Science.gov

Sample records for canker fungus fusarium

  1. Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum.

    PubMed

    Kim, Ki Woo; Lee, In Jung; Thoungchaleun, Vilakon; Kim, Chang Soo; Lee, Don Koo; Park, Eun Woo

    2009-12-01

    Postpenetration behavior of Fusarium circinatum in stems of pine species was investigated with light and transmission electron microscopy. Two-year-old stems of Pinus rigida and P. densiflora were wound-inoculated with the fungal conidial suspension and subjected to 25 degrees C for up to 30 days. It was common to observe the formation of wound periderm on each pine species, recovering wounded sites with newly formed tissues. The outermost thick layer of wound periderm was pink to red colored with the phloroglucinol-EtOH staining, indicating heavy deposition of lignin in wound periderm. The cork layers in the wound periderm of the two pine species consisted of cells that were mostly devoid of cellular contents in cytoplasm. The cork cells showed convoluted cell walls with different electron density (lamellations), which was seemingly more prevalent in P. densiflora than P. rigida. Hyphae of F. circinatum appeared normal with typical eucaryotic cytoplasm in P. rigida on ultrathin sections. Meanwhile, hyphae in P. densiflora were found to possess highly vacuolated cytoplasm, implying hyphal weakening and disintegration. Hyphal cytoplasm appeared to be a thin layer between the vacuole and the plasma membrane surrounded by cell wall. In addition, intrahyphal hyphae and concentric bodies were observed in hyphal cytoplasm. These results suggest that the architecture of wound periderm may be responsible for different responses of pine species to the invasion of F. circinatum. PMID:19484779

  2. Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia.

    PubMed

    Broders, K D; Boland, G J

    2011-01-01

    Sirococcus clavigignenti-juglandacearum (Sc-j), which causes a canker disease on butternut, is largely responsible for the decline of this tree in the United States and Canada. The original description of the species was based on anamorphic characters because the teleomorph is unknown. Recent phylogenetic investigations have found that Sc-j is not a member of the genus Sirococcus, and accurate taxonomic classification is required. The objective of this study is to use sequence data to determine the phylogenetic placement of Sc-j within the Gnomoniaceae, Diaporthales. Isolates were recovered from infected Juglans ailantifolia var. cordiformis (heartnut), Juglans cinerea (butternut), and Juglans nigra (black walnut) in Ontario and the eastern United States. The genes coding for β-tubulin, actin, calmodulin, internal transcribed spacers 1 and 2, and the translation elongation factor 1-alpha from 28 isolates of Sc-j and representatives of the major lineages within the Gnomoniaceae were evaluated. There was no difference in the sequences of the five genes among the isolates of Sc-j studied, indicating a recent introduction followed by asexual reproduction and spread via conidia. The phylogenetic analyses demonstrate this fungus does not belong to the genus Sirococcus, and provides strong support (99% MP and 100% NJ bootstrap values, and 100% Bayesian posterior probabilities) for its inclusion in the genus Ophiognomonia, thereby supporting a reclassification of the butternut canker fungus to Ophiognomonia clavigignenti-juglandacearum. PMID:21215957

  3. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum

    PubMed Central

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  4. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    PubMed

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  5. A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A canker disease of Florida torreya (Torreya taxifolia), here designated CDFT, has been implicated in the decline of this critically endangered species in its native range of northern Florida and southeastern Georgia. In our current surveys of eight Florida torreya sites, cankers were present on all...

  6. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests.

    PubMed

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-09-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America. PMID:23139872

  7. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests

    PubMed Central

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-01-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America. PMID:23139872

  8. Bioactive compounds from the endophytic fungus Fusarium proliferatum.

    PubMed

    Dame, Zerihun T; Silima, Beauty; Gryzenhout, Marieka; van Ree, Teunis

    2016-06-01

    The crude extract of an endophytic fungus isolated from Syzygium cordatum and identified as Fusarium proliferatum showed 100% cytotoxicity against the brine shrimp Artemia salina at 100 μg/mL. Seven coloured, biologically active metabolites - including ergosta-5,7,22-trien-3β-ol, nectriafurone-8-methyl ether, 9-O-methyl fusarubin, bostrycoidin, bostrycoidin-9-methyl ether and 8-hydroxy-5,6-dimethoxy-2-methyl-3-(2-oxo-propyl)-1,4-naphthoquinone- were isolated from the extract. PMID:26158312

  9. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    SciTech Connect

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

  10. Conidial germination in the filamentous fungus Fusarium graminearum.

    PubMed

    Seong, Kye-Yong; Zhao, Xinhua; Xu, Jin-Rong; Güldener, Ulrich; Kistler, H Corby

    2008-04-01

    The ascomycetous fungus Fusarium graminearum is an important plant pathogen causing Fusarium head blight disease of wheat and barley. To understand early developmental stages of this organism, we followed the germination of macroconidia microscopically to understand the timing of key events. These events, recorded after suspension of spores in liquid germination medium, included spore swelling at 2h, germination tube emergence and elongation from conidia at 8h and hyphal branching at 24h. To understand changes in gene expression during these developmental changes, RNA was isolated from spores and used to interrogate the F. graminearum Affymetrix GeneChip. RNAs corresponding to 5813 genes were detected in fresh spores and 5146, 5249 and 5993, respectively, in spores incubated in germination medium after 2, 8 or 24h (P<0.001). Gene expression data were used to predict the cellular and physiological state of each developmental stage for known processes. Predictions were confirmed microscopically for several previously unreported developmental events such as manifestation of peroxisomes in fresh spores and nuclear division resulting in binuclear cells within macroconidia prior to spore germination. Knowledge of stage-specific gene expression and changes in gene expression levels between developmental stages are an important first step to understanding the molecular mechanisms responsible for spore germination and development. PMID:17950638

  11. Npc1 is involved in sterol trafficking in the filamentous fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The Fusarium Npc1 gene shares 34% amino acid sequence identity and 51% s...

  12. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As in many other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of numerous plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 putative ...

  13. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    EPA Science Inventory

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  14. Canker Sores

    MedlinePlus

    ... causes canker sores. Mouth injuries, stress, poor nutrition, food allergies and menstrual periods are some of the things that may increase your chances of getting a canker sore. Treatment How are canker sores treated? There is no cure for canker sores, but they usually go away ...

  15. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  16. Characterization and host range of the symbiotic fungus Fusarium euwallaceae sp. nov., vectored by the invasive ambrosia beetle Euwallacea sp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel symbiotic Fusarium euwallaceae fungus that serves as a specific nutritional source for the invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) is farmed in the galleries of host plants. This beetle-fungus complex, which has invaded Israel and California, is clo...

  17. Draft genome sequence of diaporthe aspalathi isolate ms-ssc91 a fungus causing stem canker in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diaporthe aspalathi (formerly D. phaseolorum var. meridionalis) is the causal agent of the southern stem canker disease in soybean. This disease can kill plants from the middle to the end of the growing season resulting in severe yield loss. The mechanisms of disease development and pathogen invasi...

  18. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum.

    PubMed

    Guo, Li; Zhao, Guoyi; Xu, Jin-Rong; Kistler, H Corby; Gao, Lixin; Ma, Li-Jun

    2016-07-01

    Head blight caused by Fusarium graminearum threatens world-wide wheat production, resulting in both yield loss and mycotoxin contamination. We reconstructed the global F. graminearum gene regulatory network (GRN) from a large collection of transcriptomic data using Bayesian network inference, a machine-learning algorithm. This GRN reveals connectivity between key regulators and their target genes. Focusing on key regulators, this network contains eight distinct but interwoven modules. Enriched for unique functions, such as cell cycle, DNA replication, transcription, translation and stress responses, each module exhibits distinct expression profiles. Evolutionarily, the F. graminearum genome can be divided into core regions shared with closely related species and variable regions harboring genes that are unique to F. graminearum and perform species-specific functions. Interestingly, the inferred top regulators regulate genes that are significantly enriched from the same genomic regions (P < 0.05), revealing a compartmentalized network structure that may reflect network rewiring related to specific adaptation of this plant pathogen. This first-ever reconstructed filamentous fungal GRN primes our understanding of pathogenicity at the systems biology level and provides enticing prospects for novel disease control strategies involving the targeting of master regulators in pathogens. The program can be used to construct GRNs of other plant pathogens. PMID:26990214

  19. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  20. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    PubMed Central

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  1. Fusagerins A-F, New Alkaloids from the Fungus Fusarium sp.

    PubMed

    Wen, Hao; Li, Yan; Liu, Xingzhong; Ye, Wencai; Yao, Xinsheng; Che, Yongsheng

    2015-08-01

    Fusagerins A-F (1-6), six new alkaloids including a unique one with the rare a-(N-formyl)carboxamide moiety (1), a hydantoin (imidazolidin-2,4-dione) derivative (2), and four fungerin analogues (3-6), were isolated from the crude extract of the fungus Fusarium sp., together with the known compound fungerin (7). Compound 2 was isolated as a racemate and further separated into two enantiomers on a chiral HPLC column. The structures of 1-6 were determined mainly by NMR experiments, and the absolute configuration of 1 and 2 was assigned by electronic circular dichroism (ECD) calculations. Compound 7 showed antibacterial activity against Staphylococcus aureus and Streptococcus pneumoniae, and weak cytotoxicity against the T24 cells. PMID:26329590

  2. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba.

    PubMed

    Cui, Yuna; Yi, Dawei; Bai, Xiufeng; Sun, Baoshan; Zhao, Yuqing; Zhang, Yixuan

    2012-07-01

    To screen the presence of ginkgolide B-producing endophytic fungi from the root bark of Ginkgo biloba, a total of 27 fungal isolates, belonging to 6 different genus, were isolated from the internal root bark of the plant Ginkgo biloba. The fungal isolates were fermented on solid media and their metabolites were analyzed by TLC. The obtained potential ginkgolides-producing fungus, the isolate SYP0056 which was identified as Fusarium oxysporum, was successively cultured in the liquid fermentation media, and its metabolite was analyzed by HPLC. The ginkgolide B was successfully isolated from the metabolite and identified by HPLC/ESI-MS and (13)C-NMR. The current research provides a new method to produce ginkgolide B by fungal fermentation, which could overcome the natural resource limitation of isolating from the leaves and barks of the plant Ginkgo biloba. PMID:22537641

  3. Canker Sores

    MedlinePlus

    ... cycle . Some research suggests that using products containing sodium lauryl sulfate (SLS) can be associated with canker sores. SLS ... with toothpastes and mouthwashes that don't contain sodium lauryl sulfate. And avoid brushing the sore itself with a ...

  4. Acanthamoebicidal activity of Fusarium sp. Tlau3, an endophytic fungus from Thunbergia laurifolia Lindl.

    PubMed

    Boonman, Narumon; Wiyakrutta, Suthep; Sriubolmas, Nongluksna; Dharmkrong-at Chusattayanond, Araya

    2008-10-01

    A fungal endophyte identified as Fusarium sp. Tlau3 was isolated from fresh twig of Thunbergia laurifolia Lindl., a Thai medicinal plant collected from the forest of Chiang Mai Province, Northern Thailand. The fungus was grown on a medium containing yeast extracts and sucrose. The fungal metabolites were isolated from the culture broth by dichloromethane extraction, isooctane/methanol then n-butanol/water partitions, and fractionation with Sephadex LH 20 column chromatography. Acanthamoebicidal fractions were found to induce the formation of large contractile vacuole (LCV) in trophozoites of an Acanthamoeba clinical isolate, leading to cell lysis under isotonic and hypotonic conditions within 1 h. In hypertonic condition, LCV formation was also induced but without cell lysis. Acridine orange staining of the treated cells revealed increased intracellular acidity, implying an increased proton pumping or a vacuolar proton-ATPase (V-ATPase) stimulation. Scanning electron microscopy showed cell membrane damage with intact cytoplasmic organelles. Our finding has indicated that contractile vacuoles of Acanthamoeba trophozoites are the primary target of the amoebicidal substance(s) from this endophytic fungus. PMID:18633646

  5. The Transcription Factor FgStuA Influences Spore Development, Pathogenicity and Secondary Metabolism in the Plant Pathogenic Fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium graminearum causes extensive losses on cereals world-wide and contaminates harvested grain with mycotoxins, whose levels in the food supply are strictly regulated. We deleted the FgStuA gene in Fusarium graminearum and demonstrate its involvement in several different ...

  6. Canker sore

    MedlinePlus

    ... most cases, the canker sores go away without treatment. Try not to eat hot or spicy foods, which can cause pain. Use over-the-counter medicines that ease pain in the area. Rinse your mouth with salt water or mild, over-the-counter mouthwashes. (DO NOT ...

  7. Periodic selection in longterm continuous-flow cultures of the filamentous fungus Fusarium graminearum.

    PubMed

    Wiebe, M G; Robson, G D; Cunliffe, B; Oliver, S G; Trinci, A P

    1993-11-01

    By monitoring increases and decreases in the proportion of cycloheximide-resistant macroconidia, periodic selection was observed in populations of the filamentous fungus Fusarium graminearum, grown in glucose-limited chemostat cultures. The results indicated that periodic selection of advantageous mutants of F. graminearum occurred at intervals of about 124 h at both high (D = 0.19 h-1, approximately 34 generations) and low (D = 0.06 h-1, approximately 11 generations) dilution rates. Several 'adaptive' peaks (each indicating the appearance of an advantageous mutation) were observed before morphological (highly branched) mutants appeared in the populations; these mutants have previously been observed to have a selective advantage over the parental strain. At intervals, macroconidia harvested from the chemostat were used to inoculate plates of non-antibiotic-containing agar medium, and it was possible to monitor periodic selection in the original chemostat culture using second generation macroconidia harvested from these cultures. The proportion of cycloheximide-, potassium chlorate-, and p-fluoro-DL-phenylalanine-resistant macroconidia in these second generation macroconidia changed in a pattern similar to that observed when monitoring the proportion of cycloheximide-resistant macroconidia in the first generation population harvested directly from the chemostat. The experiments demonstrated that populations of filamentous fungi are heterogeneous and that much of this heterogeneity may already be present at the end of batch growth, i.e., before the onset of continuous cultivation. PMID:8277261

  8. Integracides H-J: New tetracyclic triterpenoids from the endophytic fungus Fusarium sp.

    PubMed

    Ibrahim, Sabrin R M; Abdallah, Hossam M; Mohamed, Gamal A; Ross, Samir A

    2016-07-01

    Three new tetracyclic triterpenoids namely, integracides H (1), I (4), and J (5), along with integracides B (3) and F (2) have been isolated from the endophytic fungus Fusarium sp. isolated from the roots of Mentha longifolia L. (Labiatae) growing in Saudi Arabia. The structure elucidation of the isolated compounds was achieved by spectroscopic analysis including UV, IR, 1D ((1)H and (13)C) and 2D ((1)H(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) NMR as well as HRESIMS and comparison with literature data. Integracides H (1) and J (5) showed significant anti-leishmanial activity towards Leishmania donovani with IC50 values of 4.75 and 3.29μM, respectively compared to pentamidine (IC50 6.35μM). Moreover, they displayed potent cytotoxic activity towards BT-549, SKOV-3, and KB cell lines with IC50 values of 1.82, 1.32, and 0.18μM and 2.46, 3.01, and 2.54μM, respectively. PMID:27282207

  9. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    PubMed

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation. PMID:23801250

  10. Two novel Fusarium species that cause canker disease of Sichuan pepper (Zanthoxylum bungeanum Maxim.) in northern China form a novel clade with F. torreyae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canker disease of Sichuan pepper (Zanthoxylum bungeanum) has caused a decline in the production of this economically important spice in northern China over the past twenty-five years. To identify the etiological agent, 38 fungal strains were isolated from symptomatic tissues from trees in five provi...

  11. The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

    PubMed Central

    Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

    2012-01-01

    The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific. PMID:22493673

  12. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum.

    PubMed

    Chen, Yun; Gao, Qixun; Huang, Mengmeng; Liu, Ye; Liu, Zunyong; Liu, Xin; Ma, Zhonghua

    2015-01-01

    The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficiently silence the expression level of target gene, and the argonaute protein FgAgo1 and dicer protein FgDicer2 are important in this silencing process. RNAi machinery was not involved in growth, abiotic stress and pathogenesis in F. graminearum under tested conditions. We firstly applied high-throughput sequencing technology to elucidate small RNA (17-40 nucleotides) (sRNA) transcriptome in F. graminearum, and found that a total of forty-nine micro-like-RNA (milRNA) candidates were identified in the wild-type and ∆FgDICER2, and twenty-four of them were FgDicer2-dependent. Fg-milRNA-4 negatively regulated expression of its target gene. Taken together, our results indicated that the hpRNA-induced gene silencing was a valuable genetic tool for exploring gene function in F. graminearum. FgAgo1 and FgDicer2 proteins played a critical role in the hpRNA mediated gene silencing process. In addition, FgDicer2 was involved in sRNA transcription and milRNA generation in this fungus. PMID:26212591

  13. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum

    PubMed Central

    Chen, Yun; Gao, Qixun; Huang, Mengmeng; Liu, Ye; Liu, Zunyong; Liu, Xin; Ma, Zhonghua

    2015-01-01

    The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficiently silence the expression level of target gene, and the argonaute protein FgAgo1 and dicer protein FgDicer2 are important in this silencing process. RNAi machinery was not involved in growth, abiotic stress and pathogenesis in F. graminearum under tested conditions. We firstly applied high-throughput sequencing technology to elucidate small RNA (17–40 nucleotides) (sRNA) transcriptome in F. graminearum, and found that a total of forty-nine micro-like-RNA (milRNA) candidates were identified in the wild-type and ∆FgDICER2, and twenty-four of them were FgDicer2-dependent. Fg-milRNA-4 negatively regulated expression of its target gene. Taken together, our results indicated that the hpRNA-induced gene silencing was a valuable genetic tool for exploring gene function in F. graminearum. FgAgo1 and FgDicer2 proteins played a critical role in the hpRNA mediated gene silencing process. In addition, FgDicer2 was involved in sRNA transcription and milRNA generation in this fungus. PMID:26212591

  14. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates, and comparing...

  15. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  16. A Phenome-Based Functional Analysis of Transcription Factors in the Cereal Head Blight Fungus, Fusarium graminearum

    PubMed Central

    Min, Kyunghun; Park, Ae Ran; Lee, Jungkwan; Jin, Jian-Ming; Lin, Yang; Cao, Peijian; Hong, Sae-Yeon; Kim, Eun-Kyung; Lee, Seung-Ho; Cho, Aram; Lee, Seunghoon; Kim, Myung-Gu; Kim, Yongsoo; Kim, Jung-Eun; Kim, Jin-Cheol; Choi, Gyung Ja; Yun, Sung-Hwan; Lim, Jae Yun; Kim, Minkyun; Lee, Yong-Hwan; Choi, Yang-Do; Lee, Yin-Won

    2011-01-01

    Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level. PMID:22028654

  17. The genome of the of the generalist plant pathogenic fungus Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...

  18. Biological control of Cucurbita pepo var texana (Texas gourd) in cotton (Gossypium hirsutum) with the fungus Fusarium solani f sp Cucurbitae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate various formulations and application methods of the fungus Fusarium solani f. sp. cucurbitae (FSC) for controlling Texas gourd (Cucurbita pepo var. texana) in cotton (Gosssypium hirsutum). In greenhouse tests, Texas gourd was controlled 93% and 96%, respective...

  19. Widespread occurrence of diverse human pathogenic types of the fungus Fusarium detected in plumbing drains.

    PubMed

    Short, Dylan P G; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H; Geiser, David M

    2011-12-01

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. PMID:21976755

  20. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB.

    PubMed

    Sugimoto, Satoshi; Fujii, Tadashi; Morimiya, Tatsuo; Johdo, Osamu; Nakamura, Takumi

    2007-09-01

    Tempeh is a traditional Indonesian soybean-fermented food produced by filamentous fungi, Rhizopus sp. and Fusarium sp. We isolated and sequenced the genomic gene and a cDNA clone encoding a novel protease (FP) from Fusarium sp. BLB. The genomic gene was 856 bp in length and contained two introns. An isolated cDNA clone encoded a protein of 250 amino acids. The predicted amino acid sequence of FP showed highest homology, of 76%, with that of trypsin from Fusarium oxysporum. The hydrolysis activity of FP toward synthetic peptide was higher than that of any other protease tested, including Nattokinases. Furthermore, the thrombolytic activity of FP was about 2.1-fold higher than that of Nattokinase when the concentration of plasminogen was 24 units/ml. These results suggest that FP is superior to Nattokinases in dissolving fibrin when absorbed into the blood. PMID:17827689

  1. Botryosphaeria Cane Canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the more serious cane canker diseases of thornless blackberry plants in the eastern U.S. is caused by Botryosphaeria dothidea. Cane canker disease is highly destructive, often killing canes and reducing fruit yields to uneconomic levels. Cankers generally develop around one or more buds on th...

  2. Genome Sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  3. Genome sequence of Fusarium oxysporum f. sp. melonis, a fungus causing wilt disease on melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript reports the genome sequence of F. oxysporum f. sp. melonis, a fungal pathogen that causes Fusarium wilt disease on melon (Cucumis melo). The project is part of a large comparative study designed to explore the genetic composition and evolutionary origin of this group of horizontally ...

  4. Insights into the evolution of toxin biosynthesis in the fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional characterization of mycotoxin biosynthetic gene clusters has provided insights into genetic bases for variation in production of Fusarium mycotoxins. For example, production of B versus C fumonisin mycotoxins results from sequence variation in the FUM8 gene of the fumonisin biosynthetic g...

  5. Insights into the evolution of mycotoxin biosynthesis in the fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collectively species of Fusarium are pathogens of almost all economically important plants and produce over 50 structurally distinct families of secondary metabolites (SMs), including some of the mycotoxins (e.g. fumonisins and trichothecenes) of greatest concern to food and feed safety. In fungi, g...

  6. Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...

  7. Cloning and expression of a beta-xylosidase from the fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In silico analysis of the genome of Fusarium verticillioides, an endophyte and pathogen of maize, revealed several genes with potential use in the hydrolysis of hemicelluloses. We have cloned a gene, FVEG_05677.3, with putative xylosidase and arabinofuranosidase activities. The gene was expressed ...

  8. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

    PubMed

    Son, Hokyoung; Kim, Myung-Gu; Chae, Suhn-Kee; Lee, Yin-Won

    2014-11-01

    Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi. PMID:25277408

  9. Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses.

    PubMed

    Vainio, Eeva J; Martínez-Álvarez, Pablo; Bezos, Diana; Hantula, Jarkko; Diez, Julio J

    2015-08-01

    Pitch canker is a serious disease of pines caused by the ascomycete fungus Gibberella circinata (anamorph = Fusarium circinatum). Three distinct mitovirus strains have been described in this fungus: Fusarium circinatum mitovirus 1 (FcMV1), FcMV2-1 and FcMV2-2. Here, we investigated the frequency and population variation of these viruses and closely related sequence variants in northern Spain using RT-PCR and sequencing. Each virus strain and similar sequence variants shared >95 % sequence identity and were collectively designated as virus types. All virus types were relatively common in Spain, with estimated prevalence of 18.5 %, 8.9 % and 16.3 % for FcMV1, FcMV2-1 and FcMV2-2, respectively. PMID:26025157

  10. Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum.

    PubMed

    Chalvet, Fabienne; Grimaldi, Christine; Kaper, Fiona; Langin, Thierry; Daboussi, Marie-Josée

    2003-08-01

    A new type of active DNA transposon has been identified in the genome of Fusarium oxysporum by its transposition into the niaD target gene. Two insertions within the final exon, in opposite orientations at the same nucleotide site, have been characterized. These elements, called Hop, are 3,299 bp long, with perfect terminal inverted repeats (TIRs) of 99 bp. The sequencing of genomic copies reveals a 9-bp target site duplication and no apparent sequence specificity at the insertion sites. The sequencing of a cDNA indicates that Hop does not contain an intron and encodes a putative transposase of 836 amino acids. The structural features (length, TIRs size, and 9-bp duplication), together with the presence of conserved domains in the transposase, strongly suggest that Hop is a Mutator-like element (MULE). Hop is thus the first active member of this family found beyond plants. The high rate of excision observed indicates that Hop is very active and thus represents a promising efficient tagging system for the isolation of fungal genes. The distribution of Hop elements within the Fusarium genus revealed that they are present in different species, suggesting that related elements could be present in other fungal genomes. In fact, Hop-related sequences have been identified in the survey of the entire genome sequence of three other ascomycetes, Magnaporthe grisea, Neurospora crassa, and Aspergillus fumigatus. PMID:12777515

  11. Isolation, Purification and Characterization of Vinblastine and Vincristine from Endophytic Fungus Fusarium oxysporum Isolated from Catharanthus roseus

    PubMed Central

    Kumar, Ashutosh; Patil, Deepak; Rajamohanan, Pattuparambil Ramanpillai; Ahmad, Absar

    2013-01-01

    Endophytic fungi reside in a symbiotic fashion inside their host plants, mimic their chemistry and interestingly, produce the same natural products as their hosts and are thus being screened for the production of valuable compounds like taxol, camptothecin, podophyllotoxin, etc. Vinblastine and vincristine are excellent anti-cancer drugs but their current production using plants is non-abundant and expensive. In order to make these drugs readily available to the patients at affordable prices, we isolated the endophytic fungi from Catharanthus roseus plant and found a fungus AA-CRL-6 which produces vinblastine and vincristine in appreciable amounts. These drugs were purified by TLC and HPLC and characterized using UV-Vis spectroscopy, ESI-MS, MS/MS and 1H NMR. One liter of culture filtrate yielded 76 µg and 67 µg of vinblastine and vincristine respectively. This endophytic fungal strain was identified as Fusarium oxysporum based upon its cultural and morphological characteristics and internal transcribed spacer (ITS) sequence analysis. PMID:24066024

  12. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  13. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    PubMed Central

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  14. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea

    PubMed Central

    2014-01-01

    Background Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. Results We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. Conclusion The

  15. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers. PMID:27294564

  16. Characterization of species of Diaporthe from wood cankers of grape in eastern North American vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eastern North American vineyards, Phomopsis cane and leaf spot (causal fungus Phomopsis viticola) is a destructive foliar disease, but is also associated with wood cankers, along with other fungi. To determine the association between foliar and wood-canker symptoms, we recovered Phomopsis isolate...

  17. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum)

    PubMed Central

    Gaffoor, Iffa; Brown, Daren W.; Plattner, Ron; Proctor, Robert H.; Qi, Weihong; Trail, Frances

    2005-01-01

    Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism. PMID:16278459

  18. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum.

    PubMed

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2014-01-01

    Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi. PMID:24186953

  19. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum.

    PubMed

    Di, Xiaotang; Takken, Frank L W; Tintor, Nico

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa. PMID:26909099

  20. Genomic clustering and co-regulation of transcriptional networks in the pathogenic fungus Fusarium graminearum

    PubMed Central

    2013-01-01

    Background Genes for the production of a broad range of fungal secondary metabolites are frequently colinear. The prevalence of such gene clusters was systematically examined across the genome of the cereal pathogen Fusarium graminearum. The topological structure of transcriptional networks was also examined to investigate control mechanisms for mycotoxin biosynthesis and other processes. Results The genes associated with transcriptional processes were identified, and the genomic location of transcription-associated proteins (TAPs) analyzed in conjunction with the locations of genes exhibiting similar expression patterns. Highly conserved TAPs reside in regions of chromosomes with very low or no recombination, contrasting with putative regulator genes. Co-expression group profiles were used to define positionally clustered genes and a number of members of these clusters encode proteins participating in secondary metabolism. Gene expression profiles suggest there is an abundance of condition-specific transcriptional regulation. Analysis of the promoter regions of co-expressed genes showed enrichment for conserved DNA-sequence motifs. Potential global transcription factors recognising these motifs contain distinct sets of DNA-binding domains (DBDs) from those present in local regulators. Conclusions Proteins associated with basal transcriptional functions are encoded by genes enriched in regions of the genome with low recombination. Systematic searches revealed dispersed and compact clusters of co-expressed genes, often containing a transcription factor, and typically containing genes involved in biosynthetic pathways. Transcriptional networks exhibit a layered structure in which the position in the hierarchy of a regulator is closely linked to the DBD structural class. PMID:23805903

  1. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum

    PubMed Central

    Di, Xiaotang; Takken, Frank L. W.; Tintor, Nico

    2016-01-01

    Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on plant growth and/or stress tolerance. Also in pathogenic interactions a lengthy asymptomatic phase usually precedes disease development. All this indicates a sophisticated and fine-tuned interaction between Fo and its host. The molecular mechanisms underlying this balance are poorly understood. Plant hormone signaling networks emerge as key regulators of plant-microbe interactions in general. In this review we summarize the effects of the major phytohormones on the interaction between Fo and its diverse hosts. Generally, Salicylic Acid (SA) signaling reduces plant susceptibility, whereas Jasmonic Acid (JA), Ethylene (ET), Abscisic Acid (ABA), and auxin have complex effects, and are potentially hijacked by Fo for host manipulation. Finally, we discuss how plant hormones and Fo effectors balance the interaction from beneficial to pathogenic and vice versa. PMID:26909099

  2. Linear plasmidlike DNA in the plant pathogenic fungus Fusarium oxysporum f. sp. conglutinans.

    PubMed Central

    Kistler, H C; Leong, S A

    1986-01-01

    Double-stranded, 1.9-kilobase-pair (kbp) DNA molecules were found in 18 strains representing three pathogenic races of Fusarium oxysporum f. sp. conglutinans. The DNA element (pFOXC1) from a race 1 strain and the DNA element (pFOXC2) from a race 2 strain were shown by restriction endonuclease mapping to be linear. pFOXC2 was found in mitochondrial preparations and appears to have blocked 5' termini, as it was sensitive to 3'----5' exonuclease III but insensitive to 5'----3' lambda exonuclease. The major 1.8-kbp BglII restriction endonuclease fragment of pFOXC2 was cloned in plasmid pUC12. The recombinant plasmid (pCK1) was not homologous to the mitochondrial or nuclear genomes from F. oxysporum f. sp. conglutinans. This suggests that pFOXC2 is self-replicating. pCK1 was homologous to all 1.9-kbp DNA elements of race 2 but was not homologous to those of race 1 or race 5. All race 1 and 5 elements were also shown to share common DNA sequences. Images PMID:3015880

  3. WetA Is Required for Conidiogenesis and Conidium Maturation in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee

    2014-01-01

    Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi. PMID:24186953

  4. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Kim, Myung-Gu; Min, Kyunghun; Seo, Young-Su; Lim, Jae Yun; Choi, Gyung Ja; Kim, Jin-Cheol; Chae, Suhn-Kee; Lee, Yin-Won

    2013-01-01

    Fusarium graminearum (teleomorph Gibberella zeae) is a prominent pathogen that infects major cereal crops such as wheat, barley, and maize. Both sexual (ascospores) and asexual (conidia) spores are produced in F. graminearum. Since conidia are responsible for secondary infection in disease development, our objective of the present study was to reveal the molecular mechanisms underlying conidiogenesis in F. graminearum based on the framework previously described in Aspergillus nidulans. In this study, we firstly identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. Results from RNA-sequencing analysis suggest that AbaA plays a pivotal role in conidiation by regulating cell cycle pathways and other conidiation-related genes. Thus, the conserved roles of the AbaA ortholog in both A. nidulans and F. graminearum give new insight into the genetics of conidiation in filamentous fungi. PMID:24039821

  5. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    PubMed Central

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  6. Absolute configuration of fusarone, a new azaphilone from the endophytic fungus Fusarium sp. isolated from Melia azedarach, and of related azaphilones.

    PubMed

    Yang, Sheng-Xiang; Gao, Jin-Ming; Laatsch, Hartmut; Tian, Jun-Mian; Pescitelli, Gennaro

    2012-08-01

    A new azaphilone derivative, named fusarone (1), has been isolated from the ethyl acetate soluble extract of the fermentation broth of an endophytic fungus, Fusarium sp. LN-12, isolated from the leaves of Melia azedarach Linn. The structure of the new compound was established on the basis of extensive spectroscopic analysis, including 1D-NMR and 2D-NMR ((1) H-(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. The absolute configurations of fusarone (1) and of a second related azaphilone were determined by means of electronic circular dichroism spectroscopy and optical rotation calculations. PMID:22678988

  7. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Wilman, Karolina

    2015-01-16

    Fusarium proliferatum is a common pathogen able to infect a broad range of agriculturally important crops. Recently, some evidence for genetic variance among the species genotypes in relation to their plant origin has been reported. Mycotoxin contamination of plant tissues is the most important threat caused by F. proliferatum and fumonisins B (FBs) are the principal mycotoxins synthesized. The toxigenic potential of the pathogen genotypes is variable and also the reaction of different host plant species on the infection by pathogen is different. The objective of present study was to evaluate the impact of the extracts on the growth and fumonisin biosynthesis by 32 F. proliferatum strains originating from different host species (A-asparagus, M-maize, G-garlic, PS-pea and P-pineapple), and how it changes the secondary metabolism measured by fumonisin biosynthesis. The average strain dry weight was 65.2 mg for control conditions and it reached 180.7 mg, 100.5 mg, 76.6 mg, 126.2 mg and 51.1 mg when pineapple, asparagus, maize, garlic and pea extracts were added, respectively. In the second experiment the extracts were added after 5 days of culturing of the representative group of strains, displaying diverse reaction to the extract presence. Also, the influence of stationary vs. shaken culture was examined. Mean biomass amounts for shaken cultures of 15 chosen strains were as follows: 37.4 mg of dry weight for control culture (C), 219.6 mg (P), 113 mg (A), 93.6 mg (M), 62 mg (G) and 48 mg (PS), respectively. For stationary cultures, the means were as follows: C-57.4 mg, P-355.6 mg, A-291.6 mg, M-191.1 mg, G-171.1 mg and PS-58.9 mg. Few strains showed differential growth when stationary/shaken culture conditions were applied. Almost all strains synthesized moderate amounts of fumonisins in control conditions-less than 10 ng/μL, regardless of the origin and host species. Few strains were able to produce over 100 ng/μL of FBs when pineapple extract was added, twelve

  8. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    PubMed Central

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  9. One Fungus, One Name: Defining the genus Fusarium in a scientifically robust way that preserves longstanding use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine and basic research. This phylogenetically-guided circumscription will free scientists from any obligation to...

  10. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum.

    PubMed

    Perochon, Alexandre; Jianguang, Jia; Kahla, Amal; Arunachalam, Chanemougasoundharam; Scofield, Steven R; Bowden, Sarah; Wallington, Emma; Doohan, Fiona M

    2015-12-01

    All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance. PMID:26508775

  11. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum1[OPEN

    PubMed Central

    Jianguang, Jia; Kahla, Amal; Arunachalam, Chanemougasoundharam; Scofield, Steven R.; Doohan, Fiona M.

    2015-01-01

    All genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T. aestivum) disease, Fusarium head blight. TaFROG is taxonomically restricted to the grass subfamily Pooideae. Gene expression studies showed that it is a component of the early wheat response to the mycotoxin deoxynivalenol (DON), which is a virulence factor produced by the causal fungal agent of Fusarium head blight, Fusarium graminearum. The temporal induction of TaFROG by F. graminearum in wheat spikelets correlated with the activation of the defense Triticum aestivum Pathogenesis-Related-1 (TaPR1) gene. But unlike TaPR1, TaFROG induction by F. graminearum was toxin dependent, as determined via comparative analysis of the effects of wild-type fungus and a DON minus mutant derivative. Using virus-induced gene silencing and overexpressing transgenic wheat lines, we present evidence that TaFROG contributes to host resistance to both DON and F. graminearum. TaFROG is an intrinsically disordered protein, and it localized to the nucleus. A wheat alpha subunit of the Sucrose Non-Fermenting1-Related Kinase1 was identified as a TaFROG-interacting protein based on a yeast two-hybrid study. In planta bimolecular fluorescence complementation assays confirmed the interaction. Thus, we conclude that TaFROG encodes a new Sucrose Non-Fermenting1-Related Kinase1-interacting protein and enhances biotic stress resistance. PMID:26508775

  12. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Alexander, Nancy J; Desjardins, Anne E

    2009-12-01

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have trichothecene biosynthetic genes (TRI) at three loci: a 12-gene TRI cluster and two smaller TRI loci that consist of one or two genes. Here, comparisons of additional Fusarium species have provided evidence that TRI loci have a complex evolutionary history that has included loss, non-functionalization and rearrangement of genes as well as trans-species polymorphism. The results also indicate that the TRI cluster has expanded in some species by relocation of two genes into it from the smaller loci. Thus, evolutionary forces have driven consolidation of TRI genes into fewer loci in some fusaria but have maintained three distinct TRI loci in others. PMID:19843228

  13. Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains ▿ †

    PubMed Central

    Short, Dylan P. G.; O'Donnell, Kerry; Zhang, Ning; Juba, Jean H.; Geiser, David M.

    2011-01-01

    It has been proposed that plumbing systems might serve as a significant environmental reservoir of human-pathogenic isolates of Fusarium. We tested this hypothesis by performing the first extensive multilocus sequence typing (MLST) survey of plumbing drain-associated Fusarium isolates and comparing the diversity observed to the known diversity of clinical Fusarium isolates. We sampled 471 drains, mostly in bathroom sinks, from 131 buildings in the United States using a swabbing method. We found that 66% of sinks and 80% of buildings surveyed yielded at least one Fusarium culture. A total of 297 isolates of Fusarium collected were subjected to MLST to identify the phylogenetic species and sequence types (STs) of these isolates. Our survey revealed that the six most common STs in sinks were identical to the six most frequently associated with human infections. We speculate that the most prevalent STs, by virtue of their ability to form and grow in biofilms, are well adapted to plumbing systems. Six major Fusarium STs were frequently isolated from plumbing drains within a broad geographic area and were identical to STs frequently associated with human infections. PMID:21976755

  14. Canker Sores (For Parents)

    MedlinePlus

    ... if the sores appear more than two or three times a year. Diagnosis Tests are usually not done to diagnose canker sores, as a doctor can identify them based on medical history and physical exam alone. If your child has very frequent or severe bouts of recurrent ...

  15. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is also required for pathogenicity and expression of plant effector proteins. F. graminearum, an imp...

  16. MICROARRAY EVIDENCE FOR GENE CLUSTERS INVOLVED IN POLYKETIDE BIOSYNTHESIS IN THE FUMONISIN-PRODUCING FUNGUS FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides can cause stalk and ear rot of maize, and can produce the polyketide-derived mycotoxins fumonisins in infected kernels. Although the genetics and biochemistry of fumonisin biosynthesis is relatively well understood in F. verticillioides, little is known about the biosynthes...

  17. GENOME-WIDE RNA EXPRESSION ANALYSIS DURING CONIDIAL MATURATION AND GERMINATION IN THE FILAMENTOUS FUNGUS, FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal plant pathogen, F. graminearum, causes Fusarium head blight disease of wheat and barley. To understand the early infection cycle of this organism, we monitored the RNA expression profiles in newly formed spores (macroconidia), in maturing spores and during the early stages of spore germin...

  18. Evidence that a Secondary Metabolic Biosynthetic Gene Cluster has Grown by Gene Relocation During Evolution of the Filamentous Fungus Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of medical and agricultural interest because they are toxic to animals and plants and can contribute to pathogenesis ...

  19. The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are an important family of mycotoxins produced by several species of the genus Fusarium. These fungi cause serious disease on infected plants and postharvest storage of crops and the toxins can cause health problems for humans and animals. Unfortunately, there are few methods for cont...

  20. Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition seriously damage over 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and Cali...

  1. Fusarium euwallaceae sp. nov.--a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California.

    PubMed

    Freeman, S; Sharon, M; Maymon, M; Mendel, Z; Protasov, A; Aoki, T; Eskalen, A; O'Donnell, K

    2013-01-01

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al. PMID:23928415

  2. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    PubMed Central

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. PMID:25589426

  3. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum.

    PubMed

    Giannakopoulou, Artemis; Steele, John F C; Segretin, Maria Eugenia; Bozkurt, Tolga O; Zhou, Ji; Robatzek, Silke; Banfield, Mark J; Pais, Marina; Kamoun, Sophien

    2015-12-01

    Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species. PMID:26367241

  4. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum.

    PubMed Central

    Ohara, Toshiaki; Inoue, Iori; Namiki, Fumio; Kunoh, Hitoshi; Tsuge, Takashi

    2004-01-01

    The filamentous fungus Fusarium oxysporum is a soil-borne facultative parasite that causes economically important losses in a wide variety of crops. F. oxysporum exhibits filamentous growth on agar media and undergoes asexual development producing three kinds of spores: microconidia, macroconidia, and chlamydospores. Ellipsoidal microconidia and falcate macroconidia are formed from phialides by basipetal division; globose chlamydospores with thick walls are formed acrogenously from hyphae or by the modification of hyphal cells. Here we describe rensa, a conidiation mutant of F. oxysporum, obtained by restriction-enzyme-mediated integration mutagenesis. Molecular analysis of rensa identified the affected gene, REN1, which encodes a protein with similarity to MedA of Aspergillus nidulans and Acr1 of Magnaporthe grisea. MedA and Acr1 are presumed transcription regulators involved in conidiogenesis in these fungi. The rensa mutant and REN1-targeted strains lack normal conidiophores and phialides and form rod-shaped, conidium-like cells directly from hyphae by acropetal division. These mutants, however, exhibit normal vegetative growth and chlamydospore formation. Nuclear localization of Ren1 was verified using strains expressing the Ren1-green fluorescent protein fusions. These data strongly suggest that REN1 encodes a transcription regulator required for the correct differentiation of conidiogenesis cells for development of microconidia and macroconidia in F. oxysporum. PMID:15020411

  5. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    PubMed Central

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  6. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds.

    PubMed

    Madrid, Martan P; Di Pietro, Antonio; Roncero, M Isabel G

    2003-01-01

    Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms. PMID:12492869

  7. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    PubMed

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-11-01

    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree. PMID:26178831

  8. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2.

    PubMed

    Wu, Yi-Rui; Luo, Zhu-Hua; Kwok-Kei Chow, R; Vrijmoed, L L P

    2010-12-01

    An extracellular laccase was purified from the culture medium of the non-white rot, anthracene-degrading fungal strain Fusarium solani MAS2. Both native PAGE and SDS-PAGE revealed one single band corresponding to a molecular weight of about 72 kDa. Treatment with endoglycosidase H reduced the molecular weight by 12%. The purified laccase maintained stable at pH 3-11 and up to 50 degrees C. The highest activity was detected at pH 3.0 and at 70 degrees C. The enzyme retained 46.2-97.2% of it activity in the presence of 20mM Pb(2+), Ni(2+), Cr(3+), and its activity was enhanced in the presence of 20mM Hg(2+). The laccase retained more than 50% of its activity in the presence of 5% acetone, acetonitrile, dimethyl sulphoxide (DMSO), ethanol and methanol. The kinetic constants (K(m) and k(cat)) showed that 2,6-dimethoxyphenol (DMOP) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) were the more effective substrates rather than catechol and guaiacol. The novel properties of this laccase suggest its potential for biotechnological and environmental applications. PMID:20716485

  9. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium

    PubMed Central

    Xue, Baiji; He, Dan; Gao, Song; Wang, Dongyang; Yokoyama, Koji; Wang, Li

    2016-01-01

    The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV–visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp. PMID:27217752

  10. New Phomopsis species identified from wood cankers in eastern North American vineyards.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis cane and leaf spot, caused by the Ascomycete fungus Phomopsis viticola, is a destructive fruit and foliar disease in eastern North American vineyards. The pathogen typically attacks green tissues, but can also cause wood cankers, presumably due to infection of pruning wounds, as is the cas...

  11. Effect of Selected Volatiles on Two Stored Pests: The Fungus Fusarium verticillioides and the Maize Weevil Sithophilus zeamais.

    PubMed

    Zunino, María P; Herrera, Jimena M; Pizzolitto, Romina P; Rubinstein, Héctor R; Zygadlo, Julio A; Dambolena, José S

    2015-09-01

    New agronomic practices and technology enabled Argentina a larger production of cereal grains, reaching a harvest yield of 26.5 million metric tons of maize, of which, about 40% was exported. However, much of the maize production is lost annually by the attack of fungi and insects (2.6 million tons). In this study, the antifungal effect of selected volatiles on Fusarium verticillioides, its mycotoxin production, and the repellent and insecticidal activities against the weevill Sithophilus zeamais, an insect vector of F. verticillioides, were evaluated. The compounds tested were (2E)-2-hexenal, (2E)-2-nonenal, (2E,6Z)-2,6-nonadienal, 1-pentanol, 1-hexanol, 1-butanol, 3-methyl-1-butanol, pentanal, 2-decanone, and 3-decanone, which occur in the blend of volatile compounds emitted by various cereal grains. The most active antifungals were the aldehydes (2E)-2-nonenal, (2E)-2-hexenal, and (2E,6Z)-2,6-nonadienal (minimum inhibitory concentration values of <0.03, 0.06, and 0.06 mM, respectively). The occurrence of fumonisin B1 also was prevented because these compounds completely inhibited fungal growth. The best insecticidal fumigant activities against the maize weevil were shown by 2-decanone and 3-decanone (lethal concentration ≤ 54.6 μL/L (<0.28 mM)). Although, all tested compounds showed repellent activity against S. zeamais at a concentration of 4 μL/L, (2E,6Z)-2,6-nonadienal was the most active repellent compound. These results demonstrate the potential of (2E,6Z)-2,6-nonadienal to be used as a natural alternative to synthetic pesticides on F. verticillioides and S. zeamais. PMID:26257042

  12. Widespread Distribution of Fungivorus Aphelenchoides spp. in Blight Cankers on American Chestnut Trees.

    PubMed

    Griffin, G J; Eisenback, J D; Oldham, K

    2012-12-01

    Previously we showed in laboratory studies that the fungivorus nematode, Aphelenchoides hylurgi, was attracted to and fed upon the chestnut blight fungus, Cryphonectria parasitica, from American chestnut bark cankers and was a carrier of biocontrol, white hypovirulent C. parasitica strains. In the present field study, we recovered Aphelenchoides spp. in almost all (97.0 %) of 133 blight canker tissue assays (three 5-g samples each) from four eastern states. High mean population densities (227 to 474 nematodes per 5 g tissue) of Aphelenchoides spp. were recovered from cankers in Virginia, West Virginia, and Tennessee but not from New Hampshire (mean = 75 nematodes per 5 g tissue). Overall, most canker assays yielded population densities less than 200 nematodes per 5 g tissue. All of 12 very small or young cankers yielded a few to many Aphelenchoides spp. Regression analysis indicated greatest recovery of Aphelenchoides spp. occurred in the month of May (r = 0.94). The results indicate that Aphelenchoides spp. appear to be widespread in blight cankers on American chestnut trees and could play a role in biocontrol of chestnut blight. PMID:23482428

  13. Integrated Management of Citrus Canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit losses due to citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), vary each crop season depending on citrus variety, tree age, flushing condition, leafminer control, and coincidence of weather events with occurrence of susceptible fruit and foliage. In 2012, crop losses in Hamlin f...

  14. Fusarium Infection

    PubMed Central

    Muhammed, Maged; Anagnostou, Theodora; Desalermos, Athanasios; Kourkoumpetis, Themistoklis K.; Carneiro, Herman A.; Glavis-Bloom, Justin; Coleman, Jeffrey J.

    2013-01-01

    Abstract Fusarium species is a ubiquitous fungus that causes opportunistic infections. We present 26 cases of invasive fusariosis categorized according to the European Organization for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria of fungal infections. All cases (20 proven and 6 probable) were treated from January 2000 until January 2010. We also review 97 cases reported since 2000. The most important risk factors for invasive fusariosis in our patients were compromised immune system, specifically lung transplantation (n = 6) and hematologic malignancies (n = 5), and burns (n = 7 patients with skin fusariosis), while the most commonly infected site was the skin in 11 of 26 patients. The mortality rates among our patients with disseminated, skin, and pulmonary fusariosis were 50%, 40%, and 37.5%, respectively. Fusarium solani was the most frequent species, isolated from 49% of literature cases. Blood cultures were positive in 82% of both current study and literature patients with disseminated fusariosis, while the remaining 16% had 2 noncontiguous sites of infection but negative blood cultures. Surgical removal of focal lesions was effective in both current study and literature cases. Skin lesions in immunocompromised patients should raise the suspicion for skin or disseminated fusariosis. The combination of medical monotherapy with voriconazole or amphotericin B and surgery in such cases is highly suggested. PMID:24145697

  15. Discovery of Fusarium wilt race 4 resistance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans)] is a soil-inhabiting fungus that can survive for long periods in the absence of a host, making it impractical to eradicate from infested fields. This cotton host specific forms of the fungus is comprised of different genotyp...

  16. Genetic Variability Among Isolates of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Yellows, caused by the fungus Fusarium oxysporum f. sp. betae (FOB), can lead to significant yield losses for sugar beet growers. This fungus is variable in pathogenicity, morphology, host range, and symptoms; and, it is not a well characterized pathogen on sugar beet. From 1998 – 2003, 8...

  17. Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

  18. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides.

    PubMed

    Gold, S E; Blacutt, A A; Meinersmann, R J; Bacon, C W

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent. PMID:25359909

  19. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ambrosia beetle Euwallacea fornicatus Einchoff was first recorded in Israel in 2009. A novel unnamed symbiotic species within Clade 3 of the Fusarium solani species complex, carried in the mandibular mycangia of the beetle, is responsible for the typical wilt symptoms inflicted on avocado (Perse...

  20. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides

    PubMed Central

    Blacutt, A. A.; Meinersmann, R. J.; Bacon, C. W.

    2014-01-01

    Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent. PMID:25359909

  1. GENOMIC ANALYSIS OF FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the ...

  2. CITRUS CANKER: PLANT PATHOLOGY VERSUS PUBLIC POLICY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing international travel and trade has resulted in an unprecedented number of plant pathogen introductions, including Xanthomonas axonopodis pv citri, (Xac), the bacterium that causes citrus canker. The disease affects commercial and dooryard citrus, and has far-reaching politi...

  3. Genetic diversity in the fungus Fusarium solani f.sp. cucurbitae race 1, the casual agent of root and crown rot of cucurbits in Iran, using molecular markers.

    PubMed

    Alymanesh, M R; Falahatirastegar, M; Jafarpour, B; Mahdikhanimoghadam, E

    2009-06-01

    Fusarium solani f.sp. cucurbitae race 1 is a pathogen on cucurbit plants. In this study genetic diversity among 26 isolates of Fusarium solani f.sp. cucurbitae race 1 was studied using Restriction Fragment Length Polymorphism (RFLP) of ITS (Interal Transcribed Spacer) regions and Random Amplified Polymorphic DNAs (RAPD) markers. Outcome of digestion with six restriction enzymes including EcoR I, Rsa I, Bme 181, Msp I, Hae III and Hind III, together with the patterns of restriction fragment length polymorphism of ITS regions divided the isolates into two groups. Deoxy Ribonuckin Acid DNA pattern was obtained for the isolates using 12 random primers and genetic distance between them was calculated and relationships (by cluster analysis) determined. Among the primers used, seven primers showed polymorphism. Genetic distance between isolate pairs ranged from 0.03 to 0.48. Genetic diversity was high (e.g., the isolates were distributed into 10 genetic groups at a similarity percentage of 75). The lowest distance was observed between isolates 50 and 73 and the highest distance observed between isolates 50 and 73 with isolate 102. Restriction fragment length polymorphism results show diversity in ITS regions, without any correlation to geographic origin and RAPD. However, this genomic regions usually have high constancy in species, but in this study diversity was shown in ITS regions even for race 1. The data suggest that taxonomical situation of Foc race 1 probably needs revision. PMID:19803117

  4. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  5. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot (FRR) of pea (Pisum sativum L.) is a serious pathogen in the USA and Europe and genetic resistance offers an effective and economical control for this pathogen. Fusarium root rot is caused by the fungus pathogen (Haematonectria haematococca (Berk. & Broome) (Anamorph): Fusarium sol...

  6. 76 FR 52543 - European Larch Canker; Expansion of Regulated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Animal and Plant Health Inspection Service 7 CFR Part 301 European Larch Canker; Expansion of Regulated... European larch canker to include additional areas in Maine. We are also correcting some misidentifications... of European larch canker from infested areas to noninfested areas. DATES: This interim rule...

  7. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  8. Fusarium Mycotoxins: Biosynthetic Pathways and Role in Virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat and barley is a devastating disease that has reached global proportions. Not only does this disease result in lower yields, but the mycotoxins produced by the fungus affect the quality of the grain. Fusarium sp. can produce a number of mycotoxins, including tric...

  9. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    PubMed

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway. PMID:23728333

  10. Disseminated Fusarium solani infection with cutaneous nodules in a bone marrow transplant patient.

    PubMed

    Mowbray, D N; Paller, A S; Nelson, P E; Kaplan, R L

    1988-12-01

    Fusarium is a ubiquitous fungus that commonly colonizes ulcerated, burned, or traumatized skin and may cause keratitis and onychomycosis in healthy hosts. Serious disseminated infection due to Fusarium has been reported with increasing frequency in immunocompromised patients. We describe a bone marrow transplant patient who developed fungal septicemia and disseminated skin nodules due to Fusarium solani. Fusarium should be recognized as a potential cause of deep fungal infection in immunocompromised patients. PMID:3069758

  11. Research progress for integrated canker management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit losses due to citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), vary each crop season depending on citrus variety, tree age, flushing condition, leafminer control, and coincidence of weather events with occurrence of susceptible fruit and foliage. In 2013, crop losses in Hamlin f...

  12. Reasons for inconsistent citrus canker control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop losses from citrus canker in 2014 for Hamlin due to premature fruit drop, or for grapefruit from unacceptable severity of fruit lesions, were highly variable due to periodic rains that in certain locations were coincident with grapefruit flushes in February-March or with early Hamlin fruit deve...

  13. Fusarium Pathogenomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed compartmentalization of genomes into regions responsible for metabolism and reproduction (core genome) and p...

  14. [Fusarium graminearum presence in wheat samples for human consumption].

    PubMed

    Martinez, Mauro; Castañares, Eliana; Dinolfo, María I; Pacheco, Walter G; Moreno, María V; Stenglein, Sebastián A

    2014-01-01

    One of the most important diseases in cereal crops is Fusarium head blight, being Fusarium graminearum the main etiological agent. This fungus has the ability to produce a wide spectrum and quantity of toxins, especially deoxynivalenol (DON). During the last crop season (2012-2013) the climatic conditions favored Fusarium colonization. The objective of this work was to determine the presence of this fungus as well as the DON content in 50 wheat grain samples. Our results showed that 80% of the samples were contaminated with Fusarium graminearum. Twenty four percent (24%) of the samples contained ≥ 1μg/g DON, 26% ranged from 0,5 and 0,99μg/g, and the remaining 50% had values lower than 0,5μg/g. Correlation was found between the presence of Fusarium graminearum and DON. It is necessary to establish DON limit values in wheat grains for human consumption. PMID:24721273

  15. Biological and Chemical Complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad ho...

  16. Fusarium verticillioides: Talking to Friends and Enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is both a symptomless endophyte and a pathogen of maize. At some point, the fungus may synthesize fumonisins which have been linked to a variety of animal diseases including cancer in some animals. In order to minimize losses due to contaminated food or feed, we are workin...

  17. Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland.

    PubMed

    Pasche, Sabrina; Calmin, Gautier; Auderset, Guy; Crovadore, Julien; Pelleteret, Pegah; Mauch-Mani, Brigitte; Barja, François; Paul, Bernard; Jermini, Mauro; Lefort, François

    2016-02-01

    A screening of Castanea sativa scions for grafting for the presence of endophytes showed that the opportunistic fungal pathogen Gnomoniopsis smithogilvyi was the most abundant member of the endophytic flora. This fungus is known as a pathogen affecting chestnut fruits in Italy and Australia. Here, we present evidence that it causes cankers very similar to the ones due to Cryphonectria parasitica infection on twigs and scions of chestnut trees. We found natural infections of G. smithogilvyi in healthy grafted plants as well as in scions from chestnut trees. The identity of the fungus isolated from asymptomatic tissues was verified by applying Koch's postulates and corroborated by DNA sequencing of four different gene regions. In contrast to C. parasitica that appears on the bark as yellow to orange pycnidia, stromata and slimy twisted tendrils, G. smithogilvyi forms orange to red and black pycnidia, gray stromata and cream-colored to beige slimy twisted tendrils on the bark. These Swiss strains are closely related to G. smithogilvyi strains from Australia and from New Zealand, Gnomoniopsis sp. and Gnomoniopsis castanea from New Zealand, Italy, France and Switzerland. While the strains from Ticino are genetically very close to G. smithogilvyi and G. castanea from Italy, the differences between the strains from Ticino and Geneva suggest two different origins. The present study supports the hypothesis that a single species named G. smithogilvyi, which is known to be the agent of chestnut rot, also causes wood cankers on chestnut. PMID:26768710

  18. Research promises earlier warning for grapevine canker diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  19. Managing citrus canker for the fresh fruit industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of citrus canker in Florida changed the way the $400 million dollar industry grows, packs ships and stores fruit. Canker regulations have become less strict, but there is still a requirement for compliance for growers and packers to move fruit from Florida to other areas. The comp...

  20. Characteristics of Multi-rater Estimates of Citrus Canker Severity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (CC, caused by Xanthomonas citri) was under eradication for 10 y in Florida. A total of 28 CC surveyors and plant pathologists rated severity of CC symptoms on 200 images to investigate the range of abilities and some factors that influence canker severity estimation. Actual dis...

  1. Fusarium wilt of Prunus armeniaca seedlings.

    PubMed

    Afifi, A F

    1977-01-01

    Fusarium solani (Mart.) Sacc. was found to be the causal pathogen of Fusarium wilt of Prunus armeniaca seedlings. The fungus pathogenicity could be correlated with the increase in its mycelial growth and conidial germination under the influence of the host root exudates, volatile and gaseous exudates of either germinating seeds or roots, and the content of the host seedlings. Chromatographic and biological detection for indol derivatives in host root exudates indicated the presence of beta-indolacetic acid and indol-3-carbonic acid. Benzaldehyde, acetaldehyde, ethanol, ethylene, in addition to carbon dioxide, were among the volatile and gaseous exudates of either germinating seeds or roots of the host. PMID:878711

  2. Effect of Lime on Criconemella xenoplax and Bacterial Canker in Two California Orchards

    PubMed Central

    Underwood, T.; Jaffee, B. A.; Verdegaal, P.; Norton, M. V. K.; Asai, W. K.; Muldoon, A. E.; McKenry, M. V.; Ferris, H.

    1994-01-01

    In a peach orchard with an initial soil pH of 4.9, preplant application of 0, 13.2, 18.2, 27.3, or 54.2 kg lime/tree site altered soil pH (range after 1 year = 4.8-7.3) but did not affect numbers of Criconemella xenoplax or tree circumference. Liming also failed to reduce the incidence of bacterial canker, which affected 17% of the trees by the sixth year after planting. Four years after planting, numbers of C. xenoplax exceeded 400/100 cm³ soil, regardless of treatment. Trees with higher densities of C. xenoplax had a higher incidence of canker. The nematophagous fungus Hirsutella rhossiliensis was not detected until the fourth year. Thereafter, the incidence of H. rhossiliensis and percentage C. xenoplax parasitized by H. rhossiliensis increased, but the increases lagged behind increases in numbers of nematodes. In an almond orchard with an initial soil pH of 4.6, preplant application of 0, 6.4, 12.8, or 25.0 kg lime/tree site altered soil pH (range after 1 year = 4.7-7.1). Numbers of C. xenoplax remained low (<20/100 cm³ soil), whereas numbers of Paratylenchus sp. increased to high levels (>500/100 cm³ soil), regardless of treatment. Low levels (<20/100 cm³ soil) of H. rhossiliensis -parasitized Paratylenchus sp. were detected. No bacterial canker occurred, but tree circumference was greater after 6 years if soil pH was intermediate (6.0-7.0). PMID:19279934

  3. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  4. A major quantitative trait locus is associated with Fusarium Wilt Race 1 resistance in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). A genetic population of 186 F3 families (24 plants in each family) exhibited continuous segregation for Fon race 1 response. Geno...

  5. DGE-1, a durum alien disomic addition line with resistance to Fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scab or Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe., is a serious disease of durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) and current durum cultivars have almost no FHB resistance. Because diploid wheatgrass, Lophopyrum elongatum (2n = 2x = 14; EE...

  6. Fusarium verticillioides: Managing the Endophytic Association with Maize for Reduced Fumonisins Accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a very important fungus from the aspects of plant disease, cereal production and food safety, particularly as it relates to corn. A major concern of this species is the fumonisin toxins that are harmful to humans and animals ingesting Fusarium-contaminated food or feed p...

  7. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases, large multi-domain enzymes that catalyze sequ...

  8. Frequency of the nivalenol mycotoxin genotype in Fusarium graminearum sampled from North Carolina wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S., Fusarium head blight (or scab) is caused primarily by F. graminearum. Fusarium mycotoxins in small grain heads can render the crop unsuitable for human or animal consumption. In livestock, scabby grain can lead to feed refusal and/or poor weight gain. Although this fungus produces var...

  9. Population genomics of Fusarium graminearum head blight pathogens in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we utilized comparative genomics to identify candidate adaptive alleles in the fungus Fusarium graminearum, the primary pathogen of Fusarium head blight (FHB) in cereal crops. Recent epidemics of FHB have been economically devastating to agriculture, as F. graminearum reduces cereal yi...

  10. The role of trichothecenes in the Triticeae-Fusarium graminearum interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), caused by Fusarium graminearum, is a major disease problem for the small grain crops wheat and barley. During infection, F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that increase the aggressiveness of the fungus and reduces grain quality....

  11. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, whi...

  12. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, whi...

  13. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  14. Chlorinated organic compounds produced by Fusarium graminearum.

    PubMed

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  15. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  16. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea

    PubMed Central

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun

    2015-01-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1α), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  17. A comparison of culture and bioassay for detecting citrus canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) causes serious crop losses in tropical and subtropical citrus production regions. Detecting Xcc is important for quarantine purposes, research and disease management. Although PCR methods are available for detecting and quantifying viable bacteria,...

  18. Molecular Characterization of Fusarium globosum Strains from South African Maize and Japanese Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium globosum was first isolated from maize in South Africa and subsequently from wheat in Japan. Here, multiple analyses revealed that, despite morphological similarities, South African maize and Japanese wheat isolates of the fungus exhibit multiple differences. An AFLP-based simi...

  19. Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight is a fungal disease that affects the world's small grains, such as wheat and barley. Attacking the spikelets during development, the fungus causes a reduction of yield and grain of poorer processing quality. Secondary metabolites that often accompany the fungus, such as deoxyn...

  20. Case of Keratitis Caused by an Uncommon Fusarium Species

    PubMed Central

    Guarro, Josep; Rubio, Carmen; Gené, Josepa; Cano, Josep; Gil, Joaquina; Benito, Rafael; Moranderia, M. José; Miguez, Enrique

    2003-01-01

    Fusarium polyphialidicum caused a corneal ulcer in a Spanish man. Diagnosis was established by a histopathological study and repeated cultures. The isolate was clearly resistant in vitro to the antifungal agents tested. This is the first case of human or animal mycosis by this rare fungus. PMID:14662993

  1. Effector profiles distinguish formae speciales of Fusarium oxysporum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formae speciales (ff. spp.) of the fungus Fusarium oxysporum are often polyphyletic in their origin, meaning that strains that infect a particular plant species are not necessarily more closely related to each other than to strains that cause disease in another host. Nevertheless, since strains of t...

  2. Lignin Degradation by Fusarium solani f. sp. glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS), caused by the soilborne fungal pathogen Fusarium solani f. sp. glycines, is one of the most important diseases of soybean. Lignin degradation may play a role in the infection, colonization, and survival of the fungus in root tissue . Lignin degradation by F. solani f. sp...

  3. Gene Deletion and Functional Analysis of Fusarium verticillioides Trehalose Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a species of fungus that causes stalk, ear, and kernel rot of corn and produces fumonisins, a group of mycotoxins that have dangerous health effects. We have observed previously that the intracellular concentration of trehalose, a disaccharide involved in resistance to st...

  4. Genome distribution and validation of novel microsatellite markers of Fusarium verticillioides and their transferability to other Fusarium species.

    PubMed

    Leyva-Madrigal, Karla Y; Larralde-Corona, Claudia P; Calderón-Vázquez, Carlos L; Maldonado-Mendoza, Ignacio E

    2014-06-01

    Improved population studies in the fungus Fusarium verticillioides require the development of reliable microsatellite markers. Here we report a set of ten microsatellite loci that can be used for genetic diversity analyses in F. verticillioides, and are equally applicable to other fungi, especially those belonging to the Gibberella fujikuroi clade. PMID:24704573

  5. Analyses of the Xylem Sap Proteomes Identified Candidate Fusarium virguliforme Proteinacious Toxins

    PubMed Central

    Abeysekara, Nilwala S.; Bhattacharyya, Madan K.

    2014-01-01

    Background Sudden death syndrome (SDS) caused by the ascomycete fungus, Fusarium virguliforme, exhibits root necrosis and leaf scorch or foliar SDS. The pathogen has never been identified from the above ground diseased foliar tissues. Foliar SDS is believed to be caused by host selective toxins, including FvTox1, secreted by the fungus. This study investigated if the xylem sap of F. virguliforme-infected soybean plants contains secreted F. virguliforme-proteins, some of which could cause foliar SDS development. Results Xylem sap samples were collected from five biological replications of F. virguliforme-infected and uninfected soybean plants under controlled conditions. We identified five F. virguliforme proteins from the xylem sap of the F. virguliforme-infected soybean plants by conducting LC-ESI-MS/MS analysis. These five proteins were also present in the excreted proteome of the pathogen in culture filtrates. One of these proteins showed high sequence identity to cerato-platanin, a phytotoxin produced by Ceratocystis fimbriata f. sp. platani to cause canker stain disease in the plane tree. Of over 500 soybean proteins identified in this study, 112 were present in at least 80% of the sap samples collected from F. virguliforme-infected and -uninfected control plants. We have identified four soybean defense proteins from the xylem sap of F. virguliforme-infected soybean plants. The data have been deposited to the ProteomeXchange with identifier PXD000873. Conclusion This study confirms that a few F. virguliforme proteins travel through the xylem, some of which could be involved in foliar SDS development. We have identified five candidate proteinaceous toxins, one of which showed high similarity to a previously characterized phytotoxin. We have also shown the presence of four soybean defense proteins in the xylem sap of F. virguliforme-infected soybean plants. This study laid the foundation for studying the molecular basis of foliar SDS development in soybean and

  6. Fusarium musae infected banana fruits as potential source of human fusariosis: May occur more frequently than we might think and hypotheses about infection.

    PubMed

    Triest, David; Piérard, Denis; De Cremer, Koen; Hendrickx, Marijke

    2016-01-01

    The banana fruit infecting fungus Fusarium musae was originally known as a distinct population within Fusarium verticillioides. However, recently, Fusarium musae was installed as a separate species and the first cases of human infection associated with Fusarium musae were found. In this article, we report an additional survey indicating that human pathogenic Fusarium musae infections may occur more frequently than we might think. Moreover, we evaluate the hypotheses on how infection can be acquired. A first hypothesis is that banana fruits act as carriers of Fusarium musae spores and thereby be the source of human infection with Fusarium musae. Acquisition is likely to be caused through contact with Fusarium musae contaminated banana fruits, either being imported or after traveling of the patient to a banana-producing country. An alternative hypothesis is that Fusarium musae is not only present on banana fruits, but also on other plant hosts or environmental sources. PMID:27195070

  7. Fusarium musae infected banana fruits as potential source of human fusariosis: May occur more frequently than we might think and hypotheses about infection

    PubMed Central

    Triest, David; Piérard, Denis; De Cremer, Koen; Hendrickx, Marijke

    2016-01-01

    ABSTRACT The banana fruit infecting fungus Fusarium musae was originally known as a distinct population within Fusarium verticillioides. However, recently, Fusarium musae was installed as a separate species and the first cases of human infection associated with Fusarium musae were found. In this article, we report an additional survey indicating that human pathogenic Fusarium musae infections may occur more frequently than we might think. Moreover, we evaluate the hypotheses on how infection can be acquired. A first hypothesis is that banana fruits act as carriers of Fusarium musae spores and thereby be the source of human infection with Fusarium musae. Acquisition is likely to be caused through contact with Fusarium musae contaminated banana fruits, either being imported or after traveling of the patient to a banana-producing country. An alternative hypothesis is that Fusarium musae is not only present on banana fruits, but also on other plant hosts or environmental sources. PMID:27195070

  8. Inhibition of Fusarium graminiarum growth in flour gel cultures by hexane soluble compounds from oat (Avena sativa L.) flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum) while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical c...

  9. Cytogenetic and Molecular Characterization of Durum Alien Disomic Addition Line with Enhanced Tolerance to Fusarium Head Blight Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), or scab, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes). Current durum cultivars have very little or no FHB resistance. A wild relative, diploid wheatgrass Lophopyrum elongatum (Hos...

  10. BIOCONTROL AND PLANT PATHOGENIC FUSARIUM OXYSPORUM-INDUCED CHANGES IN PHENOLIC COMPOUNDS IN TOMATO LEAVES AND ROOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biocontrol fungus Fusarium oxysporum strain CS-20 was previously shown to reduce incidence of Fusarium wilt of tomato through an uncharacterized host-mediated response. Since phenolic compounds are involved in the defense response of tomato to pathogens and other stressors, this work was undert...

  11. Ethanol attracts scolytid beetles to Phytophthora ramorum cankers on coast live oak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract: Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 ti...

  12. Copper Sprays and Windbreaks for Control of Citrus Canker on Young Orange Trees in Southern Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit of windbreaks and copper sprays for control of citrus canker caused by Xanthomonas axonopodis pv. citri was investigated in a commercial citrus orchard located in a citrus canker endemic area in southern Brazil. Control of canker was evaluated as incidence and severity of lesions on foli...

  13. Horsfall-Barratt recalibration and replicated severity estimates of citrus canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker is a serious disease of citrus in tropical and subtropical citrus growing regions. Accurate and precise assessment of citrus canker and other plant pathogens is needed to obtain good quality data. Citrus canker assessment data were used to ascertain some of the mechanics of the Horsfal...

  14. 78 FR 58992 - Notice of Request for Extension of Approval of an Information Collection; Citrus Canker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Collection; Citrus Canker; Interstate Movement of Regulated Nursery Stock and Fruit From Quarantined Areas... nursery stock and fruit from quarantined areas to prevent the spread of citrus canker. DATES: We will... from citrus canker quarantined areas, contact Ms. Lynn Evans-Goldner, National Policy Manager, PHP,...

  15. Fusarium MLST database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CBS-KNAW Fungal Biodiversity Centre’s Fusarium MLST website (http://www.cbs.knaw.nl/Fusarium), and the corresponding Fusarium-ID site hosted at the Pennsylvania State University (http://isolate.fusariumdb.org; Geiser et al. 2004, Park et al. 2010) were constructed to facilitate identification of...

  16. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp.

    PubMed Central

    Herron, D.A.; Wingfield, M.J.; Wingfield, B.D.; Rodas, C.A.; Marincowitz, S.; Steenkamp, E.T.

    2015-01-01

    The pitch canker pathogen Fusarium circinatum has caused devastation to Pinus spp. in natural forests and non-natives in commercially managed plantations. This has drawn attention to the potential importance of Fusarium species as pathogens of forest trees. In this study, we explored the diversity of Fusarium species associated with diseased Pinus patula, P. tecunumanii, P. kesiya and P. maximinoi in Colombian plantations and nurseries. Plants displaying symptoms associated with a F. circinatum-like infection (i.e., stem cankers and branch die-back on trees in plantations and root or collar rot of seedlings) were sampled. A total of 57 isolates were collected and characterised based on DNA sequence data for the translation elongation factor 1-α and β-tubulin gene regions. Phylogenetic analyses of these data allowed for the identification of more than 10 Fusarium species. These included F. circinatum, F. oxysporum, species within the Fusarium solani species complex and seven novel species in the Fusarium fujikuroi species complex (formerly the Gibberella fujikuroi species complex), five of which are described here as new. Selected isolates of the new species were tested for their pathogenicity on Pinus patula and compared with that of F. circinatum. Of these, F. marasasianum, F. parvisorum and F. sororula displayed levels of pathogenicity to P. patula that were comparable with that of F. circinatum. These apparently emerging pathogens thus pose a significant risk to forestry in Colombia and other parts of the world. PMID:26955193

  17. Taxonomy and phylogeny of the Fusarium dimerum species group.

    PubMed

    Schroers, Hans-Josef; O'Donnell, Kerry; Lamprecht, Sandra C; Kammeyer, Patricia L; Johnson, Stuart; Sutton, Deanna A; Rinaldi, Michael G; Geiser, David M; Summerbell, Richard C

    2009-01-01

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales), related to F. domesticum and form a phylogenetically distinct clade within Fusarium. Fusarium dimerum, for which no herbarium material could be located, is characterized by macroconidia with a single, median septum, according to the original description and illustration. Fusarium lunatum (= F. dimerum var. violaceum) forms similar but longer macroconidia and purple, catenate or clustered chlamydospores. Fusarium delphinoides sp. nov., F. biseptatum sp. nov., F. penzigii sp. nov., F. nectrioides comb. nov. (= F. dimerum var. nectrioides) and two unnamed Fusarium spp. produce macroconidia with mostly two or rarely three septa. The name F. dimerum, which originally was applied to a fungus from a citron, is used for a taxon including isolates causing infections in immunocompetent and immunocompromised patients. Fusarium nectrioides, F. delphinoides, F. penzigii and F. biseptatum are known from soil and dead plant substrata or rarely as agents of trauma-related eye infections of humans. Fusarium lunatum is an inhabitant of the cladodes of species within the cactus genera Opuntia and Gymnocalycium. Its unnamed closest sister taxon, which also forms 1-septate macroconidia and purple, clustered chlamydospores, was isolated from a human sinus. Fusarium delphinoides is a pathogen of the cactus-like African species Hoodia gordonii (Apocynaceae). Phylogenetic analyses based on combined sequences of the internal transcribed spacer region, LSU rDNA and partial sequences of the elongation factor 1-alpha and beta-tubulin genes identified a clade of several species producing predominately 2-septate macroconidia as the reciprocally monophyletic sister of F. dimerum. The basal sister group of the two aforementioned clades includes Fusarium lunatum and two

  18. Onychomycosis caused by Fusarium proliferatum.

    PubMed

    Hattori, N; Shirai, A; Sugiura, Y; Li, W; Yokoyama, K; Misawa, Y; Okuzumi, K; Tamaki, K

    2005-09-01

    Fusarium infections in humans are usually opportunistic, but the fungus sometimes infects healthy persons, causing keratomycosis or onychomycosis. Onychomycosis is usually caused by F. solani or F. oxysporum. We report the first two cases of onychomycosis caused by F. proliferatum, and discuss methods of diagnosis and effective treatment. Nail samples from the two patients were examined by direct microscopy, cultured, and identified morphologically and genetically as F. proliferatum. Both patients were treated successfully with oral itraconazole, even though the minimum inhibitory concentration of itraconazole was relatively high in Patient 1. This is the first report of F. proliferatum as an agent of onychomycosis. Itraconazole may be effective in the treatment of onychomycosis caused by F. proliferatum. PMID:16120158

  19. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  20. Transcriptome analysis of Fusarium virguliforme provides additional evidence of toxins that contribute to foliar symptoms of soybean sudden death syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxins produced by the soil-borne fungus, Fusarium virguliforme, cause foliar symptoms in soybean. The disease in soybean is referred to as soybean sudden death syndrome (SDS). Three toxins produced by the fungus were reported to be associated with SDS foliar symptoms, but none produced identical S...

  1. A meiotic drive element in the maize pathogen Fusarium verticillioides is located within a 102-kb region of chromosome V

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny f...

  2. A meiotic drive element is located within a 130-kb region of chromosome V of the maize pathogen Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium verticillioides is a pathogen of maize worldwide and produces carcinogenic mycotoxins known as fumonisins. Natural populations of the fungus harbor a meiotic drive element called Spore killer, abbreviated as FvSkK. Only FvSkK progeny survive in a cross between an FvSkK strain and...

  3. Soybean root defense responses to Fusarium virguliforme infection reveals a role of defense related genes during resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome of soybean is an important disease, caused by the semi-biotrophic fungus Fusarium virguliforme. This fungus colonizes soybean roots causing rot, and releases a phytotoxin that is translocated to leaves causing interveinal chlorosis and possible defoliation. In this study, we re...

  4. Distribution of canker lesions on grapefruit in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker, caused by the plant pathogenic bacterium Xanthomonas citri subsp. citri (Xcc) is an important disease of grapefruit in Florida. To establish disease distribution on fruit, six samples of 24 diseased grapefruit were collected from two groves in east Florida. A plane was sliced through ...

  5. Detection of fluorescent compounds in citrus leaf cankers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker caused by the pathogenic bacterium, Xanthomonas citri subsp. citri (Xcc), poses a serious threat to citrus production in Florida, especially for the fresh fruit market. Xcc causes severe damage to fruit, stem, and leaf tissues, and although much has been learned about the complex inter...

  6. Developing Transgenic Citrus for Resistance to Huanglongbing and Citrus Canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB) and Citrus Bacterial Canker (CBC) are serious threats to citrus production, and resistant transgenic citrus is desirable. Genes for antimicrobial peptides (AMPs) with diverse promoters have been used to generate thousands of rootstock and scion transformants. D35S::D4E1 transfor...

  7. Automating the assessment of citrus canker symptoms with image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (CC, caused by Xanthomonas citri) is a serious disease of citrus in Florida and other citrus-growing regions. Severity of symptoms can be estimated by visual rating, but there is inter- and intra-rater variation. Automated image analysis (IA) may offer a way of reducing some of ...

  8. Infection and decontamination of citrus-canker-inoculated leaf surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida and continues to spread. Personnel and equipment decontamination is practiced in both disease-endemic and disease-free areas to reduce the risk of bacterial spread by man or machinery. We used grapefruit leaf su...

  9. Citrus diseases with global ramifications including citrus canker and huanglongbing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there are a number of diseases that plague citrus production worldwide, two bacterial diseases are particularly problematic. Both are of Asian origin and currently cause severe economic damage: Asiatic citrus canker (ACC) and citrus huanglongbing (HLB). Although ACC has been found in the ...

  10. Pruning for prevention and management of canker diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trunk diseases (wood-canker diseases) threaten all California vineyards due to widespread distribution of the fungal pathogens. The infections are chronic and occur each year. Trunk diseases in mature vineyards reduce yields and increase management costs to the point where the vineyard is no longer ...

  11. Packingline sanitizers for use against canker and decay pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in general sanitation in citrus packinghouses has turned to specific reduction of the canker organism from post harvest fruit and packinglines. Existing methods are not efficient and reduction of the bacterial colonies is not sufficient to allow transport and sale of fruit outside the quara...

  12. PROSPECTS FOR CONTROL OF CITRUS CANKER WITH NOVEL CHEMICAL COMPOUNDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials conducted in Brazil demonstrate that copper formulations (copper hydroxide, CH; copper oxychloride, COC) even at reduced rates are consistently effective for control of canker on moderately susceptible orange varieties. Contact activity to replace and/or reduce copper could minimize po...

  13. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa. PMID:24554343

  14. Dynamic regions within and horizontal transfer of an otherwise stable gene cluster responsible for synthesis of the Fusarium mycotoxin fusaric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium mycotoxin fusaric acid is toxic to plants as well as animals, but its function in the biology of the fungus is not known. Here, we used genome sequencing to survey multiple species in 18 lineages (species complexes) of Fusarium for the presence of the fusaric acid biosynthetic gene (FUB...

  15. Disruption of ceramide biosynthesis and accumulation of sphingoid bases and sphingoid base 1-phosphates: A mechanism for Fusarium verticillioides effects in maize-seedling disease.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sweet corn at the seedling and seed maturation stages, Fusarium can be a serious field problem. The fungus Fusarium verticillioides infects maize and produces fumonisins, inhibitors of ceramide synthase. To determine the role of fumonisins in maize seedling disease, seeds were inoculated with fu...

  16. Biological control of Fusarium moniliforme in maize.

    PubMed Central

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-01-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  17. Biological control of Fusarium moniliforme in maize.

    PubMed

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-05-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  18. Evaluation of two methods for direct detection of Fusarium spp. in water.

    PubMed

    Graça, Mariana G; van der Heijden, Inneke M; Perdigão, Lauro; Taira, Cleison; Costa, Silvia F; Levin, Anna S

    2016-04-01

    Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10cells/L and 1cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water. PMID:26844885

  19. Fusarium Wilt of Orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  20. Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium.

    PubMed

    Brown, Daren W; Proctor, Robert H

    2016-04-01

    Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi. PMID:26826610

  1. Summer heat and low soil organic matter influence severity of hazelnut Cytospora canker.

    PubMed

    Lamichhane, Jay Ram; Fabi, Alfredo; Varvaro, Leonardo

    2014-04-01

    Cytospora canker, caused by the fungus Cytospora corylicola, is present in hazelnut production areas worldwide. The disease is widespread throughout the main production areas of Italy. The causal agent is considered to be a secondary invader of damaged tissue that attacks mainly stressed plants. However, little is known of disease severity and stress factors that predispose plants to infection. In particular, the role of pedoclimatic factors was investigated. Direct survey indicated that disease severity varied across several study sites. Geostatistics showed a strong positive correlation between disease severity index and summer heat (r = 0.80 and 0.91 for July and August, respectively) and strong negative correlation between disease severity index and soil organic matter (r = -0.78). A moderate positive correlation between disease severity index and magnesium/potassium ratio (r = 0.58) and moderate negative correlations between disease severity index and total soil nitrogen (r = -0.53), thermal shock (r = -0.46), and rainfall (r = -0.53) were determined. No significant correlation between disease severity index and soil aluminum (r = -0.35), soil pH (r = -0.01), and plant age (r = -0.38) was found. PMID:24168042

  2. Endophytic Cryphonectriaceae on native Myrtales: Possible origin of Chrysoporthe canker on plantation-grown Eucalyptus.

    PubMed

    Mausse-Sitoe, Silvia N D; Rodas, Carlos A; Wingfield, Michael J; Chen, ShuaiFei; Roux, Jolanda

    2016-01-01

    Chrysoporthe austroafricana (Cryphonectriaceae) is a damaging canker pathogen on Eucalyptus species in Southern Africa. Recent studies have shown that the fungus occurs on native Syzygium species and that it has apparently undergone a host range expansion from these native trees to infect non-native Eucalyptus. The aim of this study was to consider whether Chr. austroafricana and other Cryphonectriaceae might exist as endophytes in native Myrtaceae, providing a source of inoculum to infect non-native Myrtales. Healthy branches were collected from Myrtaceae in Mozambique, incubated in florist foam, allowed to dry gradually and monitored for the appearance of fruiting bodies resembling species in the Cryphonectriaceae. Isolates were identified based on DNA sequence data. Two species in the Cryphonectriaceae were obtained, representing the first evidence that species in the Cryphonectriaceae occur as endophytes on native Myrtales, thus providing a source of inoculum to infect non-native and susceptible trees. This has important implications regarding the movement of planting stock used by ornamental tree and forestry enterprises. PMID:27268243

  3. Adhesive tablet effective for treating canker sores in humans.

    PubMed

    Mizrahi, Boaz; Golenser, Jacob; Wolnerman, Joseph S; Domb, Abraham J

    2004-12-01

    A new mucoadhesive tablet, which releases natural active agents for pain reduction and rapid healing of canker sores, has been prepared and characterized. Adhesive tablets were prepared by compression molding of mixed powders of crosslinked polyacrylic acid and hydroxypropyl cellulose, absorbed with citrus oil and magnesium salt. The rate of tablet erosion and the rates of citrus oil and magnesium release were determined as well as the adhesiveness of the tablet using bovine gingival tissue and an Instron tensiometer. A clinical trial was conducted on 248 volunteers who had canker sores. Tablets adhere well to the mucosal tissue and gradually erode for 8 h releasing the citrus oil in a zero-order pattern whereas the magnesium is released during a period of 2 h. Both experimental and plain tablets were effective in reducing pain and decreasing healing time (p < 0.05) without adverse side effects. However, the tablets loaded with active agents were more effective. PMID:15459950

  4. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium fujikuroi is agriculturally important because it produces the phytohormones gibberellic acids (GAs) and causes bakanae (“foolish seedling”) disease of rice. The fungus also produces multiple other secondary metabolites, including pigments and mycotoxins. Here, we present a high-q...

  5. Identification of multiple phytotoxins produced by Fusarium virguliforme including a phytotoxic effector (FvNIS1) associated with soybean sudden death syndrome foliar symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxins produced by the soil-borne fungus, Fusarium virguliforme, cause foliar symptoms in soybean. The disease in soybean is referred to as soybean sudden death syndrome (SDS). Three toxins produced by the fungus were reported to be associated with SDS foliar symptoms, but none produced identical S...

  6. Automated image analysis of the severity of foliar citrus canker symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus canker (caused by Xanthomonas citri subsp. citri) is a destructive disease, reducing yield, and rendering fruit unfit for fresh sale. Accurate assessment of citrus canker severity and other diseases is needed for several purposes, including monitoring epidemics and evaluation of germplasm. ...

  7. BARK CANKER OF UNKNOWN ETIOLOGY DEVELOPING ON PECAN CARYA ILLINOENSIS TREES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan trees in a five-year-old orchard of 17 cultivars had symptoms of an unusual bark canker first noticed in October, 2002. Symptoms appeared from ground line up to 3 meters on the central leader and most likely were initiated during the summer of 2002. Cankers developed around buds of the trunk...

  8. ENHANCED DETECTION AND ISOLATION OF THE WALNUT PATHOGEN BRENNARIA RUBRIFACIENS: CAUSAL AGENT OF DEEP BARK CANKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deep bark canker (DBC) of walnut is caused by the bacterium Brenneria rubrifaciens which produces the red pigment rubrifacine. This disease of English walnut trees, is characterized by deep vertical cankers which exude sap laden with B. rubrifaciens. Although DBC is not observed on younger trees, ...

  9. Detecting citrus canker by hyperspectral reflectance imaging and PCA-based image classification method

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Burks, Thomas F.; Kim, Moon S.; Chao, Kuanglin; Ritenour, Mark A.

    2008-04-01

    Citrus canker is one of the most devastating diseases that threaten citrus crops. Technologies that can efficiently identify citrus canker would assure fruit quality and safety and enhance the competitiveness and profitability of the citrus industry. This research was aimed to investigate the potential of using hyperspectral imaging technique for detecting canker lesions on citrus fruit. A portable hyperspectral imaging system consisting of an automatic sample handling unit, a light source, and a hyperspectral imaging unit was developed for citrus canker detection. The imaging system was used to acquire reflectance images from citrus samples in the wavelength range between 400 nm and 900 nm. Ruby Red grapefruits with normal and various diseased skin conditions including canker, copper burn, greasy spot, wind scar, cake melanose, and specular melanose were tested. Hyperspectral reflectance images were analyzed using principal component analysis (PCA) to compress the 3-D hyperspectral image data and extract useful image features that could be used to discriminate cankerous samples from normal and other diseased samples. Image processing and classification algorithms were developed based upon the transformed images of PCA. The overall accuracy for canker detection was 92.7%. This research demonstrated that hyperspectral imaging technique could be used for discriminating citrus canker from other confounding diseases.

  10. First report of citrus canker caused by Xanthomonas citri in Somalia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas citri, causal agent of citrus canker, has been reported in several countries in Africa, but not Somalia. During 2006 and 2007, hyperplasia-type lesions, often surrounded by a water-soaked margin and yellow halo, typical of citrus canker caused by X. citri, were found on 8-10 year-old gr...

  11. Phomopsis stem canker: a re-emerging threat to sunflowers (Helianthus annuus) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis stem canker frequently causes yield reductions on sunflowers (Helianthus annuus L.) on several continents, including Australia, Russia, Europe and North America. Between 2001 and 2012, the incidence of Phomopsis stem canker has increased 16 fold in the Northern Great Plains of the United...

  12. Effects of Fusarium virguliforme phytotoxin on soybean gene expression suggests a multi-dimensional defense approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the most important diseases of soybean worldwide is the disease called Sudden Death Syndrome (SDS) caused by Fusarium virguliforme. This soil-borne fungus colonizes soybean roots causing root rot, and also releases a phytotoxin that is translocated to leaves causing interveinal chlorosis and n...

  13. Food Fight: Fungal Foe Frustration (Fusarium verticillioides vs. the world of xenobiotics)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides infects maize and produces the fumonisin mycotoxins. The genome of the fungus encodes approximately 30 proteins containing beta-lactamase domains that are roughly evenly split between two families, metallo beta-lactamases and cephalosporinases. In bacteria beta-lactamases ar...

  14. Transcriptional analysis of soybean roots response to Fusarium virguliforme, the causal agent of sudden death syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS) of soybean can be caused by any of four distinct Fusarium species, with F. virguliforme and F. tucumaniae being the main casual agents in North and South America, respectively. Although the fungal tissue is largely confined to the root, the fungus releases a toxin that is...

  15. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium graminearum is a major destructive pathogen of cultivated cereals. We have sequenced and annotated the F. graminearum genome, and found it includes very few repetitive sequences. We experimentally demonstrate that repeats are mutated by the process of repeat-induced p...

  16. Nitric oxide detoxification by Fusarium verticillioides flavohemoglobin and role in pathogenicity of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a non-obligate plant pathogen of maize causing a number of specific diseases, including root rot, kernel rot, seed rot, stalk rot, and seedling blight. The saprophytic nature of this fungus, its production of the mycotoxin fumonisin, and complex relationship maize puts t...

  17. Natural and introduced Fusarium verticillioides populations in ears of field-grown corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn may be colonized by the fungus, Fusarium verticillioides, resulting in both plant disease and mycotoxin contamination. The purpose of the current research was to compare frequencies of three F. verticillioides populations in kernels of corn grown under field conditions. The populations assess...

  18. Genes, Gene Clusters, and Biosynthesis of Trichothecenes and Fumonisins in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes and fumonisins are mycotoxins produced by Fusarium, a filamentous fungus that can cause disease on some crop plants, including corn, rice, and wheat. Research on the genetics and biochemistry of trichothecene and fumonisin biosynthesis has provided important insights into the genetic...

  19. Identification and analysis of Fusarium verticillioides genes differentially expressed during conidiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides, an endophytic maize pathogen, is the causal agent of diseases such as ear rot, seedling blight, and stalk rot, resulting in major economic losses in maize production. This fungus can also cause certain diseases in animals due to consumption of feed contaminated with fumonis...

  20. Seed treatment with live or dead Fusarium verticillioides equivalently reduces the severity of subsequent stalk rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a widely distributed fungus that can associate with maize as a deleterious pathogen and an advantageous endophyte. Here, we show that seed treatment with live F.verticillioides enhances maize resistance to secondary stalk rot infection, and demonstrate that dead F.vertici...

  1. Identification and analysis of Fusarium verticillioides genes differentially expressed during conidiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides, an endophytic maize pathogen, is the causal agent of diseases, such as ear rot, seedling blight, and stalk rot, resulting in major economic losses in maize production. This fungus can also cause certain diseases in animals due to consumption of feed contaminated with fumoni...

  2. EBR1 genomic expansion and its role in virulence of Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...

  3. Exploring the role of trehalose metabolism in resistance to oxidative and desiccation stress in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of trehalose, a disaccharide known to be involved in the ability of several organisms to withstand desiccation or drought...

  4. LAE1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium verticillioides can cause disease of maize and is capable of producing the polyketide derived mycotoxins called fumonisins. Fumonisin contamination of maize kernels is a food safety concern. Fumonisins have been implicated in human esophageal cancer as well as in cau...

  5. DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex.

    PubMed

    Al-Hatmi, Abdullah M S; Mirabolfathy, Mansoureh; Hagen, Ferry; Normand, Anne-Cécile; Stielow, J Benjamin; Karami-Osbo, Rouhollah; van Diepeningen, Anne D; Meis, Jacques F; de Hoog, G Sybren

    2016-02-01

    The Fusarium fujikuroi species complex (FFSC) is one of the most common groups of fusaria associated with plant diseases, mycotoxin production and traumatic and disseminated human infections. Here we present the description and taxonomy of a new taxon, Fusarium ficicrescens sp. nov., collected from contaminated fig fruits in Iran. Initially this species was identified as Fusarium andiyazi by morphology. In the present study the species was studied by multilocus sequence analysis, amplified fragment length polymorphism (AFLP), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic characters. Multilocus analyses were based on translation elongation factor 1α (TEF1), RNA polymerase subunit (RPB2) and beta-tubulin (BT2) and proved F. ficicrescens as a member of the FFSC. Phylogenetic analysis showed that the fungus is closely related to Fusarium lactis, Fusarium ramigenum, and Fusarium napiforme; known plant pathogens, mycotoxin producers, and occasionally occurring multidrug resistant opportunists. The new species differed by being able to grow at 37 °C and by the absence of mycotoxin production. TEF1 was confirmed as an essential barcode for identifying Fusarium species. In addition to TEF1, we evaluated BT2 and RPB2 in order to provide sufficient genetic and species boundaries information for recognition of the novel species. PMID:26781381

  6. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes. PMID:19238625

  7. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  8. Molecular biology of Fusarium mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides, and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic...

  9. Molecular Biology of Fusarium Mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic ...

  10. Fusarium wilt in seedless watermelons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai], caused by Fusarium oxysporum f. sp. niveum (E.F. Sm.) Snyd. & Hans., was first reported in the United States in 1894. Historically, Fusarium wilt has been the greatest yield-limiting disease of watermelon worldwide. The stat...

  11. Interactions between root-knot nematode Meloidogyne javanica and Fusarium wilt disease, Fusarium oxysporum f.sp. Melonis in different varieties of melon.

    PubMed

    Shokoohi, E; Kheiri, A; Etebarian, H R; Roostaei, A

    2004-01-01

    Fusarium oxysporum f.sp. melonis and root-knot nematode (Meloidogyne javanica) are destructive pathogens on cucurbits in Varamin area of Iran. The interaction between two pathogens was studied on local melon cultivars, Garmsar and Sooski. Inoculum of Meloidogyne javanica was prepared on susceptible cultivar, Rutgers using single egg mass method in greenhouse. Inoculum of Fusarium oxysporum f.sp. melonis (race 1) was prepared using Richard solution. A concentration of 2 x 10(5) micro conidia of fungus and 2000, 3000, 4000, 5000 eggs of nematode was used in 1 kg of autoclaved soil. Plants were inoculated with nematode at 2-3 leave stage then with fungus 2 weeks after nematode inoculation. The experiment was conducted in factoriel design based on CRD with 20 treatments, including varieties in 2 levels (Garmsar and Sooski), nematode in 5 levels (0, 2000, 3000, 4000, 5000 eggs) and fungus in 2 levels (presence and absence) and 3 replicates. The index that evaluated were growth index including fresh and dry weight of shoot and root, height, Fusarium wilt index and root gall index. Results of this experiment showed that all of treatments comparison to control were significantly different (p = 0.05) in growth index. Combination of fungus and nematode (5000 eggs) caused the most decrease in growth index on Garmsar and Sooski. PMID:15759439

  12. Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola.

    PubMed

    Liu, Jun-Jun; Chan, Danelle; Xiang, Yu; Williams, Holly; Li, Xiao-Rui; Sniezko, Richard A; Sturrock, Rona N

    2016-01-01

    The white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.) is an exotic invasive forest pathogen causing severe stem canker disease of native white pine trees (subgenus Strobus) in North America. The present study reports discovery of five novel mitoviruses in C. ribicola by deep RNA sequencing. The complete genome of each mitovirus was determined by rapid amplification of cDNA ends (RACE) and reverse transcriptase-polymerase chain reaction (RT-PCR). A single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) was detected in each of the viral genomes using mitochondrial genetic codes. Phylogenetic analysis indicated that the C. ribicola mitoviruses (CrMV1 to CrMV5) are new putative species of the genus Mitovirus. qRT-PCR and RNA-Seq analyses revealed that viral RNAs were significantly increased in fungal mycelia in cankered pine stems compared to expression during two different stages of spore development, suggesting that viral genome replication and transcription benefit from active growth of the host fungus. CrMVs were widespread with relatively high levels of minor allele frequency (MAF) in western North America. As the first report of mitoviruses in the Class Pucciniomycetes, this work allows further investigation of the dynamics of a viral community in the WPBR pathosystem, including potential impacts that may affect pathogenicity and virulence of the host fungus. PMID:27196406

  13. Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola

    PubMed Central

    Liu, Jun-Jun; Chan, Danelle; Xiang, Yu; Williams, Holly; Li, Xiao-Rui; Sniezko, Richard A.; Sturrock, Rona N.

    2016-01-01

    The white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.) is an exotic invasive forest pathogen causing severe stem canker disease of native white pine trees (subgenus Strobus) in North America. The present study reports discovery of five novel mitoviruses in C. ribicola by deep RNA sequencing. The complete genome of each mitovirus was determined by rapid amplification of cDNA ends (RACE) and reverse transcriptase-polymerase chain reaction (RT-PCR). A single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) was detected in each of the viral genomes using mitochondrial genetic codes. Phylogenetic analysis indicated that the C. ribicola mitoviruses (CrMV1 to CrMV5) are new putative species of the genus Mitovirus. qRT-PCR and RNA-Seq analyses revealed that viral RNAs were significantly increased in fungal mycelia in cankered pine stems compared to expression during two different stages of spore development, suggesting that viral genome replication and transcription benefit from active growth of the host fungus. CrMVs were widespread with relatively high levels of minor allele frequency (MAF) in western North America. As the first report of mitoviruses in the Class Pucciniomycetes, this work allows further investigation of the dynamics of a viral community in the WPBR pathosystem, including potential impacts that may affect pathogenicity and virulence of the host fungus. PMID:27196406

  14. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere. PMID:26057187

  15. Development of a qPCR technique to screen for resistance to Asiatic citrus canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asiatic citrus canker (Acc) (causal organism Xanthomonas citri subspc. citri (Xcc) is threatening sustainability of the Florida citrus industry. Resistant cultivars, whether developed through conventional breeding or genetic transformation, will be he best solution for dealint with Acc. In Florida...

  16. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    PubMed

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition. PMID:22186063

  17. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    PubMed Central

    Durán, Nelson; Marcato, Priscyla D; Alves, Oswaldo L; De Souza, Gabriel IH; Esposito, Elisa

    2005-01-01

    Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material. PMID:16014167

  18. Ligninolytic Activity of Fusarium virguliforme (SYN. F. solani f. sp. glycines), the Causal Agent of Soybean Sudden Death Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium virguliforme (syn. F. solani f. sp. glycines), a soil-borne fungus, is the causal agent of soybean sudden death syndrome (SDS), one of the most important diseases of soybean. Lignin degradation is not common in most soilborne fungi which are considered to be cellulose degraders only. In thi...

  19. Relationship of substrate and surfactin production by Bacillus mojavensis strains and their antagonistical response to Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal lipopeptide produced by B. mojavensi...

  20. Global Gene Regulation by Fusarium Transcription Factors Tri6 and Tri10 Reveals Adaptations for Toxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are isoprenoid mycotoxins and harmful contaminants of wheat infected with the filamentous fungus Fusarium graminearum. The expression of some fungal genes for trichothecene biosynthesis (Tri genes) are known to be under control of transcription factors encoded by the genes Tri6 and Tr...

  1. mRNA isoforms in the maize endophyte/pathogen Fusarium verticillioides: And a little story about KP4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium verticillioides is a pathogen and endophyte of maize. At some stages of its life, it may synthesize a family of mycotoxins called fumonisins that may contaminate maize products. Ingestion of fumonisin is linked to a variety of animal diseases including cancer in som...

  2. Genome-wide analysis and functional characterization of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium graminearum a...

  3. FVVE1 REGULATES FILAMENTOUS GROWTH, THE RATIO OF MICROCONIDIA TO MACROCONIDIA AND CELL WALL FORMATION IN FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene, veA, coordinates asexual and sexual sporulation in the fungal species Aspergillus nidulans. Whether veA has the same role in morphogenesis in other fungi has not been investigated. In this work, we studied the role of the veA homolog, FvVEA, in the fungus Fusarium verticillioides. Delet...

  4. Genotype Response of Soybean (Glycine max) Whole Plants and Hairy Roots to Fusarium solani f. sp. glycines Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium solani f. sp. Glycines, a soilborne fungus, infects soybean roots and causes sudden death syndrome. The response of 13 soybean genotypes to the pathogen infection was tested with potted greenhouse grown plants and with cultured hairy roots. The taproots of all genotypes grown plants measure...

  5. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  6. Discovery and toxicity assessment of a novel type A trichothecene produced by US isolates of Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium graminearum shows a widespread occurrence across temperate regions of the world and can produce several mycotoxins on almost every cereal. A large-scale survey of F. graminearum (sensu stricto) on wheat in the northern United States was conducted to investigate the po...

  7. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is an important plant-pathogenic fungus and the major cause of cereal head blight. Here, we report the functional analysis of FgStuA, the gene for a transcription factor with homology to key developmental regulators in fungi. The deletion mutant was greatly reduced in pathogenic...

  8. Global Gene Regulation by Fusarium Transcription Factors Tri6 and Tri10 Reveals Adaptations for Toxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes are isoprenoid mycotoxins in wheat infected with the filamentous fungus Fusarium graminearum. Some fungal genes for trichothecene biosynthesis (Tri genes) are known to be under control of transcription factors encoded by Tri6 and Tri10. Tri6 and Tri10 deletion mutants were constructed...

  9. Surfactin A production and isoforms characterizations in strains of Bacillus mojavensis for control of a maize pathogen, Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal cyclic lipopeptide produced by B. moj...

  10. Survey of mRNA isoforms in Fusarium verticillioides by ESTs: Alternative splicing is part of the story

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Fusarium verticillioides is a pathogen of maize and synthesizes a number of economically important toxins including fumonisins. Fumonisins cause a variety of animal diseases and have been shown to cause cancer in some animals. Contaminated maize and maize products lead to su...

  11. Genetic differentiation and spatial structure of Geosmithia morbida, the causal agent of thousand cankers disease in black walnut (Juglans nigra).

    PubMed

    Hadziabdic, Denita; Vito, Lisa M; Windham, Mark T; Pscheidt, Jay W; Trigiano, Robert N; Kolarik, Miroslav

    2014-05-01

    The main objectives of this study were to evaluate genetic composition of Geosmithia morbida populations in the native range of black walnut and provide a better understanding regarding demography of the pathogen. The fungus G. morbida, and the walnut twig beetle, Pityophthorus juglandis, have been associated with a disease complex of black walnut (Juglans nigra) known as thousand cankers disease (TCD). The disease is manifested as branch dieback and canopy loss, eventually resulting in tree death. In 2010, the disease was detected in black walnut in Tennessee, and subsequently in Virginia and Pennsylvania in 2011 and North Carolina in 2012. These were the first incidences of TCD east of Colorado, where the disease has been established for more than a decade on indigenous walnut species. A genetic diversity and population structure study of 62 G. morbida isolates from Tennessee, Pennsylvania, North Carolina and Oregon was completed using 15 polymorphic microsatellite loci. The results revealed high haploid genetic diversity among seven G. morbida populations with evidence of gene flow, and significant differentiation among two identified genetic clusters. There was a significant correlation between geographic and genetic distance. Understanding the genetic composition and demography of G. morbida can provide valuable insight into recognizing factors affecting the persistence and spread of an invasive pathogen, disease progression, and future infestation predictions. Overall, these data support the hypotheses of two separate, highly diverse pathogen introductions into the native range of black walnut. PMID:24177436

  12. Oak tree canker disease supports arthropod diversity in a natural ecosystem.

    PubMed

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-03-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease. PMID:25288984

  13. Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem

    PubMed Central

    Lee, Yong-Bok; An, Su Jung; Park, Chung Gyoo; Kim, Jinwoo; Han, Sangjo; Kwak, Youn-Sig

    2014-01-01

    Microorganisms have many roles in nature. They may act as decomposers that obtain nutrients from dead materials, while some are pathogens that cause diseases in animals, insects, and plants. Some are symbionts that enhance plant growth, such as arbuscular mycorrhizae and nitrogen fixation bacteria. However, roles of plant pathogens and diseases in natural ecosystems are still poorly understood. Thus, the current study addressed this deficiency by investigating possible roles of plant diseases in natural ecosystems, particularly, their positive effects on arthropod diversity. In this study, the model system was the oak tree (Quercus spp.) and the canker disease caused by Annulohypoxylon truncatum, and its effects on arthropod diversity. The oak tree site contained 44 oak trees; 31 had canker disease symptoms while 13 were disease-free. A total of 370 individual arthropods were detected at the site during the survey period. The arthropods belonged to 25 species, 17 families, and seven orders. Interestingly, the cankered trees had significantly higher biodiversity and richness compared with the canker-free trees. This study clearly demonstrated that arthropod diversity was supported by the oak tree canker disease. PMID:25288984

  14. Development and validation of standard area diagrams as assessment aids for estimating the severity of citrus canker on unripe oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canker (caused by Xanthomonas citri subsp. citri) is an important disease of citrus in Brazil and elsewhere in the world, and can cause severe disease on the fruit. The severity of citrus canker of fruit must often be estimated visually. The objective of this research was to construct and validate s...

  15. REAL-TIME PCR DETECTION AND DEVELOPMENT OF A BIOASSAY FOR THE DEEP BARK CANKER PATHOGEN, BRENNARIA RUBRIFACIENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deep Bark Canker (DBC), caused by the bacterium Brennaria rubrifaciens afflicts English walnut cultivars and is characterized by late onset of symptoms in trees greater than 15 years old. These symptoms include deep bleeding vertical cankers along the trunk and larger branches that exude a bacteria...

  16. Evaluation of the in vitro antimicrobial properties of ultraviolet A/riboflavin mediated crosslinking on Candida albicans and Fusarium solani

    PubMed Central

    Sun, Bing; Li, Zhi-Wei; Yu, Hai-Qun; Tao, Xiang-Chen; Zhang, Yong; Mu, Guo-Ying

    2014-01-01

    AIM To evaluate the antimicrobial properties of ultraviolet A (UVA) (365 nm)/riboflavin against Candida albicans and Fusarium solani. METHODS Two fungus isolates were cultured in vitro and prepared with 10-fold serial PBS dilutions of cell concentration. For each dilution of fungus suspension, the concentration (colony-forming units/mL, CFU/mL) and the inactivation ratio of fungal cells were evaluated under 4 conditions: no treatment (control), UVA (365 nm)/riboflavin, riboflavin, and UVA (365 nm). RESULTS The cell concentration decreased in UVA (365 nm)/riboflavin group for Candida albicans at each dilution and Fusarium solani at dilutions of 104, 103, 102 CFU/mL, when compared with that in control, riboflavin, and UVA (365 nm) groups (P<0.01). No difference of cell concentration was detected amongst the culture of control, riboflavin, and UVA (365 nm) groups for the two fungus. There is a negative correlation between suspension concentration (log-transformed) and the inactivation ratio in UVA (365 nm)/riboflavin group for Candida albicans and Fusarium solani (P<0.01). CONCLUSION According to the standard protocol of corneal collagen cross-linking, UVA (365 nm)/riboflavin combination treatment is found to moderately inactivate the viability of Candida albicans and Fusarium solani in vitro. The inactivation ratio was found to increase with the decrease of cell concentration under UVA (365 nm)/riboflavin condition. PMID:24790859

  17. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique.

    PubMed

    Wetterich, Caio Bruno; Felipe de Oliveira Neves, Ruan; Belasque, José; Marcassa, Luis Gustavo

    2016-01-10

    Citrus canker and Huanglongbing (HLB) are citrus diseases that represent a serious threat to the citrus production worldwide and may cause large economic losses. In this work, we combined fluorescence imaging spectroscopy (FIS) and a machine learning technique to discriminate between these diseases and other ordinary citrus conditions that may be present at citrus orchards, such as citrus scab and zinc deficiency. Our classification results are highly accurate when discriminating citrus canker from citrus scab (97.8%), and HLB from zinc deficiency (95%). These results show that it is possible to accurately identify citrus diseases that present similar symptoms. PMID:26835778

  18. Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica.

    PubMed

    Gao, S; Choi, G H; Shain, L; Nuss, D L

    1996-06-01

    The gene enpg-1, encoding the major extracellular endopolygalacturonase (endoPG) purified from culture filtrates of the chestnut blight fungus, Cryphonectria parasitica, was cloned and characterized. The deduced mature enpg-1 protein product, ENPG-1, had a calculated molecular mass of 34.5 kDa and a pI of 7.2, consistent with empirically derived values for the purified enzyme, and had 66% identity with an endoPG from the maize pathogen Cochliobolus carbonum. Targeted disruption of enpg-1 was accomplished by homologous recombination with a cloned copy of the gene that contained the Escherichia coli hygromycin B phosphotransferase gene (hph) inserted into exon 1. enpg-1 disruption resulted in no reduction in canker formation on dormant American chestnut stems. Unexpectedly, the level of polygalacturonase (PG) activity measured in cankered bark tissue infected with enpg-1 disruptants was indistinguishable from that found in canker tissue infected with virulent strain EP155. Isoelectric focusing and activity gel analysis of PG activity extracted from canker bark tissue revealed ENPG-1 to be a minor (less than 5%) activity component in tissue infected with the virulent strain and to be absent in tissue infected with the disruption mutants. The predominant activity in both canker samples consisted of two previously undetected acidic PG forms that appear absent in C. parasitica culture filtrates. We conclude from these results that the major C. parasitica extracellular endoPG produced in culture, ENPG-1, does not play a significant role in fungal virulence. However, the identification of two acidic PG activities expressed predominantly, if not exclusively, in planta provides new opportunities for examining the importance of PGs in C. parasitica pathogenesis. PMID:8787397

  19. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-01

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

  20. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum

    PubMed Central

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-01

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

  1. Regulation by light in Fusarium.

    PubMed

    Avalos, Javier; Estrada, Alejandro F

    2010-11-01

    The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation. PMID:20460165

  2. Ecological distribution of Fusarium solani and its opportunistic action related to mycotic keratitis in Cali, Colombia.

    PubMed Central

    Cuero, R G

    1980-01-01

    Corneal ulcera in patients treated at the University Hospital Cali, Colombia have been attributed to the fungus Fusarium solani, which was isolated from patients' eyes by deep scraping. The fungus, which was characterized by culture and morphology, was found to grow well at 37 degrees C in Sabouraud and potato dextrose agars and in liquid asparagine medium, in which it produced very few spores; at 40 degrees C, it survived for 3 weeks. Different levels of pathogenicity were shown by the fungus when 3-week-old bean, corn, and tomato plants were inoculated. Controlled experiments in which an inoculum of F. solani was instilled in rabbit eyes were also carried out; it evoked a clinical reaction producing irritation and erythema. The F. solani isolated from eyes was the same species as that isolated by an agar plate method with Fusarium-selective medium from sugar cane, bean, tomato, or corn fields throughout December 1976 to November 1977. Nonfarming areas and urban sites were also air sampled, but only a few (less than 1%) colonies of F. solani were isolated at one of four sites. A preliminary attempt to identify the physiologically active substance of the fungus was carried out through chemical extraction, thin-layer chromatography, and ultraviolet and infrared spectra analysis. Images PMID:7217337

  3. Microarray analysis of soybean treated with Fusarium virguliforme filtrate suggests a role of genes related to cell-wall modification and detoxification during resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the four economically most important diseases of soybean [Glycine max (L.) Merrill] worldwide is the disease called Sudden Death Syndrome (SDS) caused by Fusarium virguliforme (FV), formally known as F. solani f.sp glycines. This soil borne fungus colonizes soybean roots causing root rot, and ...

  4. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  5. Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main pathogen of Gladiolus plants is Fusarium oxysporum, a soilborne fungus that infects roots and corms and kills the plant. Purified D4E1, a synthetic antimicrobial peptide, was found to effectively inhibit 100% of F. oxysporum f. sp. gladioli germinated spores from forming a mycelial mass in ...

  6. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis of B versus C fumonisin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are carcinogenic mycotoxins produced by some species of the filamentous fungus Fusarium. Most species, including F. verticillioides, produce predominantly B fumonisins (FBs), but F. oxysporum strain O-1890 produces predominantly C fumonisins (FCs), which differ from FBs by the absence of...

  7. Optimizing conditions of a cell-free toxic filtrate stem cutting assay to evaluate soybean genotype responses to Fusarium species that cause sudden death syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell-free toxic culture filtrates from Fusarium virguliforme, the causal fungus of soybean sudden death syndrome (SDS), cause foliar symptoms on soybean stem-cuttings similar to those obtained from root inoculations in whole plants and those observed in production fields. The objectives of this stud...

  8. Registration of five pima cotton germplasm lines (SJ-FR05 - FR09) with improved resistance to fusarium wilt race 4 and good lint yield and fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeders continue to need alternative sources of cotton breeding lines for improving Fusarium wilt (FOV race 4) resistance in Pima cotton in California. FOV race 4 is a fungus that has impacted cotton yields in the San Joaquin Valley (SJV) for the last 12 years. For this purpose, the Agricult...

  9. Phylogeography of the Walnut Twig Beetle, Pityophthorus juglandis, the Vector of Thousand Cankers Disease in North American Walnut Trees

    PubMed Central

    Rugman-Jones, Paul F.; Seybold, Steven J.; Graves, Andrew D.; Stouthamer, Richard

    2015-01-01

    Thousand cankers disease (TCD) of walnut trees (Juglans spp.) results from aggressive feeding in the phloem by the walnut twig beetle (WTB), Pityophthorus juglandis, accompanied by inoculation of its galleries with a pathogenic fungus, Geosmithia morbida. In 1960, WTB was only known from four U.S. counties (in Arizona, California, and New Mexico), but the species has now (2014) invaded over 115 counties, representing much of the western USA, and at least six states in the eastern USA. The eastern expansion places TCD in direct proximity to highly valuable (> $500 billion) native timber stands of eastern black walnut, Juglans nigra. Using mitochondrial DNA sequences, from nearly 1100 individuals, we examined variation among 77 samples of WTB populations across its extended range in the USA, revealing high levels of polymorphism and evidence of two divergent lineages. The highest level of genetic diversity for the different lineages was found in the neighboring Madrean Sky Island and Western New Mexico regions, respectively. Despite their proximity, there was little evidence of mixing between these regions, with only a single migrant detected among 179 beetles tested. Indeed, geographic overlap of the two lineages was only common in parts of Colorado and Utah. Just two haplotypes, from the same lineage, predominated over the vast majority of the recently expanded range. Tests for Wolbachia proved negative suggesting it plays no role in "driving" the spread of particular haplotypes, or in maintaining deep levels of intraspecific divergence in WTB. Genotyping of ribosomal RNA corroborated the mitochondrial lineages, but also revealed evidence of hybridization between them. Hybridization was particularly prevalent in the sympatric areas, also apparent in all invaded areas, but absent from the most haplotype-rich area of each mitochondrial lineage. Hypotheses about the specific status of WTB, its recent expansion, and potential evolutionary origins of TCD are discussed

  10. Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance

    PubMed Central

    Fu, Xing-Zheng; Gong, Xiao-Qing; Zhang, Yue-Xin; Wang, Yin; Liu, Ji-Hong

    2012-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating biotic stresses affecting the citrus industry. Meiwa kumquat (Fortunella crassifolia) is canker-resistant, while Newhall navel orange (Citrus sinensis Osbeck) is canker-sensitive. To understand the molecular mechanisms underlying the differences in responses to Xcc, transcriptomic profiles of these two genotypes following Xcc attack were compared by using the Affymetrix citrus genome GeneChip. A total of 794 and 1324 differentially expressed genes (DEGs) were identified as canker-responsive genes in Meiwa and Newhall, respectively. Of these, 230 genes were expressed in common between both genotypes, while 564 and 1094 genes were only significantly expressed in either Meiwa or Newhall. Gene ontology (GO) annotation and Singular Enrichment Analysis (SEA) of the DEGs showed that genes related to the cell wall and polysaccharide metabolism were induced for basic defense in both Meiwa and Newhall, such as chitinase, glucanase and thaumatin-like protein. Moreover, apart from inducing basic defense, Meiwa showed specially upregulated expression of several genes involved in the response to biotic stimulus, defense response, and cation binding as comparing with Newhall. And in Newhall, abundant photosynthesis-related genes were significantly down-regulated, which may be in order to ensure the basic defense. This study revealed different molecular responses to canker disease in Meiwa and Newhall, affording insight into the response to canker and providing valuable information for the identification of potential genes for engineering canker tolerance in the future. PMID:22848606