Science.gov

Sample records for canola oil fuel

  1. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  2. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... biofuel, and palm oil biodiesel (see Section V.C of the RFS2 final rule, 75 FR 14796). To this list we... biodiesel that was published on July 26, 2010 (75 FR 43522). We have considered these comments in developing... produced from canola oil, the delayed RINs provision will only be applicable to this pathway. \\1\\ 75...

  3. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  4. Evidence of health benefits of canola oil.

    PubMed

    Lin, Lin; Allemekinders, Hanja; Dansby, Angela; Campbell, Lisa; Durance-Tod, Shaunda; Berger, Alvin; Jones, Peter J H

    2013-06-01

    Canola oil-based diets have been shown to reduce plasma cholesterol levels in comparison with diets containing higher levels of saturated fatty acids. Consumption of canola oil also influences biological functions that affect various other biomarkers of disease risk. Previous reviews have focused on the health effects of individual components of canola oil. Here, the objective is to address the health effects of intact canola oil, as this has immediate practical implications for consumers, nutritionists, and others deciding which oil to consume or recommend. A literature search was conducted to examine the effects of canola oil consumption on coronary heart disease, insulin sensitivity, lipid peroxidation, inflammation, energy metabolism, and cancer cell growth. Data reveal substantial reductions in total cholesterol and low-density lipoprotein cholesterol, as well as other positive actions, including increased tocopherol levels and improved insulin sensitivity, compared with consumption of other dietary fat sources. In summary, growing scientific evidence supports the use of canola oil, beyond its beneficial actions on circulating lipid levels, as a health-promoting component of the diet. PMID:23731447

  5. Production of biodiesel fuel from canola oil with dimethyl carbonate using an active sodium methoxide catalyst prepared by crystallization.

    PubMed

    Kai, Takami; Mak, Goon Lum; Wada, Shohei; Nakazato, Tsutomu; Takanashi, Hirokazu; Uemura, Yoshimitsu

    2014-07-01

    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst. PMID:24813567

  6. Antioxidant activity of capsaicinoid in canola oil.

    PubMed

    Si, Wenhui; Liang, Yintong; Ma, Ka Ying; Chung, Hau Yin; Chen, Zhen-Yu

    2012-06-20

    Interest in replacing synthetic antioxidants, namely, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), with natural antioxidants is increasing. The present study examined the antioxidant activity of capsaicinoid from chili pepper in heated canola oil. The oxidation was conducted at 60, 90, 120, and 180 °C by monitoring oxygen consumption and the decrease in linoleic acid and α-linolenic acid in canola oil. At 60 °C, capsaicinoid was more effective against oxidation of canola oil compared with BHT. At higher temperatures of 90, 120, and 180 °C, capsaicinoid possessed an antioxidant activity similar to or slightly weaker that that of BHT. It was found that capsaicinoid prevented canola oil from oxidation in a dose-dependent manner. To study the structure-antioxidant relationship, it was found that the trimethylsiloxy (TMS) derivatives of capsaicinoid did not exhibit any antioxidant activity, suggesting the hydroxyl moiety was the functional group responsible for the antioxidant activity of capsaicinoid. It was concluded that capsaicinoid had the potential to be further explored as a natural antioxidant in foods, particularly spicy foods. PMID:22642555

  7. Preparation and properties evaluation of biolubricants derived from canola oil and canola biodiesel.

    PubMed

    Sharma, Rajesh V; Somidi, Asish K R; Dalai, Ajay K

    2015-04-01

    This study demonstrates the evaluation and comparison of the lubricity properties of the biolubricants prepared from the feed stocks such as canola oil and canola biodiesel. Biolubricant from canola biodiesel has a low cloud and pour point properties, better friction and antiwear properties, low phase transition temperature, is less viscous, and has the potential to substitute petroleum-based automotive lubricants. Biolubricant from canola oil has high thermal stability and is more viscous and more effective at higher temperature conditions. This study elucidates that both the biolubricants are attractive, renewable, and ecofriendly substitutes for the petroleum-based lubricants. PMID:25773747

  8. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source.

    PubMed

    López-Cuellar, M R; Alba-Flores, J; Rodríguez, J N Gracida; Pérez-Guevara, F

    2011-01-01

    Wautersia eutropha was able to synthesize medium chain length polyhydroxyalkanoates (PHAs) when canola oil was used as carbon source. W. eutropha was cultivated using fructose and ammonium sulphate as carbon and nitrogen sources, respectively, for growth and inoculum development. The experiments were done in a laboratory scale bioreactor in three stages. Initially, the biomass was adapted in a batch culture. Secondly, a fed-batch was used to increase the cell dry weight and PHA concentration to 4.36 g L(-1) and 0.36 g L(-1), respectively. Finally, after the addition of canola oil as carbon source a final concentration of 18.27 g L(-1) PHA was obtained after 40 h of fermentation. With canola oil as carbon source, the polymer content of the cell dry matter was 90%. The polymer was purified from dried cells and analyzed by FTIR, NMR and DSC using PHB as reference. The polymer produced by W. eutropha from canola oil had four carbon monomers in the structure of the PHA and identified by 1H and 13C NMR analysis as 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxyoctanoate (3HO), and 3-hydroxydodecanoate (3HDD). PMID:20933541

  9. Canola-Based Automotive Oil Research and Development

    SciTech Connect

    Pierce, Ira N.; Kammerman, Steven B.

    2009-12-07

    This research project establishes data on the ability of the bioindustry to provide sufficient production of Canola/rapeseed, functioning as a biolubricant, to replace petroleum-based automotive lubricants at competitive prices. In 2005 total sales for lubricants amounted to 2.5 billion gallons. Research was also conducted to determine the attitudes toward adoption of bioproducts, specifically among industries that are large-scale users of automotive lubricants, including government and private industry users. The green technology industry, or bioindustry, uses a variety of plant- and crop-based resources, known as biomass, to produce energy, fuel and many different bioproducts. Rapeseed is categorized as a lignocellulosic biomass. High erucic acid rapeseed is not intended for human consumption thereby negating the food vs. fuel issue that arose with the increased production of corn as a feedstock for use in ethanol. Key findings show that the oil from Canola/rapeseed provides about twice the yield than soybean oil. These seeds also have significantly higher natural lubricity than petroleum, enabling Canola/rapeseed to function in many different capacities where oxidation issues are critical. It also has the most positive energy balance of all common vegetable oils, making it an excellent potential replacement for petroleum-based fuels as well. As a rotating crop, it enhances farm lands, thereby increasing subsequent yields of barley and wheat, thus increasing profit margins. Petroleum-based bioproducts negatively impact the environment by releasing greenhouse gases, sulfur, heavy metals and other pollutants into the air, ground and water. Replacing these products with bio-alternatives is a significant step toward preserving the country’s natural resources and the environment. Further to this, promoting the growth of the green biotechnology industry will strengthen the nation’s economy, creating jobs in the agriculture, science and engineering sectors, while

  10. IMPACTS OF IRON, NUTRIENTS, AND MINERAL FINES ON ANAEROBIC BIODEGRADATION OF CANOLA OIL IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Factors affecting anaerobic biodegradation kinetics of canola oil in freshwater sediments were investigated. An optimum dose of ferric hydroxide (10.5 g Fe(III)·kg-1 sediment) was found to stimulate anaerobic biodegradation of canola oil (18.6 g oil kg-1). ...

  11. Performance of Regular and Modified Canola and Soybean Oils in Rotational Frying.

    PubMed

    Przybylski, Roman; Gruczynska, Eliza; Aladedunye, Felix

    2013-01-01

    Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1-2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment. PMID:23976786

  12. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oleogels of canola oil with candelilla wax were prepared and utilized as a shortening replacer to produce cookies with a high level of unsaturated fatty acids. The incorporation of candelilla wax (3 and 6% by weight) to canola oil produced the oleogels with solid-like properties. The firmness of...

  13. Biodiesel from Canola Oil using a 1:1 Molar Mixture of Methanol and Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola oil was transesterified using an equimolar mixture of ethanol and methanol with potassium hydroxide (KOH) catalyst. Effect of catalyst concentration (0.5 to 1.5% wt/wt), molar ratio of equimolar mixture of ethanol and methanol (EMEM) to canola oil (3:1 to 12:1) and reaction temperature (25 t...

  14. Adaptability of irrigated spring canola oil production to the U.S. High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola oil is high in oleic acid which is commonly used for food and industrial purposes. To determine adaptability of spring canola (Brassica napus L.) to the High Plains for industrial oil production, 26 irrigated trials were conducted from 2005-2008. Trials were divided into five regions: (1) 36...

  15. Lipase-catalysed interesterification between canola oil and fully hydrogenated canola oil in contact with supercritical carbon dioxide.

    PubMed

    Jenab, Ehsan; Temelli, Feral; Curtis, Jonathan M

    2013-12-01

    The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands. PMID:23870951

  16. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    PubMed Central

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  17. Biodiesel From Canola Oil Using a 1:1 Mole Mixture of Methanol and Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola oil was transesterified using a 1:1 mole mixture of methanol and ethanol (M/E) with potassium hydroxide (KOH) catalyst. Effect of catalyst concentration (0.5 to 1.5% wt/wt), mole ratio of M/E to canola oil (3:1 to 20:1) and reaction temperature (25 to 75°C) on the percentage yield measured af...

  18. Chemical interesterification of blends of palm stearin, coconut oil, and canola oil: physicochemical properties.

    PubMed

    Soares, Fabiana Andreia Schäfer De Martini; da Silva, Roberta Claro; Hazzan, Márcia; Capacla, Isabele Renata; Viccola, Elise Raduan; Maruyama, Jessica Mayumi; Gioielli, Luiz Antonio

    2012-02-15

    trans-Free interesterified fat was produced for possible usage as a margarine. Palm stearin, coconut oil, and canola oil were used as substrates for chemical interesterification. The main aim of the present study was to evaluate the physicochemical properties of blends of palm stearin, coconut oil, and canola oil submitted to chemical interesterification using sodium methoxide as the catalyst. The original and interesterified blends were examined for fatty acid composition, softening and melting points, solid fat content, and consistency. Chemical interesterification reduced softening and melting points, consistency, and solid fat content. The interesterified fats showed desirable physicochemical properties for possible use as a margarine. Therefore, our result suggested that the interesterified fat without trans-fatty acids could be used as an alternative to partially hydrogenated fat. PMID:22229347

  19. Some rape/canola seed oils: fatty acid composition and tocopherols.

    PubMed

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars. PMID:27023318

  20. Quality evaluation of noble mixed oil blended with palm and canola oil.

    PubMed

    Choi, Hyesook; Lee, Eunji; Lee, Kwang-Geun

    2014-01-01

    Noble blended oils (canola: palm oil = 3:7, 4:6, 5:5, 6:4 and 7:3) were prepared and their frying qualities were evaluated. Frying qualities such as fatty acid composition, acid value, peroxide value, viscosity, smoke point, color, antioxidant activity, and sensory evaluation were measured to elucidate the optimum blend ratio of canola and palm oil. The ratio of unsaturated to saturated fatty acid of the blended oils was higher than that of palm oil after frying 50 times. The blended oil (3:7, Ca: Pa) had a relatively high oxidative stability and its peroxide values were 44.2-70.7 meq/kg after frying. The 3:7 (Ca: Pa) blended oil had excellent flavor, taste, and texture compared to those of the other frying oils as a result of a sensory evaluation of raw and fried potatoes. The results suggest that the 3:7 (Ca: Pa) blended oil is a good alternative oil for frying potatoes. PMID:24976612

  1. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

    PubMed Central

    Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.

    2015-01-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  2. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    PubMed

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432

  3. Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil.

    PubMed

    Beauchemin, K A; McGinn, S M

    2006-06-01

    The objective of this study was to identify feed additives that reduce enteric methane emissions from cattle. We measured methane emissions, total tract digestibility (using chromic oxide), and ruminal fermentation (4 h after feeding) in growing beef cattle fed a diet supplemented with various additives. The experiment was designed as a replicated 4 x 4 Latin square with 21-d periods and was conducted using 16 Angus heifers (initial BW of 260 +/- 32 kg). Treatments were: control (no additive), fumaric acid (175 g/d) with sodium bicarbonate (75 g/d), essential oil and spice extract (1 g/d), or canola oil (4.6% of DMI). The basal diet consisted of 75% whole-crop barley silage, 19% steam-rolled barley, and 6% supplement (DM basis). Four large chambers (2 animals fed the same diet per chamber) were equipped to measure methane emissions for 3 d each period. Adding canola oil to the diet decreased (P = 0.009) total daily methane emissions by 32% and tended (P = 0.09) to decrease methane emissions as a percentage of gross energy intake by 21%. However, much of the reduction in methane emissions was due to decreased (P < 0.05) feed intake and lower (P < 0.05) total tract digestibility of DM and fiber. Digestibility of all nutrients was also lowered (P < 0.05) by feeding essential oil, but there were no effects on ruminal fermentation or methane emissions. In contrast, adding fumaric acid to the diet increased total VFA concentration (P = 0.03), increased propionate proportions (P = 0.01), and decreased the acetate:propionate ratio (P = 0.002), but there was no measurable effect on methane emissions. The study demonstrates that canola oil can be used to reduce methane losses from cattle, but animal performance may be compromised due to lower feed intake and decreased fiber digestibility. Essential oils had no effect on methane emissions, whereas fumaric acid caused potentially beneficial changes in ruminal fermentation but no measurable reductions in methane emissions. PMID

  4. Dietary fish oil replacement with canola oil up-regulates glutathione peroxidase 1 gene expression in yellowtail kingfish (Seriola lalandi).

    PubMed

    Bowyer, Jenna N; Rout-Pitt, Nathan; Bain, Peter A; Stone, David A J; Schuller, Kathryn A

    2012-08-01

    The marine carnivore yellowtail kingfish (YTK, Seriola lalandi) was fed diets containing 5% residual fish oil (from the dietary fish meal) plus either 20% fish oil (FO), 20% canola oil (CO), 20% poultry oil (PO), 10% fish oil plus 10% canola oil (FO/CO) or 10% fish oil plus 10% poultry oil (FO/PO) and the effects on fish growth and hepatic expression of two glutathione peroxidase (GPx 1 and GPx 4) and two peroxiredoxin (Prx 1 and Prx 4) antioxidant genes were investigated. Partial (50%) replacement of the added dietary fish oil with poultry oil significantly improved fish growth whereas 100% replacement with canola oil significantly depressed fish growth. The fatty acid profiles of the fish fillets generally reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (16:0) and oleic acid (18:1n-9) and apparent selective retention of eicospentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The Prx 1 and 4 genes were expressed at 10- and 100-fold the level of the GPx 4 and 1 genes, respectively, and at one-tenth the level of the highly expressed β-actin reference gene. Dietary fish oil replacement with canola oil significantly up-regulated GPx 1 gene expression and there was a non-significant tendency towards down-regulation of Prx 1 and Prx 4. The results are discussed in terms of the effects of fish oil replacement on the peroxidation index of the diets and the resulting effects on the target antioxidant enzymes. PMID:22521527

  5. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  6. Production of glycerol-free biofuel from canola oil and dimethyl carbonate using triazabicyclodecene in homogeneous and heterogeneous catalysis operations

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rafiqul

    Due to the increasing awareness of the dwindling fossil fuel resources and environmental issues, biofuel became an alternative renewable fuel to meet the steady increase of energy consumption and environmental demands. This work was designed to produce biofuel free from glycerol, soap, catalyst and wastes from canola oil and dimethyl carbonate (DMC) using an organocatalyst, triazabicyclodecene (TBD). To achieve these goals, several interconnected research activities were undertaken. First, a flow sheet was developed for the process and operating criteria were identified by laboratory experimentation verified with Aspen Plus. Mass and energy integration studies were performed to minimize the consumption of materials and energy utilities. Next, kinetics of canola oil transesterification using TBD as homogeneous catalyst in dimethyl carbonate has been investigated and a model was developed. Kinetics data were vital in process assessment and kinetics model was essential in the study of chemical reaction and catalyst development. Finally, a heterogeneous catalyst was developed for use as a biofuel catalyst through the immobilization of TBD into MgAl layered double hydroxides (LDHs) which can combine the advantages of homogeneous catalysis with the best properties of heterogeneous materials.

  7. Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.

    PubMed

    Abbasi, Soleiman; Radi, Mohsen

    2016-03-01

    In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. PMID:26471642

  8. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  9. Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods.

    PubMed

    Jang, Areum; Bae, Woosung; Hwang, Hong-Sik; Lee, Hyeon Gyu; Lee, Suyong

    2015-11-15

    The oleogels of canola oil with candelilla wax were prepared and utilized as a shortening replacer to produce cookies with a high level of unsaturated fatty acids. The incorporation of candelilla wax (3% and 6% by weight) to canola oil produced the oleogels with solid-like properties. The firmness of the oleogels was lower than that of the shortening at room temperature. A more rapid change in the viscosity with temperature was observed with increasing levels of candelilla wax in the steady shear measurements. The replacement of shortening with oleogels in the cookie formulation reduced both viscoelastic parameters (G' and G") of the cookie doughs. The level of unsaturated fatty acids in the oleogel cookies was distinctly increased up to around 92%, compared to the shortening cookies (47.2%). The cookies with the oleogels showed desirable spreadable property and the replacement of shortening with the oleogels produced cookies with soft eating characteristics. PMID:25977059

  10. Microencapsulation of canola oil by lentil protein isolate-based wall materials.

    PubMed

    Chang, C; Varankovich, N; Nickerson, M T

    2016-12-01

    The overall goal was to encapsulate canola oil using a mixture of lentil protein isolate and maltodextrin with/without lecithin and/or sodium alginate by spray drying. Initially, emulsion and microcapsule properties as a function of oil (20%-30%), protein (2%-8%) and maltodextrin concentration (9.5%-18%) were characterized by emulsion stability, droplet size, viscosity, surface oil and entrapment efficiency. Microcapsules with 20% oil, 2% protein and 18% maltodextrin were shown to have the highest entrapment efficiency, and selected for further re-design using different preparation conditions and wall ingredients (lentil protein isolate, maltodextrin, lecithin and/or sodium alginate). The combination of the lentil protein, maltodextrin and sodium alginate represented the best wall material to produce microcapsules with the highest entrapment efficiency (∼88%). The lentil protein-maltodextrin-alginate microcapsules showed better oxidative stability and had a stronger wall structure than the lentil protein-maltodextrin microcapsules. PMID:27374532

  11. The effects of phase-feeding rainbow trout (Oncorhynchus mykiss) with canola oil and Alaskan pollock fish oil on fillet fatty acid composition and sensory attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainbow trout (186g) were fed three test diets where the lipid source (15%) was either menhaden oil (MO), pollock oil (PO) or canola oil (CO) for eight weeks to an 27 average weight of 370g. The CO group was then divided into two groups, one continuing on the CO diet and the other switched to the PO...

  12. Effect of canola oil emulsion injection on processing characteristics and consumer acceptability of three muscles from mature beef.

    PubMed

    Pietrasik, Z; Wang, H; Janz, J A M

    2013-02-01

    The study was undertaken to investigate the impact of the combined effect of blade tenderization and canola oil emulsion injection on processing yield and eating quality-related parameters of selected loin and hip muscles (longissimus lumborum, LL, biceps femoris, BF and semimembranosus, SM) from over thirty month (OTM) cattle. Canola oil emulsion injection significantly reduced shear force, increased sensory scores for juiciness and tenderness, and made connective tissue less perceptible. Targeted levels of omega-3 fatty acids can be achieved by the inclusion of canola oil containing marinades/emulsions at levels sufficient to retain omega-3 fatty acids in cooked product. All consumer acceptability attributes of OTM muscles were improved with the use of canola oil emulsion injection treatments without compromising colour although slightly decreasing oxidative stability of BF muscle. Injection of omega-3 oil emulsions in combination with blade tenderization can be effectively utilized to enrich injected products in essential fatty acids and enhance eating quality of OTM beef. PMID:23089241

  13. A simplified FTIR chemometric method for simultaneous determination of four oxidation parameters of frying canola oil.

    PubMed

    Talpur, M Younis; Hassan, S Sara; Sherazi, S T H; Mahesar, S A; Kara, Huseyin; Kandhro, Aftab A; Sirajuddin

    2015-01-01

    Transmission Fourier transform infrared (FTIR) spectroscopic method using 100 μm KCl cell was applied for the determination of total polar compounds (TPC), carbonyl value (CV), conjugated diene (CD) and conjugated triene (CT) in canola oil (CLO) during potato chips frying at 180 °C. The calibration models were developed for TPC, CV, CD and CT using partial least square (PLS) chemometric technique. Excellent regression coefficients (R(2)) and root mean square error of prediction values for TPC, CV, CD and CT were found to be 0.999, 0.992, 0.998 and 0.999 and 0.809, 0.690, 1.26 and 0.735, respectively. The developed calibration models were applied on samples of canola oil drawn during potato chips frying process. A linear relationship was obtained between CD and TPC with a good correlation of coefficient (R(2)=0.9816). Results of the study clearly indicated that transmission FTIR-PLS method could be used for quick and precise evaluation of oxidative changes during the frying process without using any organic solvent. PMID:25985130

  14. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of Lipozyme RM IM from Rhizomucor Miehei and Candid...

  15. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candi...

  16. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    PubMed

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  17. Comparison antioxidant activity of Tarom Mahali rice bran extracted from different extraction methods and its effect on canola oil stabilization.

    PubMed

    Farahmandfar, Reza; Asnaashari, Maryam; Sayyad, Ruhollah

    2015-10-01

    In this study, Tarom Mahali rice bran extracts by ultrasound assisted and traditional solvent (ethanol and ethanol: water (50:50)) extraction method were compared. The total phenolic and tocopherol content and antioxidant activity of the extracts was determined and compared with TBHQ by DPPH assay and β-carotene bleaching method. The results show that the extract from ethanol: water (50:50) ultrasonic treatment with high amount of phenols (919.66 mg gallic acid/g extract, tocopherols (438.4 μg α-tocopherol/ mL extract) indicated the highest antioxidant activity (80.36 % radical scavenging and 62.69 % β-carotene-linoleic bleaching) and thermal stability (4.95 h) at 120 °C in canola oil. Being high in antioxidant and antiradical potential and high content of phenolic and tocopherol compounds of ethanol: water (50:50) ultrasonic extract caused to evaluate its thermal stability at 180 °C in canola oil during frying process. So, different concentrations of Tarom Mahali rice bran extract (100, 800, and 1200 ppm) were added to canola oil. TBHQ at 100 ppm served as standard besides the control. Free fatty acids (FFAs), Peroxide value (PV), carbonyl value (CV), total polar compounds (TPC) and oxidative stability index (OSI) were taken as parameters for evaluation of effectiveness of Tarom Mahali rice bran extract in stabilization of canola oil. Results from different parameters were in agreement with each other, suggesting that 800 ppm of the extract could act better than 100 ppm TBHQ in inhibition of lipid oxidation in canola oil during frying process and can be used as predominant alternative of synthetic antioxidants. PMID:26396383

  18. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  19. Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the antioxidative effect of phenolics naturally present in canola seeds and meal. Individual phenolics were extracted from ground, defatted canola seeds and meal. Fractionated extracts rich in sinapic acid, sinapine or canolol as well as a non-fractionated ext...

  20. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  1. Pineapple by-product and canola oil as partial fat replacers in low-fat beef burger: Effects on oxidative stability, cholesterol content and fatty acid profile.

    PubMed

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Rasera, Mariana L; Marabesi, Amanda C; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-05-01

    The effect of freeze-dried pineapple by-product and canola oil as fat replacers on the oxidative stability, cholesterol content and fatty acid profile of low-fat beef burgers was evaluated. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple by-product (PA), canola oil (CO), and pineapple by-product and canola oil (PC). Low-fat cooked burgers showed a mean cholesterol content reduction of 9.15% compared to the CN. Canola oil addition improved the fatty acid profile of the burgers, with increase in the polyunsaturated/saturated fatty acids ratio and decrease in the n-6/n-3 ratio, in the atherogenic and thrombogenic indexes. The oxidative stability of the burgers was affected by the vegetable oil addition. However, at the end of the storage time (120 days), malonaldehyde values of CO and PC were lower than the threshold for the consumer's acceptance. Canola oil, in combination with pineapple by-product, can be considered promising fat replacers in the development of healthier burgers. PMID:26775152

  2. Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil.

    PubMed

    Zhao, Dong; Kim, Sang-Min; Pan, Cheol-Ho; Chung, Donghwa

    2014-02-15

    The effects of heating, aerial exposure and illumination on the stability of fucoxanthin was investigated in canola oil. In the absence of air and light, the heating caused the degradation of total and all-trans fucoxanthin at all tested temperatures between 25 and 100 °C. The increase of heating temperature promoted the formation of 13-cis and 13'-cis and the degradation of 9'-cis. The degradation and formation reactions were found to follow simple first-order kinetics and to be energetically unfavorable, non-spontaneous processes. Arrhenius-type temperature dependence was observed for the degradation of total and all-trans fucoxanthin but not for the reactions of cis isomers. The aerial exposure promoted the oxidative fucoxanthin degradation at 25 °C, whilst illumination caused the initial formation of all-trans, with concurrent sudden degradation of 13-cis and 13'-cis, and the considerable formation of 9'-cis. The fucoxanthin degradation was synergistically promoted when exposed to both air and light. PMID:24128507

  3. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography.

    PubMed

    Flakelar, Clare L; Prenzler, Paul D; Luckett, David J; Howitt, Julia A; Doran, Gregory

    2017-01-01

    A normal phase high performance liquid chromatography (HPLC) method was developed to simultaneously quantify several prominent bioactive compounds in canola oil vis. α-tocopherol, γ-tocopherol, δ-tocopherol, β-carotene, lutein, β-sitosterol, campesterol and brassicasterol. The use of sequential diode array detection (DAD) and tandem mass spectrometry (MS/MS) allowed direct injection of oils, diluted in hexane without derivatisation or saponification, greatly reducing sample preparation time, and permitting the quantification of both free sterols and intact sterol esters. Further advantages over existing methods included increased analytical selectivity, and a chromatographic run time substantially less than other reported normal phase methods. The HPLC-DAD-MS/MS method was applied to freshly extracted canola oil samples as well as commercially available canola, palm fruit, sunflower and olive oils. PMID:27507459

  4. Vegetable oil fuels

    SciTech Connect

    Not Available

    1982-01-01

    Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.

  5. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. PMID:25863602

  6. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content

    PubMed Central

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  7. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    PubMed

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  8. Fuel properties of cottonseed oil

    SciTech Connect

    Karaosmanoglu, F.; Tueter, M.; Goellue, E.; Yanmaz, S.; Altintig, E.

    1999-11-01

    The use of vegetable oils as fuel alternatives has an exceptional importance in the field of research. In this study, evaluation possibilities of cottonseed oil have been investigated as an alternative candidate for diesel fuel and fuel oil. The fuel property tests were performed according to standard analysis methods for oil and fuel. An overall evaluation of the results indicates that cottonseed oil can be proposed as a possible green substitute for fuel.

  9. Fuel oil poisoning

    MedlinePlus

    Substances called hydrocarbons are the harmful ingredients in fuel oil. ... Gummin DD. Hydrocarbons. In: Adams JG, ed. Emergency Medicine . 2nd ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 152. Lee DC. Hydrocarbons. ...

  10. 75 FR 43522 - Notice of Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... completed an assessment for an additional renewable fuel pathway, canola oil biodiesel. This Notice of Data... lifecycle analysis of canola oil biodiesel. DATES: Comments must be received on or before August 25, 2010... transportation fuels, including gasoline and diesel fuel or renewable fuels such as ethanol and...

  11. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  12. Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound.

    PubMed

    Remonatto, Daniela; Santin, Claudia M Trentin; Valério, Alexsandra; Lerin, Lindomar; Batistella, Luciane; Ninow, Jorge Luiz; de Oliveira, J Vladimir; de Oliveira, Débora

    2015-06-01

    This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs. PMID:25875788

  13. Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat.

    PubMed

    Baek, Ki Ho; Utama, Dicky Tri; Lee, Seung Gyu; An, Byoung Ki; Lee, Sung Ki

    2016-06-01

    The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON), 20% canola oil (CA) and 20% flaxseed oil (FL). The pH value of the CA was significantly higher than the others (p<0.05). The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05). CA had the highest lightness value (p<0.05). However, FL showed the highest yellowness value (p<0.05) because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05); furthermore, CA had the highest texture profile values (p<0.05) among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05) over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05). The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality. PMID:27004822

  14. Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat

    PubMed Central

    Baek, Ki Ho; Utama, Dicky Tri; Lee, Seung Gyu; An, Byoung Ki; Lee, Sung Ki

    2016-01-01

    The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON), 20% canola oil (CA) and 20% flaxseed oil (FL). The pH value of the CA was significantly higher than the others (p<0.05). The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05). CA had the highest lightness value (p<0.05). However, FL showed the highest yellowness value (p<0.05) because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05); furthermore, CA had the highest texture profile values (p<0.05) among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05) over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05). The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality. PMID:27004822

  15. Field evaluation of neem and canola oil for the selective control of the honey bee (Hymenoptera: Apidae) mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae).

    PubMed

    Melathopoulos, A P; Winston, M L; Whittington, R; Higo, H; Le Doux, M

    2000-06-01

    Neem oil, neem extract (neem-aza), and canola oil were evaluated for the management of the honey bee mite parasites Varroa jacobsoni (Oudemans) and Acarapis woodi (Rennie) in field experiments. Spraying neem oil on bees was more effective at controlling V. jacobsoni than feeding oil in a sucrose-based matrix (patty), feeding neem-aza in syrup, or spraying canola oil. Neem oil sprays also protected susceptible bees from A. woodi infestation. Only neem oil provided V. jacobsoni control comparable to the known varroacide formic acid, but it was not as effective as the synthetic product Apistan (tau-fluvalinate). Neem oil was effective only when sprayed six times at 4-d intervals and not when applied three times at 8-d intervals. Neem oil spray treatments had no effect on adult honey bee populations, but treatments reduced the amount of sealed brood in colonies by 50% and caused queen loss at higher doses. Taken together, the results suggest that neem and canola oil show some promise for managing honey bee parasitic mites, but the negative effects of treatments to colonies and the lower efficacy against V. jacobsoni compared with synthetic acaricides may limit their usefulness to beekeepers. PMID:10902299

  16. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus. PMID:26773545

  17. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger.

    PubMed

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Saldaña, Erick; Spada, Fernanda P; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-02-01

    Pineapple byproduct and canola oil were evaluated as fat replacers on physicochemical and sensory characteristics of low-fat burgers. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple byproduct (PA), canola oil (CO), pineapple byproduct and canola oil (PC). Higher water and fat retention and lower cooking loss and diameter reduction were found in burgers with byproduct addition. In raw burgers, byproduct incorporation reduced L*, a*, and C* values, but these alterations were masked after cooking, leading to products similar to CN. Low-fat treatments were harder, chewier, and more cohesive than full-fat burgers. However, in Warner Bratzler shear measurements, PA and PC were as tender as CN. In QDA, no difference was found between CN and PC. Pineapple byproducts along with canola oil are promising fat replacers in beef burgers. In order to increase the feasibility of use of pineapple byproduct in the meat industry, alternative processes of byproduct preparation should be evaluated in future studies. PMID:26562792

  18. Vegetable oil fuels: A review

    SciTech Connect

    Karaosmanoglu, F.

    1999-04-01

    Using vegetable oils as fuel alternatives has economic, environmental, and energy benefits for Turkey. The present work provides insight to the status of vegetable oil fuels in Turkey. A brief historical background of the issue, as well as an up to date review of the research carried out on vegetable oil fuels, is given and the future of their production and application is discussed.

  19. Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

    PubMed Central

    Vafa, Toktam S.; Naserian, Abbas A.; Heravi Moussavi, Ali R.; Valizadeh, Reza; Mesgaran, Mohsen Danesh

    2012-01-01

    This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows (42±12 DIM, 40±6 kg daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double 4×4 Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of

  20. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. PMID:25312008

  1. Intestinal absorption and lymphatic transport of a high gamma-linolenic acid canola oil in lymph fistula Sprague-Dawley rats.

    PubMed

    Tso, Patrick; Ding, Kexi; DeMichele, Stephen; Huang, Yung-Sheng

    2002-02-01

    A new canola strain capable of producing >30% gamma-linolenic acid [GLA, 18:3(n-6)] in the seed oil has been developed in our laboratories. This study compares the intestinal absorption and lymphatic transport of this newly developed high GLA content canola oil (HGCO) with traditional GLA-rich borage oil (BO) using a lymph fistula rat model. To assess the extent that 1 mL of GLA in the supplemented oil was absorbed and transported, the fatty acid compositions of triglycerides in mesenteric lymph were compared over a 24-h collection period. The digestion, uptake and lymphatic transport of HGCO and the normal physiologic changes associated with fat absorption (e.g., lymph flow and an increase in lymphatic endogenous lipids outputs, triglycerides, cholesterol and phospholipids) were similar in the HGCO-and the BO-fed rats. The original differences in gamma-linolenic acid content in HGCO and BO were preserved in the fatty acid composition of the rats' lymph lipid. We conclude that the HGCO derived from the genetically modified canola plant is absorbed and transported into lymph similarly to BO. PMID:11823581

  2. Processing sunflower oil for fuel

    SciTech Connect

    Backer, L.F.; Jacobsen, L.; Olson, C.

    1982-05-01

    Research on processing of sunflower seed for oil was initiated to evaluate the equipment that might adapt best to on-farm or small factory production facilities. The first devices identified for evaluation were auger press expeller units, primary oil cleaning equipment, and final filters. A series of standard finishing filtration tests were carried out on sunflower oil and sunflower oil - diesel fuel blends using sunflower oil from four different sources.

  3. Fuel Oil and Kerosene Sales

    EIA Publications

    2015-01-01

    Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.

  4. Desalting method of fuel oil

    SciTech Connect

    Fujiwara, K.; Nagatomo, K.; Nomura, S.; Shibata, F.; Yoshinaga, S.

    1982-07-13

    The present invention provides a method for the desalting of fuel oil by mixing the fuel oil and clean water, thereby separating and eliminating sodium salts and potassium salts contained in the fuel oil. The method comprises separating a heavy portion including salt containing water from the fuel oil which is a light portion. This heavy portion is separated from the fuel oil and separated into water and a residue by an evaporator. The water is reused as a washing water and the residue is burnt to use the generated heat as a heat source for the evaporator, whereby the residue is decreased in volume and solidified to be made easy in the handling.

  5. Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate).

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2008-05-01

    Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane (PUR) synthesized from canola oil-based polyol with terminal primary functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were evaluated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and modulated differential scanning calorimetry (MDSC), as well as tensile properties measurements. The morphology of the IPNs was investigated using scanning electron microscopy (SEM) and MDSC. A five-phase morphology, that is, sol phase, PUR-rich phase, PUR-rich interphase, PMMA-rich interphase, and PMMA-rich phase, was observed for all the IPNs by applying a new quantitative method based on the measurement of the differential of reversing heat capacity versus temperature from MDSC, although not confirmed by SEM, most likely due to resolution restrictions. NCO/OH molar ratios (cross-linking density) and compositional variations of PUR/PMMA both affected the thermal properties and phase behaviors of the IPNs. Higher degrees of mixing occurred for the IPN with higher NCO/OH molar ratio (2.0/1.0) at PUR concentration of 25 wt %, whereas for the IPN with lower NCO/OH molar ratio (1.6/1.0), higher degrees of mixing occurred at PUR concentration of 35 wt %. The mechanical properties of the IPNs were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs. PMID:18410139

  6. Fuel oil quality task force

    SciTech Connect

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  7. Chemical profile, energy values, and protein molecular structure characteristics of biofuel/bio-oil co-products (carinata meal) in comparison with canola meal.

    PubMed

    Xin, Hangshu; Yu, Peiqiang

    2013-04-24

    To our knowledge, little information exists on nutritive values and molecular structural characteristics associated with protein biopolymers of carinata meal from biofuel and bio-oil processing. The objectives of this study were to investigate (1) chemical compositions; (2) protein and carbohydrate subfractions partitioned by the Cornell Net Carbohydrate and Protein System (CNCPS); (3) truly digestible nutrients and energy values; (4) protein conformation spectral characteristics using the ATR-FT/IR technique; and (5) the correlation between protein intrinsic structural features and nutrient profiles of carinata meal in comparison with conventional canola meal as references. The results showed that carinata meal was higher (p < 0.05) in soluble crude protein (SCP, 55.6% CP) and nonprotein nitrogen (NPN, 38.5% CP) and lower in acid detergent insoluble crude protein (ADICP, 1.3% CP) compared to canola meal. Although no differences were found in CP and carbohydrate (CHO) contents, CNCPS protein and carbohydrate subfractions were different (p < 0.05) between carinata meal and canola meal. Carinata meal has similar contents of total digestible nutrient (TDN) and predicted energy values to canoal meal (p > 0.05). As for protein spectral features, much greater IR absorbance in amide I height and area as well as α-helix and β-sheet height for carinata meal by 20-31% (p < 0.05) was found compared with canola meal; however, results from agglomerative hierarchical cluster analysis (CLA) and principal component analysis (PCA) indicated these two meals could not be distinguished completely within the protein spectrum (ca. 1728-1478 cm(-1)). Additionally, close correlations were observed between protein structural parameters and protein nutrient profiles and subfractions. All the comparisons between carinata meal and canola meal in our study indicated that carinata meal could be used as a potential high-protein supplement source for ruminants. Further study is needed on more

  8. PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

  9. Crude oil of fuel oil compositions

    SciTech Connect

    Tack, R.D.; Lewtas, K.

    1989-11-21

    This patent describes a crude oil composition or a fuel oil composition. It comprises: a major proportion by weight of a crude oil or a liquid hydrocarbon fuel and a minor proportion by weight of a polymer containing more than one amide group. The amide being an amide of a secondary mono amine and wherein the amide group of the polymer contains a hydrogen- and carbon- containing group of at least 14 carbon atoms, provided that if the polymer is derived from the polymerization of an aliphatic olefin and maleic anhydride. The polymer must have both an amide group and an ester group each of which contains a hydrogen- and carbon-containing group of at least 14 carbon atoms.

  10. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT)

    PubMed Central

    2014-01-01

    Background The Canola Oil Multicenter Intervention Trial (COMIT) was a randomized controlled crossover study designed to evaluate the effects of five diets that provided different oils and/or oil blends on cardiovascular disease (CVD) risk factors in individuals with abdominal obesity. The present objective is to report preliminary findings on plasma fatty acid profiles in volunteers with abdominal obesity, following the consumption of diets enriched with n-3, n-6 and n-9 fatty acids. Methods COMIT was conducted at three clinical sites, Winnipeg, Manitoba, Canada, Québec City, Québec, Canada and University Park, Pennsylvania, United States. Inclusion criteria were at least one of the followings: waist circumference (≥90 cm for males and ≥84 cm for females), and at least one other criterion: triglycerides ≥1.7 mmol/L, high density lipoprotein cholesterol <1 mmol/L (males) or <1.3 mmol/L (females), blood pressure ≥130 mmHg (systolic) and/or ≥85 mmHg (diastolic), and glucose ≥5.5 mmol/L. Weight-maintaining diets that included shakes with one of the dietary oil blends were provided during each of the five 30-day dietary phases. Dietary phases were separated by four-week washout periods. Treatment oils were canola oil, high oleic canola oil, high oleic canola oil enriched with docosahexaenoic acid (DHA), flax oil and safflower oil blend, and corn oil and safflower oil blend. A per protocol approach with a mixed model analysis was decided to be appropriate for data analysis. Results One hundred and seventy volunteers were randomized and 130 completed the study with a dropout rate of 23.5%. The mean plasma total DHA concentrations, which were analyzed among all participants as a measure of adherence, increased by more than 100% in the DHA-enriched phase, compared to other phases, demonstrating excellent dietary adherence. Conclusions Recruitment and retention strategies were effective in achieving a sufficient number of participants who completed the study

  11. A cross-over study of the effect of a single oral feeding of medium chain triglyceride oil vs. canola oil on post-ingestion plasma triglyceride levels in healthy men.

    PubMed

    Calabrese, C; Myer, S; Munson, S; Turet, P; Birdsall, T C

    1999-02-01

    Due to its unique absorption and metabolism characteristics, medium chain triglyceride (MCT) oil, consisting of fatty acids with 8-12 carbons, has been used therapeutically since the 1950s in the treatment of fat malabsorption, cystic fibrosis, epilepsy, weight control, and to increase exercise performance. Medium chain triglycerides are easily hydrolyzed in the intestines and the fatty acids are transported directly to the liver via the portal venous system, in contrast to long-chain fatty acids (LCFAs), which are incorporated into chylomicrons for transport through the lymphatic system or peripheral circulation. Medium chain fatty acids (MCFAs) do not require carnitine to cross the double mitochondrial membrane of the hepatocyte, thus they quickly enter the mitochondria and undergo rapid beta-oxidation, whereas most LCFAs are packaged into triglycerides in the hepatocyte. In this single-blind, randomized, cross-over study, 20 healthy men ingested a single dose of either 71 g of MCT oil or canola oil. Blood samples were taken at baseline and at hours one through five post-ingestion to compare the effect of a single oral dosing of MCT oil versus canola oil on post-ingestion plasma triglyceride levels. Mean triglyceride values after canola oil increased 47 percent above baseline (p <0.001), while mean triglyceride values after MCT oil decreased 15 percent from baseline (p <0.001), which is consistent with several other studies involving short- and longer-term feeding with MCT oil. The effect of long-term usage of MCT oil on triglycerides is yet to be established. PMID:9988780

  12. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Keakin, A.J.

    1981-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical composition. 10 refs.

  13. Diesel fuels from vegetable oils

    SciTech Connect

    Schwab, A.W.; Bagby, M.O.; Freedman, B.

    1986-03-01

    Vegetable oils have heat contents approximately 90% that of diesel fuel and are potential alternate fuel candidates. A major obstacle deterring their use in the direct-injection diesel engine is their inherent high viscosities which are nearly 10 times that of diesel fuel. Solution to the viscosity problem has been approached in three ways: 1) microemulsification, 2) pyrolysis, and 3) transesterification. Microemulsification with short chain alcohols such as methanol and ethanol yields fuels that are clear, thermodynamically stable liquid systems with viscosities near the ASTM specified range for number2 diesel fuel. These micellar systems may be formulated ionically or nonionically. The alcohols are attractive from an economic as well as a renewable resource viewpoint. Methanol has an economic advantage over ethanol, and it can be derived from a large variety of base stocks. These include biomass, municipal waste, natural gas being flared at refineries and from coal. Pyrolysis of vegetable oils is another approach to lowering their viscosity. Soybean and safflower oils were thermally decomposed in both air and nitrogen to obtain fuels for the diesel engine. Using standard ASTM distillation conditions, yields of pyrolysis products were about 75%. GS-MS analysis of the distillates showed the presence of alkanes, alkenes, aromatics, and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the thermal decomposition products were substantially improved as evaluated by lower viscosities and higher cetane numbers compared to the unpyrrolyzed vegetable oils. Simple esters from transesterification of vegetable oils perform well in engine tests, and thus show good promise as an alternative or emergency fuel for diesel engines.

  14. Vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a technically competitive alternative to petroleum-derived diesel fuel. It can be obtained from commodity oils and fats such as soybean, sunflower, canola or tallow. However, the available amounts of these biodiesel feedstocks do not suffice to satisfy the long-term need for biodiesel...

  15. Effects of high-gamma-linolenic acid canola oil compared with borage oil on reproduction, growth, and brain and behavioral development in mice.

    PubMed

    Wainwright, Patricia E; Huang, Yung-Sheng; DeMichele, Stephen J; Xing, HuaCheng; Liu, Jim-Wen; Chuang, Lu-Te; Biederman, Jessica

    2003-02-01

    Previous research in rats and mice has suggested that gamma-linolenic acid (GLA) derived from borage oil (BO: 23% GLA) may be an appropriate source for increasing levels of long-chain n-6 FA in the developing brain. Recently, transgenic technology has made available a highly enriched GLA seed oil from the canola plant (HGCO: 36% GLA). The first objective of this study was to compare the effects of diets containing equal levels of GLA (23%) from either BO or HGCO on reproduction, pup development, and pup brain FA composition in mice. The second objective was to compare the effects of the HGCO diluted to 23% GLA (GLA-23) with those of undiluted HGCO containing 36% GLA (GLA-36). The diets were fed to the dams prior to conception and throughout pregnancy and lactation, as well as to the pups after weaning. The behavioral development of the pups was measured 12 d after birth, and anxiety in the adult male offspring was assessed using the plus maze. The findings show that despite equivalent levels of GLA, GLA-23 differed from BO in that it reduced pup body weight and was associated with a slight increase in neonatal pup attrition. However, there were no significant effects on pup behavioral development or on performance in the plus maze. An increase in dietary GLA resulted in an increase in brain 20:4n-6 and 22:4n-6, with a corresponding decrease in 22:6n-3. Again, despite their similar levels of GLA, these effects tended to be larger in GLA-23 than in BO. In comparison with GLA-23, GLA-36 had larger effects on growth and brain FA composition but no differences with respect to effects on reproduction and behavioral development. These findings suggest that the HGCO can be used as an alternative source of GLA. PMID:12733750

  16. Effect of Tocotrienols enriched canola oil on glycemic control and oxidative status in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled clinical trial

    PubMed Central

    Vafa, Mohammadreza; Haghighat, Neda; Moslehi, Nazanin; Eghtesadi, Shahriar; Heydari, Iraj

    2015-01-01

    Background: Tocotrienols have been shown to improve glycemic control and redox balance in an animal study, but their effects on patients with diabetes are unknown. The study aimed to investigate whether tocotrienols improves glycemic control, insulin sensitivity, and oxidative stress in individuals with type 2 diabetes mellitus (T2DM). Materials and Methods: This study was a double-blinded, placebo-controlled, randomized trial. A total of 50 patients, aged 35-60 years, with T2DM treated by noninsulin hypoglycemic drugs were randomly assigned to receive either 15 mL/day tocotrienols (200 mg) enriched canola oil (n = 25) or pure canola oil (n = 25) for 8 weeks. Fasting blood sugar (FBS), fasting insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), and homeostatic model assessment for insulin resistance (HOMA-IR) were determined before and after the intervention. The data were compared between and within groups, before and after the intervention. Results: Baseline characteristics of participants including age, sex, physical activity, disease duration, and type of drug consumption were not significantly different between the two groups. In tocotrienol enriched canola oil, FBS (mean percent change: –15.4% vs. 3.9%; P = 0.006) and MDA (median percent change: –35.6% vs. 16.3%; P = 0.003) were significantly reduced while TAC was significantly increased (median percent change: 21.4% vs. 2.3%; P = 0.001) compared to pure canola oil. At the end of the study, patients who treated with tocotrienols had lower FBS (P = 0.023) and MDA (P = 0.044) compared to the pure canola oil group. However, tocotrienols had no effect on insulin concentrations and HOMA-IR. Conclusion: Tocotrienols can improve FBS concentrations and modifies redox balance in T2DM patients with poor glycemic control and can be considered in combination with hypoglycemic drugs to better control of T2DM. PMID:26600828

  17. Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry.

    PubMed

    Teh, Sue-Siang; Morlock, Gertrud E

    2015-11-15

    Cold-pressed hemp, flax and canola seed oils are healthy oils for human consumption as these are rich in polyunsaturated fatty acids and bioactive phytochemicals. However, bioactive information on the food intake side is mainly focused on target analysis. For more comprehensive information with regard to effects, single bioactive compounds present in the seed oil extracts were detected by effect-directed assays, like bioassays or an enzymatic assay, directly linked with chromatography and further characterized by mass spectrometry. This effect-directed analysis is a streamlined method for the analysis of bioactive compounds in the seed oil extracts. All effective compounds with regard to the five assays or bioassays applied were detected in the samples, meaning also bioactive breakdown products caused during oil processing, residues or contaminants, aside the naturally present bioactive phytochemicals. The investigated cold-pressed oils contained compounds that exert antioxidative, antimicrobial, acetylcholinesterase inhibitory and estrogenic activities. This effect-directed analysis can be recommended for bioactivity profiling of food to obtain profound effect-directed information on the food intake side. PMID:25977051

  18. Fuel properties of eleven vegetable oils

    SciTech Connect

    Goering, C.E.; Schwab, A.W.; Daugherty, M.J.; Pryde, E.H.; Heakin, A.J.

    1982-01-01

    Eleven vegetable oils that can be grown as domestic field crops were identified for inclusion in a comparative study of chemical and fuel properties. Sample lots of each oil were subjected to ASTM tests appropriate for diesel fuels. The tests identified some problem areas with vegetable oil fuels. The oil samples were also characterized chemically and certain fuel properties were correlated to chemical compositions. (Refs. 11).

  19. Abdominal adiposity, insulin and bone quality in young male rats fed a high-fat diet containing soybean or canola oil

    PubMed Central

    da Costa, Carlos Alberto Soares; Carlos, Aluana Santana; de Sousa dos Santos, Aline; Monteiro, Alexandra Maria Vieira; de Moura, Egberto Gaspar; Nascimento-Saba, Celly Cristina Alves

    2011-01-01

    OBJECTIVES: A low ratio of omega-6/omega-3 polyunsaturated fatty acids is associated with healthy bone properties. However, fatty diets can induce obesity. Our objective was to evaluate intra-abdominal adiposity, insulin, and bone growth in rats fed a high-fat diet containing low ratios of omega-6/omega-3 provided in canola oil. METHODS: After weaning, rats were grouped and fed either a control diet (7S), a high-fat diet containing soybean oil (19S) or a high-fat diet of canola oil (19C) until they were 60 days old. Differences were considered to be significant if p<0.05. RESULTS: After 60 days, the 19S and 19C groups showed more energy intake, body density growth and intra-abdominal fat mass. However, the 19S group had a higher area (200%) and a lower number (44%) of adipocytes, while the 7S and 19C groups did not differ. The serum concentrations of glucose and insulin and the insulin resistance index were significantly increased in the 19C group (15%, 56%, and 78%, respectively) compared to the 7S group. Bone measurements of the 19S and 19C groups showed a higher femur mass (25%) and a higher lumbar vertebrae mass (11%) and length (5%). Computed tomography analysis revealed more radiodensity in the proximal femoral epiphysis and lumbar vertebrae of 19C group compared to the 7S and 19S groups. CONCLUSIONS: Our results suggest that the amount and source of fat used in the diet after weaning increase body growth and fat depots and affect insulin resistance and, consequently, bone health. PMID:22012056

  20. Energy accounting for eleven vegetable oil fuels

    SciTech Connect

    Goering, C.E.; Daugherty, M.J.

    1982-09-01

    Energy inputs and outputs were comparatively analyzed for 11 vegetable oil fuels. Three-year average prices and production quantities were also compared. All nonirrigated oil crops had favorable energy ratios. Soybean, peanut and sunflower oils were the most promising as domestic fuel sources. Rapeseed oil would also be promising if significant domestic production can be established.

  1. Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil.

    PubMed

    Palombo, J D; DeMichele, S J; Liu, J W; Bistrian, B R; Huang, Y S

    2000-09-01

    We have utilized transgenic technology to develop a new source of gamma-linolenic acid (GLA) using the canola plant as a host. The aim of the present study was to compare the growth and fatty acid metabolism in rats fed equal amounts of GLA obtained from the transgenic canola plant relative to GLA from the borage plant. Young male Sprague-Dawley rats (n = 10/group) were randomized and fed a purified AIN93G diet (10% lipid by weight) containing either a mixture of high GLA canola oil (HGCO) and corn oil or a control diet containing borage oil (BO) for 6 wk. GLA accounted for 23%, of the triglyceride fatty acids in both diets. Growth and diet consumption were monitored every 2-3 d throughout the study. At study termination, the fatty acid composition of the liver and plasma phospholipids was analyzed by gas chromatography. The growth and diet consumption of the HGCO group were similar to the BO group. There were no adverse effects of either diet on the general health or appearance of the rats, or on the morphology of the major organs. There was no significant difference between the diet groups for total percentage of n-6 polyunsaturated fatty acids present in either the total or individual phospholipid fractions of liver or plasma. The relative percentage of GLA and its main metabolite, arachidonic acid, in each phospholipid fraction of liver or plasma were also similar between groups. The percentage of 18:2n-6 in liver phosphatidylethanolamine and phosphatidylinositol/serine was higher (P < 0.05) and 22:5n-6 was lower in the HGCO group than the BO group. This finding could be attributed to the higher 18:3n-3 content in the HGCO diet than the BO diet. Results from this long-term feeding study of rats show for the first time that a diet containing transgenically modified canola oil was well-tolerated, and had similar biological effects, i.e., growth characteristics and hepatic metabolism of n-6 fatty acids, as a diet containing borage oil. PMID:11026618

  2. Fuel oils from higher plants

    SciTech Connect

    Calvin, M.

    1985-03-01

    A summary of the types of plants available for converting solar energy to fuel and materials on an annually renewable basis is presented. Sugar cane, seed oils, herbaceous plants (Hevea, Euphorbia, Asclepias), hydrocarbon producing trees (Eucalystus globulus, Pittosporum, Copaifera), and algae are discussed. Emphasis is placed on the development of ''energy agriculture'' and the use of plants to synthesize hydrocarbon-like materials especially in the less developed areas of the world. (DMC)

  3. Fuel oil and kerosene sales 1997

    SciTech Connect

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  4. Peanut oil as an emergency diesel fuel

    SciTech Connect

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  5. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil....

  6. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil....

  7. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil....

  8. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  9. 1985 EPRI fuel oil utilization workshop: proceedings

    SciTech Connect

    Sanders, C.F.; McDonald, B.L.

    1986-02-01

    A workshop to consider problems related to fuel oil utilization was held in Atlanta, Georgia, on June 19 and 20, 1985. The 35 participants included fuels, engineering, and operating people from 15 utilities. The primary objective of the meeting was the interchange of information related to projects conducted by some of the utilities, EPRI, and others. Through the discussions, EPRI gained useful insight into directions for future studies and utility support efforts. A continuing concern of the utilities is the declining quality of fuel oils available and the inability of current specifications to prevent or predict problems in handling and burning the oils. The presentations at the workshop covered future oil supplies, predicting compatibility, combustion of high-asphaltene oils, operating and test programs to alleviate emission problems, and EPRI's planned projects relating to fuel oil combustion and fuel oil quality. All nine papers in this proceedings have been processed for inclusion in the Energy Data Base.

  10. Fuel oil and kerosene sales 1996

    SciTech Connect

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  11. Biodiesel Derived from a Source Enriched in Palmitoleic Acid, Macadamia Nut Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel commonly produced from commodity vegetable oils such as palm, rapeseeed (canola) and soybean. These oils generally have fatty acid profiles that vary within the range of C16 and C18 fatty acids. Thus, the biodiesel fuels derived from these oils possess the c...

  12. Comparative analysis of plant oil based fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  13. Interactions between canola meal and flaxseed oil in the diets of White Lohmann hens on fatty acid profile and sensory characteristics of table eggs.

    PubMed

    Goldberg, Erin M; Ryland, Donna; Aliani, Michel; House, James D

    2016-08-01

    The current study was designed to assess the fatty acid composition and sensory attributes of eggs procured from hens consuming diets containing canola meal (CM) and/or flax oil (FO). A total of 96 group-caged White Lohmann hens received 1 of 4 isonitrogenous and isoenergetic diets for a period of 4 weeks. Diets were arranged in a 2 × 2 factorial design, containing 24% canola meal, 7.5% flax oil, both, or neither (control). All yolk fatty acids were affected by flax oil inclusion, with the exception of stearic acid (SA) and docosapentaenoic acid (DPA). Only SA was affected by CM inclusion. Additionally, significant interactions between CM and FO were observed for linoleic acid (LA) and total omega-6 polyunsaturated fatty acids (PUFA), with DPA approaching significance (P = 0.069). Trained panelists (n = 8) evaluated 7 aroma ('egg', 'creamy', 'buttery', 'salty', 'sweet', 'barny', and 'oceanic') and 6 flavor ('egg', 'creamy', 'buttery', 'salty', 'brothy', and 'oceanic') attributes of cooked egg product. No significant differences (P > 0.05) in aroma attributes were found between eggs from different dietary treatments. However, egg, creamy, buttery, and oceanic flavors were significantly different between the dietary treatments (P < 0.05). While oceanic flavor significantly increased with inclusion of FO, egg and creamy flavors showed a significant decrease (P < 0.05). Although CM addition alone did not result in significant sensory changes, the pairing of CM and FO resulted in even greater sensory changes than using FO alone, specifically with regard to egg flavor. Results from partial least squares analyses showed a strong association between oceanic flavor and omega-3 PUFA. Oppositely, egg, creamy, and buttery flavors were more correlated with the presence of omega-6 PUFA and palmitic acid. This experiment provides evidence that the interaction between CM and FO in the White Lohmann hen diet results in sensory changes of cooked eggs associated in

  14. Stereology of the myocardium and blood biochemistry in aged rats fed with a cholesterol-rich and canola oil diet (n-3 fatty acid rich).

    PubMed

    Aguila, M B; Rodrigues-Apfel, M I; Mandarim-de-Lacerda, C A

    1998-06-01

    The myocardial changes brought about by canola oil (n-3 fatty acid rich) and hyperlipidic diets were studied in 45 rats. Three groups each consisting of 15 animals was separated into (A) which receiving a normal balanced diet; and in groups (CHO) and (O) the animals receiving hyperlipidic and canola oil diet, respectively. These diets were fed to the animals from 21 days until 15 months old, then a blood analysis was performed, after which they were sacrificed and the hearts taken for light microscopic studies. The total lipids serum was extracted and the low density lipoproteins (LDL-C and VLDL-C) and chylomicron fractions were determined as well as the cholesterol concentration in the high density lipoprotein fraction (HDL-C). The myocardium was composed of myocytes and cardiac interstitium, which is made up of connective tissue and blood vessels. The following stereological parameters were determined: a) from myocyte: volume density of myocyte, total volume of myocytes surface density of myocyte, total surface of myocyte and cross sectional area of myocyte; b) from blood vessels: volume density of blood vessels, total volume of blood vessels, length density of blood vessels, surface density of blood vessels, total surface of blood vessels and cross sectional area of vessels; c) from connective tissue: volume density of connective tissue and total volume of connective tissue. The differences were tested by the analysis of variance and Tukey test. The Mantel-Haenezel test analyzed the survival curve test comparing the different groups. Many stereological parameters had significant differences: cardiac weight, thickness of the right and left ventricular wall, aorta and pulmonary artery inner diameters. HDL-C, LDL-C, volume density of myocyte, total surface of myocyte, surface density of myocyte, total surface of myocyte, total volume of blood vessel, length density of blood vessels, surface density of blood vessels, total surface of blood vessels, volume density of

  15. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  16. Moringa Oleifera Oil: A Possible Source of Biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a v...

  17. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  18. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 56.6309 Section... § 56.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower...

  19. In-stream measurement of canola (Brassica napus L.) seed oil concentration using in-line near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural variation in the seed oil concentration of oilseed crops can impair a crushing plant’s ability to efficiently recover the oil from seed. Consequently, there is interest in using in-line near infrared (NIR) spectroscopy to measure the oil concentration of the seed to be processed and use thi...

  20. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture...

  1. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture...

  2. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Conversion of Extracted Oil Cake Fibers into Bioethanol Including DDGS, Canola, Sunflower, Seasame, Soy, and Peanut for Integrated Biodiesel Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have come up with a novel integrated approach where biodiesel processing can be potentially done in-house by producing ethanol from edible oilseeds after hexane extraction to remove residual oil. In addition, we have demonstrated how ethanol could be manufactured from widely available oil cakes ...

  4. Fuel oil and kerosene sales 1995

    SciTech Connect

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  5. Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats.

    PubMed

    Liu, Jim-Wen; DeMichele, Stephen J; Palombo, John; Chuang, Lu-Te; Hastilow, Christine; Bobik, Emil; Huang, Yung-Sheng

    2004-06-16

    Dietary supplementation of a high-gamma-linolenic acid canola oil (HGCO) containing approximately 36% (w/w) of gamma-linolenic acid (GLA, 18:3n-6) from the seeds of a genetically transformed canola strain, was assessed for its long-term biological effects. Growing Sprague-Dawley rats (n = 30) were fed a purified AIN93G diet containing 5, 10, or 15% (w/w) of HGCO as the fat source. For comparison, a separate group of rats (n = 10) was given the diet containing 15% (w/w) of borage oil (BO), which contained 22% (w/w) of GLA. After 12 weeks of feeding, the growth, relative organ weights, hematology, and serum biochemistry were found to be similar among rats fed the 5, 10, and 15% HGCO diets. The GLA levels in plasma and liver phospholipids (PL) were also similar. However, the levels of GLA in peripheral tissues (muscle PL and adipose triacylglycerols) were significantly higher in rats fed the 10 and 15% HGCO diets than those fed the 5% HGCO diet. When the above biologic parameters were compared between the 15% HGCO and 15% BO dietary groups, there were no significant differences except for lower final body weights and higher tissue levels of GLA, dihomo-gamma-linolenic acid (20:3n-6) and arachidonic acid (20:4n-6) in the 15% HGCO dietary group as compared with the 15% BO dietary group. This is due to a higher GLA content and possibly a more favorable stereospecific distribution of GLA in HGCO. Overall, long-term (12-week) feeding with diets containing up to 15% HGCO resulted in no adverse effects on growth, organ weight, hematology and serum biochemistry as compared to the diet containing 15% BO, suggesting that HGCO may be a safe alternative source of GLA. PMID:15186123

  6. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  7. 30 CFR 56.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel oil requirements for ANFO. 56.6309 Section... § 56.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except...

  8. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L.; Haines, H.; Chase, C.

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  9. Fuel oil and kerosene sales 1993

    SciTech Connect

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  10. Fuel oil and kerosene sales 1992

    SciTech Connect

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  11. Military jet fuel from shale oil

    NASA Technical Reports Server (NTRS)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  12. Fuel oil and kerosene sales 1994

    SciTech Connect

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  13. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.

    PubMed

    Illiyin, Mohamed Roslan Nur; Marikkar, Jalaldeen Mohamed Nazrim; Loke, Mei Key; Shuhaimi, Musthafa; Mahiran, Basri; Miskandar, Mat Saari

    2014-01-01

    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour. PMID:24389796

  14. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  15. Peanut varieties: potential for fuel oil

    SciTech Connect

    Hammons, R.O.

    1981-01-01

    Research is beginning in farm crushing of peanuts into fuel oil, the high-protein residue being used as livestock feed. Thirty peanut genotypes were investigated for oil and protein yields in field trials in Georgia. For 11 varieties in an irrigated test, mean oil contents (dry base) were in the 49.7-52.7% range, and the level of protein was in the 22.60-26.70% range. Wider variations in oil and protein contents were found in 19 other genotypes selected for possible use as an oil crop. Breeding for high oil yield has not been practiced in US peanut breeding programs. Convergent improvement to attain higher levels of oil content, shell-out percentage, and stable yield will require 6-10 generations of crossing, backcrossing, selection, and testing.

  16. Burn problem fuel oils without emissions headaches

    SciTech Connect

    Martel, G.; Veratti, T.

    1983-01-01

    Suggests that if particulate emissions from oil-fired boilers are not what they should be, the problem may be the quality of the oil or how that quality is determined. Shows how an electric utility was able to pinpoint a problem it recently had with one of its units that burns low-quality fuel oil, and subsequently reduced its emissions through a combination of equipment optimization techniques and fuel additives. Presents graphs which show that: lower viscosities reduce emissions; suspended-sediment-by-hot-filtration (SHF) in the feed oil has a linear effect on particulate emissions; and balancing catalyst rates with percent O/sub 2/ is an economic imperative when reducing emissions from an oil-fired boiler.

  17. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... distribution section or the RFS2 rulemaking (75 FR 14793-14795). Based on these results, today's proposed rule... that were proposed on July 1, 2011 (76 FR 38844). The first change adds ID letters to pathways to... Renewable Fuels Produced Under the Final RFS2 Program from Canola Oil'' (FR Vol. 75, No. 187, pg...

  18. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., manufacturers may use the fuel specified in 40 CFR part 1065, subpart H, for gasoline-fueled engines. (2... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the...

  19. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., manufacturers may use the fuel specified in 40 CFR part 1065, subpart H, for gasoline-fueled engines. (2... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the...

  20. Consider Upgrading Pyrolysis Oils Into Renewale Fuels

    SciTech Connect

    Holmgren, J.; Marinangeli, R.; Nair, P.; Elliott, D.; Bain, R.

    2008-09-01

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. An alternate route being pursued involves using a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  1. Transesterification of vegetable oils for fuels

    SciTech Connect

    Kusy, P.F.

    1982-01-01

    A continuous procedure was developed and tested, in a stepwise manner, for the transesterification of soybean and sunflower oils using ethanol. Good yields of ethyl soyate and sunflowerate were achieved, and the products made agreed very closely with those made by a direct esterification of the acids of vegetable oils and ethanol. The viscosity of the esters was considerably less than that of the oils and more nearly like that of diesel fuel. Because the ethyl soyate and sunflowerate have many components which solidify at relatively high temperatures, cloud points of the fuels are about 8 to 12/sup 0/C, which indicates they would not be readily usable at or below that temperature without dilution with No. 1 or No. 2 diesel fuel and/or the addition of additives. 3 figures, 7 tables.

  2. A New Method of Piping Work by Freezing Fuel Oil to Repair a Fuel Oil Pipeline

    NASA Astrophysics Data System (ADS)

    Okada, Masashi; Tateno, Masayoshi; Minowa, Kazuki; Murayama, Kouichi

    When a pipe is cut off to repair fuel oil pipelines, the oil has to be drained from the pipelines. If the oil inside the pipe is frozen at both sides of a cutting plane, it is not necessary to drain the oil from the pipelines. In the present paper, such a freezing method is studied analytically and experimentally to establish a suitable construction method, where liquid-nitrogen (LN2) is used as a coolant and fuel oil-C is used as a typical example. From the result, thermal conductivity and thermal diffusivity of the fuel oil-C in a low temperature range were measured as a function of temperature in addition to the pour point and glass transition point. Furthermore, in order to compare the agreement between analysis and experiment, an analytical method was performed under various conditions. Finally, temperatures in analytical values were agreed well with experimental ones, and suitable position and time for cutting are clarified.

  3. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... injurious to human or animal health. (3) Quality will be a factor in determining your loss in canola... human or animal health, the samples analyzed by a laboratory approved by us. (4) Canola production that... Official United States Standards for Grain including, but not limited to protein and oil, will not...

  4. Yield, irrigation response, and water productivity of deficit to fully irrigated spring canola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canola (Brassica napus) is an oil-seed crop that is adapted to the northern High Plains of the USA and is considered a viable rotational and biofuel crop. However, decreased ground water allocations have necessitated determining the impact of limited irrigation on canola productivity. The objectives...

  5. Bunker C. fuel oil reduces mallard egg hatchability

    USGS Publications Warehouse

    Szaro, R.C.

    1979-01-01

    Assessment of the effect of Bunker C fuel oil on artificially-incubated mallard eggs. Eggshell applications of 5-50 ul of Bunker C fuel oil were made on day 8 of incubation; measured hatching success.

  6. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  7. 46 CFR 58.01-10 - Fuel oil.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  8. 46 CFR 58.01-10 - Fuel oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  9. 46 CFR 58.01-10 - Fuel oil.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  10. 46 CFR 58.01-10 - Fuel oil.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  11. 46 CFR 58.01-10 - Fuel oil.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  12. Comparison between Canadian Canola Harvest and Export Surveys.

    PubMed

    Barthet, Véronique J

    2016-01-01

    Parameters, such as oil, protein, glucosinolates, chlorophyll content and fatty acid composition, were determined using reference methods for both harvest survey samples and Canadian Canola exports. Canola harvest survey and export data were assessed to evaluate if canola harvest survey data can be extrapolated to predict the quality of the Canadian canola exports. There were some differences in some measured parameters between harvest and export data, while other parameters showed little difference. Protein content and fatty acid composition showed very similar data for harvest and export averages. Canadian export data showed lower oil content when compared to the oil content of harvest survey was mainly due to a diluting effect of dockage in the export cargoes which remained constant over the years (1.7% to 1.9%). Chlorophyll was the least predictable parameter; dockage quality as well as commingling of the other grades in Canola No. 1 Canada affected the chlorophyll content of the exports. Free fatty acids (FFA) were also different for the export and harvest survey. FFA levels are affected by storage conditions; they increase during the shipping season and, therefore, are difficult to predict from their harvest survey averages. PMID:27447675

  13. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fuel oil and bulk lubricating oil... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.320 Fuel oil and bulk lubricating oil discharge containment. (a) A ship...

  14. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fuel oil and bulk lubricating oil... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.320 Fuel oil and bulk lubricating oil discharge containment. (a) A ship...

  15. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fuel oil and bulk lubricating oil... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.320 Fuel oil and bulk lubricating oil discharge containment. (a) A ship...

  16. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel oil and bulk lubricating oil... HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.320 Fuel oil and bulk lubricating oil discharge containment. (a) A ship...

  17. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel oil requirements for ANFO. 57.6309 Section... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare...

  18. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located...

  19. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ammonium nitrate-fuel oil. ... with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that diesel fuels with flash points no lower than 100 °F may be used at...

  20. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ammonium nitrate-fuel oil. ... with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that diesel fuels with flash points no lower than 100 °F may be used at...

  1. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ammonium nitrate-fuel oil. ... with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that diesel fuels with flash points no lower than 100 °F may be used at...

  2. 77 FR 39745 - Fuel Oil Systems for Emergency Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... generators and oil-fueled gas turbine generators, including assurance of adequate fuel oil quality. DATES... Diesel Generators'' dated April 1979. This guide describes a method that the NRC staff considers...-related emergency diesel generators and oil-fueled gas turbine generators, including assurance of...

  3. 30 CFR 57.6309 - Fuel oil requirements for ANFO.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air temperatures below 45 °F. (b) Waste oil, including crankcase oil, shall not be used to prepare... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 57.6309 Section... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon...

  4. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  5. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... applicable, may be selected. (b) If a structural reserve fuel condition is selected, it must be used as the... condition of paragraph (b)(1) of this section; and (3) The flutter, deformation, and vibration...

  6. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... applicable, may be selected. (b) If a structural reserve fuel condition is selected, it must be used as the... condition of paragraph (b)(1) of this section; and (3) The flutter, deformation, and vibration...

  7. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... applicable, may be selected. (b) If a structural reserve fuel condition is selected, it must be used as the... condition of paragraph (b)(1) of this section; and (3) The flutter, deformation, and vibration...

  8. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... applicable, may be selected. (b) If a structural reserve fuel condition is selected, it must be used as the... condition of paragraph (b)(1) of this section; and (3) The flutter, deformation, and vibration...

  9. Mixed fuel composition. [fuel oil, coal powder, and polymer

    SciTech Connect

    Igarashi, T.; Ukigai, T.; Yamamura, M.

    1982-07-13

    A mixed fuel composition comprises (A) a fuel oil, (B) a coal powder having an (H)/(C) ratio according to the coalification band method in the range of 0.4-0.75 and an (O)/(C) ratio in the range of 0.09-0.18 and (C) a partially amidated copolymer obtained by reacting a copolymer of a polymerizable, unsaturated hydrocarbon and maleic anhydride with an aliphatic amine of 2-36 carbon-atoms or a salt thereof as a stabilizer.

  10. Problems of minority fuel-oil dealers

    SciTech Connect

    Kalt, Joseph P.; Lee, Henry

    1980-01-01

    Claims that minority fuel oil dealers are hampered by severe impediments in the competition for contracts for oil, loan funds from banks, and assistance from the Federal government are explored. Possible remedial actions are recommended. The study focused on the metropolitan areas of Boston, Providence, and New York City. Following the introductory section, the evolving role of minority oil retailers in the Northeast market is reviewed in the second section. The third section examines the specific problems confronting minority dealers, including obtaining start-up capital and finding sources of supply. The fourth section addresses the problems associated with serving the inner-city markets. The fifth section introduces specific recommendations to meet the problems outlined.

  11. Conversion of waste plastics to fuel oil

    NASA Astrophysics Data System (ADS)

    Roaper, R. B.; Bhatia, J.

    1981-10-01

    Most of the plastics in use in the world today are produced from crude oil. This increased use of plastics results in an increased generation of discard and waste. In the case of thermoplastics, the types which constitute the bulk of the plastics in high volume use, it is theoretically possible to recycle discard and waste into virgin plastics. However, due to type incompatibility, and contamination with foreign materials, this approach has not proven economically feasible except for a smal quantity of the discard and waste stream. A pyrolysis process was successfully demonstrated which converted atactic polypropylene, APP, to fuel oil and a small fraction of fuel gas. In the current program, a commercial plant, with capacity of 17,000,000 lb/year feedstock, was designed for the pyrolysis of APP waste to fuel oil. In addition, the feasibility of this approach was extended to waste or discarded isotactic polypropylene, PP, and low density polyethylene, LDPE, through pilot plant work, process design, and economic considerations.

  12. Fish oil as an alternative fuel for internal combustion engines

    SciTech Connect

    Blythe, N.X.

    1996-12-31

    This paper presents the results of combustion studies performed with fish oil and fish oil/diesel fuel blends in a medium speed, two cycle, opposed piston engine. Performance and emissions results with blends from 10% to 100% fish oil in diesel fuel are presented. Combustion cycle analysis data comparisons are made between fish oil and diesel fuel operation. Component inspection results and analysis of deposits found in the engine after the tests are also presented. Finally, comparisons between fish oil and other biodiesel fuels are made.

  13. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aviation fuel and oil purchases. 855.18 Section... oil purchases. When a user qualifies under the provisions of AFM 67-1, vol. 1, part three, chapter 1, Air Force Stock Fund and DPSC Assigned Item Procedures, 5 purchase of Air Force fuel and oil may...

  14. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  15. PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES

    EPA Science Inventory

    The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...

  16. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  17. Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties.

    PubMed

    Dmytryshyn, S L; Dalai, A K; Chaudhari, S T; Mishra, H K; Reaney, M J

    2004-03-01

    Trans-esterification of four vegetable oils; canola oil, greenseed canola oil from heat-damaged seeds, processed waste fryer grease and unprocessed waste fryer grease, was carried out using methanol, and KOH as catalyst. The methyl esters of the corresponding oils were separated from the crude glycerol, purified, and characterized by various methods to evaluate their densities, viscosities, iodine values, acid numbers, cloud points, pour points and gross heat of combustion, fatty acid and lipid compositions, lubricity properties, and thermal properties. The fatty acid composition suggests that 80-85% of the ester was from unsaturated acids. Substantial decrease in density and viscosity of the methyl esters compared to their corresponding oils suggested that the oils were in their mono or di glyceride form. The lubricity of the methyl esters, when blended at 1 vol% treat rate with ISOPAR M reference fuel, showed that the canola methyl ester enhanced the fuel's lubricity number. From the analyses performed, it was determined that the ester with the most potential for being an additive or a substitute for diesel fuel is the canola methyl ester, whose physical and chemical characteristics are similar to diesel fuel. PMID:14643986

  18. Effect of sunflower oil on a diesel fuel system

    SciTech Connect

    Kucera, H.; Schunk, S.; Pratt, G.

    1982-05-01

    A typical farm tractor diesel fuel system (injection pump, fuel lines, filters and injectors) was tested on a test stand at various temperatures using sunflower oil, diesel fuel, and mixtures of the two as fuels. Measurements taken included fuel volume delivered by the injector line pressure at the injector, pressure drop across the filter, transfer pump pressure, and fuel injection timing. Results indicate that low percentages of sunflower oil may be used successfully in the system under summer conditions. Design changes to the system may be necessary for higher percentages of sunflower oil and cold conditions.

  19. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.

    PubMed

    Corbett, James J; Winebrake, James J

    2008-04-01

    Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70-85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies. PMID:18422040

  20. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

  1. Fuel oil cleaning as a risk reduction strategy for utility units firing residual fuel oils

    SciTech Connect

    Booth, R.B.

    1995-12-31

    The Clean Air Act Amendments of 1990 (CAAA) ushered in a new era in the regulatory battle to achieve the clean air goals of Congress and the Environmental Protection Agency (EPA). Title III of the CAAA addresses the new air toxic emissions program approach applicable to a wide range and variety of sources, including utility boilers firing residual fuel oils (RFO), while Title IX of the CAAA addresses the implementation of the pollution prevention program. Utilities which burn RFO may be interested in the concept of fuel cleaning as a means to reduce the emission of several fuel related toxics. Such a concept would clearly qualify as a pollution prevention technique. The concept of fuel cleaning has generated some interest with respect to the removal of a number of toxic and/or carcinogenic fuel bound metals. Fuel cleaning would shift the focus of the utilities from the need to employ flue gas treatment and removal technologies on large volumes of combustion exhaust gases, to fuel cleaning technologies applicable to a much smaller volume of fuel oil. The removal of fuel-bound metals prior to combustion would obviously lessen the emission of such metals and reduce the associated risk of such emissions to the surrounding population. This paper presents a very preliminary and general evaluation of the risks associated with RFO combustion for a baseline fuel case as well as a number of cases in which various metals are removed from the baseline oil. The risks are based on a conservative approach to both dispersion modeling and health risk impact assessment.

  2. Choline for neutralizing naphthenic acid in fuel and lubricating oils

    SciTech Connect

    Ries, D.G.; Roof, G.L.

    1986-07-15

    A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

  3. 46 CFR 97.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  4. 19 CFR 10.62 - Bunker fuel oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  5. 19 CFR 10.62 - Bunker fuel oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  6. 19 CFR 10.62 - Bunker fuel oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  7. 46 CFR 97.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  8. 46 CFR 78.17-75 - Requirements for fuel oil.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  9. 19 CFR 10.62 - Bunker fuel oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  10. 46 CFR 196.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  11. 46 CFR 97.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  12. 46 CFR 78.17-75 - Requirements for fuel oil.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  13. 46 CFR 196.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  14. 46 CFR 97.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  15. 46 CFR 97.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  16. 46 CFR 78.17-75 - Requirements for fuel oil.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  17. 19 CFR 10.62 - Bunker fuel oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  18. 46 CFR 78.17-75 - Requirements for fuel oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  19. 46 CFR 196.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  20. 46 CFR 196.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  1. 46 CFR 196.15-55 - Requirements for fuel oil.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  2. 46 CFR 78.17-75 - Requirements for fuel oil.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  3. Hydrocracking of the oils of Botryococcus braunii for transport fuels

    SciTech Connect

    Hillen, L.W.; Pollard, G.; Wake, L.V.; White, N.

    1982-01-01

    Hydrocarbon oils of the alga Botryococcus braunii, extracted from a natural ''bloom'' of the plant, have been hydrocracked to produce a distillate comprising 67% gasoline fraction, 15% aviation turbine fuel fraction, 15% diesel fuel fraction, and 3% residual oil. The distillate was examined by a number of standard petroleum industry test methods. This preliminary investigation indicates that the oils of B. braunii are suitable as a feedstock material for hydrocracking to transportation fuels;

  4. Hydrocracking of the oils of Botryococcus braunii to transport fuels

    SciTech Connect

    Hillen, L.W.; Pollard, G.; Wake, L.V.; White, N.

    1980-07-01

    Hydrocarbon oils of the alga Botryococcus braunii, extracted from a natural 'bloom' of the plant, have been hydrocracked to produce a distillate comprising 67% a petrol fraction, 15% an aviation turbine fuel fraction, 15% a diesel fuel fraction and 3% residual oil. The distillate was examined by a number of standard petroleum industry test methods. This preliminary investigation indicates that the oils of B. braunii are suitable as a feedstock material for hydrocracking to transport fuels.

  5. Effects of No. 2 fuel oil on common eider eggs

    USGS Publications Warehouse

    Albers, P.H.; Szaro, R.C.

    1978-01-01

    An oil spill near a breeding colony could result in the transfer of oil from the plumage and feet of incubating birds to their eggs. Microlitre amounts of No. 2 fuel oil were applied externally to common eider eggs in an island breeding colony in Maine. Clutches of eggs treated with 20 ?l of fuel oil had significantly greater embryonic mortality than the control clutches when they were examined 7 days after treatment. The results are similar to those of an earlier study of artificially incubated common eider eggs and indicate that nest site conditions do not affect embryotoxicity of No. 2 fuel oil.

  6. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-01-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels.

  7. Palm Oil

    MedlinePlus

    ... A deficiency, cancer, brain disease, aging; and treating malaria, high blood pressure, high cholesterol, and cyanide poisoning. ... oils, such as soybean, canola, or sunflower oil. Malaria. Some research suggests that dietary consumption of palm ...

  8. Thermal stabilized vegetable oil extended diesel fuels

    SciTech Connect

    Sweeney, W.M.; Lachowicz, D.R.

    1986-03-11

    A middle distillate fuel composition is described comprising: (a) a major portion of a middle distillate containing a hydrocarbon boiling in the middle distillate boiling range; (b) an extending portion of a vegetable oil; and (c) an effective thermal-stabilizing amount of a nitrogen-containing polymer prepared by reacting an ethylene/propylene copolymer with maleic anhydride, thereby forming a succinic anhydride, reacting the succinic anhydride, with an alcohol, thereby forming a succinate ester while leaving a portion of the succinic anhydride unreacted, and, reacting the succinate ester and the unreacted succinic anhydride with dimethylaminopropylamine, thereby forming a nitrogen-containing polymer.

  9. Comparing liquid-fuel costs: grain alcohol versus sunflower oil

    SciTech Connect

    Reining, R.C.; Tyner, W.E.

    1983-08-01

    This paper compares the technical and economic feasibility of small-scale production of fuel grade grain alcohol with sunflower oil. Three scales of ethanol and sunflower oil production are modeled, and sensitivity analysis is conducted for various operating conditions and costs. The general conclusion is that sunflower oil costs lass to produce than 'Lcohol. Government subsidies for alcohol, but not sunflower oil, could cause adoption of more expensive alcohol in place of cheaper sunflower oil. However, neither sunflower oil nor alcohol are competitive with diesel fuel. 7 references, 6 tables

  10. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Design fuel and oil loads. 25.343 Section 25.343 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.343 Design fuel and oil loads. (a)...

  11. Controlling H/sub 2/S in fuel oils

    SciTech Connect

    Roof, G.L.

    1989-09-19

    This patent describes the method of maintaining the H/sub 2/S content of the atmosphere above heavy sour fuel oils within acceptable limits. It comprises treating such fuel oils with an effective amount of choline base at a temperature below the decomposition temperature of choline base.

  12. Report on the Procurement and Delivery of Fuel Oil.

    ERIC Educational Resources Information Center

    Richardson, William M.; Baacke, Clifford M.

    Annual use of fuel oil for heating schools and other facilities of the Montgomery County (Maryland) Public Schools, Montgomery County Government, and Montgomery College exceeds four-million gallons. This report examines the processes by which purchases and distributions of fuel oil are made, makes recommendations based on the examination, and…

  13. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuel. 91.308 Section 91.308 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.308 Lubricating oil and test fuel....

  14. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  15. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-specification used oil fuel. 279.72... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner,...

  16. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-specification used oil fuel. 279.72... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner,...

  17. 46 CFR 125.115 - Oil fuel tank protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Not a tankship as defined in 46 CFR 30.10-67; and (2) In the service of oil exploitation. ... 46 Shipping 4 2014-10-01 2014-10-01 false Oil fuel tank protection. 125.115 Section 125.115... Oil fuel tank protection. (a) An OSV of at least 6,000 GT ITC (500 GRT if GT ITC is not assigned)...

  18. Hydrocracking of the oils of Botryococcus braunii to transport fuels

    SciTech Connect

    Hillen, L.W.; Pollard, G.; Wakr, L.V.; White, N.

    1982-01-01

    Hydrocarbon oils of the alga Botryococcus braunii, extracted from a natural ''bloom'' of the plant, have been hydrocracked to produce a distillate comprising 67% gasoline fraction, 15% aviation turbine fuel fraction, 15% diesel fule fraction, and 3% residual oil. The distillate was examined by a number of standard petroleum industry test methods. This preliminary investigation indicates that the oils of B. braunii are suitable as a feedstock material for hydrocracking to transport fuels.

  19. Rapid screening of biologically modified vegetable oils for fuel performance

    SciTech Connect

    Geller, D.P.; Goodrum, J.W.; Campbell, C.C.

    1999-08-01

    A process for the rapid screening of alternative diesel fuel performance was applied to analogues of genetically modified vegetable oils and a mixture with no. 2 diesel fuel. The oils examined contained 60 to 70% of low molecular weight, short-chain, saturated triglycerides compared to the 1 to 2% found in traditional vegetable oils. These oils have relatively low viscosity that is predicted to enhance their performance as alternative diesel fuels. The screening process utilizes an engine torque test sequence that accelerates the tendency of diesel fuels to coke fuel injectors, a key indicator of fuel performance. The results of the tests were evaluated using a computer vision system for the rapid quantification of injector coking. The results of the screen were compared to those using no. 2 diesel fuel as a baseline. Coke deposition from the modified vegetable oil analogues was not found to be significantly different than deposition from diesel fuel. Suggestions are made to guide further modification of vegetable oil biosynthesis for the production of alternative diesel fuel.

  20. Vegetable oil as an agricultural fuel for the Pacific Northwest

    SciTech Connect

    Peterson, C.L.; Auld, D.L.; Thomas, V.M.; Withers, R.V.; Smith, S.M.; Bettis, B.L.

    1981-02-01

    Five million barrels of liquid fuel are needed annually for the continued production of agricultural commoditiese on the 12.7 million cultivated acres in the Pacific Northwest Region. Because most energy intensive operations in the agricultural industry are done by diesel engines, the technology to produce a substitute for diesel must be developed and vegetable oil appears to hold great promise as an alternative fuel. The vegetable oils potential as an alternative liquid fuel in the region is described. Rapidly rising fuel costs could make this new fuel not only economically feasible but necessary to ensure the region's continued agriculture production.

  1. Research on Biodiesel and Vegetable Oil Fuels - Then and Now

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vegetable oil was used as diesel fuel for the first time in 1900 and the first biodiesel dates from the 1930's. Significant insights into fuel properties were already gained in those times. This article briefly discusses such results and relates the author's own recent work on biodiesel fuel pro...

  2. 46 CFR 30.10-48a - Oil fuel unit-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a...-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil fuel for delivery to an oil fired boiler, the equipment used for the preparation of heated oil fuel...

  3. 33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS...

  4. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  5. Controlling the effects of deteriorating fuel oil quality through oil-water emulsions: Final report

    SciTech Connect

    Not Available

    1987-01-01

    A greater yield of lighter fractions from a barrel of crude oil has resulted in an end product fuel oil with an increased concentration of larger molecular hydrocarbons (asphaltenes), increased metallic compounds (either natural or added), siliceous materials and tramp catalytic compounds. The combined effect of all of these materials results in ''deteriorating fuel oil quality.'' Both the initial and final phase of the project have been completed showing a marked reduction in particulate emissions and rate of opacity increase.

  6. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-02-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels. Performance and durability at low engine ratings are essentially the same as expected for operation on diesel fuel. However, at high engine ratings piston ring and cylinder linear wear are greater than expected for operation on diesel fuel. A laboratory program was successfully completed which resulted in a combustion system that would allow the higher rated prechamber engines to achieve normal life when burning 100% soybean oil. Fluid model tests utilizing high speed photography, single-cylinder engine tests utilizing fuel tracers, and a 200-hour multicylinder durability test were included. Extended endurance tests and experience with other vegetable oils are still required.

  7. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. Determination of Sulfur in Fuel Oils: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Graham, Richard C.; And Others

    1982-01-01

    Chromatographic techniques are used in conjunction with a Parr oxygen combustion bomb to determine sulfur in fuel oils. Experimental procedures and results are discussed including an emphasis on safety considerations. (SK)

  9. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  10. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  11. XAFS SPECTROSCOPY RESULTS FOR PM SAMPLES FROM RESIDUAL FUEL OIL

    EPA Science Inventory

    X-ray absorption fine structure (XAFS spectroscopy data were obtained from particulate samples produced by the combustion of residual fuel oil in a 732-kW fire-tube boiler at EPA's National Risk Management Research Laboratory in North Carolina. Residual oil flyash (ROFA) from fo...

  12. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGESBeta

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  13. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  14. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  15. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  16. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  17. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel...

  18. Fuel properties of bituminous coal and pyrolytic oil mixture

    NASA Astrophysics Data System (ADS)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  19. Distillate Fuel Oil Assessment for Winter 1996-1997

    EIA Publications

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  20. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  1. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  2. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    PubMed

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels. PMID:19464169

  3. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  4. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  5. Apparatus for reforming fuel oil wherein ultrasonic waves are utilized

    SciTech Connect

    Kunishio, M.; Shirai, K.; Takezi, H.

    1981-08-04

    An apparatus for reforming fuel oil wherein ultrasonic waves are utilized. The apparatus comprises a closed vessel, a rotary collector formed in a cylindrical shape, an inlet conduit for supplying fuel oil to be reformed into the vessel, an outlet conduit for delivering reformed oil from the vessel, and a ultrasonic irradiating device. The rotary collector has a layered mesh structure of a fine mesh, preferably of mesh size between 2 mu M and 20 mu m, mounted thereon so that sludge contained in the fuel oil to be reformed is collected on the layered mesh structure. One end of a horn connected to the ultrasonic wave irradiating device faces the layered mesh structure forming a small gap therebetween so that the sludge collected on the layered mesh structure is dissociated by the ultrasonic waves.

  6. Butter, margarine, and cooking oils

    MedlinePlus

    ... guidelines for healthier cooking: Use olive or canola oil instead of butter or margarine. Choose soft margarine ( ... harder stick forms. Choose margarines with liquid vegetable oil, such as olive oil, as the first ingredient. ...

  7. 29 CFR 779.361 - Classification of other fuel oil sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Sales of fuel oil (as differentiated from sales of butane and propane gases) are classified as retail.... 4, No. 5, and No. 6 fuel oil as these heavy oils are “special purpose” goods to which the retail... 29 Labor 3 2011-07-01 2011-07-01 false Classification of other fuel oil sales. 779.361 Section...

  8. 29 CFR 779.361 - Classification of other fuel oil sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Sales of fuel oil (as differentiated from sales of butane and propane gases) are classified as retail.... 4, No. 5, and No. 6 fuel oil as these heavy oils are “special purpose” goods to which the retail... 29 Labor 3 2010-07-01 2010-07-01 false Classification of other fuel oil sales. 779.361 Section...

  9. Thioether-functionalized vegetable oils: Metal-absorbing biobased ligands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils containing thioether groups have been synthesized and used to effectively remove a heavy metal ion from an aqueous solution. The use of thioether-functionalized corn oil (TF-corn oil) and thioether-functionalized canola oil (TF-canola oil) were both effective in the extraction of Ag+ ...

  10. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    PubMed

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels. PMID:18409618

  11. A technique to measure fuel oil viscosity in a fuel power plant.

    PubMed

    Delgadillo, Miguel Angel; Ibargüengoytia, Pablo H; García, Uriel A

    2016-01-01

    The viscosity measurement and control of fuel oil in power plants is very important for a proper combustion. However, the conventional viscometers are only reliable for a short period of time. This paper proposes an on-line analytic viscosity evaluation based on energy balance applied to a piece of tube entering the fuel oil main heater and a new control strategy for temperature control. This analytic evaluation utilizes a set of temperature versus viscosity graphs were defined during years of analysis of fuel oil in Mexican power plants. Also the temperature set-point for the fuel oil main heater output is obtained by interpolating in the corresponding graph. Validation tests of the proposed analytic equations were carried out in the Tuxpan power plant in Veracruz, Mexico. PMID:26652127

  12. Fuels and chemicals from novel seed oils

    SciTech Connect

    Morgan, R.P.; Shultz, E.B.

    1981-01-01

    A review with several refs. of oilseeds as fuel and chemical resources. Oilseeds offer the promise of supplementing and replacing exhaustible, nonrenewable resources for a variety of applications. However, they are not without their problems and, with few exceptions, they are not widely used for fuel and chemical feedstocks. Land-use issues, food-fuel trade-offs and economic issues loom as major barriers to widespread cultivation.

  13. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana.

    PubMed

    Reddy, Gadi V P; Tangtrakulwanich, Khanobporn; Miller, John H; Ophus, Victoria L; Prewett, Julie

    2014-04-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), has recently emerged as a serious pest of canola (Brassica napus L.) in Montana. The adult beetles feed on canola leaves, causing many small holes that stunt growth and reduce yield. In 2013, damage to canola seedlings was high (approximately 80%) in many parts of Montana, evidence that when flea beetles emerge in large numbers, they can quickly destroy a young canola crop. In the current study, the effectiveness of several biopesticides was evaluated and compared with two insecticides (deltamethrin and bifenthrin) commonly used as foliar sprays as well as seed treatment with an imidacloprid insecticide for the control of P. cruciferae under field conditions in 2013. The biopesticides used included an entomopathogenic nematode (Steinernema carpocapsae), two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), neem, and petroleum spray oils. The control agents were delivered in combination or alone in a single or repeated applications at different times. The plant-derived compound neem (azadirachtin), petroleum spray oil, and fatty acids (M-Pede) only showed moderate effect, although they significantly reduced leaf injuries caused by P. cruciferae and resulted in higher canola yield than the untreated control. Combined use of B. bassiana and M. brunneum in two repeated applications and bifenthrin in five applications were most effective in reducing feeding injuries and improving yield levels at both trial locations. This indicates that entomopathogenic fungi are effective against P. cruciferae, and may serve as alternatives to conventional insecticides or seed treatments in managing this pest. PMID:24772547

  14. Diesel Fuel from Used Frying Oil

    PubMed Central

    Buczek, Bronislaw

    2014-01-01

    New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908

  15. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    SciTech Connect

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  16. Sunflower seed oil: automotive fuel source. Final technical report

    SciTech Connect

    Denny, W.M.

    1984-01-01

    The intent of this portion of the project has to demonstrate the feasibility of utilizing sunflower seed oil as an alternate fuel for the spark ignition engine. The research was limited to small, one cylinder, air-cooled engines that are very common on the market place. Conventional fuels, such as gasoline, kerosene, diesel fuel blended with the sunflower oil were used. Sunfuel, sunflower oil, is difficult to procure and relatively expensive at approximately $4.00/gal. The research was unconcerned with how readily available or how competitively priced it was against petroleum products. All of the effort was to assume it was available and cost effective. We concentrated on making it burn in the heat engine and achieved it with marginal success. The review of the literature which was carried on concurrently with the research indicates several problems associated with producing Sunfuel.

  17. Molecular and systems approaches towards drought-tolerant canola crops.

    PubMed

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. PMID:26879345

  18. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  19. Combustion fundamentals of pyrolysis oil based fuels

    SciTech Connect

    Calabria, R.; Chiariello, F.; Massoli, P.

    2007-04-15

    The combustion behavior of emulsions of pyrolysis oil in commercial diesel oil was studied. The emulsions were different in terms of concentration and size of the dispersed phase. The study was carried out in a single droplet combustion chamber. The size of droplets varied between 400 {mu}m and 1200 {mu}m. They were suspended to a bare thermocouple and, hence, their temperature during combustion was measured. High-speed digital shadowgraphy was used to follow droplets evolution. The main features of the droplet combustion were recognized. The general combustion behavior of emulsions is intermediate with respect to pure PO and commercial diesel oil. Emulsion droplets underwent strong swelling and microexplosion phenomena. However, under the investigated conditions, the microexplosions were ineffective in destroying droplets. The size distribution of the dispersed PO droplets in the range 3-10 {mu}m was not effective either for determining the overall thermal behavior or for the efficacy of the microexplosions. The homogeneous combustion phase resulted identical for emulsions and diesel oil despite the emulsions composition (i.e., concentration of oil, surfactant and co-surfactant, as well as the size of the oil droplets in the emulsion) and the different structure of the flame and also its time and spatial evolution. (author)

  20. Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels

    SciTech Connect

    Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

    1982-05-01

    The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

  1. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  2. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  3. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels - 2

    SciTech Connect

    Humke, A.L.; Barsic, N.J.

    1981-01-01

    A naturally aspirated, direct injected diesel engine was used to evaluate the performance and emissions characteristics of a crude soybean oil, a 50 percent (by volume) mixture of crude soybean oil and no. 2 diesel fuel, and a degummed soybean oil. The data were compared with previous tests conducted on the same engine using diesel fuel, crude sunflower oil and a 50 percent mixture of crude sunflower oil and diesel fuel. 18 refs.

  4. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  5. 77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On July 5, 2012 (77 FR 39745), the U.S. Nuclear... ADAMS. II. Background On July 5, 2012 (77 FR 39745), the NRC published a notice of issuance...

  6. 78 FR 36278 - Fuel Oil Systems for Emergency Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Draft Regulatory Guide, DG-1282 on July 5, 2012 (77 FR 39745) for a 60-day public comment period. The public comment period was extended until September 28, 2012 (77 FR 48177). Public comments were received... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission....

  7. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  8. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....234 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank... operator of the vessel shall have the tanks cleaned out and gas freed as necessary to permit...

  9. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....234 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank... operator of the vessel shall have the tanks cleaned out and gas freed as necessary to permit...

  10. 76 FR 47423 - Aviation Fuel and Oil Operating Limitations; Policy Memorandum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Administration 14 CFR Part 33 Aviation Fuel and Oil Operating Limitations; Policy Memorandum AGENCY: Federal... the issuance of policy memorandum for Aviation Fuel and Oil Operating Limitations. This policy... (ECO) when evaluating compliance with the standards for aviation fuel and oil operating...

  11. View from southwest to northeast of fuel oil pump station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from southwest to northeast of fuel oil pump station, showing cooling towers to right. The tops of liquid nitrogen storage tanks A & B can be seen above the station roof. In the foreground, left to right, can be seen the covers for diesel fuel tanks no's 9 (structure #819), 8 (#818), 7 (#817), and 6 (#816). At right of center, next to the station, are no's 1 (#803) and 2 (#804). In the distant background are no's 3 (#806), 4 (#807), 5 (#808). No's 3 and 4 are 12,000-gallon tanks, the rest hold 50,000 gallons each - Stanley R. Mickelsen Safeguard Complex, Fuel Oil Pump Station, In Limited Access Area between Service Roads A & D, Nekoma, Cavalier County, ND

  12. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGESBeta

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  13. Save Money with This Fuel Oil Spec

    ERIC Educational Resources Information Center

    Fallon, Irving

    1978-01-01

    As part of an overall energy management program, the central steam plant at the University of Connecticut at Storrs has a fuel contract method in which vendors bid on a specification based on heating value as opposed to just volume. (Author/MLF)

  14. Biodiesel fuel production by transesterification of oils.

    PubMed

    Fukuda, H; Kondo, A; Noda, H

    2001-01-01

    Biodiesel (fatty acid methyl esters), which is derived from triglycerides by transesterification with methanol, has attracted considerable attention during the past decade as a renewable, biodegradable, and nontoxic fuel. Several processes for biodiesel fuel production have been developed, among which transesterification using alkali-catalysis gives high levels of conversion of triglycerides to their corresponding methyl esters in short reaction times. This process has therefore been widely utilized for biodiesel fuel production in a number of countries. Recently, enzymatic transesterification using lipase has become more attractive for biodiesel fuel production, since the glycerol produced as a by-product can easily be recovered and the purification of fatty methyl esters is simple to accomplish. The main hurdle to the commercialization of this system is the cost of lipase production. As a means of reducing the cost, the use of whole cell biocatalysts immobilized within biomass support particles is significantly advantageous since immobilization can be achieved spontaneously during batch cultivation, and in addition, no purification is necessary. The lipase production cost can be further lowered using genetic engineering technology, such as by developing lipases with high levels of expression and/or stability towards methanol. Hence, whole cell biocatalysts appear to have great potential for industrial application. PMID:16233120

  15. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increased emphasis on bio-diesel fuels, the influence of spring planting on the development of brown mustard (Brassica juncea cv. Arid), canola (B. napus cv. Hyola 401) and camelina (Camelina sativa cv. Boa) has become important. Field trials were conducted at Scottsbluff, NE, in 2005 and 2006 ...

  16. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  17. Oil price, government policies fuel industry's shift from U. S

    SciTech Connect

    Silas, C.J. )

    1991-05-27

    The world exploration outlook starts with the outlook for the price of oil. This paper reports that oil prices and government policies for fuel industries shift from the U.S. If we've learned anything in the past decade it's that we're not very good at predicting oil prices. We can build economic models of supply and demand but we can't build models for political events in the Middle East or the actions of someone like Saddam Hussein. As we look to 2000 our best estimate is that oil will remain at about $20 for the near term and move upward very gradually during the rest of the decade. Of course, rising demand eventually should cause oil prices to break out and show some strength. But not soon. We don't see oil prices overcoming inflation until the latter part of the decade. And we aren't expecting oil prices much above $25 in inflation adjusted terms until the next century.

  18. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    NASA Astrophysics Data System (ADS)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  19. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. Results In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. Conclusions Our findings indicate that

  20. Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program

    SciTech Connect

    Frankenfeld, J.W.; Taylor, W.F.

    1980-11-01

    The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

  1. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  2. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P < 0

  3. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it...

  4. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it...

  5. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it...

  6. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it...

  7. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it...

  8. Gasification of diesel oil in supercritical water for fuel cells

    NASA Astrophysics Data System (ADS)

    Pinkwart, Karsten; Bayha, Thomas; Lutter, Wolfgang; Krausa, Michael

    Experiments have demonstrated the reforming of hydrocarbons in supercritical water. The hydrocarbons were reformed in a continuously operated tubular V4A reactor. The influences of four different commercial steam reforming catalysts were analysed. The experimental results showed that n-decane can be converted to a hydrogen-rich gas. Furthermore, experiments with diesel oil showed the possibility of fuel conversion at low temperature with commercial steam reforming catalysts. Low temperatures and the use of catalysts lead to inhibition of coke formation during the process. The supercritical reforming offers the possibility of a new low temperature hydrocarbon conversion process to hydrogen for fuel cell applications.

  9. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola.

    PubMed

    Raman, H; Raman, R; Coombes, N; Song, J; Prangnell, R; Bandaranayake, C; Tahira, R; Sundaramoorthi, V; Killian, A; Meng, J; Dennis, E S; Balasubramanian, S

    2016-06-01

    Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes. PMID:26428711

  10. Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques.

    PubMed Central

    King, S. P.; Lunn, J. E.; Furbank, R. T.

    1997-01-01

    Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning. PMID:12223695

  11. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  12. Environmental effects of soil contamination by shale fuel oils.

    PubMed

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak. PMID:24865504

  13. Systems study of vegetable oils and animal fats for use as substitute and emergency diesel fuels

    SciTech Connect

    Lipinsky, E.S.; McClure, T.A.; Kresovich, S.; Otis, J.L.; Wagner, C.K.; Trayser, D.A.; Applebaum, H.R.

    1981-10-01

    The principal findings are described as follows: leading issues, economic considerations, production potential for oilseed crops, oilseed processing, energy balance, diesel fuel and engine considerations, vegetable oil emissions, and research and development needs. The following appendices are included: profiles of selected vegetable oils and animal fats, economic information on vegetable oils and animal fats, the production potential for selected oilseed crops, the economics of vegetable oil recovery, and diesel fuel specifications and vegetable oil properties.

  14. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  15. Alternative diesel fuel study on four different types of vegetable oils of Turkish origin

    SciTech Connect

    Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.

    1997-02-01

    Four different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade 2-D diesel fuel at a ratio of 20/80 (v/v). Blends were investigated in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. Vegetable oils, diesel fuel, and fuel blends were characterized according to standard test methods. It was found that for short-term use, the fuel blends have engine characteristics similar to the baseline diesel fuel. Fuel blends also display less smoke emissions than diesel fuel.

  16. Processing waste fats into a fuel oil substitute

    SciTech Connect

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    Waste fats have a high energy potential. They also contain impurities. For example, fats used for deep-frying contain high contents of solids, water, and chlorides. The process described in this paper removes the impurities by simple processing such as screening, washing, separating, drying, and filtering. The final quality of processed fat allows its use as a fuel oil substitute, and also as a raw material for chemical production.

  17. Fuel properties of Brassica juncea oil methyl esters blended with ultra-low sulfur diesel fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica juncea is a drought-tolerant member of the Brassicaceae plant family with high oil content and a short growing season that is tolerant of low quality soils. It was investigated as a feedstock for production of biodiesel along with evaluation of subsequent fuel properties, both neat and in b...

  18. No. 2 fuel oil decreases embryonic survival of great black-backed gulls

    USGS Publications Warehouse

    Coon, N.C.; Albers, P.H.; Szaro, R.C.

    1979-01-01

    Field study of the effects of No. 2 fuel oil applications to the eggs of great black-backed gulls on an island off the coast of Maine. Fuel oil applied in amounts of either 5 or 20 ul. All eggs opened 8 da later. Measured survival and estimated age of embryo at time of egg oiling.

  19. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72...

  20. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not...

  1. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not...

  2. Experimental plan for the fuel-oil study

    SciTech Connect

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  3. SIMPLE TEST FOR TOXICITY OF NUMBER 2 FUEL OIL AND OIL DISPERSANTS TO EMBRYOS OF GRASS SHRIMP, PALAEMONETES PUGIO

    EPA Science Inventory

    A simple test, using embryos of the grass shrimp Palaemonetes pugio, was employed to determine the toxicity of two commercial oil dispersants (Corexit 7664 and Corexit 9527) and toxicity of the water soluble fraction of Number 2 fuel oil (WSF oil) prepared with and without the ad...

  4. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  5. Management of Fresh Wheat Residue for Irrigated Winter Canola Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola is popular with many irrigated growers as it provides excellent disease control benefits for potatoes grown in rotation. There is a belief among irrigated canola growers that fresh wheat residue must be burned and the soil then heavily tilled before winter canola is planted. These grow...

  6. Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-(14)C] 18:3n-3 and [1-(14)C] 18:2n-6 in rainbow trout hepatocytes.

    PubMed

    Randall, K M; Drew, M D; Øverland, M; Østbye, T-K; Bjerke, M; Vogt, G; Ruyter, B

    2013-09-01

    The aim of this study was to investigate the effects of petroselinic acid, found in coriander oil, on the ability of rainbow trout hepatocytes to increase the production of eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) from [1-(14)C] α-linolenic acid (18:3n-3; ALA) and to reduce the production of arachidonic acid (20:4n-6; ARA) from [1-(14)C] 18:2n-6. Addition of coriander oil increased the production of 22:6n-3, from [1-(14)C] 18:3n-3, at the 0.5 and 1.0% inclusion levels and reduced the conversion of [1-(14)C] 18:2n-6 to 20:4n-6. β-Oxidation was significantly increased at the 1.5% inclusion level for [1-(14)C] 18:2n-6, however β-oxidation for [1-(14)C] 18:3n-3 only showed an increasing trend. Acetate, a main breakdown product of fatty acids (FA) via peroxisomal β-oxidation, decreased three-fold for [1-(14)C] 18:2n-6 and nearly doubled for [1-(14)C] 18:3n-3 when coriander was added at a 1.5% inclusion level. Acyl coenzyme A oxidase (ACO) enzyme activity showed no significant differences between treatments. Relative gene expression of ∆6 desaturase decreased with addition of coriander oil compared to the control. The addition of petroselinic acid via coriander oil to vegetable oil (VO) based diets containing no fishmeal (FM) or fish oil (FO), significantly increased the production of anti-inflammatory precursor 22:6n-3 (P=0.011) and decreased pro-inflammatory precursor 20:4n-6 (P=0.023) in radiolabelled hepatocytes of rainbow trout. PMID:23867781

  7. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  8. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  9. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. PMID:21184529

  10. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-09-01

    The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

  11. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... oils of low viscosity need not be equipped with fuel oil heaters, provided acceptable evidence...

  12. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... oils of low viscosity need not be equipped with fuel oil heaters, provided acceptable evidence...

  13. Performance of hybrid ball bearings in oil and jet fuel

    SciTech Connect

    Schrader, S.M.; Pfaffenberger, E.E. )

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technology necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized. 6 refs.

  14. Performance of hybrid ball bearings in oil and jet fuel

    NASA Astrophysics Data System (ADS)

    Schrader, Stephen M.; Pfaffenberger, Eugene E.

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technology necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized.

  15. 46 CFR 30.10-48a - Oil fuel unit-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of...

  16. 46 CFR 30.10-48a - Oil fuel unit-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of...

  17. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  18. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting.

    PubMed

    Riley, Brenden J; Lennard, Chris; Fuller, Stephen; Spikmans, Val

    2016-09-01

    A proof-of-concept spectroscopic method for crude and heavy fuel oil asphaltenes was developed to complement existing methods for source determination of oil spills. Current methods rely on the analysis of the volatile fraction of oils by Gas Chromatography (GC), whilst the non-volatile fraction, including asphaltenes, is discarded. By discarding the non-volatile fraction, important oil fingerprinting information is potentially lost. Ten oil samples representing various geographical regions were used in this study. The asphaltene fraction was precipitated from the oils using excess n-pentane, and analysed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Based on visual interpretation of FTIR spectra along with peak height ratio comparisons, all ten oil samples could be differentiated from one another. Furthermore, ATR-FTIR was not able to differentiate a weathered crude oil sample from its source sample, demonstrating significant potential for the application of asphaltenes in oil fingerprinting. PMID:27518037

  19. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    PubMed

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. PMID:27389459

  20. Fuel oil effect on the population growth, species diversity and chlorophyll (a) content of freshwater microalgae.

    PubMed

    El-Dib, M A; Abou-Waly, H F; El-Naby, A H

    2001-06-01

    Fresh water algae were subjected to different concentrations (0.03, 0.07, 0.12, 0.25 and 0.5 g x l(-1)) of aqueous extract of reference fuel oil (EPA, USA, API Oil No. 2, 38% aromatic, 1274). Significant decrease in Chlorophyll. (a) was observed as the concentration of fuel oil was increased. The EC50 value of fuel oil after 7 days was 0.29 g x l(-1). Total algal counts and growth rate decreased in response to the studied fuel oil. High diversity values in diatoms were observed in all treated aqueous cultures. High concentrations of fuel oil significantly decreased carbohydrate and protein contents of algal cells. PMID:11382351

  1. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOEpatents

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  2. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    PubMed

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil. PMID:11460320

  3. Effects of chronic ingestion of No. 2 fuel oil on mallard ducklings

    USGS Publications Warehouse

    Szaro, R.C.; Hensler, G.L.; Heinz, G.H.

    1981-01-01

    No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.

  4. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    SciTech Connect

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  5. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  6. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  7. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108...

  8. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108...

  9. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108...

  10. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108...

  11. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108...

  12. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  13. Will biodiesel derived from algal oils live up to its promise? A fuel property assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae have been attracting considerable attention as a source of biodiesel recently. This attention is largely due to the claimed high production potential of algal oils while circumventing the food vs. fuel issue. However, the properties of biodiesel fuels derived from algal oils have been only spa...

  14. Vegetable oils and animal fats for diesel fuels: a systems study

    SciTech Connect

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.; Appelbaum, H.R.; McClure, T.A.; Otis, J.L.; Trayser, D.A.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production of triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)

  15. Cuphea oil as a potential biodiesel feedstock to improve fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the approaches to improving the fuel properties of biodiesel, a fuel derived from vegetable oils, animal fats, or other triacylglycerol-containing materials, is to use a feedstock with an inherently different fatty acid profile than most common feedstocks such as commodity vegetable oils. Cup...

  16. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each... vessel shall have the tanks cleaned out and gas freed as necessary to permit internal examination of the... exceed five years. (b) Integral non-double-bottom fuel oil tanks need not be cleaned out and...

  17. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each... vessel shall have the tanks cleaned out and gas freed as necessary to permit internal examination of the... exceed five years. (b) Integral non-double-bottom fuel oil tanks need not be cleaned out and...

  18. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... adding fuels and oils to type certificates as engine, aircraft, or auxiliary power unit (APU) operating... adding fuels and oils as engine, aircraft, or APU operating limitations. These established methods..., aircraft, or APU operating limitations in lieu of the methods described in the AC. However, the EPD...

  19. Algae Oil: A Sustainable Renewable Fuel of Future

    PubMed Central

    Paul Abishek, Monford; Prem Rajan, Anand

    2014-01-01

    A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come. PMID:24883211

  20. Algae oil: a sustainable renewable fuel of future.

    PubMed

    Paul Abishek, Monford; Patel, Jay; Prem Rajan, Anand

    2014-01-01

    A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come. PMID:24883211

  1. Engineering evaluation of plant oils as diesel fuel. Final report. Vol. I

    SciTech Connect

    Engler, C.R.; Johnson, L.A.; Lepori, W.A.; Yarbrough, C.M.

    1983-09-13

    This project includes evaluations of cottonseed oils and sunflower oil ethyl esters in both direct injection and precombustion chamber design diesel engines. It is one part of a major research program at Texas A and M University to study the technical feasibility of using plant oils or animal fats as alternative diesel fuels. Goals for the overall program are to define physical and chemical characteristics and optimum processing methods required for high quality alternative diesel fuels from plant or animal oils and to investigate effects of engine design on alternative fuel performance. This report describes work done under the current contract which includes evaluations of cottonseed oils and sunflower oil interesterified with ethanol as alternative diesel fuels. 15 figures, 18 tables.

  2. Influence of canola and sunflower diet amendments on cattle feedlot manure.

    PubMed

    Hao, Xiying; Mir, Priya S; Shah, Mohammad A; Travis, Greg R

    2005-01-01

    Cattle (Bos taurus) producers can replace a part of the traditional diet of barley (Hordeum vulgare L.) grain/silage with sunflower (Helianthus annus L.) seeds or canola meal (Brassica napus L.)/oil to enhance conjugated linoleic acids (CLA) content in milk and meat for its positive health benefits. The objective of this study is to investigate the effects of feeding sunflower or canola to finishing steers on cattle manure chemical properties and volatile fatty acid (VFA) content. The control diet contained 84% rolled barley and 15% barley silage, which provided only 2.6% lipid. The other six treatments had 6.6 to 8.6% lipid delivered from sources such as hay, sunflower seed (SS), canola meal/oil, and SS forage pellets. Manure samples (a mixture of cattle urine, feces, and woodchip bedding materials) were collected and analyzed after cattle had been on these diets for 113 d. The dietary source and level of lipid had no effect on organic N and nitrate N content in manure, but significantly affected ammonia N and VFA. Inclusion of SS forage pellets, hay, or canola meal/oil in cattle diets had no significant impact on manure characteristics, but SS significantly reduced the pH and increased propionic, isobutyric, and isovaleric content. In addition, N loss after excretion (mainly from urine N) increases with the pH and N levels in both feed and manure. The combination of SS with barley silage resulted in a lower VFA and NH3 content in manure and should be a more attractive option. To better manage N nutrient cycles and reduce NH3 related odor problems, feed and manure pH should be one of the factors to consider when determining feed mix rations. PMID:15998867

  3. Performance, durability and low temperature evaluation of sunflower oil as a diesel fuel extender

    SciTech Connect

    Baranescu, R.A.; Lusco, J.J.

    1982-01-01

    The paper presents the results of a research project to evaluate performance and durability of direct injection turbocharged diesel engines using sunflower oil and blends thereof. Alcaline refined sunflower oil and three different blends of sunflower oil and diesel fuel were comparatively tested against No. 2 diesel fuel for: physical and chemical characteristics, fuel injection system performance, short term engine performance, propensity to nozzle deposits buildup, limited durability operation and low temperature starting capability. Results are presented for the various phases of the project and correlations between the fuel characteristics and engine accept-ability are discussed. 19 figures, 2 tables.

  4. Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals

    PubMed Central

    Asaduzzaman, M.; Pratley, James E.; An, Min; Luckett, David J.; Lemerle, Deirdre

    2015-01-01

    Allelopathy is one crop attribute that could be incorporated in an integrated weed management system as a supplement to synthetic herbicides. However, the underlying principles of crop allelopathy and secondary metabolite production are still poorly understood including in canola. In this study, an allelopathic bioassay and a metabolomic analysis were conducted to compare three non-allelopathic and three allelopathic canola genotypes. Results from the laboratory bioassay showed that there were significant differences among canola genotypes in their ability to inhibit root and shoot growth of the receiver annual ryegrass; impacts ranged from 14% (cv. Atr-409) to 76% (cv. Pak85388-502) and 0% (cv. Atr-409) to 45% (cv. Pak85388-502) inhibition respectively. The root length of canola also differed significantly between genotypes, there being a non-significant negative interaction (r = -0.71; y = 0.303x + 21.33) between the root length of donor canola and of receiver annual ryegrass. Variation in chemical composition was detected between organs (root extracts, shoot extracts) and root exudates and also between canola genotypes. Root extracts contained more secondary metabolites than shoot extracts while fewer compounds were recorded in the root exudates. Individual compound assessments identified a total of 14 secondary metabolites which were identified from the six tested genotypes. However, only Pak85388-502 and Av-opal exuded sinapyl alcohol, p-hydroxybenzoic acid and 3,5,6,7,8-pentahydroxy flavones in agar growth medium, suggesting that the synergistic effect of these compounds playing a role for canola allelopathy against annual ryegrass in vitro. PMID:25620971

  5. Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals.

    PubMed

    Asaduzzaman, M; Pratley, James E; An, Min; Luckett, David J; Lemerle, Deirdre

    2014-01-01

    Allelopathy is one crop attribute that could be incorporated in an integrated weed management system as a supplement to synthetic herbicides. However, the underlying principles of crop allelopathy and secondary metabolite production are still poorly understood including in canola. In this study, an allelopathic bioassay and a metabolomic analysis were conducted to compare three non-allelopathic and three allelopathic canola genotypes. Results from the laboratory bioassay showed that there were significant differences among canola genotypes in their ability to inhibit root and shoot growth of the receiver annual ryegrass; impacts ranged from 14% (cv. Atr-409) to 76% (cv. Pak85388-502) and 0% (cv. Atr-409) to 45% (cv. Pak85388-502) inhibition respectively. The root length of canola also differed significantly between genotypes, there being a non-significant negative interaction (r = -0.71; y = 0.303x + 21.33) between the root length of donor canola and of receiver annual ryegrass. Variation in chemical composition was detected between organs (root extracts, shoot extracts) and root exudates and also between canola genotypes. Root extracts contained more secondary metabolites than shoot extracts while fewer compounds were recorded in the root exudates. Individual compound assessments identified a total of 14 secondary metabolites which were identified from the six tested genotypes. However, only Pak85388-502 and Av-opal exuded sinapyl alcohol, p-hydroxybenzoic acid and 3,5,6,7,8-pentahydroxy flavones in agar growth medium, suggesting that the synergistic effect of these compounds playing a role for canola allelopathy against annual ryegrass in vitro. PMID:25620971

  6. Effects of No. 2 fuel oil on hatchability of marine and estuarine bird eggs

    USGS Publications Warehouse

    White, D.H.; King, K.A.; Coon, N.C.

    1979-01-01

    Eggs of Louisiana herons, sandwich terns, and laughing gulls were oiled with either 0, 5, or 20 microliter of No. 2 fuel oil in the field and in the laboratory. After 5 days of natural incubation, field-oiled and control eggs were opened and embryonic mortality was determined. No. 2 fuel oil produced 61% mortality in Louisiana heron eggs, 56% in sandwich tern eggs, and 83% in laughing gull eggs. Hatching success of artificially incubated, oiled eggs appeared to be lower than in control eggs. However, stress during shipment to the laboratory and problems within the incubator probably contributed to reduced hatchability in both groups.

  7. Effects of chronic ingestion of No. 2 fuel oil on mallard ducklings

    SciTech Connect

    Szaro, R.C.; Hensler, G.; Heinz, G.H.

    1981-05-01

    No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.

  8. Economic implications for the potential development of a vegetable oil fuel industry

    SciTech Connect

    Dunn, J.R.; Schneeberger, K.C.

    1982-01-01

    The purposes in this paper were to (1) summarize the domestic and international oilseed situation with emphasis on trends which will affect the long-run supply and demand for oilseeds; (2) describe the existing oilseeds processing sector so as to focus on the existing linkage between food and potential fuel markets for vegetable oils; and (3) present a basic framework for analyzing the supply, demand, and price effects of significant use of vegetable oil as a fuel. The major determinants of demand worldwide for vegetable oils are price, incomes, and population. Government programs of taxes, quotas, or subsidies could affect vegetable oil supply and/or demand. International trade practices could change; altering the flow of oils between markets. The likely impact of a developing vegetable oils fuel market would be to increase vegetable oil prices. The size of the increase will depend on how large the fuel market demand ultimately becomes, and thus on the price of diesel fuel. It will also depend on how well oilseed production can be adapted, technologically, and in acreage, to meet the needs of a large fuels market while maintaining its critical role in the foods sector. There are many uncertainties in assessing the economic picture for vegetable oil use as a diesel fuel substitute. 1 figure, 3 tables. (DP)

  9. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  10. Physicochemical characterizations of nano-palm oil fuel ash

    SciTech Connect

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  11. New diagnostic ratios based on phenanthrenes and anthracenes for effective distinguishing heavy fuel oils from crude oils.

    PubMed

    Zhang, Haijiang; Wang, Chuanyuan; Zhao, Ruxiang; Yin, Xiaonan; Zhou, Hongyang; Tan, Liju; Wang, Jiangtao

    2016-05-15

    The heavy fuel oils (HFOs) and crude oils are the main oil types in the marine oil spill accidents in China. It is usually a challenge to distinguish the HFOs from crude oils due to the highly similar physicochemical characteristics. In this paper, the distributions of phenanthrene (Phe), anthracene (Ant), methyl-phenanthrene (MP) and methyl-anthracene (MA) in hundreds of HFOs and crude oils samples which were collected from all over the world were characterized. Nine new diagnostic indexes, such as Ant/(Ant+Phe) and other eight diagnostic ratios based on the MP isomers and MA, were developed for effective distinguishing HFOs from crude oils. The histogram with normal fit plots, the double ratio plots and Bayes discriminant analysis (BDA) method were employed to illustrate the effectiveness of the new diagnostic indexes. BDA model based on nine new diagnostic indexes demonstrated high precision with discriminant ratio which lay between 93.92% and 99.32%. PMID:27016330

  12. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  13. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Biomass alternative fuels program. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons. An engine test plan was developed and implemented in this project. Data provide a preliminary indication that the blend containing one-third degummed soybean oil and two-thirds No. 2 diesel oil performed satisfactorily. Long term operation on the 50-50 blend is questionable. Detailed data and observations appear in the body of the report. The study also presents detailed engineering, financial, marketing, management and implementation plans for production of the proposed fuel blend, as well as a complete analysis of impacts. 4 references, 55 figures, 56 tables.

  14. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  15. Long term performance of a sunflower oil/diesel fuel blend

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-05-01

    The purpose of this project was to study the effects of a 50 percent blend by volume of sunflower oil in No. 2 diesel fuel used in a diesel test engine of current design. Specifically, this investigation covered the effect of the fuel blend on engine durability and the functioning of the different fuels in the diesel engine injection system.

  16. OXIDATIVE STABILITY OF BIODIESEL/JET FUEL BLENDS BY OIL STABILITY INDEX (OSI) ANALYSIS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, an alternative fuel made by transesterification of vegetable oil with methanol, is becoming more readily available for use in blends with conventional diesel fuel for transportation and other "off-road" applications. One such off-road application is in blends with aviation fuels to impro...

  17. Alcohol fuels tax incentives. A summary: alcohol fuels provisions of the Crude Oil Windfall Profit Tax Act

    SciTech Connect

    Not Available

    1980-01-01

    This document presents tax incentive information pertaining to alcohol fuels production as provided by the Crude Oil Windfall Profits Tax Act of 1980. Significant tax incentives for producers, blenders, marketers, and users of alcohol fuels are included. Discussed are: the 4% excise taxes exemption; income tax credits; energy investment tax credit for biomass; alcohol fuel plant operating permits; tax exempt bonds for alcohol fuel from solid wastes; state financing of renewable energy property; the study of imported alcohol; and annual reports on alcohol fuels.

  18. Genomic Prediction of Testcross Performance in Canola (Brassica napus).

    PubMed

    Jan, Habib U; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A; Snowdon, Rod J

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  19. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    PubMed Central

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  20. Properties and performance testing with blends of biomass alcohols, vegetable oils and diesel fuel

    SciTech Connect

    Vinyard, S.; Hawkins, L.; Renoll, E.S.; Bunt, R.C.; Goodling, J.S.

    1982-01-01

    This paper is a presentation of results from three related efforts to determine the technical feasibility of using alcohols and vegetable oils blended with Diesel oil as fuel for unmodified compression ignition engines. Several different vegetable oils were successfully tested in a single cylinder engine. Sunflower oil was blended from 50% to 80% by volume with Diesel fuel and used in a multicylinder engine. Thermophysical property data were gathered on pure and blended fuels and are reported. A spray parameter, epsilon, was found which would predict the necessary change in valve opening pressure to render the atomization of the new fuel similar to that for which the injection system was designed. Engine testing showed that fuel consumption was substantially reduced upon setting the injectors at the new VOP. 2 figures, 1 table.

  1. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    NASA Astrophysics Data System (ADS)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  2. Chemical fate of Bunker C fuel oil in a subtropical marine environment

    SciTech Connect

    Wetzel, D.L.; Van Vleet, E.S.

    1996-12-31

    On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitats north of the mouth of Tampa Bay.

  3. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  4. Incorporation of crude and fuel oil into salt-and freshwater ice

    SciTech Connect

    Taylor, S.; Perron, N.

    1995-02-01

    North Slope Crude, no. 2 fuel oil, and vegetable oil were each released under columnar freshwater and saltwater ice grown in a laboratory coldroom. Because the thermal conductivity of all the oils is lower than that of water or ice, thinner ice grew under the oil and resulted in a concave ice/water interface. Both the fresh and saline ice encapsulated the oils, but the saline ice did so more slowly. Thin sections of the ice blocks containing the crude and fuel oils show how the columnar ice crystals bend around and under the oil patches. The movement of the vegetable oil during melting was photographed, and spectral reflectance measurements of the ice surface were made to determine if the oil could be detected remotely. Although we could detect the presence of oil under 10 cm of ice, under field conditions the optical detectability of oil will depend upon the depth of the oil within the ice, the type of ice, and the contrast between the under-ice oil and the background against which it is being viewed.

  5. Effect of N on yield and chemical profile of winter canola in Mississippi.

    PubMed

    Zheljazkov, Valtcho D; Vick, Brady; Ebelhar, Wayne; Buehring, Normie; Astatkie, Tess

    2013-01-01

    There is increased interest in winter canola as an oilseeds crop for production of oil or biodiesel in the southeastern United States, but research has been limited. The objective of this study was to evaluate the effect of N (0, 60, 120, 180 kg N ha⁻¹) on productivity, oil content and oil composition of winter canola grown for two cropping seasons at three locations in Mississippi (Stoneville, and two locations at Verona: Verona upland silt loam, Verona-SL and Verona upland clay, Verona-C). Overall, increasing N application rates resulted in corresponding stepwise increase in seed yields in the two locations at Verona, whereas yields in the 60 and 120 kg N ha⁻¹ at Stoneville were not different from each other. Seed yields reached 3,383 and 3,166 kg ha⁻¹ in the 180 kg N treatment at Verona and at Stoneville, respectively. Oil yields were also increased with increasing N rates, however, oil yields at 60 and 120 kg N ha⁻¹ at Verona-C were not different from each other. Oil yields in the 180 kg N ha⁻¹ treatment reached 1,363 and 1,151 kg ha⁻¹ at Verona-SL and Stoneville, respectively. At Verona-SL location, higher N rates resulted in increased stearic acid compared to the lower N rates. However, the reverse effect was observed on the concentration of linolenic acid, which was lower at higher N rates. Also at that location, N application reduced the concentration of linoleic acid. At the Verona-C location, N application at 180 kg N ha⁻¹ reduced concentration of linolenic acid relative to the other fertility treatments. Overall, the increase in N application rates resulted in greater yield (kg FA ha⁻¹) of palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosanoic, behenic, lignoceric and nervonic acids in all three locations, with N at 0 kg ha⁻¹ providing the lowest yields and N at 180 kg ha⁻¹ providing the highest yields. Winter canola production in the hot humid environment of southeastern United States can be

  6. Biodiesel from rapeseed oil of Turkish origin as an alternative fuel

    SciTech Connect

    Karaosmanoglu, F.; Akdag, A.; Cigizoglu, K.B.

    1996-12-01

    The crude rapeseed oil was transesterified using methanol and using sodium hydroxide as a catalyst, and the varieties affecting the monoester yield were investigated. The methyl ester fuel called Biodiesel, produced under the determined optimum reaction conditions, was tested according to the standard methods for its fuel properties. Biodiesel fuel properties were found to be very close to those of Grade No. 2-D diesel fuel. 57 refs., 5 figs., 3 tabs.

  7. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  8. Chemical composition of tall oil-based cetane enhancer for diesel fuels

    SciTech Connect

    Feng, Y.; Wong, A.; Monnier, J.

    1993-12-31

    Tall oil is a co-product of the manufacture of kraft softwood pulp. The principal constituents of tall oil are unsaturated C{sub 18} fatty acids, resin acids and unsaponifiables such as diterpenic alcohols/aldehydes. Tall oil has been shown to be an economical feedstock for the manufacture of cetane enhancer for diesel fuels, using the proprietary CANMET (Canada Centre for Mineral and Energy Technology) technology. Under a joint R&D project between Arbokem Inc./BC Chemicals Ltd. and CANMET, pilot plant tests were conducted recently at the CANMET Energy Research Labs. in Ottawa. The results showed that tall oil could by hydroprocessed efficiently to yield a valuable fuel blending agent. When this product was mixed with conventional diesel fuel, the cetane number of the diesel fuel increased linearly with the addition of the product. Chemical analysis including chromatography-mass spectrometry has confirmed high conversion of tall oil components into straight-chain alkanes. A small amount of cyclic hydrocarbons and sulphur components were present in the tall oil-based diesel enhancer. Preliminary results indicate that this type of cetane enhancer would provide additional technical benefits. The low aromatics content of the tall oil-based cetane enhancer would significantly reduce aromatics in the final diesel fuel blend. Diesel engines operating on such fuel blends would have a lower propensity to form particulates and NO{sub x}.

  9. Microbial deterioration of marine diesel fuel from oil shale. Final report

    SciTech Connect

    May M.E.; Neihof, R.A.

    1981-04-09

    Recurring problems with conventional ship fuels caused by microorganisms have prompted an evaluation of the susceptibility of a recently produced synthetic diesel fuel from oil shale to microbial contamination. The growth of typical microbial contaminants of hydrocarbon fuels has been determined over a four month period in two-phase systems consisting of fresh and sea water media overlaid with fuel. Anaerobic, sulfate-reducing bacteria and a yeast (Candida sp.) grew as well in the synthetic fuel as in fuel derived from petroleum. Growth of certain strains of the fungus, Cladosporium resinae, was initially delayed in the synthetic diesel fuel but after 8-13 weeks the growth was generally comparable to that in petroleum-derived fuel. This finding indicated that C. resinae may require time for adaptation to constituents in the oil shale fuel. Ultimately, however, it appears that the synthetic diesel fuel is likely to be as susceptible to microbial contamination as conventional diesel fuel has been. Experience acquired with available synthetic fuels shows that their ability to support growth of microbial contaminants varies widely depending on both the source of crude oil and the refining processes used.

  10. The use of saponified vegetable oil distillates/ethanol microcellular solution as a diesel fuel

    SciTech Connect

    Savage, L.D.; Birell, S.; Goering, C.E.

    1988-01-01

    Vegetable oils are considered possible replacement fuels for diesel engines; however, past research has shown that long term engine durability is adversely affected by the use of these fuels. Most researchers have attempted to reduce the problems associated with vegetable oil fuels either by the formation of vegetable oil/diesel blends or the esterfication of the vegetable oils. In this investigation of an alternative approach, the performance of saponified soybean oil/aqueous ethanol microcellular solutions were tested in a single-cylinder, direct injection, air-cooled diesel engine. The products of the pyrolytic distillation of crude soybean oil were mixed with 150 proof ethanol in the ratio of 4:1 by volume and saponified with anhydrous ammonia gas. This ''parent fuel'' was then diluted with 150 proof ethanol to obtain two test fuels, one with 30 percent ethanol concentration and the other with 40 percent ethanol concentration. The fuels were used in the engine under various loads at two speeds, and the performance was compared to the performance using No. 2-D commercial diesel fuel.

  11. Effects of No. 2 Fuel Oil, Nigerian Crude Oil, and Used Crankcase Oil on Attached Algal Communities: Acute and Chronic Toxicity of Water-Soluble Constituents

    PubMed Central

    Bott, Thomas L.; Rogenmuser, Kurt

    1978-01-01

    Water extracts of a no. 2 fuel oil, a Nigerian crude oil, and used crankcase oil were examined for their effects on algal communities in experiments lasting several weeks conducted under near-natural conditions. No. 2 fuel oil extracts depressed algal biomass (chlorophyll a) and resulted in blue-green algal (cyanobacterial) dominance and decreased diatom occurrence. Changes in concentrations of chlorophyll c, which was specific for diatoms in this work, and phycocyanin, which was specific for blue-green algae, confirmed the observations. Used crankcase oil extracts also depressed biomass, but Nigerian crude extracts did not, and both these extracts had less effect on community composition than did no. 2 fuel oil extracts. Photosynthetic 14C incorporation was both stimulated and depressed by exposure to extracts with hydrocarbon concentrations 0.038 to 0.124 mg/liter. Short-term exposure to higher concentrations (1.17 to 15.30 mg of hydrocarbons per liter) of no. 2 fuel oil extracts depressed photosynthetic 14C incorporation by Vaucheria-dominated communities in all tests but one. Toxicity was greater from extracts prepared in the light than from extracts prepared in the dark. PMID:16345329

  12. Effects of no. 2 fuel oil, nigerian crude oil, and used crankcase oil on attached algal communities: acute and chronic toxicity of water-soluble constituents.

    PubMed

    Bott, T L; Rogenmuser, K

    1978-11-01

    Water extracts of a no. 2 fuel oil, a Nigerian crude oil, and used crankcase oil were examined for their effects on algal communities in experiments lasting several weeks conducted under near-natural conditions. No. 2 fuel oil extracts depressed algal biomass (chlorophyll a) and resulted in blue-green algal (cyanobacterial) dominance and decreased diatom occurrence. Changes in concentrations of chlorophyll c, which was specific for diatoms in this work, and phycocyanin, which was specific for blue-green algae, confirmed the observations. Used crankcase oil extracts also depressed biomass, but Nigerian crude extracts did not, and both these extracts had less effect on community composition than did no. 2 fuel oil extracts. Photosynthetic C incorporation was both stimulated and depressed by exposure to extracts with hydrocarbon concentrations 0.038 to 0.124 mg/liter. Short-term exposure to higher concentrations (1.17 to 15.30 mg of hydrocarbons per liter) of no. 2 fuel oil extracts depressed photosynthetic C incorporation by Vaucheria-dominated communities in all tests but one. Toxicity was greater from extracts prepared in the light than from extracts prepared in the dark. PMID:16345329

  13. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

  14. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin. PMID:17303316

  15. Regional assemblages of Lygus (Heteroptera: Miridae) in Montana canola fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweep net sampling of canola (Brassica napus L.) was conducted in 2002 and 2003 to determine Lygus (Heteroptera: Miridae) species composition and parasitism levels in four regions of Montana. Regardless of region or seasonal change, Lygus elisus (Van Duzee) was the dominant species in all canola fi...

  16. Parasitism of aphids in canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola, Brassica napus L., production in Oklahoma has increased from essentially 0 ha in 2001 to 40,500 ha in 2011, and acreage is expected to continue to increase. Three aphid species typically infest canola fields in central Oklahoma, the turnip aphid Lypaphis erysimi (Kaltenbach), the cab...

  17. 7 CFR 810.301 - Definition of canola.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Canola-Terms Defined § 810.301 Definition of canola. Seeds of...

  18. 7 CFR 810.301 - Definition of canola.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Canola-Terms Defined § 810.301 Definition of canola. Seeds of...

  19. Conversion of crop seed oils to jet fuel and associated methods

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  20. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  1. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  2. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... overhauled while the other is in service. At least two fuel oil heaters of approximately equal capacity must... 46 Shipping 2 2011-10-01 2011-10-01 false Burner fuel-oil service systems. 56.50-65 Section...

  3. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... overhauled while the other is in service. At least two fuel oil heaters of approximately equal capacity must... 46 Shipping 2 2010-10-01 2010-10-01 false Burner fuel-oil service systems. 56.50-65 Section...

  4. Adapting CROPGRO for Simulating Spring Canola Growth with Both RZWQM2 and DSSAT 4.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, canola (Brassica napus L.) is gaining importance as a potential feedstock in biodiesel production industries, increasing the demand for canola production acreage. Agricultural system models that simulate canola growth and yield will help to assess the feasibility of canola production unde...

  5. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  6. Effect of molybdenum-containing, oil-soluble friction modifiers on engine fuel economy and gear oil efficiency

    SciTech Connect

    Greene, A.B.; Risdon, T.J.

    1981-01-01

    A selection of molybdenum-containing, oil-soluble friction modifier additives was tested comparatively in engine dynamometer tests on gasoline and diesel engines; the tests measured variations in brake specific fuel consumption with speed. A similar selection of molybdenum-containing additives was evaluated in terms of transmission efficiency in a hypoid-gear, rear-axle test rig; the baseline oil was a formulated SAE-75W gear oil. Bench-scale friction tests utilizing the Press-Fit, Timken and Four-Ball test devices were employed to establish a correlation between small-scale rigs and full-scale engine tests. 13 refs.

  7. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  8. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  9. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  10. PARTITIONING OF NO. 2 FUEL OIL IN CONTROLLED ESTUARINE ECOSYSTEMS, SEDIMENTS AND SUSPENDED PARTICULATE MATTER

    EPA Science Inventory

    To investigate the transport and incorporation of water-borne oil to sediments, no. 2 fuel oil was added as a dispersion in semiweekly doses to three controlled estuarine ecosystems. Samples of suspended particulate matter and sediments were analyzed by gas chromatography for sat...

  11. Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified using various mixtures of methanol and ethanol at a constant molar ratio of alcohol to oil of 12:1 in the presence of 1 wt% potassium hydroxide catalyst at 30 degrees C for 60 min. The effect of mixtures of methanol and ethanol on percentage yields and fuel propertie...

  12. PROCESS TECHNOLOGY BACKGROUND FOR ENVIRONMENTAL ASSESSMENT/SYSTEMS ANALYSIS UTILIZING RESIDUAL FUEL OIL

    EPA Science Inventory

    The report gives results of environmental and economic assessments of processes using residual oil to generate electricity. Emphasis was on three commercially operating processes: flue gas desulfurization (FGD) of the tail gas from fuel oil burning boilers; removal of the sulfur ...

  13. Simple test for toxicity of number 2 fuel oil and oil dispersants to embryos of grass shrimp, palaemonetes pugio

    SciTech Connect

    Fisher, W.S.; Foss, S.S.

    1993-01-01

    A simple test, using embryos of the grass shrimp Palaemonetes pugio, was employed to determine the toxicity of two commercial oil dispersants (Corexit 7664 and Corexit 9527) and toxicity of the water soluble fraction of Number 2 fuel oil (WSF oil) prepared with and without the addition of the dispersants. Tests revealed P. pugio embryos were similar to previously measured life stages in their sensitivity to WSF oil prepared without dispersants. They were approximately ten times more sensitive to water soluble fractions of dispersed oil, which may have been due to the approximately ten-fold increases in total hydrocarbons measured analytically. Both temperatures and salinity of the sea water affected toxicity of WSF prepared with dispersants, the most obvious effect being earlier onset of mortalities at higher temperatures. (Copyright (c) 1993 Pergamon Press Ltd.)

  14. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... oil- and gas-related hydraulic fracturing (HF) using diesel fuels where the U.S. Environmental... Safe Drinking Water Act (SDWA) and regulations regarding UIC permitting of oil and gas...

  15. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  16. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  17. Effect of processing method on in sacco ruminal degradability of organic matter and nitrogen from canola seeds and in vitro intestinal nitrogen digestion of the in sacco residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An emerging crop on the Southern Plains of the United States is canola (Brassica napus L.), of which annual production has nearly doubled in the last 5 years. Although production has not exceeded the demand for oil, the question has arisen as to its supplemental value for cattle grazing the rangela...

  18. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  19. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.

    PubMed

    Deng, Wei; Yan, Fang; Zhang, Xiaolan; Tang, Yuwei; Yuan, Yujin

    2015-08-01

    Canola is an important vegetable oil crop globally, and the understanding of the molecular mechanism underlying fatty acids biosynthesis during seed embryo development is an important research goal. Here we report the transcriptional profiling analysis of developing canola embryos using RNA-sequencing (RNA-Seq) method. RNA-Seq analysis generated 58,579,451 sequence reads aligned with 32,243 genes. It was found that a total of 55 differential expression genes (DEGs) encoding 28 enzymes function in carbon flow to fatty acids of storage TAG. Most of the DEGs encoding above enzymes showed similar expression pattern, indicating the DEGs are cooperatively involved in carbon flow into fatty acids. In addition, 41 DEGs associated with signal transductions, transport and metabolic processing of auxin, gibberellin, abscisic acid, cytokinin and salicylic acids were found in the RNA-Seq database, which indicates the important roles of the phytohormones in controlling embryo development and fatty acids synthesis. 122 DEGs encoding transcriptional factor family members were found in developing canola embryos. Furthermore, BnDOF5.6, a zinc finger transcriptional factor gene, found in RNA-Seq database was down-regulated in developing canola embryos. The transgenic plants displayed reduced embryo sizes, decreased fatty acids contents and altered seed fatty acids composition in canola. Down-regulated of BnDof5.6 also changed the expression levels of genes involved in fatty acids synthesis and desaturation. Our results indicate that BnDof5.6 is required for embryo development and fatty acids synthesis in canola. Overall this study presents new information on the global expression patterns of genes during embryo development and will expand our understanding of the complex molecular mechanism of carbon flow into fatty acids and embryo development in canola. PMID:26092973

  20. Relative bioavailability and toxicity of fuel oils leaking from World War II shipwrecks.

    PubMed

    Faksness, Liv-Guri; Daling, Per; Altin, Dag; Dolva, Hilde; Fosbæk, Bjørn; Bergstrøm, Rune

    2015-05-15

    The Norwegian Authorities have classified 30 WWII shipwrecks to have a considerable potential for pollution to the environment, based on the location and condition of the wreck and the types and amount of fuel. Oil thus far has been removed from eight of these shipwrecks. The water accommodated fractions of oils from two British wrecks and two German wrecks have been studied with special emphasis on chemistry and biological effects (algae growth (Skeletonema costatum) and copepod mortality (Calanus finmarchicus)). Chemical analyses were also performed on three additional German wreck oils. The results from these studies show that the coal based oils from German WWII shipwrecks have higher toxicity to marine organisms than the mineral oils from the British shipwrecks. The potential for higher impact on the marine environment of coal based oils has resulted in an altering of the priority list for oil recovery from WWII wrecks by the authorities. PMID:25840870

  1. Evaluation of Spring Canola as a potential alternative crop in the Central Great Plains of the U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the adaptability of Spring Canola (Brassica napus L.) to the High Plains as an oil seed crop, 26 trials were conducted from 2005 to 2008. Trials were divided into five regions: (1.) 36-37N 108W, (2.) 39-40N 101-103W, (3.) 41-42N 102-103W, (4.) 41-42N104W, and (5.) 44N 106-108W. Cultu...

  2. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils.

    PubMed

    Sørensen, Morten K; Vinding, Mads S; Bakharev, Oleg N; Nesgaard, Tomas; Jensen, Ole; Nielsen, Niels Chr

    2014-08-01

    A mobile, low-field nuclear magnetic resonance (NMR) sensor for onboard, inline detection of catalytic fines in fuel oil in the shipping industry is presented as an alternative to onshore laboratory measurements. Catalytic fines (called cat fines) are aluminosilicate zeolite catalysts utilized in the oil cracking process at refineries. When present in fuel oil, cat fines cause abrasive wear of engine parts and may ultimately lead to engine breakdown with large economical consequences, thereby motivating methods for inline measurements. Here, we report on a robust, mobile, and low-cost (27)Al NMR sensor for continuous online measurement of the level of catalytic fines in fuel oil onboard ships. The sensor enables accurate measurements of aluminum (catalytic fines) in ppm concentrations in good agreement with commercial laboratory reference measurements. PMID:24988044

  3. Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels

    SciTech Connect

    Wong, A.; Feng, Y.; Hogan, E.

    1995-11-01

    The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetane booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.

  4. Study on nitrogen stress distributing rule of canola

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong

    2006-02-01

    In this paper, in order to find a simple, quick and untouched method to check the level of nitrogen in canola, the spectral reflectance and SPAD values of the canola leaves of fifteen regions were measured by an ASD Field Spec(R) and SPAD 502 chlorophyll meter. The measurements were carried out at experiment field in Zhejiang University during growth season of 2004 to 2005. The authors combine the vegetal course of canola, and use SPAD 502 chlorophyll meter to investigate the distributing rule of chlorophyll concentration of the canola; Measure the third ramous of the canola from top, and analyze the variation rule of the chlorophyll concentration in different vegetal course. The spectral reflectivity property of canola leaves in different growing periods was analyzed, the spectral reflectance of the leaves were gradually getting smaller in the visible region and bigger in the near infrared region before flowering, but with reverse change after flowering. The authors also achieve the chlorophyll concentration and reflectance of 32groups of canola leaves and investigate the quantitative relationships between them by correlation analysis. The results reveal that they have good relationship in the range of 510-640nm and 685-720nm, and the peak of the correlation is at the wavelength of 707nm.

  5. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    PubMed

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. PMID:24572928

  6. Fossil fuel energy resources of Ethiopia: Oil shale deposits

    NASA Astrophysics Data System (ADS)

    Wolela, Ahmed

    2006-10-01

    The energy crisis affects all countries in the world. Considering the price scenarios, many countries in Africa have begun to explore various energy resources. Ethiopia is one of the countries that depend upon imported petroleum products. To overcome this problem, geological studies suggest a significant occurrence of oil shale deposits in Ethiopia. The Inter-Trappean oil shale-bearing sediments are widely distributed on the South-Western Plateau of Ethiopia in the Delbi-Moye, Lalo-Sapo, Sola, Gojeb-Chida and Yayu Basins. The oil shale-bearing sediments were deposited in fluviatile and lacustrine environments. The oil shales contain mixtures of algal, herbaceous and higher plant taxa. They are dominated by algal-derived liptinite with minor amounts of vitrinite and inertinite. The algal remains belong to Botryococcus and Pediastrum. Laboratory results confirm that the Ethiopian oil shales are dominated by long-chain aliphatic hydrocarbons and have a low sulphur content. Type-II and Type-I kerogen dominated the studied oil shales. Type-II and Type-I are good source rocks for oil and gas generation. Hydrogen index versus Tmax value plots indicated that most of the oil shale samples fall within the immature-early mature stage for hydrocarbon generation, consistent with the Ro values that range from 0.3% to 0.64%. Pyrolysis data of the oil shales sensu stricto indicate excellent source rocks with up to 61.2% TOC values. Calorific value ranges from 400 to 6165 cal/g. Palynological studies confirmed that the oil shale-bearing sediments of Ethiopia range from Eocene to Miocene in age. A total of about 253,000,000 ton of oil shale is registered in the country. Oil shale deposits in Ethiopia can be used for production of oil and gas.

  7. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  8. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... be the low-sulfur diesel test fuel specified in 40 CFR part 1065, subject to the provisions of this... specified in 40 CFR part 1065. (3) The diesel test fuel shall be the ultra low-sulfur diesel test fuel specified in 40 CFR part 1065 for model years 2011 and later. (4) For model years 2007 through 2010...

  9. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be the low-sulfur diesel test fuel specified in 40 CFR part 1065, subject to the provisions of this... specified in 40 CFR part 1065. (3) The diesel test fuel shall be the ultra low-sulfur diesel test fuel specified in 40 CFR part 1065 for model years 2011 and later. (4) For model years 2007 through 2010...

  10. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be the low-sulfur diesel test fuel specified in 40 CFR part 1065, subject to the provisions of this... specified in 40 CFR part 1065. (3) The diesel test fuel shall be the ultra low-sulfur diesel test fuel specified in 40 CFR part 1065 for model years 2011 and later. (4) For model years 2007 through 2010...

  11. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be the low-sulfur diesel test fuel specified in 40 CFR part 1065, subject to the provisions of this... specified in 40 CFR part 1065. (3) The diesel test fuel shall be the ultra low-sulfur diesel test fuel specified in 40 CFR part 1065 for model years 2011 and later. (4) For model years 2007 through 2010...

  12. 40 CFR 89.330 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be the low-sulfur diesel test fuel specified in 40 CFR part 1065, subject to the provisions of this... specified in 40 CFR part 1065. (3) The diesel test fuel shall be the ultra low-sulfur diesel test fuel specified in 40 CFR part 1065 for model years 2011 and later. (4) For model years 2007 through 2010...

  13. Developing selenium-enriched animal feed and biofuel from canola planted for managing Se-laden drainage waters in the westside of central California.

    PubMed

    Bañuelos, G S; Da Roche, J; Robinson, J

    2010-03-01

    We studied the reuse of selenium (Se)-laden effluent for producing canola (Brassica napus) and subsequent bioproducts in central California. Canola was irrigated with poor quality waters [electrical conductivity (EC) of approximately 5 dS m(-1) sulfate-salinity, 5 mg B L(-1), and 0.25 mg Se L(-1)]. Typical seed yields were 2.2 metric tons ha(-1). Seeds were processed for their oil, and transesterified to produce ASTM-quality biodiesel (BD) blends. The resulting Se-enriched seed cake meal (containing approximately 2 mg Se kg(-1) DM) was used in a dairy feed trial. Seventy-two Jersey and Holstein cows, 36 respectively, were fed Se-enriched canola meal as 6.2% of their daily feed ration for five weeks. Blood and milk samples were collected weekly and analyzed for total Se. This study showed that Se-enriched canola meal did not significantly increase total blood Se content in either cow breed. Milk Se concentrations did, however, significantly increase to safe levels of 59 microg Se L(-1) and 52 microg Se L(-1) in Jersey and Holstein cows, respectively. The production of BD 20 biofuels and Se-enriched feed meal from canola irrigated with poor quality waters may help sustain similar phytomanagement strategies under Se-rich conditions. PMID:20734619

  14. Purified canola lutein selectively inhibits specific isoforms of mammalian DNA polymerases and reduces inflammatory response.

    PubMed

    Horie, Sho; Okuda, Chiaki; Yamashita, Takatoshi; Watanabe, Kenichi; Kuramochi, Kouji; Hosokawa, Masashi; Takeuchi, Toshifumi; Kakuda, Makiko; Miyashita, Kazuo; Sugawara, Fumio; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2010-08-01

    In the screening of DNA polymerase (pol) inhibitor, we isolated lutein, a carotenoid, from the crude (unrefined) pressed oil of canola (low erucic acid rapeseed, Brassica napus L.). Commercially prepared carotenoids such as lutein (1), zeaxanthin (2), beta-cryptoxanthin (3), astaxanthin (4), canthaxanthin (5), beta-carotene (6), lycopene (7), capsanthin (8), fucoxanthin (9) and fucoxanthinol (10), were investigated for the inhibitory activities of pols. Compounds 1, 2 and 8 exhibited strong inhibition of the activities of mammalian pols beta and lambda, which are DNA repair- and/or recombination-related pols. On the other hand, all carotenoids tested had no influence on the activity of a mammalian pol alpha, which is a DNA replicative pol. Lutein (1) was the strongest pol inhibitor of mammalian pols beta and lambda in the prepared ten carotenoids tested, but did not influence of the activities of mammalian pols alpha, gamma, delta and epsilon. The tendency for pols beta and lambda inhibition by these carotenoids showed a positive correlation with the suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation. These results suggest that cold pressed unrefined canola/rapeseed oil, or other oils with high levels of lutein and other carotenoids, may be useful for their anti-inflammatory properties. PMID:20669052

  15. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  16. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  17. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  18. Literature survey and data base assessment: microbial fate of diesel fuel and fog oils

    SciTech Connect

    Bausum, H.T.; Taylor, G.W.

    1986-04-01

    This report assesses the data base on microbial degradation and microbial concentration of military-relevant fog-generating oils (SGF 1 and 2 and diesel fuel) in soil and freshwater systems. Such data were not found for the SGF oils. For SGF 1, diesel fuel and No. 2 heating oil were considered acceptable models and for SGF 2, light lubricating oils. Disappearance rates for No. 2 fuel oil have been shown to reach 500 sq.m/month (690 mg/sq.m/hr) in soils during the first few months following application. In waters, rates are probably lower, e.g. up to 10 mg/L/day for No. 2 fuel oil. These observations actually represent favorable case situations. Rates vary greatly according to the nature of the material and, for a given material, in response to environmental and operational conditions and the degree of weathering or aging that has occurred. The data base has been considered critically from the standpoint of its adequacy in meeting the requirement of the US Army for information allowing predictions of the role of biosorption to microorganisms and the rate of biodegradation in soil and freshwater systems, of material deposited from obscurant fogs. It was concluded that to allow such prediction further research would be required to many areas. Toward this end, several research studies on biodegradative processes and biodegradation rates of impacted or settled fog material, with and without prior exposure to sunlight or UV, are recommended and prioritized.

  19. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  20. The biomarker changes of a heavy fuel oil after different weathering times

    NASA Astrophysics Data System (ADS)

    Ma, Qimin; Ni, Zhanglin; Yu, Zhigang

    2009-03-01

    This paper presents the experimental results of composition changes of heavy fuel oil by simulating weathering in static seawater under natural environmental conditions. The results indicate: n-C10 to n-C15 were lost gradually in 24 weeks and the relative abundance of alkanes with long chains (> n-C19) increased markedly. The aromatic compounds with less than two rings (except C4N) were completely lost in 24 weeks and CnP and CnD became the main aromatics in the heavy fuel oil after 24 weeks. The ratios of n-C17/ Pristane (Pr) and n-C18/ Phytane (Ph) were suitable for identifying lightly weathered (3 weeks) heavy fuel oil. The ratios of n-C17/ n-C18 and Pr/Ph were suitable for identifying moderately weathered heavy fuel oil (12 weeks); the ratios of C2D/C2P and C3D/C3P did not change significantly in 24 weeks and were more suitable for identifying moderately weathered heavy fuel oil (24 weeks).

  1. Potential application of coal-fuel oil ash for the manufacture of building materials.

    PubMed

    Cioffi, R; Marroccoli, M; Sansone, L; Santoro, L

    2005-09-30

    In this paper coal-fuel oil ash has been characterized in terms of leaching behaviour and reactivity against lime and gypsum in hydratory systems for the manufacture of building materials. Its behaviour was also compared to that of coal ash. Metal release was measured in a dynamic leaching test with duration up to 16 days. The results have shown that coal-fuel oil ash behaves very similarly to coal ash. The reactivity of coal-fuel oil ash against lime and gypsum was measured in mixtures containing only lime and in mixtures containing both lime and gypsum. These systems were hydrated at 25 and 40 degrees C under 100% R.H. The results have shown that the main hydration products are the same as those that are usually formed in similar coal ash-based systems. That is, calcium silicate hydrate in coal-fuel oil ash/lime systems and calcium silicate hydrate plus calcium trisulphoaluminate hydrate in coal-fuel oil ash/lime/gypsum systems. From the quantitative point of view, hydration runs showed that the amounts of both chemically combined water and reacted lime measured in the case under investigation are very similar to those found in similar coal ash-based systems. Finally, the measurement of unconfined compressive strength proved that the systems have potentiality for the manufacture of pre-formed building blocks. PMID:15985327

  2. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  3. The Prestige oil spill: a laboratory study about the toxicity of the water-soluble fraction of the fuel oil.

    PubMed

    Navas, José M; Babín, Mar; Casado, Susana; Fernández, Carlos; Tarazona, José V

    2006-07-01

    The Prestige oil spill caused severe effects on the coastal fauna and flora due to direct contact of organisms with the fuel oil. However, the water soluble fraction (WSF) of the fuel oil can also provoke deleterious effects in the long term and even in regions not directly affected by the spill. Our objective was to determine the toxicity of the WSF using a battery of laboratory toxicity tests. To obtain a WSF in the laboratory, a sample of the spilled fuel was mixed with adequate medium, sonicated, agitated and filtered. No cytotoxic effects were detected in RTG-2 cells exposed to the WSF. In an algae growth inhibition test (OECD test guideline 201) the WSF did not affect the growth of Chlorella vulgaris. Furthermore, acute and reproductive toxicity tests (OECD test guideline 202) carried out using Daphnia magna did not indicate any deleterious effect of the WSF. In a bioassay designed in our laboratory, D. magna were fed with algae previously exposed to the fuel, but no toxic effects were detected. However, the WSF was able to induce a dose-dependent increase of ethoxyresorufin-O-deethylase activity in RTG-2 cells, indicating the presence of chemicals that could cause sub-lethal effects to organisms. After chemical analyses it was established that the final total quantity of polyaromatic hydrocarbons dissolved in medium was approximately 70 ng/ml. These low concentrations explain the observed lack of toxicity. PMID:16709428

  4. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  5. Ways of solving environmental problems while transferring the boilers for burning water-bitumen mixture instead of fuel oil

    NASA Astrophysics Data System (ADS)

    Kotler, V. R.; Sosin, D. V.

    2009-03-01

    Information concerning a new kind (for Russia) of liquid fuel, i.e., water-bitumen mixture (orimulsion), is presented. The application of the new fuel instead of the fuel oil at a boiler of a power unit of 350-MW capacity makes it possible to decrease sufficiently the expenditures for fuel while keeping the main environmental indices.

  6. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    NASA Astrophysics Data System (ADS)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a "Geothermic Fuel Cell" (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  7. Acute toxicity of a No. 6 fuel oil to marine organisms

    SciTech Connect

    Hollister, T.A.; Ward, G.S.; Parrish, P.R.

    1980-05-01

    The oil tanker Argo Merchant broke up in shoal waters off Nantucket, Massachusetts, in December 1976 and spilled a No. 6 fuel oil containing a No. 2 cutter stock. The US Coast Guard attempted to burn the oil slick at sea, but heavy seas contributed to an unsuccessful operation. Shortly after the spill, acute toxicity tests were performed with five test materials and three saltwater organisms - an alga, a copepod, and a fish. The test materials included a No. 6 fuel oil, a wicking agent, and lighter fluid. The materials were tested singularly and in combination. The three materials were also combined according to instructions from the US Coast Guard, ignited, and the resulting residue tested.

  8. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  9. Canola straw chemimechanical pulping for pulp and paper production.

    PubMed

    Hosseinpour, Reza; Fatehi, Pedram; Latibari, Ahmad Jahan; Ni, Yonghao; Javad Sepiddehdam, S

    2010-06-01

    Non-wood is one of the most important raw materials for pulp and paper production in several countries due to its abundance and cost-effectiveness. However, the pulping and papermaking characteristics of canola straw have rarely been investigated. The objective of this work was to determine the potential application of canola straw in the chemimechanical pulping (CMP) process. At first, the chemical composition and characteristics of canola straw were assessed and compared with those of other non-woods. Then, the CMP pulping of canola straw was conducted using different dosages of sodium sulfite and sodium hydroxide. The results showed that, by applying a mild chemical pretreatment, i.e., 4-12% (wt.) NaOH and 8-12% (wt.) Na(2)SO(3), in the CMP pulping of canola straw, the pulp brightness reached almost 40%ISO, and the strength properties were comparable to those of bagasse CMP and of wheat straw CMP. The impact of post-refining on the properties of canola straw CMP was also discussed in this work. PMID:20144862

  10. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  11. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  12. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  13. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., manufacturers may use the fuel specified in 40 CFR part 1065, subpart H, for gasoline-fueled engines. (2...) Test fuels—service accumulation and aging. Unleaded gasoline representative of commercial gasoline generally available through retail outlets must be used in service accumulation and aging for...

  14. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., manufacturers may use the fuel specified in 40 CFR part 1065, subpart H, for gasoline-fueled engines. (2...) Test fuels—service accumulation and aging. Unleaded gasoline representative of commercial gasoline generally available through retail outlets must be used in service accumulation and aging for...

  15. 40 CFR 90.308 - Lubricating oil and test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., manufacturers may use the fuel specified in 40 CFR part 1065, subpart H, for gasoline-fueled engines. (2...) Test fuels—service accumulation and aging. Unleaded gasoline representative of commercial gasoline generally available through retail outlets must be used in service accumulation and aging for...

  16. Vegetable oil-based diesel fuels: Overview and current trends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the energy crises of the 1970's and early 1980's, feedstocks and fuels with the potential to reduce dependence on petroleum-based energy and fuels have found increasing interest. Materials with triacylglycerols (triglycerides; esters of glycerol with fatty acids) as major components, such as ...

  17. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minimum sensitivity of 7.5 octane numbers, where sensitivity is defined as research octane number minus motor octane number. (d) Other fuels may be used for testing provided: (1) They are commercially viable... fuel may not be used during service accumulation. (2) The octane rating of the gasoline used may not...

  18. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minimum sensitivity of 7.5 octane numbers, where sensitivity is defined as research octane number minus motor octane number. (d) Other fuels may be used for testing provided: (1) They are commercially viable... fuel may not be used during service accumulation. (2) The octane rating of the gasoline used may not...

  19. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  20. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.

    PubMed

    Wu, Zhonghua; Zhang, Jing; Li, Zhanyong; Xie, Jian; Mujumdar, Arun S

    2012-12-01

    Sewage sludge and spent cooking oil are two main waste sources of modern Chinese cities. In this paper, the immersion frying method using spent cooking oil as the heating medium was applied to dry and convert wet sewage sludge into a solid fuel. The drying and oil uptake curves were plotted to demonstrate the fry-drying characteristics of the sewage sludge. Parametric studies were carried out to identify the governing parameters in the frying drying operation. It was found that at frying oil temperatures of 140-160°C, the wet sewage sludge could be dried completely in 6-9 min and converted into a solid fuel with a high calorific value of 21.55-24.08 MJ/kg. The fuel structure, chemical components, pyrolysis and combustion characteristics were investigated and the experimental results showed the solid fuel had a porous internal structure and a low ignition temperature of 250°C due to presence of oil. The frying drying mechanism was also discussed. PMID:23158688

  1. Hydrogenated soy ethyl ester (HySEE) from ethanol and waste vegetable oil

    SciTech Connect

    Peterson, C.; Reece, D.; Thompson, J.

    1995-11-01

    Biodiesel is gaining recognition in the United States as a renewable fuel which may be used as an alternative to diesel fuel without any modifications to the engine. Currently the cost of this fuel is the factor that limits its use. One way to reduce the cost of biodiesel is to use a less expensive form of vegetable oil such as waste oil from a processing plant. These operations use mainly hydrogenated soybean oil, some tallow and some Canola as their frying oils. It is estimated that there are several million pounds of waste vegetable oil from these operations. Additional waste frying oil is available from smaller processors, off-grade oil seeds and restaurants. This paper reports on developing a process to produce the first 945 liters (250 gallons) of HySEE using recipes developed at the University of Idaho; fuel characterization tests on the HySEE according to the ASAE proposed Engineering Practice for Testing of Fuels from Biological Materials, X552; short term injector coking tests and performance tests in a turbocharged, DI, CI engine; and a 300 hour screening test in a single cylinder, IDI, CI engine.

  2. Methylesters of plant oils as diesel fuels, either straight or in blends

    SciTech Connect

    Pischinger, G.H.; Siekmann, R.W.; Falcon, A.M.; Fernandes, F.R.

    1982-01-01

    Engine and vehicle tests were carried out with three alternative Diesel fuels: straight methylester of soybean oil (MESO), 75 to 25 gasoil-MESO blend, and 68-23-9 gasoil-MESO-ethanol (anhydrous) blend. Fuel-relevant characteristics of the three Diesel alternatives are given, together with the phase diagram of the ternary blend. Power, torque and volumetric brake specific fuel consumption in an unmodified IDI Diesel engine reflect mainly the net volumetric heating values. Smoke decreases with the presence of oxygenate compounds as does the emission of CO, as measured on the chassis dynamometer. A rigorous durability bench test on straight MESO shows results entirely within VW specifications. Analyses have indicated that, for IDI engines, no lube-oil problems are anticipated. Investigation of compatibility of MESO with fuel system material reveals considerable similarity to gasoil, but some items may require adaptation or even substitution. 3 figures, 9 tables.

  3. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  4. 46 CFR 167.45-40 - Fire-fighting equipment on nautical school ships using oil as fuel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Requirements § 167.45-40 Fire-fighting equipment on nautical school ships using oil as fuel. Steam-propelled... school ship propelled by steam, in which a part of the fuel-oil installation is situated, 2 or more... steam propelled nautical school ship of over 1,000 gross tons having one boiler room there shall...

  5. Synthetic fuel oil effects on microbial activity and nitrogen transformations in soil

    SciTech Connect

    Ward, M.H.; Saylor, G.S.; Luxmoore, R.J.

    1984-12-01

    The effects of a solvent refined coal oil (SRC-II) on microbial processes in a Captina silt loam soil were examined. The soil samples were maintained under environmental conditions favorable for most aerobic microbial activities. Soil was treated with four oil concentrations ranging from 0.2 to 8.6% (wt/wt). Oxygen uptake rates, total viable cell counts, numbers of nitrifying bacteria, and inorganic nitrogen concentrations were monitored before oil addition and at regular intervals for three months thereafter. Organic carbon, total nitrogen, and soil pH were also measured before and after application of the oil. The SRC-II coal oil effected soil processes at all treatment levels. The lowest oil concentration (0.2%) decreased numbers of nitrifying bacteria while increasing total viable cell numbers and net nitrogen mineralization. The higher oil concentrations reduced oxygen uptake rates and total viable cells as well as nitrifier numbers. Soil treated with a 1.7% oil concentration showed significant increases in respiration rates and cell densities after two months, while no significant increases were observed at oil levels of 3.4 and 8.6%. The application of the coal oil to soil samples raised the carbon to nitrogen ratio of the soil. The sum of nitrate and ammonium nitrogen in the oil-treated soils was never significantly lower than the control soil levels, indicating that nitrogen was not limiting to decomposition. However, the toxicity of the oil toward the nitrifying bacteria resulted in an accumulation of ammonium in treated soils. This may affect plant establishment on soils contaminated with a synthetic fuel oil. 104 references, 7 figures, 15 tables.

  6. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  7. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  8. Morphology of globules and cenospheres in heavy fuel oil burner experiments

    SciTech Connect

    Kwack, E.Y.; Shakkottai, P.; Massier, P.F.; Back, L.H. )

    1992-04-01

    Number 6 fuel oil was heated, sprayed, and burned in an enclosure using a small commercial oil burner. Samples of residues that emerged from the flame were collected at various locations outside the flame and observed by a scanning electron microscope. Porous cenospheres, larger globules (of size 80 {mu}m to 200 {mu}m) that resemble soap bubbles formed from the very viscous liquid residue, and unburned oil drops were the types of particle collected. This paper reports on the qualitative relationships of the morphology of these particles to the temperature history to which they were subjected were made.

  9. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  10. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. PMID:23490355

  11. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  12. RESPONSE OF BENTHIC COMMUNITIES IN MERL EXPERIMENTAL ECOSYSTEMS TO LOW LEVEL, CHRONIC ADDITIONS OF NO. 2 FUEL OIL

    EPA Science Inventory

    The macrofauna and meiofauna of three oiled and three control experimental ecosystems at the Marine Ecosystems Research Laboratory were followed for 25 weeks of semi-continuous additions of an oil-water dispersion of No. 2 fuel oil. Water column hydrocarbon levels were maintained...

  13. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... published on May 10, 2012, Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel....gov @epa.gov. Mail: Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

  14. Increasing the flow of carbon into seed oil.

    PubMed

    Weselake, Randall J; Taylor, David C; Rahman, M Habibur; Shah, Saleh; Laroche, André; McVetty, Peter B E; Harwood, John L

    2009-01-01

    The demand for vegetable oils for food, fuel (bio-diesel) and bio-product applications is increasing rapidly. In Canada alone, it is estimated that a 50 to 75% increase in canola oil production will be required to meet the demand for seed oil in the next 7-10years. Plant breeding and genetics have demonstrated that seed oil content is a quantitative trait based on a number of contributing factors including embryo genetic effects, cytoplasmic effects, maternal genetic effects, and genotype-environment interactions. Despite the involvement of numerous quantitative trait loci in determining seed oil content, genetic engineering to over-express/repress specific genes encoding enzymes and other proteins involved in the flow of carbon into seed oil has led to the development of transgenic lines with significant increases in seed oil content. Proteins encoded by these genes include enzymes catalyzing the production of building blocks for oil assembly, enzymes involved in oil assembly, enzymes regulating metabolic carbon partitioning between oil, carbohydrate and secondary metabolite fractions, and transcription factors which orchestrate metabolism at a more general level. PMID:19625012

  15. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  16. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler.

    PubMed

    Liu, Youcheng; Woodin, Mark A; Smith, Thomas J; Herrick, Robert F; Williams, Paige L; Hauser, Russ; Christiani, David C

    2005-09-01

    The health effects of exposure to vanadium in fuel-oil ash are not well described at levels ranging from 10 to 500 microg/m(3). As part of a larger occupational epidemiologic study that assessed these effects during the overhaul of a large oil-fired boiler, this study was designed to quantify boilermakers' exposures to fuel-oil ash particles, metals, and welding gases, and to identify determinants of these exposures. Personal exposure measurements were conducted on 18 boilermakers and 11 utility workers (referents) before and during a 3-week overhaul. Ash particles < 10 microm in diameter (PM(10), mg/m(3)) were sampled over full work shifts using a one-stage personal size selective sampler containing a polytetrafluoroethylene filter. Filters were digested using the Parr bomb method and analyzed for the metals vanadium (V), nickel (Ni), iron (Fe), chromium (Cr), cadmium (Cd), lead (Pb), manganese (Mn), and arsenic (As) by inductively coupled plasma mass spectrometry. Nitrogen dioxide (NO(2)) was measured with an Ogawa passive badge-type sampler and ozone (O(3)) with a personal active pump sampler.Time-weighted average (TWA) exposures were significantly higher (p < 0.05) for boilermakers than for utility workers for PM(10) (geometric mean: 0.47 vs. 0.13 mg/m(3)), V (8.9 vs. 1.4 microg/m(3)), Ni (7.4 vs. 1.8 microg/m(3)) and Fe (56.2 vs. 11.2 microg/m(3)). Exposures were affected by overhaul time periods, tasks, and work locations. No significant increases were found for O(3) or NO(2) for boilermakers or utility workers regardless of overhaul period or task group. Fuel-oil ash was a major contributor to boilermakers' exposure to PM(10) and metals. Vanadium concentrations sometimes exceeded the 2003 American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value. PMID:16048845

  17. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.

    PubMed

    Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie

    2010-12-01

    Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. PMID:20696566

  18. CHARACTERIZATION OF FINE PARTICULATE MATTER PRODUCED BY COMBUSTION OF RESIDUAL FUEL OIL

    EPA Science Inventory

    Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than (PM2.5) and greater (PM2.5+) that 2.5 micrometers in diameter. However, ex...

  19. REDUCTION OF USE OF PETROLEUM ENERGY RESOURCES BY CONVERSION OF WASTE COOKING OILS INTO DIESEL FUEL

    EPA Science Inventory

    This project has a dual objective of providing hands-on experience to undergraduate engineering students and producing biodiesel fuel from a used cooking oil feedstock. The project consists of three phases: Phase I - process development and construction of a pilot plant; Phase...

  20. Improvement of fuel properties of cottonseed oil methyl esters with commercial additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low temperature operability and oxidative stability of cottonseed (Gossypium hirsutum L.) oil methyl esters (CSME) were improved with addition of commercial additives. Four commercial anti-gel additives: Technol® B100 Biodiesel Cold Flow Improver, Gunk® Premium Diesel Fuel Anti-Gel, Heet® Dies...

  1. 75 FR 38487 - Order Finding That the Fuel Oil-180 Singapore Swap Contract Traded on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...On October 20, 2009, the Commodity Futures Trading Commission (``CFTC'' or ``Commission'') published for comment in the Federal Register \\1\\ a notice of its intent to undertake a determination whether the Fuel Oil-180 Singapore Swap (``SZS'') contract traded on the IntercontinentalExchange, Inc. (``ICE''), an exempt commercial market (``ECM'') under sections 2(h)(3)-(5) of the Commodity......

  2. Residential releases of number 2 fuel oil: a contributor to indoor air pollution.

    PubMed Central

    Kaplan, M B; Brandt-Rauf, P; Axley, J W; Shen, T T; Sewell, G H

    1993-01-01

    OBJECTIVES. Analysis of data from the New York City Fire Department showed that residential fuel oil releases frequently occur in quantities ranging from 5 to 1000 gal, primarily from storage tank leaks and overfill. A risk assessment was conducted to determine whether Number 2 fuel oil basement spills pose a significant risk to human health. METHODS. Exposure was derived from a simulated field study spill of Number 2 fuel oil in a townhouse basement to develop emission rates for the indicator constituent xylene. Distribution of xylene throughout the townhouse was determined using a multizone contaminant dispersal model. RESULTS. Spills of 85 and 21 gal resulted in xylene exposure estimates as high as 20 and 5 mg/kg/day, respectively. CONCLUSIONS. A spill of about 21 gal or more of Number 2 fuel oil would present a human health risk for central nervous and reproductive systems for 8 days or longer. Tank inspection and supervised delivery would provide effective prevention at minimal expense. PMID:8417613

  3. Economic implications of substituting plant oils for diesel fuel. Volume 2. Final report

    SciTech Connect

    Griffin, R.C.; Collins, G.S.; Lacewell, R.D.; Chang, H.C.

    1983-08-01

    This study of expected economic impacts of substituting plant oils for diesel fuel consisted of two components: (1) analysis of oilseed production and oilseed crushing capacity in the US and Texas and (2) simulation of impacts on US cropping patterns, crop prices, producer rent, and consumer surplus. The primary oilseed crops considered were soybeans, cottonseed, sunflowers, and peanuts. 19 references, 2 figures, 14 tables.

  4. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    PubMed

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion. PMID:10496152

  5. BEHAVIOUR OF NO. 2 FUEL OIL IN THE WATER COLUMN OF CONTROLLED ECOSYSTEMS

    EPA Science Inventory

    Four experiments were carried out to determine the effect of different temperatures, light levels and biological activities on the residence times of petroleum hydrocarbons. No. 2 fuel oil was added as a seawater dispersion to give an initial concentration of 150 to 300 microgram...

  6. CHARACTERIZATION OF HEAVY RESIDUAL FUEL OILS AND ASPHALTS BY INFRARED SPECTROPHOTOMETRY USING STATISTICAL DISCRIMINANT FUNCTION ANALYSIS

    EPA Science Inventory

    Spilled asphaltic materials and heavy residual fuel oils, because of their high molecular weights, complexity, and physical nature, cannot be readily identified to a source since these materials are not usually amenable to analysis by gas chromatography with flame ionization dete...

  7. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW-rated fire-tube boiler yielded a weakly bimodal PM size distribution (PSD) with over...

  8. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  9. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS (JOURNAL VERSION)

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  10. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...

  11. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  12. 76 FR 64042 - Petition Requesting Non-See-Through Packaging for Torch Fuel and Lamp Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... FR 44506), we published a notice, stating that the Commission had received a submission from John L... that we published in the Federal Register of July 26, 2011 (76 FR 44506) stated that we invited... Commission initiate rulemaking to require special packaging for torch fuel and lamp oil to make it...

  13. 33 CFR 155.440 - Segregation of fuel oil and ballast water on new oceangoing ships of 4,000 gross tons and above...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.440 Segregation of fuel oil and ballast water on... 150 gross tons and above, ballast water must not be carried in any fuel oil tank. (b) Where abnormal conditions or the need to carry large quantities of fuel oil render it necessary to carry ballast water...

  14. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. Results In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. Conclusion We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of

  15. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  16. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect

    Brodrick, J.R. ); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. )

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  17. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  18. Aphids and parasitoids in wheat and nearby canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In central Oklahoma, winter canola has recently become the primary rotational winter crop with wheat. Annual aphid pest outbreaks in canola have resulted in widespread insecticide applications. Insect parasitoids, which frequently suppress aphids in nearby wheat, may move to canola due to the larg...

  19. Thermal stability of some aircraft turbine fuels derived from oil shale and coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1977-01-01

    Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data.

  20. Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternate fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbo-charged, intercooled, 4-cylinder Allis-Chalmers diesel engine during 200-hour EMA cycle laboratory screening endurance tests. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. The experiment was conducted to develop prediction equations to determine the effects of alternate fuels on long-term engine performance. Least squares regression procedures were used to analyze long-term effects the test fuels had on engine performance and to simultaneously compare the test fuels. Several variables were used to measure engine performance. These response variables were volumetric fuel flow, energy input, power output, brake specific energy consumption, exhaust temperature and exhaust smoke. The predictor variables were time of the EMA cycle and fuel type. Two multivariate tests were performed in this analysis. The first tested the significance of time on the response variable. The second tested the fuel effect. Both tests were significant. The results of the univariate regressions indicated that time had a significant effect only on exhaust temperature. In all other cases, time was not a factor. However, significant difference in the intercepts of the prediction equations were found between tested fuels.

  1. No. 2 fuel-oil compound retention and release by Mytilus edulis: 1983 Cape Cod Canal oil spill. Technical report

    SciTech Connect

    Farrington, J.W.; Jia, X.; Clifford, C.H.; Tripp, B.W.; Livramento, J.B.

    1986-03-01

    Retention and release of No. 2 fuel-oil compounds by Mytilus edulis contaminated by a small oil spill in the Cape Cod Canal in 1983 was studied for the population in situ and for a subsample transplanted to a clean laboratory seawater system. Compounds analyzed include C13 to C24 n-alkanes; pristane; phytane; C2-, C3-naphthalenes; fluorene; phenanthrene; C1-, C2-, C3-phenanthrenes; fluoranthene; pyrene and dibenzothiophene. Biological half-lives were determined for the compounds from Day-3 to Day-29 following the spill and ranged from 1.5 days for C2-naphthalenes to 9.9 days for C2-phenanthrenes. Gas chromatographic-mass spectrometer analyses of C2- and C3-phenanthrenes revealed changes in relative abundance of compounds within isomer groups from samples at Day-29 to the time when no further detection of fuel oil was noted. The study also demonstrated the feasibility of training an analyst unfamiliar with analyses of hydrocarbons in tissues to conduct high-resolution glass capillary GC analyses.

  2. DIRECT THERMOCHEMICAL CONVERSION OF SEWAGE SLUDGE TO FUEL OIL

    EPA Science Inventory

    A disposal method for primary sewage sludge and industrial sludges which generates boiler fuel as a product and is energy self sufficient or energy-generating is described. The method involves direct liquefaction in a mild aqueous alkali above 250 degs. C and was demonstrated for...

  3. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. PMID:26470207

  4. Method to upgrade bio-oils to fuel and bio-crude

    DOEpatents

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  5. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage

    PubMed Central

    Fernando, W. G. Dilantha; Zhang, Xuehua; Amarasinghe, Chami C.

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is a major threat to canola production in Canada. With the exception of China, L. maculans is present in areas around the world where cruciferous crops are grown. The pathogen can cause trade barriers in international canola seed export due to its potential risk as a seed contaminant. The most recent example is China restricting canola seeds imported from Canada and Australia in 2009. Therefore, it is important to assess the level of Blackleg infection in Canadian canola seed lots and dockage (seeds and admixture). In this study, canola seed lots and dockage samples collected from Western Canada were tested for the presence of the aggressive L. maculans and the less aggressive L. biglobosa. Results showed that both L. maculans and L. biglobosa were present in seed lots and dockage samples, with L. biglobosa being predominant in infected seeds. Admixture separated from dockage had higher levels of L. maculans and L. biglobosa infection than samples from seed lots. Admixture appears to harbour higher levels of L. maculans infection compared to seeds and is more likely to be a major source of inoculum for the spread of the disease than infected seeds. PMID:27135232

  6. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage.

    PubMed

    Fernando, W G Dilantha; Zhang, Xuehua; Amarasinghe, Chami C

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is a major threat to canola production in Canada. With the exception of China, L. maculans is present in areas around the world where cruciferous crops are grown. The pathogen can cause trade barriers in international canola seed export due to its potential risk as a seed contaminant. The most recent example is China restricting canola seeds imported from Canada and Australia in 2009. Therefore, it is important to assess the level of Blackleg infection in Canadian canola seed lots and dockage (seeds and admixture). In this study, canola seed lots and dockage samples collected from Western Canada were tested for the presence of the aggressive L. maculans and the less aggressive L. biglobosa. Results showed that both L. maculans and L. biglobosa were present in seed lots and dockage samples, with L. biglobosa being predominant in infected seeds. Admixture separated from dockage had higher levels of L. maculans and L. biglobosa infection than samples from seed lots. Admixture appears to harbour higher levels of L. maculans infection compared to seeds and is more likely to be a major source of inoculum for the spread of the disease than infected seeds. PMID:27135232

  7. Effects of osmopriming on seed germination of canola (Brassica napus L.) under salinity stress.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M; Tavakkol-Afshari, R

    2006-01-01

    Canola has good yield and performance in weak and saline soils that other oil crops can not be cultivated in them. Performance and production of this crop can be improved by increasing the vigor of its seeds. Priming is one of the techniques for enhancing seed vigor under stress condition. Pretreatment of seeds in osmotic solutions is called osmopriming, which is used to increase the seed moisture content and speed of germination. In this study, seeds of three varieties of canola (SLM046, Okapi and Licord) were primed in osmotic solutions and then were germinated under salinity stress at laboratory conditions. Osmotic solutions were made by polyethylene glycol 6000 in osmotic potentials of -10, -12, -14, -16 and -18 bar for 24 h. NaCl solutions with electrical conductivities of 0, 6, 12 and 18 ds/m were used to make salinity stress. Results of this study showed that osmopriming could be used to increase the performance of seeds under normal and salinity stress. PMID:17390787

  8. Small oil-fired heating equipment: The effects of fuel quality

    SciTech Connect

    Litzke, W.

    1993-08-01

    The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

  9. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts.

    PubMed

    Nguyen, T S; Zabeti, M; Lefferts, L; Brem, G; Seshan, K

    2013-08-01

    Upgrading of biomass pyrolysis vapors over 20 wt.% Na2CO3/γ-Al2O3 catalyst was studied in a lab-scale fix-bed reactor at 500°C. Characterization of the catalyst using SEM and XRD has shown that sodium carbonate is well-dispersed on the support γ-Al2O3. TGA and (23)Na MAS NMR suggested the formation of new hydrated sodium phase, which is likely responsible for the high activity of the catalyst. Catalytic oil has much lower oxygen content (12.3 wt.%) compared to non-catalytic oil (42.1 wt.%). This comes together with a tremendous increase in the energy density (37 compared to 19 MJ kg(-1)). Decarboxylation of carboxylic acids was favoured on the catalyst, resulting to an oil almost neutral (TAN=3.8mg KOH/g oil and pH=6.5). However, the mentioned decarboxylation resulted in the formation of carbonyls, which correlates to low stability of the oil. Catalytic pyrolysis results in a bio-oil which resembles a fossil fuel oil in its properties. PMID:23747447

  10. Physiological responses of Spartina alterniflora Loisel. and Limonium carolinianum (Walt. ) Britt. to weathered fuel oil

    SciTech Connect

    Booker, F.L.

    1988-01-01

    The purpose of this study was to investigate physiological mechanisms of weathered fuel oil intoxication in two species of salt marsh plants, Spartina alterniflora Loisel. and Limonium carolinanum (Walt.) Britt. An objective was to determine why Limonium spp. are more tolerant to the effects of oil than Spartina spp. Comparative experiments were conducted on plasmalemma permeability, respiration and plasmolysis in roots. Histochemical studies were also done. The results indicate that W2F oil increased solute leakage from the roots of both species in a dose-dependent manner but greater leakage occurred with Spartina than Limonium roots. Respiration was also more inhibited by W2f oil in Spartina than in Limonium roots. A second objective was to obtain evidence that the membrane was a site of injury from oil treatment. Experiments were conducted to determine the effects of W2F oil on solute permeation-with and without cation preincubation, ATPase activity, and microsomal membrane fluidity. The solute permeation experiments suggested that oil treatment injured cell membranes. They further suggested that injury did not directly involve ion transport mechanisms.

  11. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  12. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. PMID:23876507

  13. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  14. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  15. Attempts to prevent injector coking with sunflower oil by engine modifications and fuel additives

    SciTech Connect

    van der Walt, A.N.; Hugo, F.J.C.

    1982-01-01

    The effect of injector tip temperature on coking propencity when sunflower oil is used as a fuel for direct injection engines, was tested. Partial retraction of the injector, the addition of a heat shield to the injector and cooling the injector with water was tried. Also, injector temperature was increased by reducing heat transferred to the cylinder head and preheating the sunflower oil. None of these measures could prevent coking of the injector tip. Coating the injector tip with Teflon and increasing the back leakage rate was also tried without success. Only a few of many additives tested, showed some promise of being able to prevent coking. 5 figures, 1 table.

  16. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  17. Comparison of hypothetical LNG and fuel oil fires on water.

    PubMed

    Lehr, William; Simecek-Beatty, Debra

    2004-02-27

    Large spills of refined petroleum products have been an occasional occurrence over the past few decades. This has not been true for large spills of liquefied natural gas (LNG). This paper compares the likely similarities and differences between accidental releases from a ship of sizable quantities of these different hydrocarbon fuels, their subsequent spreading, and possible pool-fire behavior. Quantitative estimates are made of the spread rate and maximum slick size, burn rate, and duration; effective thermal radiation; and subsequent soot generation. PMID:15036638

  18. Effects of frying in various cooking oils on fatty acid content of farmed rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal was to describe the effects of frying with various oils on the fatty acid content of rainbow trout. Four different oils were evaluated (peanut oil, high oleic sunflower oil, corn oil, and canola oil). Farmed rainbow trout (Oncorhynchus mykiss) fillets were sliced into three portions and eac...

  19. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 1. COMPOSITION AND PROPERTIES OF SELECTED OILS

    EPA Science Inventory

    Multicomponent composition and corresponding physical properties data of crude oils and petroleum products are needed as input to environmental fate simulations. Complete sets of such data, however, are not available in the literature due to the complexity and expense of making t...

  20. Influence of vegetable oil based alternate fuels on residue deposits and components wear in a diesel engine

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour EMA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This investigation employed an analysis of variance to compare CRC carbon and lacquer ratings and wear of engine parts for all tested fuels. The paper deals with carbon and lacquer formation and its effect on long-term engine performance as experienced during the operation with the alternate fuels. Significantly heavier deposits than for the diesel fuel were observed for the microemulsion and 25-75 sunflower oil blend. particularly on the exhaust and intake valve stems, on the piston lands, and in the piston grooves. In all tests engine wear was not significant. The final dimensions of the measured elements did not exceed the manufacturer's initial parts specifications.

  1. Economic and engineering evaluation of plant oils as a diesel fuel. Final report

    SciTech Connect

    Engler, C.R.; LePori, W.A.; Johnson, L.A.; Griffin, R.C.; Diehl, K.C.; Moore, D.S.; Lacewell, R.D.; Coble, C.G.; Lusas, E.W.; Hiler, E.A.

    1982-04-15

    The annual total yield of plant oils in the US is about 3.7 billion gallons. Diesel use by agriculture is about 2.0 billion gallons annually and is growing rapidly relative to gasoline use. Based on these amounts, plant oils could satisfy agriculture's diesel fuel requirements during the near future. However, diversion of large quantities of plant oils for such purposes would have dramatic impacts on plant oil prices and be reflected in numerous adjustments throughout agriculture and other sectors of the economy. The competitive position of sunflowers for plant oil production in Texas was analyzed. In those regions with a cotton alternative, sunflowers were not, for the most part, economically competitive. However, sunflower production is competitive with grain sorghum in certain cases. To develop a meaningful production base for oilseed crops in Texas, yields need to be improved or increases in oilseed prices relative to cotton must take place. This implies some limitations for the potential of Texas to produce large quantities of plant oils.

  2. Toxicity of fuel oil water accommodated fractions on two marine microalgae, Skeletonema costatum and Chlorela spp.

    PubMed

    Chao, Min; Shen, Xinqiang; Lun, Fengxia; Shen, Anglv; Yuan, Qi

    2012-05-01

    In this paper, the acute toxicity of four fuel oils including F120, F180, F380 and No.-20 was evaluated by exposing the marine microalgae Chlorela spp. (Chlorophyta) and Skeletonema costatum (Bacillariophyta) in the fuel oil water accommodated fractions (WAF). The bioassay showed that F180 WAF was the most toxic to both microalgae. The 96 h EC(50) value of F180 WAF for Skeletonema costatum and Chlorela spp. was 9.41 and 13.63 mg/L expressed in concentration of total petroleum hydrocarbons, respectively. WAFs of F120, F180 and F380 were more toxic to Skeletonema costatum than to Chlorela spp. In contrast, No.-20 WAF did not show significant toxicity for both Skeletonema costatum and Chlorela spp. PMID:22349279

  3. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  4. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  5. The analysis of chlorine with other elements of interest in waste oil/fuels by ICP-AES

    SciTech Connect

    Tsourides, D.

    1998-12-31

    It has been said that there are more chemical analysis performed on oil/fuels than any other material. The sensitivity, linearity, multi-element capability, and relative freedom from matrix effects of ICP-AES makes it particularly suitable for elemental analysis of these samples. However, until recently the routine analysis of Chlorine had not been possible by ICP-AES. The addition of the Halogen elements, particularly Chlorine, to ICP-AES analysis is of importance to several industries that burn waste oil as fuel. The recycling and disposal of waste oil is closely regulated by metal and halogen content in all developed countries. In some countries, waste oil containing more than 1,000 ppm of Chlorine is considered hazardous waste. However, used oil may be burned as a fuel if it meets certain allowable limits. The paper describes the procedures for chlorine analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy.

  6. 46 CFR 56.50-65 - Burner fuel-oil service systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 104.1.2 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2), the thickness must be greater... 46 Shipping 2 2014-10-01 2014-10-01 false Burner fuel-oil service systems. 56.50-65 Section 56.50... SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-65 Burner...

  7. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  8. Alternative fuels: Parachute Creek shale oil project's economic and operational outlook

    SciTech Connect

    Not Available

    1987-01-01

    The Department of Energy awarded the Union Oil Company $400 million in price guarantees for synthetic crude oil produced by Parachute Creek shale oil project in Colorado. In 1985, Synthetic Fuels Corporation awarded an additional $500 million in price and loan guarantees to Union to modify the project's technology with a fluidized bed combustor. In December 1985, the Congress abolished SFC and transferred responsibility for the guarantees to the Treasury. GAO believes that because of the uncertainty of the project's economic and technical viability, it would not be in the government's best interest to expand an additional $500 million in financial assistance to install the combustor. If Union elects to proceed with the combustor, GAO recommends that Treasury use the analysis in this report to critically evaluate Union's proposal and explore the government's options for minimizing additional outlays on the project.

  9. Effect of Worldwide Oil Price Fluctuations on Biomass Fuel Use and Child Respiratory Health: Evidence from Guatemala

    PubMed Central

    Fried, Brian J.

    2011-01-01

    Objectives. We examined the effect of worldwide oil price fluctuations on household fuel use and child respiratory health in Guatemala. Methods. We regressed measures of household fuel use and child respiratory health on the average worldwide oil price and a rich set of covariates. We leveraged variation in oil prices over the 6-month period of the survey to identify associations between fuel prices, fuel choice, and child respiratory outcomes. Results. A $1 (3.4% point) increase in worldwide fuel prices was associated with a 2.8% point decrease in liquid propane gasoline use (P < .05), a 0.75% point increase in wood use (P < .05), and a 1.5% point increase in the likelihood of the child reporting a respiratory symptom (P < .1). The association between oil prices and the fuel choice indicators was largest for households in the middle of the income distribution. Conclusions. Fluctuations in worldwide fuel prices affected household fuel use and, consequently, child health. Policies to help households tide over fuel price shocks or reduce pollution from biomass sources would confer positive health benefits. Such policies would be most effective if they targeted both poor and middle-income households. PMID:21778480

  10. A seed coat-specific promoter for canola.

    PubMed

    El-Mezawy, Aliaa; Wu, Limin; Shah, Saleh

    2009-12-01

    The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The beta-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola. PMID:19690805

  11. Nitrogen stress measurement of canola based on NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong

    2006-09-01

    The spectral analysis technique based on the spectral reflected property to identify object make the real time inspection of crop nutrition and fast diagnoses come true. Compared with the conventional means of crop nutrition fast diagnoses, the information acquired by spectral analysis technique is faster and save both time and labor, it is the basic technique adopted in the precision agriculture which needs to do research on variable fertilization and irrigation. Using spectral analysis technique to process crop nutrition real time inspection and fast diagnoses is always the popular research in remote sensing in agriculture. In this paper, in order to find a simple, quick and untouched method to check the level of nitrogen in canola, the spectral reflectance and SPAD values of the canola leaves of eight regions were measured by an ASD Field Spec(R) and SPAD 502 chlorophyll meter. Experiment was made on the leaves taken from live canola, and the relationship between spectral reflectivity and chlorophyll concentration was analyzed. 32 groups of the chlorophyll concentration data and the reflected spectra data corresponding to them were acquired, also the correlation between red edge inflexion point position and chlorophyll concentration was analyzed, and the coefficient of 0.986 was got. The mathematic model between the first derivative of absorption spectra and chlorophyll concentration was established, and the coefficient of 0.873 was got. Therefore it indicated more that it is possible to use the hyper-spectroscopy remote sensing to explore the chlorophyll concentration of canola in ration.

  12. CANOLA CROP TAKES UP SELENIUM PROVIDES BIOFUEL AND FEED SUPPLEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the Brassica plant taxi that are candidates for phytoremediation of selenium also produce products that be used for refining into biodiesel, as well as selenium enriched animal feeds. These include canola (Brassica napus) that is planted in the Westside soils of central California (Oxalis si...

  13. Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola.

    PubMed

    Deng, Wei; Chen, Guanqun; Peng, Fred; Truksa, Martin; Snyder, Crystal L; Weselake, Randall J

    2012-10-01

    Transparent Testa16 (TT16), a transcript regulator belonging to the B(sister) MADS box proteins, regulates proper endothelial differentiation and proanthocyanidin accumulation in the seed coat. Our understanding of its other physiological roles, however, is limited. In this study, the physiological and developmental roles of TT16 in an important oil crop, canola (Brassica napus), were dissected by a loss-of-function approach. RNA interference (RNAi)-mediated down-regulation of tt16 in canola caused dwarf phenotypes with a decrease in the number of inflorescences, flowers, siliques, and seeds. Fluorescence microscopy revealed that tt16 deficiency affects pollen tube guidance, resulting in reduced fertility and negatively impacting embryo and seed development. Moreover, Bntt16 RNAi plants had reduced oil content and altered fatty acid composition. Transmission electron microscopy showed that the seeds of the RNAi plants had fewer oil bodies than the nontransgenic plants. In addition, tt16 RNAi transgenic lines were more sensitive to auxin. Further analysis by microarray showed that tt16 down-regulation alters the expression of genes involved in gynoecium and embryo development, lipid metabolism, auxin transport, and signal transduction. The broad regulatory function of TT16 at the transcriptional level may explain the altered phenotypes observed in the transgenic lines. Overall, the results uncovered important biological roles of TT16 in plant development, especially in fatty acid synthesis and embryo development. PMID:22846192

  14. Evaluation of Alkyl Esters from Camelina Sativa Oil as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl and ethyl esters were prepared from camelina [Camelina sativa (L.) Crantz] oil by homogenous base-catalyzed transesterification for evaluation as a potential alternative source of biodiesel fuel. Camelina oil contained a high percentage of linolenic (32.6 wt %), linoleic (19.6 wt %), and ole...

  15. Cuphea Oil as Source of Biodiesel with Improved Fuel Properties Caused by High Content of Methyl Decanoate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, is an alternative to conventional petroleum-based diesel fuel. Biodiesel has been prepared from numerous common vegetable oils or fats as well as new or less common feedstocks. Major issues facing biodiesel include seve...

  16. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern. PMID:25780953

  17. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    PubMed

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. PMID:27259188

  18. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    NASA Astrophysics Data System (ADS)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  19. Conversion of atactic polypropylene waste to fuel oil. Final report

    SciTech Connect

    Bhatia, J.

    1981-04-01

    A stable, convenient thermal pyrolysis process was demonstrated on a large scale pilot plant. The process successfully converted high viscosity copolymer atactic polypropylene to predominantly liquid fuels which could be burned in commercial burners. Energy yield of the process was very high - in excess of 93% including gas phase heating value. Design and operating data were obtained to permit design of a commercial size atactic conversion plant. Atactic polypropylene can be cracked at temperatures around 850/sup 0/F and residence time of 5 minutes. The viscosity of the cracked product increases with decrease in time/temperature. A majority of the pyrolysis was carried out at a pressure of 50 psig. Thermal cracking of atactic polypropylene is seen to result in sigificant coke formation (0.4% to 0.8% on a weight of feed basis) although the coke levels were of an order of magnitude lower than those obtained during catalytic cracking. The discrepancy between batch and continuous test data can be atrributed to lowered heat transfer and diffusion rates. Oxidative pyrolysis is not seen as a viable commercial alternative due to a significant amount of water formation. However, introduction of controlled quantities of oxygen at lower temperatures to affect change in feedstock viscosity could be considered. It is essential to have a complete characterization of the polymer composition and structure in order to obtain useful and duplicable data because the pyrolysis products and probably the pyrolysis kinetics are affected by introduction of abnormalities into the polymer structure during polymerization. The polymer products from continuous testing contained an olefinic content of 80% or higher. This suggests that the pyrolysis products be investigated for use as olefinic raw materials. Catalytic cracking does not seem to result in any advantage over the Thermal Cracking process in terms of reaction rates or temperature of operation.

  20. Laser cleaning: an alternative method for removing oil-spill fuel residues

    NASA Astrophysics Data System (ADS)

    Mateo, M. P.; Nicolas, G.; Piñon, V.; Ramil, A.; Yañez, A.

    2005-07-01

    Cleaning methods employed in last oil spills usually require direct contact or the intervention of external agents that can lead to additional contamination and damage of treated surfaces. As an alternative, a laser-based methodology is proposed in this work for controlled removal of fuel residues caused by the accident of Prestige tanker from rocks, as well as tools and equipment employed in fuel retaining and elimination procedures. Ablation thresholds of fuel crust and underlying material have been investigated with the aim to establish operational parameters that preserve the structural integrity and identity of the latter. The clean-up process was controlled by the self-limiting nature of the process or by laser-induced plasma spectroscopy. Contaminated, no contaminated and cleaned areas of the samples have been characterized by complementary microscopy techniques to help in the task of optimizing the laser cleaning procedure and checking the effectiveness of the removal process.