic iron oxide nanoparticle (mNPH) that was activated with an alternating magnetic field (AMF) to produce moderate heat (43 °C/60 min). The RT was used alone or combined with one or both adjuvants. The VLP (4 × 200 μg) and mNPH (2 × 7.5 mg/gram tumor) were delivered intratumorally respectively during the RT regimen. All patients received a diagnostic biopsy and CT-based 3-D radiation treatment plan prior to initiating therapy. Patients were assessed clinically 14-21 days post-treatment, monthly for 3 months following treatment, and bimonthly, thereafter. Immunohistopathologic assessment of the tumors was performed before and 14-21 days following treatment

  3. Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells.

    PubMed

    Wu, Lisa Y; Johnson, Jacqueline M; Simmons, Jessica K; Mendes, Desiree E; Geruntho, Jonathan J; Liu, Tiancheng; Dirksen, Wessel P; Rosol, Thomas J; Davis, William C; Berkman, Clifford E

    2014-05-01

    Prostate-specific membrane antigen (PSMA) remains an important target for diagnostic and therapeutic application for human prostate cancer. Model cell lines have been recently developed to study canine prostate cancer but their PSMA expression and enzymatic activity have not been elucidated. The present study was focused on determining PSMA expression in these model canine cell lines and the use of fluorescent small-molecule enzyme inhibitors to detect canine PSMA expression by flow cytometry. Western blot and RT-PCR were used to determine the transcriptional and translational expression of PSMA on the canine cell lines Leo and Ace-1. An endpoint HPLC-based assay was used to monitor the enzymatic activity of canine PSMA and the potency of enzyme inhibitors. Flow cytometry was used to detect the PSMA expressed on Leo and Ace-1 cells using a fluorescently tagged PSMA enzyme inhibitor. Canine PSMA expression on the Leo cell line was confirmed by Western blot and RT-PCR, the enzyme activity, and flow cytometry. Kinetic parameters Km and Vmax of PSMA enzymatic activity for the synthetic substrate (PABGγG) were determined to be 393 nM and 220 pmol min(-1)  mg protein(-1) , respectively. The inhibitor core 1 and fluorescent inhibitor 2 were found to be potent reversible inhibitors (IC50  = 13.2 and 1.6 nM, respectively) of PSMA expressed on the Leo cell line. Fluorescent labeling of Leo cells demonstrated that the fluorescent PSMA inhibitor 2 can be used for the detection of PSMA-positive canine prostate tumor cells. Expression of PSMA on Ace-1 was low and not detectable by flow cytometry. The results described herein have demonstrated that PSMA is expressed on canine prostate tumor cells and exhibits similar enzymatic characteristics as human PSMA. The findings show that the small molecule enzyme inhibitors currently being studied for use in diagnosis and therapy of human prostate cancer can also be extended to include canine prostate cancer. Importantly

  4. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells

    PubMed Central

    Mezzanotte, Jessica J; Hill, Victoria; Schmidt, M Lee; Shinawi, Thoraia; Tommasi, Stella; Krex, Dietmar; Schackert, Gabriele; Pfeifer, Gerd P; Latif, Farida; Clark, Geoffrey J

    2014-01-01

    Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-RafV600E-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases. PMID:25482183

  5. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium.

    PubMed

    Liu, Zhuoming; Screven, Rudell; Boxer, Lynne; Myers, Michael J; Devireddy, Lax R

    2018-06-20

    In this article, we report on the development of a defined serum-free medium capable of supporting the culture expansion of mesenchymal stromal/stem cells (MSCs) from canine adipose tissue (canine Ad-MSCs). The potential benefits of serum-free media can only be utilized if cells cultured in serum-free media maintain the same functional characteristics as cells cultured in serum-containing media. Therefore, we analyze the characteristics of canine Ad-MSCs cultured in this serum-free medium or in serum-containing medium through evaluation of growth kinetics, clonogenic capacity, senescence, and differentiation capacity. Both, serum-containing medium and our serum-free medium, supported efficient growth and colony formation of canine Ad-MSCs. In addition, canine Ad-MSCs cultured in both media demonstrated similar viability after freeze/thaw, similar cell surface marker expression, and were capable of trilineage differentiation. While canine Ad-MSCs cultured in both media were generally similar, under the conditions of our study, canine Ad-MSCs cultured in serum-free medium demonstrated a shorter lag phase and higher colony-forming capacity, accelerated population doubling, maintained multipotentiality at higher passage numbers, and underwent senescence at higher passage numbers compared to canine Ad-MSCs cultured in conventional serum-containing medium. These results suggest that canine Ad-MSCs cultured in serum-free medium retain the basic characteristics associated with canine Ad-MSCs cultured in serum-containing medium, although some differences in growth kinetics were observed.

  6. The detection of melanoma cells in peripheral blood by reverse transcription-polymerase chain reaction.

    PubMed Central

    Foss, A. J.; Guille, M. J.; Occleston, N. L.; Hykin, P. G.; Hungerford, J. L.; Lightman, S.

    1995-01-01

    Both cutaneous and uveal melanoma undergo haematogenous dissemination. Detection of tyrosinase mRNA by reverse transcription-polymerase chain reaction (RT-PCR) has been described as an extremely sensitive way of detecting circulating viable melanoma cells in the peripheral venous blood, and this technique may be of value in the early detection of dissemination. Also, it has been suggested that surgical manipulation of the eye, such as occurs during enucleation, can provoke uveal melanoma dissemination. The purpose of this study was to evaluate whether tyrosinase mRNA is detectable in the peripheral blood of patients with uveal and cutaneous melanoma and in patients with uveal melanoma undergoing surgical procedures on the eye harbouring the tumour. Venous blood samples from 36 patients diagnosed as having active uveal melanoma and from six patients with advanced metastatic cutaneous melanoma were analysed. In addition, blood samples were spiked with known numbers of cells from three cell lines and four primary uveal melanoma cultures. The reported sensitivity of the technique was confirmed, with an ability to detect down to one cell per ml of blood. All 51 blood samples from the 36 patients with uveal melanoma were negative, and this included 20 perioperative blood samples. The test was also negative for the six patients with advanced cutaneous melanoma. There were two positives among 31 control samples analysed. This study demonstrates that there are far fewer circulating viable melanocytes than has been previously supposed in patients with melanoma and that the RT-PCR is of no clinical value in detecting metastatic melanoma disease. There was no evidence for surgery causing a bolus of melanoma cells to enter the peripheral circulation. Images Figure 1 Figure 2 PMID:7599046

  7. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    NASA Astrophysics Data System (ADS)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  8. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    PubMed Central

    2012-01-01

    Background The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion We

  9. The Aryl Hydrocarbon Receptor Mediates Leflunomide-Induced Growth Inhibition of Melanoma Cells

    PubMed Central

    O’Donnell, Edmond F.; Kopparapu, Prasad Rao; Koch, Daniel C.; Jang, Hyo Sang; Phillips, Jessica Lynne; Tanguay, Robert L.; Kerkvliet, Nancy I.; Kolluri, Siva Kumar

    2012-01-01

    A novel role of the dihydroorotatedehydrogenase (DHODH) inhibitor leflunomide as a potential anti-melanoma therapy was recently reported (Nature 471∶518-22, 2011). We previously reported that leflunomide strongly activates the transcriptional activity of the Aryl Hydrocarbon Receptor (AhR). We therefore tested whether the AhR regulates the anti-proliferative effects of leflunomide in melanoma. We first evaluated the expression of AhR in melanoma cells and found that AhR is highly expressed in A375 melanoma as well as in several other cancer cell types. To evaluate whether AhR plays a role in regulating the growth inhibitory effects of leflunomide in A375 cells, we generated a stable cell line from parental A375 cells expressing a doxycycline (DOX) inducible AhR shRNA. Using these cells in the absence or presence of DOX (normal AhR levels or AhR-knockdown, respectively) we found that the anti-proliferative effects of leflunomide, but not its metabolite A771726, were strongly dependent upon AhR expression. It has been well established that supplementation of cells with exogenous uridine completely rescues the anti-proliferative effects due to DHODH inhibition. Thus, we performed uridine rescue experiments in A375 cells to determine whether the anti-proliferative effects of leflunomide are solely due to DHODH inhibition as previously reported. Interestingly, saturating levels of uridine only modestly rescued A375 cells from the anti-proliferative effects of both leflunomide and A771726, indicating additional mechanism(s), apart from DHODH inhibition are responsible for the anti-proliferative effects of leflunomide in melanoma cells. Uridine also did not rescue MDA-MB-435S melanoma cell proliferation after leflunomide treatment. Our results reveal that the AhR is a molecular target of leflunomide and support the feasibility of the clinical application of leflunomide for treating melanoma. Furthermore, analysis of expression data from 967 cancer cell lines revealed

  10. Development of a new canine osteosarcoma cell line.

    PubMed

    Séguin, B; Zwerdling, T; McCallan, J L; DeCock, H E V; Dewe, L L; Naydan, D K; Young, A E; Bannasch, D L; Foreman, O; Kent, M S

    2006-12-01

    Establishing a canine osteosarcoma (OSA) cell line can be useful to develop in vivo and in vitro models of OSA. The goal of this study was to develop, characterize and authenticate a new canine OSA cell line and a clone. A cell line and a clone were developed with standard cell culture techniques from a naturally occurring OSA in a dog. The clonal cell line induced a tumour after injection in RAG 1-deficient mouse. Histology was consistent with OSA. The original tumour from the dog and the tumour induced in the mouse were both reactive with vimentin and osteonectin (ON). The parent cell line and clonal cell line were reactive with ON, osteocalcin and alkaline phosphatase. Loss of heterozygosity was found in the same three microsatellite markers in the parent and clonal cell lines, and the tumour tissue grown in the mouse.

  11. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  12. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  13. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.

    PubMed

    Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M

    2013-06-27

    WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

  14. Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages.

    PubMed

    Wasinger, Christine; Hofer, Alexandra; Spadiut, Oliver; Hohenegger, Martin

    2018-04-19

    Cancer cells rewire metabolism to sustain high proliferation rates. Beside glycolysis and glutaminolysis, amino acids substitute as energy source, feed fatty acid biosynthesis and represent part of the secretome of transformed cells, including melanoma. We have therefore investigated acetate, pyruvate and the amino acid composition of the secretome of human melanoma cells representing the early slow (WM35, WM278, WM793b and VM21) and metastatic fast (A375, 518a2, 6F and WM8) growth phase in order to identify possible signalling components within these profiles. Proliferation assays and a principle component analysis revealed a stringent difference between the fast and slow growing melanoma cells. Moreover, upon inhibition of the mevalonate pathway, glutamic acid and alanine were identified as the central difference in the conditional media. A supplementation of the media with glutamic acid and the combination with alanine significantly accelerated the proliferation, migration and invasion of early stage melanoma cells, but not metastatic cells. Finally, the inhibition of the mevalonate pathway abolished the growth advantage of the melanoma cells in a time dependent manner. Taken together, these data corroborate a stage specific response in growth and aggressiveness to extracellular glutamic acid and alanine, indicative for microenvironmental signalling of individual amino acids.

  15. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takabe, Piia, E-mail: piia.takabe@uef.fi; Bart, Geneviève; Ropponen, Antti

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanomamore » cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.« less

  16. Metastatic potential of melanoma cells is not affected by electrochemotherapy.

    PubMed

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Flisar, Karel; Cemazar, Maja

    2011-06-01

    Electrochemotherapy is a local treatment combining chemotherapy and application of electric pulses to the tumour. Electrochemotherapy with bleomycin and cisplatin has shown its effectiveness in controlling local tumour growth in the treatment of malignant melanoma. However, the effect of electrochemotherapy on the metastatic potential of tumour cells is not known. Prevention of metastasis is an important aspect of successful treatment; however, it is known that metastasis can be induced by different treatment modalities. Therefore, the aim of this study was to evaluate the effect of electrochemotherapy with cisplatin on the metastatic potential of human malignant melanoma cells. Cells treated by electrochemotherapy with cisplatin were tested for their ability to migrate and invade through Matrigel-coated porous membrane. In addition, RNA was isolated from cells after treatment and differentially expressed genes were investigated by microarray analysis to evaluate the effect of electrochemotherapy with cisplatin on gene expression. There were no significant changes observed in cell migration and invasion of melanoma cells after electrochemotherapy. In addition, there were no changes observed in cell adhesion on Matrigel. Gene expression analysis showed that a very low number of genes were differentially expressed after electrochemotherapy with cisplatin. Two genes, LAMB3 and CD63 involved in cell migration, were both downregulated after electrochemotherapy with cisplatin and the expression of metastasis promoting genes was not increased after electrochemotherapy. Our data suggest that electrochemotherapy does not increase the metastatic behaviour of human melanoma cells.

  17. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression

    PubMed Central

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R.; Dal, Fulya; Kim, Sangwon F.; Menter, David G.; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2016-01-01

    Summary COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. PMID:26801201

  18. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.

    PubMed

    Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.

  19. Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines

    PubMed Central

    Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy

    2017-01-01

    OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283

  20. MITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a "Genetic Switch" Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma.

    PubMed

    Eccles, Michael R; He, Shujie; Ahn, Antonio; Slobbe, Lynn J; Jeffs, Aaron R; Yoon, Han-Seung; Baguley, Bruce C

    2013-09-11

    Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a central player in melanoma biology, and it controls many aspects of the phenotypic expression of the melanocytic lineage. However, recently the paired box transcription factor PAX3 was shown to transcriptionally activate POU3F2/BRN2, leading to direct repression of MITF expression. Here we present a theory to explain melanoma phenotype switching and discuss the predictions that this theory makes. One prediction is that independent and opposing roles for MITF and PAX3 in melanoma would be expected, and we present empirical evidence supporting this: in melanoma tissues PAX3 expression occurs independently of MITF, and PAX3 does not play a key role in melanoma cell proliferation. Furthermore, we show that knockdown of PAX3 inhibits cell migration in a group of "lower MITF" melanoma cell lines, while knockdown of MITF promotes cell migration in a complementary "higher MITF" group of melanoma cell lines. Moreover, the morphological effects of knocking down PAX3 versus MITF in melanoma cells were found to differ. While these data support the notion of independent roles for MITF and PAX3, additional experiments are required to provide robust examination of the proposed genetic switch theory. Only upon clear delineation of the mechanisms associated with progression and invasion of melanoma cells will successful treatments for invasive melanoma be developed.

  1. Metallothionein expression in canine and feline mammary and melanotic tumours.

    PubMed

    Dincer, Z; Jasani, B; Haywood, S; Mullins, J E; Fuentealba, I C

    2001-01-01

    Moderate to strong immunohistochemical metallothionein (MT) positivity (MT expression) is associated with a poor prognosis in some human tumours. The aim of this study was to determine MT expression in mammary tumours and cutaneous melanomas in dogs and cats. Canine (67) and feline (47) mammary tumours, and cutaneous melanomas (canine 40, feline 26) were immunolabelled with MT monoclonal antibody E9. The overall incidence of MT expression of these tumours was similar to that observed in various human neoplasms. However, a striking interspecies difference was detected. In dogs, MT expression occurred in 100% of benign and 57% of malignant mammary tumours. In cats, however, 30% of malignant mammary tumours expressed MT but benign mammary tumours and cases of fibroadenomatous hyperplasia did not. Moderate to strong MT immunoreactivity was detected in 30% of benign and 25% of malignant cutaneous melanomas in dogs, and in 6% of malignant melanomas in cats. The findings in feline mammary tumours resembled findings reported in human breast cancer, but the cause of tumour-associated MT expression is unknown. Studies are in progress to determine whether the MT state (apo [metal-free] or holo [metal-bound]) accounts for the paradoxical association of MT expression with individual types of tumours and the animal species in which they arise. Copyright Harcourt Publishers Ltd.

  2. Pigmented basal cell carcinoma mimicking a superficial spreading melanoma.

    PubMed

    Hasbún Acuña, Paula; Cullen Aravena, Roberto; Maturana Donaire, César; Ares Mora, Raúl; Porras Kusmanic, Ninoska

    2016-12-20

    Basal cell carcinoma is the most common form of skin cancer, especially in elderly people. Pigmented basal cell carcinoma is a rare subtype and has been described in the literature as a nodular and hyperpigmented lesion; rarely, it can appear as an extensive pigmented plate, which may be clinically indistinguishable from superficial spreading melanoma and Bowen disease. Dermatoscopy has a high sensitivity in the diagnosis of basal cell carcinoma. When Menzies criteria are used; however, the final diagnosis is made by histopathology. The objective of the present report is to analyze the case of a patient with pigmented basal cell carcinoma simulating a superficial spreading melanoma.

  3. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  4. Eradication of melanomas by targeted elimination of a minor subset of tumor cells

    PubMed Central

    Schmidt, Patrick; Kopecky, Caroline; Hombach, Andreas; Zigrino, Paola; Mauch, Cornelia; Abken, Hinrich

    2011-01-01

    Proceeding on the assumption that all cancer cells have equal malignant capacities, current regimens in cancer therapy attempt to eradicate all malignant cells of a tumor lesion. Using in vivo targeting of tumor cell subsets, we demonstrate that selective elimination of a definite, minor tumor cell subpopulation is particularly effective in eradicating established melanoma lesions irrespective of the bulk of cancer cells. Tumor cell subsets were specifically eliminated in a tumor lesion by adoptive transfer of engineered cytotoxic T cells redirected in an antigen-restricted manner via a chimeric antigen receptor. Targeted elimination of less than 2% of the tumor cells that coexpress high molecular weight melanoma-associated antigen (HMW-MAA) (melanoma-associated chondroitin sulfate proteoglycan, MCSP) and CD20 lastingly eradicated melanoma lesions, whereas targeting of any random 10% tumor cell subset was not effective. Our data challenge the biological therapy and current drug development paradigms in the treatment of cancer. PMID:21282657

  5. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    PubMed Central

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  6. Immunohistochemical expression of E-cadherin does not distinguish canine cutaneous histiocytoma from other canine round cell tumors.

    PubMed

    Ramos-Vara, J A; Miller, M A

    2011-05-01

    Immunohistochemistry for E-cadherin (ECAD) has been used to distinguish canine cutaneous histiocytoma from other leukocytic neoplasms ("round cell tumors"). To determine the specificity of this test, 5 types of canine cutaneous round cell tumors were evaluated for immunohistochemical expression of ECAD. Tumors of all 5 types had variable cytoplasmic, plasma membrane, and/or paranuclear ECAD expression: All 13 cutaneous histiocytomas were ECAD+; all but 1 of 14 mast cell tumors expressed ECAD; 10 of 12 epitheliotropic lymphomas reacted with E-cadherin antibody; of 72 plasmacytomas, 54 were ECAD+; and 5 of 5 histiocytic sarcomas were positive. Conclusions based on these results include the following: First, immunoreactivity for ECAD is not limited to leukocytes of cutaneous histiocytoma; second, antibody to ECAD also labels neoplastic cells in most mast cell tumors, plasmacytomas, cutaneous histiocytic sarcomas, and epitheliotropic lymphomas; third, although most histiocytomas have membranous ECAD expression, the immunoreactivity varies among round cell tumors and is frequently concurrent in different cellular compartments; fourth, the distinctively paranuclear ECAD expression pattern in epitheliotropic lymphomas might distinguish them from other round cell tumors; and, fifth, ECAD should be used with other markers (eg, MUM1 for plasmacytomas, KIT for mast cell tumors, CD3 and CD79a for lymphomas) to distinguish among canine round cell tumors.

  7. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  8. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  9. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.

    PubMed

    Haass, Nikolas K; Gabrielli, Brian

    2017-07-01

    The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Anticancer effects of resveratrol in canine hemangiosarcoma cell lines.

    PubMed

    Carlson, A; Alderete, K S; Grant, M K O; Seelig, D M; Sharkey, L C; Zordoky, B N M

    2018-06-01

    Hemangiosarcoma (HSA) is a highly malignant tumour with aggressive biological behaviour. HSAs are more common in dogs than other domestic animals. The median survival time of dogs with HSA remains short, even with chemotherapy and surgery. Therefore, there is a critical need to improve the adjuvant chemotherapeutic regimens to improve clinical outcomes in dogs with HSA. Resveratrol has been shown to possess strong anti-proliferative and/or pro-apoptotic properties in human cancer cell lines. Nevertheless, the potential anticancer effects of resveratrol have not been reported in canine HSAs. The objective of this study is to determine the growth inhibitory effects of resveratrol in HSA cells when used alone or in combination with doxorubicin, a commonly used chemotherapeutic agent. Frog and DD-1 canine HSA cell lines were treated with varying concentrations of resveratrol with and without doxorubicin. Cell viability was measured by the MTT assay. The expression of apoptotic proteins, activation of p38 mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were assessed by western blotting. Similar to human cancer cell lines, resveratrol markedly inhibited the growth and induced apoptosis in both HSA cell lines. Mechanistically, resveratrol activated p38 MAPK, but did not affect the AMPK or the ERK1/2 pathways. Additional experiments showed that resveratrol augmented the growth-inhibitory and apoptotic effects of doxorubicin in both HSA cell lines. These findings suggest that resveratrol has pro-apoptotic effects in canine HSA cells; therefore, its use as a potential adjunct therapy in canine HSA patients warrants further investigation. © 2017 John Wiley & Sons Ltd.

  11. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  12. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, Fernanda; Corazzari, Marco; National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF{sup V600E} melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumormore » cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. - Highlights: • Calorie restriction associated to chemo-therapeutic drugs enhance cell death induction in many resistant malignancies • Cisplatin in association with starvation significantly increases cell death also in those high resistant melanoma cells bearing BRAF mutations • Combined treatment also including 2-DG results in similar cell death levels in both wild type and mutated BRAF cells.« less

  13. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy.

    PubMed

    Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal

    2012-10-01

    Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.

  14. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  15. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  16. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  17. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  18. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Kyung Sook; Jo, Ji Yoon; Kim, Su Jin

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells withmore » a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.« less

  19. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage.

    PubMed

    González-Herrero, I; Romero-Camarero, I; Cañueto, J; Cardeñoso-Álvarez, E; Fernández-López, E; Pérez-Losada, J; Sánchez-García, I; Román-Curto, C

    2013-10-01

    Melanoma is responsible for almost 80% of the deaths attributed to skin cancer. Stem cells, defined by CD133 expression, have been implicated in melanoma tumour growth, but their specific role is still uncertain. We hypothesized that the phenotypic heterogeneity of human cutaneous melanomas is related to their content of CD133+ cells. We compared the percentages of CD133+ cells in 29 tumours from four classic types of melanoma: lentigo maligna melanoma (LMM), superficial spreading melanoma, nodular melanoma and acral lentiginous melanoma (ALM). Also, we compared the percentages of CD133+ cells in melanomas with different degrees of exposure to ultraviolet radiation: 16 melanomas from skin with chronic sun-induced damage and 13 melanomas from skin without such damage. We found a statistically significant increase of CD133+ cells in three different contexts: in melanomas arising on skin with signs of chronic sun-induced damage vs. nonexposed skin, in melanomas in situ vs. invasive melanomas, and in LMM vs. ALM. The proportions of CD133+ cells did not differ among samples of normal skin with different degrees of sun exposure. A distinct subpopulation of CD133+CXCR4+ cancer stem cells (CSCs) was identified and shown to be related to the invasive phenotype of the tumours. Here, we provide evidence showing, for the first time, that an increase in the CD133+ cell content is associated both with melanomas arising on skin with signs of chronic sun-induced damage and in melanomas in situ with better prognosis. Moreover, our study further confirms the existence of a subpopulation of CD133+CXCR4+ CSCs in cutaneous melanomas with invasive phenotype and poor prognosis. © 2013 British Association of Dermatologists.

  20. Cytotoxic action of Brazilian propolis in vitro on canine osteosarcoma cells.

    PubMed

    Cinegaglia, N C; Bersano, P R O; Búfalo, M C; Sforcin, J M

    2013-09-01

    Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    PubMed

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  2. Stem cell media culture of melanoma results in the induction of a nonrepresentative neural expression profile.

    PubMed

    Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan

    2012-02-01

    The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.

  3. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells.

    PubMed

    Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu

    2013-01-01

    Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.

  4. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression.

    PubMed

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R; Dal, Fulya; Kim, Sangwon F; Menter, David G; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2016-05-01

    COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    PubMed

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  6. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  7. Characterization and modulation of canine mast cell derived eicosanoids

    PubMed Central

    Lin, Tzu-Yin; London, Cheryl A.

    2013-01-01

    Mast cells play an important role in both innate and acquired immunity as well as several pathological conditions including allergy, arthritis and neoplasia. They influence these processes by producing a variety of mediators including cytokines, chemokines and eicosanoids. Very little is currently known about the spectrum of inflammatory mediators, particularly eicosanoids (prostaglandins and leukotrienes), produced by canine mast cells. This is important since modulating mast cell derived eicosanoids may help in the treatment of autoimmune and inflammatory disorders. The purpose of this study was to investigate the spectrum of eicosanoids produced by normal canine mast cells and to evaluate the effects of cytokines and non-steroidal anti-inflammatory mediators (NSAIDS) on eicosanoid production and release. Canine bone marrow derived cultured mast cells (cBMCMCs) expressed COX-1, COX-2, and 5-LOX and synthesized and released PGD2, PGE2, LTB4, and LTC4 following activation by a variety of stimuli. The selective COX-2 NSAIDs carprofen (Rimadyl®) and deracoxib (Deramaxx®) inhibited PGD2 and PGE2 production but only slightly inhibited LTB4 and LTC4. The mixed COX-1/COX-2 inhibitor piroxicam blocked PGD2 and PGE2 production, but upregulated LTC4 following treatment while tepoxilan (Zubrin®), a pan COX/LOX inhibitor, markedly reduced the production of all eicosanoids. The LOX inhibitor nordihydroguaiaretic acid (NDGA) prevented LTB4/LTC4 release and BMBMC degranulation. Pre-incubation of cBMCMCs with IL-4 and SCF sensitized these cells to degranulation in response to substance P. In conclusion, canine BMCMCs produce an array of eicosanoids similar to those produced by mast cells from other species. Tepoxilan appeared to be the most effective NSAID for blocking eicosanoid production and thus may be useful for modulating mast cell mediated responses in dogs. PMID:20036014

  8. Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation

    PubMed Central

    Hsu, Mei-Yu; Rovinsky, Sherry; Lai, Chiou-Yan; Qasem, Shadi; Liu, Xiaoming; How, Joan; Engelhardt, John F.; Murphy, George F.

    2009-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily responsible for mediating a diverse array of cellular functions both during embryogenesis and in adult life. Previously, we reported that upregulation of BMP7 in human melanoma correlates with tumor progression. However, melanoma cells are either inhibited by or become resistant to BMP7 as a function of tumor progression, with normal melanocytes being most susceptible. Herein, real-time quantitative reverse transcriptase-polymerase chain reactions and Western blotting revealed that the expression of BMP antagonist, Noggin, correlates with resistance to BMP7 in advanced melanoma cells. To test the hypothesis that coordinated upregulation of Noggin protects advanced melanoma cells from autocrine inhibition by BMP7, functional expression of Noggin in susceptible melanoma cells was achieved by adenoviral gene transfer. The Noggin-overexpressing cells exhibited a growth advantage in response to subsequent BMP7 transduction in vitro under anchorage-dependent and -independent conditions, in three-dimensional skin reconstructs, as well as in vivo in severe combined immune-deficiency mice. In concordance, Noggin knockdown by lentiviral shRNA confers sensitivity to BMP7-induced growth inhibition in advanced melanoma cells. Our findings suggest that, like TGF-β, BMP7 acts as an autocrine growth inhibitor in melanocytic cells, and that advanced melanoma cells may escape from BMP7-induced inhibition through concomitant aberrant expression of Noggin. PMID:18560367

  9. Adoptive Cell Therapy for Patients with Melanoma

    PubMed Central

    Dudley, Mark E.

    2011-01-01

    Adoptive cell therapy can be an effective treatment for some patients with advanced cancer. This report summarizes clinical trial results from the Surgery Branch, NCI, investigating tumor infiltrating lymphocytes (TIL) and gene engineered peripheral blood T cells for the therapy of patients with melanoma and other solid tumors. PMID:21716716

  10. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    PubMed

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  11. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells

    PubMed Central

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-01-01

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets. PMID:29144507

  12. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  13. Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells

    PubMed Central

    2014-01-01

    Background The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents. Methods Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors. Results Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors. Conclusion In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs. PMID:24941944

  14. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.

    PubMed

    Liu, Jing; Qu, Xinyu; Shao, Liwei; Hu, Yuan; Yu, Xin; Lan, Peixiang; Guo, Qie; Han, Qiuju; Zhang, Jian; Zhang, Cai

    2018-03-04

    Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.

  15. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    PubMed Central

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  16. Resveratrol Overcomes Cellular Resistance to Vemurafenib Through Dephosphorylation of AKT in BRAF-mutated Melanoma Cells.

    PubMed

    Luo, Hao; Umebayashi, Masayo; Doi, Keiko; Morisaki, Takashi; Shirasawa, Senji; Tsunoda, Toshiyuki

    2016-07-01

    The serine/threonine-protein kinase B-Raf (BRAF) V600E mutant (BRAF(V600E)) inhibitor vemurafenib, has improved clinical outcomes for patients with BRAF(V600E) melanoma, but acquired cellular resistance mediated by AKT serine/threonine kinase 1 (AKT) phosphorylation limits its efficacy. We examined the effect of resveratrol on vemurafenib-resistant melanoma cells. A vemurafenib-resistant human metastatic melanoma cell line positive for the BRAF V600E mutation was established. The anti-tumorigenic effects of vemurafenib and resveratrol, both alone and in combination, were examined through analysis of cell proliferation and protein expression. The level of phosphorylated AKT (p-AKT) was increased in the primary melanoma cells after treatment with vemurafenib, and the basal level of p-AKT was increased in vemurafenib-resistant melanoma cells. Notably, resveratrol both alone and in combination with vemurafenib effectively suppressed cell proliferation and AKT phosphorylation in both parental and vemurafenib-resistant melanoma cells. Vemurafenib resistance can be reversed by addition of resveratrol in patients undergoing treatment with BRAF inhibitors. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Human Papilloma Virus in Melanoma Biopsy Specimens and Its Relation to Melanoma Progression

    PubMed Central

    Dréau, Didier; Culberson, Cathy; Wyatt, Sharon; Holder, Walter D.

    2000-01-01

    Objectives To evaluate melanoma biopsy specimens for human papilloma virus (HPV) and determine the relation between the presence of HPV, in vitro growth, and clinical progression of melanoma in the patients from whom the biopsy specimens were derived. Summary Background Data Ultraviolet radiation from sun exposure appears to be the primary causal agent in the development of cutaneous melanoma. However, other agents, including HPV, as observed in different epithelial carcinomas, may also play a role in melanoma development and progression. Methods Twelve melanoma biopsy specimens obtained from 12 patients with AJCC stage III and IV melanoma were stained with antibodies against gp-100 (HMB-45) and S-100 protein to confirm melanoma diagnosis and with a polyclonal HPV antibody. After mechanical dissociation, the melanoma specimen cells’ ability to grow in vitro was assessed. Patients were evaluated for melanoma progression with physical examination, complete blood count, and liver function tests every 3 months and a chest radiograph every 6 months. Results All biopsy specimens were positive for S-100, and nine (75%) were positive for gp-100. Seven of 12 (58%) were positive for HPV by immunohistochemistry. In vitro, none of the HPV-negative tumor cells grew from the tumor biopsies, whereas five of seven (71%) of the HPV-positive melanoma tumor cells grew very well. All patients with HPV-positive tumor cells had recurrences and died of melanoma progression, whereas four of five (80%) patients with HPV-negative tumor cells remained alive and without melanoma recurrence. Conclusions The presence of HPV was found in 58% of the biopsy specimens obtained from patients with stage III and IV melanoma and correlated with rapid melanoma progression. HPV may serve as a cofactor in the development of melanoma and may modulate a more aggressive phenotype in HPV-containing melanoma cells. PMID:10767787

  18. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  19. PD-L1 Promotes Self-Renewal and Tumorigenicity of Malignant Melanoma Initiating Cells

    PubMed Central

    Dang, Jianzhong; Zha, Hui; Zhang, Bingyu; Lin, Ming

    2017-01-01

    Recent studies have indicated that therapeutic antibodies targeting PD-L1 show remarkable efficacy in clinical trials in multiple tumors and that a melanoma cell-intrinsic PD-1: PD-L1 axis promotes tumor growth. However, few studies have shown tumor-intrinsic PD-L1 effects in malignant melanoma initiating cells (MMICs). Here, we aim to determine the possible regulatory effects of PD-L1 on MMICs. The ALDEFLUOR kit was used to identify ALDH+ MMICs. Flow cytometry was used to examine the expression of PD-L1 on ALDH+ MMICs. To determine the role of PD-L1 in MMICs self-renewal, we cultured melanoma cells with anti-PD-L1 and measured tumorsphere formation and apoptosis. In addition, the effects of anti-PD-L1 on tumorigenicity and residual ALDH+ MMICs in tumors were evaluated in vivo. We demonstrated that melanoma cell-intrinsic PD-L1 was expressed in ALDH+ MMICs. Blocking PD-L1 in melanoma cell lines impaired tumorsphere formation and induced the apoptosis of sphere cells. In addition, blocking PD-L1 inhibited tumor growth in vivo. We observed residual ALDH+ MMICs within the tumor. The results showed that blocking PD-L1 also significantly decreased the residual ALDH+ MMICs in the tumors. In conclusion, these results suggest a new mechanism underlying melanoma progression and PD-L1-targeted therapy, which is distinct from the immunomodulatory actions of PD-L1. PMID:29250533

  20. Dacarbazine inhibits proliferation of melanoma FEMX-1 cells by up-regulating expression of miRNA-200.

    PubMed

    Chen, Y-N

    2017-03-01

    Melanoma is a highly aggressive tumour, and treatment efficacy depends on the stage of the tumour. Early stage cutaneous melanoma is efficiently treated by surgical excision. In contrast, late-stage melanoma requires chemotherapy with dacarbazine (DTIC). Unfortunately, advanced melanoma can often be resistant to DTIC. The mechanisms of anti-melanoma effects of DTIC are still poorly understood, which hinders development of more potent therapies. In this study, we examined the effects of DTIC on growth inhibition of FEMX-1 melanoma cell line, expression of apoptosis-related proteins, and expression of micro (mi)RNA-200 (miRNA-200a, miRNA-200b, miRNA-200c, and miRNA-141). DTIC was used at 50 (low dose) or 100 (high dose) mg/ml. Cell growth inhibition was documented by MTT assay. Cell apoptosis was quantified by propidium iodide staining and caspase 3-8 activity assay. Expression of apoptosis-related proteins Bim, Bak, BAX, and Bad were documented by Western blot analysis, while expression of miRNA-200 by PCR. DTIC dose-dependently inhibited growth of FEMX-1 melanoma cell line, induced cell apoptosis, modulated the levels of apoptosis-related proteins, and up-regulated expression of miRNA-200 family members. DTIC inhibits the growth of melanoma cells by up-regulating expression of miRNA-200.

  1. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  2. Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines.

    PubMed

    Pawlak, Aleksandra; Kutkowska, Justyna; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej

    2017-10-01

    Methotrexate is an antimetabolite used in the treatment of cancer and non-malignant diseases including rheumatoid arthritis, psoriasis and graft vs. host disease. Combination therapy with methotrexate was successful in the treatment of canine lymphoma, mammary tumor and invasive urinary bladder cancer. Lymphoma, the most common hematopoietic cancer in dogs, and leukemia are sensitive to chemotherapy, which is why methotrexate may be an important treatment option for these diseases. Although methotrexate is already used in veterinary oncology its effects on canine cancer cells has not been tested. The aim of the study was to evaluate for the first time methotrexate concentration-dependent cytotoxicity and its capability of inducing apoptosis in selected canine lymphoma/leukemia cell lines: CLBL-1, GL-1 and CL-1 as a first step before the in vitro development of new therapeutic options with the use of methotrexate. Methotrexate exhibited concentration-dependent inhibitory effect on proliferation of all the examined cell lines with different degree of apoptosis induction. The most methotrexate sensitive cells belonged to CL-1 cell line derived from T cell neoplasia and previously characterized by high resistance to the majority of anticancer drugs used in the therapy of lymphoma/leukemia in dogs. Canine lymphoma and leukemia cell lines are sensitive to methotrexate, and this drug may be useful in effective treatment of canine neoplasms and especially of T-type leukemia/lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Functional Erythropoietin Autocrine Loop in Melanoma

    PubMed Central

    Kumar, Suresh M.; Acs, Geza; Fang, Dong; Herlyn, Meenhard; Elder, David E.; Xu, Xiaowei

    2005-01-01

    Although erythropoietin (Epo) is a known stimulator of erythropoiesis, recent evidence suggests that its biological functions are not confined to hematopoietic cells. To elucidate the role of Epo and erythropoietin receptor (EpoR) in melanoma, we examined the expression and function of these proteins in melanocytes and melanoma cells. We found increased expression of Epo in melanoma cells compared to melanocyte in vitro. EpoR was also strongly expressed in all of the melanoma cell lines and two of the three melanocyte cell lines examined. Epo expression was significantly higher in melanoma than in benign nevi as determined by immunohistochemistry. Although melanoma cells secreted Epo in normoxic condition in vitro, hypoxia and CoCl2 treatment increased Epo secretion. EpoR in melanoma cells was functional, because exogenous Epo increased melanoma resistance to hypoxic stress, pretreatment of melanoma cells with Epo significantly increased resistance to dacarbazine treatment, and Epo increased the phosphorylation of EpoR, RAF, and MEK. In conclusion, we demonstrated constitutive expression of Epo and EpoR as well as autonomous secretion of Epo by melanoma cells, indicating a novel autocrine loop of Epo in melanoma. The results suggest that the autocrine and paracrine functions of Epo might play a role in malignant transformation of melanocytes and in the survival of melanoma cells in hypoxia and other adverse conditions. PMID:15743794

  4. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    PubMed Central

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison

    2017-01-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways. PMID:25511566

  5. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  6. Anti-melanoma activity of the 9.2.27PE immunotoxin in dacarbazine resistant cells.

    PubMed

    Risberg, Karianne; Fodstad, Oystein; Andersson, Yvonne

    2010-04-01

    We have earlier shown that the 9.2.27 Pseudomonas Exotoxin A (PE) immunotoxin (IT) efficiently kills melanoma cells through inhibition of protein synthesis followed by some morphologic and biochemical features of apoptosis, a different cell killing mechanism than the one caused by Dacarbazine (DTIC), a chemotherapeutic drug used to treat malignant melanoma. To examine whether induced DTIC resistance also is a determining factor for the effectiveness of 9.2.27PE IT, we developed a DTIC resistant subline, FEMX-200DR, from the DTIC sensitive cell line FEMX. The cell variants were treated with 9.2.27PE, an IT binding to the high molecular weight-melanoma associated antigen (HMW-MAA) expressed on most malignant melanoma cells. The IT was equally effective in killing the FEMX-200DR and the FEMX cells, and the cell death was primarily caused by inhibition of protein synthesis. The DNA repair enzyme and apoptotic marker PARP, a substrate of caspase-3, was inactivated, although we observed only a minor activation of caspase-3 and caspase-8, intracellular proteases involved in apoptosis. In addition to being DTIC resistant, the FEMX-200DR cells were also more resistant to apoptosis than the parent cells as a 3 times higher concentration of the apoptotic inducer Staurosporine was needed to obtain IC50. Furthermore, in early passage malignant melanoma cell lines established from lymph node metastases, the 9.2.27PE caused a time-dependent and dose-dependent decrease in cell viability independent of their DTIC sensitivity. These findings show that the 9.2.27PE IT efficiently can cause cell death in malignant melanoma cells independent of their level of resistance to apoptosis and DTIC.

  7. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells.

    PubMed

    Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng

    2017-05-01

    Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.

  8. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme

    PubMed Central

    Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J.

    2015-01-01

    The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance. Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab. These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment. PMID:26338962

  9. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  10. Canine Adipose-Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications.

    PubMed

    Roszek, Katarzyna; Makowska, Noemi; Czarnecka, Joanna; Porowińska, Dorota; Dąbrowski, Marcin; Danielewska, Justyna; Nowak, Wiesław

    2017-01-01

    The presented results evidence that canine adipose-derived stem cells (ADSCs) represent the premature population of stem cells with great biological potential and properties. ADCS are easy to obtain and culture, able to differentiate into the neurogenic lineage as well as it is easy to control their proliferation rate with nucleotides and nucleosides or analogues. We report that in vitro cultured canine ADSCs response to adenosine- and ATP-mediated stimulation. Differences in canine ADSCs and human mesenchymal stem cells in ecto-nucleotidase activity have been observed. The ecto-nucleotidase activity changes during ADSCs in vitro transdifferentiation into neurogenic lineage are fast and simple to analyze. Therefore, the simple analysis of ecto-enzymes activity allows for verification of the stem cells quality: their stemness or initiation of the differentiation process. The biological potential of the cells isolated from canine fat, as well as the good quality control of this cell culture, make them a promising tool for both experimental and therapeutic usage. J. Cell. Biochem. 118: 58-65, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Preclinical Derivation and Imaging of Autologously Transplanted Canine Induced Pluripotent Stem Cells*

    PubMed Central

    Lee, Andrew S.; Xu, Dan; Plews, Jordan R.; Nguyen, Patricia K.; Nag, Divya; Lyons, Jennifer K.; Han, Leng; Hu, Shijun; Lan, Feng; Liu, Junwei; Huang, Mei; Narsinh, Kazim H.; Long, Charles T.; de Almeida, Patricia E.; Levi, Benjamin; Kooreman, Nigel; Bangs, Charles; Pacharinsak, Cholawat; Ikeno, Fumiaki; Yeung, Alan C.; Gambhir, Sanjiv S.; Robbins, Robert C.; Longaker, Michael T.; Wu, Joseph C.

    2011-01-01

    Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia. PMID:21719696

  12. Metastatic Melanoma Secreted IL-10 Down-Regulates CD1 Molecules on Dendritic Cells in Metastatic Tumor Lesions

    PubMed Central

    Gerlini, Gianni; Tun-Kyi, Adrian; Dudli, Christa; Burg, Günter; Pimpinelli, Nicola; Nestle, Frank O.

    2004-01-01

    CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor. PMID:15579430

  13. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    PubMed Central

    Chatterjee, S. J.; Ovadje, P.; Mousa, M.; Hamm, C.; Pandey, S.

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells. PMID:21234313

  14. Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.

    PubMed

    Kushiro, Kyoko; Núñez, Nomelí P

    2012-01-01

    Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.

  15. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    PubMed Central

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  16. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    PubMed

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  17. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

    PubMed Central

    Anastas, Jamie N.; Kulikauskas, Rima M.; Tamir, Tigist; Rizos, Helen; Long, Georgina V.; von Euw, Erika M.; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A.; Lucero, Olivia M.; Chien, Andy J.; Moon, Randall T.

    2014-01-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAFV600E/K) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance. PMID:24865425

  18. The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo.

    PubMed

    Linley, Adam J; Mathieu, Morgan G; Miles, Amanda K; Rees, Robert C; McArdle, Stephanie E B; Regad, Tarik

    2012-04-20

    Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types.

  19. The Helicase HAGE Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Cell Proliferation in Vivo*

    PubMed Central

    Linley, Adam J.; Mathieu, Morgan G.; Miles, Amanda K.; Rees, Robert C.; McArdle, Stephanie E. B.; Regad, Tarik

    2012-01-01

    Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types. PMID:22393060

  20. Overexpression of Peroxiredoxin 6 Protects Neoplastic Cells against Apoptosis in Canine Haemangiosarcoma.

    PubMed

    Anwar, Sh; Yanai, T; Sakai, H

    2016-07-01

    Canine haemangiosarcoma (HSA), like human angiosarcoma, is an uncommon malignant vascular endothelial cell tumour associated with a poor prognosis. The peroxiredoxin (PRDX) family of peroxidases, which comprises six members in mammals (PRDX1-6), might contribute to cancer cell survival in the face of oxidative stress as these proteins exhibit frequent upregulation in cancer cells. In this study, we investigated the expression levels of PRDX6 in spontaneously arising primary canine HSAs by immunohistochemical analysis, identifying marked expression of this protein. Both PRDX6 mRNA and protein were overexpressed in HSA cell lines compared with normal canine endothelial cells, although some variation was observed between the different HSA cell lines. Small interfering RNA-induced downregulation of PRDX6 promoted apoptosis in the HSA cell lines. The observation that PRDX6 suppression increased the cytotoxicity of these cells suggests that PRDX6 might play an important cytoprotective role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  2. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  3. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  4. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  5. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  6. SiRNA knockdown of the DEK nuclear protein mRNA enhances apoptosis and chemosensitivity of canine transitional cell carcinoma cells.

    PubMed

    Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi

    2015-04-01

    Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  8. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  9. 5-Fluorouracil may enrich cancer stem cells in canine mammary tumor cells in vitro.

    PubMed

    Zhou, Bin; Jin, Yipeng; Zhang, Di; Lin, Degui

    2018-05-01

    Mammary gland carcinomas are the most common neoplasms in women and unsterilized female dogs. Owing to the existence of cancer stem cells (CSCs), chemotherapy is not able to cure these types of diseases completely. A number of studies have demonstrated that CSCs are resistant to chemotherapeutic drugs, but whether canine mammary tumor cells that have acquired resistance to 5-fluorouracil (5-FU) exhibited properties of CSCs remains unknown. The aim of the present study was to investigate whether 5-fluorouracil-resistant canine mammary tumor cells exhibited properties of CSCs. CSCs were analyzed using western blot assays, ultra-low attachment sphere cultures, flow cytometry and migration (wound healing and Transwell) assays. The results indicated that, compared with parental cells, proteins associated with the Wnt/β-catenin signaling pathway and aldehyde dehydrogenase 1 were overexpressed, the number and size of spheres in the 5-FU-resistant cells were increased, the ratio of CD44 + /CD24 -/low cells was increased and the migratory ability was improved in vitro compared with the 5-FU-susceptible cells. In conclusion, stimulation with chemotherapeutic drugs including 5-FU is a good method for increasing the proportion of canine mammary tumor stem cells in vitro , which may provide further understanding of chemotherapeutic methods and CSCs.

  10. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Hepatitis and Canine Adenovirus... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  11. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  12. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  13. Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma

    PubMed Central

    Venkatesan, Arvind M.; Vyas, Rajesh; Gramann, Alec K.; Gujja, Sharvari; Bhatnagar, Sanchita; Gomes, Camilla Borges Ferreira; Xi, Hualin Simon; Lian, Christine G.; Houvras, Yariv; Edwards, Yvonne J. K.; Deng, April; Ceol, Craig J.

    2017-01-01

    Oncogenomic studies indicate that copy number variation (CNV) alters genes involved in tumor progression; however, identification of specific driver genes affected by CNV has been difficult, as these rearrangements are often contained in large chromosomal intervals among several bystander genes. Here, we addressed this problem and identified a CNV-targeted oncogene by performing comparative oncogenomics of human and zebrafish melanomas. We determined that the gene encoding growth differentiation factor 6 (GDF6), which is the ligand for the BMP family, is recurrently amplified and transcriptionally upregulated in melanoma. GDF6-induced BMP signaling maintained a trunk neural crest gene signature in melanomas. Additionally, GDF6 repressed the melanocyte differentiation gene MITF and the proapoptotic factor SOX9, thereby preventing differentiation, inhibiting cell death, and promoting tumor growth. GDF6 was specifically expressed in melanomas but not melanocytes. Moreover, GDF6 expression levels in melanomas were inversely correlated with patient survival. Our study has identified a fundamental role for GDF6 and BMP signaling in governing an embryonic cell gene signature to promote melanoma progression, thus providing potential opportunities for targeted therapy to treat GDF6-positive cancers. PMID:29202482

  14. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth.

    PubMed

    Frank, Natasha Y; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J; Ma, Jie; Saab, Karim R; Osherov, Veronika; Widlund, Hans R; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S; Murphy, George F; Frank, Markus H

    2011-02-15

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5(+) melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31(-) vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5(+) MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5(+) tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5(+) subpopulations that constitutively expressed VEGFR-1 but not in ABCB5(-) bulk populations that were predominantly VEGFR-1(-). In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5(+) VM morphology and inhibited ABCB5(+) VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by > 90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. ©2011 AACR.

  15. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction.

    PubMed

    Sanches, Larissa Juliani; Marinello, Poliana Camila; Panis, Carolina; Fagundes, Tatiane Renata; Morgado-Díaz, José Andrés; de-Freitas-Junior, Julio Cesar Madureira; Cecchini, Rubens; Cecchini, Alessandra Lourenço; Luiz, Rodrigo Cabral

    2017-03-01

    Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.

  16. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq

    PubMed Central

    Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred

    2017-01-01

    Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy. PMID:27903987

  17. Imatinib mesylate induction of ROS-dependent apoptosis in melanoma B16F0 cells.

    PubMed

    Chang, Shao-Ping; Shen, Shing-Chuan; Lee, Woan-Rouh; Yang, Ling-Ling; Chen, Yen-Chou

    2011-06-01

    Imatinib mesylate (STI571), a protein tyrosine kinase inhibitor, was shown to reduce the viability of several cancer cell lines via apoptosis induction; however, the role of reactive oxygen species (ROS) in STI571-induced melanoma cell apoptosis is still undefined. In this study, we investigated the contribution of ROS to STI571-induced apoptosis in melanoma B16F0 cells, and the apoptotic mechanism elicited by STI571 was illustrated. Using an in vitro cell culture system, the effects of STI571 on ROS production, cell cycle progression, caspase activation, and mitochondrial functions were examined via Western blotting, a flow cytometric analysis, an enzyme activity assay, and a DNA integrity assay. In pharmacological studies, the ROS scavenger, N-acetyl cysteine (NAC), the NADPH oxidase inhibitor, dipheylene iodide (DPI), and mitogen-activated protein kinase (MAPK) inhibitors (PD98059, SP600125, and SB203580) were applied to investigate the mechanism. STI571 reduced the viability of melanoma cells B16F0, but not human skin fibroblasts WS1, via apoptosis induction. Besides, apoptosis induced by STI571 was inhibited by the addition of NAC and DPI, and an increase in the intracellular peroxide level by STI571 was identified in melanoma B16F0 cells. Activation of caspases 3 and 9 enzyme activities accompanied by disrupting the mitochondria membrane potential in according with stimulating JNK and p38 protein phosphorylation was identified in STI571-treated B16F0 cells. STI571-mediated a ROS-dependent apoptosis potentiated by JNK inhibitor SP600125 was first identified in melanoma B16F0 cells. Our results support the idea that ROS-dependent apoptosis in STI571-treated melanoma cells B16F0. The combination of a JNK inhibitor with STI571 for treating melanomas is suggested for further in vivo studies. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Receptor-mediated cytotoxicity of alpha-MSH fragments containing melphalan in a human melanoma cell line.

    PubMed

    Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G

    1994-01-02

    Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human

  19. The proliferation of malignant melanoma cells could be inhibited by ranibizumab via antagonizing VEGF through VEGFR1.

    PubMed

    Li, Jiao; Cui, Yan; Wang, Qin; Guo, Dadong; Pan, Xuemei; Wang, Xingrong; Bi, Hongsheng; Chen, Wei; Liu, Zhengfeng; Zhao, Shengya

    2014-01-01

    Angiogenesis is an important mediator in tumor progression. Vascular endothelial growth factor (VEGF) is one of the major cytokines that can influence angiogenesis. However, the potential mechanism of tumor growth inhibition through anti-VEGF agents is still unclear. This study was performed to examine whether ranibizumab could inhibit malignant melanoma growth in vitro and to determine the safety of ranibizumab on human adult retinal pigment epithelium cell line (ARPE-19 cells). Malignant melanoma cells obtained from a clinic were cultured in vitro. VEGF concentrations secreted by malignant melanoma cells and the ARPE-19 cells were examined by enzyme-linked immunosorbent assay (ELISA). The two kinds of cells were both treated with VEGF and its antagonist, ranibizumab. The dynamic changes of the two types of cells were monitored by real-time cell electronic sensing (RT-CES) assay. The effect of ranibizumab on both types of cells was verified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of VEGF receptor 1 (VEGFR1) RNA in uveal melanoma was further investigated through the PCR technique. The levels of VEGF secreted by malignant melanoma cells were much higher than those of ARPE-19 cells, and were markedly decreased in the action of 0.1 mg/ml ranibizumab. However, there was no obvious reduction of VEGF in the presence of ranibizumab for ARPE-19 (p>0.05). Meanwhile, RT-CES showed that the viability of malignant melanoma cells increased greatly in the presence of VEGF. When VEGF was 20 ng/ml, viability of the malignant melanoma cells increased by 40% compared with the negative control. There was no evident effect on proliferation of ARPE-19 (p>0.05). Furthermore, the growth of malignant melanoma cells was obviously inhibited after ranibizumab intervention. When ranibizumab was administered at 0.25 mg/ml, the survival rate of the malignant melanoma cells decreased to 57.5%. Nevertheless, low-dose exposure to ranibizumab had only a slight

  20. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    PubMed

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  1. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    PubMed

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  2. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    PubMed

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  3. Ex vivo enrichment of circulating anti-tumor T cells from both cutaneous and ocular melanoma patients: clinical implications for adoptive cell transfer therapy.

    PubMed

    Mazzarella, Tonia; Cambiaghi, Valeria; Rizzo, Nathalie; Pilla, Lorenzo; Parolini, Danilo; Orsenigo, Elena; Colucci, Annalisa; Modorati, Giulio; Doglioni, Claudio; Parmiani, Giorgio; Maccalli, Cristina

    2012-08-01

    Tumor-infiltrating lymphocytes (TILs) have been successfully used for adoptive cell transfer (ACT) immunotherapy; however, due to their scarce availability, this therapy is possible for a limited fraction of cutaneous melanoma patients. We assessed whether an effective protocol for ex vivo T-cell expansion from peripheral blood mononuclear cells (PBMCs), suitable for ACT of both cutaneous and ocular melanoma patients, could be identified. PBMCs from both cutaneous and ocular melanoma patients were stimulated in vitro with autologous, irradiated melanoma cells (mixed lymphocyte tumor cell culture; MLTCs) in the presence of IL-2 and IL-15 followed by the rapid expansion protocol (REP). The functional activity of these T lymphocytes was characterized and compared with that of TILs. In addition, the immune infiltration in vivo of ocular melanoma lesions was analyzed. An efficient in vitro MLTC expansion of melanoma reactive T cells was achieved from all PBMC's samples obtained in 7 cutaneous and ocular metastatic melanoma patients. Large numbers of melanoma-specific T cells could be obtained when the REP protocol was applied to these MLTCs. Most MLTCs were enriched in non-terminally differentiated T(EM) cells homogeneously expressing co-stimulatory molecules (e.g., NKG2D, CD28, CD134, CD137). A similar pattern of anti-tumor activity, in association with a more variable expression of co-stimulatory molecules, was detected on short-term in vitro cultured TILs isolated from the same patients. In these ocular melanoma patients, we observed an immune infiltrate with suppressive characteristics and a low rate of ex vivo growing TILs (28.5% of our cases). Our MLTC protocol overcomes this limitation, allowing the isolation of T lymphocytes with effector functions even in these patients. Thus, anti-tumor circulating PBMC-derived T cells could be efficiently isolated from melanoma patients by our novel ex vivo enrichment protocol. This protocol appears suitable for ACT studies

  4. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  5. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  6. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells.

    PubMed

    Du, Maotao; Zhang, Zhong; Gao, Tao

    2017-10-17

    Melanoma took top position among the lethal cancers and, despite there have been some great attempts made to increase the natural life of patients with metastatic disease, long-lasting and complete remissions are few. Piceatannol, owns the similar function as resveratrol, has been defined as an anti-cancer agent playing important role in inhibition of proliferation, migration and metastasis in various cancer. Thus, we aim to investigate the anti-cancer effect and mechanisms of piceatannol in melanoma cells. Melanoma cell lines WM266-4 and A2058 were treated either with or without piceatannol. Cell viability and cell apoptosis were assessed by using MTT and Annexin V/PI assay, respectively. Cells were transfected with specific miRNA using Lipfectamine 2000. miRNA bingding ability to 3'-UTR region within specific gene was assed by firefly luciferase analysis. Gene and protein expression was eveluated by qRT-PCR and western blot analysis, respectively. Our study showed that piceatannol inhibited WM266-4 and A2058 cells growth and induced apoptosis. Totally, 16 differentially expressed miRNAs were screened out including 8 up-regulated and 8 down-regulated miRNAs. Expression level of miR-181a is significantly higher in piceatannol-treated cells than normal control and is lower in melanoma cancer tissues than its adjacent normal tissues. Bcl-2 is a target gene of miR-181a. Moreover, silencing of miR-181a reverses the decrease of cell viability induced by piceatannol in WM266-4 and A2058 cells. Taken together, present study uncovered the ability of piceatannol to repress melanoma cell growth and clarified the contribution of miR-181a in the anticancer role of piceatannol. The present study proposes that piceatannol can be taken into account to be a hopeful anticancer agent for melanoma.

  7. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells.

    PubMed

    Kim, Kyung-Il; Jeong, Do-Sun; Jung, Eui Chang; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin

    2016-11-01

    Wnt/β-catenin signaling is important in development and differentiation of melanocytes. The object of this study was to evaluate the effects of several Wnt/β-catenin signaling inhibitors on pigmentation using melanoma cells. Melanoma cells were treated with Wnt/β-catenin signaling inhibitors, and then melanin content and tyrosinase activity were checked. Although some inhibitors showed slight inhibition of pigmentation, we failed to observe potential inhibitory effect of those chemicals on pigmentation of HM3KO melanoma cells. Rather, one of powerful Wnt/β-catenin signaling inhibitors, ICG-001, increased the pigmentation of HM3KO melanoma cells. Pigmentation-enhancing effect of ICG-001 was reproducible in other melanoma cell line MNT-1. Consistent with these results. ICG-001 increased the expression of pigmentation-related genes, such as MITF, tyrosinase and TRP1. When ICG-001 was treated, the phosphorylation of CREB was significantly increased. In addition, ICG-001 treatment led to quick increase of intracellular cAMP level, suggesting that ICG-001 activated PKA signaling. The blockage of PKA signaling with pharmaceutical inhibitor H89 inhibited the ICG-001-induced pigmentation significantly. These results suggest that PKA signaling is pivotal in pigmentation process itself, while the importance of Wnt/β-catenin signaling should be emphasized in the context of development and differentiation. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts.

    PubMed

    Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I

    2013-06-13

    Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data

  9. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts

    PubMed Central

    2013-01-01

    Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive

  10. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  11. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells

    PubMed Central

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E.; Wang, Rong-Fu; Wang, Helen Y.

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4+ T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4+ T cell-mediated immunotherapy in melanoma. PMID:25993655

  12. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    PubMed

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.

  13. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K.

    PubMed

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E; Végh, Attila G; Váró, György; Galajda, Péter; Krizbai, István A; Wilhelm, Imola

    2016-05-03

    Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.

  14. Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death.

    PubMed

    Lv, Da-Lun; Chen, Lei; Ding, Wei; Zhang, Wei; Wang, He-Li; Wang, Shuai; Liu, Wen-Bei

    2018-01-01

    Melanoma is a leading cause of cancer death worldwide, and SMI-4a and G-Rh2 exert anti-tumor activity in multiple cancer. However, SMI-4a as well as a synergistic relationship between SMI-4a and G-Rh2 in anti-melanoma capacity are still unknown. Therefore, we investigated the effects of SMI-4a and combined SMI-4a with G-Rh2 on the viability, apoptosis and autophagy of melanoma, and to preliminarily explore the underlying mechanism of SMI-4a and combined SMI-4a with G-Rh2 in inhibiting tumor growth. Cell viability was examined with cell counting Kit 8 assay and colony formation assay; Apoptosis was evaluated by flow cytometry and Caspase 3/7 activity assay; Western blotting was used to test proteins related to autophagy and the AKT/mammalian target of rapamycin (mTOR) signaling pathway; Tumor xenograft model in BALB/c nude mice was performed to evaluate the effects of SMI-4a and combined SMI-4a with G-Rh2 in anti-melanoma in vivo. SMI-4a, a pharmacological inhibitor of PIM-1, could decrease cell viability, induce apoptosis, and promote Caspase 3/7 activity in both A375 and G361 melanoma cells, and SMI-4a inhibited tumor growth by inducing autophagy via down-regulating AKT/mTOR axis in melanoma cells. Furthermore, G-Rh2 amplified the anti-tumor activity of SMI-4a in melanoma cells via strengthening autophagy. Our results suggested that SMI-4a could enhance autophagy-inducing apoptosis by inhibiting AKT/mTOR signaling pathway in melanoma cells, and G-Rh2 could enhance the effects of SMI-4a against melanoma cancer via amplifying autophagy induction. This study demonstrates that combined SMI-4a and G-Rh2 might be a novel alternative strategy for melanoma treatment.

  15. De-adhesion dynamics of melanoma cells from brain endothelial layer.

    PubMed

    Varga, Béla; Domokos, Réka Anita; Fazakas, Csilla; Wilhelm, Imola; Krizbai, István A; Szegletes, Zsolt; Gergely, Csilla; Váró, György; Végh, Attila G

    2018-03-01

    Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers. Copyright © 2017. Published by Elsevier B.V.

  16. Generation of recombinant canine interleukin-15 and evaluation of its effects on the proliferation and function of canine NK cells.

    PubMed

    Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Sang-Ki

    2015-05-15

    Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is also a promising cytokine for treating cancer. Despite the growing importance of the clinical use of IL-15 for immunotherapy, no attempts have been made to generate a recombinant canine IL-15 (rcIL-15) and to examine its effects on the antitumor activities of immune effector cells in dogs. Here, we generated an rcIL-15 protein consisting of Asn-49-Ser-162 with a C-terminal His tag and examined its functions ex vivo in terms of the proliferation and antitumor effects on canine non-B, non-T, large granular natural killer (NK) cells. Non-B, non-T, large granular NK cells rapidly expanded in response to stimulation with rcIL-15 in the presence of IL-2, and a majority of the cells that selectively expanded over 21 days exhibited a CD3(-)CD5(-)CD4(-)CD8(+/-)CD21(-) phenotype. Purified rcIL-15 significantly enhanced the expansion rate of canine NK cells derived from peripheral blood mononuclear cells compared to human IL-15, or culture in the absence of IL-15 for 21 days (p<0.05). Purified rcIL-15 was superior at enhancing the effector function of NK cells compared to human IL-15. The cytotoxic activity against canine thyroid adenocarcinoma (CTAC) cells, interferon-γ production, and the mRNA expression levels of perforin and granzyme B of expanded NK cells cultured with rcIL-15 were significantly elevated compared to those cultured with human IL-15 or without IL-15 (p<0.05). Intravenous administration of rcIL-15 significantly increased the numbers of lymphocytes in the peripheral blood of dogs on days 6, 8, and 11 after injection compared to numbers before administration (p<0.05). The results of this study suggest that the rcIL-15 protein, consisting of Asn-49-Ser-162, enhanced the proliferation and antitumor effects of canine NK cells and promoted the generation of lymphocytes in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. VEGFR-1 Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Growth

    PubMed Central

    Frank, Natasha Y.; Schatton, Tobias; Kim, Soo; Zhan, Qian; Wilson, Brian J.; Ma, Jie; Saab, Karim R.; Osherov, Veronika; Widlund, Hans R.; Gasser, Martin; Waaga-Gasser, Ana-Maria; Kupper, Thomas S.; Murphy, George F.; Frank, Markus H.

    2011-01-01

    Melanoma growth is driven by malignant melanoma-initiating cells (MMIC) identified by expression of the ATP-binding cassette (ABC) member ABCB5. ABCB5+ melanoma subpopulations have been shown to overexpress the vasculogenic differentiation markers CD144 (VE-cadherin) and TIE1 and are associated with CD31− vasculogenic mimicry (VM), an established biomarker associated with increased patient mortality. Here we identify a critical role for VEGFR-1 signaling in ABCB5+ MMIC-dependent VM and tumor growth. Global gene expression analyses, validated by mRNA and protein determinations, revealed preferential expression of VEGFR-1 on ABCB5+ tumor cells purified from clinical melanomas and established melanoma lines. In vitro, VEGF induced the expression of CD144 in ABCB5+ subpopulations that constitutively expressed VEGFR-1 but not in ABCB5− bulk populations that were predominantly VEGFR-1−. In vivo, melanoma-specific shRNA-mediated knockdown of VEGFR-1 blocked the development of ABCB5+ VM morphology and inhibited ABCB5+ VM-associated production of the secreted melanoma mitogen laminin. Moreover, melanoma-specific VEGFR-1 knockdown markedly inhibited tumor growth (by >90%). Our results show that VEGFR-1 function in MMIC regulates VM and associated laminin production and show that this function represents one mechanism through which MMICs promote tumor growth. PMID:21212411

  18. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF V600E/V600K and NRAS Q61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines. COX-2 expression correlates

  19. The effects of cryopreservation on the expression of canine regulatory T-cell markers.

    PubMed

    Tarpataki, Noemi; Wawrzyniak, Marcin; Akdis, Cezmi A; Rückert, Beate; Meli, Marina L; Fischer, Nina M; Favrot, Claude; Rostaher, Ana

    2017-08-01

    Regulatory T (Treg) cells have been described as key regulators in various immunological processes and are of growing interest in veterinary allergy. Cryopreservation of immune cells is performed routinely in human basic science research and in clinical studies. As such, it allows batch testing of collected samples at a single time point, resulting in a significant reduction in sample variability. Data which describe the effects of cryopreservation on Treg cell frequency and functionality in the canine species are important to inform future research. The purpose of this study was to establish a robust freeze/thaw procedure and flow cytometric staining protocol for canine Treg cells, and to compare the frequencies of different canine Treg cell phenotypes before and after cryopreservation. Nine privately owned dogs. Peripheral blood mononuclear cells were isolated and Treg cells stained and analysed by flow cytometry, before and after three months of cryopreservation. The recovery percentages and the corresponding correlations (fresh versus cryopreserved) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations were calculated. A high recovery rate of 97.2 (r = 0.94, P < 0.0001), 93.9 (r = 0.77, P < 0.01) and 101.7% (r = 0.99, P < 0.0001) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations, respectively, was observed. This study demonstrates an optimized protocol for freezing, thawing and quantifying canine Treg cells. These results indicate that cryopreservation does not substantially affect the expression of surface and intracellular markers of canine Treg cells; however, additional studies will be necessary to assess whether functionality of the cells is also maintained. © 2017 ESVD and ACVD.

  20. Silymarin inhibits melanoma cell growth both in vitro and in vivo by targeting cell cycle regulators, angiogenic biomarkers and induction of apoptosis.

    PubMed

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2015-11-01

    Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis. The silymarin-induced apoptosis of human melanoma cells was associated with a reduction in the levels of anti-apoptotic proteins (Bcl-2 and Bcl-xl), an increase in the levels of pro-apoptotic protein (Bax), and activation of caspases. Further, oral administration of silymarin (500 mg/kg body weight/2× a week) significantly inhibited (60%, P < 0.01) the growth of BRAF-mutated A375 melanoma tumor xenografts, and this was associated with: (i) inhibition of cell proliferation; (ii) induction of apoptosis of tumor cells; (iii) alterations in cell cycle regulatory proteins; and (iv) reduced expression of tumor angiogenic biomarkers in tumor xenograft tissues. These results indicate that silymarin may have a chemotherapeutic effect on human melanoma cell growth and warrant its further evaluation. © 2014 Wiley Periodicals, Inc.

  1. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma.

    PubMed

    Eton, O; Kharkevitch, D D; Gianan, M A; Ross, M I; Itoh, K; Pride, M W; Donawho, C; Buzaid, A C; Mansfield, P F; Lee, J E; Legha, S S; Plager, C; Papadopoulos, N E; Bedikian, A Y; Benjamin, R S; Balch, C M

    1998-03-01

    Our objective was to determine the clinical activity, toxicity, and immunological effects of active immunotherapy using UVB-irradiated (UVR) autologous tumor (AT) cells plus adjuvant DETOX in metastatic melanoma patients. Eligibility included nonanergic patients fully recovered after resection of 5 or more grams of metastatic melanoma. Treatment consisted of intradermal injections of 10(7) UVR-AT plus 0.25 ml of DETOX every 2 weeks x 6, then monthly. Peripheral blood mononuclear cells (PBMCs) were harvested for cytotoxicity assays, and skin testing was performed for delayed-type hypersensitivity (DTH) determinations before the first, fourth, seventh, and subsequent treatments. Forty-two patients were treated, 18 in the adjuvant setting and 24 with measurable disease. Among the latter group, there were two durable responses in soft-tissue sites and in a bone metastasis. Treatment was well tolerated. Thirty-five patients were assessable for immunological parameters; 10 of these patients, including the 2 responders, demonstrated early induction of PBMC cytotoxicity against AT cells that persisted up to 10 months on treatment before falling to background levels. In five of seven patients, the fall-off heralded progressive disease. Late induction of a weak DTH reaction to AT cells was observed in eight patients. Active immunotherapy with UVR-AT + DETOX had modest but definite clinical activity in advanced melanoma. The induction of both PBMC cytotoxicity and DTH reactivity to AT cells supported a specific systemic immune effect of treatment, although the former more closely followed disease course in this study.

  2. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    PubMed

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  3. At the bench: adoptive cell therapy for melanoma.

    PubMed

    Urba, Walter J

    2014-06-01

    The cellular and molecular principles that furnish the foundation for ACT of melanoma and their implications for further clinical research are reviewed. The parallel advances in basic immunology, preclinical animal studies, and clinical trials over the last two decades have been integrated successfully with improvements in technology to produce an effective ACT strategy for patients with melanoma. From the initial observation that tumors could be treated effectively by the transfer of immune cells to current strategies using preconditioning with myeloablative therapy before adoptive transfer of native or genetically altered T cells, the role of preclinical animal models is discussed. The importance of the pmel transgenic mouse model in the determination of the mechanisms of lymphodepletion, the ongoing work to identify the optimal T cells for adoptive immunotherapy, and the early impact of the emerging discipline of synthetic biology are highlighted. The clinical consequences of the research described herein are reviewed in the companion manuscript. © 2014 Society for Leukocyte Biology.

  4. Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death

    PubMed Central

    Tortelli, Tharcisio Citrangulo; de Godoy, Lyris Martins Franco; de Souza, Gustavo Antonio; Bonatto, Diego; Otake, Andreia Hanada; de Freitas Saito, Renata; Rosa, Jose Cesar; Greene, Lewis Joel; Chammas, Roger

    2017-01-01

    Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy. PMID:28562344

  5. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  6. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Teng, E-mail: tengyu33@yahoo.com; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen speciesmore » (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.« less

  7. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy.

    PubMed

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S; Wunderlich, John R; Dudley, Mark E; Rosenberg, Steven A

    2013-09-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3(+) T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8(+) cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ~50 × 10(9) T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3(+)CD8(+) cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I-mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I-mediated up-regulation of CD137 (4-1BB) expression on CD8(+) cells suggested that 0-3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.

  9. Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy

    PubMed Central

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S.; Wunderlich, John R.; Dudley, Mark E.

    2013-01-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3+ T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8+ cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ∼50 × 109 T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3+CD8+ cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I–mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I–mediated up-regulation of CD137 (4-1BB) expression on CD8+ cells suggested that 0–3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells. PMID:23904171

  10. Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help

    PubMed Central

    Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo

    2011-01-01

    Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294

  11. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation

  12. Ex vivo expansion of canine cytotoxic large granular lymphocytes exhibiting characteristics of natural killer cells.

    PubMed

    Shin, Dong-Jun; Park, Ji-Yun; Jang, Youn-Young; Lee, Je-Jung; Lee, Youn-Kyung; Shin, Myung-Geun; Jung, Ji-Youn; Carson, William E; Cho, Duck; Kim, Sang-Ki

    2013-06-15

    Canine NK cells still are not well-characterized due to the lack of information concerning specific NK cell markers and the fact that NK cells are not an abundant cell population. In this study, we selectively expanded the canine cytotoxic large granular lymphocytes (CLGLs) that exhibit morphologic, genetic, and functional characteristics of NK cells from normal donor PBMCs. The cultured CLGLs were characterized by a high proportion of CD5(dim) expressing cells, of which the majority of cells co-expressed CD3 and CD8, but did not express TCRαβ and TCRγδ. The phenotype of the majority of the CLGLs was CD5(dim)CD3(+)CD8(+) TCRαβ(-)TCRγδ(-)CD4(-)CD21(-)CD11c(+/-)CD11d(+/-)CD44(+). The expression of mRNAs for NK cell-associated receptors (NKG2D, NKp30, NKp44, Ly49, perforin, and granzyme B) were highly upregulated in cultured CLGLs. Specifically, NKp46 was remarkably upregulated in the cultured CLGLs compared to PBMCs. The mRNAs for the NKT-associated iTCRα gene in CLGLs was present at a basal level. The cytotoxic activity of the CLGLs against canine NK cell-sensitive CTAC cells was remarkably elevated in a dose-dependent manner, and the CLGLs produced large amounts of IFN-γ. The antitumor activity of CLGLs extended to different types of canine tumor cells (CF41.Mg and K9TCC-pu-AXC) without specific antigen recognition. These results are consistent with prior reports, and strongly suggest that the selectively expanded CLGLs represent a population of canine NK cells. The results of this study will contribute to future research on canine NK cells as well as NK cell-based immunotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The selective cytotoxicity of new triazene compounds to human melanoma cells.

    PubMed

    Sousa, Ana; Santos, Fábio; Gaspar, Maria Manuela; Calado, Susana; Pereira, João D; Mendes, Eduarda; Francisco, Ana Paula; Perry, Maria Jesus

    2017-08-01

    Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t ½ ≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t ½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t ½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC 50 values of 46-65μM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner.

    PubMed

    Sutton, Selina K; Carter, Daniel R; Kim, Patrick; Tan, Owen; Arndt, Greg M; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D; Wang, Shudong; Kumar, Naresh; McArthur, Grant A; Cheung, Belamy B; Marshall, Glenn M

    2016-08-09

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease.

  15. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner

    PubMed Central

    Sutton, Selina K.; Carter, Daniel R.; Kim, Patrick; Tan, Owen; Arndt, Greg M.; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D.; Wang, Shudong; Kumar, Naresh; McArthur, Grant A.; Cheung, Belamy B.; Marshall, Glenn M.

    2016-01-01

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease. PMID:27447557

  16. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells.

    PubMed

    Jayachandran, Aparna; Lo, Pu-Han; Chueh, Anderly C; Prithviraj, Prashanth; Molania, Ramyar; Davalos-Salas, Mercedes; Anaka, Matthew; Walkiewicz, Marzena; Cebon, Jonathan; Behren, Andreas

    2016-02-22

    The metabolism of cancer cells is often reprogrammed by dysregulation of metabolic enzymes. Transketolase-like 1 (TKTL1) is a homodimeric transketolase linking the pentose-phosphate pathway with the glycolytic pathway. It is generally silenced at a transcriptional level in somatic tissues. However, in human cancers its expression is associated with the acquisition of a glycolytic phenotype (the Warburg effect) by cancer cells that contributes to the progression of malignant tumors. In melanoma, defective promoter methylation results in the expression of genes and their products that can affect the tumor cell's phenotype including the modification of immune and functional characteristics. The present study evaluates the role of TKTL1 as a mediator of disease progression in melanoma associated with a defective methylation phenotype. The expression of TKTL1 in metastatic melanoma tumors and cell lines was analysed by qRT-PCR and immunohistochemistry. The promoter methylation status of TKTL1 in melanoma cells was evaluated by quantitative methylation specific PCR. Using qRT-PCR, the effect of a DNA demethylating agent 5-aza-2'-deoxycytidine (5aza) on the expression of TKTL1 was examined. Biochemical and molecular analyses such as glucose consumption, lactate production, invasion, proliferation and cell cycle progression together with ectopic expression and siRNA mediated knockdown were used to investigate the role of TKTL1 in melanoma cells. Expression of TKTL1 was highly restricted in normal adult tissues and was overexpressed in a subset of metastatic melanoma tumors and derived cell lines. The TKTL1 promoter was activated by hypomethylation and treatment with 5aza induced TKTL1 expression in melanoma cells. Augmented expression of TKTL1 in melanoma cells was associated with a glycolytic phenotype. Loss and gain of function studies revealed that TKTL1 contributed to enhanced invasion of melanoma cells. Our data provide evidence for an important role of TKTL1 in

  17. Host-Derived Pericytes and Sca-1+ Cells Predominate in the MART-1− Stroma Fraction of Experimentally Induced Melanoma

    PubMed Central

    Treviño-Villarreal, J. Humberto; Cotanche, Douglas A.; Sepúlveda, Rosalinda; Bortoni, Magda E.; Manneberg, Otto; Udagawa, Taturo

    2011-01-01

    Identification of cell types in tumor-associated stroma that are involved in the development of melanoma is hampered by their heterogeneity. The authors used flow cytometry and immunohistochemistry to demonstrate that anti–MART-1 antibodies can discriminate between melanoma and stroma cells. They investigated the cellular composition of the MART-1−, non-hematopoietic melanoma-associated stroma, finding it consisted mainly of Sca-1+ and CD146+ cells. These cell types were also observed in the skin and muscle adjacent to developing melanomas. The Sca-1+ cell population was observed distributed in the epidermis, hair follicle bulges, and tumor capsule. The CD146+ population was found distributed within the tumor, mainly associated with blood vessels in a perivascular location. In addition to a perivascular distribution, CD146+ cells expressed α-smooth muscle actin, lacked expression of endothelial markers CD31 and CD34, and were therefore identified as pericytes. Pericytes were found to be associated with CD31+ endothelial cells; however, some pericytes were also observed associated with CD31−, MART-1+ B16 melanoma cells that appeared to form blood vessel structures. Furthermore, the authors observed extensive nuclear expression of HIF-1α in melanoma and stroma cells, suggesting hypoxia is an important factor associated with the melanoma microenvironment and vascularization. The results suggest that pericytes and Sca-1+ stroma cells are important contributors to melanoma development. PMID:22147606

  18. MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells.

    PubMed

    Ren, Jian-Wen; Li, Zhang-Jun; Tu, Chen

    2015-01-01

    Malignant melanoma is the deadliest form of all skin cancers. Recently, microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by targeted repression of transcription and translation and play essential roles during cancer development. Our study showed that miR-135a is upregulated in malignant melanoma tissues and cell lines by using Real-time PCR assay. Enforced expression of miR-135a in malignant melanoma cells promotes cell proliferation, tumorigenicity, and cell cycle progression, whereas inhibition of miR-135a reverses the function. Additionally, we demonstrated FOXO1 is a direct target of miR-135a and transcriptionally down-regulated by miR-135a. Ectopic expression of miR-135a led to downregulation of the FOXO1 protein, resulting in upregulation of Cyclin D1, and downregulation of P21(Cip1) and P27(Kip1) through AKT pathway. Our findings suggested that miR-135a represents a potential onco-miRNA and plays an important role in malignant melanoma progression by suppressing FOXO1 expression.

  19. Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.

    PubMed

    Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J

    2016-09-09

    The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.

  20. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  1. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  2. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafino, A.; Balestrieri, E.; Pierimarchi, P.

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derivedmore » non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.« less

  3. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    PubMed

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  4. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma

    PubMed Central

    2017-01-01

    The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell–ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand–receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention. PMID:28573199

  5. IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment12

    PubMed Central

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-01-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  6. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown butmore » our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.« less

  7. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  8. Nucleoli cytomorphology in cutaneous melanoma cells - a new prognostic approach to an old concept.

    PubMed

    Donizy, Piotr; Biecek, Przemyslaw; Halon, Agnieszka; Maciejczyk, Adam; Matkowski, Rafal

    2017-12-29

    The nucleolus is an organelle that is an ultrastructural element of the cell nucleus observed in H&E staining as a roundish body stained with eosin due to its high protein content. Changes in the nucleoli cytomorphology were one of the first histopathological characteristics of malignant tumors. The aim of this study was to assess the relationship between the cytomorphological characteristics of nucleoli and detailed clinicopathological parameters of melanoma patients. Moreover, we analyzed the correlation between cytomorphological parameters of nucleoli and immunoreactivity of selected proteins responsible for, among others, regulation of epithelial-mesenchymal transition (SPARC, N-cadherin), cell adhesion and motility (ALCAM, ADAM-10), mitotic divisions (PLK1), cellular survival (FOXP1) and the functioning of Golgi apparatus (GOLPH3, GP73). Three characteristics of nucleoli - presence, size and number - of cancer cells were assessed in H&E-stained slides of 96 formalin-fixed paraffin-embedded primary cutaneous melanoma tissue specimens. The results were correlated with classical clinicopathological features and patient survival. Immunohistochemical analysis of the above mentioned proteins was described in details in previous studies. Higher prevalence and size of nucleoli were associated with thicker and mitogenic tumors. All three nucleolar characteristics were related to the presence of ulceration. Moreover, microsatellitosis was strongly correlated with the presence of macronucleoli and polynucleolization (presence of two or more nucleoli). Lack of immunologic response manifested as no TILs in primary tumor was associated with high prevalence of melanoma cells with distinct nucleoli. Interestingly, in nodular melanoma a higher percentage of melanoma cells with prominent nucleoli was observed. In Kaplan-Meier analysis, increased prevalence and amount, but not size of nucleoli, were connected with shorter cancer-specific and disease-free survival. (1) High

  9. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells

    PubMed Central

    Beck, Daniela; Niessner, Heike; Smalley, Keiran S.M.; Flaherty, Keith; Paraiso, Kim H.T.; Busch, Christian; Sinnberg, Tobias; Vasseur, Sophie; Iovanna, Juan Lucio; Drießen, Stefan; Stork, Björn; Wesselborg, Sebastian; Schaller, Martin; Biedermann, Tilo; Bauer, Jürgen; Lasithiotakis, Konstantinos; Weide, Benjamin; Eberle, Jürgen; Schittek, Birgit; Schadendorf, Dirk; Garbe, Claus; Kulms, Dagmar; Meier, Friedegund

    2013-01-01

    The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase (MAPK) signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of anti-apoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein GRP78, increased the abundance of the spliced isoform of the transcription factor X-box protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein ATF4 significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance. PMID:23362240

  10. Gene therapy of spontaneous canine melanoma and feline fibrosarcoma by intratumoral administration of histoincompatible cells expressing human interleukin-2.

    PubMed

    Quintin-Colonna, F; Devauchelle, P; Fradelizi, D; Mourot, B; Faure, T; Kourilsky, P; Roth, C; Mehtali, M

    1996-12-01

    The production of human interleukin-2 (hIL-2) local to the tumor site by engineered histoincompatible cells has been shown in various murine models to promote a strong immune response leading to tumor growth inhibition or rejection. To assess whether this strategy would be similarly applicable for treatment of primary neoplastic cells, two naturally occurring tumors were used as preclinical models; the highly metastatic melanoma of the dog and the low metastatic fibrosarcoma of the cat. We demonstrate that both cats and dogs when treated by tumor surgery, radiotherapy and repeated local injections of xenogeneic Vero cells secreting high levels of hIL-2 relapse less frequently and survive longer than control animals treated by surgery and radiotherapy alone. Local secretion of hIL-2 by the xenogeneic cells is shown to be necessary for the induction of an optimal antitumor effect. Moreover, the safety of the procedure was demonstrated in both animal models and through extensive toxicological analysis performed in rats. These results confirm for the first time to our knowledge the safety and therapeutic potential of a gene transfer strategy in animals with spontaneous metastatic and nonmetastatic tumors.

  11. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    PubMed

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  12. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Long, Chaoqin; Yang, Guilan

    2016-03-11

    Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study foundmore » that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. - Highlights: • miR-26b is downregulated in human melanomas. • miR-26b suppressed melanoma cell proliferation and enhanced cell apoptosis. • TRAF5 is a direct target of miR-26b and inversely correlates with miR-26b expression. • miR-26b modulated MAPK signaling pathway by targeting TRAF5.« less

  13. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions

    PubMed Central

    Sucker, Antje; Zhao, Fang; Pieper, Natalia; Heeke, Christina; Maltaner, Raffaela; Stadtler, Nadine; Real, Birgit; Bielefeld, Nicola; Howe, Sebastian; Weide, Benjamin; Gutzmer, Ralf; Utikal, Jochen; Loquai, Carmen; Gogas, Helen; Klein-Hitpass, Ludger; Zeschnigk, Michael; Westendorf, Astrid M.; Trilling, Mirko; Horn, Susanne; Schilling, Bastian; Schadendorf, Dirk; Griewank, Klaus G.; Paschen, Annette

    2017-01-01

    Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making. PMID:28561041

  15. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  16. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  17. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  18. 9 CFR 113.305 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Type 2 Vaccine. 113.305 Section 113.305 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Virus Vaccines § 113.305 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine. Canine Hepatitis Vaccine and Canine Adenovirus Type 2 Vaccine shall be prepared from virus-bearing cell...

  19. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

    PubMed Central

    Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David

    2013-01-01

    Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005

  20. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.

    PubMed

    Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo

    2014-12-01

    The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

  1. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    PubMed

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  2. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    PubMed

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  3. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meira, Willian Vanderlei; Heinrich, Tassiele Andréa; Cadena, Silvia Maria Suter Correia

    Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer,more » because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψ{sub m}) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4 mM L-tyrosine and 10 mM NH{sub 4}Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48 h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state. - Highlights: • Melanoma pigmentation alters mitochondrial respiration. • Induction of melanin synthesis by 48 h do not change mitochondrial

  4. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  5. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma.

    PubMed

    Landen, Jaren W; Lang, Roland; McMahon, Steve J; Rusan, Nasser M; Yvon, Anne-Marie; Adams, Ashley W; Sorcinelli, Mia D; Campbell, Ross; Bonaccorsi, Paola; Ansel, John C; Archer, David R; Wadsworth, Patricia; Armstrong, Cheryl A; Joshi, Harish C

    2002-07-15

    Cellular microtubules, polymers of tubulin, alternate relentlessly between phases of growth and shortening. We now show that noscapine, a tubulin-binding agent, increases the time that cellular microtubules spend idle in a paused state. As a result, most mammalian cell types observed arrest in mitosis in the presence of noscapine. We demonstrate that noscapine-treated murine melanoma B16LS9 cells do not arrest in mitosis but rather become polyploid followed by cell death, whereas primary melanocytes reversibly arrest in mitosis and resume a normal cell cycle after noscapine removal. Furthermore, in a syngeneic murine model of established s.c. melanoma, noscapine treatment resulted in an 85% inhibition of tumor volume on day 17 when delivered by gavage compared with untreated animals (P melanoma progression by 83% on day 18 when delivered in drinking water (P melanoma cells through alterations in microtubule dynamics, with no detected toxicity to the host. Consequently, noscapine could be a valuable chemotherapeutic agent, alone or in combination, for the treatment of advanced melanoma.

  6. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    PubMed

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  7. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells.

    PubMed

    Roos, Wynand P; Quiros, Steve; Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-12-30

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment.

  8. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  9. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beninati, Simone, E-mail: beninati@bio.uniroma2.it; Oliverio, Serafina; Cordella, Martina

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastaticmore » process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.« less

  10. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines

    PubMed Central

    Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan

    2017-01-01

    ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079

  11. Apoptotic intrinsic pathway proteins predict survival in canine cutaneous mast cell tumours.

    PubMed

    Barra, C N; Macedo, B M; Cadrobbi, K G; Pulz, L H; Huete, G C; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Nishiya, A T; Fukumasu, H; Strefezzi, R F

    2018-03-01

    Mast cell tumours (MCTs) are the most frequent canine round cell neoplasms and show variable biological behaviours with high metastatic and recurrence rates. The disease is treated surgically and wide margins are recommended. Adjuvant chemotherapy and radiotherapy used in this disease cause DNA damage in neoplastic cells, which is aimed to induce apoptotic cell death. Resisting cell death is a hallmark of cancer, which contributes to the development and progression of tumours. The aim of this study was to investigate the expression of the proteins involved in the apoptotic intrinsic pathway and to evaluate their potential use as prognostic markers for canine cutaneous MCTs. Immunohistochemistry for BAX, BCL2, APAF1, Caspase-9, and Caspase-3 was performed in 50 canine cases of MCTs. High BAX expression was associated with higher mortality rate and shorter survival. BCL2 and APAF1 expressions offered additional prognostic information to the histopathological grading systems. The present results indicate that variations in the expression of apoptotic proteins are related to malignancy of cutaneous MCTs in dogs. © 2017 John Wiley & Sons Ltd.

  12. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  13. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis

    PubMed Central

    Echtler, Katrin; Konrad, Ildiko; Lorenz, Michael; Schneider, Simon; Hofmaier, Sebastian; Plenagl, Florian; Stark, Konstantin; Czermak, Thomas; Tirniceriu, Anca; Eichhorn, Martin; Walch, Axel; Enders, Georg; Massberg, Steffen; Schulz, Christian

    2017-01-01

    Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases. PMID:28253287

  14. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis.

    PubMed

    Echtler, Katrin; Konrad, Ildiko; Lorenz, Michael; Schneider, Simon; Hofmaier, Sebastian; Plenagl, Florian; Stark, Konstantin; Czermak, Thomas; Tirniceriu, Anca; Eichhorn, Martin; Walch, Axel; Enders, Georg; Massberg, Steffen; Schulz, Christian

    2017-01-01

    Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases.

  15. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    PubMed

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  16. In vitro effects of histone deacetylase inhibitors and mitomycin C on tenon capsule fibroblasts and conjunctival melanoma cells.

    PubMed

    Cunneen, Thomas S; Conway, R Max; Madigan, Michele C

    2009-04-01

    To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.

  17. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  18. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  19. Inhibitory effect of fentanyl citrate on the release of endothlin-1 induced by bradykinin in melanoma cells.

    PubMed

    Andoh, Tsugunobu; Shinohara, Akira; Kuraishi, Yasushi

    2017-02-01

    Our previous study showed that the μ-opioid receptor agonist fentanyl citrate inhibits endothelin-1-and bradykinin-mediated pain responses in mice orthotopically inoculated with melanoma cells. We also demonstrated that bradykinin induces endothelin-1 secretion in melanoma cells. However, the analgesic mechanisms of fentanyl citrate remain unclear. Thus, the present study was conducted to determine whether fentanyl citrate affects bradykinin-induced endothelin-1 secretion in B16-BL6 melanoma cells. The amount of endothelin-1 in the culture medium was measured using an enzyme immunoassay. The expression of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL/6 melanoma cells was determined using immunocytochemistry. Fentanyl citrate inhibited bradykinin-induced endothelin-1 secretion. The inhibitory effect of fentanyl citrate on the secretion of endothelin-1 was attenuated by the μ-opioid receptor antagonist naloxone methiodide. The immunoreactivities of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL6 melanoma cells were observed. These results suggest that fentanyl citrate regulates bradykinin-induced endothelin-1 secretion through μ-opioid receptors in melanoma cells. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA.

    PubMed

    Keuling, Angela M; Andrew, Susan E; Tron, Victor A

    2010-06-01

    The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.

  1. Neural cell adhesion molecule potentiates invasion and metastasis of melanoma cells through CAMP-dependent protein kinase and phosphatidylinositol 3-kinase pathways.

    PubMed

    Shi, Yu; Liu, Rui; Zhang, Si; Xia, Yin-Yan; Yang, Hai-Jie; Guo, Ke; Zeng, Qi; Feng, Zhi-Wei

    2011-04-01

    Neural cell adhesion molecule (NCAM) has been implicated in tumor metastasis yet its function in melanoma progression remains unclear. Here, we demonstrate that stably silencing NCAM expression in mouse melanoma B16F0 cells perturbs their cellular invasion and metastatic dissemination in vivo. The pro-invasive function of NCAM is exerted via dual mechanisms involving both cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K) pathways. Pharmacologic inhibition of PKA and PI3K leads to impaired cellular invasion. In contrast, forced expression of constitutively activated Akt, the major downstream target of PI3K, restores the defective cellular invasiveness of NCAM knock-down (KD) B16F0 cells. Furthermore, attenuation of either PKA or Akt activity in NCAM KD cells is shown to affect their common downstream target, transcription factor cAMP response element binding protein (CREB), which in turn down-regulates mRNA expression of matrix metalloproteinase-2 (MMP-2), thus contributes to impaired cellular invasion and metastasis of melanoma cells. Together, these findings indicate that NCAM potentiates cellular invasion and metastasis of melanoma cells through stimulation of PKA and PI3K signaling pathways thus suggesting the potential implication of anti-NCAM strategy in melanoma treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients

    NASA Astrophysics Data System (ADS)

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-02-01

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml-1). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  3. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    PubMed

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ( 12 C 6+ ) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ( 12 C 6+ ) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ( 12 C 6+ ). High LET heavy ion ( 12 C 6+ ) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ( 12 C 6+ ) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to

  4. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  5. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    PubMed

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  6. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis

    PubMed Central

    Tremante, Elisa; Santarelli, Lory; Monaco, Elisa Lo; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto

    2015-01-01

    Alpha-tochopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention. PMID:26427039

  7. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  8. Novel somatic KIT exon 8 mutation with dramatic response to imatinib in a patient with mucosal melanoma: a case report.

    PubMed

    Rapisuwon, Suthee; Parks, Kellie; Al-Refaie, Waddah; Atkins, Michael B

    2014-10-01

    Primary mucosal melanomas represent ∼1.3% of all cases of melanoma diagnosed in the USA. The sinonasal location is the most common primary site. Mutations in the KIT gene occur in 10-22% of mucosal melanomas. Tumor response to imatinib mesylate has been reported in about half of the patients with tumors harboring KIT mutations. Responses are almost exclusively restricted to tumors with mutations in KIT exon 9 or 11. We report a case of a patient with a sinonasal mucosal melanoma with a novel exon 8 mutation (C443S) who had marked initial response to imatinib. Somatic exon 8 KIT mutations have not been previously reported in mucosal melanoma or in other human solid tumors; however, such mutations have been reported in canine and feline mast cell tumors. Protein transcripts from exon 8 play an important role in the structural and functional integrity of the extracellular domain of KIT. In preclinical studies, a mutation in exon 8 led to autophosphorylation, independent of KIT ligand, and constitutive activation of the tyrosine kinase. This biology may explain the successful application of imatinib in animals with tumors harboring exon 8 KIT mutations and in our patient with mucosal melanoma. This report expands the population of patients with melanoma who might benefit from imatinib to those with somatic exon 8 KIT mutations. Such mutations should be looked for in patients with mucosal melanoma.

  9. Expression of Antimicrobial Peptides by Uveal and Cutaneous Melanoma Cells and Investigation of Their Role in Tumor Cell Migration and Vasculogenic Mimicry.

    PubMed

    Manarang, Joseph C; Otteson, Deborah C; McDermott, Alison M

    2017-11-01

    Antimicrobial peptides (AMPs) have been implicated in the pathogenesis of several cancers, although there is also evidence suggesting potential for novel, AMP-based antitumor therapies. Discerning potential roles of AMPs in tumor pathogenesis may provide valuable insight into the mechanisms of novel AMP-based antitumor therapy. mRNA expression of the AMPs α defensin (HNP-1); cathelicidin (LL-37); and β defensins (hBD-1, hBD-2, hBD-3, hBD-4) in human uveal and cutaneous melanoma cell lines, primary human uveal melanocytes, and primary human uveal melanoma cells was determined by reverse transcriptase polymerase chain reaction. An in vitro scratch assay and custom Matlab analysis were used to determine the AMP effects on melanoma cell migration. Last, the effect of specific AMPs on vasculogenic mimicry was determined by three-dimensional (3D) culture and light and fluorescence microscopy. Low-to-moderate AMP transcript levels were detected, and these varied across the cells tested. Overall, LL-37 expression was increased while hBD-4 was decreased in most melanoma cell lines, compared to primary cultured uveal melanocytes. There was no observable influence of HNP-1 and LL-37 on tumor cell migration. Additionally, aggressive cutaneous melanoma cells grown in 3D cultures exhibited vasculogenic mimicry, although AMP exposure did not alter this process. Collectively, our data show that although AMP mRNA expression is variable between uveal and cutaneous melanoma cells, these peptides have little influence on major characteristics that contribute to tumor aggressiveness and progression.

  10. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells.

    PubMed

    Bellet, Virginie; Lichon, Laure; Arama, Dominique P; Gallud, Audrey; Lisowski, Vincent; Maillard, Ludovic T; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2017-01-05

    We recently described a pyrido-imidazodiazepinone derivative which could be a promising hit compound for the development of new drugs acting against melanoma cells. In this study, a series of 28 novel pyrido-imidazodiazepinones were synthesized and screened for their in vitro cytotoxic activities against the melanoma MDA-MB-435 cell line. Among the derivatives, seven of them showed 50% growth inhibitory activity at 1 μM concentration, and high selectivity against the melanoma cell line MDA-MB-435. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. The effects of baicalein on canine osteosarcoma cell proliferation and death.

    PubMed

    Helmerick, E C; Loftus, J P; Wakshlag, J J

    2014-12-01

    Flavonoids are a group of modified triphenolic compounds from plants with medicinal properties. Baicalein, a specific flavone primarily isolated from plant roots (Scutellaria baicalensis), is commonly used in Eastern medicine for its anti-inflammatory and antineoplastic properties. Previous research shows greater efficacy for baicalein than most flavonoids; however, there has been little work examining their effects on sarcoma cells, let alone canine cells. Three canine osteosarcoma cell lines (HMPOS, D17 and OS 2.4) were treated with baicalein to examine cell viability, cell cycle kinetics, anchorage-independent growth and apoptosis. Results showed that osteosarcoma cells were sensitive to baicalein at concentrations from approximately 1 to 25 μM. Modest cell cycle changes were observed in one cell line. Baicalein was effective in inducing apoptosis and did not prevent doxorubicin cell proliferation inhibition in all the cell lines. The mechanism for induction of apoptosis has not been fully elucidated; however, changes in mitochondrial permeability supersede the apoptotic response. © 2012 Blackwell Publishing Ltd.

  12. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  13. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines

    PubMed Central

    ASADA, Hajime; TOMIYASU, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2015-01-01

    Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS. PMID:25715778

  14. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines.

    PubMed

    Asada, Hajime; Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2015-06-01

    Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS.

  15. Limbal Stem Cell Preservation During Proton Beam Irradiation for Diffuse Iris Melanoma.

    PubMed

    Singh, Arun D; Dupps, William J; Biscotti, Charles V; Suh, John H; Lathrop, Kira L; Nairn, John P; Shih, Helen

    2017-01-01

    To report the outcome after limbal stem cell preservation during proton beam irradiation for diffuse iris melanoma. This is a single-case report of diffuse iris melanoma that was managed with proton beam radiation (53 Gy), wherein preemptively harvested superior and inferior limbal stem cells before radiation were replaced after irradiation. Regeneration of the palisades of Vogt and the limbal stem cells was documented by an optical coherence tomography-based imaging protocol. At 24 months after radiation therapy, best-corrected visual acuity was 20/25. The cornea was clear without evidence of limbal stem cell dysfunction. Clinical examination (including gonioscopy and ultrasound biomicroscopy [UBM]) was indicative of local control, and systemic surveillance was negative for metastatic disease. At posttransplant (21 months), there were more palisade structures visible in both anterior and posterior regions of the superior and inferior limbus, and the linear presentation of the inferior palisades appears to have regenerated. Diffuse iris melanoma can be managed successfully with proton beam radiation while preserving corneal limbal stem cells by harvesting them before radiation and then replacing them after irradiation. Regeneration of the palisades of Vogt could be documented by an optical coherence tomography-based imaging protocol.

  16. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  17. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    PubMed

    Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  18. Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Harrington, Bonnie K; Gardner, Heather L; Izumi, Raquel; Hamdy, Ahmed; Rothbaum, Wayne; Coombes, Kevin R; Covey, Todd; Kaptein, Allard; Gulrajani, Michael; Van Lith, Bart; Krejsa, Cecile; Coss, Christopher C; Russell, Duncan S; Zhang, Xiaoli; Urie, Bridget K; London, Cheryl A; Byrd, John C; Johnson, Amy J; Kisseberth, William C

    2016-01-01

    Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL). First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR) was 25% (5/20) with a median progression free survival (PFS) of 22.5 days. Clinical benefit was observed in 30% (6/20) of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL).

  19. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    PubMed

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  20. Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA

    PubMed Central

    Henare, K; Wang, L; Wang, L-Cs; Thomsen, L; Tijono, S; Chen, C-Jj; Winkler, S; Dunbar, P R; Print, C; Ching, L-M

    2012-01-01

    Background: The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention. For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells, we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts. Methods: Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts. Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal cell-specific gene expression. Results: 5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in A375 melanoma xenografts. Conclusion: 5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma. The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other tumour models and anti-cancer agents. PMID:22415295

  1. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination

    PubMed Central

    Bol, Kalijn F; Aarntzen, Erik H J G; Hout, Florentien E M in 't; Schreibelt, Gerty; Creemers, Jeroen H A; Lesterhuis, W Joost; Gerritsen, Winald R; Grunhagen, Dirk J; Verhoef, Cornelis; Punt, Cornelis J A; Bonenkamp, Johannes J; de Wilt, Johannes H W; Figdor, Carl G; de Vries, I Jolanda M

    2016-01-01

    Melanoma patients with regional metastatic disease are at high risk for recurrence and metastatic disease, despite radical lymph node dissection (RLND). We investigated the immunologic response and clinical outcome to adjuvant dendritic cell (DC) vaccination in melanoma patients with regional metastatic disease who underwent RLND with curative intent. In this retrospective study, 78 melanoma patients with regional lymph node metastasis who underwent RLND received autologous DCs loaded with gp100 and tyrosinase and were analyzed for functional tumor-specific T cell responses in skin-test infiltrating lymphocytes. The study shows that adjuvant DC vaccination in melanoma patients with regional lymph node metastasis is safe and induced functional tumor-specific T cell responses in 71% of the patients. The presence of functional tumor-specific T cells was correlated with a better 2-year overall survival (OS) rate. OS was significantly higher after adjuvant DC vaccination compared to 209 matched controls who underwent RLND without adjuvant DC vaccination, 63.6 mo vs. 31.0 mo (p = 0.018; hazard ratio 0.59; 95%CI 0.42–0.84). Five-year survival rate increased from 38% to 53% (p < 0.01). In summary, in melanoma patients with regional metastatic disease, who are at high risk for recurrence and metastatic disease after RLND, adjuvant DC vaccination is well tolerated. It induced functional tumor-specific immune responses in the majority of patients and these were related to clinical outcome. OS was significantly higher compared to matched controls. A randomized clinical trial is needed to prospectively validate the efficacy of DC vaccination in the adjuvant setting. PMID:26942068

  2. Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device.

    PubMed

    Aya-Bonilla, Carlos A; Marsavela, Gabriela; Freeman, James B; Lomma, Chris; Frank, Markus H; Khattak, Muhammad A; Meniawy, Tarek M; Millward, Michael; Warkiani, Majid E; Gray, Elin S; Ziman, Mel

    2017-09-15

    Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.

  3. Comparative Aspects of BRAF Mutations in Canine Cancers

    PubMed Central

    Mochizuki, Hiroyuki; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. The characterization and discovery of BRAF mutations in a variety of human cancers has led to the development of specific inhibitors targeting the BRAF/MAPK pathway and dramatically changed clinical outcomes in BRAF-mutant melanoma patients. Recent discovery of BRAF mutation in canine cancers underscores the importance of MAPK pathway activation as an oncogenic molecular alteration evolutionarily conserved between species. A comparative approach using the domestic dog as a spontaneous cancer model will provide new insights into the dysregulation of BRAF/MAPK pathway in carcinogenesis and facilitate in vivo studies to evaluate therapeutic strategies targeting this pathway’s molecules for cancer therapy. The BRAF mutation in canine cancers may also represent a molecular marker and therapeutic target in veterinary oncology. This review article summarizes the current knowledge on BRAF mutations in human and canine cancers and discusses the potential applications of this abnormality in veterinary oncology. PMID:29061943

  4. Induction of Melanogenesis by Rapamycin in Human MNT-1 Melanoma Cells

    PubMed Central

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon

    2012-01-01

    Background Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. Objective The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. Methods In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. Results In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Conclusion Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells. PMID:22577264

  5. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells.

    PubMed

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon; Yoon, Tae-Jin

    2012-05-01

    Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells.

  6. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

    PubMed

    Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe

    2011-06-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).

  7. At the bedside: adoptive cell therapy for melanoma-clinical development.

    PubMed

    Weber, Jeffrey S

    2014-06-01

    Adoptive cell therapy for melanoma, particularly using TIL, consists of a complex and difficult set of procedures, although it has a strong preclinical background and justification and has been pursued clinically by one small group of investigators over the last 20 years. More recent developments and a better understanding of the molecular basis of the anti-tumor immune response have led to the conduct of clinical trials that use lymphoid depletion with chemotherapy and/or TBI to exploit the favorable immune milieu of homeostatic lymphoid reconstitution during transfer of effector T cells. Improved ways of propagating T cells ex vivo have also simplified and shortened the cell-growth process. Current TIL trials have now been expanded beyond the initial center where it was developed, reproducing excellent objective response rates of 40-50% in previously treated melanoma patients and more importantly, demonstrating that a significant proportion of patients will be alive and free of disease 3-5 years after treatment, raising the possibility that those patients may be cured of their disease. Newer methods for growing the infiltrating T cells using immune-checkpoint antibodies or other agents to condition the tumor before harvest and improved technology to simplify the complex and often cumbersome cell-growth process suggest that this technology may be able to be disseminated to a wide selection of cancer centers and may be a candidate for testing in a randomized Phase III trial to show definitively its benefit in patients with metastatic melanoma. In the accompanying review, the preclinical work that supports the idea of adoptive cell therapy with TIL and expands the concept in promising new ways will be explored. © 2014 Society for Leukocyte Biology.

  8. Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells

    PubMed Central

    Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent

    2013-01-01

    The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278

  9. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    PubMed

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH.

    PubMed

    Ruzzolini, Jessica; Peppicelli, Silvia; Andreucci, Elena; Bianchini, Francesca; Margheri, Francesca; Laurenzana, Anna; Fibbi, Gabriella; Pimpinelli, Nicola; Calorini, Lido

    2017-11-01

    Vemurafenib, a BRAF inhibitor, elicits in ∼80% of BRAF V600E -mutant melanoma patients a transient anti-tumor response which precedes the emergence of resistance. We tested whether an acidic tumor microenvironment may favor a BRAF inhibitor resistance. A375M6 BRAF V600E melanoma cells, either exposed for a short period or chronically adapted to an acidic medium, showed traits compatible with an epithelial-mesenchymal transition, reduced proliferation and high resistance to apoptosis. Both types of acidic cells treated with vemurafenib did not change their proliferation, distribution in cell cycle and level of p-AKT, in contrast to cells grown at standard pH, which showed reduced proliferation, cell cycle arrest and ERK/AKT inhibition. Even after treatment with trametinib (MEK inhibitor) acidic cell features did not change. Then, since both types of acidic cells exhibited high p-p70S6K, i.e. active mTOR signaling, we tested everolimus, an mTOR inhibitor, which was efficient in inducing apoptosis in acidic cells without affecting melanoma cells grown at standard pH. Our results indicate that an acidic microenvironment may cooperate in inducing a BRAF inhibitor resistance in melanoma cells and a combined therapy with everolimus could be used to overcome that resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells.

    PubMed

    Martin, Shaun; Dudek-Peric, Aleksandra M; Garg, Abhishek D; Roose, Heleen; Demirsoy, Seyma; Van Eygen, Sofie; Mertens, Freya; Vangheluwe, Peter; Vankelecom, Hugo; Agostinis, Patrizia

    2017-09-02

    The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAF V600E . Previous studies indicated a tight correlation between heightened melanoma-associated macroautophagy/autophagy and acquired Vemurafenib resistance. However, how this vesicular trafficking pathway supports Vemurafenib resistance remains unclear. Here, using isogenic human and murine melanoma cell lines of Vemurafenib-resistant and patient-derived melanoma cells with primary resistance to the BRAF V600E inhibitor, we found that the enhanced migration and invasion of the resistant melanoma cells correlated with an enhanced autophagic capacity and autophagosome-mediated secretion of ATP. Extracellular ATP (eATP) was instrumental for the invasive phenotype and the expansion of a subset of Vemurafenib-resistant melanoma cells. Compromising the heightened autophagy in these BRAF V600E inhibitor-resistant melanoma cells through the knockdown of different autophagy genes (ATG5, ATG7, ULK1), reduced their invasive and eATP-secreting capacity. Furthermore, eATP promoted the aggressive nature of the BRAF V600E inhibitor-resistant melanoma cells by signaling through the purinergic receptor P2RX7. This autophagy-propelled eATP-dependent autocrine-paracrine pathway supported the maintenance and expansion of a drug-resistant melanoma phenotype. In conclusion, we have identified an autophagy-driven response that relies on the secretion of ATP to drive P2RX7-based migration and expansion of the Vemurafenib-resistant phenotype. This emphasizes the potential of targeting autophagy in the treatment and management of metastatic melanoma.

  12. [Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells].

    PubMed

    Yasutake, H; Tsuchiya, H; Sugihara, M; Tomita, K; Ueda, Y; Tanaka, M; Sasaki, T

    1989-05-01

    Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells was studied. Synergistic inhibition of the cell growth was observed when caffeine (2 mM) was added continuously after one hour exposure of cisplatin. On the other hand, when caffeine was added before one hour exposure of cisplatin or one hour simultaneous exposure with cisplatin, synergistic effect was not shown. In the analysis of DNA histogram obtained from flow cytometry, S and G2/M accumulation was observed by the treatment of cisplatin and that accumulation was reduced by the combination of cisplatin and caffeine. From this findings, it was suggested that caffeine would inhibit DNA repair process. Furthermore, according to morphological studies with hematoxylin-eosin stain and Fontana-Masson stain, the addition of caffeine alone resulted in mild swelling of melanoma cells and the decrease of nuclear-cytoplasmic ratio. The combination of cisplatin and caffeine caused marked swelling of melanoma cells and remarkable increase of dendrite-like processes. Melanogenesis was also enhanced by the addition of these two drugs. Many matured melanosomes, increases of mitochondria, Golgi's apparatus and endoplasmic reticula were observed by the use of electron microscope. These findings implied that the combination of cisplatin and caffeine induced a differentiation of murine melanoma cells.

  13. Mechanisms of Tanshinone II a inhibits malignant melanoma development through blocking autophagy signal transduction in A375 cell.

    PubMed

    Li, Xiaojing; Li, Zhifeng; Li, Xianping; Liu, Baoguo; Liu, Zhijun

    2017-05-22

    Malignant melanoma (MM) is one of the high degree of malignancy and early prone to blood and lymph node metastasis. There is not cured for MM. Tan II A has been reported to reduce cancer cell proliferation. But the mechanism by which Tan II A inhibited melanoma growth are not well characterized. We sought to explore the possible mechanism by which Tan II A regulated cell proliferation through autophagy signaling pathway in A375 cells. We tested the effects of Tan II A on melanoma A375, MV3, M14, and other human cell lines including Hacat and HUVEC cells in cell culture model. Cell proliferation was assessed by using methyl thiazol tetrazolium (MTT) assay. Cell migration ability melanoma A375 was monitored by using cell scratch assay. Transwell chamber experimental was performed to assess the effect of Tan II A on A375 melanoma cell invasion ability. The autophagy body was examined by using flow cytometry. The expression of autophagy-associated protein beclin-1 and microtubule-associated protein 1 light chain 3(LC3)-II, as well as phosphatidylinositol 3-kinase(PI3K)、protein kinase B (Akt)、mammalian target of rapamycin (mTOR)、p70S6K1 signaling pathways were detected by using Western blotting. The effects of Tan II A on tumor progression was also examined in melanoma A375 induced tumor in mouse model. We found that Tan IIA inhibited melanoma A375, MV3, and M14 cell proliferation in dose and time dependent manner. Tan II A reduced CXCL12-induced A375 cell invasive ability and migration in a dose dependent manner. Tan IIA promoted autophagic body production and increased autophagy-associated protein beclin-1 and LC3-II expression in A375 cells. However, Tan IIA reduced the phosphorylation of PI3K, P-AKT, P-mTOR, and P-p7036k1. We also confirmed that Tan II A reduced melanoma A375 induced tumor volume and weight in mouse model. We concluded that Tan II A reduced A375 cells proliferation by activation of autophagy production, blocked PI3K- Akt - mTOR - p70S6K1

  14. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets

    PubMed Central

    Lonsdorf, Anke S.; Krämer, Björn F.; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W.; Kruhlak, Michael J.; Meuth, Sven G.; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H.; Langer, Harald F.

    2012-01-01

    A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis. PMID:22102277

  15. Immunohistochemical Evaluation of AKT Protein Activation in Canine Mast Cell Tumours

    PubMed Central

    Rodriguez, S.; Fadlalla, K.; Graham, T.; Tameru, B.; Fermin, C. D.; Samuel, T.

    2011-01-01

    Summary The pathogenesis of canine mast cell tumour (MCT) remains unknown. Moreover, therapeutic options are limited and resistance to targeted drugs and recurrences are common, necessitating the identification of additional cellular targets for therapy. In this study we investigated the expression of phosphorylated AKT protein in 25 archival canine MCT samples by immunohistochemistry and examined the correlation between the immunohistochemical scores and histopathological tumour grades. AKT protein was detected in all of the samples and 24 of the 25 samples expressed the phosphorylated form of the protein, albeit with variable intensity. However, when the immunohistochemical scores of weak, intermediate and strong labelling were compared with the histopathological grades of I to III, there was no strong correlation. This study suggests that canine MCT cells have activated AKT and indicates the need for further research on the role of the AKT protein and the possibility of targeting the AKT signalling pathway in MCTs. PMID:22289273

  16. In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells.

    PubMed

    Lai, S R; Castello, S A; Robinson, A C; Koehler, J W

    2017-12-01

    Benzimidazole anthelmintics have reported anti-neoplastic effects both in vitro and in vivo. The purpose of this study was to evaluate the in vitro chemosensitivity of three canine glioma cell lines to mebendazole and fenbendazole. The mean inhibitory concentration (IC 50 ) (±SD) obtained from performing the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay after treating J3T, G06-A, and SDT-3G cells for 72 h with mebendazole were 0.030 ± 0.003, 0.080 ± 0.015 and 0.030 ± 0.006 μM respectively, while those for fenbendazole were 0.550  ± 0.015, 1.530 ± 0.159 and 0.690 ± 0.095 μM; treatment of primary canine fibroblasts for 72 h at IC 50 showed no significant effect. Immunofluorescence studies showed disruption of tubulin after treatment. Mebendazole and fenbendazole are cytotoxic in canine glioma cell lines in vitro and may be good candidates for treatment of canine gliomas. Further in vivo studies are required. © 2017 John Wiley & Sons Ltd.

  17. Advances in the Treatment of Metastatic Melanoma: Adoptive T Cell Therapy

    PubMed Central

    Bernatchez, Chantale; Radvanyi, Laszlo G.; Hwu, Patrick

    2012-01-01

    Metastatic melanoma is notoriously resistant to chemotherapy and radiotherapy regimens. The prospect for newly diagnosed metastatic melanoma patients is grim with a median survival of less than a year. Currently, the only therapies resulting in long term disease free intervals, high dose Interleukin-2 (IL-2) and more recently anti-CTLA-41, work through activation of the immune system. However, with both therapies the response rate is low. Advances in our knowledge of how the immune system interacts with cancer have led to a number of strategies to manipulate anti-tumor immune responses through immunotherapy. This review will focus on one avenue of immunotherapy using the transfer of T cells referred to as “Adoptive Cell Therapy” (ACT), which involves the ex vivo expansion of autologous tumor-specific T cells to large numbers that are ultimately transferred back to the patient to boost anti-tumor immunity. This approach has been shown to be effective in the treatment of virally induced cancers, as well as metastatic melanoma. Recent successes with ACT hold promise and further emphasize the tremendous potential benefit of harnessing the immune system in the fight against cancer. PMID:22484193

  18. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells.

    PubMed

    Kozar, Ines; Cesi, Giulia; Margue, Christiane; Philippidou, Demetra; Kreis, Stephanie

    2017-11-01

    Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

    PubMed

    Vaseghi, Golnaz; Taki, Mohamad Javad; Javanmard, Shaghayegh Haghjooy

    2017-10-01

    Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.

  20. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    PubMed

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  1. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    PubMed

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  2. The combination of MLN2238 (ixazomib) with interferon-alpha results in enhanced cell death in melanoma.

    PubMed

    Suarez-Kelly, Lorena P; Kemper, Gregory M; Duggan, Megan C; Stiff, Andrew; Noel, Tiffany C; Markowitz, Joseph; Luedke, Eric A; Yildiz, Vedat O; Yu, Lianbo; Jaime-Ramirez, Alena Cristina; Karpa, Volodymyr; Zhang, Xiaoli; Carson, William E

    2016-12-06

    The ubiquitin-proteasome signaling pathway is critical for cell cycle regulation and neoplastic growth. Proteasome inhibition can activate apoptotic pathways. Bortezomib, a selective proteasome inhibitor, has anti-melanoma activity. MLN2238 (ixazomib), an oral proteasome inhibitor, has improved pharmacotherapeutic parameters compared to bortezomib. Interferon-alpha (IFN-α), an immune boosting agent, is FDA-approved for treatment of melanoma. In this study in vitro and in vivo evaluation of the antitumor potential of ixazomib and combination treatments with ixazomib and IFN-α were performed. Apoptosis induced by ixazomib was first observed at 12 hours and was maximal at 48 hours with similar levels of cell death compared to bortezomib. IFN-α alone had little effect on cell viability in vitro. However, the combination of ixazomib with IFN-α significantly enhanced ixazomib's ability to induce apoptotic cell death in BRAF V600E mutant and BRAF wild-type human melanoma tumor cells. The combination of ixazomib and IFN-α also enhanced inhibition of cell proliferation in BRAF V600E mutant melanoma tumor cells; however, this was not seen in BRAF wild-type cells. Ixazomib-induced apoptosis was associated with processing of the pro-apoptotic proteins procaspase-3, -7, -8, and -9, and cleavage of poly-ADP-ribose polymerase (PARP). In an in vivo xenograft model of human melanoma, combination treatment with IFN-α-2b and ixazomib demonstrated a significant reduction in tumor volume when compared to vehicle (p = 0.005) and single therapy ixazomib (p = 0.017) and IFN-α-2b (p = 0.036). These pre-clinical results support further evaluation of combination treatment with ixazomib and IFN-α for the treatment of advanced BRAF V600E mutant melanoma.

  3. Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells.

    PubMed

    Park, Hye-Jung; Kim, Moon-Moo

    2015-01-01

    The aim of the present study was to examine the apoptotic effect of flavonoids in methanol extracts of Ginkgo biloba fallen leaves (MEGFL) on melanoma cells. Ginkgo biloba is a deciduous castle chaplain and its leaves include various types of flavonoids such as flavonol-O-glycosides. Ginkgo biloba is known to have therapeutic properties against a number of diseases such as cerebrovascular diseases, blood circulation disease and hypertension. In the present study MEGFL exhibited a higher cytotoxic effect on melanoma cells than Ginkgo biloba leaves (MEGL). It was also found that MEGFL induced apoptotic cell death which was characterized by DNA fragmentation. During the cell death process following treatment with MEGFL, the expression of a variety of death-associated proteins including p53, caspase-3, caspase-9, cytochrome c and Bax were analyzed in the cytosol of melanoma cells. MEGFL significantly increased the expression levels of caspase-3, caspase-9 and p53 in a dose-dependent manner. Our results indicate that MEGFL induced apoptotic cell death by increasing the expression of cell death-associated proteins in melanoma cells.

  4. [Telomerase activity in uveal melanomas].

    PubMed

    Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M

    2000-05-01

    The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.

  5. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    PubMed Central

    Saint-Jean, Mélanie; Volteau, Christelle; Quéreux, Gaëlle; Peuvrel, Lucie; Brocard, Anabelle; Saiagh, Soraya; Nguyen, Jean-Michel; Bedane, Christophe; Basset-Seguin, Nicole

    2018-01-01

    Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs). This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2) regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous metastasis, TILs were produced according to a previously described method and then infused into the patient who also received a complementary subcutaneous IL-2 regimen. Nine women and 1 man were treated for unresectable stage IIIC (n = 4) or IV (n = 6) melanoma. All but 1 patient with unresectable stage III melanoma (1st line) had received at least 2 previous treatments, including anti-CTLA-4 antibody for 4. The number of TILs infused ranged from 0.23 × 109 to 22.9 × 109. Regarding safety, no serious adverse effect was reported. Therapeutic responses included a complete remission, a partial remission, 2 stabilizations, and 6 progressions. Among these 4 patients with clinical benefit, 1 is still alive with 9 years of follow-up and 1 died from another cause after 8 years of follow-up. Notably, patients treated with high percentages of CD4 + CD25 + CD127lowFoxp3+ T cells among their TILs had significantly shorter OS. The therapeutic effect of combining TILs with new immunotherapies needs further investigation. PMID:29750176

  6. Blocking Signaling at the Level of GLI Regulates Downstream Gene Expression and Inhibits Proliferation of Canine Osteosarcoma Cells

    PubMed Central

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B.

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors. PMID:24810746

  7. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells.

    PubMed

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.

  8. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma.

    PubMed

    van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H

    2018-06-01

    The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.

  9. The kin17 Protein in Murine Melanoma Cells

    PubMed Central

    Ramos, Anelise C.; Gaspar, Vanessa P.; Kelmer, Sabrina M. G.; Sellani, Tarciso A.; Batista, Ana G. U.; De Lima Neto, Quirino A.; Rodrigues, Elaine G.; Fernandez, Maria A.

    2015-01-01

    kin17 has been described as a protein involved in the processes of DNA replication initiation, DNA recombination, and DNA repair. kin17 has been studied as a potential molecular marker of breast cancer. This work reports the detection and localization of this protein in the murine melanoma cell line B16F10-Nex2 and in two derived subclones with different metastatic potential, B16-8HR and B16-10CR. Nuclear and chromatin-associated protein fractions were analyzed, and kin17 was detected in all fractions, with an elevated concentration observed in the chromatin-associated fraction of the clone with low metastatic potential, suggesting that the kin17 expression level could be a marker of melanoma. PMID:26610484

  10. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    PubMed

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid.

  12. Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines

    PubMed Central

    Dithmer, Michaela; Kirsch, Anna-Maria; Richert, Elisabeth; Fuchs, Sabine; Wang, Fanlu; Schmidt, Harald; Coupland, Sarah E.; Roider, Johann; Klettner, Alexa

    2017-01-01

    Background. The polysaccharide fucoidan is widely investigated as an anti-cancer agent. Here, we tested the effect of fucoidan on uveal melanoma cell lines. Methods. The effect of 100 µM fucoidan was investigated on five cell lines (92.1, Mel270 OMM1, OMM2.3, OMM2.5) and of 1 µg/mL–1 mg/mL fucoidan in two cell lines (OMM1, OMM2.3). Cell proliferation and viability were investigated with a WST-1 assay, migration in a wound healing (scratch) assay. Vascular Endothelial Growth Factor (VEGF) was measured in ELISA. Angiogenesis was evaluated in co-cultures with endothelial cells. Cell toxicity was induced by hydrogen-peroxide. Protein expression (Akt, ERK1/2, Bcl-2, Bax) was investigated in Western blot. Results. Fucoidan increased proliferation in two and reduced it in one cell line. Migration was reduced in three cell lines. The effect of fucoidan on VEGF was cell type and concentration dependent. In endothelial co-culture with 92.1, fucoidan significantly increased tubular structures. Moreover, fucoidan significantly protected all tested uveal melanoma cell lines from hydrogen-peroxide induced cell death. Under oxidative stress, fucoidan did not alter the expression of Bcl-2, Bax or ERK1/2, while inducing Akt expression in 92.1 cells but not in any other cell line. Conclusion. Fucoidan did not show anti-tumorigenic effects but displayed protective and pro-angiogenic properties, rendering fucoidan unsuitable as a potential new drug for the treatment of uveal melanoma. PMID:28640204

  13. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53

    PubMed Central

    York, D.; Withers, S. S.; Watson, K. D.; Seo, K. W.; Rebhun, R. B.

    2016-01-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. PMID:27333821

  14. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53.

    PubMed

    York, D; Withers, S S; Watson, K D; Seo, K W; Rebhun, R B

    2017-09-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. © 2016 John Wiley & Sons Ltd.

  15. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  16. Late prostatic metastasis of an uveal melanoma in a miniature Schnauzer dog.

    PubMed

    Delgado, Esmeralda; Silva, João X; Pissarra, Hugo; Peleteiro, Maria C; Dubielzig, Richard R

    2016-07-01

    This manuscript describes a previously unreported clinical case of canine uveal melanoma in a miniature Schnauzer dog with an unusual location of metastasis (prostate) and delayed occurrence (3 years after primary tumor diagnosis and enucleation). Immunohistochemical labeling of both tumors with Melan A, Ki-67, and c-kit added some valuable information.

  17. Hypoxia increases the heterogeneity of melanoma cell populations and affects the response to vemurafenib.

    PubMed

    Pucciarelli, Daniela; Lengger, Nina; Takáčová, Martina; Csaderova, Lucia; Bartosova, Maria; Breiteneder, Heimo; Pastorekova, Silvia; Hafner, Christine

    2016-04-01

    A hypoxic microenvironment is one of the predominant reasons for incomplete response to melanoma treatment. Vemurafenib, which targets the mutated BRAF-V600 kinase, improves melanoma patient survival, however, resistance invariably develops. The present study evaluated the effect of hypoxia on three BRAF-V600E mutant melanoma cell lines, M14, A375 and 518A2, treated with vemurafenib. Compared with the other two cell lines, hypoxic vemurafenib-treated A375 cells exhibited an enhanced cell proliferation rate and migratory capacity compared with normoxic vemurafenib-treated A375 cells. Immunoblotting analyses revealed that the expression levels of hypoxia inducible factor (HIF)1α and carbonic anhydrase IX were reduced in vemurafenib‑treated M14 and 518A2 cells, however, not in A375 cells. The expression levels of the mitogen‑activated protein kinase, Janus kinase-signal transducer and activator of transcription, and phosphatidylinositol-4,5-bisphosphate 3‑kinase signaling pathway proteins revealed a cell‑type specific response to vemurafenib and hypoxia. Knockdown experiments of HIF1α performed in hypoxic A375 cells decreased the expression of phosphorylated (p‑)protein kinase B, which was restored following vemurafenib treatment, and increased the expression of p‑extracellular‑signal‑regulated kinases. Therefore, three melanoma cell lines responded to vemurafenib under hypoxia in a cell type‑specific manner, suggesting that a subset of cells provides a treatment-resistant pool, from which disease relapse may originate. These data confirmed that vemurafenib may be successful in treating the proliferating cells, whereas the non‑proliferating subpopulation must be addressed by a combination of vemurafenib with other treatment strategies.

  18. CTLA-4 blockade plus adoptive T cell transfer promotes optimal melanoma immunity in mice

    PubMed Central

    Mahvi, David A.; Meyers, Justin V.; Tatar, Andrew J.; Contreras, Amanda; Suresh, M.; Leverson, Glen E.; Sen, Siddhartha; Cho, Clifford S.

    2014-01-01

    Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T cell populations (e.g., CTLA-4 blockade-mediated checkpoint inhibition) or introduce exogenously-prepared tumor-specific T cell populations (e.g., adoptive cell transfer). Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and non-lymphodepletional adoptive cell transfer could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, adoptive cell transfer, or combination immunotherapy of CTLA-4 blockade with adoptive cell transfer. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, as well as a stronger systemic immune responses reflected by more potent tumor antigen-specific T cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with non-lymphodepletional adoptive cell transfer may promote additive endogenous and exogenous T cell activities that enable greater therapeutic efficacy in the treatment of melanoma. PMID:25658614

  19. IgG1-iS18 impedes the adhesive and invasive potential of early and late stage malignant melanoma cells.

    PubMed

    Munien, Carmelle; Rebelo, Thalia M; Ferreira, Eloise; Weiss, Stefan F T

    2017-02-15

    The 37kDa/67kDa laminin receptor (LRP/LR) is a non-integrin laminin receptor which is overexpressed in tumorigenic cells and supports progression of cancer via promoting metastasis, angiogenesis and telomerase activity and impediment of apoptosis. The present study investigates the role of LRP/LR on the metastatic potential of early (A375) and late (A375SM) stage malignant melanoma cells. Flow cytometry revealed that both early and late stage malignant melanoma cells display high levels of LRP/LR on their cell surface. Flow cytometry and western blot analysis showed that late stage malignant melanoma cells display significantly higher total and cell surface LRP/LR levels in comparison to early stage malignant melanoma cells and the poorly invasive breast cancer (MCF-7) control cell line. Targeting LRP/LR using the LRP/LR specific antibody IgG1-iS18 resulted in a significant reduction of the adhesive potential to laminin-1 and the invasive potential through the 'ECM-simulating' Matrigel™ of both early and late stage malignant melanoma cells. Furthermore, Pearson's correlation coefficient confirmed that increased LRP levels correlate with the increased invasive and adhesive potential in early and late stage melanoma cells. Thus, blocking LRP/LR using the IgG1-iS18 antibody may therefore be a promising therapeutic strategy for early and late stage malignant melanoma treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Identifying and targeting determinants of melanoma cellular invasion.

    PubMed

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L; Tan, BeeShin; Behren, Andreas; Cebon, Jonathan; McKeown, Sonja J

    2016-07-05

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients.

  1. Identifying and targeting determinants of melanoma cellular invasion

    PubMed Central

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin

    2016-01-01

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792

  2. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation

    PubMed Central

    Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.

    2011-01-01

    p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464

  3. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    PubMed

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999

  4. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft.

    PubMed

    Tyciakova, Silvia; Matuskova, Miroslava; Bohovic, Roman; Polakova, Katarina; Toro, Lenka; Skolekova, Svetlana; Kucerova, Lucia

    2015-01-01

    Mesenchymal stromal cells (MSC) are a promising tool for targeted cancer therapy due to their tumour-homing ability. Intrinsic resistance enables the MSC to longer tolerate therapeutic factors, such as prodrug converting enzymes, cytokines and pro-apoptotic proteins. Tumour necrosis factor alpha (TNFα) is known to be cytotoxic to a variety of cancer cells and exert a tumour-destructive capacity. MSC were retrovirally transduced to stable express an exogenous gene encoding the desired therapeutic agent hTNFα. The effect of a TNFα-producing adipose tissue-derived MSC (AT-MSC/hTNFα) was tested on the tumour cell lines of different origins: melanoma (A375), breast carcinoma (SKBR3, MDA-MB-231), colon carcinoma (HT29), ovarian carcinoma (SKOV3) and glioblastoma (U87-MG) cells. The tumour suppressing effect of AT-MSC/hTNFα on A375 melanoma xenografts was monitored in an immunodeficient mouse model in vivo. Engineered AT-MSC are able to constitutively secrete human TNFα protein, induce apoptosis of tumour cell lines via caspase 3/7 activation and inhibit the tumour cell proliferation in vitro. Melanoma A375 and breast carcinoma SKBR3 cells were the most sensitive, and their proliferation in vitro was reduced by conditioned media produced by AT-MSC/hTNFα to 60% and 40%, respectively. The previously reported tumour supportive effect of AT-MSC on subcutaneous A375 melanoma xenograft growth was neutralised and suppressed by engineered AT-MSC stably producing hTNFα. When AT-MSC/hTNFα were coinjected with A375 melanoma cells, the tumour mass inhibition was up to 97.5%. The results of the present study demonstrate that tumour cells respond to hTNFα-based treatment mediated by genetically engineered AT-MSC/hTNFα both in vitro and in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  5. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    PubMed

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  6. Isolation and Characterization of Canine Amniotic Membrane-Derived Multipotent Stem Cells

    PubMed Central

    Kim, Hyung-Sik; Kang, Kyung-Sun

    2012-01-01

    Recent studies have shown that amniotic membrane tissue is a rich source of stem cells in humans. In clinical applications, the amniotic membrane tissue had therapeutic effects on wound healing and corneal surface reconstruction. Here, we successfully isolated and identified multipotent stem cells (MSCs) from canine amniotic membrane tissue. We cultured the canine amniotic membrane-derived multipotent stem cells (cAM-MSCs) in low glucose DMEM medium. cAM-MSCs have a fibroblast-like shape and adhere to tissue culture plastic. We characterized the immunophenotype of cAM-MSCs by flow cytometry and measured cell proliferation by the cumulative population doubling level (CPDL). We performed differentiation studies for the detection of trilineage multipotent ability, under the appropriate culture conditions. Taken together, our results show that cAM-MSCs could be a rich source of stem cells in dogs. Furthermore, cAM-MSCs may be useful as a cell therapy application for veterinary regenerative medicine. PMID:23024756

  7. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    PubMed Central

    2012-01-01

    Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect. PMID:22747577

  8. Proliferative responses to canine thyroglobulin of peripheral blood mononuclear cells from hypothyroid dogs.

    PubMed

    Tani, Hiroyuki; Nabetani, Tomoyo; Sasai, Kazumi; Baba, Eiichiroh

    2005-04-01

    The immune responses of hypothyroid dogs to canine thyroglobulin (cTg) were evaluated for the proliferative ability of peripheral blood mononuclear cells (PBMC). PBMC from three hypothyroid dogs with high titers of thyroglobulin autoantibody (TgAA) and 3 clinically normal dogs were cultured with 5, 10, or 20 microg/ml of cTg for 72 hr. The proliferative responses of the cells were determined by the level of incorporated BrdU. The numbers of cells expressing Thy-1, CD4, CD8 and IgG in the PBMC were counted by the immunofluorescence method. Proliferative responses to cTg were observed in the cells from hypothyroid dogs. The number of cells expressing IgG and CD8 in the hypothyroid dogs tended to be high compared with the clinically normal dogs. The CD4+ cells in cultures from hypothyroid dogs increased depending upon the amount of cTg. There was a significant (P<0.05) positive correlation between the number of CD4+ cells and the concentration of cTg in the cultures from hypothyroid dogs. These findings suggest a possible relationship between canine hypothyroidism and cellular immunity. Loss of self tolerance to thyroid antigens in CD4+ T cells may play an important role in the development of canine hypothyroidism.

  9. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  10. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz; Ondrusova, Lubica; Borovansky, Jan

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brmmore » was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.« less

  11. The Cytolytic Amphipathic β(2,2)-Amino Acid LTX-401 Induces DAMP Release in Melanoma Cells and Causes Complete Regression of B16 Melanoma.

    PubMed

    Eike, Liv-Marie; Mauseth, Brynjar; Camilio, Ketil André; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2016-01-01

    In the present study we examined the ability of the amino acid derivative LTX-401 to induce cell death in cancer cell lines, as well as the capacity to induce regression in a murine melanoma model. Mode of action studies in vitro revealed lytic cell death and release of danger-associated molecular pattern molecules, preceded by massive cytoplasmic vacuolization and compromised lysosomes in treated cells. The use of a murine melanoma model demonstrated that the majority of animals treated with intratumoural injections of LTX-401 showed complete and long-lasting remission. Taken together, these results demonstrate the potential of LTX-401 as an immunotherapeutic agent for the treatment of solid tumors.

  12. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2017-03-01

    Metastasis is responsible for as many as 90% of cancer-related deaths, and the deadliest skin cancer, melanoma, has a high propensity for metastasis. Since hematogenous spread of circulating tumor cells (CTCs) is cancer's main route of metastasis, detecting and destroying CTCs can impede metastasis and improve patients' prognoses. Extensive studies employing exogenous agents to detect tumor-specific biomarkers and guide therapeutics to CTCs have achieved promising results, but biosafety remains a critical concern. Taking another approach, physical detection and destruction of CTCs is a safer way to evaluate and reduce metastasis risks. Melanoma cells strongly express melanosomes, providing a striking absorption contrast with the blood background in the red to near-infrared spectrum. Exploiting this intrinsic optical absorption contrast of circulating melanoma cells, we coupled dual-wavelength photoacoustic flow cytography with a nanosecond-pulsed laser killing mechanism that specifically targets melanoma CTCs. We have successfully achieved in vivo label-free imaging of rare single CTCs and CTC clusters in mice. Further, the photoacoustic signal from a CTC immediately hardware-triggers a lethal pinpoint laser irradiation that lyses it on the spot in a thermally confined manner. Our technology can facilitate early inhibition of metastasis by clearing circulating tumor cells from vasculature.

  13. Association of MITF and other melanosome-related proteins with chemoresistance in melanoma tumors and cell lines.

    PubMed

    Hertzman Johansson, Carolina; Azimi, Alireza; Frostvik Stolt, Marianne; Shojaee, Seyedmehdi; Wiberg, Henning; Grafström, Eva; Hansson, Johan; Egyházi Brage, Suzanne

    2013-10-01

    Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.

  14. Effective adoptive transfer of haploidentical tumor-specific T cells in B16-melanoma bearing mice.

    PubMed

    Cui, Nai-peng; Xie, Shao-jian; Han, Jin-sheng; Ma, Zhen-feng; Chen, Bao-ping; Cai, Jian-hui

    2012-03-01

    Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor β1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. Adoptive transfer of

  15. Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    PubMed Central

    Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.

    2009-01-01

    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816

  16. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing.

    PubMed

    Sarkar, Debina; Oghabian, Ali; Bodiyabadu, Pasani K; Joseph, Wayne R; Leung, Euphemia Y; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2017-06-27

    The long non-coding RNA ANRIL , antisense to the CDKN2B locus, is transcribed from a gene that encompasses multiple disease-associated polymorphisms. Despite the identification of multiple isoforms of ANRIL , expression of certain transcripts has been found to be tissue-specific and the characterisation of ANRIL transcripts remains incomplete. Several functions have been associated with ANRIL . In our judgement, studies on ANRIL functionality are premature pending a more complete appreciation of the profusion of isoforms. We found differential expression of ANRIL exons, which indicates that multiple isoforms exist in melanoma cells. In addition to linear isoforms, we identified circular forms of ANRIL ( circANRIL ). Further characterisation of circANR IL in two patient-derived metastatic melanoma cell lines (NZM7 and NZM37) revealed the existence of a rich assortment of circular isoforms. Moreover, in the two melanoma cell lines investigated, the complements of circANRIL isoforms were almost completely different. Novel exons were also discovered. We also found the family of linear ANRIL was enriched in the nucleus, whilst the circular isoforms were enriched in the cytoplasm and they differed markedly in stability. With respect to the variable processing of circANRIL species, bioinformatic analysis indicated that intronic Arthrobacter luteus (Alu) restriction endonuclease inverted repeats and exon skipping were not involved in selection of back-spliced exon junctions. Based on our findings, we hypothesise that " ANRIL " has wholly distinct dual sets of functions in melanoma. This reveals the dynamic nature of the locus and constitutes a basis for investigating the functions of ANRIL in melanoma.

  17. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression.

    PubMed

    Easty, D J; Guthrie, B A; Maung, K; Farr, C J; Lindberg, R A; Toso, R J; Herlyn, M; Bennett, D C

    1995-06-15

    Epithelial cell kinase (ECK) is a receptor protein tyrosine kinase, the role of which in melanoma biology is unclear. Here we studied the role of ECK during melanoma progression. ECK mRNA was overexpressed in virtually all melanoma lines tested, and levels were significantly higher in cell lines from distant metastases than primary melanomas; melanocytes were negative. Gene amplification was not detected in melanomas. Levels of ECK protein corresponded well with mRNA levels. B61 or LERK-1, recently identified as an ECK ligand, stimulated the growth of ECK-expressing melanoma cell lines, its first identified biological activity. Melanoma chemotaxis and chemoinvasion were not affected by B61. Growth of normal melanocytes was not affected. mRNA for B61 was detected in both melanoma cell lines and normal melanocytes. B61 was also identified by Western blotting and ECK binding activity with the use of a BIAcore binding assay in melanoma cell-conditioned media. These results suggest that B61 is an autocrine growth factor for melanomas but not normal melanocytes.

  18. Combination therapy of canine osteosarcoma with canine bone marrow stem cells, bone morphogenetic protein and carboplatin in an in vivo model.

    PubMed

    Rici, R E G; Will, S E A L; Luna, A C L; Melo, L F; Santos, A C; Rodrigues, R F; Leandro, R M; Maria, D A

    2018-05-20

    Osteosarcoma (OSA) is the most common malignant bone cancer in children and dogs. The therapeutic protocols adopted for dogs and humans are very similar, involving surgical options such as amputation. Besides surgical options, radiotherapy and chemotherapy also are adopted. However, hematologic, gastrointestinal and renal toxicity may occur because of chemotherapy treatments. Recent study clearly showed that mesenchymal stem cells (MSCs) combined with recombinant human bone morphogenetic protein (rhBMP-2) may be associated with decreases of the tumorigenic potential of canine OSA. The aim of this study was to analyse the efficacy of chemotherapy with carboplatin and rhBMP-2 with MSCs in a canine OSA in vivo model. Canine OSA cells were implanted in mice Balb-c/nude with MSCs, rhBMP-2 and carboplatin. Flow cytometry and PCR for markers involved in tumour suppression pathways were analysed. Results showed that the combination of MSCs and rhBMP-2 reduced tumour mass and infiltration of neoplastic cells in tissues more efficiently than carboplatin alone. Thus it was demonstrated that the use of rhBMP-2 and MSCs, in combination with conventional antineoplastic, may be an efficient treatment strategy. © 2018 John Wiley & Sons Ltd.

  19. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    PubMed

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  20. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    PubMed Central

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  1. Comparison of chemotherapeutic drug resistance in cells transfected with canine ABCG2 or feline ABCG2.

    PubMed

    Lewis, R S; Fidel, J; Dassanayake, S; Court, M H; Burke, N S; Mealey, K L

    2017-06-01

    ABCG2 (ATP binding cassette subfamily G, member 2) mediates resistance to a variety of cytotoxic agents. Although human ABCG2 is well characterized, the function of canine ABCG2 has not been studied previously. Feline ABCG2 has an amino acid substitution in the adenosine triphosphate-binding domain that decreases its transport capacity relative to human ABCG2. Our goal was to compare canine ABCG2-mediated chemotherapeutic drug resistance to feline ABCG2-mediated chemotherapeutic drug resistance. HEK-293 cells stably transfected with plasmid containing canine ABCG2, feline ABCG2 or no ABCG2 were exposed to carboplatin, doxorubicin, mitoxantrone, toceranib or vincristine, and cell survival was subsequently determined. Canine ABCG2 conferred a greater degree of chemotherapy resistance than feline ABCG2 for mitoxantrone. Neither canine nor feline ABCG2 conferred resistance to doxorubicin, vincristine or toceranib. Canine, but not feline, ABCG2 conferred resistance to carboplatin, a drug that is not reported to be a substrate for ABCG2 in other species. © 2015 John Wiley & Sons Ltd.

  2. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells.

    PubMed

    Al-Qatati, Abeer; Aliwaini, Saeb

    2017-12-01

    Melanoma is an aggressive skin cancer and its incidence is increasing faster than any other type of cancer. Whilst dacarbazine (DTIC) is the standard chemotherapy for metastatic melanoma, it has limited success. Statins, including pitavastatin, have been demonstrated to have a range of anti-cancer effects in a number of human cancer cell lines. The present study therefore explored the anti-cancer activity of combined DTIC and pitavastatin in A375 and WM115 human melanoma cells. Cell survival assays demonstrated that combined DTIC and pitavastatin treatment resulted in synergistic cell death. Cell cycle analyses further revealed that this combined treatment resulted in a G1 cell cycle arrest, as well as a sub-G1 population, indicative of apoptosis. Activation of apoptosis was confirmed by Annexin V-fluorescein isothiocyanate/propidium iodide double-staining and an increase in the levels of active caspase 3 and cleaved poly (ADP-ribose) polymerase. Furthermore, it was demonstrated that apoptosis occurs through the intrinsic pathway, evident from the release of cytochrome c. Finally, combined DTIC and pitavastatin treatment was demonstrated to also activate autophagy as part of a cell death mechanism. The present study provides novel evidence to suggest that the combined treatment of DTIC and pitavastatin may be effective in the treatment of melanoma.

  3. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells

    PubMed Central

    Al-Qatati, Abeer; Aliwaini, Saeb

    2017-01-01

    Melanoma is an aggressive skin cancer and its incidence is increasing faster than any other type of cancer. Whilst dacarbazine (DTIC) is the standard chemotherapy for metastatic melanoma, it has limited success. Statins, including pitavastatin, have been demonstrated to have a range of anti-cancer effects in a number of human cancer cell lines. The present study therefore explored the anti-cancer activity of combined DTIC and pitavastatin in A375 and WM115 human melanoma cells. Cell survival assays demonstrated that combined DTIC and pitavastatin treatment resulted in synergistic cell death. Cell cycle analyses further revealed that this combined treatment resulted in a G1 cell cycle arrest, as well as a sub-G1 population, indicative of apoptosis. Activation of apoptosis was confirmed by Annexin V-fluorescein isothiocyanate/propidium iodide double-staining and an increase in the levels of active caspase 3 and cleaved poly (ADP-ribose) polymerase. Furthermore, it was demonstrated that apoptosis occurs through the intrinsic pathway, evident from the release of cytochrome c. Finally, combined DTIC and pitavastatin treatment was demonstrated to also activate autophagy as part of a cell death mechanism. The present study provides novel evidence to suggest that the combined treatment of DTIC and pitavastatin may be effective in the treatment of melanoma. PMID:29344241

  4. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    PubMed Central

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  5. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    PubMed Central

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  6. MicroRNA miR-125b induces senescence in human melanoma cells.

    PubMed

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  7. Relationship between automated total nucleated cell count and enumeration of cells on direct smears of canine synovial fluid.

    PubMed

    Dusick, Allison; Young, Karen M; Muir, Peter

    2014-12-01

    Canine osteoarthritis is a common disorder seen in veterinary clinical practice and causes considerable morbidity in dogs as they age. Synovial fluid analysis is an important tool for diagnosis and treatment of canine joint disease and obtaining a total nucleated cell count (TNCC) is particularly important. However, the low sample volumes obtained during arthrocentesis are often insufficient for performing an automated TNCC, thereby limiting diagnostic interpretation. The aim of the present study was to investigate whether estimation of TNCC in canine synovial fluid could be achieved by performing manual cell counts on direct smears of fluid. Fifty-eight synovial fluid samples, taken by arthrocentesis from 48 dogs, were included in the study. Direct smears of synovial fluid were prepared, and hyaluronidase added before cell counts were obtained using a commercial laser-based instrument. A protocol was established to count nucleated cells in a specific region of the smear, using a serpentine counting pattern; the mean number of nucleated cells per 400 × field was then calculated. There was a positive correlation between the automated TNCC and mean manual cell count, with more variability at higher TNCC. Regression analysis was performed to estimate TNCC from manual counts. By this method, 78% of the samples were correctly predicted to fall into one of three categories (within the reference interval, mildly to moderately increased, or markedly increased) relative to the automated TNCC. Intra-observer and inter-observer agreement was good to excellent. The results of the study suggest that interpretation of canine synovial fluid samples of low volume can be aided by methodical manual counting of cells on direct smears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    PubMed Central

    Faião-Flores, F; Alves-Fernandes, D K; Pennacchi, P C; Sandri, S; Vicente, A L S A; Scapulatempo-Neto, C; Vazquez, V L; Reis, R M; Chauhan, J; Goding, C R; Smalley, K S; Maria-Engler, S S

    2017-01-01

    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib

  9. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells.

    PubMed

    Faião-Flores, F; Alves-Fernandes, D K; Pennacchi, P C; Sandri, S; Vicente, A L S A; Scapulatempo-Neto, C; Vazquez, V L; Reis, R M; Chauhan, J; Goding, C R; Smalley, K S; Maria-Engler, S S

    2017-03-30

    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib

  10. BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines

    PubMed Central

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F.; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways. PMID:22880048

  11. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    PubMed

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  12. Synthesis and biological evaluation of Fotemustine analogues on human melanoma cell lines.

    PubMed

    Winum, Jean Yves; Bouissière, Jean Luc; Passagne, Isabelle; Evrard, Alexandre; Montero, Véronique; Cuq, Pierre; Montero, Jean Louis

    2003-03-01

    Two new analogues of Fotemustine have been synthesized and tested on two melanoma cell lines. Compounds 4 and 8 proved to be more potent than the reference compound on A375 cell line which express the MGMT enzyme involved in the chemoresistance of tumoral cells.

  13. Dendritic cell-based vaccines for pancreatic cancer and melanoma.

    PubMed

    Mulé, James J

    2009-09-01

    Based on leads from our recent animal studies, we are embarking on a series of new clinical trials to evaluate potential improvements in dendritic cell (DC)-based vaccines for melanoma and pancreatic cancer. The first new strategy involves the use of a powerful chemokine (denoted secondary lymphoid tissue chemokine; SLC/CCL-21), which can both create functioning lymph node-like structures at sites of vaccination with tumor-loaded DCs and dramatically enhance vaccine efficacy in animal tumor models. Using this strategy, we are embarking on a clinical trial in melanoma patients with the intent to create functioning, ectopic, lymph node-like structures to enhance host antitumor immunity. The second strategy, in the setting of pancreatic cancer, involves a gene therapy and immunotherapy combination of a locally administered tumor necrosis factor-alpha gene vector followed by radiation (to induce tumor apoptosis/necrosis) and intratumorally administered monocyte-derived DCs (to uptake and present antigens from dying tumor cells to elicit potent, systemic, antitumor immunity).

  14. Detection of ABCB5 tumour antigen-specific CD8+ T cells in melanoma patients and implications for immunotherapy.

    PubMed

    Borchers, S; Maβlo, C; Müller, C A; Tahedl, A; Volkind, J; Nowak, Y; Umansky, V; Esterlechner, J; Frank, M H; Ganss, C; Kluth, M A; Utikal, J

    2018-01-01

    ATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8 + T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8 + T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma. © 2017 British Society for Immunology.

  15. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    PubMed Central

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23690851

  16. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro.

    PubMed

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment.

  17. Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma.

    PubMed

    Bosserhoff, Anja K; Ellmann, Lisa; Quast, Annika S; Eberle, Juergen; Boyle, Glen M; Kuphal, Silke

    2014-08-01

    An understanding of signaling pathways is a basic requirement for the treatment of melanoma. Currently, kinases are at the center of melanoma therapies. According to our research, additional alternative molecules are equally important for development of melanoma. In this regard, cancer progression is, among other factors, driven by an altered adhesion via cadherins. For instance, the de-regulated expression of the adhesion molecule T-cadherin is found in various cancer types, including melanoma, and influences migration and invasion. T-cadherin is thought to affect cellular function largely through its signaling and not its adhesion properties because the molecule is anchored into the cell membrane by a glycosylphosphatidylinositol (GPI) moiety. However, detailed knowledge about the consequences of the loss of T-cadherin in melanoma is currently lacking. For this reason, we were interested in assessing which signaling pathways are initiated by T-cadherin. The tumor growth of subcutaneously injected T-cadherin-positive melanoma cells was diminished compared with T-cadherin-negative cells in nude mice. The difference in tumor volume was not due to decreased proliferation but rather due to increased apoptosis. After the expression of T-cadherin was induced, we detected V-AKT murine thymoma viral oncogene homolog (AKT) and FoxO3a hypophosphorylation accompanied by the downregulation of the antiapoptotic molecules BCL-2, BCL-x and Clusterin. Furthermore, we detected a diminished transcriptional activity of CREB and AP-1. We demonstrated that T-cadherin functions as a pro-apoptotic tumor suppressor that antagonizes AKT/CREB/AP-1/FoxO3a signaling, whereas NFκB, TCF/LEF and mTOR are not part of the T-cadherin signaling pathway. Notably, we found that the restoration of T-cadherin in melanoma cells causes sensitization to apoptosis induced by CD95/Fas antibody CH-11. © 2013 Wiley Periodicals, Inc.

  18. The Cytolytic Amphipathic β(2,2)-Amino Acid LTX-401 Induces DAMP Release in Melanoma Cells and Causes Complete Regression of B16 Melanoma

    PubMed Central

    Eike, Liv-Marie; Mauseth, Brynjar; Camilio, Ketil André; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2016-01-01

    In the present study we examined the ability of the amino acid derivative LTX-401 to induce cell death in cancer cell lines, as well as the capacity to induce regression in a murine melanoma model. Mode of action studies in vitro revealed lytic cell death and release of danger-associated molecular pattern molecules, preceded by massive cytoplasmic vacuolization and compromised lysosomes in treated cells. The use of a murine melanoma model demonstrated that the majority of animals treated with intratumoural injections of LTX-401 showed complete and long-lasting remission. Taken together, these results demonstrate the potential of LTX-401 as an immunotherapeutic agent for the treatment of solid tumors. PMID:26881822

  19. Biochemical basis of 4-hydroxyanisole induced cell toxicity towards B16-F0 melanoma cells.

    PubMed

    Moridani, Majid Y

    2006-11-18

    In the current work we investigated for the first time the biochemical basis of 4-hydroxyanisole (4-HA) induced toxicity in B16-F0 melanoma cells. It was found that dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HA induced toxicity towards B16-F0 cells whereas dithiothreitol, a thiol containing agent, and ascorbic acid (AA), a reducing agent, largely prevented 4-HA toxicity. TEMPOL and pyrogallol, free radical scavengers, did not significantly prevent 4-HA toxicity towards B16-F0 cells. GSH>AA>NADH prevented the o-quinone formation when 4-HA was metabolized by tyrosinase/O(2). 4-HA metabolism by horseradish peroxidase/H(2)O(2) was prevented more effectively by AA than NADH>GSH. We therefore concluded that quinone formation was the major pathway for 4-HA induced toxicity in B16-F0 melanoma cells whereas free radical formation played a negligible role in the 4-HA induced toxicity.

  20. Comparison of the canine corneal epithelial cell sheets cultivated from limbal stem cells on canine amniotic membrane, atelocollagen gel, and temperature-responsive culture dish.

    PubMed

    Nam, Eunryel; Fujita, Naoki; Morita, Maresuke; Tsuzuki, Keiko; Lin, Hsing Yi; Chung, Cheng Shu; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-07-01

    The current study compared canine corneal epithelial cell sheets cultivated from limbal stem cells on amniotic membrane, atelocollagen gel, and temperature-responsive culture dish. We collected limbal epithelial cells from the intact eyes of beagles and cultivated the cells on denuded canine amniotic membranes, temperature-responsive cell culture labware, and collagen gel with 3T3 feeder cells. Immunofluorescence staining for Ki-67 was used to analyze the capacity of cell proliferation in the sheets. Immunofluorescence staining was also performed for the corneal epithelium-specific marker cytokeratin 3 and putative stem cell markers ABCG2 and p63. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect ABCG2 and p63. The growth rates of the cultivated cells, or the times it took them to reach confluency, were different for the three scaffolds. The cultivated sheet on the temperature-responsive dish consisted of 2-3 layers, while those on the collagen gel and on the amniotic membrane consisted of 5-8 layers. The basal layer cells grown on all three scaffolds expressed putative stem cell markers. In real-time RT-PCR analysis, the highest level of p63 was observed in the sheets grown on collagen gel. In this study, the cells cultured on the collagen gel demonstrated a capacity for cell proliferation, and the expressions of stem cells in the sheets suggested that collagen gel is the most suitable carrier for clinical use. © 2014 American College of Veterinary Ophthalmologists.

  1. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.

    PubMed

    Tassano, Marcos; Oddone, Natalia; Fernández, Marcelo; Porcal, Williams; García, María Fernanda; Martínez-López, Wilner; Benech, Juan Claudio; Cabral, Pablo

    2018-06-19

    To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188 ReO 4 - . Biodistribution was performed administrating 188 Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188 Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188 Re-dendrimer for 24 h. 188 Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

  2. Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression

    PubMed Central

    2011-01-01

    Background SKI and SnoN proteins have been shown to inhibit TGF-β signaling, acting both as transcriptional co-repressors in the cell nucleus, and as sequestrators of SMAD proteins in the cytoplasm. TGF-β, on the other hand, induces rapid, proteasome-mediated, degradation of both proteins. How elevated SKI and SnoN protein levels co-exist with active autocrine TGF-β signaling in cancer cells is yet to be understood. Results In this study, we found elevated SKI and SnoN protein levels in a panel of melanoma cell lines, as compared to normal melanocytes. There was no correlation between SKI protein content and the capacity of melanoma cells to invade Matrigel™, to form subcutaneous tumors, or to metastasize to bone after intracardiac inoculation into nude mice. Nor did we find a correlation between SKI expression and histopathological staging of human melanoma. TGF-β induced a rapid and dose-dependent degradation of SKI protein, associated with SMAD3/4 specific transcriptional response and induction of pro-metastatic target genes, partially prevented by pharmacologic blockade of proteasome activity. SKI knockdown in 1205Lu melanoma cells did not alter their invasive capacity or transcriptional responses to TGF-β, and did not allow p21 expression in response to TGF-β or reveal any growth inhibitory activity of TGF-β. Conclusions Despite high expression in melanoma cells, the role of SKI in melanoma remains elusive: SKI does not efficiently interfere with the pro-oncogenic activities of TGF-β, unless stabilized by proteasome blockade. Its highly labile nature makes it an unlikely target for therapeutic intervention. PMID:21211030

  3. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells

    PubMed Central

    Dugnani, Silvana; Calastretti, Angela; Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco; Canti, Gianfranco; Scaglione, Francesco; Bevilacqua, Annamaria

    2017-01-01

    Melatonin plays different physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties. Due to its pleiotropic functions, melatonin has been shown to elicit cytoprotective processes in normal cells and trigger pro-apoptotic signals in cancer cells. The therapeutic potential of melatonin analogues prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives and explore the underlying molecular mechanisms. The experiments revealed that the new melatonin analogues inhibited the growth of melanoma and breast cancer cells in a dose- and time-dependent manner. In addition, our results indicated that melatonin derivative UCM 1037 could induce apoptosis in melanoma and breast cancer cells, as well as cell necrosis, in MCF-7. Together, apoptosis and necrosis could be two possible mechanisms to explain the cytotoxic effect of the melatonin analogue against cancer cells. The suppression of tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. A decrease in the activation of MAPK pathway was observed in all cancer cells following UCM 1037 treatment. Overall, this study describes a promising antitumor compound showing antiproliferative and cytotoxic activity in melanoma and breast cancer cells. PMID:28978121

  4. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells.

    PubMed

    Gatti, Giuliana; Lucini, Valeria; Dugnani, Silvana; Calastretti, Angela; Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco; Canti, Gianfranco; Scaglione, Francesco; Bevilacqua, Annamaria

    2017-09-15

    Melatonin plays different physiological functions ranging from the regulation of circadian rhythms to tumor inhibition, owing to its antioxidant, immunomodulatory and anti-aging properties. Due to its pleiotropic functions, melatonin has been shown to elicit cytoprotective processes in normal cells and trigger pro-apoptotic signals in cancer cells. The therapeutic potential of melatonin analogues prompted us to investigate the in vitro and in vivo antitumor activity of new melatonin derivatives and explore the underlying molecular mechanisms. The experiments revealed that the new melatonin analogues inhibited the growth of melanoma and breast cancer cells in a dose- and time-dependent manner. In addition, our results indicated that melatonin derivative UCM 1037 could induce apoptosis in melanoma and breast cancer cells, as well as cell necrosis, in MCF-7. Together, apoptosis and necrosis could be two possible mechanisms to explain the cytotoxic effect of the melatonin analogue against cancer cells. The suppression of tumor growth by the melatonin analogues was further demonstrated in vivo in a xenograft mice model. A decrease in the activation of MAPK pathway was observed in all cancer cells following UCM 1037 treatment. Overall, this study describes a promising antitumor compound showing antiproliferative and cytotoxic activity in melanoma and breast cancer cells.

  5. Cutaneous amelanotic signet-ring cell malignant melanoma with interspersed myofibroblastic differentiation in a young cat.

    PubMed

    Hirz, Manuela; Herden, Christiane

    2016-07-01

    The diagnosis of malignant melanoma can be difficult because these tumors can be amelanotic and may contain diverse variants and divergent differentiations, of which the signet-ring cell subtype is very rare and has only been described in humans, dogs, cats, and a hamster. We describe herein histopathologic and immunohistochemical approaches taken to diagnose a case of signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. A tumor within the abdominal skin of a 2-year-old cat was composed of signet-ring cells and irregularly interwoven streams of spindle cells. Both neoplastic cell types were periodic-acid-Schiff, Fontana, and Sudan black B negative. Signet-ring cells strongly expressed vimentin and S100 protein. Spindle cells strongly expressed vimentin and smooth muscle actin; some cells expressed S100, moderately neuron-specific enolase, and others variably actin and desmin. A few round cells expressed melan A, and a few plump spindle cells expressed melan A and PNL2, confirming the diagnosis of amelanotic signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. Differential diagnoses were excluded, including signet-ring cell forms of adenocarcinomas, lymphomas, liposarcomas, leiomyosarcomas, squamous cell carcinomas, basal cell carcinomas, and adnexal tumors. © 2016 The Author(s).

  6. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  7. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    PubMed

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  8. Detection of canine distemper virus nucleocapsid protein gene in canine peripheral blood mononuclear cells by RT-PCR.

    PubMed

    Shin, Y; Mori, T; Okita, M; Gemma, T; Kai, C; Mikami, T

    1995-06-01

    For a rapid diagnosis of canine distemper virus (CDV) infection, the reverse transcription-PCR (RT-PCR) was carried out to detect CDV nucleoprotein (NP) gene from canine peripheral blood mononuclear cells (PBMCs). Two sets of primers were targeted to two regions of NP gene of CDV Onderstepoort strain. The NP gene fragments were well amplified by the RT-PCR in each of the RNA extracts from Vero cells infected with 6 laboratory strains of CDV including Onderstepoort strain, and from PBMCs of a dog experimentally infected with CDV. The amplified NP gene was detected in 17 of 32 samples from dogs which were clinically suspected for CDV infection at veterinary hospitals. No RT-PCR product was found in 52 samples from healthy dogs including 40 specific pathogen free beagles vaccinated with an attenuated live virus-vaccine for CDV and 12 stray dogs. The RT-PCR provides a fast, sensitive, and supplementary method for the diagnosis of CDV infection in dogs.

  9. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrialmore » membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts

  10. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  11. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  12. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.

    PubMed

    Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori

    2017-06-09

    The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.

  13. microRNA-216b inhibits cell proliferation and migration in human melanoma by targeting FOXM1 in vitro and in vivo.

    PubMed

    Sun, Mengyao; Wang, Xiaopeng; Tu, Chen; Wang, Shuang; Qu, Jianqiang; Xiao, Shengxiang

    2017-12-01

    MicroRNAs (miRNAs) play an increasingly important role in cancer growth by coordinately suppressing genes that control cell migration, proliferation, and invasion. The above results can be achieved through the regulation of gene expression by miRNAs by suppressing translation or the direct sequence-specific degradation of the targeted mRNA. In the present study, we indicate that the expression of miR-216b could be effectively repressed both in human melanoma tissues through a comparison with primary melanoma and in human melanoma cell lines through a comparison with a normal human keratinocyte line. Moreover, miR-216b induced a clear decrease in melanoma cell proliferation and migration in vitro. Forkhead box M1 (FOXM1) was confirmed as a target gene of miR-216b, and the overexpression of miR-216b markedly repressed the luciferase activity of reporter plasmids containing the FOXM1 3'-UTR (untranslated region). Furthermore, miR-216b suppressed melanoma cell growth in nude mice in vivo, with the effects of miR-216b overexpression on melanoma cell growth and proliferation reversed by FOXM1 overexpression. The results demonstrated that miR-216b is a tumor suppressor in melanoma, identified the FOXM1 signaling pathway as a target of miR-216b action, and suggested a potential therapeutic role for miR-216b in melanoma. © 2017 International Federation for Cell Biology.

  14. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress.

    PubMed

    Liao, Wang; Xiang, Wei; Wang, Fei-Fei; Wang, Rui; Ding, Yan

    2017-11-01

    Curcumin, a polyphenol compound, possesses potent pharmacological properties in preventing cancers, which make it as a potential anti-cancer mediator. However, it is still unknown that whether Curcumin induced melanoma A375 cell was associated with oxidative stress. Here, we firstly found a fascinating result that Curcumin could reduce the proliferation and induced apoptosis of human melanoma A375 cells. Meanwhile, IC 50 of Curcumin on A375 cells is 80μM at 48h. In addition, Curcumin caused oxidative stress through inducing further ROS burst, decreasing GSH, and wrecking mitochondria membrane potential (MMP), which were reversed by ROS inhibitor N-acetylcysteine (NAC). Moreover, MMP disruption led to the release of Cytochrome c from mitochondria and subsequently led to intracellular apoptosis. Furthermore, we found that ROS-dependent HIF-1α and its downstream proteins also play an important role on Curcumin induced apoptosis. In conclusion, our results shed new lights on the therapy of melanoma that Curcumin may be a promising candidate. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Regulator of G protein signaling 4 inhibits human melanoma cells proliferation and invasion through the PI3K/AKT signaling pathway

    PubMed Central

    Xue, Xiaotong; Wang, Lihua; Meng, Xianguang; Jiao, Jing; Dang, Ningning

    2017-01-01

    Melanoma is a tumor produced by skin melanocytes, which has a high metastatic rate and poor prognosis. So far, plenty of work has been done on melanoma, but mechanisms underlying melanoma development have not been fully elucidated. Here we identified regulator of G protein signaling 4(RGS4) as novel therapeutic target for malignant melanoma and its regulating effect on melanoma. We found that endogenous RGS4 expression was much lower in melanoma tissues and cells. In A375 cell line with low endogenous RGS4 expression, the function of RGS4 was detected by up-regulation its expression with pcDNA3.1-RGS4 and knockdown its expression with siRNA. Our results showed that RGS4 could significantly reduce the proliferation, migration and invasion of melanoma cells. RGS4 is an important regulator for the apoptosis of melanocyte, and the apoptosis rate is significantly decreased in low RGS4 enviroment. RGS4 induced non-activation of PI3K/AKT pathway, resulting in decreased expression of E2F1 and Cyclin D1, thus constraining cell proliferation and invasion. These results were further confirmed in M14 cell lines. Collectively, our findings show that RGS4 plays an important role in multiple cellular functions of melanoma development and is valuable to be a therapeutic target. PMID:29108247

  16. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells.

    PubMed

    Flem-Karlsen, Karine; Tekle, Christina; Andersson, Yvonne; Flatmark, Kjersti; Fodstad, Øystein; Nunes-Xavier, Caroline E

    2017-09-01

    B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAF V 600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma. © 2017 The Authors Pigment Cell & Melonoma Research Published by John Wiley & Sons Ltd.

  17. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy.

    PubMed

    Asling, Jonathan; Morrison, Jodi; Mutsaers, Anthony J

    2016-11-01

    Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

  18. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    PubMed

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  19. Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway.

    PubMed

    Yeramian, Andree; Sorolla, Anabel; Velasco, Ana; Santacana, Maria; Dolcet, Xavier; Valls, Joan; Abal, Leandre; Moreno, Sara; Egido, Ramón; Casanova, Josep M; Puig, Susana; Vilella, Ramón; Llombart-Cussac, Antonio; Matias-Guiu, Xavier; Martí, Rosa M

    2012-02-15

    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit. Copyright © 2011 UICC.

  20. PIK3CA-mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation.

    PubMed

    Silva, Jillian M; Deuker, Marian M; Baguley, Bruce C; McMahon, Martin

    2017-05-01

    Malignant conversion of BRAF- or NRAS-mutated melanocytes into melanoma cells can be promoted by PI3'-lipid signaling. However, the mechanism by which PI3'-lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS- or BRAF-mutated melanoma cells that co-express mutationally activated PIK3CA, we explored the contribution of PI3'-lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α-selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single-agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1-mediated effects on ribosomal protein S6 and 4E-BP1 phosphorylation in an AKT-dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRAS Q61H /PIK3CA H1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA-mutated melanoma proliferation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    PubMed

    Chen, Junchen; Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  2. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility

    PubMed Central

    Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147’s capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development. PMID:28832687

  3. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.

    PubMed

    Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G

    1999-01-01

    Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.

  4. Isolation, purification, culture and characterisation of myoepithelial cells from normal and neoplastic canine mammary glands using a magnetic-activated cell sorting separation system.

    PubMed

    Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y

    2013-08-01

    Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Role of gangliosides in active immunotherapy with melanoma vaccine.

    PubMed

    Ravindranath, M H; Morton, D L

    1991-01-01

    Among various tumor associated cell surface antigens, gangliosides, the glycosphingolipids that contain sialic acids, offer a variety of epitopes, some of which are preferentially expressed on melanoma cells. These surface components of the bilayered lipid membrane of tumor cells are the targets of active immunotherapy with melanoma vaccine. Purified gangliosides in aqueous solution form micelles and, at high density, form lactones. Their antigenic expression (physical conformation and orientation) on the cell surface is governed by the nature of the sphingosine and the fatty acids they contain. Evidence is accruing to show that the nature of the fatty acid moiety of gangliosides differs in normal and neoplastic cells. Gangliosides per se are not immunogenic and require extrinsic adjuvanticity. Preparation of a melanoma cell vaccine for active immunotherapy requires an understanding of the ganglioside profile of melanoma, the ganglioside-associated heterogeneity of melanoma, and the role of shed melanoma gangliosides in the immunosuppression of cell mediated and humoral immunity. In addition, the role of some of the anti-ganglioside antibodies in the elimination of shed gangliosides, the cytotoxic killing of tumor cells, as well as in the down-regulation of lymphocyte functions must be considered in the formulation of vaccine. Different strategies for augmenting the immunogenicity of melanoma associated gangliosides with melanoma vaccine are evaluated.

  6. The establishment and characterization of the first canine hepatocellular carcinoma cell line, which resembles human oncogenic expression patterns

    PubMed Central

    Boomkens, Sacha Y; Spee, Bart; IJzer, Jooske; Kisjes, Ronald; Egberink, Herman F; van den Ingh, Ted SGAM; Rothuizen, Jan; Penning, Louis C

    2004-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. Results Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. Conclusions We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC. PMID:15566568

  7. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus.

    PubMed

    Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C

    2017-06-01

    Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy. © 2015 John Wiley & Sons Ltd.

  8. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour.

    PubMed

    Piskun, Caroline M; Stein, Timothy J

    2016-06-01

    Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. © 2013 John Wiley & Sons Ltd.

  9. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells.

    PubMed

    Ribeiro, Mariana P C; Santos, Armanda E; Custódio, José B A

    2017-11-01

    The activation of the G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 inhibits prostate cancer and 17β-estradiol-stimulated breast cancer cell proliferation. Tamoxifen (TAM), which also activates the GPER, decreases melanoma cell proliferation, but its action mechanism remains controversial. Here we investigated the expression and the effects of GPER activation by G-1, TAM and its key metabolite endoxifen (EDX) on melanoma cells. Mouse melanoma K1735-M2 cells expressed GPER and G-1 reduced cell biomass, and the number of viable cells, without increasing cell death. Rather, G-1 decreased cell division by blocking cell cycle progression in G2. Likewise, TAM and EDX exhibited an antiproliferative activity in melanoma cells due to decreased cell division. Both G-1 and the antiestrogens showed a trend to decrease the levels of phosphorylated ERK 1/2 after 1 h treatment, although only EDX, the most potent antiproliferative antiestrogen, induced significant effects. Importantly, the targeting of GPER with siRNA abolished the cytostatic activity of both G-1 and antiestrogens, suggesting that the antitumor actions of antiestrogens in melanoma cells involve GPER activation. Our results unveil a new target for melanoma therapy and identify GPER as a key mediator of antiestrogen antiproliferative effects, which may contribute to select the patients that benefit from an antiestrogen-containing regimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.

    PubMed

    Liu-Smith, Feng; Jia, Jinjing; Zheng, Yan

    2017-01-01

    There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC and SCC are often referred to as non-melanoma skin cancer (NMSC). NMSCs are relatively non-lethal and curable by surgery, hence are not reportable in most cancer registries all over the world. Melanoma is the deadliest skin cancer. Its incidence rate (case number) is about 1/10th of that for NMSC, yet its death toll is ~8 fold higher than NMSC.Melanomas arise from melanocytes which are normally located on the basement membrane with dendrites extending into the epidermal keratinocytes. A major known function of melanocytes is to produce pigments which are enclosed by lipid membrane (termed melanosomes) and distribute them into keratinocytes, thus give different shade of skin colors. BCCs arise from basal cells, which are a layer of cells located at the deepest part of epidermis. Basal cells are recently considered to be skin stem cells as they are constantly proliferating and generating keratinocytes which are continuously pushed to the surface and eventually become a dead layer of stratum corneum. Squamous cells are the keratinocytes which resembles fish scale shape, ie, those initiated from basal cells and differentiated into squamous cells. Both basal cells and squamous cells belong to keratinocytes, therefore sometimes BCC and SCC are termed keratinocyte cancer.These three types of cancer share many characteristics, yet they are very different from etiology to progression. One shared characteristic of skin cancer is that, according to the current views, they all are caused by solar or artificial ultraviolet radiation (UVR). UVA and UVB from solar UVR are the major UV bands reaching the earth surface. Both UV types cause DNA damage and immune suppression which play crucial roles in skin carcinogenesis. UVB can be directly absorbed by DNA molecules and thus causes UV-signature DNA damages; UVA, on the other hand, may function through inducing

  11. Transcriptional Regulation of Seprase in Invasive Melanoma Cells by Transforming Growth Factor-β Signaling*

    PubMed Central

    Tulley, Shaun; Chen, Wen-Tien

    2014-01-01

    The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis. PMID:24727589

  12. Rb-Raf-1 interaction disruptor RRD-251 induces apoptosis in metastatic melanoma cells and synergizes with dacarbazine

    PubMed Central

    Singh, Sandeep; Davis, Rebecca; Alamanda, Vignesh; Pireddu, Roberta; Pernazza, Daniel; Sebti, Said; Lawrence, Nicholas; Chellappan, Srikumar

    2010-01-01

    Metastatic melanoma is an aggressive cancer with very low response rate against conventional chemotherapeutic agents such as dacarbazine (DTIC). Inhibitor of Rb-Raf-1 interaction (RRD-251) was tested against the melanoma cell lines SK-MEL-28, SK-MEL-5 and SK-MEL-2. RRD-251 was found to be a potent inhibitor of melanoma cell proliferation, irrespective of V600E B-Raf mutation status of the cell lines. In a SK-MEL-28 xenograft experiment, RRD-251 exerted a significant suppression of tumor growth compared to vehicle (p=0.003). Similar to in vitro effects, tumors from RRD-251 treated animals showed decreased Rb-Raf-1 interaction in vivo. Growth suppressive effects of RRD-251 were associated with induction of apoptosis as well as a G1 arrest, with an accompanying decrease in S-phase cells. RRD-251 inhibited Rb phosphorylation, and downregulated E2F1 protein levels in these cells. Real-time PCR analysis showed that RRD-251 caused downregulation of cell cycle regulatory genes thymidylate synthase (TS) and cdc6 as well as anti-apoptotic gene Mcl-1. Combinatorial treatment of RRD-251 and DTIC resulted in a significantly higher apoptosis in DTIC resistant cell lines SK-MEL-28 and SK-MEL-5, as revealed by increased Caspase-3 activity and PARP cleavage. Since aberrant Rb/E2F pathway is associated with melanoma progression and resistance to apoptosis, these results suggest that the Rb-Raf-1 inhibitor could be an effective agent for melanoma treatment, either alone or in combination with DTIC. PMID:21139044

  13. Rb-Raf-1 interaction disruptor RRD-251 induces apoptosis in metastatic melanoma cells and synergizes with dacarbazine.

    PubMed

    Singh, Sandeep; Davis, Rebecca; Alamanda, Vignesh; Pireddu, Roberta; Pernazza, Daniel; Sebti, Said; Lawrence, Nicholas; Chellappan, Srikumar

    2010-12-01

    Metastatic melanoma is an aggressive cancer with very low response rate against conventional chemotherapeutic agents such as dacarbazine (DTIC). Inhibitor of Rb-Raf-1 interaction RRD-251 was tested against the melanoma cell lines SK-MEL-28, SK-MEL-5, and SK-MEL-2. RRD-251 was found to be a potent inhibitor of melanoma cell proliferation, irrespective of V600E B-Raf mutation status of the cell lines. In a SK-MEL-28 xenograft experiment, RRD-251 exerted a significant suppression of tumor growth compared with vehicle (P = 0.003). Similar to in vitro effects, tumors from RRD-251-treated animals showed decreased Rb-Raf-1 interaction in vivo. Growth suppressive effects of RRD-251 were associated with induction of apoptosis as well as a G(1) arrest, with an accompanying decrease in S-phase cells. RRD-251 inhibited Rb phosphorylation and downregulated E2F1 protein levels in these cells. Real-time PCR analysis showed that RRD-251 caused downregulation of cell-cycle regulatory genes thymidylate synthase (TS) and cdc6 as well as the antiapoptotic gene Mcl-1. Combinatorial treatment of RRD-251 and DTIC resulted in a significantly higher apoptosis in DTIC resistant cell lines SK-MEL-28 and SK-MEL-5, as revealed by increased caspase-3 activity and PARP cleavage. Because aberrant Rb/E2F pathway is associated with melanoma progression and resistance to apoptosis, these results suggest that the Rb-Raf-1 inhibitor could be an effective agent for melanoma treatment, either alone or in combination with DTIC. ©2010 AACR.

  14. A high molecular weight-melanoma associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas

    PubMed Central

    Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199

  15. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Regulation of Cancer Stem Cell Self-Renewal by HOXB9 Antagonizes Endoplasmic Reticulum Stress-Induced Melanoma Cell Apoptosis via the miR-765-FOXA2 Axis.

    PubMed

    Lin, Jingrong; Zhang, Dongmei; Fan, Yongsheng; Chao, Yulin; Chang, Jinming; Li, Na; Han, Linlin; Han, Chuanchun

    2018-07-01

    Adaptation to endoplasmic reticulum (ER) stress has been indicated as a driver of malignancy and resistance to therapy in human melanoma. However, the relationship between cancer stem cells and adaptation to ER stress remains unclear. Here, we show that the ratio of cancer stem cells is increased in ER stress-resistant melanoma cells, which inhibit ER stress-induced apoptosis and promote tumorigenesis. Further mechanistic studies showed that HOXB9 triggered by ER stress favors cancer stem cell self-renewal and enhances ER stress resistance. HOXB9 directly binds to the promoter of microRNA-765 and facilitates its transcription, which in turn targets FOXA2, resulting in a FOXA2 decrease and cancer stem cell increase. Additionally, an increase in HOXB9 promotes melanoma growth and inhibits cell apoptosis in a mouse xenograft model. Elevated HOXB9 is found in human melanoma tissues, which is associated with microRNA-765 up-regulation and FOXA2 decreases. Thus, our data showed that the HOXB9-dependent, microRNA-765-mediated FOXA2 pathway contributes to the survival of melanoma under ER stress by maintaining the properties of cancer stem cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The role of nitric oxide in melanoma.

    PubMed

    Yarlagadda, Keerthi; Hassani, John; Foote, Isaac P; Markowitz, Joseph

    2017-12-01

    Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  19. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  20. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.

    2017-04-01

    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.

  1. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  2. Isoliquiritigenin-Induced Differentiation in Mouse Melanoma B16F0 Cell Line

    PubMed Central

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis. PMID:23304254

  3. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line.

    PubMed

    Chen, Xiaoyu; Zhang, Bo; Yuan, Xuan; Yang, Fan; Liu, Jinglei; Zhao, Hong; Liu, Liangliang; Wang, Yanming; Wang, Zhenhua; Zheng, Qiusheng

    2012-01-01

    The chemotherapeutical treatment is very limited for malignant melanoma, a highly lethal disease occurs globally. Natural products derived from traditional Chinese medicine licorice are attractive in quest new treatments due to their anti-tumor activities. A new dietary flavonoid isoliquiritigenin (ISL) were thus investigated to indentify its anti-melanoma activities on mouse melanoma B16F0 cells in present study. Using biochemical and free radical biological experiments in vitro, we identified the pro-differentiated profiles of ISL and evaluated the role of reactive oxygen species (ROS) during B16F0 cell differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of B16F0 differentiation in terms of morphology changes and melanogenesis. The accumulated intercellular ROS during exposure are necessary to support ISL-induced differentiation, which was proven by additional redox modulators. It was confirmed further by the relative activities of enzymes and genes modulated melanogenesis in ISL-treatments with or without ROS modulators. The tumorigenicity of ISL-treated cells was limited significantly by using the colony formation assay in vitro and an animal model assay in vivo respectively. Our research demonstrated that isoliquiritigenin is a differentiation-inducing agent, and its mechanisms involve ROS accumulation facilitating melanogenesis.

  4. Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 domain Mediated PUMA Degradation

    PubMed Central

    Lakhter, Alexander J; Sahu, Ravi P; Sun, Yang; Kaufmann, William K; Androphy, Elliot J; Travers, Jeffrey B; Naidu, Samisubbu R

    2013-01-01

    The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent activity of chloroquine that selectively promotes apoptosis in melanoma cells. PMID:23370537

  5. [Soft tissue melanoma: a clinical case].

    PubMed

    Frikh, Rachid; Oumakhir, Siham; Chahdi, Hafsa; Oukabli, Mohammed; Albouzidi, Abderrahmane; Baba, Noureddine; Hjira, Naoufal; Boui, Mohammed

    2017-01-01

    Soft tissue melanoma was first described by Enzinger in 1965 under the name of clear cell sarcoma. In 1983, Chung and Enzinger renamed it soft tissue melanoma due to its immunohistochemical similarities with melanoma. We here report the case of a 22-year old young man with this rare type of melanoma, presenting with molluscoid lesion on his ankle without any clinical sign of malignancy. Histology examination confirmed the diagnosis of soft tissue melanoma.

  6. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.

    PubMed

    Margue, Christiane; Philippidou, Demetra; Reinsbach, Susanne E; Schmitt, Martina; Behrmann, Iris; Kreis, Stephanie

    2013-01-01

    The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.

  7. A signet-ring cell melanoma arising from a medium-sized congenital melanocytic nevus in an adult: A case report and literature review.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-07-01

    Patients with congenital nevus, especially giant congenital melanocytic nevus (CMN) measuring >20 cm, are known to be at elevated risk of developing melanomas, especially during the first and second decades of life. Melanomas rarely develop in patients with small and medium-sized CMNs, but if they do, they occur during the fourth and fifth decades of life. We present a case of a rapidly enlarging signet-ring cell melanoma (over 3 months) that arose from a medium-sized CMN in a 57-year-old Japanese man. Only 11 other cases of signet-ring cell melanomas at the primary site have been reported. On the basis of morphology alone, it is difficult to diagnose a nodule appearing in a CMN as a signet-ring cell melanoma, because even a benign melanocytic nevus can appear as signet-ring cell morphology. Moreover, a rapidly growing proliferative nodule (PN) more often develops in a CMN than melanoma; PNs may at times exhibit enough atypia to be comparable to melanomas. In our case, loss of p16 expression in the melanoma distinguished it from the nevus cells and was helpful in making the correct diagnosis. Clinical information, such as the patient's age, was also useful in establishing the diagnosis. © 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  8. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    PubMed

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  9. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells

    PubMed Central

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-01-01

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design. PMID:29113311

  10. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  11. Canine mesenchymal stem cells treated with TNF-α and IFN-γ enhance anti-inflammatory effects through the COX-2/PGE2 pathway.

    PubMed

    Yang, Hye-Mi; Song, Woo-Jin; Li, Qiang; Kim, Su-Yeon; Kim, Hyeon-Jin; Ryu, Min-Ok; Ahn, Jin-Ok; Youn, Hwa-Young

    2018-05-14

    Mesenchymal stem cells (MSCs) have been used in studies on treatment of various diseases, and their application to immune-mediated diseases has garnered interest. Various methods for enhancing the immunomodulation effect of human MSCs have been used; however, similar approaches for canine MSCs are relatively unexplored. Accordingly, we evaluated immunomodulatory effects and mechanisms in canine MSCs treated with TNF-α and IFN-γ. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were incubated with the conditioned media (CM) from canine MSCs for 48 h. Expression of RNA was assessed by quantitative reverse transcription PCR (qRT-PCR), and protein levels were assessed by western blot. Expression of inducible nitric oxide synthase (iNOS), IL-6 and IL-1β was significantly (one-way ANOVA) decreased in LPS-stimulated RAW 264.7 cells incubated with CM from canine MSCs compared to that in LPS-stimulated RAW 264.7 cells alone. Furthermore, anti-inflammatory effects of TNF-α- and IFN-γ-primed canine MSCs were significantly increased compared with those of naïve canine MSCs. Expression of cyclooxygenase 2 (COX-2) and prostaglandin E 2 (PGE 2 ) were likewise significantly increased in primed canine MSCs. The level of iNOS protein in LPS-stimulated RAW 264.7 cells incubated with CM from the primed canine MSCs was decreased, but it increased when the cells were treated with NS-398(PGE 2 inhibitor). In conclusion, compared with naïve canine MSCs, cells primed with TNF-α and IFN-γ cause a greater reduction in release of anti-inflammatory cytokines from LPS-stimulated RAW 264.7 cells; the mechanism is upregulation of the COX-2/PGE 2 pathway. Copyright © 2018. Published by Elsevier Ltd.

  12. Identification and characterisation of side population cells in the canine pituitary gland.

    PubMed

    van Rijn, Sarah J; Gremeaux, Lies; Riemers, Frank M; Brinkhof, Bas; Vankelecom, Hugo; Penning, Louis C; Meij, Björn P

    2012-06-01

    To date, stem/progenitor cells have not been identified in the canine pituitary gland. Cells that efficiently exclude the vital dye Hoechst 33342 can be visualised and identified using fluorescence activated cell sorting (FACS) as a 'side population' (SP), distinct from the main population (MP). Such SPs have been identified in several tissues and display stem/progenitor cell characteristics. In this study, a small SP (1.3%, n=6) was detected in the anterior pituitary glands of healthy dogs. Quantitative PCR indicated significantly higher expression of CD34 and Thy1 in this SP, but no differences in the expression of CD133, Bmi-1, Axin2 or Shh. Pro-opiomelanocortin (POMC) and Lhx3 expression were significantly higher in the MP than in the SP, but no differences in the expression of Tpit, GH or PRL were found. The study demonstrated the existence of an SP of cells in the normal canine pituitary gland, encompassing cells with stem cell characteristics and without POMC expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.

  14. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    PubMed

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  15. Constitutive activation of alternative nuclear factor kappa B pathway in canine diffuse large B-cell lymphoma contributes to tumor cell survival and is a target of new adjuvant therapies.

    PubMed

    Seelig, Davis M; Ito, Daisuke; Forster, Colleen L; Yoon, Una A; Breen, Matthew; Burns, Linda J; Bachanova, Veronika; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Schmechel, Stephen C; Rizzardi, Anthony E; Modiano, Jaime F; Linden, Michael A

    2017-07-01

    Activation of the classical nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway is a common molecular event observed in both human and canine diffuse large B-cell lymphoma (DLBCL). Although the oncogenic potential of the alternative NFκB pathway (ANFκBP) has also been recently identified in DLBCL, its precise role in tumor pathogenesis and potential as a treatment target is understudied. We hypothesized that up-regulation of the ANFκBP plays an important role in the proliferation and survival of canine DLBCL cells, and we demonstrate that the ANFκBP is constitutively active in primary canine DLBCL samples and a cell line (CLBL1). We further demonstrate that a small interfering RNA inhibits the activation of the NFκB pathway and induces apoptosis in canine DLBCL cells. In conclusion, the ANFκBP facilitates survival of canine DLBCL cells, and thus, dogs with spontaneous DLBCL can provide a useful large animal model to study therapies targeting the ANFκBP.

  16. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  17. A Novel Inhibitor of STAT3 Activation Is Efficacious Against Established Central Nervous System Melanoma and Inhibits Regulatory T Cells

    PubMed Central

    Kong, Ling-Yuan; Abou-Ghazal, Mohamed K.; Wei, Jun; Chakraborty, Arup; Sun, Wei; Qiao, Wei; Fuller, Gregory N.; Fokt, Izabela; Grimm, Elizabeth A.; Schmittling, Robert J.; Archer, Gary E.; Sampson, John H.; Priebe, Waldemar; Heimberger, Amy B.

    2008-01-01

    Purpose Activation of STAT3 has been identified as a central mediator of melanoma growth and metastasis. We hypothesized that WP1066, a novel STAT3 blockade agent, has marked antitumor activity, even against the melanoma metastasis to brain, a site typically refractory to therapies. Experimental Design The antitumor activities and related mechanisms of WP1066 were investigated both in vitro on melanoma cell lines and in vivo on mice with subcutaneously syngeneic melanoma or with intracerebral melanoma tumors. Results WP1066 achieved an IC50 of 1.6 μM, 2.3 μM, and 1.5 μM against melanoma cell line A375, B16 and B16EGFRvIII, respectively. WP1066 suppressed the phosphorylation of JAK2 and STAT3 (Tyr705) in these cells. Tumor growth in mice with subcutaneously established syngeneic melanoma was markedly inhibited by WP1066 compared with that in controls. Long-term survival (>78 days) was observed in 80% of mice with established intracerebral syngeneic melanoma treated with 40 mg/kg of WP1066 in contrast to control mice who survived for a median of 15 days. Although WP1066 did not induce immunological memory or enhance humoral responses to EGFRvIII, this compound reduced the production of immunosuppressive cytokines and chemokines (TGF-β, RANTES, MCP-1, VEGF), markedly inhibited natural and inducible Treg proliferation, and significantly increased cytotoxic immune responses of T cells. Conclusions The antitumor cytotoxic effects of WP1066 and its ability to induce antitumor immune responses suggest that this compound has potential for the effective treatment of melanoma metastatic to brain. PMID:18794085

  18. Cudraflavone C Induces Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS Production and MAPK Activation.

    PubMed

    Lee, Chiang-Wen; Yen, Feng-Lin; Ko, Horng-Huey; Li, Shu-Yu; Chiang, Yao-Chang; Lee, Ming-Hsueh; Tsai, Ming-Horng; Hsu, Lee-Fen

    2017-07-13

    Melanoma is the most malignant form of skin cancer and is associated with a very poor prognosis. The aim of this study was to evaluate the apoptotic effects of cudraflavone C on A375.S2 melanoma cells and to determine the underlying mechanisms involved in apoptosis. Cell viability was determined using the MTT and real-time cytotoxicity assays. Flow cytometric evaluation of apoptosis was performed after staining the cells with Annexin V-FITC and propidium iodide. The mitochondrial membrane potential was evaluated using the JC-1 assay. Cellular ROS production was measured using the CellROX assay, while mitochondrial ROS production was evaluated using the MitoSOX assay. It was observed that cudraflavone C inhibited growth in A375.S2 melanoma cells, and promoted apoptosis via the mitochondrial pathway mediated by increased mitochondrial ROS production. In addition, cudraflavone C induced phosphorylation of MAPKs (p38, ERK, and JNK) and up-regulated the expression of apoptotic proteins (Puma, Bax, Bad, Bid, Apaf-1, cytochrome C, caspase-9, and caspase-3/7) in A375.S2 cells. Pretreatment of A375.S2 cells with MitoTEMPOL (a mitochondria-targeted antioxidant) attenuated the phosphorylation of MAPKs, expression of apoptotic proteins, and the overall progression of apoptosis. In summary, cudraflavone C induced apoptosis in A375.S2 melanoma cells by increasing mitochondrial ROS production; thus, activating p38, ERK, and JNK; and increasing the expression of apoptotic proteins. Therefore, cudraflavone C may be regarded as a potential form of treatment for malignant melanoma.

  19. Melanogenesis effect of Cordyceps militaris culture broth on the melanin formation of B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Park, Mi-Yeon; Choi, Seung-Tae; Moon, Hyung-In; Cho, Young-Su

    2011-10-13

    The effect of Cordyceps militaris culture broth (CMB) on melanogenesis in B16F0 melanoma cells was evaluated by measurement of the melanin concentration after 3 days of incubation. The B16F0 melanoma cells were treated with various concentrations of CMB 10-100 μg/mL and arbutin of 200 μM. Phenolic content and antioxidant activity of CMB were also measured. Phenolic content of CMB was 3.28 mg/g. The DPPH radical scavenging and ferric ion donating activities were 79.64% and 0.16, respectively. The melanin concentration and cell viability of melanoma cells by arbutin treatment decreased to 43% and 91% of the control, respectively. The CMB treatment showed a significant inhibitory effect of melanin production by 29%, 50%, and 56% at 50, 80, and 100 μg/mL concentration treatment, respectively, while over 90% of cells were viable. The CMB treatment at 50, 80, and 100 μg/mL concentrations in cultivation decreased extracellular melanin release induced by 3-isobutyl-1-methylxanthine (IBMX) treatment by 19%, 38%, and 48%, respectively. The CMB showed inhibitory activity against intracellular tyrosinase extracted from melanoma cells, while it had no inhibition on the activity of mushroom tyrosinase. The cellular glutathione contents were enhanced by CMB treatment in a concentration-dependent manner. These results suggested that CMB suppressed cellular tyrosinase activity and total melanin content in cultured B16F0 melanoma cells without any significant effects on cell proliferation and it might be candidate anti-melanogenic agent.

  20. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    PubMed

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  1. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  2. Extracellular acidification by lactic acid suppresses glucose deprivation-induced cell death and autophagy in B16 melanoma cells.

    PubMed

    Matsuo, Taisuke; Sadzuka, Yasuyuki

    2018-02-19

    In solid tumors, cancer cells survive and proliferate under conditions of microenvironment stress such as poor nutrients and hypoxia due to inadequate vascularization. These stress conditions in turn activate autophagy, which is important for cancer cell survival. However, autophagy has a contrary effect of inducing cell death in cancer cells cultured in vitro under conditions of glucose deprivation. In this study, we hypothesized that supplementation of lactic acid serves as a means of cell survival under glucose-deprived conditions. At neutral pH, cell death of B16 murine melanoma cells by autophagy under glucose-deprived conditions was observed. However, supplementation of lactic acid suppressed cell death and autophagy in B16 melanoma cells when cultured in glucose-deprived conditions. Sodium lactate, which does not change extracellular pH, did not inhibit cell death, while HCl-adjusted acidic pH suppressed cell death under glucose-deprived conditions. These results suggested that an acidic pH is crucial for cell survival under glucose-deprived conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma.

    PubMed

    Palmer, K; Moore, J; Everard, M; Harris, J D; Rodgers, S; Rees, R C; Murray, A K; Mascari, R; Kirkwood, J; Riches, P G; Fisher, C; Thomas, J M; Harries, M; Johnston, S R; Collins, M K; Gore, M E

    1999-05-20

    We vaccinated metastatic melanoma patients with irradiated, autologous melanoma cells genetically engineered to secrete interleukin 2 (IL-2) to investigate whether an anti-tumor immune response would be induced. Melanoma cell cultures were established from surgical specimens and were engineered to secrete IL-2 by infection with recombinant retrovirus. Twelve patients were vaccinated subcutaneously one, two, or three times with approximately 10(7) irradiated, autologous, IL-2-secreting tumor cells. Treatment was well tolerated, with local reactions at 11 of 24 injection sites and minor systemic symptoms of fever and headache after 6 injections. One patient developed anti-tumor DTH after the first vaccination and showed an increased response after the second vaccination. Anti-autologous tumor CTLs could be detected prevaccination in the peripheral blood of seven patients and their activity increased after vaccination in four patients. No UICC-defined clinical responses were seen, but three patients had stable disease for 7-15 months, one of whom has not yet progressed (15+ months). Thus, patient vaccination with autologous, genetically engineered tumor cells is feasible and safe. Anti-tumor DTH and CTLs can be induced in some patients with such a vaccine.

  4. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  5. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes.

    PubMed

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-04-10

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.

  6. Assessment of the tumourigenic and metastatic properties of SK-MEL28 melanoma cells surviving electrochemotherapy with bleomycin

    PubMed Central

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Cemazar, Maja

    2012-01-01

    Background Electrochemotherapy is a local treatment combining chemotherapy and electroporation and is highly effective treatment approach for subcutaneous tumours of various histologies. Contrary to surgery and radiation, the effect of electrochemotherapy on metastatic potential of tumour cells has not been extensively studied. The aim of the study was to evaluate the effect of electrochemotherapy with bleomycin on the metastatic potential of human melanoma cells in vitro. Materials and methods Viable cells 48 hours after electrochemotherapy were tested for their ability to migrate and invade through Matrigel coated porous membrane. In addition, microarray analysis and quantitative Real-Time PCR were used to detect changes in gene expression after electrochemotherapy. Results Cell migration and invasion were not changed in melanoma cells surviving electrochemotherapy. Interestingly, only a low number of tumourigenesis related genes was differentially expressed after electrochemotherapy. Conclusions Our data suggest that metastatic potential of human melanoma cells is not affected by electrochemotherapy with bleomycin, confirming safe role of electrochemotherapy in the clinics. PMID:22933978

  7. Assessment of the tumourigenic and metastatic properties of SK-MEL28 melanoma cells surviving electrochemotherapy with bleomycin.

    PubMed

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Cemazar, Maja

    2012-03-01

    Electrochemotherapy is a local treatment combining chemotherapy and electroporation and is highly effective treatment approach for subcutaneous tumours of various histologies. Contrary to surgery and radiation, the effect of electrochemotherapy on metastatic potential of tumour cells has not been extensively studied. The aim of the study was to evaluate the effect of electrochemotherapy with bleomycin on the metastatic potential of human melanoma cells in vitro. Viable cells 48 hours after electrochemotherapy were tested for their ability to migrate and invade through Matrigel coated porous membrane. In addition, microarray analysis and quantitative Real-Time PCR were used to detect changes in gene expression after electrochemotherapy. Cell migration and invasion were not changed in melanoma cells surviving electrochemotherapy. Interestingly, only a low number of tumourigenesis related genes was differentially expressed after electrochemotherapy. Our data suggest that metastatic potential of human melanoma cells is not affected by electrochemotherapy with bleomycin, confirming safe role of electrochemotherapy in the clinics.

  8. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; McElwain, Sean D L; Simpson, Matthew J

    2017-01-01

    Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Both HSE and MSE models are similar to native skin in vivo , with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE invade deeper into the

  9. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; McElwain, Sean D.L.

    2017-01-01

    Background Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. Methods 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. Results Both HSE and MSE models are similar to native skin in vivo, with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE

  10. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappa, Germana; College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104; Mercapide, Javier

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that threemore » distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1

  11. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs’ Revolution for Immunotherapy

    PubMed Central

    Barutello, Giuseppina; Rolih, Valeria; Arigoni, Maddalena; Tarone, Lidia; Conti, Laura

    2018-01-01

    Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches. PMID:29534457

  12. IL-4 downregulates expression of the target receptor CD30 in neoplastic canine mast cells

    PubMed Central

    Bauer, K.; Hadzijusufovic, E.; Cerny-Reiterer, S.; Hoermann, G.; Reifinger, M.; Pirker, A.; Valent, P.; Willmann, M.

    2018-01-01

    CD30 is a novel therapeutic target in human mast cell (MC) neoplasms. In this ‘comparative oncology’ study, we examined CD30 expression and regulation in neoplastic canine MC using a panel of immunomodulatory cytokines [interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-13 and stem cell factor (SCF)] and the canine mastocytoma cell lines NI-1 and C2. Of all cytokines tested IL-4 was found to downregulate expression of CD30 in NI-1 and C2 cells. We also found that the CD30-targeting antibody-conjugate brentuximab vedotin induces growth inhibition and apoptosis in both MC lines. Next, we asked whether IL-4-induced downregulation of CD30 interferes with brentuximab vedotin-effects. Indeed, pre-incubation of NI-1 cells with IL-4 decreased responsiveness towards brentuximab vedotin. To overcome IL-4-mediated resistance, we applied drug combinations and found that brentuximab vedotin synergizes with the Kit-targeting drugs masitinib and PKC412 in inhibiting growth of NI-1 and C2 cells. In summary, CD30 is a new marker and IL-4-regulated target in neoplastic canine MC. PMID:27507155

  13. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  14. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    PubMed

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. NFATc2 is an intrinsic regulator of melanoma dedifferentiation.

    PubMed

    Perotti, V; Baldassari, P; Molla, A; Vegetti, C; Bersani, I; Maurichi, A; Santinami, M; Anichini, A; Mortarini, R

    2016-06-02

    Melanoma dedifferentiation, characterized by the loss of MITF and MITF regulated genes and by upregulation of stemness markers as CD271, is implicated in resistance to chemotherapy, target therapy and immunotherapy. The identification of intrinsic mechanisms fostering melanoma dedifferentiation may provide actionable therapeutic targets to improve current treatments. Here, we identify NFATc2 transcription factor as an intrinsic regulator of human melanoma dedifferentiation. In panels of melanoma cell lines, NFATc2 expression correlated inversely with MITF at both mRNA and protein levels. NFATc2(+/Hi) melanoma cell lines were CD271(+) and deficient for expression of melanocyte differentiation antigens (MDAs) MART-1, gp100, tyrosinase and of GPNMB, PGC1-α and Rab27a, all regulated by MITF. Targeting of NFATc2 by small interfering RNA, short hairpin RNA and by an NFATc2 inhibitor upregulated MITF, MDAs, GPNMB, PGC-1α, tyrosinase activity and pigmentation and suppressed CD271. Mechanistically, we found that NFATc2 controls melanoma dedifferentiation by inducing expression in neoplastic cells of membrane-bound tumor necrosis factor-α (mTNF-α) and that melanoma-expressed TNF-α regulates a c-myc-Brn2 axis. Specifically, NFATc2, mTNF-α and expression of TNF receptors were significantly correlated in panels of cell lines. NFATc2 silencing suppressed TNF-α expression, and neutralization of melanoma-expressed TNF-α promoted melanoma differentiation. Moreover, silencing of NFATc2 and TNF-α neutralization downmodulated c-myc and POU3F2/Brn2. Brn2 was strongly expressed in NFATc2(+/Hi) MITF(Lo) cell lines and its silencing upregulated MITF. Targeting of c-myc, by silencing or by a c-myc inhibitor, suppressed Brn2 and upregulated MITF and MART-1 in melanoma cells. The relevance of NFATc2-dependent melanoma dedifferentiation for immune escape was shown by cytolytic T-cell assays. NFATc2(Hi) MITF(Lo) MDA(Lo) HLA-A2.1(+) melanoma cells were poorly recognized by MDA

  16. Silencing of diphthamide synthesis 3 (Dph3) reduces metastasis of murine melanoma.

    PubMed

    Wang, Lei; Shi, Yu; Ju, Peijun; Liu, Rui; Yeo, Siok Ping; Xia, Yinyan; Owlanj, Hamed; Feng, Zhiwei

    2012-01-01

    Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.

  17. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  18. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  19. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    PubMed

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  20. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines.

    PubMed

    Katona, Éva; Juhász, Tamás; Somogyi, Csilla Szűcs; Hajdú, Tibor; Szász, Csaba; Rácz, Kálmán; Kókai, Endre; Gergely, Pál; Zákány, Róza

    2016-03-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.

  1. PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines

    PubMed Central

    KATONA, ÉVA; JUHÁSZ, TAMÁS; SOMOGYI, CSILLA SZŰCS; HAJDÚ, TIBOR; SZÁSZ, CSABA; RÁCZ, KÁLMÁN; KÓKAI, ENDRE; GERGELY, PÁL; ZÁKÁNY, RÓZA

    2016-01-01

    Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment. PMID:26717964

  2. Reflectance confocal microscopy features of thin versus thick melanomas.

    PubMed

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  3. Phytochemicals for the Management of Melanoma.

    PubMed

    Pal, Harish Chandra; Hunt, Katherine Marchiony; Diamond, Ariana; Elmets, Craig A; Afaq, Farrukh

    2016-01-01

    Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma.

  4. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  5. Basic and clinical aspects of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathanson, L.

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignantmore » melanoma by fast neutrons.« less

  6. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K.; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

  7. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.

  8. Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation.

    PubMed

    Chung, Heesung; Jung, Hyejung; Jho, Eek-Hoon; Multhaupt, Hinke A B; Couchman, John R; Oh, Eok-Soo

    2018-06-14

    In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation. Copyright © 2018. Published by Elsevier Inc.

  9. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 andmore » p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.« less

  10. Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24

    PubMed Central

    Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.

    2008-01-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  11. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells.

    PubMed

    Cha, Jae-Young; Yang, Hyun-Ju; Moon, Hyung-In; Cho, Young-Su

    2012-04-01

    Present study was investigated the effect of each or complex of three branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) on melanin production in B16F0 melanoma cells treated with various concentrations (1-16 mM) for 72 h. Among the 20 amino acids, lysine and glycine showed the highest activities of DPPH radical scavenging and mushroom tyrosinase inhibition, respectively. Each and combination of BCAAs reduced melanogenesis in a concentration-dependent manner without any morphological changes and cell viability in melanoma cells. Present study was also investigated the inhibitory effects of each or complex of BCAAs at each 10 mM concentration on the 100 μM IBMX-mediated stimulation of melanogenesis in melanoma cells for 72 h and found that IBMX treatment was stimulated to enhance melanin synthesis and that the complex of BCAAs was the most effectively inhibited in the melanin amounts of cellular and extracellular and the whitening the cell pellet. When the inhibitory effect of BCAAs on tyrosinase was examined by intracellular tyrosinase assay, both isoleucine and valine exhibit slightly inhibition, but leucine and combination of BCAAs did not inhibit the cell-derived tyrosinase activity. Present study demonstrated that complex of BCAAs inhibited melanin production without changes intercellular tyrosinase activity. Thus, the complex of BCAAs may be used in development of safe potentially depigmenting agents.

  12. Mast cells in Canine parvovirus-2-associated enteritis with crypt abscess.

    PubMed

    Woldemeskel, M W; Saliki, J T; Blas-Machado, U; Whittington, L

    2013-11-01

    The role of mast cells (MCs) in allergic reactions and parasitic infections is well established. Their involvement in host immune response against bacterial and viral infections is reported. In this study, investigation is made to determine if MCs are associated with Canine parvovirus-2 (CPV-2)-induced enteritis with crypt abscess (ECA). Mast cell count (MCC) was made on toluidine blue-stained intestinal sections from a total of 34 dogs. These included 16 dogs exhibiting ECA positive for CPV-2 and negative for Canine distemper virus and Canine coronavirus by immunohistochemistry and fluorescent antibody test, 12 dogs with inflammatory bowel disease (IBD), and 6 non-ECA/non-IBD (control) dogs. The average total MCC per high-power field in ECA (40.8 ± 2.2) and IBD (24.7 ± 2.1) was significantly higher (P < .05) than in the control (3.4 ± 0.6). Although not significant (P > .05), MCC was also higher in ECA than in IBD. The present study for the first time has documented significantly increased MCs in CPV-2-associated ECA as was previously reported for IBD, showing that MCs may also play an important role in CPV-2-associated ECA. Further studies involving more CPV-infected dogs are recommended to substantiate the findings.

  13. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  14. Genetically fluorescent melanoma bone and organ metastasis models.

    PubMed

    Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M

    1999-11-01

    We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.

  15. The Broad Spectrum Receptor Tyrosine Kinase Inhibitor Dovitinib Suppresses Growth of BRAF Mutant Melanoma Cells in Combination with Other Signaling Pathway Inhibitors

    PubMed Central

    Langdon, Casey G.; Held, Matthew A.; Platt, James T.; Meeth, Katrina; Iyidogan, Pinar; Mamillapalli, Ramanaiah; Koo, Andrew B.; Klein, Michael; Liu, Zongzhi; Bosenberg, Marcus W.; Stern, David F.

    2016-01-01

    Summary BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF-mutant melanoma cell lines are more sensitive than wild-type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF-mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF-mutant melanomas, regardless of their sensitivity to BRAF inhibitors. PMID:25854919

  16. [Endocrine factors influencing melanoma progression].

    PubMed

    Dobos, Judit

    2009-03-01

    According to recent findings that beside cancers traditionally considered as hormone-dependent, several other tumor types show different behavior in the two sexes, indicating the possible role of endocrine factors in the course of these diseases. The possibility that endocrine factors may influence the clinical course of human malignant melanoma is suggested by the higher survival rate in premenopausal vs. postmenopausal women or men of any ages. However, investigations on the sex hormone receptor status of human cutaneous melanomas and experiments attempting to support the epidemiological results yielded conflicting results. In our human melanoma cell lines we failed to detect steroid receptors at protein level, while quantitative PCR demonstrated that their mRNA expression level was orders of magnitude lower compared to the positive control cell lines. Sex hormones did not influence the in vitro features of the human melanoma cells considerably. On the other hand, glucocorticoid receptor was present both at mRNA and protein level, although dexamethasone was effective in vitro only at high doses. Our previous experiments showed that intrasplenic injection of human melanoma cells resulted in a significantly higher number of liver colonies in male than in female SCID mice. We now show that this difference evolves during the first day. After injection into the tail vein we did not observe gender-dependent difference in the efficiency of pulmonary colonization. Examining the pattern of metastasis formation after intracardiac injection, we have found differences between the two sexes in the incidence or number of colonies only in the case of the liver but not in other organs. We concluded that the observed phenomenon is specific to the liver; therefore we investigated the effects of 2-methoxyestradiol, an endogenous metabolite of estradiol produced mainly in the liver, with an estrogen receptor-independent antitumor activity. 2ME2 effectively inhibited melanoma cell

  17. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  18. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    PubMed Central

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420

  19. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy.

    PubMed

    Huang, Xun; He, Jiexiang; Zhang, Huan-Tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-Gang; Zhou, Changren

    2017-01-01

    CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand-receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand-receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into

  20. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy

    PubMed Central

    Huang, Xun; He, Jiexiang; Zhang, Huan-tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-gang; Zhou, Changren

    2017-01-01

    CD44 ligand–receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand–receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand–receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight